Brave and Cautious Reasoning in \mathcal{EL}^*

Michel Ludwig and Rafael Peñaloza

Theoretical Computer Science, TU Dresden, Germany Center for Advancing Electronics Dresden {michel,penaloza}@tcs.inf.tu-dresden.de

Abstract. Developing and maintaining ontologies is an expensive and error-prone task. After an error is detected, users may have to wait for a long time before a corrected version of the ontology is available. In the meantime, one might still want to derive meaningful knowledge from the ontology, while avoiding the known errors. We introduce brave and cautious reasoning and show that it is hard for \mathcal{EL} . We then propose methods for improving the reasoning times by precompiling information about the known errors and using proof-theoretic techniques for computing justifications. A prototypical implementation shows that our approach is feasible for large ontologies used in practice.

1 Introduction

Description Logics (DLs) [3] have been successfully used to model many application domains, and they are the logical formalism underlying the standard ontology language for the semantic web OWL [30]. Consequently, more and larger ontologies are being built using these formalisms. Ontology engineering is expensive and error-prone; the combination of knowledge from multiple experts, and misunderstandings between them and the knowledge engineers may lead to errors that are hard to detect. For example, several iterations of SNOMED CT [13, 29] classified amputation of finger as a subclass of amputation of hand [7, 8].

Since domain knowledge is needed for correcting an unwanted consequence, and its causes might not be obvious, it can take long before a corrected version of an ontology is released. For example, new versions of SNOMED are released every six months; one should then expect to wait at least that amount of time before an error is resolved. During that time, users should still be able to derive meaningful consequences from the ontology, while avoiding known errors.

A related problem is *inconsistency-tolerant reasoning*, based on consistent query answering from databases [1,9], where the goal is to obtain meaningful consequences from an inconsistent ontology \mathcal{O} . Inconsistency is clearly an unwanted consequence from an ontology, but it is not the only one. We generalize the idea of inconsistency-tolerant reasoning to *error-tolerant reasoning* in which other unwanted consequences, beyond inconsistency, are considered.

We study brave and cautious semantics. Intuitively, cautious semantics refer to consequences that follow from all the possible repairs of \mathcal{O} ; this guarantees

^{*} Partially supported by DFG within the Cluster of Excellence 'cfAED'.

Table 1. Syntax and semantics of \mathcal{EL} .

Syntax	Semantics
Т	$\Delta^{\mathcal{I}}$
$C\sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
$\exists r.C$	$\{x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}} : (x, y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$

that, however the ontology is repaired, the consequence will still follow. For some consequences, one might only be interested in guaranteeing that it follows from at least one repair; this defines the brave semantics. As usual in inconsistency-tolerant reasoning, the repairs are maximal subontologies of \mathcal{O} that do not entail the unwanted consequence. We also consider the IAR semantics, proposed in [21] as a means to efficiently approximate cautious reasoning; see also [11, 28].

In this paper, we focus on subsumption between concepts w.r.t. a TBox in \mathcal{EL} , which is known to be polynomial [12]. As every \mathcal{EL} TBox is consistent, considering inconsistency-tolerant semantics makes no sense in this setting. On the other hand, SNOMED CT and other large-scale ontologies are written in tractable extensions of this logic, and being able to handle errors written in them is a relevant problem for knowledge representation and ontology development.

We show that error-tolerant reasoning in \mathcal{EL} is hard. More precisely, brave semantics is NP-complete, and cautious and IAR semantics are coNP-complete. These results are similar to the complexity of inconsistency-tolerant semantics in inexpressive logics [10,28]. We also show that hardness does not depend only on the number of repairs: there exist errors with polynomially many repairs, for which error-tolerant reasoning requires super-polynomial time (unless P = NP).

To improve the time needed for error-tolerant reasoning, we propose to precompute the information on the causes of the error. We first annotate every axiom with the repairs to which it belongs. We then use a proof-theoretic approach, coupled with this annotated ontology, to derive error-tolerant consequences. We demonstrate the practical applicability of our approach for brave and cautious reasoning by applying a prototype-implementation on large ontologies used in practice.

2 Error-Tolerant Reasoning in \mathcal{EL}

We first briefly recall the DL \mathcal{EL} . Given two disjoint sets N_{C} and N_{R} of concept, and role-names, respectively, concepts are constructed by $C ::= A \mid C \sqcap C \mid \exists r.C$, where $A \in \mathsf{N}_{\mathsf{C}}$ and $r \in \mathsf{N}_{\mathsf{R}}$. A TBox is a finite set of GCIs of the form $C \sqsubseteq D$, where C, D are concepts. The TBox is in $normal\ form$ if all its GCIs are of the form $A \sqsubseteq \exists r.B, \exists r.A \sqsubseteq B$, or $A_1 \sqcap \ldots \sqcap A_n \sqsubseteq B$ with $n \geq 1$ and $A, A_1, \ldots, A_n, B \in \mathsf{N}_{\mathsf{C}} \cup \{\top\}$. The semantics of \mathcal{EL} is defined through $interpretations\ \mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is a non-empty domain and $\cdot^{\mathcal{I}}$ maps each $A \in \mathsf{N}_{\mathsf{C}}$ to a set $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ and every $r \in \mathsf{N}_{\mathsf{R}}$ to a binary relation $r^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$. This mapping is extended to arbitrary concepts as shown in Table 1. The interpretation \mathcal{I} is a model of the TBox \mathcal{T} if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for every $C \sqsubseteq D \in \mathcal{T}$. The main reasoning problem is to decide $subsumption\ [2,12]$: C is subsumed by D w.r.t. \mathcal{T} (denoted $C \sqsubseteq_{\mathcal{T}} D$) if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for every model \mathcal{I} of \mathcal{T} . $\mathcal{H}\mathcal{L}$ is

the sublogic of \mathcal{EL} that does not allow existential restrictions; it is a syntactic variant of Horn logic: every Horn clause with at least one positive literal can be seen as an \mathcal{HL} GCI. An \mathcal{HL} TBox is a *core* TBox if all its axioms are of the form $A \sqsubseteq B$ with $A, B \in \mathsf{N}_\mathsf{C}$.

Error-tolerant reasoning refers to the task of deriving meaningful consequences from a TBox that is known to contain errors. In the case of \mathcal{EL} , an erroneous consequence refers to an error in a subsumption relation. If a TBox \mathcal{T} entails an unwanted subsumption $C \sqsubseteq_{\mathcal{T}} D$, then we are interested finding the ways in which this consequence can be avoided.

Definition 1 (repair). Let \mathcal{T} be an \mathcal{EL} TBox and $C \sqsubseteq_{\mathcal{T}} D$. A repair of \mathcal{T} w.r.t. $C \sqsubseteq D$ is a maximal (w.r.t. set inclusion) subset $\mathcal{R} \subseteq \mathcal{T}$ such that $C \not\sqsubseteq_{\mathcal{R}} D$. The set of all repairs of \mathcal{T} w.r.t. $C \sqsubseteq D$ is denoted by $\mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)$.

We will usually consider a fixed TBox \mathcal{T} , and hence say that \mathcal{R} is a repair w.r.t. $C \sqsubseteq D$, or even simply a repair, if the consequence is clear from the context.

Example 2. The repairs of $\mathcal{T} = \{A \sqsubseteq \exists r.X, \exists r.X \sqsubseteq B, A \sqsubseteq Y, Y \sqsubseteq B, A \sqsubseteq B'\}$ w.r.t. the consequence $A \sqsubseteq B$ are the sets $\mathcal{R}_i := \mathcal{T} \setminus \mathcal{S}_i, 1 \le i \le 4$, where $\mathcal{S}_1 = \{A \sqsubseteq \exists r.X, A \sqsubseteq Y\}, \mathcal{S}_2 = \{A \sqsubseteq \exists r.X, Y \sqsubseteq B\}, \mathcal{S}_3 = \{\exists r.X \sqsubseteq B, A \sqsubseteq Y\},$ and $\mathcal{S}_4 = \{\exists r.X \sqsubseteq B, Y \sqsubseteq B\}.$

The number of repairs w.r.t. a consequence may be exponential, even for core TBoxes [26]. Each of these repairs is a potential way of avoiding the unwanted consequence; however, there is no way of knowing *a priori* which is the best one to use for further reasoning tasks. One common approach is to be *cautious* and consider only those consequences that follow from *all* repairs. Alternatively, one can consider *brave* consequences: those that follow from at least one repair.

Definition 3 (cautious, brave). Let \mathcal{T} be a TBox, $C \sqsubseteq_{\mathcal{T}} D$, and C', D' be two concepts. C' is bravely subsumed by D' w.r.t. \mathcal{T} and $C \sqsubseteq D$ if there is a repair $\mathcal{R} \in \mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)$ such that $C' \sqsubseteq_{\mathcal{R}} D'$; C' is cautiously subsumed by D' w.r.t. \mathcal{T} and $C \sqsubseteq D$ if for every repair $\mathcal{R} \in \mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)$ it holds that $C' \sqsubseteq_{\mathcal{R}} D'$. If \mathcal{T} or $C \sqsubseteq D$ are clear from the context, we usually omit them.

Example 4. Let $\mathcal{T}, \mathcal{R}_1, \dots \mathcal{R}_4$ be as in Example 2. A is bravely but not cautiously subsumed by $Y \sqcap B'$ w.r.t. \mathcal{T} and $A \sqsubseteq B$ since $A \sqsubseteq_{\mathcal{R}_2} Y \sqcap B'$ but $A \not\sqsubseteq_{\mathcal{R}_1} Y \sqcap B'$.

In the context of inconsistency-tolerant reasoning, other kinds of semantics which have better computational properties have been proposed [11, 21, 28]. Among these are the so-called IAR semantics, which consider the consequences that follow from the intersection of all repairs. Formally, C' is IAR subsumed by D' w.r.t. \mathcal{T} and $C \sqsubseteq D$ if $C' \sqsubseteq_{\mathcal{Q}} D'$, where $\mathcal{Q} := \bigcap_{\mathcal{R} \in \mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)} \mathcal{R}$.

Example 5. Let \mathcal{T} and $\mathcal{R}_1, \ldots, \mathcal{R}_4$ be as in Example 2. Then A is IAR subsumed by B' w.r.t. \mathcal{T} and $A \sqsubseteq B$ as $A \sqsubseteq B' \in \bigcap_{i=1}^4 \mathcal{R}_i$.

A notion dual to repairs is that of MinAs, or justifications [7,17]. A *MinA* for $C \sqsubseteq_{\mathcal{T}} D$ is a minimal (w.r.t. set inclusion) subset \mathcal{M} of \mathcal{T} such that $C \sqsubseteq_{\mathcal{M}} D$. We denote as $\mathsf{MinA}_{\mathcal{T}}(C \sqsubseteq D)$ the set of all MinAs for $C \sqsubseteq_{\mathcal{T}} D$. There is a close connection between repairs and MinAs for error-tolerant reasoning.

Theorem 6. Let \mathcal{T} be a TBox, C, C', D, D' concepts with $C \sqsubseteq_{\mathcal{T}} D$. Then

- (i) C' is cautiously subsumed by D' w.r.t. \mathcal{T} and $C \sqsubseteq D$ iff for every repair $\mathcal{R} \in \mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)$ there is an $\mathcal{M}' \in \mathsf{MinA}_{\mathcal{T}}(C' \sqsubseteq D')$ with $\mathcal{M}' \subseteq \mathcal{R}$; and
- (ii) C' is bravely subsumed by D' w.r.t. \mathcal{T} and $C \subseteq D$ iff there is a repair $\mathcal{R} \in \mathsf{Rep}_{\mathcal{T}}(C \subseteq D)$ and a MinA $\mathcal{M}' \in \mathsf{MinA}_{\mathcal{T}}(C' \subseteq D')$ with $\mathcal{M}' \subseteq \mathcal{R}$.

3 Complexity

We show that deciding cautious and IAR subsumptions is intractable already for core TBoxes. Deciding brave subsumptions is intractable for \mathcal{EL} , but tractable for \mathcal{HL} . We first prove the latter claim using directed hypergraphs, which generalize graphs by connecting sets of nodes, rather than just nodes.

A directed hypergraph is a pair $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is a non-empty set of nodes, and \mathcal{E} is a set of directed hyperedges e = (S, S'), with $S, S' \subseteq \mathcal{V}$. Given $S, T \subseteq \mathcal{V}$, a path from S to T in \mathcal{G} is a set of hyperedges $\{(S_i, T_i) \in \mathcal{E} \mid 1 \leq i \leq n\}$ such that for every $1 \leq i \leq n$, $S_i \subseteq S \cup \bigcup_{j=1}^{n-1} T_j$, and $T \subseteq \bigcup_{i=1}^n T_i$ hold. The reachability problem in hypergraphs consists in deciding the existence of a path from S to T in \mathcal{G} . This problem is decidable in polynomial time on $|\mathcal{V}|$ [15].

Recall that \mathcal{HL} concepts are conjunctions of concept names; we can represent $C = A_1 \sqcap \cdots \sqcap A_m$ as its set of conjuncts $S_C = \{A_1, \ldots, A_m\}$. Each GCI $C \sqsubseteq D$ yields a directed hyperedge (S_C, S_D) and every \mathcal{HL} -TBox \mathcal{T} forms a directed hypergraph $\mathcal{G}_{\mathcal{T}}$. Then $C \sqsubseteq_{\mathcal{T}} D$ iff there is a path from S_C to S_D in $\mathcal{G}_{\mathcal{T}}$.

Theorem 7. Brave subsumption in \mathcal{HL} can be decided in polynomial time on the size of the TBox.

Proof. Let \mathcal{T} be an \mathcal{HL} TBox, and C, C', D, D' be \mathcal{HL} concepts. C' is bravely subsumed by D' w.r.t. \mathcal{T} and $C \sqsubseteq D$ iff there is a path from $S_{C'}$ to $S_{D'}$ in $\mathcal{G}_{\mathcal{T}}$ that does not contain any path from S_C to S_D . If no such path exists, then (i) every path from $S_{C'}$ to $S_{D'}$ passes through S_D , and (ii) every path from $S_{C'}$ to S_D passes through S_C . We need to verify whether any of these two statements is violated. The existence of a path that does not pass through a given set is decidable in polynomial time.

However, for \mathcal{EL} this problem is NP-complete. To prove this we adapt an idea from [25] for reducing the NP-hard more minimal valuations (MMV) problem [7, 14]: deciding, for a monotone Boolean formula φ and a set \mathfrak{V} of minimal valuations satisfying φ , if there are other minimal valuations $V \notin \mathfrak{V}$ satisfying φ .

Theorem 8. Brave subsumption in \mathcal{EL} is NP-complete.

We now show that the cautious and IAR semantics are intractable already for core TBoxes. This is a consequence of the intractability of the following problem.

Definition 9 (axiom relevance). The axiom relevance problem consists in deciding, given a core $TBox \mathcal{T}$, $A \sqsubseteq B \in \mathcal{T}$, and $A_0 \sqsubseteq_{\mathcal{T}} B_0$, whether there is a repair \mathcal{R} of \mathcal{T} w.r.t. $A_0 \sqsubseteq B_0$ such that $A \sqsubseteq B \notin \mathcal{R}$.

Lemma 10. Axiom relevance is NP-hard.

Proof. We reduce the NP-hard path-via-node problem [20]: given a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and nodes $s, t, m \in \mathcal{V}$, decide if there is a simple path from s to t in \mathcal{G} that goes through m. Given an instance of the path-via-node problem, we introduce a concept name A_v for every $v \in (\mathcal{V} \setminus \{m\}) \cup \{m_1, m_2\}$, and build the core TBox

$$\mathcal{T} := \{ A_v \sqsubseteq A_w \mid (v, w) \in \mathcal{E}, v, w \neq m \} \cup \{ A_v \sqsubseteq A_{m_1} \mid (v, m) \in \mathcal{E}, v \neq m \} \cup \{ A_{m_2} \sqsubseteq A_v \mid (m, v) \in \mathcal{E}, v \neq m \} \cup \{ A_{m_1} \sqsubseteq A_{m_2} \}.$$

There is a simple path from s to t in \mathcal{G} through m iff there is a repair \mathcal{R} of \mathcal{T} w.r.t. $A_s \sqsubseteq A_t$ with $A_{m_1} \sqsubseteq A_{m_2} \notin \mathcal{R}$.

Theorem 11. Cautious subsumption and IAR subsumption w.r.t. core, \mathcal{HL} or \mathcal{EL} TBoxes are coNP-complete.

Proof. If C is not cautiously subsumed by D, we can guess a set \mathcal{R} and verify in polynomial time that \mathcal{R} is a repair and $C \not\sqsubseteq_{\mathcal{R}} D$. If C is not IAR subsumed by D, we can guess a set $\mathcal{Q} \subseteq \mathcal{T}$, and for every GCI $C_i \sqsubseteq D_i \notin \mathcal{Q}$ a set \mathcal{R}_i such that $C_i \sqsubseteq D_i \notin \mathcal{R}_i$. Verifying that each \mathcal{R}_i is a repair and $C \not\sqsubseteq_{\mathcal{Q}} D$ is polynomial. Thus both problems are in coNP. To show hardness, for a GCI $C \sqsubseteq D \in \mathcal{T}$, there is a repair \mathcal{R} such that $C \sqsubseteq D \notin \mathcal{R}$ iff $C \not\sqsubseteq_{\mathcal{R}} D$ iff C is neither cautiously nor IAR subsumed by D. By Lemma 10 both problems are coNP-hard. \Box

The hardness of error-tolerant reasoning is usually attributed to the fact that there can exist exponentially many repairs for a given consequence. However, this argument is incomplete. For instance, brave reasoning is polynomial in \mathcal{HL} , although consequences may have exponentially many repairs already in this logic. We show now that cautious and brave subsumption are also hard on the *number of repairs*; i.e., they are not what we call *repair-polynomial*.

Definition 12 (repair-polynomial). An error-tolerant problem w.r.t. a TBox \mathcal{T} and a consequence $C \sqsubseteq D$ is repair-polynomial if it can be solved by an algorithm that runs in polynomial time on the size of both \mathcal{T} and $\mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)$.

Theorem 13. Unless P = NP, cautious and brave subsumption of C' by D' w.r.t. \mathcal{T} and $C \sqsubseteq D$ in \mathcal{EL} are not repair-polynomial.

The proof adapts the construction from Theorem 8 to reduce the problem of enumerating maximal valuations that falsify a formula to deciding cautious subsumption. The number of repairs obtained from the reduction is polynomial on the number of maximal valuations that falsify the formula. Since this enumeration cannot be solved in time polynomial on the number of maximal falsifiers, cautious reasoning can also not be performed in time polynomial on the

¹ Notice that the repairs are not part of the input. This is closely related to output complexity measures [16].

Algorithm 1 Repairs entailing $C' \sqsubseteq D'$

```
Input: Unwanted consequence C \sqsubseteq_{\mathcal{T}} D, concepts C', D'
Output: \mathfrak{R} \subseteq \operatorname{Rep}_{\mathcal{T}}(C \sqsubseteq D): repairs entailing C' \sqsubseteq D'
\mathfrak{R} \leftarrow \operatorname{Rep}_{\mathcal{T}}(C \sqsubseteq D)
for each \mathcal{R} \in \operatorname{Rep}_{\mathcal{T}}(C \sqsubseteq D) do
if C' \not\sqsubseteq_{\mathcal{R}} D' then
\mathfrak{R} \leftarrow \mathfrak{R} \setminus \{\mathcal{R}\}
return \mathfrak{R}
```

number of repairs. An analogous argument is used for brave reasoning. Thus, error-tolerant reasoning is hard even if only polynomially many repairs exist; i.e., there are cases where $|\text{Rep}_{\mathcal{T}}(C \sqsubseteq D)|$ is polynomial on $|\mathcal{T}|$, but brave and cautious reasoning require super-polynomial time. The culprit for hardness is therefore the computation of the repairs and not their number *per se*.

We now propose a method for improving the reasoning times, by precomputing a data structure based on the set of all repairs.

4 Precompiling Repairs

A naïve solution for deciding brave or cautious subsumptions would be to enumerate all the repairs and check which of them entail the consequence that should be checked (Algorithm 1). C' is then bravely or cautiously subsumed by D' iff $\mathfrak{R} \neq \emptyset$ or $\mathfrak{R} = \mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)$, respectively. Each test $C' \sqsubseteq_{\mathcal{R}} D'$ requires polynomial time on $|\mathcal{R}| \leq |\mathcal{T}|$ [12], and exactly $|\mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)|$ such tests are performed. The **for** loop in the algorithm thus needs polynomial time on the sizes of \mathcal{T} and $\mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)$. From Theorem 13 it follows that the first step, namely the computation of all the repairs, must be expensive. In particular, these repairs cannot be enumerated in output-polynomial time; i.e., in time polynomial on the input and the output [16].

Corollary 14. The set of repairs for an \mathcal{EL} TBox \mathcal{T} w.r.t. $C \sqsubseteq D$ cannot be enumerated in output polynomial time, unless P = NP.

For any given error, one would usually try to decide whether several brave or cautious consequences hold. It thus makes sense to improve the execution time of these reasoning tasks by avoiding a repetition of the first, expensive, step.

The set of repairs can be computed in exponential time on the size of \mathcal{T} ; this bound cannot be improved in general since (i) there might exist exponentially many such repairs, and (ii) they cannot be enumerated in output polynomial time. However, this set only needs to be computed once, when the error is found, and can then be used to improve the reasoning time for all subsequent subsumption relations. Once $\operatorname{Rep}_{\mathcal{T}}(C \sqsubseteq D)$ is known, Algorithm 1 computes \mathfrak{R} , and hence decides brave and cautious reasoning, in time polynomial on $|\mathcal{T}| \cdot |\operatorname{Rep}_{\mathcal{T}}(C \sqsubseteq D)|$.

Clearly, Algorithm 1 does more than merely deciding cautious and brave consequences. Indeed, it computes the set of all repairs that entail $C' \sqsubseteq D'$. This information can be used to decide more complex reasoning tasks. For instance,

Algorithm 2 Decide cautious and brave subsumption

```
Input: Labelled TBox \mathcal{T}, concepts C', D'

procedure IS-BRAVE(\mathcal{T}, C', D')

for each \mathcal{M} \in \mathsf{MinA}_{\mathcal{T}}(C' \sqsubseteq D') do

if \mathsf{lab}(\mathcal{M}) \neq \emptyset then

return true

return false

procedure IS-CAUTIOUS(\mathcal{T}, C', D')

\nu \leftarrow \emptyset

for each \mathcal{M} \in \mathsf{MinA}_{\mathcal{T}}(C' \sqsubseteq D') do

\nu \leftarrow \nu \cup \mathsf{lab}(\mathcal{M})

if \nu = \{1, \dots, n\} then

return true

return false
```

one may be interested in knowing whether the consequence follows from most, or at least k repairs, to mention just two possible inferences. IAR semantics can also be decided in polynomial time on \mathcal{T} and $\mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)$: simply compute $\mathcal{Q} = \bigcap_{\mathcal{R} \in \mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)} \mathcal{R}$, and test whether $C' \sqsubseteq_{\mathcal{Q}} D'$ holds. The first step needs polynomial time on $\mathsf{Rep}_{\mathcal{T}}(C \sqsubseteq D)$ while the second is polynomial on $\mathcal{Q} \subseteq \mathcal{T}$.

As we have seen, precompiling the set of repairs already yields an improvement on the time required for deciding error-tolerant subsumption relations. However, there are some obvious drawbacks to this idea. In particular, storing and maintaining a possibly exponential set of TBoxes can be a challenge in itself. Moreover, this method does not scale well for handling multiple errors that are found at different time points. When a new error is detected, the repairs of all the TBoxes need to be computed, potentially causing the introduction of redundant TBoxes that must later be removed. We improve on this solution by structuring all the repairs into a single labelled TBox.

Let $\operatorname{Rep}_{\mathcal{T}}(C \sqsubseteq D) = \{\mathcal{R}_1, \dots, \mathcal{R}_n\}$. We label every GCI $E \sqsubseteq F \in \mathcal{T}$ with $\operatorname{lab}(E \sqsubseteq F) = \{i \mid E \sqsubseteq F \in \mathcal{R}_i\}$. Conversely, for every subset $I \subseteq \{1, \dots, n\}$ we define the TBox $\mathcal{T}_I = \{E \sqsubseteq F \in \mathcal{T} \mid \operatorname{lab}(E \sqsubseteq F) = I\}$. A set I is a component if $\mathcal{T}_I \neq \emptyset$. Every axiom belongs to exactly one component and hence the number of components is bounded by $|\mathcal{T}|$. One can represent these components using only polynomial space and all repairs can be read from them and a directed acyclic graph expressing dependencies between components. For simplicity we keep the representation as subsets of $\{1, \dots, n\}$.

The labelled TBox has full information on the repairs, and on their relationship with each other. For $S \subseteq \mathcal{T}$, $\mathsf{lab}(S) := \bigcap_{E \sqsubseteq F \in S} \mathsf{lab}(E \sqsubseteq F)$ yields all repairs containing S. If \mathcal{M} is a MinA for $C' \sqsubseteq D'$, $\mathsf{lab}(\mathcal{M})$ is a set of repairs entailing this subsumption. Moreover, $\nu(C' \sqsubseteq D') := \bigcup_{\mathcal{M} \in \mathsf{MinA}_{\mathcal{T}}(C' \sqsubseteq D')} \mathsf{lab}(\mathcal{M})$ is the set of all repairs entailing $C' \sqsubseteq D'$. Thus, C' is bravely subsumed by D' iff $\nu(C' \sqsubseteq D') \neq \emptyset$ and is cautiously subsumed iff $\nu(C' \sqsubseteq D') = \{1, \ldots, n\}$. The set $\nu(C' \sqsubseteq D')$ is the boundary for the subsumption $C' \sqsubseteq D'$ w.r.t. the labelled TBox \mathcal{T} [4]. Several methods for computing the boundary exist. Since we are only interested in deciding whether this boundary is empty or equal to $\{1, \ldots, n\}$, we

can optimize the algorithm to stop once this decision is made. This optimized method is described in Algorithm 2. The algorithm first computes all MinAs for $C' \sqsubseteq_{\mathcal{T}} D'$, and their labels iteratively. If one of this labels is not empty, then the subsumption is a brave consequence; the procedure IS-BRAVE then returns true. Alternatively, IS-CAUTIOUS accumulates the union of all these labels in a set ν until this set contains all repairs, at which point it returns true.

IAR semantics can be solved through one subsumption test, and hence in polynomial time on the size of \mathcal{T} , regardless of the number of repairs.

Theorem 15. Let $n = |\text{Rep}_{\mathcal{T}}(C \subseteq D)|$. Then C' is IAR-subsumed by D' iff $C' \subseteq_{\mathcal{T}_J} D'$, where $J = \{1, \ldots, n\}$.

This shows that precompiling all repairs into a labelled ontology can help reducing the overall complexity and execution time of reasoning. In the next section, we exploit the fact that number of MinAs for consequences in ontologies used in practice is relatively small and compute them using a saturation-based approach.

5 Implementation and Experiments

We ran two separate series of experiments. The goal of the first series was to investigate the feasibility of error-tolerant reasoning in practice. We implemented a prototype tool in Java that checks whether a concept subsumption $C \sqsubseteq D$ is brave or cautious w.r.t. a given TBox \mathcal{T} and a consequence $C' \sqsubseteq D'$. The tool uses Theorem 6 and the duality between MinAs and repairs, i.e. the repairs for $C' \sqsubseteq D'$ w.r.t \mathcal{T} are obtained from the MinAs for $C' \sqsubseteq D'$ by consecutively removing the minimal hitting sets [27] of the MinAs from \mathcal{T} . The tool first computes all the MinAs for both inclusions $C \sqsubseteq D$ and $C' \sqsubseteq D'$ w.r.t. \mathcal{T} , and then verifies whether some inclusions between MinAs for $C \sqsubseteq D$ and $C' \sqsubseteq D'$ hold to check for brave or cautious subsumptions. For the computation of the MinAs we used a saturation-based approach based on a consequence-based calculus [18]. More details regarding the computation of MinAs can be found in [23].

We selected three ontologies that are expressed mainly in \mathcal{EL} and are typically considered to pose different challenges to DL reasoners. These are the January 2009 international release of SNOMED, version 13.11d of the NCI thesaurus,² and the GALEN-OWL ontology.³ All non- \mathcal{EL} axioms (including axioms involving roles only, e.g. role inclusion axioms) were first removed from the ontologies. The number of axioms, concept names, and role names in the resulting ontologies is shown in Table 2.

For every ontology \mathcal{T} we selected a number of inclusion chains of the form $A_1 \sqsubseteq_{\mathcal{T}} A_2 \sqsubseteq_{\mathcal{T}} A_3 \sqsubseteq_{\mathcal{T}} A_4$, which were then grouped into

Type I inclusions, where $A_2 \sqsubseteq_{\mathcal{T}} A_4$ was set as the unwanted consequence, and **Type II** inclusions, where $A_2 \sqsubseteq_{\mathcal{T}} A_3$ was defined as the unwanted consequence.

² http://evs.nci.nih.gov/ftp1/NCI_Thesaurus

³ http://owl.cs.manchester.ac.uk/research/co-ode/

Table 2. Metrics of the ontologies used in the experiments

Ontology	#axioms	#conc. name	#role name
GALEN-OWL	45499	23136	404
NCI	159805	104087	92
SNOMED	369194	310013	58

For the NCI and SNOMED ontologies we chose inclusions $A_2 \sqsubseteq A_4$ (for Type I) and $A_2 \sqsubseteq A_3$ (for Type II) that were *not* entailed by the consecutive version of the considered ontology, i.e. those that can be considered to be "mistakes" fixed in the consecutive release (the July 2009 international release of SNOMED and version 13.12e of the NCI Thesaurus). 500 inclusions of each type were found for SNOMED, but only 26 Type-I inclusions and 36 Type-II inclusions were detected in the case of NCI. For the GALEN-OWL ontology 500 inclusions chains of each type were chosen at random. For every Type-I chain, we then used our tool to check whether the inclusion $A_1 \sqsubseteq A_3$ is a brave or cautious consequence w.r.t. $A_2 \sqsubseteq A_4$. Similarly, for every Type-II inclusion we checked whether $A_1 \sqsubseteq A_4$ is a brave or cautious consequence w.r.t. $A_2 \sqsubseteq A_3$.

All experiments were conducted on a PC with an Intel Xeon E5-2640 CPU running at 2.50GHz. An execution timeout of 30 CPU minutes was imposed on each problem in this experiment series. The results obtained are shown in Table 3. The first two columns indicate the ontology that was used and the inclusion type. The next three columns show the number of successful computations within the time limit, and the number of brave and cautious subsumptions, respectively. The average and the maximal number of MinAs over the considered set of inclusions are shown in the next two columns. The left-hand side of each of these columns refers to the MinAs obtained for the consequence for which its brave or cautious entailment status should be checked, and the right-hand side refers to the unwanted consequence. The last column shows the average CPU time needed for the computations over each considered set of inclusions.

The number of successful computations was the lowest for the experiments involving SNOMED, whereas no timeouts were incurred for NCI. Moreover, the highest average number of MinAs was found for Type-II inclusions for SNOMED with a maximal number of 54. GALEN-OWL required the longest computation times, which could be a consequence of the fact that the (full) GALEN ontology is generally seen as being difficult to classify by DL reasoners. The shortest computation times were reported for experiments involving NCI. All the successful computations required at most 11 GiB of main memory.

Table 3. Experimental results obtained for checking brave and cautious subsumption

ontology	type	#succ. comp.	#brave	#cautious	avg. #MinAs	max #MinAs	avg. time (s)
GALEN	Ι	498 / 500	495	39	1.707 1.663	4 4	335.680
	II	500 / 500	268	48	2.068 1.388	6 2	331.823
NCI	I	26 / 26	26	2	$1.269 \mid 1.154$	2 3	13.465
	II	36 / 36	16	8	3.111 1.111	7 3	15.338
SNOMED	I	302 / 500	296	17	$1.652 \mid 1.656$	42 12	161.471
	II	314 / 500	154	34	3.908 1.879	54 54	150.566

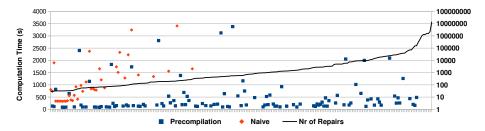


Fig. 1. Comparison of approaches for error-tolerant reasoning.

In a second series of experiments we evaluated the advantages of performing precompilation when checking the brave and cautious entailment status of several inclusions w.r.t. an unwanted consequence. We implemented a slightly improved version of Algorithm 1 which iterates over all the repairs for the unwanted consequence and determines whether a consequence that should be checked is brave or cautious by using the conditions from Definition 3. The implemented algorithm stops as quickly as possible, e.g. when a non-entailing repair has been found, we conclude immediately that the consequence is not cautious. The computation of the repairs is implemented using the duality between MinAs and repairs as described above. The minimal hitting sets were computed using the Boolean algebraic algorithm from [22]. We used ELK [19] to check whether a given inclusion follows from a repair. In the following we refer to this improved algorithm as the *naïve* approach.

For comparing the performance of Algorithms 1 and 2 in practice, we selected 226 inclusions between concept names from SNOMED having more than 10 MinAs, with a maximum number of 223. For each inclusion $A \sqsubseteq B$ we randomly chose five inclusions $A_i' \sqsubseteq B_i'$ entailed by SNOMED, and tested whether $A_i' \sqsubseteq B_i'$ is a brave or cautious subsumption w.r.t. $A \sqsubseteq B$ for every $i \in \{1, \ldots, 5\}$ using the naïve approach and Algorithm 2. In this series of experiments we allowed each problem instance to run for at most 3600 CPU seconds, and 4 GiB of heap memory, and 16 GiB of main memory in total, were allocated to the Java VM.

The results obtained are depicted in Figure 1. The problem instances $A \subseteq B$ are sorted ascendingly along the x-axis according to the number of repairs for $A \subseteq B$. The required computation times for each problem instance (checking whether the five subsumptions are brave or cautious entailments w.r.t. the unwanted consequence) are shown along the y-axis on the left-hand side of the graph. If no corresponding y-value is shown for a given problem instance, the computation either timed out or ran out of memory. The number of repairs for the unwanted consequences is depicted with a solid line, and the corresponding values can be read off the y-axis on the right-hand side in logarithmic scale.

One can see that a relatively small number of MinAs can lead to several thousands (up to over 14 millions) of repairs. Also, if the number of repairs remains small, i.e. below 400, the naïve approach performs fairly well, even outperforming the precompilation approach on a few problem instances. For larger number of repairs, however, none of the computations for the naïve approach succeeded.

The time required to perform reasoning with ELK outweighs the computation times of all the MinAs for the precompilation approach. In total 115 instances could be solved by the precompilation approach, whereas only 39 computations finished when the naïve approach was used. In our experiments the computation of the MinAs was typically the most time consuming part; the computation of the repairs once all the MinAs were available could be done fairly quickly.

6 Conclusions

We introduced error-tolerant reasoning inspired by inconsistency-tolerant semantics from DLs and consistent query answering over inconsistent databases. The main difference is that we allow for a general notion of error beyond inconsistency. We studied brave, cautious, and IAR reasoning, which depend on the class of repairs from which a consequence can be derived. Although we focused on subsumption w.r.t. \mathcal{EL} TBoxes, these notions can be easily extended to any kind of monotonic consequences from a logical language.

Our results show that error-tolerant reasoning is hard in general for \mathcal{EL} , although brave reasoning remains polynomial for some of its sublogics. Interestingly, IAR semantics, introduced to regain tractability of inconsistency-tolerant query answering in light-weight DLs, is coNP-hard, even for the basic logic \mathcal{HL} with core axioms. Moreover, the number of repairs is not the only culprit for the hardness of these tasks: for both brave and cautious reasoning there is no polynomial-time algorithm on the size of \mathcal{T} and the number of repairs that can solve these problems unless P = NP.

To overcome the complexity issues, we propose to compile the repairs into a labeled ontology. While the compilation step may require exponential time, after its execution IAR semantics can be decided in polynomial time, and brave and cautious semantics become repair-polynomial. Surprisingly, the idea of precomputing the set of all repairs to improve the efficiency of reasoning seems to have been overlooked in inconsistency-tolerant reasoning.

To investigate the feasibility of error-tolerant reasoning in practice, we developed a prototype based on computing all MinAs, and annotating axioms with the repairs they belong to. Our experiments show that despite their theoretical complexity, brave and cautious reasoning can be performed successfully in many practical cases, even for large ontologies. Our saturation-based procedure can detect a large number of MinAs for some consequences in a fairly short amount of time. There is a close connection between error-tolerant reasoning and axiom-pinpointing [6, 7]; our labelled ontology method also relates to context-based reasoning [4]. Techniques developed for those areas, like e.g. automata-based pinpointing methods [5], could be useful in this setting.

It is known that for some inexpressive DLs, all MinAs can be enumerated in output-polynomial time [24,25]; the complexity of enumerating their repairs has not, to the best of our knowledge, been studied. We will investigate if enumerating repairs is also output-polynomial in those logics, and hence error-tolerant reasoning is repair-polynomial.

References

- Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases. In: Proceedings of the 18th ACM SIGMOD-SIGACT-SIGART symposium on Principles of Database Systems (PODS 1999). pp. 68–79. ACM (1999)
- Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI'03). pp. 325–330. Morgan Kaufmann (2003)
- Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2nd edn. (2007)
- Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and consequences of semantic web ontologies. Journal of Web Semantics 12–13, 22–40 (2012), available at http://dx.doi.org/10.1016/j.websem.2011.11.006
- Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. Journal of Automated Reasoning 45(2), 91–129 (August 2010)
- 6. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. Journal of Logic and Computation 20(1), 5–34 (2010)
- Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \$\mathcal{E}\mathcal{L}^+\$. In: Proceedings of the 30th German Conference on Artificial Intelligence (KI2007). LNAI, vol. 4667, pp. 52–67. Springer, Osnabrück, Germany (2007)
- Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \$\mathcal{\mathcal{\mathcal{E}}C}^+\$. In: Proceedings of the 3rd Knowledge Representation in Medicine (KR-MED'08): Representing and Sharing Knowledge Using SNOMED. CEUR-WS, vol. 410 (2008)
- 9. Bertossi, L.: Database repairing and consistent query answering. Synthesis Lectures on Data Management 3(5), 1–121 (2011)
- Bienvenu, M.: On the complexity of consistent query answering in the presence of simple ontologies. In: Proceedings of the 26st Natonal Conference on Artificial Intelligence (AAAI 2012) (2012)
- 11. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for robust ontology-based data access. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI'13). AAAI Press (2013)
- Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and - what else? In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th European Conference on Artificial Intelligence, (ECAI 2004). pp. 298–302. IOS Press (2004)
- 13. Cote, R., Rothwell, D., Palotay, J., Beckett, R., Brochu, L.: The systematized nomenclature of human and veterinary medicine. Tech. rep., SNOMED International, Northfield, IL: College of American Pathologists (1993)
- 14. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. Tech. Rep. CD-TR 91/16, Christian Doppler Laboratory for Expert Systems, TU Vienna (1991)
- 15. Gallo, G., Longo, G., Pallottino, S.: Directed hypergraphs and applications. Discrete Applied Mathematics 42(2), 177–201 (1993)
- 16. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Information Processing Letters 27(3), 119–123 (1988)

- 17. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: Proceedings of the 6th International Semantic Web Conference and 2nd Asian Semantic Web Conference, ISWC 2007, ASWC 2007. LNCS, vol. 4825, pp. 267–280. Springer (2007)
- 18. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI'09). pp. 2040–2045 (2009)
- 19. Kazakov, Y., Krötzsch, M., Simančík, F.: The incredible ELK: From polynomial procedures to efficient reasoning with \mathcal{EL} ontologies. Journal of Automated Reasoning (2013), to appear
- Lapaugh, A.S., Papadimitriou, C.H.: The even-path problem for graphs and digraphs. Networks 14(4), 507-513 (1984), http://dx.doi.org/10.1002/net. 3230140403
- Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) Proceedings of the 4th International Conference on Web Reasoning and Rule Systems (RR'10). LNCS, vol. 6333, pp. 103–117. Springer (2010)
- 22. Lin, L., Jiang, Y.: The computation of hitting sets: Review and new algorithms. Information Processing Letters 86(4), 177–184 (2003)
- Ludwig, M.: Just: a tool for computing justifications w.r.t. &L ontologies. In: Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation (ORE 2014) (2014)
- 24. Peñaloza, R., Sertkaya, B.: Complexity of axiom pinpointing in the DL-Lite family of description logics. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of the 19th European Conference on Artificial Intelligence, (ECAI 2010). Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 29–34. IOS Press (2010)
- Peñaloza, R., Sertkaya, B.: On the complexity of axiom pinpointing in the εεε family
 of description logics. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proceedings of
 the Twelfth International Conference on Principles of Knowledge Representation
 and Reasoning (KR 2010). AAAI Press (2010)
- Peñaloza, R.: Axiom-Pinpointing in Description Logics and Beyond. Ph.D. thesis, Dresden University of Technology, Germany (2009)
- Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)
- 28. Rosati, R.: On the complexity of dealing with inconsistency in description logic ontologies. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI'11). pp. 1057–1062. AAAI Press (2011)
- 29. Spackman, K.: Managing clinical terminology hierarchies using algorithmic calculation of subsumption: Experience with SNOMED-RT. Journal of the American Medical Informatics Association (2000), fall Symposium Special Issue.
- 30. W3C OWL Working Group: OWL 2 web ontology language document overview. W3C Recommendation (2009), http://www.w3.org/TR/owl2-overview/