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Abstract

This thesis focuses on classification of supergravity solutions in ten and eleven di-
mensions. By imposing supersymmetry, supergravity reveals a plethora of elegant
geometric structures which can be defined from the fermionic supersymmetry pa-
rameters. Such geometrical data are called bispinors and are the central topic of this
thesis. In the first part we explore how it is possible to exploit bispinors in order to
get a more elegant reformulation of background supersymmetry conditions. This
discussion is performed in a general context without assuming any factorization of
space-time. The bispinor framework allows to interpret many of the new supersym-
metry equations as calibration conditions for sources, where a calibration is a dif-
ferential form which detects branes with minimal energy. We also discuss the con-
nection between calibrations and BPS bound and we provide a definition of central
charges in purely gravitational terms. Aside from these formal results, probably the
main achievement of the bispinor formalism is that it drastically simplifies the task
of classifying supergravity solutions. After discussing how to apply these techniques
to AdS2 and R1,3 backgrounds, we perform a complete classification, in both type II
supergravity and M-theory, of R1,3 solutions preserving N = 2 supersymmetry with
SU(2) R-symmetry geometrically realized by a round S2 factor in the internal space.
For the various cases of the classification, the problem of finding supersymmetric
solutions can be reduced to a system of partial differential equations. These cases
often accommodate systems of intersecting branes and higher-dimensional anti-de-
Sitter solutions. Moreover we show that, using chains of dualities, all solutions can
be generated from one of two master classes: an SU(2)-structure in M-theory and a
conformal Calabi–Yau in type IIB. In the last part of the thesis, we show that it is pos-
sible to relax some of the bispinor equations and generalize all the classification to a
larger non-supersymmetric context.
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INTRODUCTION

String theory [1, 2, 3] is so far the most successful setting which implements quan-
tum gravity and gauge interactions in a consistent way. These features justify why it
monopolized the attention of theoretical physics community in the last decades and,
despite the enormous effort, only a small corner of possible string theory realizations
has been explored so far.

Even if, in a perturbative limit, string is the only fundamental field, the theory
is also populated by various higher dimensional extended objects which appears at a
non-perturbative level. These are generically called branes [4] and can be considered
as fundamental as the string itself. In string theory we can distinguish two different
types of dynamical branes: D-brane and NS-brane. While the first kind can be per-
turbatively described in terms of open string, the second type cannot and must be
understood via string dualities.

Since the string revealed not to be the only one fundamental object, one may
ask if it can be substituted with a paradigm which contains just membranes. This is
believed to happen and the resulting theory is called M-theory [5], which is another
possible quantum gravity realization.

One of the main difference between string theory and M-theory lies in the num-
ber of space-time dimensions where they are well defined: the first one is consistent
only in ten dimensions, while the second needs eleven. This feature is responsible
for their richness, indeed one can think to realize some space dimensions as a small
compact manifold, also called “internal” space, while leaving the “external” manifold
non-compact. This mechanism is also used to embed our everyday physics in the
string-theory context, indeed if the internal space is small enough the external-space
theory will just have usual four-dimensional matter and interactions. For studying
such realizations it is not necessary to take into account effects due to quantum
physics or heavy states and it is enough to consider the low-energy classical limit of
string and M-theory, which is respectively ten- and eleven-dimensional supergravity.
As the name suggests, one of the key ingredient underlying supergravity is supersym-
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Introduction

metry.
Supersymmetry is an incredibly useful tool for classifying supergravity backgrounds:

when a solution saturates the Bogomol’nyi-Prasad-Sommerfield (BPS) bound it sat-
isfies the equations of motion if it solves supersymmetry conditions, which are a first-
order system of partial differential equations (PDEs). This system is the key to achieve
a formal study of the geometry of the solution [6, 7, 8] : imposing supersymmetry re-
veals a plethora of elegant structures which can be constructed from the fermionic
supersymmetry parameters. These structures are usually differential forms and they
can be used to replace the first-order spinorial system with one which involves just
closure conditions and other natural operations on forms [9, 10, 11]. In this reformu-
lation the metric only appears indirectly, which makes the obtained equations easier
to solve than the original ones. Moreover, in some cases they also have an elegant
physical interpretation in terms of brane calibrations [12, 13].

In differential geometry, a calibration is a closed form that measures if a subman-
ifold minimizes its volume [14]. In supergravity context a calibration measures if a
brane minimizes its energy, therefore calibrated branes satisfies the BPS bound, i.e.,
they are supersymmetric. Calibration conditions are therefore equivalent to impose
that part of the background supersymmetry is preserved, indeed it was conjectured
that it is possible to reformulate the BPS equations entirely in terms of calibration
conditions. A strong indication that this is the case can be found in [15] and it is part
of the work this thesis is based on.

Requiring that supersymmetry is preserved dramatically simplifies the task of
constructing explicit solutions, and saturation of BPS bound guarantees stability [16,
17]. However, many interesting theoretical and phenomenological problems such as
realization of de Sitter (dS) vacua, holographic understanding of color confinement
and studying of black hole thermodynamics require non-supersymmetric solutions.
While models have been proposed, concrete constructions of non-supersymmetric
backgrounds have been elusive so far and this task is complicated by the existence
of several no-go theorems [18, 19], conjectures [20, 21] and swampland arguments
[22, 23, 24].

Luckily, it is possible to evade the no-go theorems, which mostly affect the dS
case, by adding quantum corrections and/or orientifolds, which are non-dynamical
branes with negative tension, so one can still hope that string theory can be used to
get a realistic description of our reality. The same no-go theorems apply if we are
studying Minkowski vacua, where the cosmological constant is fine-tuned to vanish.
Even if again orientifolds are necessary to get a proper solution with fluxes, super-
symmetry can still be preserved, so one can use the powerful tools described above
to find solutions which evade the no-go theorems [25]. Therefore a more general
study of Minkowski backgrounds can be useful both as a laboratory for string theory
dynamics and as intermediate construction for the dS case, as it was done in [26] (but
also [27, 28] for instance).
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Moreover, a Minkowski classification is also useful from a holographic perspec-
tive, indeed anti de-Sitter (AdS) solutions admit a description in terms of a folia-
tion of Minkowski over a non compact interval. Even if supersymmetric AdS back-
grounds admit a detailed classification, at least in high external-space dimensions
[29, 30, 31, 32, 33], they always assume a global AdS factor from the start and there-
fore are not particularly useful for studying certain non-conformal behaviors such as
RG flows, where the AdS vacuum corresponds to a conformal fixed point at one of the
two ends of the flow.

A classification of four-dimensional external-space Minkowski solutions in string
theory is performed in this thesis using the so-called pure spinor equations [11, 34].
These are a set of differential form equations which can be elegantly embedded in the
context of generalized complex geometry [35, 36], which is a mathematical approach
which consider G-bundle defined on the direct sum of the tangent and contangent
space of the internal-space manifold. For M-theory it is not possible to find such an
elegant description, still a system of BPS form-equations exists [37].

It is clear that these approaches are closely related to supersymmetry, and thus
the study of general non-supersymmetric Minkowski compactifications is much more
difficult. However, one can start by asking if there is a subset of non-supersymmetric
solutions which share the same integrability properties of supersymmetric flux com-
pactifications, i.e., if there exists a modification of the pure spinor equations which
allows to solve the equations of motion but preserving a first order formalism. The
answer to this question is in general unknown, but there are very special examples in
type IIB string theory in which such a condition is satisfied [25, 38]. In this thesis, us-
ing the classification achieved in four-dimensional Minkowski solution, we will show
how to break supersymmetry by directly modifying the pure spinor equations also in
type IIA supergravity.

The thesis is divided in two parts. In the first one we deal with the more formal
and general aspects of supergravity in ten and eleven dimensions, following mostly
[15, 9, 10, 13]. We start with an introduction of them focusing on the solitonic objects
that populate these theories and on the duality between them. In chapter 2 we intro-
duce the bispinors method from an algebraic viewpoint; in particular we will derive
the structure group defined by such objects on both the tangent bundle and the gen-
eralized tangent bundle and we will show how they transform after a string duality. In
chapter 3 we apply what we have learned from the previous chapter to derive neces-
sary and sufficient conditions to rewrite supersymmetry in terms of spinor bilinears;
integrability is also discussed and a system of form equations which is invariant un-
der the Sl(2,R)-symmetry of type IIB is presented. Many of the form equations are
interpreted in chapter 4 in terms of calibration conditions for fluxes. After a review
of how a calibration is related to the BPS bound, calibration conditions for D-brane,
fundamental string, M2- and M5-brane are discussed. Moreover, the calibrations for
NS5- and NS9-branes are presented, together with a discussion on the KK-monopole
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calibration, which involves the definition of central charges in purely gravitational
terms. Before concluding the first part, some applications of the systems presented
in the third chapter are considered in turn in chapter 5. In particular, we focus on
AdS2 ×M8 solutions in type IIA supergravity, which are relevant for the classification
of near-horizon backgrounds, and on R1,3 ×M6 solutions, which will be useful in the
second part of the thesis.

In the second part, following [39, 40, 41], we perform a classification of R1,3 ×S2

solutions in both type II and M-theories. The classification is mainly based on the
pure spinor equations derived in chapter 5, restricted to fit a round sphere in the
internal space. After specializing spinor and fluxes to accommodate SO(3) isome-
tries and discussing some properties of these solutions from a spinorial viewpoint in
chapter 6, we start the classification for type II supergravity in chapter 7. In partic-
ular we discuss two master classes, one in IIA and the other in IIB, from which all
the possible R1,3 ×S2 solutions can be generated using string dualities. In chapter 8
a similar classification is achieved but in M-theory; we will show that these solutions
are actually linked to the ones of type II supergravity and they can actually generate
some of them. In chapter 9 we will focus on backgrounds with an AdS factor, which
can be derived from the R1,3 ×S2 classification and allow to make contact with many
known solutions. In the last chapter we present, following [42], a method to break
supersymmetry in all the classes contained in the R1,3 × S2 classification of type II
theories. In particular, similar to what it was done in [25], we will manage to solve the
equations of motion while keeping a first order formalism.
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CHAPTER 1

INTRODUCTION TO SUPERGRAVITY

In this section we will introduce maximally supersymmetric ten- and eleven-dimensional
supergravity, which are respectively the massless sector of type II string theory and
M-theory. In ten dimensions maximal supergravity has two fermionic variations, and
it comes in two types: type IIA and type IIB, depending on the chirality of super-
symmetry generators; in particular we have that type IIB is chiral while IIA is not.
Eleven-dimensional supergravity on the other hand is maximally supersymmetric
with N = 1 supersymmetry. Maximal supersymmetry is a strong constraint on the
possible structure of these theories, indeed it fully determines them. Let’s see a bit
more in detail the properties of these theories.

1.1 Eleven-dimensional supergravity

In this section we will mainly adopt the conventions of [10], which are partially sum-
marized in appendix A. Eleven-dimensional supergravity consists just of three fields:
a metric g , a three-form potential A with four-form field strength F = d A and a
gravitino ΨM . As customary in supergravity we set the all fermionic fields to zero1,
ΨM = 0, so that we have to deal just with bosonic configurations. The bosonic action
is given by

SM = 1

2κ2
11

∫ (p−g R d11 x − 1

2
F ∧∗F − 1

6
A∧F ∧F

)
. (1.1)

The get an eleven-dimensional supergravity solution one have to solve the fol-
lowing two equations of motion, obtained by varying the action respect to gM N and

1This condition is actually a requirement if we are interested in vacuum solution, but for now we
will keep the discussion general.
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1. Introduction to supergravity 1.1. Eleven-dimensional supergravity

the potential A

RM N − 1

2
FM ·FN + 1

122
gM N F 2 = 0, (1.2a)

d ∗F + 1

2
F ∧F = 0, (1.2b)

where FM = ιM F , F 2 = F ·F and the dot operator · together with the other form op-
erators are defined in appendix A.1. Notice that also (1.2b) can be used to define a
magnetic potential C associated with F , indeed we can rewrite it as

d

(
∗F + 1

2
A∧F

)
= 0, (1.3)

which is locally satisfied if there exists C such that

dC =∗F + 1

2
A∧F . (1.4)

As anticipated in the introduction, M-theory contains also non-perturbative mem-
branes called Mk-branes where k = 2,5,9 is the number of their spatial directions.
Membranes act as sources for the potential A and C , in particular the M2-brane is
electrically charged respect to A and magnetically respect to C and vice-versa for the
M5 brane; on the other hand the M9 arises as theZ2 fixed point of the Horava-Witten
theory [43] and therefore is not charged under any fields and interacts just with the
metric.

In presence of a brane we have to modify our action adding those of the sources,
which is given by the ABJM action [44] for the M2-brane sitting on a ADE singularity,
PST action for the M5 [45] and the action in [46, 47] for the M9. The result of this
operation is that the equations of motion get modified and the potential A and C
cannot be defined because F and ∗F + 1

2 A ∧F are not closed anymore near to the
source, schematically

dF = δ5

d ∗F + 1

2
F ∧F = δ8

(1.5)

whereδk is a delta-like k-form localized on the transverse directions of the electrically-
charged brane. We refer to the next section for a more detailed discussion in the D-
brane setting.

Since the fermionic field is set to zero, in order to impose supersymmetry it is
enough to set to zero the fermionic supersymmetry variation, which, using the prop-
erties of gamma-matrices in odd dimensions (appendix A.2), can be written in the
following way

∇M ε− 1

12
ιM (∗F +2F )ε= 0, (1.6)

3



1. Introduction to supergravity 1.2. Ten-dimensional supergravity

where ε is a Majorana spinor and all the forms are mapped to bispinors via Clifford
map (refer to appendix A.3 for more details and definitions).

As anticipated in the introduction, solving supersymmetry constraint (1.6) im-
plies, to a certain extent, the equations of motion. This can be made more precise in
the following way; using the relation

γN∇[M∇N ] ε= 1

4
RM Nγ

N ε (1.7)

and substituting to the left-hand side the supersymmetry condition (1.6) it is possible
to show that

(RM N − 1

2
FM ·FN + 1

122
gM N F 2)γM ε= 0 (1.8)

provided that the Bianchi identity dF = 0 and the second equation of (1.2) are satis-
fied. It is important to stress that the condition (1.8) is not always enough to ensure
that all the components of M-theory Einstein equation (1.2b) are set to zero, indeed
it can happen that some of them must be imposed as extra-constraints (see for ex-
ample [48]).

1.2 Ten-dimensional supergravity

In this section we will review both type IIA and type IIB supergravity following the
conventions of [9, 15]. Even if they are two fundamentally different theories, it is pos-
sible to introduce them together by using the democratic formulation of supergravity
[49]. In this formalism the fermionic sector of the theory is given by two gravitini and
two dilatini

ψ1,2
M , λ1,2 (1.9)

which are Majorana–Weyl spinors. In IIA ψ1
M and λ1 have positive chirality and ψ2

M
and λ2 have negative chirality while in IIB all the fields have the same (positive) chi-
rality. The bosonic fields organize themselves in a common part, the NSNS sector
(NS is a shorthand for Neveu–Schwarz) which is composed by the metric g , the dila-
ton φ and a two-form potential B , and the Ramond-Ramond (RR) sector, which can
be recast as a formal sum of differential forms Ci with different degree i

C =
{

C1 +C3 +C5 +C7 +C9 for IIA
C0 +C2 +C4 +C6 +C8 for IIB

. (1.10)

All these potentials can be used to define the field strength in the following way

H = dB , F = dC −H ∧C = dH C , (1.11)

where now F is a polyform with even degree in IIA and odd degree in IIB. Actually
type IIA supergravity admits also a constant zero form field F0 which is called Romans

4



1. Introduction to supergravity 1.2. Ten-dimensional supergravity

mass, which did not arise from any potential because it does not carry any degrees of
freedom. In massive type IIA supergravity (1.11) get modified as follows

F = dH C +eB∧F0 . (1.12)

Notice that since H is closed the twisted external derivative dH defines a cohomology
d2

H = 0, indeed the Bianchi identities for F , dH F = 0, is equivalent to the existence of
the potential C . In the democratic formulation of supergravity however the RR fluxes
are not all independent but are linked by a (anti)self-duality2 relation

F =∗λ(F ) (1.13)

which is not imposed by the equations of motion coming from the action we present
here. This basically means that the democratic pseudo-action is nothing but a mnemonic
tool to obtain the equations of motion; however, other approaches exist to get proper
a proper lagrangian, for example [50]. Again, since we are mainly interested in the
study of bosonic configurations, we set to zero all the fermionic fields. The remain-
ing part reads:

S10 = 1

2κ2
10

∫
e−2φp−g d10 x

(
R +4(dφ)2 − 1

2
H 2 − e2φ

2
F 2

)
. (1.14)

By varying S10 respect to the dilaton, the metric and B we get, after some manipula-
tion, the following set of equations of motion

∇2φ− (dφ)2 + 1

4
R − 1

8
H 2 = 0, (1.15a)

d
(
e−2φ∗H

)− 1

2
(F,F )8 = 0, (1.15b)

RM N +2∇M∇Nφ− 1

2
HM ·HN − e2φ

2

(
FM ·FN − 1

2
gM N F 2

)
= 0, (1.15c)

which must be solved together with the Bianchi identities

d H = 0, dH F = 0. (1.16)

String theory contains a broader variety of objects compered to M-theory. The
best understood are D-branes. D-brane is a shorthand for Dirichlet membrane, and
is an extended objects upon which open strings can end with Dirichlet boundary
conditions. A Dp-brane couples with the p +1-form potential Cp+1 of the RR sector.
This immediately implies that type IIA has just even-dimensional branes while type

2 The field are self-dual or antiself-dual depending on the degree of F according to the definition of
λ given in (A.4).
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1. Introduction to supergravity 1.2. Ten-dimensional supergravity

IIB odd-dimensional ones. Thanks to the self-duality relation (1.13) a Dp-brane can
be electrically charged under Cp+1 or a magnetically charge respect to C7−p . Notice
that type IIA admits a D8-brane which is charged under F10 = ∗F0, which is a non-
dynamical field strength, while IIB admit a self-dual D3-brane due to the relation
F5 = ∗F5 and a space filling D9-brane, whoese potential is pure gauge. In the low-
energy limit of string theory we are considering, the action of a Dp-brane wrapping
a p +1-cycle S is given by a Dirac–Born–Infeld plus Chern–Simons terms

SDp =−µDp

∫
S

dξp+1 e−φ
√
−det(g |S+F)+µDp

∫
S

C |S∧eF (1.17)

where µDp > 0 is the brane tension and F is the gauge invariant world-volume field-
strength on the brane which satisfies dF=−H |S3. It is now clear that by adding this
source to the supergravity action (1.14) and varying respect to Cp+1 we get that the
Bianchi identity (1.16) gets modified in a similar fashion to what happened in the
M-theory case (1.5)

dH F8−p = 2κ2
10µDpδ9−p (1.18)

where the δ9−p is defined such that∫
S

C |S =
∫

C ∧δ9−p . (1.19)

Notice that thanks to the eF factor in the Chern–Simons term of (1.17) it is also pos-
sible to have Dp-branes which are charged under all the RR potential C with degree
lower then p.

D-branes are not the only extended object which carry RR charges, indeed string
theory allows also non-dynamical objects called O-planes. The “O” stays for orien-
tifold, which is a quotient procedure that involves both a space-time involution and
worldsheet parity. The fixed locus of the space-time involution becomes a source for
the RR fields which is the O-planes itself. Their action is identical to the D-brane one
except that it has not dynamical field F:

dH F8−p = 2κ2
10µOpδ9−p . (1.20)

One of the most peculiar property of O-planes is that their tension has opposite sign
respect to D-branes µOp = −2p−4µDp so, in a sense, they are source for anti-gravity.
Their repulsive nature can be seen as the reason why they are necessary for compact-
ification to dS and Minkowski external space.

3Notice that F cannot be just the B-field because it is not gauge invariant, so we need an extra one-
form field a, which leaves on the branes, in order to compensate this freedom. In general we have
F= B |S +d a
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1. Introduction to supergravity 1.2. Ten-dimensional supergravity

Obviously, also the fundamental string can be seen as an extended object of string
theory. When it moves in a non-trivial background it couples with the NSNS three-
form H , indeed its action is simply composed by the usual Nambu–Goto term plus a
Wess–Zumino part:

SF1 =−µF1

∫
S

dξ2
√

−det(g |S)−µF1

∫
N

B |S . (1.21)

Similarly to what we have seen in M-theory, it is also possible to define a magnetic
potential for the fundamental string starting from the equation of motion of H . Using
the Bianchi identity for F and the property (A,B)d = (−)d(d−1)/2(B , A)d , we can rewrite
(F,F )8 = −d(F,C )7 +F0(e−B∧C )7 (where F0 is turned on just in IIA) and therefore the
second equation of (1.15) reads

d
[

(e−2φ∗H + 1

2
(F,C )7 − 1

2
F0(e−B∧C )7

]
= 0. (1.22)

This means that we can locally define a potential B̃ such that:

d B̃ = e−2φ∗H + 1

2
(F,C )7 − 1

2
F0(e−B∧C )7. (1.23)

This differential form can also be seen as an electric potential for the “magnetic dual”
of the fundamental string, which is a brane wrapping six space-time dimensions
called NS5-brane. Differently from D-branes, the NS5-brane is a little more subtle:
since it has not a direct definition in terms of open strings, but only as solitonic su-
pergravity solution, its action can be understood just using string dualities. Dualities
will be examined in depth in section 1.3 and 2.4, however let us anticipate that for
IIA the NS5 action can be derived by dimensional reducing the M5-brane action of
M-theory along a transversal direction as done in [51], while for IIB it can be obtained
from the D5-action using an S-duality transformation [52]. Similarly to the D-brane
case, there exists also a kind of O-planes that are charged under B̃ but carry nega-
tive tension. These surfaces are called ONS5-planes and they are generated at the
worldsheet level by a simultaneous action of the left fermionic number (−)FL and a
parity transformation along the transversal directions [53]. The last peculiar object
we introduce in this section is the NS9-brane, which is a space-filling non-dynamical
membrane which, similarly do the D9-brane, does not carry any charge.

After this digression on the classification of the string-theory objects, let us intro-
duce the fermionic supersymmetry variations that must be set to zero in order to get
a BPS solution. In the notation of [9], they read(

DM − 1

4
HM

)
ε1 + eφ

16
F γM ε2 = 0,

(
D − 1

4
H −∂φ

)
ε1 = 0, (1.24a)(

DM + 1

4
HM

)
ε2 + (−)|F | e

φ

16
λ(F )γM ε1 = 0,

(
D + 1

4
H −∂φ

)
ε2 = 0, (1.24b)

7



1. Introduction to supergravity 1.2. Ten-dimensional supergravity

where the sign (−)|F | = (−)deg(F ) is the only difference between IIA and IIB. Here ε1

and ε2 are a pair of Majorana–Weyl spinors and, while in IIB they have both positive
chiralities, in type IIA we take the chirality of ε1 to be positive while the one of ε2

negative. Acting with γM on the two equations on the left and subtracting the ones
on the right side it is possible to get other equations which were the original dilatino
variations: (

∂φ− 1

2
H

)
ε1 + eφ

16
γM F γM ε2 = 0 (1.25a)(

∂φ+ 1

2
H

)
ε2 + (−)|F | e

φ

16
γM λ(F )γM ε1 = 0. (1.25b)

Integrability conditions for a BPS solution are discussed in [38], let’s review that
argument here. Define, first of all, the following differential operators which act on a
vector of spinors ε= (ε1,ε2)

DM =
(
DM ⊗ 1− 1

4
HM ⊗σ3

)
+ eφ

16

(
0 F

(−)|F |λ(F ) 0

)
γM ,

∆=
(
D ⊗ 1−∂φ⊗ 1− 1

4
H ⊗σ3

)
.

(1.26)

Moreover, we can also use these operators to write the dilatino super-variation oper-
ator ∆̃= γMDM −∆. Now supersymmetry conditions can be rephrased as

DM ε= 0, ∆ε= 0. (1.27)

Using Bianchi identities for F and H it can be proven that

[DN ,∆]ε−[
γM ,DN

]
DM ε=

(
−1

2
EN Mγ

M ⊗ 1− 1

4
δHN Mγ

M ⊗σ3

)
ε

∆̃2 ε−
(
DM ⊗ 1−2∂Mφ⊗ 1− 1

4
HM ⊗σ3

)
DM ε=−D ε

(1.28)

where D is the dilaton equation defined as in (1.15a), EM N is the Einstein equation
and δHN M is the Hodge dual of (1.15b)

δHN M d xN ∧d xM =∗e2φ
(
d

(
e−2φ∗H

)− 1

2
(F,F )8

)
. (1.29)

It is clear from (1.28) that setting to zero supersymmetry variations (1.27) implies the
dilaton equation and at least some components of B-field and Einstein equations,
but not necessarily all of them [54, 55] .
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1. Introduction to supergravity 1.3. Dualities

1.3 Dualities

String and M-theory enjoy a thick web of dualities which link apparently discon-
nected quantities like large and small scales, strong and weak coupling and quan-
tities with different dimensions. The dualities we will discuss are T-duality, Sl(2,Z)
symmetry and M-theory to IIA dimensional reduction. T-duality is a transformation
which allows, under certain conditions, a map between type IIA and type IIB string
theory. Sl(2,Z) symmetry, which in the supergravity limit becomes Sl(2,R) symmetry,
is an equivalence of field configurations in type IIB, while M-theory dimensional re-
duction reproduces type IIA supergravity with the Romans mass turned off. In this
section we will show how the various fields are mapped after one of these transfor-
mations.

1.3.1 T-duality

Type II theories with d commuting isometries are characterized by an O(d ,d ;Z) group
of T-dualities. Any element of the O(d ,d ;Z) T-duality can be decomposed into a
product of simple T-dualities along a given Abelian isometry4, discrete diffeomor-
phisms and shifts of the B-field. We can then focus on the action of a single T-duality
along a certain isometric direction, parameterized by a coordinate y where ∂y is a
compact vector field which is not just Killing but also a symmetry of the whole solu-
tion (i.e., its Lie derivative kills any fields). This kind of T-duality consists in a map
between type IIA and IIB supergravity both endowed with an isometric compact di-
rection, however the circle radii in these two theories are inversely proportional.

The T-duality rules for fields and supersymmetry parameters were first introduces
by Buscher [57, 58] and Hassan [59], however in this section we will follow an ap-
proach more similar to [60], which revisits T-duality using a flat-index notation.

Let us then split the coordinates as xM = (xm , y), with m = 0, . . . ,8. We decompose
the fields as:

d s2
10 = d s2

9,A +e2C (d y + A1)2, B = B2 +B1 ∧d y , F = F⊥+F∥∧E y , (1.30)

where E y = eC (d y + A1). Then a T-duality along one direction results in the following
identifications of fields between type IIA and IIB supergravity

d s2
9,B = d s2

9,A , φB =φA −C A , C B =−C A ,
B B

2 = B A
2 + A A

1 ∧B A
1 , AB

1 =−B A
1 , B B

1 =−A A
1 ,

F B
⊥ = eC A

F A
∥ , F B

∥ = eC A
F A
⊥

(1.31)

where E y is the vielbein one-form while superscripts A,B denote in which theory the
field is sitting. One can check that the supersymmetry conditions (1.24) are invariant

4See [56] for non-Abelian case.
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1. Introduction to supergravity 1.3. Dualities

if also the spinors follow the transformation rules

εB
1 = εA

1 , εB
2 =−E y εA

2 , (1.32)

where now E y must be interpreted using the Clifford map (A.16).

1.3.2 Sl(2,R) duality

Type IIB supergravity enjoys a very natural reformulation in terms of Sl(2,R) objects
when the metric is rescaled according to Einstein frame. However, in order to give
some technical details which will be useful later on, let’s start by summarizing Sl(2,R)
symmetry in the formalism of type IIB supergravity we have seen so far. Given a
generic element

Λ=
(
α β

γ δ

)
∈ Sl(2,R) (1.33)

the following transformation is a symmetry of the action:

τ′ = ατ+β
γτ+δ , F ′

5 = F5, g ′ = |γτ+δ|g ,

(
C ′

2
B ′

)
=

(
α β

γ δ

)(
C2

B

)
(1.34)

where τ=C0+ie−φ. Let’s now define S-duality as a particular involution inside Sl(2,R)
given by α= δ= 0

τ′ =−τ−1 C ′
2 = B , B ′ =−C2 , (1.35)

since the imaginary part of τ is the string coupling e−φ, the transformation rule for τ
implies that we may move from a strong to a weak coupling regime.

From (1.34) it is possible to derive potential transformation rules. From F ′
5 = F5

we get

dC ′
4 =dC4 −dB ∧C2 +dB ′∧C ′

2

=dC4 +βδB ∧dB +βγ(B ∧dC2 +dB ∧C2)+αγC2 ∧dC2
(1.36)

and thus

C ′
4 =C4 +βγB ∧C2 + 1

2
(αγC2 ∧C2 +βδB2 ∧B2). (1.37)

Moreover, performing a Sl(2,R)-duality on the antiself-duality relation F7 =−?F3

d(C ′
6) =−?′ dC ′

2 +C ′
0?

′ H ′+H ′∧C ′
4, (1.38)

10



1. Introduction to supergravity 1.3. Dualities

we get, using the fact that under a conformal transformation g →α2g the Hodge dual
of a k-form Ωk transforms as ?Ωk →αD−2k ?Ωk :

d(C ′
6) = γe−2φ?H + (C0γ+δ)dC6 −γC0C4 ∧dB +γC4 ∧d2+1

2
(βδ2B 2 ∧dB

+βγδB 2 ∧dC2 +βγδB ∧C2 ∧dB +βγ2B ∧C2 ∧dC2 +αγδC 2
2 ∧dB +αγ2C 2

2 ∧dC2)

= γd B̃ +δd6+1

2

(
γ(C0 d6+dC0 ∧C6 +C4 ∧dC2 +d4∧C2)+βδ2B 2 ∧dB

+βγδB 2 ∧dC2 +βγδB ∧C2 ∧dB +βγ2B ∧C2 ∧dC2 +βγ2C 2
2 ∧dB +αγ2C 2

2 ∧dC2
)
,

(1.39)

where the definition of B̃ (1.23) was used. From the last line one can check that the
correct transformation rule for C6 is:

C ′
6 = γB̃ +δC6 + γ

2

(
C0C6 +C4 ∧C2 +βB ∧C2 ∧ (δB +γC2)

)+ 1

3

(
βδ2B 3 +αγ2C 3

2 )
)

.

(1.40)
Another important ingredient we need is the transformation rule of spinors. Us-

ing the fact that we do not want (1.24) to vary, it is possible to check that the spinors
transform under an U(1) subgroup of the original Sl(2,R) symmetry(

ε′1
ε′2

)
= |γτ+δ| 1

4

(
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)(
ε1

ε2

)
(1.41)

where θ = arg(γτ+δ).

1.3.3 IIA/M-theory duality

If in M-theory we have a compact U(1) direction which is a symmetry of the whole
solution, it is possible to perform a dimensional reduction along it and land to type
IIA supergravity. Unfortunately it is not possible to turn on the Romans mass with
this procedure, so that type IIA supergravity is not just a particular case of M-theory.
On the other hand, when F0 = 0, a solution in type IIA can be lifted to one in M-theory
with an internal isometry, so again M-theory is broader than massless type IIA.

In this section we will use a hat to distinguish eleven-dimensional quantities from
the ten-dimensional ones. To perform the dimensional reduction we will follow [61]
and [3, Chap. 8], whose conventions are consistent with ours except that in IIA we
have to map ε1,2 → ε2,1 , C1 →−C1 and H →−H (see appendix A.2 for more details).
In particular, the metric and the supersymmetry parameter split as follows:

d s11 = e− 2
3φd s10 +e

4
3φ(d x10 −C1)2

ε= e− 1
6φ
ε1+ε2p

2
, γ10 ε1 =−ε1 .

(1.42)
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while for Â and the associated field-strength we have:

Â =C3 −B ∧d x10 ,

F̂ = F4 −H ∧ (d x10 −C1) .
(1.43)

We can also express the M5 potential Ĉ in terms of ten-dimensional quantities,
starting from (1.4) and substituting

∗11 F̂ =∗11(−e
1
3φĤ ∧E 10 +e

4
3φF̂4) =−e−2φ∗10 H −F6 ∧C1 +F6 ∧d x10

Â∧ F̂ =C3 ∧H ∧C1 +C3 ∧F4 − (B ∧dC3 +C3 ∧H)∧d x10 ,
(1.44)

we get, using (1.23) and (1.11)

dĈ = d

(
−B̃ − 1

2
C5 ∧C1 +C5 ∧d x10 − 1

2
B ∧C3 ∧d x10

)
, (1.45)

so that we can take

Ĉ =−B̃ − 1

2
C5 ∧C1 +C5 ∧d x10 − 1

2
B ∧C3 ∧d x10 . (1.46)

1.3.4 Dualities and branes

As we have just seen, after a duality, fields rearrange themselves in a completely dif-
ferent manner, so it should not be surprising that also branes must be mapped from
one to another. Understanding how this happens is of fundamental importance,
since in many cases dualities provide the only shortcut to get a detailed description
of many objects. So let’s analyze these relations starting from T-duality.

The best known and understood mapping between branes under T-duality is the
one of D-branes. As shown in (1.31), the orthogonal component of the RR-flux be-
comes, in the dual theory, a parallel component and viceversa, which means that
under T-duality the orthogonal components increase their form-rank while parallel
ones lessen it. This property reflects brane behavior, a Dp-brane becomes a D(p−1)-
brane if the T-duality is performed longitudinally to the worldvolume and a D(p+1)-
brane if it is orthogonal. This rule has a deeper explanation in the fact that T-duality
exchanges Dirichlet with Neumann boundary conditions of the open string. The T-
dual of a NS5-brane works in a slightly more delicate way: first of all since the NS5
electric potential is, roughly speaking, linked to the Hodge dual of B via (1.23), we
must interpret the invariance of the orthogonal component of the B-field as the fact
that the longitudinal part of a NS5-brane is mapped again into the longitudinal part
of a NS5-brane of the dual theory. On the other hand, (1.31) exchanges the B-field
longitudinal component with the metric fibration associated with the U(1) isome-
try. This means that the orthogonal part of a NS5-brane is T-dualized to an object

12
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which is a gravitational solitons [62], called Kaluza-Klein (KK) monopole. In type II
theories such a solution is obtained as R6× a four-dimensional Gibbons–Hawking
space [63], which implies that the KK monopole is a five-dimensional object (KK5).
However, this issue is complicated by the fact that for the case of a single monopole
the solution is actually completely smooth, so it is not clear on which submanifold
a world-volume action should be based on. In spite of this difficulties, the existence
of the KK-monopole in both type II supergravity and M-theory is guaranteed by the
existence of corresponding central extension in the supersymmetry algebra for this
object [64], and an attempt to write an effective action for it was made using dualities
[52, 65].

Let’s now move on and discuss Sl(2,R)-duality. One of the most peculiar charac-
teristics of type IIB supergravity is that it has a fundamental one-dimensional object,
the string, and a solitonic one dimensional object, the D1-brane, which is not funda-
mental at least in a perturbative limit. One may wonder if this changes at the non-
perturbative level. S-duality confirms that the answer to this question is yes and that
the D1 is exactly as fundamental as the string, since (1.35) exchanges D1-brane and
string potentials. Therefore a generic Sl(2,R) transforms a D1-brane and the string in
a doublet, so it is customary to mix in general these two objects talking about (p, q)
1-branes. The same holds true for their magnetic dual, i.e. D5- and NS5-branes, or,
more in general (p, q) 5-branes. On the other hand, since the F5 field strength is al-
ways invariant, the D3-brane transforms into itself. Also D7-branes can be viewed
as transforming in a doublet of (p, q) branes, even if in [66] it argued that there are
actually three different eight-form potentials which transform as a Sl(2,R) triplet but
with a constraint, such that they describe the same propagating degrees of freedom
as the dilaton and C0. D9-branes are even more peculiar objects, indeed it is possible
to extend the supersymmetry multiplets adding bosonic spacetime fields which do
not propagate any degrees of freedom. These “fake” degrees of freedom are perfect
to describe ten-forms potential which couples to a space-filling branes, and it was
found in [67] that there can be four types of ten-form potentials with two constraints
between them. However, since these never explicitly appear in our discussion, we
will simply need to distinguish the D9-brane and what we call the NS9-brane, i.e.,
the D9-brane after a S-duality transformation. Despite the fact that it is an exotic ob-
ject, the NS9-brane is actually fundamental to justify the construction of type I string
theory starting from IIB. In this scenario usually 32 D9-branes are necessary to com-
pensate the O9-charge which arises from the worldsheet parity transformations, for
this reason the fundamental string which end on the D9 carries SO(32) Chan–Paton
factors. If we now try to describe everything in an S-dual setting, the D1-brane is the
fundamental object, which now cannot end on a D9 but must end on its S-dual, so
the presence of NS9 is necessary to make this construction consistent. NS9 exists
also in type IIA, as we will show by T-dualizing the NS9 calibration form type IIB.

Let’s now quickly move on the duality between M-theory and type IIA. As one
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can see from (1.43), the M-theory three-form potential contains both C3 and B2; this
means that when we perform a dimensional reduction of a M2-brane along a longi-
tudinal direction we get the fundamental string in type IIA, while if we perform the
same operation but in an orthogonal direction we get the D2-brane. Similarly an
M5-brane reduces into a NS5- and D4-branes if the reduction is performed orthogo-
nally or longitudinally respectively. D6-branes are more peculiar since C1 is pure ge-
ometry in M-theory (1.42), however we just introduced a purely geometric solitons,
the KK-monopole, which can play the role of dual of a D6-brane in eleven dimen-
sion. In particular M-theory has six-dimensional KK6-monopole, which becomes a
KK5-monopole or a D6-brane depending on the direction we are reducing on. We
have seen that eleven-dimensional supergravity contains a M9-brane, which is not
charged under any potential, in this case such a brane should reduce to the D8- and
the NS9-brane in type IIA, which are both not charged under any potential.
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CHAPTER 2

(BI-)SPINORIAL GEOMETRY

The presence of fields defined all over the D-dimensional spacetime manifold M has
important implication from a topological and geometrical perspective. In such a sit-
uation the usual tangent frame bundle Gl(D) gets reduced to the stabilizer of the ob-
ject we are considering, leading to a reduction of the structure group which is also
called G-structure, where G⊆Gl(D). One of the most classical examples is the pres-
ence of a metric tensor fields g , which leads the structure group from Gl(D) to O(D)
and implies that the spacetime M must be paracompact. Similarly, if we have also
a non-vanishing well-defined vector field v ∈ T M we have to consider the common
stabilizer of both g and v , which is Stab(g , v) =O(D−1). In such a situation we also get
that the Euler characteristic vanishes. It is natural to expect that something similar
must occur also if we have spinors defined all over the manifold. This is exactly what
happens when we have some amount of supersymmetry, indeed the spinorial pa-
rameters are well defined all over the manifold and therefore they lead to a structure
group reduction. If the amount of supersymmetry is high enough it is even possible
that the G-structure reduction completely constrains the supersymmetry conditions,
see for example [68, 69, 70].

In this section we will see how to rephrase the geometrical information carried
by spinors in terms of more familiar objects, like differential forms. We will then use
them to recast the supersymmetry conditions (1.6),(1.24) in a new and more conve-
nient way. In the first two sections we will mostly follow [9] Sec. 2.

2.1 Geometry of a ten-dimensional spinor

Let’s start by analyzing a ten-dimensional spinor ε in its irreducible representation,
which in ten dimensions is sixteen-dimensional Majorana–Weyl. In this situation
one can choose the gamma matrices to be all real and then they satisfy

γt
M = γ0γMγ0 (2.1)
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where we underlined the 0 to indicate that such an index must be interpreted as flat.
More details on our gamma-matrices conventions can be found in appendix A.2.

In order to extract the geometrical content of ε more transparently, it is conve-
nient to use its associated bispinor ε⊗ ε = ε⊗ εt γ0. Using Fierz identity (A.15) it is
possible to expand this bispinor on the antisymmetric products of k gamma matri-
ces γM1...Mk :

ε⊗ε=
10∑

k=0

1

32k !
(εγMk ...M1

ε) γM1...Mk . (2.2)

This bispinor can in turn be understood as a sum of forms of different degree using
the Clifford map (A.16). If ε is chiral, only forms of even degree survive and moreover,
using (A.19), we get that it must also obey a self-duality relation

γ(ε⊗ε) =±∗λ(ε⊗ε) (2.3)

where the chirality of the spinor is γε=±ε. Being ε also Majorana

εγMk ...M1
ε= (εγMk ...M1

ε)t =−(−)k (−)k(k−1)/2 εγMk ...M1
ε , (2.4)

which sets to zero all the degrees except for k = 1,5,9. Summing up all these infor-
mation we get that the independent forms are

KM = 1

32
εγM ε , ΩM1...M5 =

1

32
εγM1...M5

ε (2.5)

and (2.2) reads:
ε⊗ε= K +Ω±∗K , ∗Ω5 =±Ω5 , (2.6)

where again ± is the chirality of ε .
These forms enjoy some important algebraic properties . First of all using (A.24)

we have that

K ε= KM γM ε= 1

32
γM εεγM ε=−1

4
(1±γ)K ε=−1

2
K ε (2.7)

from which
K ε= 0 . (2.8)

This immediately implies that K is a null vector:

K M KM =− 1

2 ·32
εK ε= 0 , (2.9)

and moreover, applying K on the left and right of ε⊗ε and using (A.17) one gets

K ∧Ω5 = ıKΩ5 = 0 , (2.10)
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2. (Bi-)spinorial geometry 2.1. Geometry of a ten-dimensional spinor

which allows us to rewrite the five-form as

Ω5 = K ∧Ψ4 (2.11)

for some four-form Ψ4.
As sketched in the introduction to this chapter, the presence of a spinor or of a

form defined on all the space-time leads to a reduction of the structure group of the
tangent bundle to their stabilizer. Let’s determine the structure group defined by ε
of positive chirality. For convenience, we choose a frame in which K is part of the
vielbein K = e−:

e+ ·e− = 1

2
, e± ·e± = 0 , e± ·eα = 0 , eα ·eα = 1 , (2.12)

with α= 1, . . . ,8. This index choice suggests a decomposition of the ten-dimensional
Clifford algebra Cl(1,9) ' Cl(1,1)⊗Cl(0,8) and therefore a spinor decomposition in

ε= | ↑〉⊗η , (2.13)

whereη is a eight-dimensional Majorana–Weyl spinor while | ↑〉 is the two-dimensional
Majorana–Weyl component. In order to compute stab (ε) it is necessary to look at the
infinitesimal action of a Lorentz transformation on ε:

δε=ωM N γ
M N ε . (2.14)

We have just seen that K ε = γ− ε = γ+ ε = 0 so that γ+α ε = 0. Moreover an eight-
dimensional Majorana–Weyl spinorη is annihilated by 21 out of 28 eight-dimensional
gamma matrices, so we can write:

stab(ε) = {ω21
αβγ

αβ,γ+α} . (2.15)

The elementsω21
αβ
γαβ are in the adjoint representation of spin(7), so that they gener-

ate the Lie algebra Spin(7). Moreover because [γαβ,γ+δ] = 2δδ[αγ
+
β] we have that

Stab(ε) = Spin(7)nR8 = ISpin(7) . (2.16)

We expect that the same structure group can be deduced also using the forms
generated by ε. Let’s start from the stabilizer of K ; since K is null

Stab(K ) = ISO(8) = SO(8)nR8 . (2.17)

Equation (2.10) says us that the four form Ψ4 contains only components which are
orthogonal to K different from K itself, i.e., using the decomposition (2.12), it has legs
only along α directions. If we restrict our original spinor ε to this eight-dimensional
subspace we obtain the Majorana–Weyl spinor η in eight dimensions, this is known
to give rise to a Spin(7) structure. In fact Ψ4 is nothing but Spin(7) four-form, which
in a eight-dimensional space is usually obtained from η⊗ηt = (ηtη)(1+Ψ4 +Vol8).
Then leaving Ψ4 invariant reduces the SO(8) inside ISO(8) in Spin(7), so that we find
again

Stab(K ,Ω5) = ISpin(7) . (2.18)
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2. (Bi-)spinorial geometry 2.2. Geometry of two ten-dimensional spinors

2.2 Geometry of two ten-dimensional spinors

As we have seen in 1.2 type II supergravity contains two fermionic parameters ε1,2;
each of them defines an ISpin(7) structure. From (2.6) we get

ε1⊗ε1 ≡K1 +Ω1 +∗K1

ε2⊗ε2 ≡K2 +Ω2 ∓∗K2 for IIA
IIB ,

(2.19)

but this time we can also define the mixed bispinor

Φ= ε1⊗ε2 , (2.20)

which is a collection of forms with odd degree in IIB and even degree in IIA with the
self-duality property ∗λ(Φ) =Φ. From (2.8), we see that

K1Φ=ΦK2 = 0. (2.21)

If we define

K ≡ 1

2
(K1 +K2)M∂M , K̃ ≡ 1

2
(K1 −K2)M d xM , (2.22)

we can rewrite (2.23) using (A.17):

(ιK + K̃∧)Φ= 0. (2.23)

In the same spirit we define

Ω≡ 1

2
(Ω1 ±Ω2) , Ω̃≡ 1

2
(Ω1 ∓Ω2) for IIA

IIB . (2.24)

Notice that ∗Ω= Ω̃ in IIA while ∗Ω=Ω,∗Ω̃= Ω̃ in IIB.
The vector K will play a key role in our discussion and in particular it can be seen

that
K 2 ≤ 0. (2.25)

The case K 2 = 0 is called the light-like case and implies K1 ∝ K2, while the case where
K 2 = 1

2 K1 ·K2 < 0 is called the timelike case. As we will immediately see, this distinc-
tion discerns the different cases in the classification of type II supergravity structure
groups.

2.2.1 Structure group in T M

To evaluate the stabilizer of ε1,2 in SO(1,9) we have then to look at the intersection of
the two copies of ISpin(7). However, this intersection is not unique and various pos-
sibilities exist. Let’s start from IIA. If we are in the light-like case we can use the viel-
bein basis (2.12) for both K1,2 and then we are just considering two eight-dimensional
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2. (Bi-)spinorial geometry 2.2. Geometry of two ten-dimensional spinors

spinors η1,2 of opposite chirality. We have seen that the presence of a spinor reduces
the structure group from SO(1,9) to ISpin(7), the presence of another spinor with op-
posite chirality allows us to build a three-form ηt

1γαβδη2 on the eight-dimensional
subspace orthogonal to K1 ∝ K2. The subgroup of Spin(7) that preserves this form is
G2, so overall we have a G2nR8 structure. If, on the other hand, we are in the timelike
case, up to rescaling we can assume without loss of generality

K1 = e+ and K2 = e− (2.26)

so that we can decompose the spinors as

ε1 = | ↑〉⊗η1 , ε2 = | ↓〉⊗η2 . (2.27)

In this situation we are reduced to the common stabilizer of two eight-dimensional
spinors with the same chirality, which is Spin(6) ∼= SU(4), but it can get enhanced to
Spin(7) if η1 and η2 are proportional. Summarizing, we have found three possibilities:

G2 nR8 , SU(4) , Spin(7) for IIA . (2.28)

In IIB conversely ε1 and ε2 have the same chirality. If we are in the null case again
we write

ε1 = | ↑〉⊗η1 , ε2 = | ↑〉⊗η2 . (2.29)

As seen before, the intersection of the stabilizers of two eight-dimensional spinors is
Spin(6) ∼= SU(4) but could became Spin(7) if they are proportional. So we conclude
that overall we have SU(4)nR8 that can be enhanced to Spin(7)nR8. When K1 and
K2 are not proportional again we can assume the timelike condition (2.26) so that

ε1 = | ↑〉⊗η1 , ε2 = | ↓〉⊗η2 (2.30)

where now η1 and η2 have opposite chiralities. As discussed above, the common
stabilizer of two eight-dimensional spinors with opposite chiralities is G2. Therefore
for type IIB we got again three possibilities:

SU(4)nR8 , Spin(7)nR8 , G2 for IIB . (2.31)

This multiplicity reflects directly on Φ, indeed if K1 ∝ K2 from (2.23) we get that
K̃ ∧Φ= 0 and thenΦ= K̃ ∧(. . . ). Otherwise, in the time-like caseΦ= exp

[− 1
K1·K2

K1∧
K2

]∧ (. . . ). The remaining parts (. . . ) come from the eight-dimensional bilinear φ =
η1η

t
2 which is different for each structure group:

ΦG2nR8 = K̃ ∧φG2 ,

ΦSU (4) = exp

[
− 1

K1 ·K2
K1 ∧K2

]
∧φSU (4) ,

ΦSpi n(7) = exp

[
− 1

K1 ·K2
K1 ∧K2

]
∧φSpi n(7) ,

for IIA (2.32)
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2. (Bi-)spinorial geometry 2.2. Geometry of two ten-dimensional spinors

and

ΦSU (4)nR8 = K̃ ∧φSU (4) ,

ΦSpi n(7)nR8 = K̃ ∧φSpi n(7) ,

ΦG2 = exp

[
− 1

K1 ·K2
K1 ∧K2

]
∧φG2 .

for IIB (2.33)

2.2.2 Structure group in T M +T ∗M

The presence of more than one stabilizer for ε1,2 can be considered as an obstruc-
tion to achieve an unified description of string-theory BPS solutions, indeed nothing
forbids the structure group to change from a point to another even inside the same
solution, making difficult to understand which of (2.32) and (2.33) must be used a
priori. One can react to this by enlarging the structure group defining it on the gen-
eralized tangent bundle T M ⊕T ∗M [35, 36].

Type II supergravity enjoys a deep connection with generalized complex geom-
etry. T M ⊕T ∗M can be naturally endowed with a metric with half positive and half
negative signature, so that the structure group is enlarge to O(10,10). As we have
seen in section 1.3.1, this is the T-duality group in presence of ten-isometric direc-
tions. This is believed to be a reason why it is actually possible to reformulate type II
supergravity in terms of manifestly O(10,10) covariant objects as done in [71].

The generalized complex geometry framework the metric and the B-field degrees
of freedom are all encoded in an unique object G called generalized metric [35, sec-
tion 6.4] which performs a reduction of the structure group from O(10,10) to O(9,1)×
O(9,1). Another benefit of the generalized geometry approach is that the general-
ized spin bundle is nothing but the bundle of all the differential forms on M as it
is shown in appendix A.1, and we can regard Cl(10,10) Clifford algebra as acting di-
rectly on differential forms via the usual gamma matrices product on the left and on
the right as in (A.17). In this framework it results particularly easy to compute the
stabilizer of differential forms if they derive from spinor bilinears. As we will see in
a moment, the presence of a metric and a B field on M restricts the structure group
to o(9,1)⊕o(9,1) = span{←−γ M N ,−→γ M N }. If moreover we add as geometric data also the
two spinors ε1 and ε2 we have a basis of the type (2.12) associated to both, so a sub-
script is needed to distinguish indices relative to ε1 from the to ε2 ones. The common
stabilizer therefore reads:

stab(g ,B ,ε1,ε2) = span
{
ω
α1β1
21

−→
γ α1β1 ,−→γ −1α1 ,ωα2β2

21
←−
γ α2β2 ,←−γ −2α2

}
= ispin(7)⊕ ispin(7) .

(2.34)
Notice that we manage to collect all the possibilities in (2.28) and (2.31) in a single
generalized G-structure.

Beside these advantages, by starting from the structure group O(10,10) instead of
O(10) we have now lost any geometric information about how the metric is defined
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2. (Bi-)spinorial geometry 2.3. Geometry of an eleven-dimensional spinor

and for this reason we have to check that geometric data encoded in the bilinears are
enough to include (g ,B ,ε1,ε2). The bilinear stabilizers read:

stab(Φ) = span

{
ω
α1β1
21

−→
γ α1β1 ,−→γ −1α1 ,ωα2β2

21
←−
γ α2β2 ,←−γ −2α2 ,−→γ −1+1 +←−

γ −2+2−→
γ −1

←−
γ α2 ,−→γ −1

←−
γ +2 ,−→γ α1

←−
γ −2 ,−→γ +1

←−
γ −2 ,−→γ −1

←−
γ −2

}
,

stab(εi εi ) = span

{
ω
αiβi
21

−→
γ αiβi ,−→γ −iαi ,ωαiβi

21
←−
γ αiβi ,←−γ −iαi ,−→γ −i+i +←−

γ −i+i−→
γ −i

←−
γ αi ,−→γ −i

←−
γ +i ,−→γ αi

←−
γ −i ,−→γ +i

←−
γ −i ,−→γ −i

←−
γ −i

}
.

(2.35)

In the timelike case we already saw that it is allowed to choose e+1 ∼ K2 and e+2 ∼ K1

and therefore the common stabilizer reduces to

stabK 2<0(Φ,Ω1,2,K1,2) ⊆ span
{
ω
α1β1
21

−→
γ α1β1 ,ωα2β2

21
←−
γ α2β2

}
= spin(7)⊕ spin(7) (2.36)

which, being stricter then ispin(7)⊕ ispin(7), it is enough to define (g ,B ,ε1,ε2).
However, as showed in [9], for the generic case this is not true anymore and we

have to supplement the bilinears with some objects which cannot be defined through
them; these are two sections of the generalized tangent bundle (−−→γ+1 ,←−−γ+2 ), and it is
easy to show that also in this case

stab(Φ,−−→γ+1 ,←−−γ+2 ) = span
{
ω
α1β1
21

−→
γ α1β1 ,ωα2β2

21
←−
γ α2β2

}
= spin(7)⊕ spin(7). (2.37)

2.3 Geometry of an eleven-dimensional spinor

Taking inspiration from the ten-dimensional case, let’s now quickly review the ge-
ometrical aspects of a Majorana spinor in eleven dimensions. Following again the
conventions of [10], we can use the supersymmetry generator ε to construct a vector

K = 1

25
εγM ε∂M (2.38)

and a two- and five-form

Ω= 1

25 ·2!
ε γM1M2

ε d xM1 ∧d xM2 , (2.39a)

Σ= 1

25 ·5!
ε γM1...M5

ε d xM1 ∧·· ·∧d xM5 . (2.39b)

similarly to what we have seen in type II theories we always have K ≤ 0, so we will
again distinguish the null from the timelike case. In the null case the structure group
turns out to be [72] (Spin(7)nR8)×R while in the timelike case is SU(5). However,
to carry on the analogy with type II theories will be enough to consider the timelike
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2. (Bi-)spinorial geometry 2.4. Bilinear dualities

case. As we have seen in ten dimensions, all these bilinears are not independent but
enjoy some algebraic relations

ιKΩ= 0 ιKΣ= 1

2
Ω∧Ω , K 2Ω∧Σ= 1

2
K ∧Ω∧Ω∧Ω , ιK ∗Σ=−5ΩM ∧ΣM . (2.40)

If we now define
1p
K 2

χ=Σ− 1

2K 2
K ∧Ω∧Ω (2.41)

we are able to write an holomorphic 5-form θ = χ− i∗10 χ on the ten-dimensional
subspace orthogonal to K , so we have that θ andΩ defines an SU(5) structure on K ⊥.
More generally, a real five-form χ, a real vector K and a real two-form Ω defines an
SU(5) structure if they satisfy the following algebraic constraint [10, appendix E]:

ιK J = ιKχ= 0, J ∧χ= J ∧ ιK ∗10χ= 0, χ∧ ιK ∗10χ=−24

5!
Ω5 , (2.42)

which turns out to be true in our case thanks to (2.40). More details about this can be
found in [10].

2.4 Bilinear dualities

Using the spinorial transformation rules we have showed in section 1.3 we can derive
how bispinors transforms when we perform a string duality. This section is a follow
up of 1.3 and therefore we will use the same notation.

2.4.1 T-duality

Assuming again the presence of an isometric direction y , we can decompose also
bilinears in flat-index notation

Φ=Φ⊥+Φ∥∧E y , K = k1 +k0E y , K̃ = k̃1 + k̃0E y ,
Ω=ω5 +ω4 ∧E y , Ω̃= ω̃5 + ω̃4 ∧E y .

(2.43)

Using (1.32) one gets

ΦB =ΦAE y , (ε1 ε1)B = (ε1 ε1)A , (ε2 ε2)B = (ε2 ε2)A −2e−2C A
ı A

y (ε2 ε2)A ∧E y

(2.44)
which implies the following transformation rules

ΦB
⊥ =ΦA

∥ , ΦB
∥ =ΦA

⊥ ,

kB
1 = k A

1 , kB
0 = k A

0 , k̃B
1 = k̃ A

1 , k̃B
0 = k̃ A

0 ,
ωB

5 = ω̃A
5 , ωB

4 =ωA
4 , ω̃B

5 =ωA
5 , ω̃B

4 = ω̃A
4 .

(2.45)
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2. (Bi-)spinorial geometry 2.4. Bilinear dualities

2.4.2 Sl(2,R) duality

From equation (1.41) we have seen that spinors don’t transform under the whole
Sl(2,R) group but under an U(1) subgroup. The same behavior is inherited by the
spinor bilinears, which can be distinguish in two groups: the one that transforms as
a singlet, as K ,Φ3,Ω̃

K ′ = |γτ+δ|K , Φ′
3 = |γτ+δ|2Φ3 , Ω̃′ = |γτ+δ|3Ω̃ . (2.46)

and the ones that transform as a doublet

(K̃ + iΦ1)′ = |γτ+δ|e iθ(K̃ + iΦ1) = (γτ+δ)(K̃ + iΦ1) ,

(Ω+ iΦ5)′ = |γτ+δ|3e iθ(Ω+ iΦ5) = |γτ+δ|2(γτ+δ)(Ω+ iΦ5) .
(2.47)

2.4.3 IIA/M-theory duality

By using (1.42) it is possible to compute the relation between M-theory and IIA ge-
ometrical structures. Again, we will use the hat to distinguish the M-theory objects
from the ten-dimensional ones. The result of the dimensional reduction is

K̂ = K −e−φΦ0∂10 , (2.48a)

Ω̂=−e−φΦ2 − K̃ ∧ (d x10 −C1) , (2.48b)

Σ̂= e−2φΩ−e−φΦ4 ∧ (d x10 −C1) . (2.48c)

Notice that not all the IIA forms appear on the right hand side of (2.48). However, it
is possible to calculate them by reducing the Hodge-duals of ω̂ and Σ̂, for example

∗̂Σ̂=−e−2φΩ̃∧ (d x10 −C1)−e−φΦ6 . (2.49)
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CHAPTER 3

REFORMULATION OF BPS CONDITIONS

In the previous section we have introduced all the main characters that will allow us
to reformulate supergravity BPS conditions. To achieve this, one has basically to hit
spinor bilinears with (1.6), (1.24), and, using proper Clifford algebra and differential-
form identities, to recast the result in a new way. Quite often such a reformulation
brings to light important geometrical structures and new interesting physical conse-
quences which were hidden in the spinorial system, as we will see in this and the next
chapter.

Even if finding such bispinor equations is in principle just a matter of perform-
ing correct computations, to prove that it is possible to replace the original BPS sys-
tem with a new one made of differential form is a much harder task. This has been
done in many situations assuming some spacetime factorization (see for example
[37, 73, 74, 75, 76]). However, to extend this procedure without imposing any restric-
tion is much more interesting since one could specialize such a result to any space-
time configuration without wondering if the reduced system is completely equiva-
lent to the original BPS one. Achieving this goal turns out to be much more difficult
and, even if some systems have been found [10, 48, 9], they are not always completely
satisfactory.

In this chapter, after presenting some form equations which are necessary de-
rived by supersymmetry conditions, we will introduce systems which are also suf-
ficient to imply them. One of these systems is the main results in [15]. Since the
M-theory case is less convoluted, we will deal with it in a separate section, while in
the main part we will always refer to type II theories.

3.1 Differential form equations

This section is organized as follows: we will now present here a list of differential form
equations, which is by no means exhaustive, and we will briefly discussed them; their
proof is sketched in the subsections after the discussion. We can split the equations
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3. Reformulation of BPS conditions 3.1. Differential form equations

in two categories, the differential ones, which contain at least a bispinor derivative,
and the algebraic ones which will be listed at the end of this section. The differential
equations are:

LK g = 0, (3.1a)

dH (e−φΦ) =−(ιK + K̃∧)F , (3.1b)

e2φd(e−2φK ) =∗(
H ∧Ω+ eφ

4 {Φ,F }8
)

, e2φd(e−2φK̃ )=∗(H∧Ω̃+ eφ

8 {ΦM,F M }8
)

, (3.1c)

e2φd(e−2φΩ)=−ιK ∗H+eφ(Φ,F )6, e2φd(e−2φΩ̃)=−∗(K̃ ∧H)−(−)|Φ|e
φ

2

(
ΦM,F M)

6, (3.1d)

d
(
e2φ∗ K̃

)= 0, d
(
e2φ∗K

)= 0, (3.1e)

d K̃ = ιK H , dK = ιK̃ H − eφ

2 ∗ (Φ,F )8 , (3.1f)

dΩ̃=HM∧ΩM− eφ

4

{
ΦM,F M}

6 , dΩ=HM∧Ω̃M− eφ

4

(
{Φ,F }+ 1

4

{
ΦM N,F M N})

6 (3.1g)

d∗K = 0, d∗K̃ =−1
8 (−)|Φ| eφ

(
Φ,γM F γM )

, (3.1h)

We recall that (, )d is the d-dimensional Chevalley–Mukai pairing (A.7) while {, }d

is an analog which is defined in (A.8), which up to the author knowledge, has not a
mathematical interpretation yet. The sign (−)|Φ| which appears in some equations
is the only one difference between type IIA and type IIB description and by K we
indicate both the vector and the corresponding one-form depending on the contest.

Using (3.1) we can make more concrete what we said in the introduction of this
chapter, i.e. how differential form equations disclose some geometrical conditions
which were hidden in the spinorial BPS formalism. First of all notice that (3.1a) tells
us that K generate an isometry; we will show that more in general K is a symmetry
for all the fields, which means that LK annihilates all the fluxes. Combining the first
of (3.1e) with the first of (3.1h) and taking the Hodge dual we get the following scalar
condition

LKφ= 0 (3.2)

which tells us that the dilaton is K -invariant. If we now take the external derivatives
of the first of (3.1f) it is immediate to find

LK H = 0 (3.3)

where the closure of H was used. Before continuing, let’s consider the following anti-
commutator of differential form operators

{dH , ιK + K̃∧} = (d K̃ − ιK H)∧+LK =LK (3.4)

where we used (3.1f) in the last step. Taking the twisted external derivatives dH of
(3.1b) and using the Bianchi identity dH F = 0 we finally get

LK F = 0. (3.5)

In [77] it is proved that K is also a supersymmetry isometry, i.e. LK ε1,2 = 0.
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3. Reformulation of BPS conditions 3.1. Differential form equations

3.1.1 Proof of (3.1a)

(3.1a) already appeared in [78] and we will prove it providing all the details, this is a
good exercise since the computation are similar for all the other equations.

DN K1 M = 1

32
DNε1γM ε1+ 1

32
ε1γM DN ε1

=− 1

4 ·32
ε1

[
HN ,γM

]
ε1− eφ

8 ·32
ε1γM F γN ε2

=1

2
HN MR K R

1 − 4eφ

322
ε1γM F γN ε2 ,

(3.6)

where in the first step we used (1.24) while in the second the gamma matrices algebra.
Following the same procedure we can also get

DN K2 M =−1

2
HN MR K R

2 + 4eφ

322
ε1γN F γM ε2 . (3.7)

Now, summing up this two equations it is immediate to verify that:

D(N KM) = 0, (3.8)

which is (3.1a).

3.1.2 Proof of (3.1b)

Equation (3.1b) makes its first appearance in [9], which we refer to for further details,
even if its derivation was inspired by the pure spinor ones [34]. Let’s now sketch some
steps.

First of all, inverting (A.18), it is possible to re-express

H∧= 1

8

(−→
H +←−

H (−)deg +−→
γ M←−

H M +−→
H M

←−
γ M (−)deg

)
. (3.9)

From this result we can write, dropping the tensor product symbol to lighten up the
notation,

2eφdH (e−φΦ) =(−→γ +←−
γ (−)|Φ|)(∇MΦ−∂MφΦ)−2H ∧Φ

=
(
D ε1−1

4
H ε1−∂φε1

)
ε2 +γM ε1

(
DMε2 − 1

4
ε2HM

)
−

(
DM ε1−1

4
HM ε1

)
ε2γ

M −ε1

(
DMε2γ

M −ε2
1

4
H −ε2∂φ

)
.

(3.10)
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Using equations in (1.24) and their transposed version this expression reads

2eφdH (e−φΦ) =eφ

16

(
γM ε1 ε1γM F − (−)|F |F γM ε2 ε2γM

)
=−2eφ(K̃ ∧+ıK )F

(3.11)

from which one gets (3.1b). We used (A.24) in the last step.

3.1.3 Proof of (3.1c)-(3.1e)

Since they comes from the external derivative of the same bilinear, (3.1c)-(3.1e) can
be actually proved all together in one go. The discussion closely follows the one of
[15]. Similarly to what we have seen in the previous section, let’s start by rewriting

ιH = 1

8

(−→
H −←−

H (−)deg +−→
γ M←−

H M −−→
H M

←−
γ M (−)deg

)
, (3.12)

then:

2e2φd(e−2φ ε1 ε1)+2ιH ε1 ε1 =
[
γM ,DM (ε1 ε1)−2∂Mφε1 ε1

]
(3.13)

+ 1

4

(
H ε1 ε1 +ε1 ε1H +γM ε1 ε1HM +HM ε1 ε1γ

M )=
=

(
D − 1

4
H −∂φ

)
ε1 ε1 +γM ε1

(
DMε1 + 1

4
ε1HM

)
−

(
DM − 1

4
HM

)
ε1 ε1γ

M −ε1

(
DMε1γ

M +1

4
ε1H −ε1∂φ

)
−

(
∂φ− 1

2
H

)
ε1 ε1 +ε1 ε1

(
∂φ+ 1

2
H

)
.

If we now replace the supersymmetry equations (1.24), (1.25) we get

e2φd(e−2φ ε1 ε1) =−ιH ε1 ε1 + (−)|F | e
φ

32
γM ΦγM λ(F )− (−)|F | e

φ

32
F γM λ(Φ)γM

− (−)|F | e
φ

32
γM F γM λ(Φ)+ (−)|F | e

φ

32
ΦγM λ(F )γM .

(3.14)

The same procedure applied to ε2 ε2 leads to:

e2φd(e−2φ ε2 ε2) = ιH ε2 ε2 − (−)|F | e
φ

32
γM λ(Φ)γM F + (−)|F | e

φ

32
λ(F )γM ΦγM

+ (−)|F | e
φ

32
γM λ(F )γM Φ− (−)|F | e

φ

32
λ(Φ)γM F γM .

(3.15)
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3. Reformulation of BPS conditions 3.1. Differential form equations

From the sum and the difference between (3.14) and (3.15) we get

e2φd

(
e−2φ ε1 ε1 ±ε2 ε2

2

)
=−ιH

(
ε1 ε1 ∓ε2 ε2

2

)
− (−)|F | e

φ

64

(
[γM F γM ,λ(Φ)]± (3.16)

+ [F,γM λ(Φ)γM ]±∓ [γM λ(F )γM ,Φ]±∓ [λ(F ),γM ΦγM ]±
)

,

where [ , ]− indicates the usual commutator while [ , ]+ is the anticommutator. The
next step is to apply (A.24) and (A.18) to each commutator or anticommutator. After
summing up all these terms one has to separate the two-, six- and ten-form part in
order to get (3.1c)-(3.1e) .

3.1.4 Proof of (3.1f)-(3.1h)

Equations (3.1f)-(3.1h) are somehow similar to (3.1c)-(3.1e), but they are derived start-
ing from the equations corresponding to the gravitino variations only:

d(ε1 ε1) = 1

2

[
γM ,DM (ε1 ε1)

]= 1

2

[
γM ,

1

4
[HM ,ε1 ε1]+ (−)|F | e

φ

16
(FγMλ(Φ)+ΦγMλ(F ))

]
=HM∧ιMε1ε1+(−)|F |e

φ

32
(γMFγMλ(Φ)+γMΦγMλ(F)−FγMλ(Φ)γM−ΦγMλ(F)γM )

(3.17)

and

d(ε2ε2)=−HM∧ιMε2ε2+(−)|F |e
φ

32
(λ(Φ)γMFγM+λ(F)γMΦγM−γMλ(Φ)γMF−γMλ(F)γMΦ).

(3.18)
Taking the sum and the difference of the last two equations it results:

d

(
ε1 ε1 ±ε2 ε2

2

)
= HM ∧ ιM

(
ε1 ε1 ∓ε2 ε2

2

)
+ (−)|F | e

φ

64

(
[γM FγM ,λ(Φ)]±

+ [γMΦγ
M ,λ(F )]±− [F,γMλ(Φ)γM ]±− [Φ,γMλ(F )γM ]±

)
.

(3.19)

After similar manipulation to the one described in the previous section, one finally
gets (3.1f)-(3.1h).

3.1.5 Algebraic equations for type IIB

The first thing one could complain about by looking at (3.1) is that not every of these
differential equations are really “differential” according to our definition, indeed by
combining them it is possible to eliminate the part containing the bispinor external
derivative. This means that actually some equations can be seen as a combination of
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3. Reformulation of BPS conditions 3.2. BPS-equivalent systems

a differential plus an algebraic one. Here we will list some of the algebraic constraints
which come from the BPS equations. Since this part will be mostly useful when we
will deal with S-duality, all the computations are restricted to type IIB supegravity.

Combining for example the first of (3.1c) with the second of (3.1f), and the first
(3.1g) with the second in (3.1d), we get the following relations:

2F1 ∧Φ7 −F3 ∧Φ5 −e−φH ∧Ω+e−φK̃ ∧∗H +Φ1 ∧F7 +2ιK ∗de−φ = 0,

e−φHM ∧ΩM +F3 M ∧ΦM
5 − ιΦ1 F7 +e−φιK̃ ∗H +2de−φ∧ Ω̃−2F1 MΦ

M
7 = 0.

(3.20)

Since the dilatino equation (1.25) is already algebraic, we can use it to provide
other supersymmetry constraints. We can proceed as follows: first of all we take the
tensor product of (1.25a) with ε2 and of the transpose of (1.25b) with ε1. Now we
want to combine these two. If we take, for instance, the difference between them,
we don’t have to consider also the sum because the two components have different
left chirality, so the sum can be obtained by acting with −→

γ . The most interesting
equations come from the ten-, eight-, four-form components. They read:

2de−φ∧Φ9 +e−φH ∧Φ7 −2K̃ ∧F9 = 0, (3.21a)

2de−φ∧Φ7 +e−φH ∧Φ5 −e−φΦ1 ∧∗H −2ιK F9 −F3 ∧Ω− K̃ ∧F7 = 0, (3.21b)

2ιde−φΦ7 +e−φιΦ1 ∗H +e−φHM ∧ΦM
5 +2F1 ∧ Ω̃+ ιk̃ F7 −F M

3 ∧ΩM = 0, (3.21c)

where we have taken the Hodge dual of the four-form part.

3.2 BPS-equivalent systems

In the previous section we have derived many differential-form equations which are
necessarily implied by the supersymmetry conditions (1.24). However, it is not clear
yet if it is possible to go the other way, namely, if it is possible to find a system which
implies all the (1.24). From the preliminary discussion in section 2.2.2, in particu-
lar equation (2.37), one can conclude conclude that, since equations in (3.1) do not
contain vectors e+1 ,e+2 nor any free index, it is not possible to have a system which
implies the BPS conditions in full generality, even by using all of (3.1).

However, if we restrict ourselves to the timelike case, there are no limitations from
(2.36) to use some of (3.1) to write a differential-form system which is equivalent to
supersymmetry. Indeed in [15] it is shown that the following system

dH (e−φΦ) =−(ιK + K̃∧)F , (3.22a)

e2φd(e−2φΩ) =−ιK ∗H +eφ(Φ,F )6 , (3.22b)

e2φd(e−2φ Ω̃) =−∗ (K̃ ∧H)− 1

2
(−)|Φ| eφ

(
ΦM ,F M )

6 , (3.22c)

LKφ= 0, d∗K̃ =−1

8
(−)|Φ| eφ

(
Φ,γM F γM )

, (3.22d)
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3. Reformulation of BPS conditions 3.2. BPS-equivalent systems

is sufficient for supersymmetry for both IIA and IIB in the timelike case. While the
timelike condition can be seen as a restriction, in the space of possible solutions the
subset K 2 < 0 is actually the generic case while K 2 = 0 has measure zero. Even if the
light-like case seems peculiar, it is actually of great significance since all the N = 1
vacua with dimension grater than three fall in this class, as we will see in chapter 5.
On the other hand the timelike case seems a more natural setting to describe sta-
tionary black-hole backgrounds, in which case, differently from vacua, there is not
an abundance of known solutions.

In [9] it is possible to find a system which implies BPS conditions (1.24) also in the
light-like case, it reads

dH (e−φΦ) =−(K̃ ∧+ıK )F , (3.23a)

LK g = 0 , d K̃ = ıK H , (3.23b)(
e+1Φe+2 , γM N

[
(−)|F |+1 dH (e−φΦe+2 )+ 1

2
eφdiv(e−2φ e+2 )Φ−F

])
= 0, (3.23c)(

e+1Φe+2 ,
[

dH (e−φ e+1Φ)− 1

2
eφdiv(e−2φ e+1 )Φ−F

]
γM N

)
= 0. (3.23d)

Notice that in this case e+1,e+2 appear in the equations together with Φ, as required
by (2.37). Even if this system encompasses all the possible supersymmetric solutions,
the last two equations are quite cumbersome and, as we will see in the next chapter,
do not have clear physical interpretation, differently from (3.22).

The proof of the equivalence of these two systems to (1.24) can be found in [9] and
[15] appendix B. It consists in rewriting (1.24) by expanding the intrinsic torsion on
a spinor basis, so that the BPS conditions can be rewritten as some algebraic identi-
ties. The same reparameterization can be also used to re-express (3.22) and (3.23). To
prove sufficiency one has to check if all the intrinsic torsion equations which comes
from (1.24) are independently present in the differential-form systems. Even if the
procedure is straightforward, the actual computation turns out to be quite convo-
luted, so we refer to the original papers for the proof.

3.2.1 Integrability

Thanks to the equivalence of (3.22), (3.23) to supersymmetry, we can switch between
spinorial and differential-form description whenever we want, and in particular we
can take advantage of the results obtained with the spinorial formalism, like the inte-
grability conditions (1.28). As we discussed in section 1.2, to impose the BPS system
is not enough to automatically solve all the equations of motion. First of all one has
to check that Bianchi identities for H and F (1.16) are satisfied, moreover the integra-
bility constraints (1.28) tell us that supersymmetry imposes the dilaton equation but
not necessary all the components of the Einstein or B-field equations.
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3. Reformulation of BPS conditions 3.2. BPS-equivalent systems

In the timelike case, for example, up to rescaling we can use the condition (2.26)
for our choice of vielbein ea = (e+,e−,eα), and therefore we get γ+ε1 = γ−ε2 = 0, while
(γ−ε1,γαε1) and (γ+ε2,γαε2) give two sets of linearly independent spinors. Hence
from (1.28) we can get the following components of the equations of motion:

E++ = E−− = EMα = δHMα = 0, (3.24)

together with

E+− = 1

2
δH+− . (3.25)

Hence, to be sure that all the equations of motion are implied it remains to impose
either E+− = 0 or δH+− = 0. The latter condition may be written as

K ∧ K̃ ∧
[

d(e−2φ∗H)− 1

2
(F,F )8

]
= 0, (3.26)

while one can check that the first one is implied by

∇2e−2φ−e−2φH 2 − 1

4

∑
k

kF 2
k = 0, (3.27)

which is a combination between the trace of the Einstein and the dilaton equation.

3.2.2 Sl(2,R)-duality invariant system

Combining (3.22) with some of the equations in section 3.1 it is possible to obtain a
system which is invariant under Sl(2,R) symmetry of type IIB. For example, combin-
ing the two-form part of (3.22a) with the first (3.1f) it is possible to get the following
complex equation

d(e−φΦ1)+ ιK F3 + K̃ ∧F1 + ie−φ(d K̃ − ιK H) = 0 (3.28)

which is Sl(2,R) invariant as one can check using (2.45) and (1.34). To make also the
other equations invariant it is possible that one has to use the algebraic constraints
in 3.1.5; for example the tenth-degree of (3.22a) must be summed with two times the
algebraic equation (3.21a) to get that the following invariant combination:

e−φd(e−2φ∗K̃ )+ i
(
d(e−3φΦ9)−e−2φ K̃ ∧F9

)= 0 (3.29)

which makes also use of (3.1e).
Before showing all the correct combinations which makes (3.22) invariant, it is

better to express all the fields and bilinears using a formalism explicitly Sl(2,R) co-
variant, such that the new system is invariant at first sight. In this formalism all the
objects are defined so that they transform just under the U(1) subgroup of Sl(2,R).
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3. Reformulation of BPS conditions 3.2. BPS-equivalent systems

We will say that a field has charge q under U(1) if it transforms by a phase eiqθ where
θ = arg(γτ+δ).

For example, combining the three-form field-strengths in the complex one

G3 = e
1
2φ(F3 − ie−φ H) (3.30)

one can then check that G3 has charge q =−1

G ′
3 = e−iθG3 . (3.31)

As another example, the one-form eφdτ has U-charge q =−2, which means

eφ
′
dτ′ = e−2iθ(eφdτ) . (3.32)

Notice that the U(1) ⊆ Sl(2,R) transformations are typically point-dependent, since
τ is in general non-constant, so they do not commute with ordinary derivatives. A
composite compatible connection however can be defined

Q = 1

2
eφF1 (3.33)

which twists the covariant derivative as follows DM − iqQM . In particular, also the
exterior derivative gets modified

dQ = d−iqQ ∧ . (3.34)

In this reformulation it is convenient to use the Einsten-frame metric

gE ≡ e− 1
2φg (3.35)

so that Einstein-frame Hodge-operator ∗E commutes with the duality transforma-
tion; for instance, ∗E G3 has again charge −1.

By using the transformation rules of bispinors (2.47) it is easy to check that the

Killing vector K , the three-form e−φΦ3 ≡Θ3 and the five-form e− 3
2φΩ̃≡ Ω̃E are invari-

ant under Sl(2,Z) duality, while

Θ1 ≡ e− 1
2φ(K̃ + iΦ1) , Θ5 ≡ e− 3

2φ(Ω+ iΦ5) , (3.36)

and their Hodge-duals, have charge q = 1. We have then reorganized all the fields in
combinations transforming with definite U(1)-charges, summarized in table 3.1.
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fields U(1)D -charge
gE, K , Θ3, Ω̃E , F5 0

Θ1, Θ5 1
G3 −1

eφdτ −2

Table 3.1: U(1) charges of relevant fields.

So we have now all the ingredients to rewrite (3.22) in a Sl(2,R) invariant form:

LKτ= 0, eφdτ∧∗EΘ1 + i

2
G3 ∧∗EΘ3 = 0, (3.37a)

dQ Θ1 − i

2
eφdτ∧Θ1 + i ιK G3 = 0, (3.37b)

dΘ3 + ιK F5 +Re
(
Θ1 ∧G3

)= 0, (3.37c)

dQ Θ5 + i

2
eφdτ∧Θ5 +Θ3 ∧G3 − iιK (∗E G3)+ iΘ1 ∧F5 = 0, (3.37d)

d∗EΘ3 + 1

2
Re(G3 ∧Θ5 −∗E G3 ∧Θ1) = 0, (3.37e)

dQ ∗EΘ1 − i

2
eφdτ∧∗EΘ1 = 0, (3.37f)

dΩ̃E + 1

4
g M N

E [Im(Θ5 M ∧G3 N )−2Θ3 M ∧F5 N ]−3∗E Im(Θ1 ∧G3) = 0. (3.37g)

From table 3.1 it is also easy to see that the system is manifestly SL(2,Z) invariant.
As showed at the beginning of this subsection, (3.37) contains more equations

than (3.22). However, having used some algebraic constraints to modify the origi-
nal ones, the equivalence with supersymmetry may not be guaranteed anymore. A
conservative way to be sure that none of the supersymmetry data has been lost is to
check that the algebraic constraints we have used are separately satisfied:

g M N
E (G3 M ∧Θ5 N )−∗E(G3 ∧Θ1)−2eφdτ∧ Ω̃E +2i∗E (eφdτ∧Θ3) = 0,

G3 ∧Θ5 −Θ1 ∧∗EG3 +2eφ ιK ∗E dτ+2ieφdτ∧∗EΘ3 = 0.
(3.38)

Again, by using the U(1)D -charges of table 3.1 one can easily check that (3.38) are
manifestly invariant under SL(2,Z) dualities.

Notice that the large number of equations in (3.37)–(3.38) is due to the fact that
the system lists separately each form degree, differently for example from (3.22), .

3.3 M-theory

The situation in M-theory resembles the one in ten dimensions. First of all again the
BPS conditions can be rephrased in terms of the bilinears in section 2.3 and in the
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timelike case the differential-form equations just depend on external derivative of
bispinors, without need of picking an explicit spacetime framing as in the lightlike
case [48] (or as the type II null case). Necessary and sufficient conditions for super-
symmetry in the timelike case are given by [10]

LK g = 0, (3.39a)

dK = 2

3
ιΩF + 1

2
ιΣ∗F , (3.39b)

dΩ= ιK F , (3.39c)

dΣ= ιK ∗F −Ω∧F . (3.39d)

From equation (3.39a) one can see that K is a Killing vector, as it was already sug-
gested by the dimensional reduction formula to IIA (2.48a). Moreover, taking the
external derivative of (3.39c) one immediately gets

LK F = 0 (3.40)

which means that again K is a symmetry for all the fields.
Let’s now discuss integrability in the timelike case. Once one has imposed F

Bianchi identity and equation of motion, just the Einstein equation EM N must be
solved. Let’s now rewrite (1.8) more compactly

EM Nγ
M ε= 0. (3.41)

contracting this with ε we immediately have that all the components E0N of the Ein-
stein equation are implied by supersymmetry constraints. Multiplying (3.41) with
EMPγ

P one gets
EM N E N

M = 0 no sum on M, (3.42)

therefore, since the contracted index N runs over spatial indices only, the previous
equation is zero just if EM N = 0. So in the timelike case all the components of the
Einstein equation are set to zero by (3.39).
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CHAPTER 4

CALIBRATION CONDITIONS

As anticipated, some equations in (3.22), or more in general (3.1), can be interpreted
in terms of brane calibration. The concept of calibration is derived from Riemannian
geometry [14] and it gives an alternative solution to the problem of finding surface
with minimal area. In this context a calibration ω on a manifold M is defined as a
p-form which satisfies the following two conditions:

ω|N ≤ Vol(N ) ∀N ⊆ M dim(N ) = p , (4.1a)

dω= 0, (4.1b)

where Vol(N ) is the volume form of N . A submanifold N is said to be calibrated if the
inequality (4.1a) is saturated on N . The idea of these definitions is that a calibrated
submanifold has minimal volume in its homology class, indeed, given a deformation
N ′ of N and a p +1-dimensional submanifold Γ whose boundary is ∂Γ= N −N ′, we
can write

vol(N )−vol(N ′) =
∫

N
Vol(N )−

∫
N ′

Vol(N ′) ≤
∫

N
ω−

∫
N ′
ω=

∫
Γ

dω= 0. (4.2)

Calibrations show up naturally in string theory dealing with solitonic supersym-
metric objects (even if generalizations to non-supersymmetric cases are also possible
[38]) that emerge from the supergravity algebra. They first appeared in compactifica-
tion on Ricci-flat spaces, when all the background fields besides the metric are turned
off [79, 80]. In such a situation a p-brane is described by the Dirac–Nambu–Goto
action and therefore its energy is just given by the volume of the cycle wrapped by
the brane. Physically, brane energy is expected to be subject to a BPS lower bound
which is saturated by supersymmetric configurations, and therefore BPS branes are
volume-minimizing, i.e. calibrated. This provides a natural geometric interpretation
of the BPS bound with the calibrated submanifolds corresponding to the supersym-
metric states which saturate the bound.
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Clearly, more complicated backgrounds require a modification of the notion of
calibration in both a physical and mathematical way, since the presence of fluxes
must be taken into account and we are in general interested in a definition of cali-
bration in the Lorentzian context. To face the first problem a notion of “generalized
calibration” was introduce in [81], which means that (4.1b) get modified because of
the presence of a flux F , schematically:

dω=−ιK F (4.3)

where K is the Killing vector associated to the supersymmetric configuration analog
to the one defined in subsection 3.1. As one can see there are some similarities be-
tween (4.3) and some of the equations in (3.1) and (3.39), which are supersymmetry
conditions for spacetime. It seems then that the interplay between branes and back-
ground geometry can be concretely realized in terms of calibrations, and it was even
conjectured that it is possible to rephrase the BPS conditions (1.6) and (1.24) in terms
of brane calibrations. This is true, for example, in the case of compactification over a
four-dimensional spacetime [12]. We will devote this chapter to show that the system
(3.22) admit, to some extent, such an interpretation.

We will mainly follow [13], whose approach also adapts the mathematical formal-
ism to the Lorentzian context.

4.1 Calibration of a generic brane

Let’s start by studying the case of a generic toy model of a p-brane. Let us suppose
that the action of the brane wrapping a (p +1)-dimensional surface S is the sum of a
Nambu–Goto and a Wess–Zumino term

Sp =−µp

∫
S

dp+1ξ
√
−detg |S +µp

∫
S

C , (4.4)

where ξα = (τ,σi ) are the coordinates on S, and that supersymmetry of the back-
ground imposes

dω=−ιK F , (4.5)

where F = dC . For p = 2 this is exactly the description of a string moving in a non-
trivial backgound (1.21) and for generic p it is an O-plane or a D-brane (1.17) with Fs
turned of, so it is a good toy-model for understanding the role of calibrations avoiding
technical difficulties.

A probe brane placed in a supersymmetric background does not automatically
preserve supersymmetry. If we want this to happen we have to check that the κ-
symmetry condition is satisfied

γp ε= ε (4.6)
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where γp can be seen as the chiral operator defined on the brane, γ2
p = 1. Let’s now

introduce the world-volume (or gauge-invariant) momentum conjugated to xM :

P M =−
p
−h hτα∂αX M , h ≡ g |S . (4.7)

By construction P M is timelike, so, taking a generic spinor χ, we always have

χPχ≥ 0 (4.8)

since it is possible to choose the charge conjugation matrix such that it is parallel
to the one-form associated to P . Now, considering χ = (1−γp )ε, from the previous
inequality one gets

−K M PM dp σ≥ω|Σ , (4.9)

where we have evaluated (4.8) on a space-like p-surface Σ = S ∩M where M is a
(d −1)-one. This inequality is the equivalent of (4.1a) in Lorentzian context, where
−K M PM dp σ plays the same role of the volume form.

Notice that the quantity we get by integrating (4.9)

−
∫
Σ

K M PM dnσ−
∫
Σ
ω≥ 0 (4.10)

is not a BPS bound (even if it can be shown to be the conserved charge related to
the K isometry [13, section 3.2]) because PM is not the canonical momentum since it
is obtained from the Legendre transformation of the Nambu–Goto part of the action
only, so the first term isn’t the energy of the brane. Considering also the Wess–Zumino
term we get that the canonical momentum reads PM = PM +ιMC |Σ, so we can modify
(4.10) as following

−
∫
Σ

K MPM dnσ≥
∫
Σ

(ω− ιK C ) , (4.11)

which is a full-flegded BPS bound. Indeed the quantity one the left-hand side is by
definition the energy of the brane, while, by choosing gauge LK C = 0, we can write
(4.5) as

dϕ= 0 with ϕ=ω− ιK C . (4.12)

Thus the right-hand side of (4.11) is a topological quantity, which can be interpreted
as the brane central charge.

Up to now the p-brane was regarded as a probe, meaning that we were consid-
ering a regime where the back-reaction was neglected. Now, let us take a delta-like
D − (p +1) form δD−(p+1) localized on S (exactly as in (1.19)) as a source for the flux
F so that it satisfies the following equation of motion for C , which mimics what we
have seen in (1.5) or (1.20)

d∗F = δD−(p+1) . (4.13)
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We can now rewrite the central charge in the following way

Z =
∫
Σ

(ω− ιK C ) =
∫
M

(ω− ιK C )∧δD−(p+1) =
∫
M

(ω− ιK C )∧d∗F , (4.14)

and, thanks to the calibration condition (4.12), we can use Stokes’ theorem to find

Z = (−)p
∫
B
ϕ∧∗F , (4.15)

where B = ∂M. Assuming that S∩B = 0, the integrated quantity is invariant under
deformations of the boundary B. Thanks to (4.15) we are able to compute the central
charge on the space boundary, which means that we are defining it considering the
source as an object in the entire bulk, instead of just using the theory on the brane
world-volume. This is equivalent to promote the brane from a probe formalism to a
back-reacting one. This novel reformulation of the central charge can also be applied
to gravitational objects, such as KK-monopoles, where a priori it is not clear on which
submanifold they are sitting since the solution can be smooth. We will use this result
in the end of this chapter.

4.2 String and D-brane calibration

From the general discussion in the previous section we are now able to identify the
calibration form for the fundamental string and the D-branes. Comparing (4.4) with
the string action (1.21) and looking at equations (3.1) it is immediate to notice that
the first of (3.1f),

d K̃ = ιK H , (4.16)

is the equivalent to the generalized calibration condition (4.5). By making the follow-
ing gauge choice LK B = 0, which is allowed since we proved in section 3.1 that K is a
symmetry for H , we get the closed one-form string calibration

ϕF1 = K̃ + ιK B . (4.17)

For D-branes the argument is similar even if a bit more tricky. The best candidate
for D-brane calibration condition is (3.22a), however there are many differences with
respect to calibration condition (4.5). First of all we have the twisted external deriva-
tive dH instead of the usual one. This is due to the fact that, in a generalized geometry
perspective, if a B-field is turned on the spinors associated with the B-twisted gener-
alized tangent bundle get modified with respect to the original one

Ctw = e−B ∧C , Φtw = e−B ∧Φ , (4.18)
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where e−B ∧ is the effect of the twist. For such forms it is immediate to notice that

Ftw = dCtw = e−B ∧dH C = e−B ∧F (4.19)

and therefore Bianchi identities become

dFtw = 0 ⇐⇒ dH F = 0. (4.20)

Moreover, in the right-hand side of (3.22a) not only the Killing vector K but also the
one-form K̃ appears. However, always using a generalized geometry approach, we
can regard at ιK + K̃∧ as a vector on the generalized tangent bundle which generates
a symmetry together with the twisted external derivative. This was already proved
in (3.4). In particular, by choosing LK C = 0, we can anti-commute ιK + K̃∧ with dH .
Using all these ingredients we can get the following form for a Dp-brane calibration

ϕDp = [
e−B∧ (

e−φΦ− (ιK + K̃∧)C
)]

p . (4.21)

The complete calibration for D-branes is actually given by the sum over all the de-
grees p, which allow to describe the energetics of D-branes supporting non-trivial
fluxes [82, 12, 83, 13] and/or forming networks [84].

The derivation of the BPS bound for both string and D-branes can be argued
along the line of section 4.1 using their actions and κ-symmetry operators. We re-
fer to [13] for the details of this discussion.

4.3 M2- and M5-brane calibration

The M2- and M5-brane calibrations can be obtained from the equations in (3.39) as
in [85]. The M2-brane calibration condition can be read from (3.39c); similarly to
what we have seen in the previous section, by setting LK A = it is easy to prove that
the form

ϕM2 =Ω+ ιK A (4.22)

is closed. For the M5-brane we have to start from (3.39d). The first step is to insert
the definition of the M5 electric potential (1.4) in (3.39d)

d(Σ+ ιK C ) =−1

2
(ιK A∧F − A∧ ιK F )−ω∧F , (4.23)

where we used LK C = 0. Now, from the following identity, which makes use of the
M2-calibration condition (3.39c),

ω∧F = d(ω∧ A)− ιK F ∧ A , (4.24)

we are able to rewrite the left hand side of (4.23) in a closed form. The result of this
operation brings to the following equation for the M5-calibration:

ϕM5 =Σ+ ιK C + A∧Ω+ 1

2
A∧ ιK A . (4.25)
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4.4 NS5-brane calibration

Differently from D-branes and fundamental string, it is rather difficult to discuss the
role of the NS5-brane calibration starting from its action since it was just defined in
an indirect manner [51]. The intuition acquired by studying the other cases suggests
that the proper supersymmetry condition we have to start from is (3.22b), so let’s start
with understanding if it is possible to trace it back to a closure condition.

Similarly to what we have seen with the M5 case, we have to insert the NS5 po-
tential (1.23) in (3.22b); we will do all the computations in type IIA supergravity, since
ones for IIB are identical with F0 = 0:

d
(
e−2φΩ

)=−e−2φ ιK ∗H + (e−φΦ,F )6 =−ιK d B̃ + 1

2
ιK [(F,C )7 −F0Ctw7]+ (e−φΦ,F )6.

(4.26)
By recalling (3.22a), we can manipulate (e−φΦ,F )6 a little bit

(e−φΦ,F )6 =
[

e−φΦ∧λ(dH C+F0 eB )
]

6
=−d(e−φΦ,C )5−((ιK +K̃∧)F,C )6+F0 e−φΦtw6

(4.27)
so as to get

d
[

e−2φΩ+ (e−φΦ,C )5 − ιK B̃
]
= 1

2
(ιK F,C )6 − 1

2
(ιK C ,F )6 − ((ιK + K̃∧)F,C )6

+F0

(
e−φΦtw − 1

2
ιK Ctw

)
6

= 1

2
d((ιK + K̃∧)C ,C )5 +F0ϕD6 ,

(4.28)

where we have chosen the gauge LK B̃ =LK C = 0 and used (3.4). ϕD6 is the D6-brane
calibration ((4.21) with p = 6), which, being locally exact, can be written asϕD6 = dσ5

where σ5 is a five-form. Bringing everything on the left-hand side we get that the
following differential form

ϕNS5 = e−2φΩ+ (e−φΦ,C )5 − ιK B̃ − 1

2
K̃ ∧ (C ,C )4 − 1

2
(ιK C ,C )5 +F0σ5 , (4.29)

is closed. The expression ofϕNS5 in type IIB supergravity is the same with F0 = 0. One
can already notice some similarities between (3.22b) and NS5-brane calibration con-
dition proposed in [55] restricted to the assumption of a four-dimensional Minkowski
external space. In this spirit, we can also notice that the influence of D6-calibration
in (4.29) is necessary for an anomaly-free NS5 in Romans-mass background, indeed
when F0 = n is turned on we have that n D6-brane must end on a NS5 [86] in order
to compensate the Romans mass charge, as can be shown by integrating the Bianchi
identity dF2 −F0H = δ3 on a three-dimensional sphere surrounding the NS5 world-
volume. The interpretation ofϕNS5 as NS5 calibration will be confirmed by exploiting
the duality relations we have seen in section 1.3.
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4.4.1 NS5 calibration in IIB from S-duality

In section 1.3.4 we have showed how branes are related under the various string du-
alities, in particular Sl(2,R) symmetry in type IIB mixes D5 with NS5-branes. Using
this transformation it is possible also to simply exchange a D5 with a NS5; this is per-
formed by the S-duality (1.35). In this section we will show that S-dualizing the D5-
brane calibration (4.21) with p = 5 we exactly get (4.29). This would be a non-trivial
check that our hypothesis for the NS5-calibration is correct, at least in type IIB.

In the particular case of an S-duality we have, besides (1.35):

C ′
4 =C4 −B ∧C2 ,

C ′
6 = B̃ + 1

2
(C0C6 +C4 ∧C2 −C2 ∧C2 ∧B),

(4.30)

and we will also need (2.46) and (2.47) with δ= 0 and γ= 1. Straightforwardly apply-
ing these transformation rules to the D5-calibration we get

ϕ′
D5 =

(
e−B ∧(e−φΦ− (ıK + K̃∧)C )

)′
5 = e−2φ Ω̃+e−φC0Φ5 −e−φC2 ∧Φ3 +e−φΦ1 ∧C4

−C0K̃ ∧C4 + 1

2
C2 ∧C2 ∧ K̃ − ıK B̃ − 1

2
(C0ıK C6 +C4 ∧ ıK C2 − ıK C4 ∧C2) =ϕNS5 .

(4.31)

4.4.2 NS5 and D4 calibrations from M-theory

Even if in type IIA we don’t have an internal symmetry like S-duality for IIB to check
our interpretation of (4.29), we can use the fact that the M5-brane can be dimensional
reduced to a D4 and a NS5 brane in type IIA, as described in subsection 1.3.4. We
expect the same mechanism to work also for calibrations.

Adopting the same notation we have used in 1.3.3 and 2.4.3 when dealing with
dimensional reduction from M-theory to type IIA, we will use a hat to distinguish
eleven- from ten-dimensional objects.

The M5 calibration was derived in (4.25)

ϕ̂M5 ≡ Σ̂+ ιK̂ Ĉ + Â∧ Ω̂+ 1

2
Â∧ ιK̂ Â . (4.32)

We can now reduce (4.32) to IIA, by taking the dimensional-reduction dictionary
of 1.3.3 and 2.4.3 to the letter, we get that M5 calibration reads

ϕ̂M5 =e−2φΩ+e−φΦ4 ∧C1 +C3 ∧ K̃ ∧C1 −e−φC3 ∧Φ2 − ıK B̃

−1

2
ıK C1C5 − 1

2
ıK C5 ∧C1 +e−φΦ0C5 + 1

2
C3 ∧ ıK C3

−
(

e−φΦ4 +C3 ∧ K̃ − ıK C5 +B ∧ ıK C3 +B ∧ K̃ ∧C1

−e−φB ∧Φ2 + 1

2
e−φΦ0B ∧B − 1

2
ıK C1B ∧B

)
∧d x10

(4.33)
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which is nothing but
ϕ̂M5 =ϕNS5 −ϕD4 ∧d x10 , (4.34)

where ϕNS5 is the (type IIA) NS5-calibration introduced in (4.29) with F0 = 0 and ϕD4

is the D4 calibration, as defined in (4.21).

4.4.3 NS5-calibration condition consistency from T-duality

The last non-trivial test before concluding this section is to prove that the longitudi-
nal (respect to the isometric direction) part of ϕNS5 is transformed into itself after a
T-duality, which is what we expect from the discussion 1.3.4. For simplicity, we will
perform this check on the calibration condition instead of T-dualizing the calibration
itself. By decomposing (3.22b) using the notation of (1.30) and (2.43) we get that the
longitudinal part reads:

d(e−2φ+Cω4) = e−2φ+C ιk1 ∗9 (dB2 −dB1 ∧ A1)+e−φ+C ((Φ∥,F⊥)6 − (Φ⊥,F∥)6) , (4.35)

where m runs from 0 to 8. Using (1.31) and (2.45) it is immediate to see that this
equation is invariant.

4.5 NS9-brane calibration

As we anticipated in section 1.2, the analysis of the central charges of type II theories
reveals the existence of a nine-brane called NS9 [64, Sec. 6], which we defined in type
IIB as the S-dual of the D9-brane (subsection 1.3.4). Since a nine-brane is space-
filling, a calibration would not tell us where it should sit. Nevertheless, in IIB we can
extend formally the calibrations for Dp-branes (4.21) to p = 9, and using S-duality we
can infer the corresponding nine-form for the NS9.

From (3.29) we can see that the S-dual of the D9 calibration condition is the first
equation of (3.1e)

d(e−2φ∗K̃ ) = 0, (4.36)

which is present in both IIA and IIB. So e−2φ∗K̃ may be interpreted as the NS9 cali-
bration for type IIB. To check if the same form is the NS9 calibration for type IIA we
use T-duality. Imposing an U(1) isometry and using the decomposition (2.45) we get

d(e−2φ∗ K̃ ) = e−C d(e−2φ+C ∗k̃1)∧E y +e−2φ+C ∗k̃1 ∧d A1 −d(e−2φ k̃0)∧∗91. (4.37)

Notice that the last two terms are zero because they are ten-forms on a nine-dimensional
subspace, so we have just

d(e−2φ+C ∗ k̃1) = 0, (4.38)
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which is invariant under T-duality as one can check from (2.43). So d(e−2φ∗ K̃ ) = 0 in
IIB transforms in the same equation in IIA and vice-versa. Therefore we define

ϕNS9 = e−2φ∗K̃ (4.39)

for both IIA and IIB supergravity.

4.6 Gravitational calibrations and KK-monopole

There is a source we didn’t consider so far, which is the KK-monopole. Even if this is a
peculiar object for the reason explained in subsection 1.3.4, it appears in the superal-
gebra (and thus in the BPS bound) of every supergravity theory with d ≥ 5 [64], so we
expect that a central charge which is topologically conserved thanks to a calibration
condition exists also for it.

This issue is complicated by the fact that for the KK-monopole no duality sug-
gests explicitly a good candidate for its calibration condition among equations in
(3.1) and moreover finding a new equation satisfying a closure condition turns out
to be elusive so far. However, using the formalism developed in 4.1, we expect that it
is possible to express at least the central charge of a KK-monopole in a similar way to
equation (4.15). Even if this is in principle true, we have to find another approach to
face this problem. Since the action for the KK-monopole is not well defined from first
principles [52], we are forced to use the definition of central charges which comes
from the supergravity algebra.

In order to deal with this issue M-theory is a more convenient arena compared to
type II supergravity, so we will work in eleven dimensions.

4.6.1 Gravitational BPS bound in M-theory

Following [64], let’s consider a family of backgrounds in M-theory defined via the
supersymmetry conditions generated by ε which fixes the fields g , A(

∇M − 1

12
ιM (∗F +2F )

)
ε=DMε= 0. (4.40)

Let’s suppose that such a family tends to some asymptotic configuration g (0), A(0)

such that
D(0)

M ε|B = 0 (4.41)

where B is the nine-dimensional spatial boundary. There are various way to define
such a configuration as explained in [64], however we will avoid all these subtleties
and we restrict ourselves to a more formal discussion.
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Let’s now define the following operator

TM =DM −D(0)
M (4.42)

which is nothing but some linear combination of tensors contracted with gamma
matrices. By following [87, 64], the supercharge associated with a Killing spinor ε
which satisfies the boundary conditions (4.41) takes the form

Q[ε] =
∫
B
ε̄ΓN1...N8ψM d xM ∧d xN1 ∧·· ·∧d xN8 (4.43)

and, up to normalization, we can write

{Q(ε),Q(ε)} =
∫
B

d xM ∧ ε̄Γ(8)DMε=
∫
B

d xM ∧ ε̄Γ(8)TMε=
∫
B

d xM ∧ (TMεε)8 . (4.44)

this expression typically leads to the BPS bound since

{Q(ε),Q(ε)} =P[K ]−∑
a

Za ≥ 0 (4.45)

where Za are central charges. Our purpose now is to manipulate (4.44) trying to
rewrite the central charges Za as in (4.15), with a corresponding calibrations ϕa and
fluxes Fa .

From (1.6) we get that TM reads

TM = 1

4
∆ωM − 1

12
ιM (∆∗F +2∆F ) , (4.46)

where∆F = F −F (0) and∆ωM = (ωAB
M −ωAB (0)

M )γAB is a difference of spin connections,
and hence a tensor at the boundary.

Plugging (4.46) into (4.44) and using (A.18) we obtain

{Q(ε),Q(ε)} = 1

4

∫
B
∗(d x AB ∧K )∧∆ωAB + 1

4

∫
B

[
Ω∧∆C − (Σ+Ω∧ A)∧∆F −∗Σ∧∆ω]

.

(4.47)
Some comments are now in order. First of all we have used (1.2b)

d∆∗F +F ∧∆F = 0, (4.48)

to define the variation of the M5-brane potential

∆C =∆∗F + A∧∆F . (4.49)

Secondly, we have introduced the spin-connection three-form

∆ω= 1

2
∆ωM AB d xM ∧E A ∧E B . (4.50)
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Notice now that first term is exactly the ADM momentum P [K ] as defined in [64,
(3.2)], which we interpret as the equivalent of the gauge-invariant momentum (4.7),
as one can see from the absence of form potentials. So the BPS bound which results
from (4.47) is not written as (4.11) but must be interpreted as in (4.10). For this rea-
son, it is not surprising that in the second and third term of (4.47) the M2 and M5
calibrations appear as in section 4.3 but without the contribution which comes from
the Wess–Zumino part of the action.

Since we have correctly located the central charge contributions corresponding
to all the M-theory solitons except for the KK-monopole, we are allowed to interpret
the last term in (4.47) as the KK6 central charge. Indeed, following again [64], we can
interpret the spin-connection three-form as the flux sourced by the KK6-monopoles,
since its integral corresponds to the NUT charge in the case of a Taub–NUT solution.
We are then led to recognize ∗Σ as part of the calibration for KK6-monopoles in M-
theory. However, identifying a topological central charge as in (4.15) is still difficult
since the KK6-monopole appears to be mixed with the ADM momentum in the BPS
bound (4.47).

In the following subsection we will see that this interpretation of the KK6 charge is
consistent with dimensional reduction to IIA, which relates M-theory KK6-monopole
to IIA KK5-monopole and D6-branes. This will allow us to identify (part of) the KK5
calibration in IIA.

4.6.2 Type II KK-monopole calibrating forms from dualities

We will now perform a dimensional reduction of the last term in (4.47).
Let us reintroduce the hat to distinguish M-theory quantities. M-theory KK6 cal-

ibrating form ∗̂Σ̂ decomposes as in (2.49), while the associated geometric flux ∆ω̂
reduces to

∆ω̂= e−
2
3φ∆ω10 − 1

2
e

4
3φ∆F2 ∧ (d x10 −C1). (4.51)

From this we obtain

∗11 Σ̂∧∆ω̂=
(
e−2φ Ω̃∧∆ω10 + e−φ

2
Φ6 ∧∆F2

)
∧d x10 + . . . (4.52)

where dots denote terms annihilated by ι∂10 . Since d x10 must be a direction on the
boundary to be shrunk, we have that all the terms that do not contain it cannot ap-
pear in the integral (4.47), and so can be neglected. Therefore we conclude that the
last term in (4.47) reads∫

B̂
∗̂Σ̂∧∆ω̂11 =

∫
B

(
e−2φ Ω̃∧∆ω10 + 1

2
e−φΦ6 ∧∆F2

)
, (4.53)
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where we have integrated off the S1 of the M-theory nine-dimensional boundary B̂ '
S1 ×B assuming that the circle radius was equal to 1/2π. Both terms on the right-
hand side of (4.53) are of the form (4.15). In the last term in (4.53), e−φΦ6 is gauge-
invariant contribution to the D6 calibration ϕD6, see (4.21). On the other hand, in
analogy with the M-theory case, we are led to identify

e−2φΩ̃ (4.54)

with part of the type IIA KK5 calibration.
The analogous KK5 calibrating form for IIB can be obtained from T-duality, since,

as discussed in 1.3.4, a transverse T-duality maps a KK5-monopole into a NS5-brane
and vice-versa, while under a longitudinal one both KK5 and NS5 remain invariant.
Using (2.43), it is immediate to notice that this is exactly what it happens if we identify
e−2φΩ̃ with the KK5 calibration in IIB as well.

Given this hint one may be immediately led to conclude that (3.22c) is the calibra-
tion condition for the KK5-monopole. However, since this equation cannot be recast
as a closure condition, which would ensure that the monopole charge is topological,
it is not possible to confirm such a statement. A proper definition of the canonical
(instead of gauge-invariant) momentum in (4.47) and a study of how the second in-
tegral turns out to be topological may shed light on this issue.
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CHAPTER 5

APPLICATIONS

So far we have discussed the general implication of the system (3.22) regarding geo-
metrical properties of a supersymmetric solution and of the extended objects which
leave inside it. However, we can also take advantage of the bispinorial formalism to
classify solutions inside a given ansatz on the external geometry. In the present work
we are mostly interested in vacuum solutions.

In this case we expect that the maximal amount of symmetry compatible with
external spacetime dimensions is preserved. In order this to happen, a series of as-
sumptions on fluxes and spinors are needed. For example the external metric must
be a warped product

d s2
10 = e2A d s2

ext +d s2
int (5.1)

where A is a function with support on the internal space, fluxes must not contain any
leg on the external space except for the volume form:

F = f1 +Volext ∧ f2 , H = H1 +Volext ∧H2 , (5.2)

and the external components of the spinors must be Killing respect to the external
covariant derivative

∇µα= cγµα (5.3)

where c is a constant and µ points just in external directions.
The two main applications of (3.22) and (3.23) we will present here are the classifi-

cation of near-horizion solutions and of flat-space backgrounds in four dimensions.

5.1 AdS2 near-horizons

Supersymmetric solutions with a time-like Killing vector are suitable to describe static
space-time and in particular can be used to study black holes. Up to now, a classifi-
cation of backgrounds with singularities is far from being complete and the classifi-
cation of vacuum solutions teaches us that approaching the problem using bispinors
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can be the key-ingredient to solve it. In this spirit, we present here a first step in this
direction. Instead of looking at a full black-hole solution, we restrict ourselves to the
near-horizon geometry which can be viewed as an AdS2 × M8 vacuum where M8 is
typically a fibration of a compact manifold M6 over S2. Classifications of black-hole
horizons in a similar spirit were given in [88, 89].

5.1.1 AdS2 ×M8 Ansatz

Following the logic we have presented in the introduction of this chapter, to preserve
the isometry of AdS2 we have to split the metric as

d s2
10 = e2A d s2

AdS2
+d s2

M8
, (5.4)

while fluxes read

H = H3 +e2A Vol(AdS2)∧H1 , ∗H =∗8H1 +e2A Vol(AdS2)∧∗8H3 ,

F = f +e2A Vol(AdS2)∧∗8λ( f ) ,
(5.5)

where we can see that the self-duality condition of F (1.13) is already satisfied.
Let’s now consider spinors. (5.4) suggests the following gamma-matrix decompo-

sition

γ(10)
µ = e Aσµ⊗ 116 µ= 0,1,

γ(10)
m =σ3 ⊗γm m = 2, . . . ,9 ,

(5.6)

whereσ0 = iσ2 are Pauli matrices and A is a function on M8. The most general spinor
ansatz reads

ε1 =α+⊗η1++α−⊗η1− = P+(α⊗η1)

ε2 =α+⊗η2∓+α−⊗η2± = P∓(α⊗η2)
(5.7)

where α = α++α− is a real Killing spinor on AdS2, P± are the chiral projectors and
ηi = ηi ++ηi − are Majorana spinors on M8, that we can take to be real. In general,
not every spinor Ansatz in two dimensions leads to the timelike case; for example, if
we set to zero α− (or equivalently α+) as done in [90] we will get a solution which is
light-like and therefore we can not apply our system (3.22). However supersymmetry
forbids such a situation in the case of AdS2 vacua because the Killing spinorα cannot
be chiral as showed in (5.3). From this observation it is easy to see that spinorial BPS
conditions (1.24) kill all the possible solutions like the one in [90].

Since a near-horizon must be invariant under the isometry group SO(2,1), all the
possible choices of the AdS2 Killing spinor α are equivalent. For definiteness we take
[91]

α= er /2
(
1
1

)
, d s2

AdS2
= e2r d t 2 +dr 2 ; (5.8)
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we can use this for computing the spinor bilinears on AdS2

α⊗α=−e2r d t +e2r d t ∧dr , σ3α⊗α=−er +er dr . (5.9)

Notice that α by itself it is enough to define a vielbein (i.e. an identity structure) on
AdS2.

On the other hand two Majorana spinors on M8 do not determine an identity
structure; using the discussion in subsection 2.2.1 we can see that the structure group
is given by the intersection of two G2-structure, so it turns out to be more convenient
just to rename the eight-dimensional bilinears

ω1 = η1η
t
1 , ω2 = η2η

t
2 , ω= (ω1 +ω2)/2, ω̃= (ω1 −ω2)/2,

ω
γ
1 = γη1η

t
1 , ω

γ
2 = γη2η

t
2 , ωγ = (ωγ1 +ω

γ
2)/2, ω̃γ = (ωγ1 −ω

γ
2)/2,

ψ= η1η
t
2 , ψγ = γη1η

t
2

(5.10)

giving special names to the zero and one-form part, as we have done in ten dimen-
sions:

a = (ω)0 , ã = (ω̃)0 , aγ = (ωγ)0 , ãγ = (ω̃γ)0 ,
k1 = (ω1)1 , k2 = (ω2)1 , k = (ω)1 , k̃ = (ω̃)1

(5.11)

where the subscript 0 and 1 indicates to take the zero and one-form part only and γ
is the chiral operator on M8.

Now we have all the elements to explicitly compute the ten-dimensional bilinears
of section 2.2.1 in terms of two- and eight-dimensional ones. We will report here the
calculation for K and K̃ in all the details, while for the other bilinears one can proceed
by analogy:

32K1 =(α⊗η1)t P t
+γ

(10)
0 γ(10)

M P+(α⊗η1)E M = (α⊗η1)tγ(10)
0 γ(10)

M P+(α⊗η1)E M

=(α⊗η1)tγ(10)
0 γ(10)

M (α⊗η1)E M + (α⊗η1)tγ(10)
0 γ(10)

M γ(α⊗η1)E M

=eA

2

(
ηt

1η1ασµαeµ+ηt
1γη1ασµσ3αeµ

)+ 1

2
ασ3α(16k1) ,

(5.12)

where eµ is the vielbein on AdS2. Using (5.9) we get:

32K1 =−er+A(ηt
1η1e0 −ηt

1γη1e1)−er (16k1) . (5.13)

Performing the same steps for K2

32K2 =−er+A(ηt
2η2e0 +ηt

2γη2e1)−er (16k2) (5.14)

and from the sum and the difference of these expressions we can calculate K and K̃ :

K =−er+A

2

(
ae0 − ãγe1)− er

2
k , K̃ =−er+A

2

(
ãe0 −aγe1)− er

2
k̃ . (5.15)
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Following a similar logic for Ω and Ω̃ we get:

Ω=−er

2

(
(ω)5 +eA e0 ∧ (ω)4 −eA e1 ∧ (ω̃γ)4 −e2A e0 ∧e1 ∧ (ω̃γ)3

)
,

Ω̃=−er

2

(
(ω̃)5 +eA e0 ∧ (ω̃)4 −eA e1 ∧ (ωγ)4 −e2A e0 ∧e1 ∧ (ωγ)3

)
,

(5.16)

and, finally, Φ reads:

Φ=−er

2

[
(ψγ)+−eA e0 ∧ (ψγ)−+eA e1 ∧ (ψ)−−e2A e0 ∧e1 ∧ (ψ)+

]
, (5.17)

where the subscripts + and − indicate to take the even or the odd forms degree re-
spectively.

5.1.2 Supersymmetry conditions

In the previous section we have calculated how all the ten-dimensional quantity re-
duces after an AdS2 × M8 ansatz. Now we are ready to derive the supersymmetry
conditions for this class by just plugging the expressions for fluxes and bispinors in
(3.22). From (3.22a) we get:

dH3 (e−φψγ)+ =−(k̃ + ιk ) f , (5.18a)

dH3 (eA−φψγ)− = eA(ã f + ãγ∗8λ( f )) , (5.18b)

dH3 (eA−φψ)− =−eA(aγ f −a ∗8λ( f ))− (e−φψγ)+ , (5.18c)

dH3 (e2A−φψ)+ = e2A(k̃ + ιk )∗8λ( f )+2(eA−φψγ)−−H1 ∧ (e2A−φψγ)+ , (5.18d)

from (3.22b)

e2φd(e−2φω)5 =−ιk ∗8 H1 + (eφψγ, f )6 , (5.19a)

e2φ−A d(e−2φ+Aω)4 =−ãγ∗8 H3 −eφ(ψγ, f )5 , (5.19b)

e2φ−A d(e−2φ+A ω̃γ)4 =−a ∗8 H3 −eφ(ψ, f )5 +e−A(ω)5 , (5.19c)

e2φ−2A d(e−2φ+2A ω̃γ)3 = ιk ∗8 H3 +eφ[(ψ, f )4 + (ψγ,∗8λ( f ))4]−2e−A(ω)4 , (5.19d)

and in the end from (3.22c)

e2φd(e−2φ ω̃)5 =−ιk̃ ∗8 H1 − eφ

2
(ψm

γ , fm)6 , (5.20a)

e2φ−A d(e−2φ+A ω̃)4 =−aγ∗8 H3 − eφ

2
[(ψm

γ , fm)5 − (ψ,∗8λ( f ))5] , (5.20b)

e2φ−A d(e−2φ+Aωγ)4 =−ã ∗8 H3 − eφ

2
[(ψm , fm)5 + (ψγ,∗8λ( f ))5]+e−A(ω̃)5 , (5.20c)

e2φ−2A d(e−2φ+2Aωγ)3 = ιk̃ ∗8 H3 − eφ

2
[(ψm , fm)4 + (ψm

γ ,∗8λ( f )m)4]−2e−A(ω̃)4 .

(5.20d)
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Let’s now reduce also last line of (3.22). In this case we have a scalar and a ten-form
equation, so we will get just one equation on M8 for each of them

Lkφ= 0, e−2A d(e2A ∗8k̃) = 2e−A aγVol8−eφ

4

[
(ψγ, (3−deg)∗8λ( f ))− (ψ, (5−deg) f )

]
.

(5.21)
As discusses in subsection 3.2.1, to find a solution we have also to impose the Bianchi
identities for F and H (1.16) and we have to solve one equation between (3.26) and
(3.27).

5.2 R1,3 vacuum

The BPS conditions for four-dimensional vacuum solutions where calculated in [73]
and are the so-called pure spinor equations. In this section we will re-derive this
result from (3.23) along the lines of [9].

5.2.1 R1,3 ×M6 Ansatz

Following the same procedure outlined in the beginning of this chapter, preserving
Poincaré invariance imposes the following decomposition of the metric

d s2
10 = e2A d s2(R1,3)+d s2(M6) (5.22)

and of the RR fields
F = f +e4AVol(R1,3)∧∗6λ( f ) , (5.23)

where f is an internal form. Similarly H must be a three-form on M6.
In four Lorentzian dimensions and in six Euclidean ones it is possible to impose

Majorana or Weyl conditions, but not both. This means that, in order to have ten-
dimensional spinors which are real and chiral, we have to adopt the following spinor
ansatz:

ε1 = ζ+⊗χ1
++ζ−⊗χ1

− , ε2 = ζ+⊗χ2
∓+ζ−⊗χ2

± . (5.24)

where ζ+ = ζ∗− and χi+ = χi ∗− , where the upper sign is for type IIA while the lower for
IIB. The ten-dimensional gamma matrices can be decomposed as

γ(10)
µ = e Aγ(4)

µ ⊗ 18 µ= 0, . . . ,4 ,

γ(10)
m = γ(4) ⊗γm m = 0, . . . ,6 ,

(5.25)

where the four-dimensional ones are taken to be real while the six-dimensional ones
pure imaginary.
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Let’s now calculate bispinors in four and six dimensions. Using a bit of algebra
one discovers that the four-dimensional ones read:

ζ+⊗ζ+ = v + i∗4 v , ζ+⊗ζ+ = v ∧w (5.26)

where v is a real null vector, w = w1 + i w2 is a complex one and v, w1, w2 are all in-
dependent. For the six-dimensional bispinors it is convenient to adopt the following
definition:

χ1+χ2+ =φ+ , χ1+χ2− =φ− ,
χi+χ

i †
+ = (1− i ∗6λ)(ωi

0 + iωi
2) , χi+χi †− =ωi

3 + i∗6ω
i
3 ,

(5.27)

where φ± are complex self-dual forms whileωi
k are real k-forms. φ± are the so-called

pure spinors; the name is due to the fact that by definition a spinor is pure if it is anni-
hilated from half of the Clifford algebra. In six euclidean dimensions every spinor is
pure, therefore also the bilinears φ± can be considered as pure spinors on the gener-
alized tangent bundle since they are annihilated by six generalized gamma matrices
(which are the usual gamma matrices acting on the left and on the right ofφ± though
(A.17)).

Again, we give names to the sum and difference of the forms generated by χi+χ
i †
+ :

ωk = (ω1
k ±ω2

k )/2, ω̃k = (ω1
k ∓ω2

k )/2,
k0 = (ω1

0 +ω2
0)/2, k̃0 = (ω1

0 −ω2
0)/2.

(5.28)

We have all the building blocks to re-express the ten-dimensional bilinears in
terms of the ones defined on R1,3 and M6

Φ= 2Re
(∓(e A v + ie3A ∗4 v)∧φ∓+e2A v ∧w ∧φ±

)
,

K = 2e−Ak0∂v , K̃ = 2e Ak̃0v ,

Ω̃= 2Re
(−e A v ∧∗6ω̃2 −e3A ∗4 v ∧ ω̃2 +e2A v ∧w ∧ω3

)
.

(5.29)

Since K is proportional to v which is a null vector, we have that the classification of
R1,3 vacuum falls in the light-like case, and therefore we cannot use the system (3.22).

5.2.2 Supersymmetry conditions

Let’s now derive the supersymmetry conditions for a four-dimensional Minkowski
solution. Since we are in the null case, (3.23) must be adopt. Notice that the Killing
spinor equation (5.3) is satisfied on R1,3 just for c = 0, therefore the external space
spinors are constant and for this reason the external derivative annihilates all their
bilinears (5.26).

In [9] it is shown that (3.23c) and (3.23d) are automatically solved if one chooses
e+1,2 to point in the external space directions. So we are left with just the first two
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equations, which split in the following system on the internal space

k0 = c+
4

eA , k̃0 = c−
4

e−A , (5.30a)

dH (e2A−φφ±) = 0, (5.30b)

dH Re(eA−φφ∓) = c−
8

f , (5.30c)

dH Im(e3A−φφ∓) = c+
8

e4A ∗6λ( f ) . (5.30d)

In future applications we will often consider the equal norm case c− = 0 while we
will fix c+ = 1. Moreover, in this situation it is also convenient to manifestly write the
spinor norm in the spinor ansatz (5.24), which means χ1,2

± 7→ eA/2χ1,2
± , so that we get

normalized pure spinors which does not depend from the warping function A. With
these hypothesis (5.30) reads:

dH (e3A−φφ±) = 0, (5.31a)

dH Re(e2A−φφ∓) = 0, (5.31b)

dH Im(e4A−φφ∓) = 1

8
e4A ∗6λ( f ) . (5.31c)

We will extensively use this system in the next part of the thesis, when we will deal
with the classification of R1,3 ×S2 backgrounds.

5.2.3 Sl(2,R)-invariant supersymmetry conditions

In the previous section we have seen that (3.23c) and (3.23d) do not play a role in the
determination of supersymmetry constraints for four-dimensional vacuum, so it is
possible to make the remaining part of (3.23) Sl(2,R)-covariant using the results in
3.2.2. The outcome of this operation is the following system

LK gE = 0, (5.32a)

dQ Θ1 − i

2
eφdτ∧Θ1 + i ιK G3 = 0, (5.32b)

dΘ3 + ιK F5 +Re
(
Θ1 ∧G3

)= 0, (5.32c)

dQ Θ5 + i

2
eφdτ∧Θ5 +Θ3 ∧G3 − iιK (∗E G3)+ iΘ1 ∧F5 = 0, (5.32d)

d∗EΘ3 + 1

2
Re(G3 ∧Θ5 −∗E G3 ∧Θ1) = 0 (5.32e)

which must be supplemented with the algebraic constraint:

G3 ∧Θ5 −Θ1 ∧∗EG3 +2eφ ιK ∗E dτ+2ieφdτ∧∗EΘ3 = 0. (5.33)
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In the spirit of subsection 3.2.2, in order to make explicit the SL(2,R)-invariant
structure of the supersymmetry conditions it is convenient to use Einstein metric

gE = e2AE g4 + g6E , gE = e−
φ
2 g = e−

φ
2
(
e2A g4 + g6

)
, (5.34)

and to organize the components of the six-dimensional bilinears in terms of their
U(1)D charges. In particular we have five real neutral forms

α0 = e−
1
4φ Im(φ+)0 , α2 = e−

3
4φRe(φ+)2 , c0 = e−

1
4φω0 , α1 = e−

1
2φφ− , (5.35)

and three complex ones

θ0 = e−
1
4φ(k̃0 + iRe(φ+)0) , θ2 = e−

3
4φ(ω2 + iIm(φ+)2) , θ3 = e−φ(ω̃3 + iRe(φ−)3) ,

(5.36)
whose of U(1)D charge equal to +1, as tabulated in 5.1.

fields U(1)D -charge
α0, α1, α2, c0, f5 0

θ0, θ2 , θ3 1

Table 5.1: U(1)D charges of relevant fields on the internal manifold.

The ten-dimensional multiplets in terms of the six-dimensional ones read:

Θ1 = 2eAE θ0v ,

Θ3 = 2
(
eAE v ∧α2 −e3AE ∗4vα0 +e2AE v ∧w1 ∧Reα1 −e2AE v ∧w2 ∧ Imα1

)
,

Θ5 = 2
(−eAE v ∧∗Eθ2 −e3AE ∗4v ∧θ2 +e2AE v ∧w1 ∧θ3 −e2AE v ∧w2 ∧∗Eθ3

) (5.37)

where ∗E is a shorthand for ∗6,E . We apply the same logic also to redefine fluxes:

G3 = f3 − ie−φ H , τ=C0 + ie−φ , F5 = f5 +e4AE Vol4 ∧∗E f5 . (5.38)

Now it is enough to substitute (5.37) in (5.32) to get the SL(2,R) invariant condi-
tions for four-dimensional vacua. Notice that to write the system in SL(2,Z)-invariant
form we have to expand all form degrees separately, in fact the total number of form
equations is the same as in (5.30), even if in a much non-compact form. The result of
this operation is the following system:
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dQ (eAE θ0)− i

2
eφ+AE θ0 dτ= 0, c0 = c+ eAE , (5.39a)

d(eAE α2)−eAE Re(θ0G3) = 0, d(e2AE α1) = 0, (5.39b)

d(e3AE α0)− c0 e3AE ∗E f5 = 0, (5.39c)

dQ (eAE ∗Eθ2)+ i

2
eφ+AE dτ∧∗Eθ2 +eAE α2 ∧G3 + ieAE θ0 f5 = 0, (5.39d)

dQ (e2AE θ3)+ i

2
eφ+2AE dτ∧θ3 +e2AE Reα1 ∧G3 = 0, (5.39e)

dQ (e2AE ∗Eθ3)+ i

2
eφ+2AE dτ∧∗Eθ3 +e2AE Imα1 ∧G3 = 0, (5.39f)

dQ (e3AE θ2)+ i

2
eφ+3AE dτ∧θ2 −e3AE α0G3 + ie3AE c0 ∗E G3 = 0, (5.39g)

d(e2AE ∗EImα1)+ e2AE

2
Re(θE ∧G3) = 0, (5.39h)

d(e2AE ∗EReα1)− e2AE

2
Re(∗Eθ3 ∧G3) = 0, (5.39i)

d(e3AE ∗Eα2)− e3AE

2
Re(θ2 ∧G3) = 0, (5.39j)

which must be supplemented with the algebraic constraint (5.33) which, in terms of
the internal-space forms, reads:

θ3 ∧G3 +2ieφdτ∧∗EImα1 = 0,

∗E θ3 ∧G3 −2ieφdτ∧∗EReα1 = 0,

θ2 ∧G3 −2ieφdτ∧∗Eα2 −2eφ c0 ∗E dτ= 0.

(5.40)
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CHAPTER 6

R1,3×S2 ANSATZ

6.1 Introduction and motivation

Compactifications to four-dimensional Minkowski space-time have always enjoyed
great interest as starting point for semi-realistic models in string phenomenology [92,
93]. When the metric is the only non-trivial field, supersymmetry forces the internal
space to be Ricci-flat and the study of such compactifications also led to discovery
many developments at the interface between string theory and mathematics [94].
On the other hand, backgrounds with nontrivial fluxes are much harder to find and
classify due to the back-reaction of non-trivial extra fields. Except for some special
cases, where this back-reaction only introduces a conformal factor [25, 95, 96, 97],
the geometry of the internal space is in general drastically deformed away from Ricci-
flatness, e.g. [98, 99, 100, 101].

Following [39, 41, 40], we use a different approach: rather than making an ansatz
on the metric and fluxes, we focus on a broad class and we let supersymmetry fixes
the internal geometry. We will see that this method often provide a very detailed
classification, since there are enough internal spinors to reduce the structure group
to an identity structure, which means that we can automatically get a local expression
for the metric.

In particular, the ansatz consists in imposing N = 2 supersymmetry with an SU(2)
R-symmetry. The R-symmetry must be geometrically realized as a symmetry of the
internal manifold, and for this reason we assume that the internal metric is factorized
in a warped product S2 × M4 where the warping function depends just on the M4

coordinates.
We will see that preserved supersymmetry will be reduced to a system of PDEs

and the classification will reproduce many known system of intersecting branes. In
this context a particularly interesting role is played by AdS solutions, which often
arise as near-horizon limits of such brane systems. In particular, we can obtain AdSd+1

solutions with d ≥ 4 as a foliation of a d-dimensional Minkowski space over a non-
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compact interval (i.e., the Poincaré patch) and the R-symmetry is chosen such that it
implements the superconformal SU(2)R -symmetry for the dual conformal field the-
ory in d = 4,5,6 dimensions. These intersecting brane solutions are also useful to
study more in general holographic RG-flows of the dual field theories, where in this
case the AdS vacua correspond to conformal fixed points at one of the two ends of
the RG-flow. Such non-conformal behaviors are impossible to detect starting from a
class that contains an AdS factor from the start.

We begin by presenting the classification for type II supergravity and we will then
focus on M-theory. We will see that all the solutions can be actually generated from
two master classes using a web of dualities.

6.2 SU(2)R preserving ansatz

The SU(2)R ansatz we discussed before is realized by specializing the analysis in sec-
tion 5.2 in order to preserve the S2 isometries inside M6. In this case the internal
metric decomposes as

d s2
6 = e2C d s2(S2)+d s2

4 (6.1)

while fluxes must not have any leg along S2 except for the volume form

f = F+e2C G∧Vol(S2) , B = B2+e2C B0Vol(S2) , H = H3+e2C H1∧Vol(S2) (6.2)

where C ,F,G ,B2,B0 are forms and functions on the unconstrained internal manifold
M4. The ten-dimensional spinor ansatz for N = 2 solutions is simply given by the
sum of two N = 1 independent spinors as in (5.24):

ε1 =
2∑

b=1
ζb
+⊗χb

1++m.c. , ε2 =
2∑

b=1
ζb
+⊗χb

2∓+m.c. . (6.3)

Here ζb are a SU(2)R doublet and for this reason also χb
i + must be a doublet, so that

the ten-dimensional spinors are overall invariant. As said before, the R-symmetry is
realized on the internal manifold using the S2 isometry group, which means that the
internal spinors decompose as

χb
i + = ξb

+⊗ηi ++ξb
−⊗ηi −+ (ξb

−)c ⊗ η̃i ++ (ξb
+)c ⊗ η̃i −+m.c. , (6.4)

where ξb are a SU(2) doublet on S2, ηi , η̃i are spinors on M4 and c is the charge con-
jugation, which in two dimensions changes the chirality.

It is convenient to consider S2 as embedded in R3 so that it is the link of a cone. In
this way, following [102], we have that covariantly constant spinors on R3 are Killing
spinors on S2 and they are conserved by the action of the isometry group of the link,
which is SU(2). This argument suggests to use Killing spinors to build a doublet, and,
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since the space of Killing spinors in two dimensions is spanned by a (non-chiral)
Killing spinor ξ and its Majorana conjugate ξc , we can take their linear combination
and compute how they transform under the action of LKi , where Ki are the SU(2)
generators of S2. After an explicit computation, as performed in [39, appendix A],
one gets that the doublet ξb is given by

ξb =
(
ξ

ξc

)
, (6.5)

meaning that

LKi ξ
b = i

2
(σi )b

c ξ
c (6.6)

where σi are Pauli matrices.
An important consequence of the doublet structure is the following: reducing the

spinorial supersymmetry equations (1.24) on M4 one gets that the equations which
multiply ξ must be separated from the ones that multiply ξc , since they are linearly
independent. This means that ηi and η̃i in (6.4) never mix and therefore including
η̃i will only give more constraints instead of a generalization, so we can choose to set
them to zero without losing generality. Another important advantage of having an
R-symmetry in play is that, imposing that one internal spinor is preserved by super-
symmetry, by means of a local transformation the second set of supercharges will be
preserved too. So we can restrict ourselves to consider the N = 1 problem defined by
the internal spinors

χi + = ξ+⊗ηi ++ξ−⊗ηi − (6.7)

for both type IIA and type IIB supergravity.

6.3 Spinorial analysis

Before using the full power of the bispinor equations (5.30), it is useful (even if in
principle not necessary) to start with some preliminaries using the spinorial BPS sys-
tem. This will be helpful to constrain the solutions and to highlight some features of
the classification. The most stringent conditions come from the scalar (or zero-form)
equations, which will suggest an useful reparametrization of the four-dimensional
spinors η1,2. Moreover we will discover that it is possible to restrict ourselves to (5.31).
Even if the discussion is in principle similar, let’s separate type IIA from type IIB.

6.3.1 Type IIA spinorial system

We begin our analysis by reducing (1.24) following [103]. Using the R1,3 × M6 de-
composition of section 5.2 we get that supersymmetry is implied by the following
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spinorial conditions on the six-dimensional manifold M6 only[
∂A+ eφ

4

(
f0 + f2γ

(6) + f4 + i∗6 f6
)]
χ= 0, (6.8a)[

∂φ+ 1

2
Hγ(6) + eφ

4

(
5 f0 +3 f2γ

(6) + f4 − i∗6 f6
)]
χ= 0, (6.8b)[

∇m + 1

4
Hmγ

(6) + eφ

8

(
f0 − f2γ

(6) + f4 − i∗6 f6
)
γ(6)

m

]
χ= 0, (6.8c)

where χ = χ1++χ2−. Using (6.8a) and (6.8c) it is possible to prove that d(e−A |χ|2) =
d(eAχ†γχ) = 0, while including also (6.8b) one can find d(e2A−φχχ) = 0. Using these
relations we are able to fix

|χ|2 = 2c+ eA , χ†γ(6)χ= 2c− e−A , χχ= c e−2A+φ (6.9)

where c± are the same constants defined in (5.30), so again we can set c+ = 1 without
loss of generality, while c− = 0 is the case of equal chiral-spinor norms. The third
equation in (6.9) can be seen as a scalar product between χ1 and χ2, and in particular
c = 0 corresponds to an orthogonal condition between the two spinors, which would
lead to an orthogonal SU(2)-structure.

Using the properties of Hermitian gamma matrices it is possible to show by con-
tracting (6.8a)-(6.8b) with χ and γ(6)χ that

∗6 F6 = F0χ
†γ(6)χ= 0, (6.10)

which come from the imaginary and real parts of the above inner products respec-
tively. Since equal spinor norms is equivalent to χ†γ(6)χ = 0, it is clear that it is pos-
sible to have the Romans mass turned on only when c− = 0. This means that all the
non-equal-norm classes can be derived from the M-theory classification, as it is per-
formed in section 8.6. So for type IIA we can restrict ourselves to consider the system
(5.31) instead of the general one.

Let’s now impose the presence of the SU(2) R-symmetry, which imposes that we
have to decompose χ in terms of spinors on S2 and M4. However, instead of using
(6.7), let’s formulate the ansatz in a more convenient way as

χ= ξ⊗η1 +σ3ξ⊗γη2 , (6.11)

whereσ3 and γ are the chirality matrices in two and four dimensions and the Clifford
algebra decomposition is given by:

γ(6)
µ =σµ⊗ 1 , µ= 1,2 γ(6)

m+2 =σ3 ⊗γm , m = 1, . . . ,4 (6.12)

with γm the four-dimensional gamma matrices. It is easy to check by projecting on
the chiral components of χ that (6.11) is the same ansatz of (6.7) but with η1 → η1+η2

and η2 → η1 −η2.
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6. R1,3 ×S2 ansatz 6.3. Spinorial analysis

As a consequence of (6.9) we necessarily have

|η1|2 +|η2|2 = 2eA , η1†γη2 +η2†γη1 = 0,

η1†η2 +η2†η1 = 2c− e−A , η1†γη1 +η2†γη2 = 0,
(6.13)

and
ξσ3ξ η1γη2 = c e−2A+φ =⇒ η1γη2 = c = 0 (6.14)

since the right-hand side is charged under SU(2) while the left-hand side is invariant;
so this last condition imposes an orthogonal SU(2)-structure in six dimensions.

Plugging (6.11) into (6.8a)-(6.8c), using the flux decomposition (6.2) and the fact
that ξ is a Killing spinor, we are able to factorize out the S2 dependence and get to

∂Aη1 + eφ

4

[(
(F0 +F4)γ+ iG0

)
η2 + (

F2γ+ iG2
)
η1

]
= 0, (6.15a)

∂Aη2 − eφ

4

[(
(F0 +F4)γ+ iG0

)
η1 + (

F2γ+ iG2
)
η2

]
= 0, (6.15b)

(∂φ+ i

2
H1γ)η1 + 1

2
H3η

2 + eφ

4

[(
(5F0 +F4)γ+3iG0

)
η2 + (

3F2γ+ iG2
)
η1

]
= 0, (6.15c)

(∂φ+ i

2
H1γ)η2 + 1

2
H3η

1 − eφ

4

[(
(5F0 +F4)γ+3iG0

)
η1 + (

3F2γ+ iG2
)
η2

]
= 0, (6.15d)

(∂C + i

2
H1γ)η1 − ie−C γη2 + eφ

4

[(
(F0 +F4)γ− iG0

)
η2 + (

F2γ− iG2
)
η1

]
= 0, (6.15e)

(∂C + i

2
H1γ)η2 − ie−C γη1 − eφ

4

[(
(F0 +F4)γ− iG0

)
η1 + (

F2γ− iG2
)
η2

]
= 0, (6.15f)

(∇m + i

4
H1mγ

)
η1 + 1

4
H3mη2 − eφ

8

[(
(F0 +F4)γ− iG0

)
γmη

2 + (F2γ− iG2)γmη
1
]
= 0,

(6.15g)(∇m + i

4
H1mγ

)
η2 + 1

4
H3mη1 + eφ

8

[(
(F0 +F4)γ− iG0

)
γmη

1 + (F2γ− iG2)γmη
2
]
= 0,

(6.15h)

By taking inner products of (6.15a)-(6.15b) and (6.15e)-(6.15f) with {η1, η2, γη1, γη2}
and exploiting the identities(
η1γm1...mnη

2)t =−(−)
n(n−1)

2 η2γm1...mnη
1,

(
η1γm1...mnγη

2)t =−(−)
n(n+1)

2 η2γm1...mnγη
1

(6.16)
one gets that the following zero forms vanish

|η1|2 −|η2|2 = η1†η2 −η2†η1 = 0. (6.17)
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6. R1,3 ×S2 ansatz 6.3. Spinorial analysis

We can now solve (6.13), (6.14), (6.17) without loss of generality by decomposing ηi in
terms of a single spinor η and functions a,b which are complex and real respectively

e−
1
2 A η1 = sin

(α
2

)
η+cos

(α
2

)(
aγη+bηc), e−

1
2 A η2 = sin

(α
2

)
η−cos

(α
2

)(
aγη+bηc)

(6.18)
where

|η|2 = 1, η†γη= 0, a2
1 +a2

2 +b2 = 1, a = a1 + ia2 , cosα=−e−2Ac− . (6.19)

If one now projects (6.11) onto its chiral components and maps them back to (6.7) it
becomes clear that we have re-derived the spinor decomposition of [39] but in a more
general context where the six-dimensional chiral-spinor norms are not necessarily
equal. As shown in [29], the spinor η can be used to define a vielbein {v1, v2, w1, w2}
on M4 through

η†γmη d xm = v1 , η†γmγη d xm = iv2 , ηγmγη d xm = w = w1 + iw2 , (6.20)

which is the identity structure on M4.
Before moving to type IIB, let’s go a bit further and define the following vector

k = η2γmγη1∂m . (6.21)

By taking the inner products of (6.15a), (6.15b) with γη2, γη1 respectively and doing
the same for (6.15c)-(6.15f) it is possible to show that Lie derivative with respect to k
vanishes when acting on A,C ,φ, which suggests that k can be associated to a sym-
metry for all the R1,3 ×S2 backgrounds. For example, it is possible to show that it is a
Killing vector. In order to do so let’s compute ∇mkn

∇mkn =−eφ

4
η2

[(
(F2)mn + i(G2)mnγ

)+ γ
pq
mn

2

(
(F2)pq

+ i(G2)pqγ
)]
η1 + 1

4
(H3)mnp

(
η1γpγη1 +η2γpγη2)

+ eφ

8
η1γmn(F0 + iG0γ−F4)η1 − eφ

8
η2γmn(F0 + iG0γ−F4)η2

(6.22)

and notice that ∇mkn is manifestly anti-symmetric, so ∇(mkn) = 0. k is a complex
vector, so it defines two real isometric directions on the metric. In particular, k must
parameterize some two-dimensional Lie group, and we refer to section 8.6 for the
proof that k corresponds to a U (1)×U (1) Lie group under which spinors and form-
fields are uncharged, which means that when k is not zero we have two directions
which can be T-dualized.

In terms (6.18) and (6.21) we have that the one-form associated to k reads

k = a
(
1+cosα

)(
bv1 + (a1w1 −a2w2)

)− (
cosαw1 − iw2

)
. (6.23)
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Notice that for generic values of α both real and imaginary components of k cannot
vanish, so we generically have two real isometries. The exception is when cosα = 0,
which is the case we are interested in since there the spinor norms are equal. In this
case the number of isometries is controlled by the values of a1, a2,b, and in particular
there is the following structure depending on how the spinor parameters are tuned

0 isometries: cosα= a1 = b = 0,

1 isometries: cosα= a1 = 0, b 6= 0,

2 isometries: otherwise,

(6.24)

which is due to the fact that k is respectively zero or purely imaginary in the first two
cases only, while for all other cases there are two real isometries.

This argument already suggests that, except for the case with zero isometries,
it may be possible to generate all the other classes using dualities (for example T-
duality, since k generates flavor symmetries).

6.3.2 Type IIB spinorial system

The discussion for type IIB supergravity mimics the one of type IIA, even if it is dif-
ferent in technical details. Again, what we want to do is to reparameterize the four-
dimensional spinors using zero-form constraints and see if also in this case there are
some symmetries at play.

By using the spinor ansatz (5.24) and the flux decomposition (5.23) we get that
(1.24) and (1.25) become

∂Aχ1
+−

eΦ

4

(
f1 + f3 + f5

)
χ2
+ = 0, (6.25a)

∂Aχ2
+−

eΦ

4

(
− f1 + f3 − f5

)
χ1
+ = 0, (6.25b)

∂Φχ1
+−

1

2
Hχ1

+−eΦ
(

f1 + 1

2
f3

)
χ2
+ = 0, (6.25c)

∂Φχ2
++

1

2
Hχ2

+−eΦ
(
− f1 + 1

2
f3

)
χ1
+ = 0, , (6.25d)

(
∇a − 1

4
Hm

)
χ1
++

eΦ

8

(
f1 + f3 + f5

)
γ(6)

m χ2
+ = 0, (6.25e)

(
∇a + 1

4
Hm

)
χ2
++

eΦ

8

(
− f1 + f3 − f5

)
γ(6)

m χ1
+ = 0. (6.25f)
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6. R1,3 ×S2 ansatz 6.3. Spinorial analysis

Notice that in this case it is not possible to rewrite the system in terms of just one
non-chiral spinor as in IIA since χ1 and χ2 always appear in the equations with the
same chirality.

Using (6.25e) and (6.25f) together with (6.25a)-(6.25d) multiplied by γm , we get
the following conditions on the zero-degree bilinears:

|χ1
+|2 +|χ2

+|2 = 2e A, |χ1
+|2 −|χ2

+|2 = 2c−e−A,

∂m(e2A−Φχ2†
+ χ

1
+)−e2A−Φ∂m(χ1†

+ χ
2
+) = i e3A(?F5)m − c−e A(F1)m ,

(6.26)

where, as in IIA, we have set c+ = 1.
Assuming the presence of an SU(2) R-symmetry and adopting the Clifford algebra

decomposition (6.12) one can show that (6.25a)-(6.25f) is equivalent to the following
set of spinoral equations over the unconstrained part of the internal manifold:

∂Aη1 + eΦ

4

[
(F1γ+ iG3)η2 − (F3γ+ iG1)η1

]
= 0, (6.27a)

∂Aη2 − eΦ

4

[
(F1γ+ iG3)η1 − (F3γ+ iG1)η2

]
= 0, (6.27b)

∂Φη1 − 1

2
(H3 + iH1γ)η2 +eΦ

[
F1γη

2 − 1

2
(F3γ+ iG1)η1

]
= 0, (6.27c)

∂Φη2 − 1

2
(H3 + iH1γ)η1 −eΦ

[
F1γη

1 − 1

2
(F3γ+ iG1)η2

]
= 0, (6.27d)

∂Cη1 − ie−Cγη2 − i

2
H1γη

2 + eΦ

4

[
(F1γ− iG3)η2 − (F3γ− iG1)η1

]
= 0, (6.27e)

∂Cη2 − ie−Cγη1 − i

2
H1γη

1 − eΦ

4

[
(F1γ− iG3)η1 − (F3γ− iG1)η2

]
= 0, (6.27f)

∇mη1 − 1

4

(
(H3)m + i(H1)mγ

)
η2 + eΦ

8

[
(F1γ− iG3)γmη2 − (F3γ− iG1)γmη1

]
= 0,

(6.27g)

∇mη2 − 1

4

(
(H3)m + i(H1)mγ

)
η1 − eΦ

8

[
(F1γ− iG3)γmη1 − (F3γ− iG1)γmη2

]
= 0,

(6.27h)

where again we have used the spinorial ansatz (6.7) but this time with η1 → η1 +γη2

and η2 → η1−γη2, in order to make contact with the previous discussion for type IIA.
From the zero-form conditions (6.26), imposing that the physical quantities are

SU(2) singlets, we get the following equations for the four-dimensional spinors:

|η1|2 +|η2|2 = 2e A , η1†γη2 +η2†γη1 = 0,

η1†η2 +η2†η1 = 2c−e−A , η1†γη1 +η2†γη2 = 0,
(6.28)
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6. R1,3 ×S2 ansatz 6.3. Spinorial analysis

which are the same for IIA (6.13), together with

|η1|2 −|η2|2 = η1†η2 −η2†η1 = 0. (6.29)

From the difference between η2(2(6.27a)+2(6.27e)-(6.27c)) and η1(2(6.27b)+2(6.27f)-
(6.27d)) we get another algebraic constraint:

η2γη1 = 0. (6.30)

These scalar conditions suggest the following decomposition of ηi in terms of a
single spinor η and complex functions a,b

e− 1
2 Aη1 = sin

(α
2

)
η+cos

(α
2

)(
aη+bγηc), e− 1

2 Aη2 = sin
(α

2

)
η−cos

(α
2

)(
aη+bγηc)

(6.31)
where

|η|2 = 1, η†γη= 0, |a|2 +|b|2 = 1, a = a1 + ia2 , b = b1 + ib2 , cosα=−c−e−2A .
(6.32)

Let’s now consider the identity structure defined by η (6.20). Given the equation

ηc = 1

2
w γ̂η (6.33)

we have that the phase of b in (6.31) can be fixed by rotating the vector w . In partic-
ular, we choose b to be real.

Let’s now consider the vector

k = η2γmγη1∂m . (6.34)

Exactly as in IIA, it is possible to prove that this vector generates a symmetry which
parameterizes an U (1)×U (1) group. Since this is proved in detail in [41, section 3.2],
we will omit to repeat here that technical (but straightforward) argument. Thanks
to the parametrization of the internal spinors we adopted for η1 and η2, which is
identical to the one in IIA (6.18), we have that the same discussion applies here, and
in particular we get:

0 isometries: cosα= a1 = b = 0,

1 isometries: cosα= a1 = 0, b 6= 0,

2 isometries: otherwise.

(6.35)

Since the non-equal-norm constraint is unaffected by a T-duality transformation, we
have that all the non-equal-norm cases cosα 6= 0 can actually be generated from type
IIA classification, which is in turn a particular case of the M-theory class. We will
return to this point in section 8.6, but for now it is enough to know that we can use
(5.31) for the IIB classification without loss of generality.
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6. R1,3 ×S2 ansatz 6.4. Pure spinors

6.4 Pure spinors

In the previous section we managed to find a convenient reparametrization for the
spinors on M4 which will be helpful to explicitly write the pure spinorsΦ± in terms of
the identity structure on the internal manifold. In general, a pure spinor can always
be written in the following way [35]

Φ=Ωk ∧eiJ (6.36)

where J is a real form while k is a complex k-form with k that runs from 0 to 3.
In order to compute them in the case at hand, we have to use the expressions in

[29, section 3] to parameterize the bilinears on M4 and the one in [39, appendix A] for
the bilinears on S2. After a bit of manipulations we get that the pure spinors in type
IIA can be written as

Φ+ = 1

8
E1 ∧E2 ∧e

1
2 E3∧E 3 ,

Φ− = 1

8
E3 ∧e

1
2 (E1∧E 1+E2∧E 2)

(6.37)

where the complex vielbein is given by the following definitions

E1 = b(eC d y3 − y3v2)+ i(aw +bv1) , E2 =−eC d(y1 + iy2)+ (y1 + iy2)v2 ,

E3 = ia(eC d y3 − y3v2)+bw −av1 ,
(6.38)

while the ones in IIB read

Φ+ = 1

8
e

1
2 E3∧E 3 ∧

(
a e

1
2 (E1∧E 1+E2∧E 2)+ibE1 ∧E2

)
,

Φ− = 1

8
E3 ∧

(
ib e

1
2 (E1∧E 1+E2∧E 2)+aE1 ∧E2

) (6.39)

with

E1 = eC d y3 − y3v2 + iv1 , E2 = w , E3 =−(eC (d y1 + id y2)− (y1 + iy2)v2). (6.40)

Notice that, as anticipated in subsection 6.3.1, the pure spinors in IIA (6.37) pa-
rameterize an orthogonal SU(2)-structure while in IIB we have an intermediate [104],
possibly dynamical, SU(2)-structure. This means that in this case it would be in prin-
ciple possible that (6.39) varies from an SU(2) to an SU(3)-structure even from a point
to another. However, after imposing supersymmetry, we will get that a and b have
constant modulus, which means that the SU(2)-structure is in general not dynami-
cal.

In (6.38) and (6.40) the yµ are the embedding coordinates of S2 in R3, which then
satisfy y2

1 + y3
2 + y3

3 = 1, {v1, v2, w} is the vielbein on M4 introduced in (6.20) and a,b
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define a parameter space in our classification, meaning that depending on which of
these is turned on we will get a different class. This was already suggested by the
isometries analysis performed in the previous sections.

In the next chapter we will impose background supersymmetry by using the ex-
pression for the pure spinors (6.37), (6.39) in (5.31).
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CHAPTER 7

CLASSIFICATION IN TYPE II
SUPERGRAVITY

In this chapter we will present the classification of R1,3 × S2 solutions in type II su-
pergravity which was originally carried out in [39, 40]. We recall that solving (5.31)
is not enough for a solution to exist, since we have also to impose Bianchi identi-
ties for fluxes (1.16). Thanks to (5.31c), we know that form fields electrically cou-
pled to space filling branes already satisfy their equations of motion, which prevents
from having sources that lay in the Minkowski directions, as required by preserved
Poincaré invariance. To get the magnetic components of the flux we have to take the
Hodge dual on the internal manifold, which would in general involve the technology
of [105]. However, thanks to the identity structure, in our case it is possible to find
a local expression for the metric and therefore directly compute the Hodge dual of
every differential form. Once supersymmetry and Bianchi identities for fluxes have
been imposed, it is not necessary to worry about further integrability conditions, as
the one discussed in subsection 3.2.1, since it was proven in [106] that for the case of
four-dimensional vacua they automatically follow.

Since in [41] it was discovered that many classes in theR1,3×S2 classification were
not really fundamental but they can be derived using various solution generating
techniques, in the next two sections we will focus just on the two classes (one in IIA
and one in IIB) which cannot be derived using dualities, which we call master classes,
while in the third section we will show how it is possible to generate all the solutions
in [39, 40] from them.

7.1 IIB master class

The master class in type IIB supergravity is obtained by specializing (6.39) to b =
0, a =−i; notice from (6.35) that with this choice of the parameters we have no extra
isometries in the internal space. In the case at hand the solution falls in the so-called
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conformal Calabi–Yau class [97, 25]. Using the vielbein (6.40) to define

Ω= e3A−φE1 ∧E2 ∧E3 , J = i

2
e2A−φ

(
E1 ∧E 1 +E2 ∧E 2 +E3 ∧E 3

)
(7.1)

we get that supersymmetry conditions (5.31) are equivalent to imposing

d J = dΩ= 0, H ∧Ω= H ∧ J = 0,

∗6 f1 =−1

2
e−4A d(eφ J 2) , ∗6 f3 = e−φ H , ∗6 f5 = e−4A de−4A−φ .

(7.2)

We can see from dΩ = 0 that the internal manifold is complex while d J = 0 is the
integrability condition for a symplectic structure. Since as one can check from (7.1)
the two structures are compatible J ∧Ω = 0 we have that the internal manifold is
Kähler. The Calabi–Yau condition would require also J 3 = i 3

4Ω∧Ω, which is satisfied

by (7.1) up to a conformal factor J 3 = ie−φ 3
4Ω∧Ω.

Using the explicit expressions for the vielbein (6.40) and for fluxes (6.2) to impose
the SU(2) isometries it is possible to characterize the solution even further and the
first line of (7.2) reduces to:

d(e2A+2C−φ)+2e2A+C−φ v2 = d(eA− 1
2φ v1) = d(eA w) = 0, (7.3a)

B2 =−B0v1 ∧ v2, d(e2C B0)∧w ∧w = d(e−φ)∧w ∧w = 0. (7.3b)

We can solve (7.3a) in full generality by introducing local coordinates which pro-
vide a definition for the vielbein on M4:

v1 = e−A+φ
2 d x1 , v2 =−e−A+φ

2 d x2 , w1 =−e−A d x3 , w2 =−e−A d x4 , (7.4)

and we further have the condition

x2
2 = e2A+2C−φ (7.5)

which can be used as a definition for the S2 warping function C .
Equations (7.3b) determine part of the NSNS two-form potential and impose that

e2C B0 = g (x3, x4) , e−φ = f (x3, x4). (7.6)

The ten-dimensional metric takes the form

d s2 = e2A d s2(R1,3)+e−2A
(

1

f

(
d x2

1 +d x2
2 +x2

2 d s2(S2)
)+ (d x2

3 +d x2
4)

)
, (7.7)

we stress that x2 can be considered as a radial coordinate so that the part of the met-
ric spanned by (x1, x2,S2) is warped R4 while the part spanned by (x3, x4) is warped
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R2. The Calabi–Yau metric is given by e2A d s2(M6), which can be viewed locally as a
foliation of T 4 over T 2. At this stage it is not evident that this space is Ricci-flat, since
f is unconstrained so far; we will see that imposing Bianchi identities it turns out to
be harmonic.

The ten-dimensional fluxes are then given by

B = gC2 , F1 = ∂x4 f d x3 −∂x3 f d x4 , C2 = Vol(S2)+ d x1 ∧d x2

x2
2

, (7.8a)

F3 = B ∧F1 −
(
∂x4 ( f g )d x3 −∂x3 ( f g )d x4

)
∧C2 ,

F5 = B ∧F3 − 1

2
B ∧B ∧F1 +x2

2

(
∂x2 e−4A d x1 −∂x1 e−4A d x2

)
∧d x3 ∧d x4 ∧Vol(S2)

+1

2

(
∂x4 ( f g 2 +x4

2 f −1 e−4A)d x3 −∂x3 ( f g 2 +x4
2 f −1e−4A)d x4

)
∧C2 ∧C2 +Vol4 ∧d(e4A f ) ,

(7.8b)

where Vol4 is the volume element of the Minkowski space. Imposing the closure con-
dition for the twisted fluxes (4.20) we get that F1 and F3 yield

42 f = 0, 42( f g ) = 0, 42 = ∂2
x3
+∂2

x4
, (7.9)

while F5 leads to

∂2
x1

(e−4A)+ 1

x2
2

∂x2 (x2
2∂x2 (e−4A))+42(e−4A f −1)+ 1

x4
2

42( f g 2) = 0. (7.10)

7.1.1 Analysis of the solution

We managed to reduce the problem of finding a supersymmetric solution to a rela-
tively small set of PDEs. It might seem that imposing these equations does not cor-
respond to have any localized sources, since in string theory branes appear as a vi-
olation of Bianchi identities (1.20). However, it is possible to introduce sources by
enlarging the space of solutions also to non-regular ones, where the singular loci de-
termine where the branes are sitting. Following this method it can happen that not
all singularities have a string-theory origin, so to rule out such solutions it is neces-
sary to check if all fields behave correctly, meaning that they have to reproduce, at
least in the near horizon limit, known behaviour of intersecting brane systems. Let’s
apply this method to analyze what kind of branes we can find in the IIB master class.

For the discussion of Bianchi identity solutions it is beneficial to rewrite the warp
factor as

e−4A = f

x2
2

[
x2

2h − (
(∂x3 g )2 + (∂x4 g )2)] (7.11)
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where h = h(x1, x2, x3, x4), so that (7.10) turns into

f

(
∂2

x1
h + 1

x2
2

∂x2 (x2
2∂x2 h)

)
+�2h = 1

x2
2

�2
(
(∂x3 g )2 + (∂x4 g )2) , (7.12)

which makes the structure of a Laplace equation more evident. The generic case
however remains quite complicated, so it is better to restrict to some special sub-
classes to get some insight.

For instance, let’s impose that g is constant. In this case the NSNS potential B
turns out to be closed, which means that it is pure gauge and therefore can be set to
zero without loss of generality; this choice corresponds to g = 0. As a consequence,
the right-hand side of (7.12) vanishes and the only non-trivial fluxes are F1 and F5:

d s2
10 =

1√
f h

d2 s(R1,3)+
p

h√
f

(d x2
1 +d x2

2 +x2
2d s2(S2))+

√
f h(d x2

3 +d x2
4) , (7.13a)

F1 = ∂x4 f d x3 −∂x3 f d x4 , (7.13b)

F5 = Vol4 ∧dh−1 +x2
2Vol(S2)∧ (

εi j ∂xi h d x j
)∧ (

f d x3 ∧d x4 +d x1 ∧d x2
)
, (7.13c)

f

[
∂2

x1
h + 1

x2
2

∂x2 (x2
2∂x2 h)

]
+�2h = 0, �2 f = 0. (7.13d)

The resulting ten-dimensional metric (7.13a) suggests a setup of intersecting D3-D7-
branes [107, Eqs. (13)-(14)]. In particular, we have re-derived the D3-D7 case of the
system used to study localized Dp-branes in the world volume of D(p+4)-branes [100,
section 4.3], even if for the D3-D7 case it is not possible to use the techniques of that
paper.

By turning on also g we have that F3 and H do not vanish anymore and we may
have in principle also D5- and NS-brane. However let’s assume for simplicity A =φ=
0, so that the metric is completely flat, and let’s consider the relation H = ∗6F3. If
we want to impose the presence of a NS5 brane d H = δ4 then we necessarily have,
using the duality relation, that also dF7 = δ8, which is the equation of motion for a
D1-brane instanton smeared on the external space-time. Even if such solutions can
exist [108], the flat metric suggests there are not these kind sources and the solution
to the second of (7.9) is regular. Of course the same argument applies also for the
D5-brane and the fundamental string.

7.2 IIA master class

The master class for type IIA supergravity was first discussed in [39, appendix C] and
it is obtained, analogously to type IIB, by setting b = 0 and a = i. Again from (6.24) we
have that this class does not contain any additional isometric direction.
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As we have seen in the previous section, it is useful to reduce the pure spinor
system (5.31) to a set of differential form equations on M4 only. This can be done by
using equations (6.37), (6.38) and imposing that nothing must depend on S2. After a
bit of algebra, one can show that all the supersymmetry conditions follow from

d(eA w) = 0, d(e2A+C−φ)+e2A−φ v2 = 0, d(e−2A+φ(v1 +B0v2)) = 0, (7.14a)

d(e−φ v1)∧w ∧w = 0, d(e2C−φ(B0v1 − v2))∧w ∧w = 0, B2 = 0. (7.14b)

Equations (7.14a) can be locally solved by defining the vielbein in terms of local
coordinates

v1 = e2A−φd x1 +B0 e−2A+φd x2, v2 =−e−2A+φd x2, w = e−A(d x3 + i d x4) ,
(7.15)

with
x2 = e2A+C−φ , (7.16)

which implies the following form for the metric

d s2 =e2A d s2(R1,3)+e−4A+2φ
(

d x2
2 +x2

2d s2(S2)
)
+e−2A

(
d x2

3 +d x2
4

)
+e4A−2φ

(
d x1 +B0 e−4A+2φd x2

)2
.

(7.17)

In terms of these local coordinates (7.14b) imposes the BPS conditions

∂x2

(
e2A−2φ)= ∂x1

(
e−2A B0

)
,

∂x2

(
x2

2 e−2A B0
)= ∂x1

(
x2

2 e−6A+2φ(1+B 2
0 )

)
,

(7.18)

but, differently for type IIB master class, place no restriction on the functional de-
pendence on (x3, x4).

The fluxes are given by

F0 =0, B = x2
2 e−4A+2φB0Vol(S2) ,

F2 =
(
∂x4 (e2A−2φ)d x3 −∂x3 (e2A−2φ)d x4

)∧d x1 −∂x1 (e−4A)d x3 ∧d x4

+ (
∂x4 (e−2A B0)d x3 −∂x3 (e−2A B0)d x4

)∧d x2 , (7.19)

F4 =B ∧F2 +x2
2

[
−∂x2 (e−4A)d x3 ∧d x4 −

(
∂x4 (e−2A B0)d x3 −∂x3 (e−2A B0)d x4

)∧d x1

+ (
∂x4 (e−6A+2φ(1+B 2

0 ))d x3 −∂x3 (e−6A+2φ(1+B 2
0 ))d x4

)∧d x2

]
∧Vol(S2) ,

and ensuring that they obey Bianchi identities imposes the following PDEs

∂2
x3

(e2A−2φ)+∂2
x4

(e2A−2φ)+∂2
x1

(e−4A) = 0,

∂2
x3

(e−2A B0)+∂2
x4

(e−2A B0)+∂x1∂x2 (e−4A) = 0, (7.20)

∂2
x3

(x2
2 e−6A+2φ(1+B 2

0 ))+∂2
x4

(x2
2 e−6A+2φ(1+B 2

0 ))+∂x2 (x2
2∂x2 (e−4A)) = 0.
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7.2.1 Analysis of the solution

Since in this class the metric is not even diagonal, it is much harder to deduce the
brane content compared to the IIB analog. In order to get some insight we will pro-
ceed by adopting a large ansatz which will allow us to get a diagonal metric.

Equations (7.14a) automatically give a definition of a diagonal vielbein except for
the component v1, which we diagonalize by hand with the introduction of an arbi-
trary function µ:

v1 = eφ+µd x1 . (7.21)

Thanks to this assumption we get an easy expression for the metric

d s2 = e2A d s2(R1,3)+e−4A+2φ(d x2
2+x2

2 d s2(S2))+e2φ+2µd x2
1+e−2A(d x2

3+d x2
4). (7.22)

but we have to derive from scratch BPS constraints and the fluxes. In order to do so
it is useful to define the following functions

f = e−2A+2φ+µ , g = e2C B0 , (7.23)

so that (7.14b) implies f = f (x1, x2), g = g (x1, x2) and µ = µ(x1, x3, x4). Moreover we
have the PDEs

∂x1 g =−x2
2∂x2 f , (7.24a)

∂x2 g = x2
2 e−µ∂x1 ( f e−4A−µ) , (7.24b)

which determine H in terms of the other fields.
The fluxes read

B2 =g Vol(S2), (7.25a)

F2 =(∂x4 eµd s3 −∂x3 eµd s4)∧d s1 − f −1∂x1 e−4A d s3 ∧d s4, (7.25b)

F4 =B2 ∧F2 +Vol(S2)∧ (
x2

2 f (∂x3 e−4A−µd s4 −∂x4 e−4A−µd s3)∧d s2

−g (∂x4 eµd s3 −∂x3 eµd s4)∧d s1 + (x2
2∂x2 e−4A +g f −1∂x1 e−4A)d s3 ∧d s4

)
, (7.25c)

and the Bianchi identities for these impose:

∂x2 ( f −1∂x1 e−4A) = 0, (7.26a)

4eµ+∂x1 ( f −1∂x1 e−4A) = 0, (7.26b)

f 4e−4A−µ+ 1

x2
2

∂x2 (x2
2∂x2 e−4A)+ 1

x2
2

∂x2 g f −1∂x1 e−4A = 0 , (7.26c)

where 4= ∂2
x3
+∂2

x4
.
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Even if we are now provided with a diagonal metric, solving these PDEs in full
generality is still hard, so we impose some further ansatz which will allow us to get
some intersecting-brane systems.

The first issue we address is that the left-hand side of (7.24b) is independent of
(x3, x4), while the right-hand side is not a priori. We can deal with this by making
an ansatz for e−4A; for example, a convenient one (even if it is not the only one, as
showed in [41, appendic C]) is

e−4A = f −1H(x1, x2)S(x3, x4)2 , eµ = S(x3, x4) . (7.27)

The discussion turns out to be different if we consider the warping A to depend or not
from x1, so let’s analyze these two situations independently. We will see that the dis-
cussion suggests that the IIA master class describes a localized system of intersecting
D4-D6-NS5-branes.

∂x1 e−4A = 0: Localized D4-NS5 smeared D6 system

To make e−4A independent from x1 we need to set H = f λ(x2) where λ is an arbitrary
function. We can solve the (7.24a) by introducing an auxiliary function h(x1, x2) such
that

f = ∂x1 h , g =−x2
2∂x2 h . (7.28)

We are then left with the PDEs

∂x2 (x2
2∂x2λ) = 0, 42S = 0,

1

x2
2

∂x2 (x2
2∂x2 h)+λ∂2

x1
h = 0, (7.29)

to solve, with physical fields given by

e2A = 1

S
p
λ

, e2φ+2µ = ∂x1 hp
λ

, e−4A+2φ =
p
λ∂x1 h , e2C B0 =−x2

2∂x2 h . (7.30)

When S = 1 this solution reproduces, up to two T-dualities along d x3 and d x4, the
massless system of [98], which describes localized D6-NS5 brane intersection. On the
other hand when S is not constant but ∂x1 h = 1 we have a D4-D6 system where the
D6 brane is smeared along x1, since its harmonic function is S = S(x3, x4), while the
harmonic function of the D4 factorizes in λS. Therefore we can in general interpret
this solution as a system of localized D4-NS5 with smeared D6.

∂x1 e−4A 6= 0: Localized D4-D6-NS5 system

We now allow e−4A to depend on x1. In this way we define H such that it absorbs f −1

in the definition (7.27). From (7.26a) we can fix f from H up to an arbitrary function
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G =G(x1) as f = ∂x1 H/G . Thanks to equation (7.26b) we have that G must be at least
linear in x1, G = c1x1 + c2. The remaining equations are:

42S =−c1S2 ,
1

x2
2

∂x2

(
x2

2∂x2 H
)+ 1

2
∂2

x1
H 2 = c1

∂x1 H 2

c1x1 + c2
, (7.31)

and fields are defined as:

e2A = 1

S
p

H
, e2φ+2µ = 1p

HG
∂x1 H , e−4A+2φ =

p
H

G
∂x1 H ,

∂x1 (e2C B0) = x2
2

G
∂x1∂x2 H , ∂x2 (e2C B0) = x2

2

2
∂x1

(
∂x1 H 2

G

)
.

(7.32)

Now, notice that if c1 = 0 and S = 1 this solution is the massive system of localized
D6-NS5 of [98, 109] up to T-dualities, so for generic S and c1 = 0 we have an analog of
the previous case but with a localized “massive” D4-NS5 system with a smeared D6.
When c1 6= 0 the solution is more exotic and the physical interpretation less clear, but
it points in the direction of a localized D4-D6-NS5-brane system.

7.3 Generating the other classes

All the possible R1,3 × S2 solutions with equal spinor norm classified in [39, 40] fall
into three distinct classes characterized by the isometry number of the internal four-
dimensional manifold M4, which corresponds to a precise choice of the parameters
a,b, as already shown in (6.24) and (6.35). Specifically one has

Case I: M4 = M2 ×Σ2 , Case II: T 1 ,→ M4 ,
↓

M3

Case III: T 2 ,→ M4 ,
↓

M2

where Σ2 is a two-dimensional Riemann surface spanned by d x3 and d x4. The mas-
ter classes we discussed above belong to Case I and exhaust it. Cases II and III contain
one and two constant parameters respectively and often reduce to locally five- and
six-dimensional Minkowski backgrounds.

These higher dimensional flat space solutions are relatively easy to find. Let’s start
by considering the IIB master class 7.1; it is a straightforward application of subsec-
tion 1.3.1 to notice that by imposing that one of ∂x3 ,∂x4 is a symmetry of the solution
and T-dualizing along it we end up with the R1,4 ×S2 class in IIA of [39, section 4.2],
while if we make both isometries we find, after two T-dualities, R1,5 ×S2 solutions of
[40, section 4.1].

A similar story holds also for type IIA master class 7.1, indeed one can generate
the R1,4 ×S2 solution in [40, section 4.2] by T-dualizing one direction among ∂x3 ,∂x4 ,

75



7. Classification in type II supergravity 7.3. Generating the other classes

Case I

Case II

Case III

Case I

Case II

Case III

M4 = M2 ×Σ2:

S1 ,→ M4,
↓

M3

:

T 2 ,→ M4,
↓

M2

:

IIA IIB

γ2

γ3

γ′2

γ1

Figure 7.1: Depiction of the chains of dualities leading to the various Mink4×S2 class
in type II with equal spinor norm. Cases I in IIA and IIB (shaded grey) are the fun-
damental master classes from which the other solutions are generated. Specifically
γ1 represent a transformation where one performs a diffeomorphism mixing the M2

and Σ2 factors in IIB Case I introducing a parameter, then imposes an isometry and
T-dualizing on it. γ2,γ′2 represent the following: impose Σ2 = T 2 in Case I and T-
dualize on both directions, this case is a R1,5 solution that we call case III0, one then
performs a formal U-duality followed by a T-s-T transformation with T 2, which gen-
erates a two-parameter deformation of case III0 governed by the same PDEs, i.e. case
III. γ3 represents imposing an isometry in the Σ2 factor of IIA case I, then T-dualizing
to get to IIB. One then performs a formal U-duality on the spatial directions of R1,3.

and, as it was already explained in the subsection 7.2.1, by means of two T-duality it
is possible to get all R1,5 ×S2 solutions of [98], which are exactly [39, section 4.1].

Even if these higher-dimensional Minkowski backgrounds do not have any pa-
rameter turned on, they are governed by (almost) the same PDEs of the rest of Case II
and III. This indicates that a and b can be seen as parametric deformations of these
solutions, which suggests that these parameters can be generated by some sort of
duality. Two obvious candidates are formal U-dualities of the type in [110, 111] and
T-s-T transformations [112], which are both solution generating techniques involving
chains of string dualities and coordinate transformations.

In this section, following [41], we will see that it is possible to explain the origin of
the parametric deformations and we will prove that Case II and III can be generated
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from the master classes. The map between the solutions is summarized in figure 7.1.

7.3.1 Generating Case II

Let’s start with establishing how the parametric deformation of Case II in IIA and
IIB is realized. We will see that for IIA we need to start again from the IIB master
class while in IIB the generic solution is essentially the U-dual of the five-dimensional
Minkowski sub-case we discussed before.

Case II in IIA

We start by performing a coordinate transformation on the solution in 7.1

x1 → x1 −
a2

√
f

b
x4 (7.33)

where a2
√

f /b is a constant and b2 +a2
2 = 1. The NSNS sector takes the form

d s2 = e2A d s2(R1,3)+e−2A

(
1

f

(
b2 d x2

1 +d x2
2 +x2

2 d s2(S2)
)+d x2

3 +
1

b2

(
d x4 + ba2√

f
d x1

)2)
,

B = gC2 −
a2

√
f

b
g

d x2 ∧d x4

x2
2

, C2 = Vol(S2)+ d x1 ∧d x2

x2
2

. (7.34)

If we now impose that ∂x4 is a symmetry of the whole solution, we have that the
PDEs governing the system (7.9), (7.10) become

∂2
x3

f = 0, ∂2
x3

( f g ) = 0, (7.35a)

1

b2
∂2

x1
(e−4A)+ 1

x2
2

∂x2 (x2
2∂x2 (e−4A))+∂2

x3
( f −1 e−4A)+ 1

x4
2

∂2
x3

( f g 2) = 0, (7.35b)

which are exactly the same PDEs we have in [39, section 4.4]. If we now T-dualize on
∂x4 applying the rule of section 1.3.1, the NSNS sector is mapped in

d s2= e2A d s2(R1,3)+e2A b2
(
d x4−

a2g
√

f

b
d x2

)2
+e−2A

f

(
b2 d x2

1 +d x2
2 + f d x2

3 +x2
2d s2(S2)

)
,

B = gC2 + a2b√
f

d x1 ∧
(

d x4 −
a2g

√
f

bx2
2

d x2

)
, e−φ = f

b
e−A , (7.36)

which reproduces the NSNS sector of [39, section 4.4]. With an explicit computation
it is possible to prove that also the RR-fluxes match.
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Case II in IIB

To generate case II in IIB one starts from the five-dimensional Minkowski solution
we discussed at the beginning of this section, which is obtained by T-dualizing IIA
master class along ∂x4 (∂x3 is physically equivalent). Using (1.31) the NSNS sector is
locally mapped to

d s2 = e2A d s2(R1,3)+e2A d x2
4 +e−2A d x2

3 +e−6A+2φ
(

d x2
2 +x2

2 d s2(S2)
)

+e6A−2φ
(

d x1 +B0 e−6A+2φd x2

)2
, B = x2

2 e−6A+2φB0Vol(S2)
(7.37)

where all functions have support on (x1, x2, x3) only, while the RR sector reads

F1 = ∂x3 (e4A−2φ)d x1 +∂x3 (e−2A B0)d x2 −∂x1 (e−4A)d x3 ,

F3 = B ∧F1 +x2
2

(
∂x2 (e−4A)d x3 −∂x3 (e−2A B0)d x1 −∂x3 (e−8A+2φ(1+B 2

0 ))d x2

)
∧Vol(S2) ,

F5 = 0. (7.38)

Now we will show how to introduce a parametric deformation c0 via a formal U-
duality. One begins by T-dualizing on the three space-like isometric directions con-
tained in the external-space metric, which maps this solution to IIA with only (F4, H)
non trivial. Specifically, we have that H is unaffected while F4 reads

F4 = e−3A Vol3 ∧F1 ±eA d t ∧∗6F3 (7.39)

where Vol3 is the spatial volume form inR1,3 and the sign ± depends on the definition
of Vol3 and ont he order of the T-duality transformations. However we do not need to
take care about this sign because we will T-dualize everything back to IIB in the same
way. Before doing this, let’s lift this solution to M-theory using 1.3.3 and let’s perform
the following change of coordinates which involve the M-theory extra dimension ∂z

d t → b1 d t + c0 d z , d z → b2 d t +d z . (7.40)

Here c0,b1,b2 are all constants, c0 is the deformation parameter, while b1,b2 should
be non zero and satisfy −b1 +b2c0 > 0, but are otherwise arbitrary. The relevant part
of the eleven-dimensional metric get mapped as follows:

−e−
2
3φ+2A d t 2 +e

4
3φd z2 →−e−

2
3φ+2A (b1 −b2c0)2

1− c2
0 e2A−2φ

d t 2

+e
4
3φ(1− c2

0 e2A−2φ)2

(
d z + b2 −b1c0 e2A−2φ

1− c2
0 e2A−2φ

d t

)2

.

(7.41)

78



7. Classification in type II supergravity 7.3. Generating the other classes

If we now reduce back to type IIA, always along ∂z , we get that F4 and H have mixed
their components and we have now F2 turned on, which has a leg in the time direc-
tion. The last step is to perform again three T-dualities along Vol3 to get back to a four-
dimensional Minkowski solution in IIB. These operations have left F1 and the dilaton
unchanged, while F2 in IIA turns on F5 in IIB. After rescaling d t → −(b1 − b2c0)d t
all dependence on b1,b2 drops out of the solution and one finds that the new metric
reads

d s2 = e2A

κ⊥
d s2(R1,3)+κ⊥ d s2(M6) , (7.42)

where d s2(M6) is the original internal metric before the U-duality and we have intro-
duced (κ‖,κ⊥) such that

κ‖ = c0 e4A−φ , κ2
‖+κ2

⊥ = 1. (7.43)

The remaining fluxes after the U-duality become

H → dB +κ‖ eφ∗6F3 ,

F3 → F3 −κ‖ e−φ∗6H3 ,

F5 →
(
1+∗

)
Vol4 ∧d

(
e4A−φκ‖
κ2
⊥

)
. (7.44)

It is then not hard to check that if we rescale

e2A → κ⊥ e2A , B0 → κ⊥B0 (7.45)

we get exactly the metric, dilaton, and fluxes of [40, section 4.4.2]. Notice that the
PDEs are unaffected by the chain of dualities we used and they are just modified by
(7.45). Thus we have shown that case II in IIB follows from case I in IIA by first T-
dualizing to IIB, then performing a U-duality.

7.3.2 Generating case III

In this section we deal with the derivation of Case III in type IIA and IIB starting from
the master systems. For these classes we have to generate a double parametric de-
formation, and this can be done by T-s-T transformations, since now we have two
isometric directions, and by the same kind of U-duality we have seen in the previous
section. Since the procedure is similar to the methods we have seen so far, we will
only sketch the main steps.
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Case III in IIB

Case III in IIB can be generated from the six-dimensional Minkowski case we have
describe at the beginning of this section, which is nothing but the D5-brane in flat
space. More precisely, this solution is given by the following metric

d s2 = 1p
h

(
d s2(R1,3)+d x2

3 +d x2
4

)++
p

h
(

d x2
1 +d x2

2 +x2
2 d s2(S2)

)
, (7.46)

and fluxes

F3 = x2
2

(
∂x2 h d x1 −∂x1 h d x2

)
∧Vol(S2) , F1 = F 5 = H = 0, (7.47)

where h = e−4A = e−2Φ is just a function of (x1, x2) which satisfies a Laplace equation
on the flat space generated by {x1, x2,S2}.

The two parametric deformations can be obtained from this solution as follows:

1. Formal U-duality on spatial external directions (as the on in 7.3.1).

2. T-dualize on ∂x4 and gauge transformation of the NSNS potential.

3. Shift x3 → x3 +γx4.

4. T-dualize back on ∂x4 .

One needs to supplement this by rescaling the dilaton, Minkowski and local coordi-
nates, but after doing this carefully one is mapped to Case III in IIB.

Case III in IIA

Case III in IIA can be generated in a similar fashion. Again it is convenient to start
from R1,5 solution without any parameter turned on. This solution is explicitly given
by the following fields:

d s2=e2A(
d s2(R1,3)+d x4

3+d x2
4

)+e−4A+2Φd x2
1+e−8A+2Φ(

d x2
2+x2

2 d s2(S2)
)

, (7.48a)

B =− 1

m
x2

2∂x2 e−4A Vol(S2) , e2Φ = 2

m
∂x1 e2A , F0 = m , (7.48b)

F2 = BF0 −x2
2

(
∂x2 (e−4A)−e−2A B0∂x1 (e−4A)

)
Vol(S2) , F4 = 0. (7.48c)

The warping A must satisfy the non-linear equation

1

x2
2

∂x2 (x2
2∂x2 (e−4A))+ 1

2
∂2

x1
(e−8A) = 0. (7.49)

Now, it is possible to check that the following chain of dualities, boosts and shifts
maps this to Case III in IIA
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1. Four T-dualities performed on the spatial R1,3 directions and one direction in
T 2, say x4.

2. Lift to M-theory, boost along the M-theory isometry, reduce back to IIA.

3. Shift x3 → x3 +γx4.

4. Four more T-dualities on the spatial external directions and x4.

This completes the proof of the duality web depicted in figure 7.1.
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CHAPTER 8

CLASSIFICATION IN M-THEORY

In the previous section we classified all the R1,3 × S2 solutions in type II supergrav-
ity. Besides some considerations involving the spinorial system, most of the classi-
fication was carried on by exploiting pure spinor equations. Of course these do not
apply to M-theory, so we will need an analog of them. In [37] a system of form equa-
tions which is equivalent to background supersymmetry for four-dimensional vacua
is provided; even if in this case the system is completely general, differently for ex-
ample from [74], supersymmetry turns out to be formulated in a rather cumbersome
way. For this reason before using [37] in its full generality, we analyze again the spino-
rial system in order to find some simplification imposed by the S2 ansatz.

8.1 R1,3 ×S2 ansatz

The treatment of the R1,3 × S2 ansatz for M-theory is essentially similar to what we
have seen in section 6.2, let’s then quickly review here the argument in order to fix
the notation. First of all we want to preserve the symmetries of the external space,
which impose that the eleven-dimensional metric decomposes as a warped product

d s2 = e2∆d s2(R1,3)+d s2(M7) , (8.1)

where e2∆ is a function with support on M7 only and the four-form flux F is necessar-
ily purely magnetic in the supersymmetric case, as showed in [113]. Since the SU(2)
preserving ansatz requires N = 2 supersymmetry, our eleven-dimensional spinor will
decompose as

ε=
2∑

a=1

(
ζa
+⊗χa + (ζa

+)c ⊗ (χa)c
)

, (8.2)

where both ζa+ and χa are charged under SU(2) R-symmetry, so that ε is invariant.
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8. Classification in M-theory 8.2. Spinorial analysis

The R-symmetry is again realized by a S2 factor in the internal geometry, so that
metric and flux on M7 become

d s2(M7) = e2C d s2(S2)+d s2(M5) , F = F4 +e2C Vol(S2)∧F2, (8.3)

where e2C is a function depending on the coordinates on the remaining five-dimensional
manifold M5.

At the level of the spinors the SU(2) R-symmetry will be realized again by using
the doublet (ξ,ξc ) given in (6.6), which imposes the following decomposition:

χ= ξ⊗η1 +σ3ξ⊗η2 , (8.4)

where we dropped the doublet index since R-symmetry allows us to restrict to the
N = 1 case.

8.2 Spinorial analysis

As done for type II theories, we start the classification by deriving some conditions
that will be useful in the next section.

The eleven-dimensional supersymmetry equation (1.6) can be rewritten using
(A.20) and (A.22) as

DM ε+ 1

24
(3FγM −γM F )ε= 0. (8.5)

By decomposing ε according to (8.2) (restricting to N = 1) we get:(
e−∆∂a e∆γa +1

6
F

)
χ= 0, (8.6a)(

Da + 1

24
(3Fγa −γaF )

)
χ= 0. (8.6b)

When χc = χ we have that the spinor defines a G2 structure on M7. In particular,
it is easy to check that in this case the solution has actually G2 holonomy and F = 0
[114]. Although such solutions may exist, we need not consider them explicitly; in-
deed when we restrict to M7 = S2 × M5 we have that the Killing spinors ξ,ξc on S2

span a basis, and in particular cannot be equal. This means that imposing χc = χ

forces χ to contain two separable five-dimensional systems, one coupling to ξ and
the other to ξc , which just impose additional constraints compared to the case that
follows from the SU(3) structure χc 6= χ, where we can define χ as in (8.4) (i.e., con-
taining just ξ and not ξc ). Therefore solutions with G2 holonomy can be considered
as particular cases of the SU(3) system, so we can assume χ 6=χc without loss of gen-
erality.
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8. Classification in M-theory 8.2. Spinorial analysis

Now let’s analyze the zero-form constraints on M7, using (8.6b)

∂a(χ†χ) = Daχ
†χ+χ†Daχ= ∂a∆χ

†χ , (8.7)

we have that we can set without loss of generality

||χ||2 = 2e∆ . (8.8)

Moreover, by calculating in a similar way ∂a(χχ) we get the following condition

χχ= c e−2∆ (8.9)

where c is a constant.
Let’s now go a bit further and impose also the spinor decomposition (8.4). The

zero-form equations in terms of the five- and two-dimensional spinors read

(η†
1η1 +η†

2η2)+ y3(η†
1η2 +η†

2η1) = 2e∆ ; (8.10)

to preserve the SU(2) R-symmetry the warp factor cannot depend on the embedding
coordinates of the sphere yi , so we have

||η1||2 +||η2||2 = 2e∆, Re(η†
1η2) = 0. (8.11)

On the other hand (8.9) becomes

− (y1 − iy2)η1η2 = c e−2∆ (8.12)

and then we must have
η1η2 = 0, c = 0. (8.13)

Given the normalization (8.8), it is better to rescale the seven-dimensional spinor
as

χ= e
∆
2 (ξ⊗η1 +σ3ξ⊗η2) (8.14)

instead of (8.4). This allows us to decompose the spinors on M5 in a common basis
in terms of a unit norm spinor η:

η1 = η, η2 = icosαη+ 1

2
sinαwη , (8.15)

where w is a complex normalized vector on M5. This is the most general parametriza-
tion consistent with (8.11), (8.13)1.

1Actually it would be in principle possible to be slightly more general than this and demand that η1

and η2 do not have the same norm, however it is proved in [41] that this situation is actually forbidden
by supersymmetry.
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8. Classification in M-theory 8.3. Supersymmetry conditions

8.3 Supersymmetry conditions

The conditions found in the previous section considerably simplify supersymmetry
equations, and in particular we can restrict ourselves to consider [33] (similar sys-
tems were previously obtained in [74, 115]), where necessary and sufficient geomet-
ric conditions were derived for the preservation of supersymmetry in the particular
case χχ= 0. The system is given by the following equations:

d(e2∆K ) = 0, (8.16a)

d(e4∆ J ) =−e4∆∗7F , (8.16b)

d(e3∆Ω) = 0, (8.16c)

d(e2∆ J ∧ J ) =−2e2∆F ∧K (8.16d)

where
Ka =χ†γaχ , Jab =−iχ†γabχ , Ωabc =−iχc†γabcχ (8.17)

define an SU(3)-structure on the seven-dimensional internal space. Imposing these
conditions and the Bianchi identity for F is enough to get a proper N = 1 solution in
M-theory [116].

The next step is to specialize (8.17) to the case M7 = S2 ×M5, which can be done
by making use of (8.14) together with of the bilinear product identity[

ξ1 ⊗η1]⊗ [
ξ2 ⊗η2]† = (η1 ⊗η2†)+∧ (ξ1 ⊗ξ2†)+ (η1 ⊗η2†)−∧ (σ3ξ

1 ⊗ξ2†) (8.18)

where ± denotes the even/odd degree components of a form only. The bilinears gen-
erated from η are given in [30]. Differently from what we have seen in the analysis of
type II theories, in M-theory a spinor on a five-dimensional manifold is not enough
to define in general an identity structure, but just a SU(2)-structure. However, since
we have already picked a complex vector w in (8.15), we are able to formally write the
SU(2) structure in terms of a local vielbein:

η⊗η† = 1

4
(1+ v)∧e−i j2 , η⊗ηc† = 1

4
(1+ v)∧ω2 ,

ω2 = w ∧u , j2 = i

2
(w ∧w +u ∧u) ,

(8.19)

where
v , w1 = Rew , w2 = Imw , u1 = Reu , u2 = Imu (8.20)

is the five-dimensional vielbein. Notice that just v can be directly defined in terms
of the bilinears of η, and in order to determine w we need α 6= 0 in (8.15). This will
affect the classification of M-theory solutions, indeed we will get two different classes
depending on whether α vanishes or not.
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8. Classification in M-theory 8.4. Case A: α= 0

We have now all the elements to translate the SU(3)-structure (8.17) on M7 in
terms of the vielbein on M5 and S2. In order to do it, it is convenient to perform the
following rotation:

w2 → sinαv +cosαw2 , v → cosαv − sinαw2 . (8.21)

In this new frame the vector K simply reads

K =−eC cosα d y3 + sinαw1 + y3 cosαv. (8.22)

Let’s now move on and examine J and Ω, which define and SU(3)-structure on the
internal manifold orthogonal to K . Any SU(3)-structure in a six-dimensional space
can be expressed in canonical form using a complex vielbein E i as

J = i

2

(
E 1 ∧E

1 +E 2 ∧E
2 +E 3 ∧E

3)
, Ω= E 1 ∧E 2 ∧E 3 , (8.23)

where

E 1 = cosαw1+iw2+sinα(eC d y3−y3v) , E 2 = u , E 3 = (y1+iy2)v−eC d(y1+iy2) .
(8.24)

One can explicitly check that this complex vielbein leads to the factorized metric on
M7 = S2 ×M5

K 2 +E i E
i = e2C Vol(S2)+ v2 +w 2

1 +w 2
2 +u2

1 +u2
2 . (8.25)

Now we can start the classification by using the explicit expression for (K , J ,Ω) in
(8.16). As said before, we have to distinguish α= 0 from the generic case.

8.4 Case A: α= 0

In this case we have that η1 = iη2 as one can check by looking at (8.15). Since the two
spinors are proportional to one another they define a SU(2)-structure on M5, which
means that we will not get a local expression for the vielbein u, w by just imposing
supersymmetry. (8.16) reduces to these conditions for the SU(2) structure:

de2∆+C +e2∆ v = 0, (8.26)

d(e∆ω2) = 0, (8.27)

while those involving the flux read

d(e4∆ j2)−e4∆?5F2 = d(e−2∆ j2)+e−2∆F2 ∧ v = F4 = 0. (8.28)

We can solve (8.26) without loss of generality by introducing a local coordinate ρ such
that

ρ = e2∆+C , v =−e−2∆dρ. (8.29)
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8. Classification in M-theory 8.4. Case A: α= 0

Summarizing, we have that this class is determined by the following fluxes:

d s2 = e2∆d s2(R1,3)+e−4∆ (
dρ2 +ρ2 d s2(S2)

)+d s2(M4),

F = e−8∆ρ2Vol(S2)∧?5 d(e4∆ j2) (8.30)

where M4 supports an SU(2)-structure which is complex thanks to (8.27).

8.4.1 Analysis of the solution

Without an explicit metric it is difficult to understand what kind of backgrounds this
class can accommodate, so in this subsection we will specialize it by making some
ansatz. We will see that this case is actually quite broad and may comprehend var-
ious system of localized M2-M5-branes, KK6-monopoles and Atiyah–Hitchin singu-
larities, as showed in [41, section 5.2].

M5-brane case

It is easy to check for example that the supersymmetry condition (8.27) can be solved
by imposing the presence of a space-filling M5-brane sitting on a dimension-two sur-
face inside M4. For example we can choose

w = e−2∆(d x1 + id x2) , u = e∆(d x3 + id x4) , (8.31)

with ∆=∆(ρ, x1, x2). Using this ansatz inside (8.28) we get

F2 =−ρ2 e−2C (
∂ρ e−6∆d x1 ∧d x2 +∂x2 e−6∆dρ∧d x1 +∂x1 e−6∆d x2 ∧dρ

)
. (8.32)

The solution is then given by the following fluxes

d s2 = e2∆d s2(R1,5)+e−4∆ (
d x2

1 +d x2
2 +dρ2 +ρ2 d s2(S2)

)
, (8.33)

F =−ρ2 (
∂ρ e−6∆d x1 ∧d x2 +∂x2 e−6∆dρ∧d x1 +∂x1 e−6∆d x2 ∧dρ

)∧Vol(S2), (8.34)

plus the Bianchi identity

1

ρ2
∂ρ

(
ρ2∂ρ e−6∆)+∂2

x1
e−6∆+∂2

x2
e−6∆ = 0, (8.35)

which is a five-dimensional Laplace equation with a manifest SO(3) symmetry, so
this solution describes a localized M5-brane with a rotational symmetry in its co-
dimensions.
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8. Classification in M-theory 8.5. Case B: α 6= 0

M2-KK-monopole system

Another easy way to solve (8.27)-(8.28) is to impose SU(2)-holonomy on M4:

e∆ω2 = ω̃2 = e∆ j2 = j̃2, (8.36)

with ω̃2, j̃2 closed. The local form of the solution is then

d s2 = H−2/3 d s2(R1,3)+H 1/3
(

d s2(M4)+H
(
dρ2 +ρ2 d s2(S2)

))
,

F =Q j̃2 ∧Vol(S2) , H = 1+ Q

ρ
. (8.37)

with M4 any SU(2)-holonomy manifold. These solutions are all non-compact and
the warp factor is not indicative of a simple brane set up. However, following [117], it
looks like a particular KK6-M2 system.

8.5 Case B: α 6= 0

Even if in this case α is generic, we will see that it actually factors out from all of the
supersymmetry conditions and in the end nothing depend from its value as long as
α 6= 0. This condition implies that the two spinors η1 and η2 are linearly independent
and therefore they define an identity structure, which is given by the one- and two-
form supersymmetry constraints

d(e2∆+C )+e2∆ v = d(e2∆w) = d(e−∆u) = 0, (8.38)

which can be solved without loss of generality by introducing local coordinates

v =−e−2∆dρ , w = e−2∆(d x1 + id x2) , u = e∆(d x3 + id x4) , ρ = e2∆+C , (8.39)

where
ρ = e2∆+C . (8.40)

The supersymmetry conditions on fluxes are given by:

d(e4∆u1 ∧u2)+e4∆∗5F2 = 0, (8.41)

d(e2C+2∆w2 ∧ v)+e2C+2∆w1 ∧F2 = 0, (8.42)

cosα(d(e−2∆(w1 ∧w2)+e−2∆F2 ∧ v) = 0. (8.43)

The definition of F2 can be read from (8.41) and we can make use of (8.39) to take the
Hodge dual:

F2 =−ρ2 e−2C (
∂ρ e−6∆d x1 ∧d x2 +∂x2 e−6∆dρ∧d x1 +∂x1 e−6∆d x2 ∧dρ

)
. (8.44)
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8. Classification in M-theory 8.6. Relation with type II classification

We then plug this back into (8.42) which imposes

∂x3 e2∆ = ∂x4 e2∆ = 0, (8.45)

and therefore we get that ∂x3 , ∂x4 are isometries of the solution. This automatically
solves (8.43) without imposing any further restriction on α, then nothing physical
depends on it. Thus the local form of all solutions in this class is

d s2 = e2∆d s2(R1,5)+e−4∆ (
d x2

1 +d x2
2 +dρ2 +ρ2 d s2(S2)

)
, (8.46)

F =−ρ2 (
∂ρ e−6∆d x1 ∧d x2 +∂x2 e−6∆dρ∧d x1 +∂x1 e−6∆d x2 ∧dρ

)∧Vol(S2) . (8.47)

Notice however that these are the same fluxes of (8.46), which means that, even if the
spinors are different, class B is a particular case of class A.

8.6 Relation with type II classification

M-theory can be used to generate solutions in type IIA supergravity without Romans
mass through dimensional reduction as showed in 1.3.3. Notice, for instance, that
the IIA master class of section 7.2 can be derived from Class A of the M-theory clas-
sification of section 8.4 by imposing an U(1) isometry within the complex manifold
M4 and reducing along it.

A similar argument applies also for solutions in type IIA supergravity with non-
equal spinorial norms, since it was proven in section 6.3.1 that they have F0 = 0. We
shall now argue that these solutions descend from Case B in M-theory.

Performing the dimensional reduction of M-theory along a generic direction e10
11

we have that the gamma-matrix corresponding to this vielbein becomes the chiral-
ity matrix in IIA (1.42). The non-equal-norm condition in IIA, in the conventions of
section 6.3.1, is equivalent to χ†γ(6)χ 6= 0 and, up to an irrelevant overall normaliza-
tion, the six-dimensional non-chiral spinor in IIA and the seven-dimensional spinor
in M-theory are the same (1.42). The non-equal-norm condition in M-theory there-
fore reads χ†γ(7)

m χ(e10
11)m = Km(e10

11)m 6= 0, which means that we can establish whether
or not we reduce to a non-equal-norm class in IIA by studying the M-theory one-
form K defined in (8.22). Specifically, we generate non-equal norms whenever K has
a leg along a direction which can become an uncharged U(1). Of course we cannot
compactify along d y3 in (8.22) since we want to preserve the S2 isometries, nor along
v ∼ dρ, since in both case A and B ρ defines the S2 warping eC . This means that we
can reduce K just along w1, and w1 is present in K only when sinα 6= 0. This proves
that all non-equal-norm solutions in type IIA are generated from Case B in section
8.5. Moreover in this case we also have that w ∼ d x1 + id x2 and therefore after the
dimensional reduction we get that the IIA solution with non-equal norm must have
a flavour U(1)×U(1) isometry group generated by d x3 and d x4.
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Case A

IIBIIA

Case BCase I (IIA)

Non-equal norms:

T-duality

dimensional
reduction

dimensional
reduction

SU(2)-structure
ansatz

Figure 8.1: Depiction of the chains of dualities of the classes derived from the Mink4×
S2 classification in M-theory. In subsection 8.4.1 it is proved that class B in M-theory
is a particular case of class A and class B generates type IIA solutions with non-equal
norms which can be T-dualized to the IIB ones. Case I in type IIA is generated from
case A in M-theory via a dimensional reduction. Notice that the only fundamental
classes in ten- and eleven-dimensional supergravity are Class A in M-theory and Case
I in IIB, as showed in figure 7.1.

In [41, section 3.2] it is also argued that type IIB supergravity with non-equal
norms has two uncharged U(1)×U(1) isometries, by T-dualizing along one of these
one lands in type IIA supergravity with non-equal norms, that we just proved to de-
scend from M-theory2. The situation is summarized in figure 8.1.

2In principle it would be also possible that type IIB solutions could follow by T-dualizing on the
Hopf fiber of a squashed S3, but it is easy to rule out this option [41].
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CHAPTER 9

SOLUTIONS WITH ADS FACTOR

In this section we will recover solutions with an AdS factor starting from the Minkowski
classification. This is useful for two reasons, first of all it shows that the classification
we have performed so far is broad, since it contains various known and non-trivial
system of intersecting branes. Secondly, understanding how to recover AdS solutions
is a first step in the direction of finding backgrounds which are just asymptotically
AdS. Such backgrounds are particularly interesting in holography since they point
out the presence of RG flows. In particular, they can be used for studying both RG
flows from two CFTs, where between the AdS factors we have a lower dimensional
Minkwoski space [118, 119], or also RG flows between a CFT and a non-local solution
[120], like little-string theory [121], which is dual to a flat-space geometry.

Let’s now sketch the general procedure to get an higher-dimensional AdS back-
ground from a Minkowski one. Since we classified warped d-dimensional Minkowski
solutions with d ≥ 4, we can use the warping function to introduce the radial coordi-
nate r of AdSd+1 in the following way:

e2Ad d s2(R1,d−1)+d s2(M10−d ) = e2Ad+1 d s2(AdSd+1)+d s2(M9−d ), (9.1)

where e2Ad = e2Ad+1+2r . In order to do this, we usually need to perform a change of
coordinates to define r and to impose that the mixed terms in the metric containing
dr vanish.

9.1 AdS7

Let’s start by showing how to recover the AdS7 solutions of [31, 122] (see also [123] for
a different approach) as particular examples of the R1,5 system in type IIA defined in
(7.48). We don’t have to worry about AdS7 solutions in type IIB because there are no
supersymmetric ones, as proved in [31].

As explained at the beginning of this chapter, what we have to do is to take eA =
er+A7 in (7.48a) and to play with the remaining coordinates x1, x2. In order to be
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completely general, let’s define the following change of variables:

x1 = f (z)e2r , x2 = 26

34
α(z)e4r , (9.2)

where the unusual coefficient in front of α is necessary to match the conventions of
[124]. Imposing the presence of the AdS factor gives two conditions, one from the
dr 2 coefficient (which must be equal to the Minkowski warping) and the other from
setting to zero the coefficient of dr d z. They read

e4A7 =−213

38

α∂zα

f ∂z f
,

f

∂zα
∂z

(
f ∂z f

∂zα

)
=−210

38
m . (9.3)

With these definitions, it turns out that equation (7.49) is automatically satisfied.
We can solve the second condition in (9.3) by using reparametrization invariance to
choose

f =− 23

34π
∂zα , (9.4)

which reduces (9.3) to the following ODE for α:

∂3
zα= 2 34π3m . (9.5)

We also get the explicit expression for A7 in terms of α:

e4A7 =−27π2α

∂2
zα

. (9.6)

These definitions are all we need to make contact with the solution in [124, sec-
tion 2.2.3], indeed it is straightforward to check, for example, that we get the same
expression for the metric:

d s2 =p
2π

√
− α

∂2
zα

d s2AdS7 +
√

−∂
2
zα

α

(
d z2 + α2

(∂zα)2 −2α∂2
zα

d s2(S2)

) . (9.7)

9.2 AdS6

In this section we will recover all supersymmetric AdS6 solutions of type IIB super-
gravity, which were originally classified in [29] by using pure spinor equations and in
[125] from the spinorial conditions. In both cases however a system of PDEs were ob-
tained but not generally solved. In [32, 126, 127], exploiting Sl(2,Z) symmetry of type
IIB string-theory, all local solutions were given in terms of two holomorphic func-
tions.
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9. Solutions with AdS factor 9.2. AdS6

We will show that, starting from the R1,4 system in (7.37),(7.38), we will be able
to give an alternative formulation of the AdS6 ×S2 solutions just in term of a Laplace
equation in two variables.

Following [40, section 5.2.1], we start by performing the change of coordinates

x1 = x̃1 + 1

x2
e2C B0 (9.8)

which redefines the metric as

d s2 = e2A d s2(R1,4)+e−6A+2φ (
d x2

2+x2
2 d s2(S2)

)+e−2A d x2
3+e6A−2φ

(
d x̃1+ 1

x2
e2C H1

)2
,

(9.9)
where H1 was defined in (6.2). Now we change again parametrization

x1 = 1

2
e−3ρ f (r, y) , x2 = 8

3
e3ρ y , x3 = 4eρ−

1
3∆(r,y) , e2A = 2

√
2

3
e2ρ+ 1

2φ+2λ (9.10)

where eρ will be the AdS radial coordinate, ∆ and λ are functions that depend just
on {r, y}, and the powers of eρ in xi are fixed such that they cancel those coming from
the eA factors in (9.9). If we demand that the NSNS three-form and the metric respect
the isometry of AdS6 we must impose

e2C H1 = h1(r, y)dr +h2(r, y)d y , (9.11)

and the following constraints:

eφ = 6
e−2/3∆+4λ r 2 + f 2

e8λ−y2
, e−8λ = ∂y∆

y(1+ y∂y∆)
,

h1 =−e−8λ− 2
3∆ y

9 f

(−3r +e8λ+2/3∆ f ∂r f + r 2∂r∆
)

, h2 =−4

9
y(∂y f − f ∂y∆) . (9.12)

Up to this point we have just imposed conditions leading to AdS6, however we have
also to require that the BPS constraints are satisfied. These are simply given by the
T-dual of (7.18) along x4

∂x2 e4A−φ = ∂x1

(
B0 e−2A )

,
1

x2
2

∂x2

(
x2

2B0 e−2A )= ∂x1

(
e−8A+2φ(1+B 2

0 )
)

(9.13)

and, in terms of the new coordinates, they read:

f = e1/3∆ r∂r∆−3

1+ y∂y∆
, ∂2

r e1/3∆ = 1

3
∂2

y e−∆ . (9.14)

Thanks to all these definitions we have that Bianchi identities are automatically solved.
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Notice that

e∆ = c1r 3

c2 − y
(9.15)

is a solution of (9.14) which can be T-dualized to the unique supersymmetric AdS6

solution in IIA.
It is possible to make some further progress and rewrite the PDE in (9.14) in a

more linear manner. This is done by performing, following [128, 129], another change
of coordinates

σ= e−1/3∆ , r = ∂ηV , y =σ2∂σV , (9.16)

where V must satisfies a four-dimensional Laplacian in cylindrical coordinates

1

σ2
∂σ(σ2∂σV )+∂2

ηV = 0. (9.17)

Thanks to this transformation we get that the Toda equation in (9.14) is automatically
solved. Now we can re-express all the fluxes in terms of V and the new coordinates.
Another advantage we get from this parametrization is that it is actually possible to
derive all the potential Ci of the RR-fluxes:

d s2 = 2
p

2

33/4
e

1
2φσ

(
Λ∂σV

∂2
ηV

)1/4 [
d s2(AdS6)+

∂σV ∂2
ηV

3Λ
d s2(S2)+

∂2
ηV

3σ∂σV

(
dσ2 +dη2)] ,

eφ = 6
p

3√
Λ∂σV
∂2
ηV

∂2
ηV

(
3
(
Λσ2 + (∂ηV )2 +2σ∂ηV ∂σ∂ηV

)
∂σV +σ(

(∂ηV )2 −9(∂σV )2)∂2
ηV

)
,

B = 4

3

(σ∂σV
(
∂ηV ∂σ∂ηV +σ[

(∂σ∂ηV )2 + (∂2
ηV )2

])
Λ

−V −σ∂σV
)
Vol(S2) , (9.18)

C0 =− 1

18

3∂σV (∂ηV +σ∂σ∂ηV )+σ∂ηV ∂2
ηV )

σ(∂ηV )2∂2
ηV +3∂σV

(
(∂ηV +σ∂σ∂ηV )2 + (σ∂2

ηV )2
) ,

C2 = 2

27

(
η− σ∂σV ∂σ∂ηV

Λ

)
Vol(S2) , Λ=σ(∂η∂σV )2 + (∂σV −σ∂2

σV )∂2
ηV .

9.3 AdS5

In this section we will focus just on M-theory since the only AdS5 solution in type IIB
with an S2 factor is AdS5 × S5, while all the AdS5 solutions in IIA can be uplifted to
the M-theory one. AdS5 backgrounds preserving N = 2 supersymmetry in M-theory
were classified in [130], and it was shown in [131] that they exhaust this class. We
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will prove that all these solutions can be embedded within M-theory class A of our
classification (section 8.4).

Comparing (9.1) with the metric in (8.30) one can see that in order to realize an
AdS5 factor one has to impose

ρ = e2r y, e2∆ = e2λ+2r , v =−e−2λ(2dr +d y). (9.19)

The definition of v however generates a mixed dr d y term in the metric which would
break AdS isometries, so we need also the radial component r to point along one of
the vielbein of the four-dimensional manifold M4 with SU(2)-structure in such a way
as to eliminate the dr cross term. Moreover, we have also to impose that all the AdS
directions have a common warping factor and that the SU(2)-structure is charged
under a U(1) isometry ∂ψ. This last requirement is needed in order to realize the
SU(2)×U(1) R-symmetry of the N = 2 super-conformal algebra in four dimensions.
Imposing all these constraints together with (8.27) is enough to get an identity struc-
ture on the internal space, which can be explicitly written as

u =
√

−∂y D

y
eλ+

1
2 D (d x1+ id x2) , w = 2eiψe−2λ

√
y

−∂y D

(
dr + 1

2
∂y D d y + i(dψ+V )

)
,

(9.20)
where

e−6λ = −∂y D

y(1− y∂y D)
, V = 1

2
(∂x2 D d x1 −∂x1 D d x2) (9.21)

and provided that D satisfies the Toda equation on on (y, x1, x2)

(∂2
x1
+∂2

x2
)D +∂2

y eD = 0. (9.22)

The flux F2 can be derived from (8.28) and reads

F2 = e4λ y−2
(
2(dψ+V )∧d(y3 e−6λ)+2y(1− y2 e−6λ)dV −∂y eD d x1 ∧d x2

)
, (9.23)

and one can check that F = e2C Vol(S2)∧F2 obeys the Bianchi identity thanks to (9.22).
To recap, the solution in this class is given by the following fluxes:

d s2 = e2λ
(
4d s2(AdS5)+ y2 e−6λd s2(S2)

)
+ 4

(1− y∂y D)
e2λ (

dψ+V
)2

+ −∂y D

y
e2λ

(
d y2 +eD (d x2

1 +d x2
2)

)
, (9.24)

F = Vol(S2)
(
2(dψ+V )∧d(y3 e−6λ)+2y(1− y2 e−6λ)dV −∂y eD d x1 ∧d x2

)
,

provided the definitions (9.21). This is exactly the solution of [130, section 3].
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CHAPTER 10

NON-SUPERSYMMETRIC SOLUTIONS

In this chapter we will argue that all the solutions presented in the type II super-
gravity classification can be generalized to a bigger class which has in general N = 0
supersymmetry. One peculiar property of these new solutions is that they are ob-
tained by relaxing some of the pure spinor equations, which means that it is possible
to find non-supersymmetric backgrounds by solving a first order system of PDEs in-
stead of a second order one (namely the equations of motion). This feature provides
many advantages: first of all, as we have seen for the supersymmetric cases, a first
order system is much easier to solve compared to a second order one, so one can
run a classification of non-supersymmetric solutions exploiting the same methods
we have seen in chapters 6 and 7. Moreover, by relaxing just some components of the
pure spinor equations it is possible to preserve D-brane calibration conditions of the
untouched terms, which would allow to detect sources with minimal energy also in a
non-supersymmetric background. This is a useful property when one has to discuss
non-perturbative stability in non-supersymmetric solutions, which is not protected
by BPS conditions.

We will start by discussing how to break supersymmetry in the IIB master class
7.1 by reviewing [38]. Indeed, as said, this solution was first discovered by [25], which
already pointed out a strategy to violate supersymmetry constraints. We will then
discuss how to relax, in analogy with [25], supersymmetry in two classes of type IIA
supergravity, as showed in [42]. We will see that from these three cases and thanks to
the web of duality we pointed out (see figure 7.1), we are actually able to extend the
break of supersymmetry to all the possible classes in the R1,3 ×S2 classification.
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10.1 Supersymmetry breaking in type IIB

In order to make contact with the notation of [25], it is useful to use the SL(2,R) co-
variant formalism of subsection 3.2.2. Let’s then define

G = f3 − ie−φ H ; (10.1)

thanks to the condition ∗6 f3 = e−φ H in (7.2), we have that

∗6 G = iG , (10.2)

this condition on G is called imaginary self-duality.
In presence of a SU(3) structure it is customary to classify forms in terms of a

couple of integers (n,m) where n is the number holomorphic components while m
the number of anti-holomorphic ones. We will also distinguish the forms which are
annihilated by J by adding the superscript 0; such forms are called primitive. For
example if a (1,2)-form is primitive we have α0

(1,2) ∧ J = 0. In the case of three-forms,
it is possible to show that they behave in a simple way under the action of the Hodge-
star operator:

∗6Ω=−iΩ , ∗6α
0
(2,1) = iα0

(2,1) , ∗6(α(0,1) ∧ J ) = iα(0,1) ∧ J , (10.3)

where we recall that Ω is a (3,0) form while J a (1,1). Now, since {Ω,α0
(2,1),α(0,1) ∧ J }

span the space of all possible imaginary-self-dual three-forms, we have that G must
be a combination of these three. However, the supersymmetry constraints H ∧ J =
H ∧Ω= 0 in (7.2) imply that the components proportional toΩ and α(0,1)∧ J must be
set to zero, which means that G is (2,1) primitive in order to preserve supersymmetry.

In [25], it was discovered that the condition (10.2) is enough to make G disap-
pear from all the equations of motion, which means that it is actually possible to get
a proper solution even if G has (0,3) or α(0,1) ∧ J components. This is respectively
equivalent to relaxing the six-form part of the first pure spinor equation (5.31a) and
the five-form part of the second one (5.31b).

The next step is to introduce an explicit modification of the pure spinor equa-
tions in the framework of R1,3 ×S2 solutions and see how supersymmetry-breaking
propagates to all the fluxes and equations. For example, let’s focus on the following
modified pure spinor system

dH (e3A−φΦ−) = 0,

dH (e2A−φReΦ+) =−c

8
Vol(S2)∧d x2 ∧d x3 ∧d x4 ,

dH (e4A−φ ImΦ+) = e4A

8
?λ(F ) ,

(10.4)
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where c is a constant which parameterizes the supersymmetry breaking. Since the
pure spinors are not modified, we can use (6.39) and (6.40) for b = 0, a = −i and run
a classification in an identical way as seen in section 7.1. The result of this operation
is that the metric is not changed compared to (7.7), but now g (defined in (7.6)) can
depend also from x2, and in particular we have:

f ∂x2 g = cx2
2 . (10.5)

This modification propagates also to F3 thanks to (10.2), which now reads

F3 = B ∧F1 −
(
∂x4 ( f g )d x3 −∂x3 ( f g )d x4

)∧C2 − c f d x1 ∧d x3 ∧d x4 , (10.6)

while other fluxes are unchanged. Also the Bianchi identities get modified, indeed
we get that (7.10) reads

∂2
x1

(e−4A)+ 1

x2
2

∂x2 (x2
2∂x2 (e−4A))+42(e−4A f −1)+ 1

x4
2

42( f g 2) =−c2 . (10.7)

Using the web of dualities in 7.1, we can extend this supersymmetry-breaking
technique to case II in type IIA and case III in type IIB.

10.2 Supersymmetry breaking in type IIA

Let’s now switch to type IIA supergravity. We will start by discussing how to break
supersymmetry in case I in type IIA, which would be enough to cover all the possible
cases described in the type II classification. However, we will see that the supersym-
metry breaking technique we introduce for this case does not apply when we have
six-dimensional Minkowski solutions, so we will find a variant for this class. For this
section we will follow [42].

10.2.1 IIA master class

In analogy with the IIB case, in type IIA it is possible to relax in general the six-form
part of (5.31b). This means that imposing the other components of the pure spinor
equations and Bianchi identities it is enough to solve the equations of motion. To
prove this is rather cumbersome and technical, so let’s just sketch the procedure.
Since the metric is written in local coordinates we always have an explicit expression
for the Bianchi identities. Of course it is not possible to solve all of them in full gen-
erality, so what one can do is to use these equations in an algebraic way and see if the
equations of motion can be obtained as linear combinations of them. For instance,
we get the they are enough to solve the equation of motion for the NSNS three-form
(1.15b), but they do not solve the dilaton and the Einstein equations. Since, as said, in
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doing all the simplifications we have used Bianchi identities from an algebraic point
of view, it may happen that some further conditions can be obtained by combining
the derivatives of them. Bianchi identities are second order conditions for the fields
(A,φ,B0) that determine the solution, so deriving them we will get third-order con-
ditions. By combining these equations with appropriate coefficients such that all the
functions which are derived three times vanish, we get a further “consistency” con-
dition provided that H has some legs along x3 and x4. This consistency condition is
enough to solve the remaining equations of motion.

As an example, let’s modify the pure spinor equations in the following way

dH (e3A−φΦ+) = 0,

dH (e2A−φReΦ−) = c

8
e6A−2φVol(M6) ,

dH (e4A−φ ImΦ−) = e4A

8
?λ(F ) ,

(10.8)

where Vol(M6) is the internal-space volume. Solving (10.8) using the pure spinors
defined in (6.37),(6.38) with b = 0, a = i, we get the following modification of (7.18):

∂x2 (e2A−2Φ) = ∂x1 (e−2A B0), (10.9a)

1

x2
2

∂x2 (x2
2 e−2A B0) = ∂x1 (e−6A+2Φ(1+B 2

0 ))− c, (10.9b)

which provide a new definition for H = dB where B = x2
2 e−4A+2φB0Vol(S2). The last

equation affect also the RR-fields

F2 = (∂x4 e2A−2φd x3 −∂x3 e2A−2φd x4)∧d x1 +
(
∂x4 (e−2A B0)d x3

−∂x3 (e−2A B0)d x4
)∧d x2 −

(
∂x1 (e−4A)− c e2A−2φ )

d x3 ∧d x4 ,

F4 = B ∧F2 −x2
2

((
∂x4 (e−2A B0)d x3 −∂x3 (e−2A B0)d x4

)∧d x1

+ (
∂x4 (e−6A+2φ(1+B 2

0 ))d x3 −∂x3 (e−6A+2φ(1+B 2
0 ))d x4

)∧d x2

− (
∂x2 (e−4A)− c e2A−2φ )

d x3 ∧d x4

)
∧Vol(S2) ,

(10.10)

while again F0 = 0. The Bianchi identities (7.20) get modified as following:

∂2
x3

(e2A−2φ)+∂2
x4

(e2A−2φ)+∂2
x1

(e−4A) = c∂x1 e2A−2φ ,

∂2
x3

(e−2A B0)+∂2
x4

(e−2A B0)+∂x1∂x2 (e−4A) = c∂x2 e2A−2φ , (10.11)

∂2
x3

(x2
2 e−6A+2φ(1+B 2

0 ))+∂2
x4

(x2
2 e−6A+2φ(1+B 2

0 ))+∂x2 (x2
2∂x2 (e−4A)) = c∂x2 (x2

2 e−2A B0) .

10.2.2 Massive R1,5 case

The approach showed for the IIA master class can be applied to case II of the IIB clas-
sification, but of course doesn’t work if we have a six-dimensional Minkowski factor
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(as in Case III) since it requires to impose that ∂x3 and ∂x4 are Killing directions, and
therefore H cannot have any leg along them.

Let’s then find a new way to break supersymmetry starting from scratch and de-
riving the R1,5 ×S2 solution just by imposing the pure spinor equation (5.31c) to find
fluxes and the one- and two-form constraints coming from (5.31a),(5.31b) (which are
useful to get a local expression for the metric). What one has to do is basically to use
(6.37),(6.38) with a = 1,b = 0,F0 6= 0, and, after a straightforward procedure similar
to the one performed in [39, section 4.1] to derive (7.48), one gets that the RR-fluxes
read

F0 =2e−2φ∂x1 e2A +e12A−4φBPS2 = m

F2 =−x2
2∂x2 e−4A Vol(S2)+e12A−4φ y3 d x3 ∧d x4BPS1

F4 =0.

(10.12)

where

BPS1 =∂x2 e−6A+2φ−∂x1

(
B0 e−8A+2φ)

,

BPS2 = 1

x2
2

∂x2

(
x2

2B0 e−8A+2φ)+∂x1 e−10A+2φ (10.13)

are the supersymmetric conditions, which must be set to zero if one wants to solve
the rest of the pure spinor equations (i.e., preserve supersymmetry). Now what we
will try to do is to solve the Bianchi identities without imposing the BPS conditions
(10.13), in order to see if there is a way to evade them. Actually, it is immediate to
notice from the Bianchi identity for F2 that also in this case we have to set BPS1= 0,
since when the external derivative hits embedding coordinate of the sphere y3 pro-
duces a term that cannot be compensated in other ways. However, we do not have to
set BPS2= 0 and we can define ∂x2 B0 by imposing that F0 = m is constant. This will
imply the following change in the NSNS three form:

H = x2
2Vol(S2)∧ (∂x2 e−6A+2φd x1 −e−4A ∂x1 e−6A+2φd x2 +m e−12A+4φd x2) . (10.14)

Let’s now move on the Bianchi identity for F2. These can be used to define φ in
terms of A up to an arbitrary function c(x1)

e2φ = e6A

m

(
c −∂x1 e−4A)

. (10.15)

Notice that if c = 0 then we have the same definition of φ and H as in the supersym-
metric case (7.48), so the function c controls the supersymmetry breaking. From the
Bianchi we also get a PDE for the warping function which is a generalization of (7.49):

1

x2
2

∂x2 (x2
2∂x2 e−4A)+ 1

2
∂2

x1
e−8A =−c

(
c −2∂x1 e−4A)

. (10.16)
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With these conditions the equation of motion for H is automatically solved; however,
even if all the Bianchi identities are satisfied, the Einstein and the dilaton equations
are not automatically implied in this case, but only if c is a constant. This is another
sign that this solution cannot be derived from the previous subsection.

Now, doing some reverse engineering, we are able to find how the pure spinor
equations are modified for this case. The result of this operation is

dH (e3A−φΦ+) = 0,

dH (e2A−φReΦ−) = c

8
e8A−2φVol(M4) ,

dH (e4A−φ ImΦ−) = e4A

8
?λ(F ) ;

(10.17)

notice that, as in the previous case, we are changing just the second condition of
(5.31b), but now this equation cannot be relaxed in general but with the precise factor
given in (10.17).
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APPENDIX A

FORMS, SPINORS AND CLIFFORD MAP

In this section we will review some of the conventions we adopted in the main text. To
make contact with the results in the literature, we used [10] conventions for eleven
dimensions and [9, 15] for type II theories. Notice that these hide some subtleties,
and an extra care is needed when one deals with dimensional reduction from M-
theory to type IIA. However the main part of what we will present here applies for
generic dimensions and space-time signature.

A.1 Form conventions

Let’s consider a differential form C of degree c defined over a d-dimensional space

C = 1

c !
CM1...Mc d xM1 ∧·· ·∧d xMc , (A.1)

we define the contraction operator along a generic direction N as

ιNC =CN = 1

(c −1)!
CN M1...Mc−1 d xM1 ∧·· ·∧d xMc−1 . (A.2)

Using this formula multiple times, we can also consider the contraction of C respect
to another differential form B of lower degree b ≤ c:

ιBC = B N1...Nb ιN1...Nb C = (−)b(b−1)/2B N1...Nb
1

(c −b)!
CN1...Nb M1...Mc−b d xM1 ∧·· ·∧d xMc−b

(A.3)
where the sign (−)b(b−1)/2 is due to the permutation of the b indices. Since this oper-
ation appears frequently, it is useful to give it a name:

λ(C ) = (−)c(c−1)/2C . (A.4)
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Combining the last two definitions, we can introduce also the dot operator

B ·C = ιλ(B)C = B N1...Nb
1

(c −b)!
CN1...Nb M1...Mc−b d xM1 ∧·· ·∧d xMc−b . (A.5)

The contraction operator ιM and the usual wedge product d xN∧ satisfies a re-
markable algebraic identity

{d xM ,d xN } = {ιM , ιN } = 0 {ιN ,d xM } = δM
N (A.6)

which allows to interpret them as gamma-matrices over the O(d ,d) metric of the gen-
eralized tangent bundle. Using this perspective differential forms are nothing but the
spinor representation of the Clifford algebra over the generalized tangent bundle, as
explained in section 2.2.2.

Using the definition of (A.4) we can introduce the Chevalley–Mukai pairing of de-
gree k between two forms B and C :

(A,B) = (A∧λ(B))k (A.7)

where the subscript k denotes keeping the k-form degree only. Analogously, we de-
fine the following bracket

{B ,C } = (B ∧λ[(2d − c)C ])k . (A.8)

Notice that these two brackets have the opposite symmetry properties, while (A,B)k =
(−)k(k−1)/2(B , A)k , we have {A,B}k =−(−)k(k−1)/2{B , A}k .

The last operator we have to introduce is the Hodge star, which is defined as

∗CM1...Md−c =
1

(d − c)!

p−g εM1...Md−c N1...Nc C N1...Nc , (A.9)

where the Levi-Civita symbol is fixed to

ε1...d = 1. (A.10)

A.2 Clifford algebra

Let’s start from the definition of the chiral operator, which in generic dimensions can
be written as

γ= cγ0 . . .γd−1 (A.11)

where c is a constant such that c2 = (−)s(−)d(d−1)/2 (s is the metric signature). For ex-
ample, when d = 10 we will choose c = 1, even if also c =−1 was a possible choice. An
important property of the chiral operator which will be useful later is the following:

γγM1...Mk = c
(−)k(k−1)/2

(d −k)!
εN1...Nd−k M1...Mk γ

N1...Nd−k , (A.12)
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where γM1...Mk is the anti-symmetrized product of k gamma matrices, also called a
k-vector.

The chiral operator is just defined in even dimensions, in odd dimensions we
have that k-vectors of degree grater that (d−1)/2 are actually determined by the lower
degree ones. For example in eleven dimensions we fix, consistently with [10],

γ0...10 = 1 (A.13)

so that we have γ10 = γ0...9 =−γ0...9 =−γ where γ is the ten-dimensional chiral oper-
ator according to our definition. This is the reason why we have a misleading minus
sign in equation (1.42).

The next formula we want to introduce is the Fierz identity. It consists simply in

expanding a byspinor C on the basis defined by {γM1...Mk }d̃
k=0:

C =
d̃∑

k=0

1

2
⌊

d
2

⌋ 1

k !
Tr

(
CγM1...Mk

)
γMk ...M1 (A.14)

where b c is the floor function while d̃ is d in even dimensions and bd/2c in odd ones.

The 2
⌊

d
2

⌋
is nothing but the dimension of the gamma-matrices representation. If in

particular C is a bispinor ε1⊗ε2 we can rewrite the trace as:

ε1⊗ε2 =
d̃∑

k=0

1

2
⌊

d
2

⌋ 1

k !
ε2γM1...Mk ε1γ

Mk ...M1 . (A.15)

For the definition of the charge conjugation matrix and other standard spinor
operators, when it is not specified in the main text, we are adopting the conventions
of [2] appendix B.

A.3 Clifford map

Clifford map is the mathematical formalization of the Feynman slash operator: it is a
map between Clifford algebra and exterior algebra

γM1...Mk 7→ d xM1 ∧·· ·∧d xMk . (A.16)

In even dimensions this map is an algebraic isomorphism, while in odd dimensions
it cannot be because the a basis in the Clifford algebra is determined by just an half
of the k-vectors . This mapping is reinforced by the fact that basically every Clifford
algebra operation can be rewritten in terms of differential-form ones and vice versa,
as we will now see. In the rest of the section, as in the main text, we will identify
differential forms and Clifford algebra k-vectors.
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The first gamma-matrix operation we will rewrite in terms of some familiar form
operations is Clifford multiplication of a single gamma matrix γM with a form C :

−→
γ MC = γM C = (d xM ∧+ιM )C , ←−

γ MC =C γM = (−)c (d xM ∧−ιM )C . (A.17)

By iteration of this formula we have

−→
γ M1...Mk =

k∑
i=0

(
k
i

)
d x[N1...Ni ıιi+1...ιk ] ,

←−
γ M1...Mk = (−)k(k−1)/2

k∑
i=0

(
k
i

)
d x[N1...Ni ıιi+1...ιk ](−)kdeg+i ,

(A.18)

where the operation deg is defined as deg(C ) = c.
Using (A.12) we can also rewrite, in even dimensions:

γC =∗λ(C ) . (A.19)

So it is immediate to notice that the self-duality relation of the RR fields (1.13) can
be written as γF = F . On the other hand, in odd dimensions we have (A.13) and
therefore the following identification

C =λ∗C (A.20)

which holds just if C is interpreted as an element of the Clifford algebra.
We can also combine the operators we have seen so far, from

−→
γ M−→

γ =−−→γ−→
γ M , ←−

γ M−→
γ =−→

γ
←−
γ M , (A.21)

it follows that
d xM ∧−→

γ =−−→γ ιM , ιM
−→
γ =−−→γ d xM , (A.22)

while using the definition of λ we also get

λ(d xM ∧Ck ) = (−)k d xM ∧λ(Ck ) , λ(ιMCk ) =−(−)k ιMλ(Ck ) , λ(γM Ck ) =λ(Ck )γM .
(A.23)

Using the relation
γMCγM = (−)c (d −2c)C (A.24)

we can also re-express the two Mukai pairings (A.7) and (A.8) in terms of Clifford
algebra operations when their degree is k = d ; we have for the first one

(B ,C )d = (−)s (−1)deg(B)

2
⌊

d
2

⌋ Tr(∗BC ) . (A.25)

where again s is the metric signature, while for the second pairing

{B ,C }d = (−)s (−)d

2
⌊

d
2

⌋ Tr(∗BγMCγM ) . (A.26)
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