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Abstract

In this thesis we study solutions of string theories from different perspectives. We start in Chapter
1 with an introduction to the main ideas of string theory, focusing in particular on its low-energy
description in terms of supergravity theories. We discuss the main ingredients of the supergravity
theories derived from strings and we present their classical solutions corresponding to the physical
objects we will use in the rest of the thesis. In Chapter 2 we begin the study of non-supersymmetric
backgrounds by building explicit eight-dimensional Anti de Sitter (AdS) solutions of massive type
IIA supergravity. As is common in non-supersymmetric settings, we are only able to solve the
full set of equations of motion numerically. With these methods, we find AdS8 solutions with a
compact internal space having the topology of a two-sphere, with an orientifold plane (O8) sitting
at its equator. In Chapter 3, we extend our study of non-supersymmetric backgrounds by looking
for vacua with a positive cosmological constant. In particular, we find numerical four-dimensional
de Sitter (dS) solutions of massive type IIA supergravity. Some of these vacua involve the same
orientifold plane featuring in the AdS8 backgrounds, which appears a particular singularity in the
supergravity approximation. We analyze this singularity in detail before moving on and studying
dS4 solutions with a different orientifold plane (O6). The appearance of orientifold planes in classical
de Sitter solutions of supergravity theories is required in order to evade a famous no-go theorem,
which also applies to the AdS8 backgrounds we describe in Chapter 2. For this reason, we review
it in our particular setting at the beginning of the same chapter. Finally, in Chapter 4 we change
our perspective, and we use supergravity as a tool to study the physics of the Renormalization
Group (RG) flows. In particular, by using known building blocks, we assemble a seven-dimensional
gravitational theory and we use it to construct the holographic duals of RG flows between six-
dimensional superconformal field theories. Our construction is able to correctly characterize the
physics of these RG flows by confirming, from the gravitational point of view, a conjecture on the
literature regarding the allowed RG flows between these six-dimensional theories.
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Introduction

We know very well only a small corner of the physical world, the one we have been able to access
experimentally. To be more precise, according to the standard model of cosmology, we know only
the 5% of the constituents of our universe [6].

When we do not know how something works, we try to build theories that do not rely on these
unknown parts of the world and are useful only up to the boundary of our ignorance, forgetting what
lives outside. Technically, we construct effective fled theories. Far from being a sign of cowardice,
this modesty in our approach to the natural world is what has fueled the huge progress science has
been able to make in all its history. For example, we do not need to know how quarks and leptons
work and interact with each other to understand the laws of thermodynamics [7] or how electricity
works [8]. Nor even to build the electronic devices that connect our world, or to land on the moon,
even though computers and the moon are made out of quarks and leptons. Effective theories are
enough, and we have successfully enlarged the realm of the things we know by proceeding in this
way. But as a great man once said (and another great man once taught to me) as the bubble of
the things we know grows, also its boundary with the things we do not know gets bigger.

We have reached this boundary many times in the history of effective theories. For example,
when we tried to compute the scattering of four fermions in the Fermi theory [9] at energy scales
above 100 GeV, we got infinite probability for some events to happen. This clearly did not make
sense. This breakdown of the effective theory was signaling that there was the physics of W and
Z bosons outside the bubble, which has been then captured by the electroweak theory [10, 11, 12].
Then also quarks came into the play and eventually we built the Standard Model of Particle Physics,
a beautiful theory able to explain the quantum properties of all the forces we observe in nature, but
gravity. So we can ask ourselves where is now the boundary of our ignorance. The honest answer
is that we do not know till we reach it, since surprises might always be around the corner. Even if
we do not exactly know where this boundary is, we can put some bounds on it. If we want to use
centimeters, we can say that for sure we do not know what happens at distances below 10−33 cm, the
Planck scale. This is the scale where the quantum effects of gravity cannot be neglected anymore.
By looking at this small number, one might think that it is too far away from what we could ever
experience to be relevant, and that we can happily live in our bubble which thus seems pretty big.
A conservative approach would suggest to just build and tune our effective field theories in order
to match with the experimental data, for example with the astronomical observations. However,
there are many indications that this approach is not satisfactory when dealing with gravity. First of
all, the astronomical data are becoming more and more numerous and precise, making us approach
the boundary of our bubble pretty fast. But even if we are able to build an effective model that
explains well our current universe, and the fact that is expanding at an accelerating rate [13, 14], we
have to explain how we got there. Our best candidate model [15, 16, 17] to explain the structures
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we observe today in our universe suggests that it has gone under another phase of (more violent)
exponential expansion during its infancy, called inflation. We can build effective field theories for
inflation but it turns out that they are often sensitive to the physics at the Planck scale [18], needing
again to go beyond the boundary of our bubble.

Moreover, another current and very active line of research proposes that not all the effective field
theories that look consistent below a certain energy scale can descend from a complete quantum
gravity theory. Those that do not are said to belong to the swampland [19]. This is a highly
debated topic but the main idea, regardless of the details of the various criteria that try to define
the swampland, has striking effects for the effective field theory paradigm.

From different points of view it seems that quantum gravity has so many subtle and interesting
physical implications that it would not be fair to its beauty and importance to relegate it to live
outside of the bubble of the things we care about. And, as we have argued, doing so could also
lead to incomplete or even wrong results. Thus it seems natural to use our current best candidate
for a quantum theory of gravity, string theory, to investigate all these issues. To this end, we start
in Chapter 1 by reviewing the basic ideas of string theory, focusing on its low-energy limits: the
supergravity theories. The prefix super comes from the fact that these theories possess a peculiar
symmetry that relates bosons and fermions, known as supersymmetry . Another feature that these
supergravities share is that they are defined in ten (or eleven)-dimensional space-times. But our
universe is not supersymmetric and only looks four-dimensional. If we want to use string theory
to describe the world we live in, an important problem to solve is to understand solutions of string
theory where a part of the space is compact, such that an observer which is not able to resolve the
compact directions would only see the (four) non-compact ones. Similar constructions are called
string compactifications1, and part of this thesis will be devoted to the study of this problem. In
particular we will construct non-supersymmetric compactifications.

In Chapter 2 we start attacking this problem by looking for non-supersymmetric solutions in a
particularly restricted scenario, where direct progress can be made. In particular, we look for eight-
dimensional Anti de Sitter space-times (AdS8), where the high amount of symmetry constrains the
problem enough to allow us to construct explicit numerical solutions of the theory’s equations of
motion.

We then continue our journey in the realm of non-supersymmetric string theory compactifi-
cations by trying to construct backgrounds more directly related to our observed universe. The
simplest way to describe a universe expanding at an accelerated rate is to approximate it as a de
Sitter space-time. Constructing de Sitter space-times introduces many challenges and in Chapter 3
we will confront ourselves with these problems by building different explicit dS4 solutions of massive
type IIA supergravity. Both the solutions we find here and the AdS8 solutions we have introduced
above involve some peculiar objects of string theory known as orientifold planes. However, near
these objects the supergravity approximation is not reliable and thus more study is required in
order to assess the validity of these solutions as true backgrounds of the full string theory.

Other than being useful as a framework to construct explicit phenomenological models, string
theory has also been very fruitful as a playground to test various ideas on quantum gravity. In
particular, it has provided many explicit realizations of the holographic principle, through the so-
called AdS/CFT correspondence [21]. This correspondence relates a quantum gravitational theory
on an Anti de Sitter space-time to a quantum conformal field theory defined on its boundary. In
Chapter 4, we change our perspective and we use supergravity as a tool to study the physics of

1A pedagogical and extensive review of the various ideas and techniques used in the world of string compactifica-
tions can be found in [20].
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Renormalization Group (RG) flows from the holographic point of view. In particular, by using
known building blocks, we assemble a seven-dimensional gravitational theory and we use it to
construct the holographic duals of RG flows between six-dimensional superconformal field theories.
Our construction is able to correctly characterize the physics of these RG flows by confirming,
from the gravitational point of view, a conjecture on the literature regarding the allowed RG flows
between these theories.
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Chapter 1

Foundations

In this chapter, we introduce the main ideas and tools we need in this thesis. In particular, we
start in section 1.1 with a basic introduction to the string theory ideas, based on the classic book
[22] and on the more modern review [23]. We hereby stress that this is not to be intended as a
satisfactory introduction to the beautiful world of string theory, which would be well beyond the
scope of this work, but merely as an introduction to the terminology we will need to develop this
thesis. The interested reader can complement our discussion with aforementioned references. Other
good references on this vast topic include [24, 25, 26].

In section 1.2 we will then focus on the low-energy limits of string theories, the ten-dimensional
supergravity theories, and in particular in the type II theories. Again, we will just touch upon the
main ingredients we will need later, and the interested reader is referred to [27, 28].

1.1 String theory introduction

Perturbative string theory is the study of the dynamics of one-dimensional extended objects called
strings. The shift of paradigm from the study of point-like interactions (i.e. particles) proper of the
standard Quantum Field Theory has some immediate benefits. First of all, the existence of a small,
but finite, fundamental length scale, the string length ls, automatically cures the ill-definiteness of
interactions on arbitrarily small scales that plagues the study of point-like objects. In Quantum
Field Theory various methods have been developed to overcome these difficulties, i.e. to renormalize
the theory, but they fail when we try to apply them to the gravitational interaction. In other words,
the gravitational interaction is non-renormalizable. This does not mean that without string theory
we cannot study the quantum effects of the gravitational interaction at all, but that we can do
it only in the context of effective field theories. Such theories can capture the physics at a low
energy scale but will become meaningless above a certain scale. For the gravitational interaction

this scale is the Planck scale. As a length scale, it is of order lp =
√

~G
c3 ∼ 10−33 cm. Surprisingly,

in string theory the two issues are related. If on one side the appearance of a finite length scale
spreads out the region of space-time where the interactions happen, on the other side it turns out
that the quantum theory of one dimensional objects necessarily has to include gravity. Indeed, in
string theory the different oscillation modes of the strings carry the quantum numbers of different
particles, and all the consistent string theories always have an oscillation mode that corresponds to
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a massless graviton, the mediator of the gravitational interaction in the low-energy effective theory.
A little bit more concretely, the study of free string theories is the study of the two-dimensional
quantum field theory defined on the world-sheet σ of a string propagating in space-time. This
theory is a Conformal Field Theory (CFT) arising (in the purely bosonic case) as a quantization of
the Polyakov action

SP = − 1

4πl2s

∫
σ

√
−h∂Xµ · ∂Xνηµν , (1.1)

where the Xµ are the embedding coordinates of the string world-sheet in flat space-time (equipped
with the Minkowski metric ηµν) and h is a metric on the world-sheet. The conformal symmetry of
this action plays a central role in constraining the physics of string theory.

Notice that we have started the previous paragraph using the word perturbative. What we mean
by it is that the theory we have just introduced is only defined as a perturbative expansion in a
parameter which we call gs, the string coupling , governing the strength of the interactions between
strings. The interaction of strings can be defined as a weighted sum of over all the histories of the
strings. This sum is naturally organized into a sum over Riemann surfaces with different topologies,
weighted by powers of the string coupling with a factor

g−χs , (1.2)

where χ is the Euler characteristic of the Riemann surface. The Euler characteristic χ appears
naturally in this context as the interactions are defined by augmenting the Polyakov action (1.1)
with the Einstein-Hilbert term on the world-sheet

SEH =
1

2π

∫
σ

√
−hR . (1.3)

In two dimensions this term is only sensitive to the topology of the space, giving as result of the
integration the integer number χ.

Interestingly, in string theory gs is not a free parameter, but consistency of the above construc-
tion requires it to be related to the expectation value of a dynamical massless scalar field φ already
present in the spectrum. This scalar field is usually called dilaton and its relation to the string
coupling is given by

gs = 〈eφ〉 . (1.4)

We know a handful of perturbative string theories defined in this way, and the most studied among
them share some peculiar properties: they are all supersymmetric and they require the existence
of ten space-time dimensions. Supersymmetry on the world-sheet is required to have a consistent
quantum theory, otherwise a tachyon is always present in the spectrum, signaling an instability.
Consistency of the quantum theory in flat space then also requires the dimension of the space-time
to be ten. The five perturbative string theories with these properties1 are known as type IIA, type
IIB, type I, heterotic SO(32) and heterotic E8×E8. They differ by the amount of supersymmetry
they require (N = 2 or N = 1), the strings they describe (open and closed or only closed), and the

1Even though we will not comment more on these issues, let us notice that the five possibilities we have listed
in the main text are not exhaustive. First of all, quantizing the theory on a background with non-constant dilaton
(see also footnote 3) might alleviate the bound on the dimension of the space-time by introducing including a term
proportional to (D − 10) in equation (1.12). See for example [29, 30] for a general discussion and [31, 32] for
applications to de Sitter backgrounds. Moreover, also a ten-dimensional non-supersymmetric heterotic string theory
exists [33].
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gauge group. Albeit from the perturbative description they appear to be completely independent
theories, during the so-called second superstring revolution it has been understood that they are
intimately related by a beautiful net of dualities. In this context, we use the word duality to denote
an equivalence of two theories that from their definition are a priori different. Two important
dualities in string theory that we will need in the rest of the discussion are known as T-duality and
S-duality . T-duality is a perturbative duality, meaning that it works at each order in the string
perturbation theory, that relates a string theory with some dimensions compactified on a certain
space to a string theory compactified on a different space. S-duality, instead, relates a weakly-
coupled string theory to a strongly-coupled one. Moreover, the web of dualities connecting the
different theories hints to the existence of another mysterious theory, named M-theory . This theory
is largely unknown, but we know that it is defined in an eleven-dimensional space-time and that at
low energies it reduces to the unique eleven-dimensional supergravity.

Particularly important to us will be the low-energy limits of the string theories. We are going
to describe these low energy limits better in section 1.2, but for now let us just quote here the
most important term in their action, common to all the perturbative critical string theories we
have introduced:

S[g, φ] =
1

κ2

∫
M10

√
−ge−2φ(R+ 4∇φ∇φ) , (1.5)

where here and in the rest of the work we use the definition κ2 ≡ (2π)7l8s . Notice the factor e−2φ

in the integrand. Being it a tree-level closed string action it is easy to understand the origin of this
factor by combining equation (1.2) and equation (1.4). Indeed a tree-level action for a closed string
comes from a spherical world-sheet, which has Euler characteristic equal to 2.

Other than connecting the different theories, the dualities have been also useful to understand
some of the non-perturbative features of string theories. Of particular importance is the appearance
of new dynamical objects known as Dirichlet branes or D-branes. In the perturbative string theories
involving open strings, for the dynamics of the open strings to be well defined, some boundary
conditions on their world-sheet have to be chosen. For a long time it has been thought that only
Neumann boundary conditions (i.e. open strings whose endpoints can fluctuate but that cannot
‘stretch’) are compatible with Lorentz symmetry. However, it has been discovered that T-duality
exchanges Neumann and Dirichlet boundary conditions, such that after a T-duality a string whose
endpoints were free to move anywhere, now have endpoints fixed to move on some hyper-plane.
This restriction does not break the Lorentz symmetry of the whole theory if the hyperplane itself
is a dynamical object. Such an object has been called D-brane. These objects, indirectly described
in open-string theories as the endpoints of open strings, are not directly visible in the perturbative
spectrum of the theory and are thus non-perturbative degrees of freedom. By studying interactions of
open and closed strings at low energies, one can obtain a low-energy action describing the dynamics
of a Dp-brane. We are going to describe it better in section 1.2, but for now let us consider its
gravitational part

SDBI = − 1

(2π)plp+1
s

∫
Σ

e−φ
√
−det(g + F)Σ . (1.6)

This action is known as Dirac-Born-Infeld (DBI) action. It is integrated on the p+ 1 dimensional
world-volume Σ of the Dp-brane and involves the pullback of the space-time metric g. It also
includes a two-form F which we will describe later. For the moment, let us just focus on the factor
e−φ that accompanies it. Since this action is the result of tree-level interactions involving open
strings, its physics is captured by a Riemann surface with the topology of a disk, which has Euler
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characteristic equal to 1. From the action (1.6) we can see that the mass of a Dp-brane is

mDp ∼
1

gs
. (1.7)

Thus, at weak coupling (gs � 1) these objects are very massive and do not appear in the perturba-
tive spectrum. However, they become light at strong coupling where they can become the degrees
of freedom of a dual-theory. As we are going to see in section 1.2.2, Dp-brane also have a charge
and they couple to higher-dimensional generalizations of the electric potential.

Another important construction in string theory is that of an orientifold projection. An orien-
tifold projection is a projection of the theory under a symmetry which is the result of a combined
action on the world-sheet theory and on the space-time. The fixed loci in space-time of this action
are called orientifold planes, or Op-planes, where p-denotes their space-time dimensions. These ob-
jects are not-dynamical, but the effect they produce on the-space time can be captured at tree-level
by an action similar to the one we have introduced for Dp-branes. In particular, to these objects
we can associate a tension TOp (a mass per unit volume). The most common type of Op-plane has
negative tension, which is related to the tension of the Dp-brane of the same dimensionality as

TOp = −2p−5TDp . (1.8)

Moreover, if we conventionally take the charge of Dp-branes to be positive, these orientifold planes
also have negative charge and are usually called Op− planes. This is the most common kind of
orientifold plane but, as we are going to see, also orientifold planes with positive tension and charge
exist, and are usually denoted as Op+ planes. An extensive review of orientifold planes in string
theory can be found in [34].

1.2 Low-energy limit

As we have already discussed, the quantization of free strings produces a graviton and a massless
scalar. These are not the only massless fields. The spectrum of all the string theories also includes
the degrees of freedom associated to a space-time two-form B. Together, the metric g, the dilaton φ
and the two-form B, form the part of the spectrum which is known as the massless Neveu-Schwarz
(NS) sector.

In type II theories, on which we will focus from now on, there are other massless degrees of
freedom associated to higher-degree p-forms Cp. In particular, odd values of p are allowed in type
IIA string theory while even ones appear in type IIB string theory. This sector is called Ramond-
Ramond (RR) sector. Other than the massless fields, there are massive states in both sectors with
masses related to the string length as

M2 ∼ 1

l2s
. (1.9)

If we take the string length to be very small, these masses are extremely high and the corresponding
degrees of freedom are not excited at low-energies. Thus, we can try to derive an effective action
describing only the massless degrees of freedom and, as such, valid only at energies well below (1.9).
A procedure to obtain this effective action is to compute the scattering amplitudes for the particles
in the spectrum at tree-level in string perturbation theory (the spherical world-sheet), restricting
such computations to energy scales smaller than (1.9). One can then compare the results obtained
in this way with the ones computed from an effective space-time action. With this procedure one
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can obtain all the supergravity actions we are going to describe. However, consistency of the theory
gives us another way to compute the low-energy effective action of the NS sector. Indeed, we can
consider strings propagating not on a flat-background, but on a background describing a coherent
state of fields produced by other strings. The world-sheet action is now described by an interacting
CFT, where the dimensionless coupling constant is given by

ls
rc
, (1.10)

with rc the typical radius of curvature. Just like for the free-string world-sheet theory, consistency
of the quantum theory requires that the Weyl symmetry, which is a gauge symmetry on the world-
sheet, is non-anomalous. This in turn requires the β-function of this interacting CFT to vanish.
We cannot compute it exactly, but if the radius of curvature is large (i.e. the curvature is small)
the coupling constant (1.10) is small and we can compute the β-function perturbatively. For a
spherical world-sheet (tree-level in string perturbation theory) the first order of the expansion in
the coupling (1.10) is given by

βMN (g) = α′
(
RMN + 2∇M∇Nφ−

1

4
H2
MN

)
+O(α′2) , (1.11)

β(φ) = α′
(
−1

2
∇2φ+∇φ∇φ − 1

24
H2

)
+O(α′2) , (1.12)

βMN (B) = α′
(
−1

2
∇PHPMN +∇PφHPMN

)
+O(α′2) , (1.13)

where, with a standard notation, we have defined α′ ≡ l2s . Notice that this is an expansion in
derivatives. Our low-energy actions can now be defined such that they reproduce these β-functions
as their equations of motion. We stress again that in regions of the space-time where the curvature
is large, the world-sheet CFT is strongly coupled, and we cannot trust the β-functions we have
computed perturbatively. Hence, the corresponding effective action breaks down in such regions.
This problem is a technical problem but not much a conceptual one, in the sense that it is well-
defined in terms of the world-sheet path integral. This is different from the problem of strongly-
interacting strings (gs � 1), for which we even lack a definition of the theory. Finally, notice that
this procedure it not able to reproduce the dynamics of the RR fields, since we do not know how
to couple the world-sheet theory to a background where the RR fluxes are non-trivial.

Another way to constrain the low-energy actions is by using supersymmetry. Since the world-
sheet theory is supersymmetric, we can try to construct space-time theories with the same amount
of supersymmetry and the correct field content. We this procedure we can constrain enough the
low-energy actions and obtain, for example, the type IIA and type IIB supergravities which we are
going to describe in the next section.

1.2.1 Type II supergravities

We now briefly describe the main properties of the ten-dimensional type II supergravities with a
particular focus on their equations of motion. More details can be found in [26].

We start from the type IIA superstring. Its low-energy physics is described by massive type IIA
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supergravity [35], whose bosonic part of the action is given by:

SIIA,bos =
1

κ2

∫
M10

√
−g
[
e−2φ

(
R+ 4∇φ∇φ− 1

12
H2

)
− 1

2

(
F 2

0 +
1

2
F 2

2 +
1

4!
F 2

4

)]
(1.14)

− 1

2

(
dC3 ∧ dC3 ∧B +

F0

3
dC3 ∧B ∧B +

F 2
0

20
B ∧B ∧B ∧B ∧B

)
.

We have defined the field strengths in terms of the potentials as

H ≡ dB, F2 ≡ dC1 + F0B, F4 ≡ dC3 −H ∧ C1 +
F0

2
B ∧B , (1.15)

and we have defined the square of an n-form A without any factor:

A2 = AM1...MnA
M1...Mn . (1.16)

We are working in string-frame, but notice that the e−2φ factor does not appear in front of all
the terms. This is due to the fact that, as is customary, the RR gauge potentials Cp’s have been
rescaled with a factor of the dilaton in order to simplify the following Bianchi identities:

dH = 0 (1.17)

dF2 −H ∧ F0 = 0 (1.18)

dF4 −H ∧ F2 = 0 (1.19)

dF0 = 0 . (1.20)

Moreover, there is a new flux F0, which is a 0-form and it is fixed from the Bianchi identity (1.20)
to be a constant. This flux does not arise as the field strength of a gauge potential. Thus, there are
no propagating degrees of freedom associated to it and it is not visible in the perturbative string
spectrum. This constant is usually called Romans mass, hence the name massive type IIA.

From the action (1.15) we can derive the dilaton and Einstein equations of motion:

R+ 4∇2φ− 4∇φ∇φ− 1

12
H2 = 0 (1.21)

RMN + 2∇M∇Nφ−
1

4
H2
MN = e2φ

(
1

2
F 2

2MN +
1

12
F 2

4MN

)
+

− e2φ

4
gMN

(
F 2

0 +
1

2
F 2

2 +
1

24
F 2

4

)
. (1.22)

Notice that the Einstein equation (1.22) immediately reduces to the vanishing of the β-function for
g (1.11) in the absence of RR fluxes. The same is true for the dilaton equation of motion (1.21) and
the β-function for φ (1.12) once combined with the previous equation. The equations of motion for
the fluxes, obtained by varying the action (1.15) with respect to the their potentials, are given by

d(e−2φ ? H) = F2 ∧ ?F4 −
1

2
F4 ∧ F4 − F0 ? F2 (1.23)

d(?F2) = −H ∧ ?F4 (1.24)

d(?F4) = −H ∧ F4 . (1.25)
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The action (1.15) can be made invariant under ten-dimensionalN = 2 supersymmetry once fermions
are added. However, since our focus in this work will be on non-supersymmetric solutions, we do
not write here the complete action nor its supersymmetry variations. The interested reader can
look in [26] and references therein.

When F0 = 0 and fermions are added, the action (1.15) can be obtained as a dimensional re-
duction from the unique N = 1 supergravity in eleven-dimensions. In particular, the Majorana
spinor ε generating the supersymmetry variations of the eleven-dimensional supergravity decom-
poses into the couple of ten-dimensional of Majorana-Weyl spinors of opposite chiralities generating
the supersymmetries of type IIA supergravity.

However, there exists another maximal supersymmetric supergravity theory in ten dimensions,
whose supersymmetry generators are instead two spinors with the same chirality. This theory is
called type IIB supergravity and describes the low-energy dynamics of the string theory of the same
name. Other than for the chirality of the spinors generating their supersymmetries, IIA and IIB
differ for the degrees of the p-form potentials appearing in the RR sector, with type IIB having
only odd values of p. In particular, there is also a self-dual five-form field strength

F5 = ?F5 . (1.26)

Its presence prevents the formulation of a compact action like (1.15), since in general it is hard to
write down a Lagrangian for self-dual forms.2 However, the bosonic part of a pseudo-action can be
written as

SIIB,bos =
1

κ2

∫
M10

√
−g
[
e−2φ

(
R+ 4∇φ∇φ− 1

12
H2

)
− 1

2

(
F 2

1 +
1

3!
F 2

3 +
1

2

1

5!
F 2

5

)]
+

− 1

2
C4 ∧H ∧ dC2 , (1.27)

where the definition of the field strengths in terms of the potentials is

H ≡ dB, F1 ≡ dC0, F3 ≡ dC2 − C0H, F5 ≡ dC4 −H ∧ C2 . (1.28)

The naming pseudo of this action refers to the fact that, upon variation, it does not enforces the
self-duality constraint (1.26), which has then to be imposed by hand once the equations of motion
have been derived. Notice that also in this case the factor e−2φ does not appear in front of the whole
action, since the RR fields have again been redefined to simplify the following Bianchi identities:

dH = 0 (1.29)

dF1 = 0 (1.30)

dF3 −H ∧ F1 = 0 (1.31)

dF5 −H ∧ F3 = 0 . (1.32)

The dilaton and Einstein equations of motion now read:

R+ 4∇2φ− 4∇φ∇φ− 1

12
H2 = 0 (1.33)

RMN + 2∇M∇Nφ−
1

4
H2
MN = e2φ

(
1

2
F 2

1MN +
1

4
F 2

3MN +
1

96
F 2

5MN

)
+

− e2φ

4
gMN

(
F 2

1 +
1

6
F 2

3

)
. (1.34)

2See for example [36] for an approach to this problem.

14



Since the above equations differ from the IIA equations (1.21), (1.22) only for the RR fluxes, they
also reproduce the vanishing of the β-functions (1.11), (1.12). The equations of motion for the
fluxes now read

d(e−2φ ? H) = F1 ∧ ?F3 + F3 ∧ F5 (1.35)

d(?F1) = −H ∧ ?F3 (1.36)

d(?F3) = −H ∧ F5 . (1.37)

Even if we will not need it in the following, for completeness let us notice that an important feature
of the action (1.27) is its invariance under an SL(2,R) transformation. This transformation is more

easily described by switching to the Einstein frame metric gE = e−
φ
2 g and defining the three-form

F̃3 ≡ F3 + C0H , (1.38)

and the complex scalar (usually called axio-dilaton)

τ ≡ C0 + ie−φ . (1.39)

Given an element S ∈SL(2,R) of the form

S ≡
(
a b
c d

)
, (1.40)

the classical action (1.27) is invariant under the transformation

τ → τ ′ =
aτ + b

cτ + d
,

(
F̃3

H

)
→
(
F̃ ′3
H ′

)
=

(
a b
c d

)(
F̃3

H

)
(1.41)

which leaves the Einstein-frame metric gE and the five-form F5 untouched. SL(2,R) is not a
symmetry of the full quantum theory, but its SL(2,Z) subgroup is; the S-duality we have introduced
in the previous section is an element of this discrete subgroup.

1.2.2 Coupling with the open string sector

We have described the closed string sector through its low-energy action. In the same spirit, a
low-energy action can be obtained for the open-string spectrum, thus describing the dynamics of
the Dp-branes. Its bosonic part is given by

SDp = −Tp
∫

Σ

e−φ
√
−det(g + F)Σ +Qp

∫
Σ

Cp+1 ∧ eF , (1.42)

where Σ is the world-volume of the p-brane, and we have defined

F = B + 2πα′f , (1.43)

where f is the curvature of the gauge field living on the p-brane, induced by the open strings
ending on it. By the notation (. . .)Σ we mean the pullback on the world-volume Σ of the space-time
tensors, which does not apply to f being already defined on it. Explicitly, the metric on the brane
is gαβ = gMN∂αX

M∂βX
N , where the XI ’s are the transverse scalars describing its embedding in
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the space-time. We have already encountered the first term appearing in (1.42), the DBI action,
which describes the gravitational coupling of the brane with the background. The second term
describes instead the electric coupling to the RR sector and it is called Wess-Zumino (WZ) action.
It generalizes the usual coupling of a charged particle to an external electric field. The branes we
will consider preserve half of the supersymmetry of the original type II theories, making them stable
objects. For this to happen their charge has to be equal to their tension

Qp = Tp. (1.44)

Notice that, for dimensional reasons, from the WZ coupling in the action (1.42) we can see that
only Dp-branes with even p appear in type IIA and with odd p in type IIB. Both of the terms in
(1.42) arise from tree-level open-string interactions, so they both need to involve an e−φ factor.
In the WZ term this factor does not appear due to the redefinition of the RR potentials we have
described in the previous section. As for the supergravity actions, being the action (1.42) the first
term of an expansion in gs, it is well-defined only in regions of the space-time where eφ is small.

1.2.3 D-brane and O-plane solutions

We now describe an important class of solutions of the equations of motion of the supergravity
theories we have introduced in section 1.2.1. These solutions are the low-energy avatars of the
Dp-branes and Op-planes appearing in the full string theories. This description is based on [27].

The solution of the appropriate ten-dimensional type II supergravity theory describing a Dp-
brane in flat space-time is given by

ds2 = H−1/2
p dx2

p+1 +H1/2
p (dr2 + r2ds2

S8−p) , (1.45)

where dx2
p+1 is the space parallel to the Dp-brane and Hp is a harmonic function defined on its

transverse flat (9− p)-dimensional space. Explicitly, in the various cases the Hp’s are given by

Hp = 1 +
hp
r7−p for p < 7, H7 = 1− h7 log(r), H8 = 1− h8|r| (1.46)

where the constants hi’s are defined as

hp =
(2πls)

7−pgs
(7− p)ω(8−p)

for p < 7, h7 =
gs
2π
, h8 =

gs
4πls

(1.47)

with ω(8−p) being the volume of a unitary radius (8−p)-dimensional sphere. The other non-vanishing
fields are given by

eφ = gsH
− p−3

4
p , Cp+1 = g−1

s (H−1
p − 1)volp+1 , (1.48)

where volp+1 is the volume form of the space parallel to the brane. In Figure 1.1 we plot the
qualitative behavior of Hp and in Figure 1.2 the corresponding profile for the dilaton.

Let us briefly analyze the main features of the various cases.

• p = 8. In this case the transverse space is one-dimensional. Hence, the coordinate r is not
a radial coordinate and the solution is defined also for r < 0. However, there is a maximum
distance r0 = ±4π lsgswhere the solution stops making sense since H8 becomes negative and

the square roots appearing in (1.45) make the metric imaginary.
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Figure 1.1: The function Hp for 1 6 p 6 8.
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Figure 1.2: The behavior of the eφ for the Dp-brane solutions. Here gs = 1.

• p = 7. The situation is similar to the p = 8 case, with a maximum r0 = e
2π
gs .

• 3 < p < 7. The string coupling eφ is bounded by the constant gs at r = ∞, which can
be taken arbitrarily small such that the solution can be trusted at tree-level in the string
coupling. However, the curvature blows up approaching r = 0.

• p = 3. The string coupling is a constant, and it can be taken to be arbitrarily small. The
harmonic function has a pole, but R = 0 and also other curvature invariants remain finite. It
has been argued that r = 0 is not a physical singularity and the solution could be continued
beyond this point [37].

• p < 3. In this case the situation is reversed: the curvature goes to zero as r = 0 but the string
coupling blows up.

Finally, we also observe that the appearance of the harmonic functions Hp’s with a pole at r = 0
is due to the fact that for the particular ansatz (1.45), the equations of motion computed in the
presence of the DBI action are schematically of the form

∆Hp = Tpδp , (1.49)

where δp are δ-functions localized at r = 0. The Laplacian in (1.49) is defined with respect to
the flat metric on the transverse space and Tp is the tension of the brane. Thus the non-linear
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gravitational Einstein’s equation reduce in this case to a simple linear equation. This phenomenon
will not happen in more general cases.

Let us now discuss the solutions associated to Op-planes with negative tension. Such solutions
are obtained by changing the signs in Hp (and introducing the relative factor 2p−5)

HO
p = 1− 2(p−5) hp

r7−p for p < 7, HO
7 = 1 + 4h7 log(r), HO

8 = 1 + 8h8|r|. (1.50)

In Figure 1.3 we plot these functions and in Figure 1.4 we show the corresponding profile for the
string coupling.
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Figure 1.3: The behavior of the function HO
p for the various Op-planes.
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Figure 1.4: The behavior of eφ for Op-planes in flat space. Here gs = 1.

The qualitative behavior of the various cases is the following.

• p < 8. The solution ceases to make sense at a finite distance from the Op-plane. In contrast
with the positive-tension case, the region where the object is located lies outside the space-
time. We call this formal “hidden region” the hole produced by an O-plane. However, notice

that this region is very small, being it of order r0 ∼ lsg
1

7−p
s for p < 7 and r0 ∼ e−

π
2gs for p = 7.

• 3 < p < 8. The value of the string coupling blows up approaching the boundary of the hole
produced by the Op-plane from outside. This makes the supergravity approximation alone
not trustable when approaching this singularity.
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• p = 8. The singularity is milder and it only amounts to a discontinuity on the derivatives
of the various functions. Moreover, the string coupling is bounded everywhere. However, for
p = 8 there is also a qualitative different solution to the equations of motion, which is given
by

H̃8 = 8h8|r| . (1.51)

Now at r = 0 the string coupling eφ blows up:

eφ ∼ |r|− 5
4 , (1.52)

making it more similar to the other Op-planes for p > 3, with the hole shrunk to a single
point. The metric describing this solution reads:

ds2
10 = (h8r)

− 1
2 ds2
‖ + (h8r)

1
2 dr2 . (1.53)

• p = 3. The solution still has the unphysical region around r = 0, but the string coupling is a
constant which can be taken to be everywhere arbitrarily small.

• p < 3. Again the situation is reversed. These Op-planes still have the unphysical hole for
r < r0 but the string coupling goes to zero when approaching their boundary from outside.

Finally, let us introduce here the low-energy effective actions describing Op-planes. As we have
already argued, these are non-dynamical objects, but their backreaction on the space-time can be
taken into account with an action similar to the one describing Dp-branes. However there will be no
gauge fields now living on their world-volume, and no scalars associated to transverse fluctuations:

SOp = −TOp
∫

Σ

e−φ
√
−det(g +B)Σ +QOp

∫
Σ

Cp+1 ∧ eB , (1.54)

where the WZ action takes into account the fact that they are also charged under the RR potentials.
Their charge is related to the one of the corresponding Dp-branes by QOp = −2p−5QDp.

Notice that this action is now somewhat formal since, as we have just shown, in the supergravity
approximation Σ often lives outside of the physical space-time, in a region where both the metric
and the string coupling are imaginary. Moreover, for p > 3 the string coupling starts growing
when reaching the boundary of this region from outside, making the validity of the tree-level action
questionable. Nevertheless, the solutions we have just described are thought to be genuine solutions
of the full string theory, even though they are dubious as solutions of supergravity, because of their
world-sheet definition.

1.2.4 Type Ĩ

The orientifold constructions that will be more relevant to us are the one connecting the type II
string theories to the so-called type Ĩ model. In this section, we briefly describe them.

Starting from type IIB string theory, we can quotient the theory by the parity symmetry acting
on the world-sheet, without doing anything explicit on the space-time. Thus, the orientifold plane
associated to the quotient with respect to this symmetry is the whole ten-dimensional space-time
of type IIB, or, equivalently, an O9-plane. Since orientifold planes carry RR charge, they couple
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to the corresponding RR potential through the WZ action we have introduced in (1.42). For an
O9-plane this coupling introduces the term

SWZ ∝
∫
M10

C10 (1.55)

into the action. However, the C10 gauge form does not appear anywhere else in the action, thus
its equations of motion can never be satisfied. This corresponds to a tadpole, and in particular to
an RR tadpole since it comes from the RR sector. In order to avoid inconsistencies in the theory
we need to cancel it. This can be done by adding a suitable number of D9 branes, such that the
total charge vanishes.3 In particular, since the charge of an O9-plane is 16 times the charge of a
D9 brane we need 16 of them. In this way the coefficient in front of the term (1.55) in the action
vanishes and its equations of motion are trivially satisfied. The addition of these space-time filling
D9 branes brings the corresponding open strings attached to them but, since D9-branes fill the
whole space-time, these open strings are free to move anywhere and the gauge fields associated
to them now add a non-abelian gauge sector to the theory. This gauge group can be computed
to be SO(32). Moreover, the quotient of the starting type IIB theory by the parity symmetry on
the world-sheet has produced a theory of unoriented strings, since the only remaining Riemann
surfaces are non-orientable. The theory obtained in this way has half of the supersymmetry of the
original theory and it turns out to be one of the known perturbative type I string theories we have
introduced in section 1.1. By performing a T-duality, this theory is dual to the so-called type I ′.

The type I ′ can also be understood more directly from type IIA string theory. In this case,
parity alone is not a symmetry of the world-sheet theory, and to obtain a symmetry we have to
combine it with an involution acting on the space-time. This defines a theory on half of the space.
If we combine this action with a compactification on a circle of the reflected coordinate, we obtain
the type I ′ model, where the two fixed loci are two O8-planes. The RR tadpole now requires to
cancel the total charge in the compact space, which in turn requires the addition of 16 D8-branes.

Let us describe this situation from the supergravity point of view. Since we only have nine-
dimensional sources, we include only F0 in the action:

κ2S =

∫
M10

√
−ge−2φ(R+ 4(∇φ)2)− 1

2

∫
M10

√
−gF 2

0 +

+
∑
i

−κ2τi

∫
Σi

√
−g|Σie−φ + κ2τi

∫
Σi

C9|Σi (1.56)

≡ κ2Sbulk + κ2Sloc ,

where the index i runs over all the sources and

F10 = dC9 = ?F0, F0 = − ? F10. (1.57)

By writing the localized term in this way, we are assuming that there are only objects with opposite
values for the tension and the charge. In the presence of sources, the Bianchi identity for F0 will

3Notice that in this way also the total tension vanishes. If we instead consider configurations where the total
charge vanishes but not the total tension, we could find a tadpole in the NS-NS sector, for example generating a
potential for the dilaton. This does not signal an inconsistency of the corresponding string theory, but only that flat
space-time with constant dilaton is not a solution of the field equations anymore. Some discussions on these models
can be found in [38] [39] [40] [41].
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now be modified, as can be easily checked by computing the equation of motion for the C9 potential:

0 = δC9(κ2S) = δ

(
−1

2

∫ √
−gF 2

0 + κ2τ

∫
δ(z − z0)C9 ∧ dz

)
(1.58)

= δ

(
−1

2

∫
F10 ∧ ?F10 + κ2τ

∫
δ(z − z0)C9 ∧ dz

)
(1.59)

= −
∫
dδC9 ∧ ?dC9 + κ2τ

∫
δ(z − z0)δC9 ∧ dz (1.60)

= −
∫
δC9 ∧ d ? F10 + κ2τ

∫
δ(z − z0)δC9 ∧ dz . (1.61)

Hence we get
d ? F10 = κ2τδ(z − z0)dz ⇒ dF0 = −κ2τδ(z − z0)dz . (1.62)

Integrating the above equation across the i-th source sitting at z = zi we thus obtain

∆iF0 = −κ2τi at z = zi. (1.63)

As we have already remarked, consistency of this compactification requires the presence of 16 D8-
branes. We consider a simplified setting with only two stacks of D8-branes, with the circle described
by the coordinate z divided in 4 regions as in Figure 1.5.

Figure 1.5: The circle described by the coordinate z in the type I ′ model. The two fixed loci of the
Z2 involution are z = 0 and z = z0. At z = q and z = 2z0 − q two stacks of 8 D8-branes each are
located.

Consistently with (1.63), in the four regions the Romans mass takes the values

2πF0 =


4 0 < z < q
−4 q < z < z0

4 z0 < z < 2z0 − q
−4 2z0 − q < z < 2z0

, F 2
0 =

4

π2
. (1.64)

The local solution of the equations of motion of the theory is given by

ds2 = H−1/2ds2
Mink9

+H1/2dz2 (1.65)
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and
eφ = gsH

−5/4 H = a+ gsF0z. (1.66)

Imposing the continuity of H at the location of all the sources fixes H in the four regions to be

H =


a+ gs|F0|z 0 < z < q
a+ gs|F0|(2q − z) q < z < z0

a+ gs|F0|(2q − 2z0 + z) z0 < z < 2z0 − q
a+ gs|F0|(2z0 − z) 2z0 − q < z < 2z0

, |F0| =
4

2π
. (1.67)

Notice that for the metric and the dilaton to be well-defined we also have to require H > 0 and
thus

a > gs(z0 − 2q)|F0|. (1.68)

We can now consider the limit q → 0 of this configuration. This would correspond to put all the
D8-branes on top of the O8− plane at z = 0. The resulting object as the same tension and charge of
an O8+ plane, which for our purposes is simply an O8− with the sign of the tension and the charge
reversed. From the supergravity point of view the description in terms of O8−+16 D8 or that of an
O8+ are indistinguishable, but not from the string theory point of view, where they differ because
of the open-string degrees of freedom attached to the D8-branes. The configuration with an O8+

and an O8− plane is known as type Ĩ model, and it will be important for us in Chapter 3. Finally,
let us conclude this section by noticing that, as already emphasized in [42], in the limit where the
inequality (1.68) is saturated, the dilaton blows up on the O8− with fewer D8’s on top of it. This
particular case, corresponding to the case (1.51) of the previous section, would be suspicious from
the supergravity point of view, but its definition through the world-sheet theory makes this singular
supergravity solution trustable.
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Chapter 2

AdS8 solutions

We start our discussion of non-supersymmetric backgrounds of string theory by looking for solutions
preserving all the symmetries of the eight-dimensional Anti de Sitter (AdS) space. The motivation
for constructing backgrounds of this kind is twofold. On one hand, by enforcing the symmetries
of AdS8, we are guaranteed not to fall into supersymmetric solutions in disguise, since it is known
that no superconformal group admits a bosonic subgroup which includes the isometry group of
AdS8. Let us be a bit more precise. The isomorphism between the (d − 1)-dimensional conformal
group and the isometries of the d-dimensional AdS space is at the hearth of the AdSd/CFTd−1

correspondence, as the first requirement for such a correspondence to hold is that the symmetries
on both sides coincide. By virtue of this identification, the study of possible supersymmetric AdS
solutions is mapped to the study of supersymmetric extensions of the conformal group. The fact
that a certain superalgebra exists does not guarantee that a corresponding supersymmetric AdS
background exists, but it is a necessary condition. Moreover, as anticipated, it has been shown
long ago [43, 44] that for d > 7 no superconformal algebra whose bosonic subalgebra contains
so(d − 1, 2)C, and whose fermionic subalgebra is in the spinor representation, exists. This result
rules out supersymmetric AdS8 solutions. Actually, as can be seen from [44], this is a fairly general
feature: superconformal algebras are very constrained, and in the cases in which they exist it is due
to ‘accidental’ isomorphisms between some low-dimensional Lie algebras.

We have thus learned that all the AdS8 backgrounds, if any, are necessarily non-supersymmetric.
From both the technical and the conceptual point of view this introduces some challenges. On the
technical side, working without the help of supersymmetry requires us to directly solve the full
set of second order non-linear partial differential equations that are the equations of motion. In
supersymmetric cases this can be avoided, since it can be shown that it is often enough to impose
the first order equations that enforce the symmetry, plus the equations of motion for the fluxes, to
automatically obtain solutions to all the equations of motion (see e.g. [45] for massive type IIA and
[46] for eleven-dimensional supergravity)

Due to to the powerful constraints imposed by supersymmetry, in some cases it possible to
completely classify all the solutions of a given space-time dimension. For example, all the super-
symmetric AdS7 and AdS6 solutions have been by now completely classified (see [47, 48, 49] for
AdS7 and [50, 51] for AdS6). Actually this represents a small corner of the landscape problem, i.e.
the study of all the possible consistent backgrounds of string theory. As we have argued, in the
non-supersymmetric sector it is much harder, and various conjectures have been proposed to rule
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out various regions of the non-supersymmetric landscape. Regardless of these difficulties, we can
hope that the AdS8 case constitutes a constrained enough case where explicit progress towards a
classification can be made. This is our second motivation to look at this particular example.

As we are going to see, the requirement that all the AdS8 isometries are preserved highly
constrains the possible fluxes, and leaves us with only a two-dimensional space (plus the dilaton) to
be determined. In such a restricted scenario, a general no-go theorem, which we review in section
2.1, forbids the existence of smooth solutions. Albeit quite constrained, the full equations of motion
still constitutes a system of coupled non-linear PDEs in two dimensions which we are not able to
solve in full generality. In order to make progress and exhibit explicit solutions, we then propose
an extra ansatz which imposes and extra U(1) symmetry. This ansatz will be motivated by the
physical source that can introduce the possible singularities needed to evade the no-go theorem.
With this simplification we get a system of ODEs, which we are then able to solve numerically.

As anticipated, all the solutions we find have to involve some kind of singularity. The physical
significance of these solutions depends on the fact that these singularities can be understood as
the breakdown of the supergravity approximation near a physical object described by the full
string theory. For most of the singularities we will encounter we will not be able to make such an
identification and we discard them. However, we also find a class of singularities for which this
identification is possible. In particular, the leading order behavior of the non-trivial fields (the
metric and the dilaton) matches at first order in the distance from the object the behavior that
we recognize to be the one of an O8− in flat space, the one of diverging-dilaton type described in
(1.51).

Figure 2.1: Half of the internal space for a typical AdS8 solution. The topology of the full internal
space is the one of an S2, with an O8-plane where both the metric and the dilaton diverge sitting
at its equator.

This behavior is not entirely unexpected, since diverging dilaton O8-planes also appear in many
known AdS supersymmetric solutions, e.g in AdS6 [52], AdS7 [53] and AdS3 [54]. The fact that
the dilaton blows up makes the validity of all these solutions questionable, since they have been
found in supergravity, a weakly coupled description of string theory only valid in regions of the
space-time where the dilaton is small.

In some cases, it is possible to find independent arguments to believe that similar solutions can be
lifted to full-fledged string theory solutions. For example, for the singularity associated to Op-planes
in flat space we tend to believe them due to their world-sheet description. For supersymmetric AdS
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solutions, we have the possibility to address the validity of these backgrounds through holography.
For example, for AdS7 this has been done in [55], where a perfect match with the field theoretic
results has been found. In our non-supersymmetric situation the question is still open and the
existence of these backgrounds in a fully UV completed theory is not yet known.

We can take these open questions as an opportunity to investigate non-supersymmetric holog-
raphy, for example with the approach of the conformal bootstrap, in a well-defined setup. For a
pedagogical review see e.g. [56]. Roughly speaking, conformal field theories are so constrained that
they are specified by a set of data called CFT data. For the most part, these data are just real
numbers. However, not every choice for this set of real numbers gives a consistent theory, and the
idea of the conformal bootstrap is to find which numbers work by starting from some ‘guesses’ and
checking if they satisfy all the constraints of a unitary CFT. The first proposals of this idea go back
to the 70’s [57, 58]. In practice, it is not yet possible to impose all the constraints, which are not
even known in general. What we are currently able to do is to put some bounds on the CFT data,
obtaining some allowed/not-allowed regions in the space of putative CFT data. Remarkably, by
exploiting just a small subset of the constraints, these allowed regions have shapes that point to-
wards the existence of interesting CFTs. For example, in the three-dimensional case by considering
just single [59] and multiple [60] scalar correlators it has been possible to sharply isolate a region in
the parameter space that it is thought to describe the three-dimensional Ising model. The power of
these methods is that they do not rely on a Lagrangian weakly coupled description of the theory,
going beyond the perturbative definition. For example in [61] bootstrap techniques have been used
to study six-dimensional the N = (2, 0) supersymmetric CFT describing the IR limit of a stack of
M5 branes in M-theory, which has no known Lagrangian description.

However, the possibility that non-supersymmetric holography is realizable in string theory is
not settled (see [62] for a recent proposal). Indeed, among the proposed criteria to rule out non-
supersymmetric parts of the string landscape we find the conjecture that all the non-supersymmetric
AdS backgrounds are unstable. In particular, it is claimed that non-supersymmetric AdS hologra-
phy is not realizable in consistent quantum theories that at low energies reduce to Einstein gravity
coupled to a finite number of fields [63]. As we are going to show in section 2.4, the proposed
decay channels that would make these backgrounds unstable are not present in our solution. An
interesting complement to this stability analysis would be to perform a full Kaluza Klein reduction.
Albeit our background is quite simple, the presence of a non-trivial warping and its numerical na-
ture background makes it complicated to analyze the full spectrum in detail. We leave all these
interesting open questions to a future work [4].

In the meantime, a paper trying to address the validity of these singular solutions in supergravity
itself has been put out [64], in which the authors argue that they are instead not allowed. As we
are going to carefully review in section 3.2 of the next chapter, where we encounter these O8-planes
in a different setup, the proposed argument to invalidate these solutions states that identifying the
leading-order behavior near the singularities is not enough, and it shows that trying to match also
the sub-leading one with the flat space case will result in no allowed solutions. We think that this
is well beyond the regime of applicability of the supergravity approximation, as even the leading
order behavior is going to be corrected by the full equations of motion of string-theory near the
strongly-coupled region. We postpone a more detailed discussion to section 3.2. This chapter is
based on the published work [1], where also more general solutions than the ones we present here
can be found, including an analysis of the construction of AdS8 solution in type IIB supergravity.
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2.1 No smooth solutions

In this section we specialize to our setting a classical no-go theorem due to Maldacena and Núñez,
[65] which is used in many contexts to exclude various regions of the allowed string-theory landscape.

For concreteness, we specialize it to our case, and we show that it forbids the existence of AdS8

backgrounds with smooth compact internal spaces without boundaries. We work in massive type
IIA supergravity, but it is be immediate to see that the same result also holds in type IIB. For the
purposes of this section, it is more convenient to work in the Einstein frame, which is obtained with
the following rescaling of the metric:

gE ≡ e−
φ
2 gS . (2.1)

Applying this rescaling to the type IIA string-frame action in (1.15) we obtain

κ2SEIIA =

∫
M10

√
−g
(
R− 1

2
∇φ∇φ− 1

12
e−φH2 − 1

2
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e

5
2φF 2
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F 2
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20
B ∧B ∧B ∧B ∧B

)
, (2.2)

where now all the metric-related quantities are written with respect to the metric gE . This change
of frame has brought the gravitational part of the action to be the canonical Einstein-Hilbert term.
As we are going to see in section 3.2.2 the action (2.2) is equivalent to (1.15) up to boundary terms,
which we discard since here we are interested in internal spaces without boundaries.

The equation of motion for the dilaton derived from the action (2.2) reads

∇2φ =
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4
e

5
2φF 2

0 +
3

4
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where

∇2φ = −∆φ =
1√
−g

∂M
(√
−ggMN∂Nφ

)
. (2.4)

We now specialize these equations to our case at hand. First of all, notice that the NS-flux H and
the RR-flux F4 have to vanish, otherwise they would kill the AdS8 symmetry:

H = F4 = 0 . (2.5)

The most general ten-dimensional metric that preserves the AdS8 isometries can then be written
in the form

ds2
E = e2Ads2

AdS8
+ ds2

M2
, (2.6)

with the function A only depending on the coordinates of M2. Observe that with this definition

√
−g = e10A√−g8

√
g2 , (2.7)

where g8 and g2 are respectively the determinants of the AdS8 metric and of the metric on M2.
Moreover, to preserve the AdS8 symmetry also φ cannot depend on the space-time coordinates, so
that its second derivative becomes simply

∇2φ =
e−10A

√
g2

∂m
(√
g2e

10Agmn2 ∂nφ
)
, (2.8)
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where m,n are indices in the internal space.
We can then plug these results into the dilaton equation of motion obtaining
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Assuming everything is smooth, we can multiply the above equation by
√
g2e

10A obtaining a total
derivative
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We can now integrate (2.10) on the internal space, and since it is compact and without boundaries
we get

0 =
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Given that both terms in the brackets are non-negative we conclude that the only possibility for
equation (2.11) to hold is to set

F0 = F2 = 0 . (2.12)

With this result at hand, we can now look at the Einstein equation. In the cases where all the
fluxes vanish it can be simplified to

RMN =
1

2
∇Mφ∇Nφ . (2.13)

We now specialize it to directions along AdS8. Before doing so we recall that the Ricci tensor of
the warped product (2.6) decomposes as

Rµν = ΛgAdS8
µν − e2AgAdS8

µν (8(∇A)2 +∇2A) (2.14)

= gAdS8
µν

(
Λ− 1

8
e−6A∇2(e8A)

)
, (2.15)

where µ, ν are indices on AdS8 and Λ is defined by the equation

RAdS8
µν ≡ ΛgAdS8

µν . (2.16)

Finally, we notice that the right hand side of equation (2.13) evaluates to zero since for symmetry
φ cannot depend on the coordinates of AdS8. Equating the two sides of (2.13) we then get

Λ =
1

8
e−6A∇2(e8A) . (2.17)

Similarly to what we did for the dilaton equation in (2.9), we can expand the second derivative
and, assuming everything is smooth, multiplying by the appropriate power of the warping factor
we obtain a total derivative. Integrating on the internal space then gives Λ = 0.

From this result, we learn that AdS8 solutions have to be necessarily singular if the internal
space is compact and without boundaries. In the next section we will obtain and analyze solutions
with this property.
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2.2 Equations of motion

In this section we derive the equations of motion that AdS8 backgrounds have to satisfy and we
describe some of their features. We already know that they only admit singular solutions, which
we need to interpret, if possible, as the presence of localized sources. However, for the time being
we focus on the local equations of motion, away from the sources.

From now on, we will always work in the string frame. The most general metric that preserves
the isometries of AdS8 is

ds2 = e2W ds2
AdS8

+ ds2
M2

, (2.18)

where W is a function only depending on M2, which we will call warp factor . This warp factor is
related to the function A we defined in the previous section by

W = A− φ

4
. (2.19)

We fix the radius of AdS8 such that it is an Einstein space with Einstein constant −1. Finally, the
manifold M2 is assumed to be compact. By looking at the equations of motion for the fluxes we
immediately see some constraints. Plugging into the equation (1.23) the requirement that both F4

and H vanish by symmetry, we are left with the condition

F0 ? F2 = 0 , (2.20)

from which we see that either F0 or F2 has to vanish. We will focus on the case F2 = 0 for the rest
if this thesis, since the case where F0 = 0 does not gives interesting solutions. More details can be
found in [1].

The full set of the remaining equations of motion then reads

0 = R− 8e−2W − 72(∇W )2 − 16∇2W + 4∇2φ+ 32∇W∇φ− 4(∇φ)2 (2.21)

0 = e−2W + 8(∇W )2 +∇2W − 2∇W∇φ− 1

4
F0e

2φ (2.22)

0 = Rαβ − 8(∇αW∇βW +∇α∇βW ) + 2∇α∇βφ+
1

4
F0e

2φgαβ , (2.23)

where all the metric-related objects are computed with respect to gαβ , the metric on M2. Unfortu-
nately we are not able to find solutions of this system of partial differential equations as it is, hence
we are going to simplify it in the next section.

2.2.1 Reduction to ODEs

In order to get explicit results, we will now assume an extra symmetry, namely an U(1) isometry.
This choice will reduce the system of PDEs we have obtained in the previous section to a more
tractable system of ODEs. This ansatz is motivated by the fact that the only flux turned on is F0.
This flux couples to D8-branes and O8-planes, which are co-dimension 1 objects. By symmetry,
these objects are extended along AdS8 and one of the internal coordinates. We take this internal
coordinate to be periodic, realizing the S1 where this extra U(1) symmetry acts. Thus, we make a
cohomogeneity 1 ansatz, where we assume that all the functions depend on a single coordinate z.
Our reduced ansatz for the metric now reads

ds2
10 = e2W ds2

AdS8
+ e−2Q(dz2 + e2λdθ2) , (2.24)
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where in these local coordinates θ parametrizes an S1 and all the functions, including the dilaton,
now depend on the coordinate z only. This ansatz gives the following system of equations of motion:

0 = −λ′′ + 2λ′φ′ − (λ′)2 +Q′′ + λ′Q′ − 4e−2(Q+W ) − 8W ′′ − 8W ′(λ′ − 2φ′) +

+ 2φ′′ − 2(φ′)2 − 36(W ′)2 (2.25)

0 = e−2(Q+W )(F 2
0 e

2(W+φ) − 4)− 4W ′′ − 4W ′(λ′ − 2φ′)− 32(W ′)2 (2.26)

0 =
1

4
F 2

0 e
2φ−2Q − λ′′ − (λ′)2 +Q′′ +Q′(λ′ − 8W ′ + 2φ′)− 8W ′′ − 8(W ′)2 + 2φ′′ (2.27)

0 =
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4
F 2

0 e
2φ−2Q − λ′′ + 2λ′φ′ − (λ′)2 +Q′′ +Q′(λ′ + 8W ′ − 2φ′)− 8λ′W ′ . (2.28)

Before discussing its proprieties, let us try to simplify it. As usual in general relativity, we can
extract from the full set of the equations of motion a first order equation which acts as a constraint.
In our case it is obtained as 1

2 ((2.25)−(2.27)) and it reads:

(φ′)2 = φ′(λ′ −Q′ + 8W ′)− 2W ′(2λ′ − 2Q′ + 7W ′)− 2e−2(Q+W ) − 1

8
F 2

0 e
2φ−2Q. (2.29)

We can then trade one of the equation entering in the linear combination, say the first one, for the
first order equation (2.29). Moreover, it can be easily shown that one of the remaining second order
equations can be eliminated, since it is a combination of the first order one, its derivative and the
remaining ones. Before doing so, we fix the gauge redundancy in the definition of Q with the choice

Q = W. (2.30)

Then, eliminating one equation with the previous procedure, say (2.27)1, and taking a linear com-
bination of the remaining equations, we are left with the simpler system

(φ′)2 = −1

8
e−4W (F 2

0 e
2(W+φ) + 16) + φ′(λ′ + 7W ′)− 2W ′(2λ′ + 5W ′) (2.31)

W ′′ =
1

4
e−4W (F 2

0 e
2(W+φ) − 4)−W ′(λ′ + 8W ′ − 2φ′) (2.32)

λ′′ = 2W ′′ + (2W ′ − λ′)(λ′ + 8W ′ − 2φ′) + e−4W . (2.33)

Some comments on this system are in order. First of all, notice that λ never appears without
derivatives. This means that it could be shifted by a constant amount without changing the system,
thus producing a new solution from a given one. However, this shift could be reabsorbed into a
redefinition of the coordinate θ, whose periodicity will be fixed in the next section, where we look
for solutions with a regular point.

We want to find solutions of the system (2.31)-(2.33) where the behavior of the functions make
up a compact space. A first possibility that springs to mind is to make also the coordinate z
periodic. However, it is possible to extract a combination of the equations of motion and their
derivatives that reads:

∂z(2φ
′ − λ′ − 8W ′) = (2φ′ − λ′ − 8W ′)2 + 9e−4W . (2.34)

From the above equation we see that the derivative of the function (2φ′−λ′− 8W ′) has always the
same sign, and as such it cannot be made periodic. This fact was expected as a periodic solution
would have been smooth, a possibility we have already excluded in the previous section.

1This works only if φ′ 6= 4W ′, but it can be easily shown that if φ′ = 4W ′ there are no solutions.
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Another important feature of the system (2.31)-(2.33) is that it is invariant under the constant
rescaling

W →W + c, φ→ φ− c, λ→ λ+ 2c, z → z2c . (2.35)

From the ten-dimensional point of view this rescaling has the combined effect:

ds2 → e2cds2, eφ → e−ceφ . (2.36)

Thus, given any solution we can act on it with c to generate a new solution with smaller curvature
and smaller string coupling, without changing the value of F0. However, as we are going to see in
section 3.2.3, this rescaling cannot be seen as a field of the eight-dimensional theory.

Since we are not able to find analytic solutions of the system (2.31)-(2.33) we will start looking
for perturbative and numerical solutions in the next section.

2.3 Perturbative and numerical solutions

We now study the equations perturbatively, in order to find if they admit local solutions. If they
do, we will then proceed to extend these solutions numerically and try to understand their global
properties.

We start our analysis by looking for regular endpoints, i.e., points where the S1 shrinks regularly.
For a point where an S1 shrink not to be singular, the local geometry should look like the one of
R2 near the origin of the polar coordinates. Thus we require for the metric the local behavior

ds2
M2
∼ dz2 + z2dθ2 , for z ∼ 0 . (2.37)

Notice that, in order to avoid conical singularities, the periodicity of the radial coordinate has
to be 2π. This requirement fixes a possible rescaling of λ alone, which is a symmetry of the full
system, since it would be equivalent to a rescaling of θ, spoiling its periodicity. Summing up, the
requirements for the S1 to shrink regularly imposes the following local behavior for λ:

e2λ = z2 +O(z3) . (2.38)

Notice that the rescaling c does not spoil the regularity conditions since it also rescales z with an
e2c factor, which is then factorized in front of the whole metric.

Since near z = 0 we are thinking of z as a radial coordinate, the requirement of smoothness for
all the functions is that they do not have linear pieces in z. Indeed, if they do, such a linear term
in z becomes a square root in Cartesian coordinates x, y

z =
√
x2 + y2 , (2.39)

making the functions not smooth at the origin. We will then impose

W ′(0) = φ′(0) = 0 . (2.40)
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With these requirements we get the local solution
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5
2F

4
0 − 28c1c
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80c41
+O(z8) . (2.43)

Albeit the system involves a quadratic equation, on the regular point the two solutions coincide,
and we end up with a unique local solution. We have truncated the above local solution to the first
orders, but it can be easily extended to arbitrarily high orders. This local solution only depends on
two positive numbers, c1 and c2, on which the rescaling c acts as

c1 → e2cc1, c2 → e−
4
5 cc2 . (2.44)

In order to decouple its effect we define the new variables

u =
1

4
log(c1) +

5

8
log(c2), v =

1

4
log(c1)− 5

8
log(c2) , (2.45)

which are such that u is not affected by the rescaling and v → v + c. At this point we can choose
different values for the parameter u and for the flux constant F0 and start the numerical evolution.
By making some experiments, we have found that for an u below a certain threshold the evolution
stops at points where eW → 0. We are not able to identify singularities with this behavior with any
physical object. However, above a certain threshold the system is generically attracted to singular
points where the functions behave as

eW ∼ t− 1
4 , eφ ∼ t− 5

4 , eλ ∼ t− 1
2 , with t ≡ |z − z0| . (2.46)

Near such a point, the local form of the full solution is then

ds2
10 ∼ t−

1
2 (ds2

AdS8
+ dθ2) + t

1
2 dt2, eφ ∼ t− 5

4 . (2.47)

By comparing (2.47) with the solution (1.53) we interpret it as a diverging-dilaton O8-plane ex-
tended along AdS8 × S1, with possibly D8-branes on top of it. The number of D8’s on top of the
O8-plane is related to the value of F0 on its left. Indeed, it is constrained both by the fact that the
Z2-symmetry requires F0 to be odd around the O8-plane, which gives

∆F0 = −2F left
0 , (2.48)

and by the Bianchi identity

∆F0 = − 1

2π
(nD8 − 8) , (2.49)

where the 8 comes from the charge of the O8-plane. Combining (2.48) and (2.49) we obtain the
relation

nD8 = 8 + 4πF left
0 . (2.50)
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Figure 2.2: A numerical solution with u = 1, v = 1.5 and F0 = − 2
2π . The functions are eλ (orange),

eφ (blue) and eW (green). On the left, the internal S1 shrinks regularly. On the right, the solution
ends on a diverging-dilaton O8-plane, with 4 D8 branes on top of it, where the functions diverge as
in equation (2.46).

In this language, a negative number of D8-branes would correspond to anti-D8 branes, since we are
only looking at their charge. In Figure 2.2 we show a typical solution with this behavior.

In order to be sure that we have correctly identified the diverging behavior of the various
functions in the numerical solution, we can try to analytically solve the equations near the singular
point. Identifying the subleading behavior is not immediate, but after some hints from the numerical
solutions we obtain the following expansions
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F 4
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+O(t4) , (2.51)
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t3 +O(t4) . (2.53)

Notice that this solution depends on four free parameters ai. If we had started the numerical
evolution from here we would have needed to tune them in order to hit a point where the S1

shrinks regularly.
A way to check if the singularity we are identifying with an O8− has the correct tension would

be to couple the bulk action to the localized action for such an object and compute its effect on
the equations of motion. To avoid repetitions, we postpone this analysis to next chapter, where
we will encounter the same singularity in another class of solution, and we extensively study it
from this point of view. For the time being, let us anticipate that this prescription is somewhat
ambiguous, due to the fact that the localized action for such an object is divergent, introducing a
δ-function with a diverging coefficient in the equations of motion. A possibility to make sense of
this expression is to rewrite the equations of motions such that the coefficient of the delta function
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is just a number, the tension appearing in the localized action. Applying this procedure to our
solutions reproduces this tension, and it can be explicitly checked both on the numerical solutions
and in their analytical expansions (2.51)-(2.53).

2.4 Stability

In this section, we study the stability properties of the numerical solutions we have constructed in the
previous section. In general, there are two kinds of instabilities, perturbative and non-perturbative
ones. Perturbative instabilities can be understood as the solution not being a local minimum of the
action, such that small perturbations to it can make it leave the critical point forever. A physical
way to understand perturbative instabilities is to perform a Kaluza-Klein reduction around the
background. The main idea is to decompose the fluctuations of the full ten-dimensional fields into
fields of different spins on the external space-time, and to analyze their stability by expanding
the action at the quadratic order around the vacuum. Perturbative instabilities are then detected
as tachyonic modes.2 This is in general a hard computation since very often different modes are
coupled to each other. In our case the main technically difficulties arise from the presence of
a non-trivial warp factor and from the numerical nature of the background. We have started a
perturbative study [4], and preliminary results seem to indicate that spin 2 and spin 1 modes do
not introduce any instability, but the full spectrum has not yet been analyzed.

Non-perturbative instabilities can instead be pictured as the solution not being a global mini-
mum of the potential, such that tunneling effects to lower vacua may occur. For some early work
on these effect in the gravitational setting see [69], and for extensions to the case with p-form fields
see [70]. Non-perturbative instabilities, being related to genuinely quantum effects, are under less
control and are not completely understood. Nevertheless, we can try to investigate some of the
proposed decay channels. In particular, we will look at bubbles in AdS, where a bubble is defined
as a spherical configuration that it is nucleated at a given a time, and we try to understand their
evolution. A first type of bubble that one can consider is a spherical of Dp-brane. As proposed
in [71], this bubble can be thought of as the higher-dimensional analogous of the Schwinger pair
production, where in presence of an external electric field a pair of particle and anti-particle is
produced. In the higher-dimensional case, this effect is due to the p-form fields filling a region of
the space-time and leads to the production of the p-brane that couples to it through the WZ action.
For an AdSd ×M10−d compactification, such a bubble is described by a Dp-brane extended along
a submanifold of AdSd of the form

R× Sd−2 ⊂ AdSd , (2.54)

where R is the time-like direction. The remaining p− (d− 2)-dimensions of the brane would then
wrap a submanifold of the internal space:

Σp−(d−2) ⊂M10−d. (2.55)

Since the RR flux coupled to the brane jumps across it, the vacuum inside the bubble is different
from the vacuum outside. If after the creation the bubble expands, eventually reaching the boundary
of AdSd in finite time, this process completely destroys the original vacuum, leaving us with a new
vacuum. We interpret this process as a tunnel effect from the original vacuum to the new one. In

2For a comprehensive review of this approach see [66]. As an example, an early explicit computation in the
context of AdS5 × S5 backgrounds can be found in [67, 68].
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general, the potential energy has two contributions, the gravitational one, coming from the DBI
action, which would make the brane to collapse, and the ‘electric’ one, coming from the WZ action,
which would make the bubble to expand. In supersymmetric configurations, these two effects cancel
each other, and the resulting configuration, if admitted, represents a static BPS domain wall. In
more general non-supersymmetric cases, one of the two forces will dominate and the bubble would
either expand or collapse. An extension [63] of the Weak Gravity Conjecture [72] suggests that
there is always a Dp-brane for which the gravitational force is weaker. Thus, it suggests that in
non-supersymmetric configurations such bubbles would always expand reaching the boundary of
AdS in finite time and completely destroying any non-supersymmetric vacuum. In some examples
this conjecture has been explicitly tested in a test-brane approximation. For example, in [71]
this effect has been computed for a non-supersymmetric AdS3 × S3 ×K2 background of type IIB
supergravity, and in [73] for a non-supersymmetric vacuum of massive type IIA. In both cases such
brane configurations, if created, tend to expand.

Let us now analyze what happens in our non-supersymmetric AdS8 backgrounds. A spherical
Dp-brane bubble would wrap a submanifold of AdS8 of the form

R× S6 × Σp−6 , (2.56)

which only leaves the possibilities p = 6 and p = 8, i.e. D6-branes and D8-branes. However,
D6 branes can be readily excluded. Indeed such a brane would electrically couple to F8 ≡ ?F2,
which is absent on our background. Therefore ,only the gravitational term is present, which will
make the brane collapse, if created. This leaves us with the possibility of instabilities mediated by
D8-branes. However, we now argue that such a brane cannot even appear in our solution, since it
would intersect transversely the O8-plane already present in the background, a situation which is
not allowed as we readily show. Working in global coordinates in AdS8,

ds2
10 = e2W (− cosh ρ2dt2 + dρ2 + sinh2 ρds2

S6) + e−2W (dz2 + e2λdθ2) , (2.57)

we can take the bubble to be at a fixed ρ = ρ0. Since the background O8-plane is located at z = z0,
and completely fills the AdS space, the test D8-brane and the background O8-plane necessarily
have to intersect. However, consistency of such a configuration would require both n0 = 2πF0 to
change its sign when crossing the O8-plane and to jump of one unit when crossing the D8. From
Figure 2.3 we see that satisfying these two conditions simultaneously is indeed not possible.

Thus, it seems that the Dp-branes bubbles are either absent or collapsing on our background,
preventing its decay. Notice that in contrast to the non-supersymmetric AdS4 vacuum in [73], in
this case there is no supersymmetric AdS8 solution on which our vacuum can decay to.

We conclude this section considering another possible bubble instability, known as bubble of
nothing . Such a bubble is defined as the locus on the external space-time where a sphere on the
internal space shrinks smoothly. These kinds of bubbles have been first proposed in [74] for the
simple Kaluza-Klein vacuum Mink4 × S1. In that case the surface of the bubble is a locus where
the internal S1 shrinks smoothly. More recently, bubbles of nothing have been considered in other
non-supersymmetric compactifications of string theory. For example, in [75] the authors show that
these bubbles destabilize some non-supersymmetric quotients of the AdS5 × S5 vacua in type IIB
[76], where the quotient introduces a one-cycle that can then shrink producing the bubble. In
another recent example [77], it has been shown that it is the internal S2 of the S2 fibration over
S4 producing the internal CP 3 space of a class of AdS5 solution in M-theory [78] that can shrink
smoothly producing this instability. In our case one could imagine the case where the internal S2
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Figure 2.3: A hypothetical configuration describing a bubble of D8-branes (in blue) nucleated at
ρ = ρ0 in AdS8. The O8− of the background solution (in red) is located at z = z0 for all the values
of the coordinate ρ. For this intersecting configuration it is not possible to consistently satisfy all
the conditions on n0 = 2πF0 in all the regions of the space-time.

shrinks smoothly, but the resulting geometry cannot be smooth being the sphere not round. A
possible way out is to imagine a geometry that asymptotes to our backgrounds for ρ → ∞, but
where the S2 becomes smooth going into the interior of AdS. This possibility seems unlikely given
the presence of the O8-plane at the equator of the sphere.
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Chapter 3

dS4 solutions

We now turn our attention to solutions of string theory more directly related to our observed uni-
verse. Various astronomical observations indicate that our universe is expanding at an accelerating
rate [13, 14]. This feature is well described by a de Sitter space-time, a solution of the Einstein’s
equation with a positive cosmological constant. However, observations also constrain this cosmo-
logical constant to be very small. We do not know how to explain this value within the actual
framework of quantum field theory other than adding it by hand. As we have suggested in the
introduction, understanding very important features of our world, such as the nature of the cos-
mological constant and the physics of the early universe, requires us to embed our effective models
into an UV complete theory. String theory provides such a framework.1

In this chapter, we will explore a little bit this realm by trying to construct four-dimensional
de Sitter space-times in string theory. This goal introduces many challenges. First of all, de Sitter
solutions with a compact internal space cannot be supersymmetric.2 Thus, we will be confronted
again with the problem of constructing non-supersymmetric backgrounds. Moreover, the general
no-go theorem [65], which in section 2.1 we have specialized to a particular case, can be formulated
also in the presence of explicit physical sources. In this setting [65] shows that the existence of
de Sitter vacua in the supergravity approximation requires the inclusion of orientifold planes to
generate the required positive potential energy. However, as we have seen both in the flat space
solutions in section 1.2.3 and in the AdS8 models in the previous chapter, supergravity breaks
down near orientifold planes and we might need to go beyond the supergravity approximation in
order to understand the physics of these backgrounds. Given all the difficulties in building explicit
de Sitter solutions of ten-dimensional string theory, an efficient way to explore the huge space
of possibly allowed configurations is to use four-dimensional effective theories derived from string
theory (see e.g. [18] for a review). This approach has produced many interesting scenarios for
de Sitter compactifications in string theory, most notable [81]. However, the validity of the four-
dimensional approximation to describe similar settings is still under active scrutiny. For example,
understanding from the ten-dimensional perspective the various ingredients that lead to the four-
dimensional construction in [81] turned out to be a very active area of research by its own. In
particular, solutions obtained from the lower-dimensional point of view are usually constructed

1For a pedagogical introduction to the construction of cosmological models in string theory see for example [18, 79].
2They can be supersymmetric when the internal space is non-compact, as can be easily seen by writing the AdSn

factor of a supersymmetric solution as a non-compact foliation of a dSn−1 space [80].
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by balancing different physical effects. These are captured as individual contributions which are
on their own well understood, but for which the simultaneous effect is not yet completely under
control.3

The difficulties in the construction of de Sitter space-times have led some authors to conjecture
that vacua with a positive cosmological constant cannot be realized at all in string theory, or
perhaps in any quantum theory of gravity, putting them in the swampland [89, 90]. In this chapter,
we tackle this problem by constructing four-dimensional de Sitter space-times as solutions of the
ten-dimensional equations of motion of massive type IIA supergravity. The models we will construct
will be very simple and far from being complete phenomenological models. Nevertheless, we hope
they are useful playgrounds to quantitatively test these various ideas and conjectures, starting from
the questions on their existence.

We start in section 3.1 with a modification of the type Ĩ model introduced in section 1.2.4,
where we now take four out of the nine directions of the world-volume of the orientifold planes to
be extended along a four-dimensional de Sitter space. In this construction, we will soon find the
requirement for the internal space to involve a negatively curved internal space M5 fibered over
the circular direction. This is not unexpected since from the four-dimensional point of view it is
known that negatively curved internal manifolds contribute with positive energy [79]. We will not
be able to solve the equations of motion analytically, but we will find numerical solutions where
the negative-tension orientifold plane is of the diverging-dilaton type. This is the same object we
have already encountered both in the AdS8 construction of the previous chapter and in a limit of
the type Ĩ model at the end of section 1.2.4.

In section 3.1.2 we enlarge our class of de Sitter solutions by adding an extra flux in the internal
space and by splitting the internal manifold M5 into a product of two Einstein spaces, M2 and M3.
In doing so, we learn that a rescaling modulus c of the solutions where F0 is the only flux turned on
is generically quantized by the flux quantization conditions. We also find that the constraint on the
cosmological constant now requires at least one of M2 and M3 to be negatively curved. We explicitly
build the numerical solutions realizing all the allowed possibilities. All these solutions again feature
a diverging-dilaton O8− plane. As we have already remarked, the appearance of a strongly-coupled
and strongly-curved region on a supergravity solution makes its validity questionable. For the flat
space solutions where this happens, we have the alternative description in terms of the world-sheet
theory that makes us confident that such singular solutions can be lifted to solutions of the full
string theory. As we have already observed, for supersymmetric AdS solutions involving orientifold
planes one can use holography to check the validity of a singular supergravity solution by comparing
its prediction with results obtained in the dual quantum field theory. For the non-supersymmetric
AdS8 solutions we have found in the previous chapter, we have suggested that some hints might
come from conformal field theory techniques such as the conformal bootstrap. For the de Sitter
constructions of this chapter we can not immediately use these tools, since holography for de Sitter
space is less developed.4 Instead of viewing it as a limitation, we can see this as an opportunity. In
the AdS case much progress in holography has been made possible thanks to the explicit construction
of supergravity solutions. Hopefully, the efforts in the construction of simple models like the ones
we try to build in this chapter, might also be useful to this end. In any case we need a better
understanding of these singularities in a UV complete theory and we cannot rely on supergravity
alone to confirm the validity of the solutions we are going to present.

3A necessarily incomplete list of references on this vast topic is [82, 83, 84, 85, 86, 87]. See also [88] for a critical
review on various dS constructions.

4There are various approaches to this ambitious task [91, 92, 93, 94, 95, 96]. See also [97, 98] for recent progress.
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In the meantime, a criticism to the solutions we will describe in this chapter arose in the litera-
ture [64]. As we are going to extensively review in section 3.2, this criticisms is based on the analysis
of the uncorrected supergravity equations of motion near the singularity that we have identified as
an O8−. The claim is that it is not enough to look at the leading behavior of the fields near the
singularity, but that also the sub-leading behavior has to be analyzed in the supergravity approxi-
mation. As we will review, the discrepancy between the two approaches can be recast into different
boundary conditions imposed on the fields on top of the diverging-dilaton O8−. By analyzing this
issue from the point of view of the action, we relate it to a question of which fluctuations for the
fields are allowed near these sources. Ultimately, we will discover that supergravity alone is not
able to answer these questions, signaling again that it needs to be UV-completed in the strongly
coupled region.

Finally, in the last part of this chapter we start exploring a richer class of de Sitter solutions.
Building on the results of section 3.1.2, we allow for more fluxes in the internal space and we replace
the ill-defined O8− plane with an O6− plane. We are able to do it explicitly by deforming a known
class of analytic AdS7 solutions where the same sources appear. Our strategy consists in separating
the seven-dimensional space into a product AdS4×M3, with M3 negatively curved, and then
bringing the cosmological constant up numerically until it reaches positive values. At the end of this
procedure we end up with dS4 solutions involving an O8+ plane (the well understood one) and an
O6− plane. This O6− plane is identified by the behavior of the fields near the boundary of its ‘hole’
(see section 1.2.3). Even though we have not yet completely analyzed the complicated moduli space
of these solutions, this procedure seems to leave some unfixed parameters. It would be interesting to
understand if there exists a physical procedure to fix them. As a heuristic procedure, one might try
to analytically continue the solution through the boundary of this hole, going inside the unphysical
region, where both the metric and the dilaton become imaginary, and to check whether also the
typical pole of the flat-space solution is reproduced. For the analytic AdS7 solutions this turns out
to be true, but we were not able to reproduce it in the numerical dS4 solutions we have obtained so
far. However, it is not clear that this procedure is meaningful and clearly a better understanding
of these backgrounds should rely only on properties of the physical space-time. In the absence of
Romans mass one can go further. For example it is known that in flat space the O6− singularity
gets resolved by the lift in M-theory, where it becomes the non-singular Atiyah-Hitchin solution
[99, 100, 101]. In other cases, thanks to supersymmetry, through the analysis of the quantum
space-time seen from a probe Dp-brane [102] it has also been possible to resolve these singularities
in the quantum theory. It would be interesting to understand how these construction change for
non-supersymmetric de Sitter solutions. This chapter is based on the published work [2] and on
the ongoing work [5].

3.1 Solutions with O8− planes

In this section we discuss two simple modifications of the type Ĩ solutions we described in section
1.2.4. In the simplest class introduced in section 3.1.1, we keep F0 as the only non-vanishing flux
and we find that the equations of motion require a negatively curved internal five-manifold. In
section 3.1.2 we extend this class by allowing for a non-vanishing four-form flux in the internal
space. As we are going to see, the main effects of this extra flux will be to quantize the rescaling
modulus of the solutions with only F0 turned, and to naturally introduce a splitting of the internal
space which allows for a positively curved factor.

38



3.1.1 Only F0 6= 0

We build upon the type Ĩ model described in section 1.2.4 by looking for solutions where the
geometry is described by the following local metric

ds2 = e2W ds2
M4

+ e−2W (dz2 + e2λds2
M5

) , (3.1)

where W and and λ are functions on the internal space and M4 is the external four-dimensional
vacuum. The internal space can be seen as a fibration of a five-dimensional Einstein space M5 over
a one-dimensional space described by the coordinate z. As in the type Ĩ model, and unlike the
AdS8 solutions of the previous chapter, we periodically identify the coordinate z as

z ∼ z + 2z0 . (3.2)

All the functions we consider depend on the coordinate z only, on which a Z2 involution acts as in
Figure 3.1, with the two fixed loci being z = 0 and z = z0. At these points two orientifold planes
with opposite charge and tension sit.

Figure 3.1: The coordinate z in the metric of the ansatz (3.1). The fixed loci of the Z2 involution
are z = 0 and z = z0, where two O8-planes with opposite charge and tension sit. The value of F0

in the two regions is also indicated.

The full set of equations of motion in this setting then reads

0 = −2F 2
0 e

2(λ+W+φ) + 16e2λ+4W (−5(λ′)2 − φ′(W ′ − 5λ′) + 2(W ′)2 − (φ′)2) + (3.3)

+ 20ρe4W + 16e2λΛ∑
i=±

κ2τiδi = e−3W−φ(−F 2
0 e

2(W+φ) − 4Λ + 4e4W (W ′′ +W ′(5λ′ − 2φ′))) (3.4)

∑
i=±

κ2τiδi = −2

5
e−2λ−3W−φ(2F 2

0 e
2(λ+W+φ) + 2e2λ+4W (5λ′(φ′ − 2λ′)− 2W ′φ′ + 4(W ′)2 − φ′′) +

− 2

5
e−2λ−3W−φ (5ρe4W + 4e2λΛ

)
(3.5)∑

i=±
κ2τiδi = e−3W−φ(F 2

0 (−e2(W+φ))− 2Λ + 2e4W (λ′′ − 2λ′φ′ + 5(λ′)2)− 2ρe4W−2λ) , (3.6)

where 4Λ and 5ρ are respectively the Ricci scalars of M4 and M5. Notice that their value is not
physical, as it can be rescaled with a redefinition of the function W and λ. In the equations of
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motion the symbols δ± indicate δ-functions localizing the O8± at the two fixed loci. Their tensions
in our conventions where ls = 1 are given by

κ2τ± = ± 8

2π
. (3.7)

Finally, the equations of motion have to be supplemented by the Bianchi identity for F0,

dF0 = −
∑
i=±

κ2τiδi , (3.8)

whose role is to make F0 jump when crossing the sources, as shown in Figure 3.1. In writing the
system (3.4)-(3.6) we have already taken an appropriate linear combination of the original equations
coming from the ten-dimensional equations (1.21), (1.22) in order to extract the first-order equation
(3.4), which thus does not involve δ-functions. The localized contributions of the sources to the
equations of motion come from the corresponding contributions to the action. These are given by
the localized terms

Sloc =
∑
i=±
−κ2τi

∫
Σi

√
−g|Σie−φ + κ2τi

∫
Σi

C9|Σi , (3.9)

where C9 is defined by
F0 ≡ − ? F10 ≡ − ? dC9 (3.10)

and the Σi are the submanifolds where the O8-planes are located. With the symbol |Σi we indicate
the pullback of the space-time fields on the sources. In the case where all the quantities remain
finite, we can take into account the contributions of these actions by rewriting them as integrals
on the whole space-time, which then get localized on the given loci by well-defined δ-functions,
obtaining in this way the equations (3.4), (3.5), and (3.6). As we are going to discuss in section
3.2, the situation is more subtle for diverging-dilaton O8-planes.

We now solve the full set of equations of motion in the vicinity of the O8+ at z = 0. Assuming
that the functions are continuous, we can take into account the contributions of the δ-functions
as the requirement for the first derivatives of the functions appearing in the equations to be dis-
continuos, with a discontinuity given by the coefficients of the δ-functions. Let us be more precise
by working out the conditions imposed by equation (3.4) on W . Assuming that W is continuous,
but with a first derivative W ′ which has a finite jump ∆W ′ at z = 0, its second derivative can be
defined in the distributional sense to be

W ′′ = W ′′0 + ∆W ′δ(z) , (3.11)

where W
′′

0 is a (possibly discontinuous) function and δ(z) is the Dirac delta distribution centered
in z = 0.

This relation is an immediate consequence of the well-known result that the distributional
derivative of the Heaviside step function is the Dirac delta. Indeed, any function W ′ with a finite
jump ∆W ′ at z = 0 can be decomposed as

W ′ = W ′0 + θ(z)∆W ′, (3.12)

where W ′0 is a continuous function and θ(z) is the Heaviside step function. By taking the derivative
of this expression we then get (3.11). Plugging then the decomposition (3.11) into equation (3.4)
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we obtain a distributional equation with a δ-functions on both sides. To solve it we then match
their coefficients, obtaining the relation

eW−φ∆W ′ =
1

4
κ2τ+ at z = 0 . (3.13)

An equivalent way to obtain the same result is by dividing both sides of equation (3.4) by the
function eW−φ, obtaining an expression of the form

eφ−Wκ2τ+δ(z) = W ′′ + · · · , (3.14)

where the terms in the dots include at most first derivatives. Integrating this equation on the
interval [−ε, ε], and integrating by parts the second derivative, we then get in the limit ε → 0 the
condition (3.13) multiplied by the function eW−φ. As we are going to carefully review in section 3.4,
for a diverging-dilaton O8-plane these manipulations require some care. For example, the function
eW−φ for which we have divided both sides of the equation of motion (3.4) to obtain (3.14) vanishes
where this object is located. Thus by following this procedure we are effectively dividing both sides
of an equation by zero on the point where we are studying it. We will discuss these subtle issues in
section 3.2, where we carefully analyze the jump conditions for diverging-dilaton O8− planes. For
the time being, let us notice that both sides of equation (3.13) are always finite, and can thus be
evaluated and used as boundary conditions also for the diverging-dilaton case.

Integrating the Bianchi identity (3.8) across the source we obtain the jump for F0 :

∆F0 = −κ2τi , (3.15)

which, plugged into equations like (3.13), relates the jump of the derivatives to the jump of F0:

eW−φ∆W ′ = −1

4
∆F0 . (3.16)

Finally, since our sources are orientifold planes, we have to take into account the projection they
enforce on the string states. In our case, this is translated into the requirement for the metric
functions (and the dilaton) to be even and for F0 to be odd around them.5 These requirements
relate the jump of the various functions to their value on one side:

∆W ′ = 2 lim
z→0+

W ′, ∆F0 = 2 lim
z→0+

F0 . (3.17)

Putting together conditions (3.16) and (3.17), and repeating the same analysis also for the equations
(3.5) and (3.6), we obtain the full set of conditions that the derivatives of the functions have to
satisfy at z = 0:

eW−φW ′ = −1

4
F0, eW−φφ′ = −5

4
F0, eW−φλ′ = −1

2
F0, for z → 0+ . (3.18)

These conditions fix the value of the derivatives approaching z = 0 from the right. Taking the
same limit of the first order equation (3.4) and plugging the conditions (3.18) we finally obtain a
constraint on the cosmological constant

Λ = −5

4
ρe4W−2λ, for z → 0+ . (3.19)

5See for example [103] for a review on the parity conditions imposed by O8 planes on the fields.
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From this equation, we now see that in order to allow for de Sitter solutions (Λ > 0), we need to
take ρ, the curvature of the internal five-manifold M5, to be negative. In order to simplify all the
following expressions, from now on we make the choice

ρ ≡ −4

5
Λ . (3.20)

Finally, we notice that as in the AdS8 construction, the full system of equations of motion is
invariant under the rescaling

W →W + c, φ→ φ− c, λ→ λ+ 2c, z → z2c . (3.21)

As we are going to see in section 3.1.2, the constant c in (3.21) is continuous only in the degenerate
case where F0 is the only flux turned on. The effect of the rescaling (3.21) is to generate a new
solution with arbitrarily small curvature and small string coupling from a given solution. However,
in section 3.2 we are going to argue that even in the cases where the rescaling c is continuous it
cannot be associated to a field of the lower-dimensional effective theory.

We now to solve the equations of motion. Since we were not able to find analytical solutions, we
have started the analysis of the system (3.4)-(3.6) by studying it in a power-series approach near
the vicinity of the O8+ at z = 0. Imposing on the derivatives the conditions (3.18) results in the
following local solution

e−4W = c1 +
F0z√
c2
− 2z2(c21Λ)− 17z3(c1F0Λ)

6
√
c2

+ z4

(
3c31Λ2 − 17F 2

0 Λ

24c2

)
+O(z5) , (3.22)

e−
4
5φ = c1c

2/5
2 +

F0z
10
√
c2
− z3(c1F0Λ)

6 10
√
c2

− z4(F 2
0 Λ)

24c
3/5
2

+
39c21F0Λ2z5

200 10
√
c2

+O(z6) , (3.23)

e−2λ = c1 +
F0z√
c2
− 1

5
z2(c21Λ)− 13z3(c1F0Λ)

30
√
c2

+ Λz4

(
9

25
c31Λ− 13F 2

0

120c2

)
+O(z5) . (3.24)

Notice that, since F0 is odd, all the functions are even around z = 0, as required by the O8-plane
projection. Moreover, for Λ = 0 they truncate to the usual flat space solutions we described in
section 1.2.3.

We can now choose some values for the constants c1 and c2 and start the numerical evolution.
The situation is similar to the AdS8 case: for an open set in the space of c1 and c2 we obtain
solutions that end at z = z0 on a diverging-dilaton O8−, where the functions behave as

eλ ∼ |z − z0|−
1
2 , eW ∼ |z − z0|−

1
4 , eφ ∼ (z − z0)−

5
4 .

In Figure 3.2 we show an example of a numerical solution. Near the diverging point the local form
of the metric is

ds2
10 ∼ t−

1
2 (ds2

M4
+ ds2

M5
) + t

1
2 dt2, eφ ∼ t− 5

4 , with t ≡ |z − z0| , (3.25)

which can be interpreted as an O8-plane extended along the four-dimensional de Sitter space and
the negatively curved Einstein space M5. Moreover, we can also check explicitly that the tension
appearing in the action is reproduced by these solutions by checking that the conditions (3.18) are
satisfied also at z = z0, with an opposite value for the tension. In section 3.2 we comment with
more on the details of this singularity.
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Figure 3.2: A numerical solution in the region where F0 = − 4
2π . The functions are eλ (orange),

eW (green) and eφ (blue). On the left, it starts from an O8+ plane, where the functions are contin-
uous but not differentiable. On the right, it ends at z0 ∼ 17 on a diverging-dilaton O8-plane,

3.1.2 Solutions with F4

In this section we start adding more richness to our simple dS4 model. In particular, we are going
to see that the rescaling labeled as c in the previous section is due to a degeneracy in the equations
of motion that appears when the only flux turned on is F0. In more general situations this rescaling
is quantized by the flux quantization conditions of the other fluxes, and we explicitly show how this
possibility is realized by finding solutions with F4 turned on. While doing so, we also learn that the
five-dimensional negatively curved internal space can be split in two spaces, with the requirement
that at least one of them is negatively curved. We then find explicit numerical solutions realizing
all the four possibilities.

We generalize our ansatz (3.1) by splitting the five-dimensional space M5, thus considering the
more general metric

ds2
10 = e2W ds2

M4
+ e−2W (dz2 + e2λ2ds2

M2
+ e2λ3ds2

M3
) , (3.26)

where now M2 and M3 are two Einstein spaces whose Ricci scalars are normalized as

RM2 = 2ρ2, RM3 = 3ρ3 . (3.27)

As a consequence of this splitting, we can also easily allow for the presence of a flux F4 in the
internal space with legs along dz ∧ volM3

where volM3
is the volume form of M3. Imposing then

the Bianchi identity (1.19) and the equation of motion for F4 written in (1.25), we obtain that its
most general form is given by

F4 = f4e
−6W+3λ3−2λ2dz ∧ volM3

, (3.28)

with f4 a real constant. Again, notice that constant rescalings of ρ2, ρ3, and Λ are unphysical, since
they can be reabsorbed with a redefinition of λ2, λ3, and W respectively. In this more general setup

43



the equations of motion now read

0 = −4((λ′2)2 + 6λ′3λ
′
2 + 3(λ′3)2) + 8φ′(2λ′2 + 3λ′3 −W ′) + 16(W ′)2 − 8(φ′)2 +

+ f2
4 e
−4λ2−6W+2φ − F 2

0 e
2φ−2W + 4e−2λ2ρ2 + 6e−2λ3ρ3 + 8Λe−4W (3.29)∑

i=±
κ2τiδi = −e−4λ2−5W+φ(f2

4 + F 2
0 e

4(λ2+W )) + 4eW−φ(W ′′ +W ′(2λ′2 + 3λ′3 − 2φ′)) +

− 4Λe−3W−φ (3.30)∑
i=±

κ2τiδi = −4eW−φ(2(λ′2)2 + 3(λ′3)2 + 2λ′′2 + 3λ′′3 −W ′′ +W ′(−3λ′3 + 8W ′ − 2φ′)− 2λ′2W
′ − 2φ′′)

+ eφ−5W (F 2
0 e

4W − f2
4 e
−4λ2) (3.31)∑

i=±
κ2τiδi = 4e−2λ2+W−φ(e2λ2(λ′′2 −W ′′ + (2λ′2 + 3λ′3 − 2φ′)(λ′2 −W ′))− ρ2) +

− e−4λ2−5W+φ(f2
4 + F 2

0 e
4(λ2+W )) (3.32)∑

i=±
κ2τiδi = e−4λ2−2λ3−5W−φ(4e4λ2+6W (e2λ3(λ′′3 −W ′′ + (2λ′2 + 3λ′3 − 2φ′)(λ′3 −W ′))− ρ3)) +

+ e−4λ2−5W+φ(f2
4 − F 2

0 e
4(λ2+W ))

We have isolated a first order equation (3.29), which we will use to constrain the parameters of our
solution. Notice that we now have an extra equation, which comes from the legs of the Einstein’s
equations along then new split internal direction. The system of equations is invariant under the
rescaling

W →W + c, φ→ φ− c, λi → λi + 2c, z → e2cz, f4 → e6cf4 , (3.33)

whose effect on the ten-dimensional fields is

g → e2cg, eφ → eφe−c, F4 → e4cF4 . (3.34)

This rescaling can be easily understood by noticing that the massive type IIA supergravity action
(1.15) transforms homogeneously as

SIIA → e10cSIIA (3.35)

under the combined rescaling

g → e2cg, eφ → eφe−c, H → e2cH, Fk → ekcFk . (3.36)

Thus, when there are fluxes other than F0 turned on, their quantization can quantize the constant
c appearing in (3.36). In particular, in our case we have to require that∫

S1×M3

F4 ∈
Z

(2π)3
. (3.37)

Before looking for new solutions, let us describes within our ansatz (3.26) the supersymmetric AdS6

solution of [52], which describe the near-horizon limit of a system of D4-D8 branes. As far as the
equations of motion are concerned, this AdS6 solution can be seen as an AdS4×H2 solution with

ρ2 = Λ < 0 . (3.38)
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Indeed, the product of Einstein spaces with the same Einstein constant is again an Einstein space
with the same constant. Since there are no fluxes extended along AdS6 and no fields depend
non-trivially on its coordinates, it enters in the equations of motions only through its cosmological
constant, and as such it is not distinguishable from AdS4×H2. Notice that this is presumably false
from the point of view of the supersymmetry variations, since they involve the Killing spinors of
AdS6. Thus when seen as an AdS4 × H2 configuration it is likely a non-supersymmetric solution.
Following the notation of [104], the AdS6 solution is described by the metric

ds2
10 = e2WL2

(
9

4
ds2

AdS6
+ ds2

S4

)
= e2WL2

(
9

4
ds2

AdS6
+ dz2 + sin2 zds2

S3

)
, (3.39)

and the other non-trivial fields are

eφ =
2

3L(F0 cos z)
5
6

, eW = (F0 cos z)−
1
6 , F4 = 5L2(F0 cos z)

1
3 sin3 zdz ∧ volS3 . (3.40)

Notice that at the equator of the S4, which is located at z = π
2 , the dilaton and the metric blow-

up. At this locus a diverging-dilaton O8 sits, making this solution similar to our AdS8 solutions
described in chapter 2. To describe the solution (3.39), (3.40) within our ansatz (3.26), we first
have to change gauge as

dz → eQdz. (3.41)

This redefinition transforms all the derivatives in the system (3.29)-(3.33) as ∂z → e−Q∂z. The
resulting system is then solved by taking M3 to be a radius one S3 (ρ3 = 2) and setting

Q = 2W, λ2 = 2W, λ3 = 2W + log(sin z), φ = 5W + log

(
2

3L2

)
(3.42)

and

W = −1

6
log(F0 cos(z)) + logL, f4 = 5L6, Λ = −20

9
. (3.43)

In our more generic situation we are not able to find analytic solutions to the system (3.29)-(3.33).
We will thus follow the steps described in the previous section to find numerical solutions. First of
all we derive the conditions on the first derivatives of the fields at z = 0. In the present case, they
read:

eW−φW ′ = −1

4
F0, eW−φφ′ = −5

4
F0, eW−φλ′2 = eW−φλ′3 = −1

2
F0, for z → 0+ .

(3.44)
Taking the limit for z → 0+ of the first order equation (3.29), and plugging the conditions (3.44)
we get a generalization of the constraint (3.19):

Λ = −1

8
f2

4 e
−4λ2−2W+2φ − 1

2
ρ2e

4W−2λ2 − 3

4
ρ3e

4W−2λ3 , for z → 0+ . (3.45)

We see that it is now possible to solve the above constraint when at least one among ρ2 and ρ3 is
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negative. Imposing the conditions (3.44), we obtain the local solution

e−4W = c1 +
c
5/4
1 F0z

c
5/4
2

− z2

(
b2c

5/2
1 f2

4

2c
5/2
2

+ 2c21Λ

)
+ (3.46)

−
z3
(
c
9/4
1 F0

(
4b2
√
c1f

2
4 + 17c

5/2
2 Λ

))
6c

15/4
2

+O(z4)

e−
4
5φ = c2 +

4
√
c1F0z
4
√
c2

− z2(b2c
3/2
1 f2

4 )

10c
3/2
2

(3.47)

−
z3
(
c
5/4
1 F0

(
4b2
√
c1f

2
4 + 5c

5/2
2 Λ

))
30c

11/4
2

+O(z4)

e−2λ2 = b+
b 4
√
c1F0z

c
5/4
2

+ z2

(
−b

3c
3/2
1 f2

4

2c
5/2
2

− b2ρ2 − bc1Λ

)
+

− z3

(
b 4
√
c1F0(4b(bc

3/2
1 f2

4 + 2c
5/2
2 ρ2) + 9c1c

5/2
2 Λ)

)
6c

15/4
2

+O(z4) (3.48)

e−2λ3 = c3 +
4
√
c1c3F0z

c
5/4
2

+
1

6
c3z

2

(
b

(
bc

3/2
1 f2

4

c
5/2
2

+ 4ρ2

)
+ 2c1Λ

)
+

+ z3
4
√
c1c3F0(4b(bc

3/2
1 f2

4 + 4c
5/2
2 ρ2) + 5c1c

5/2
2 Λ)

18c
15/4
2

+O(z4) . (3.49)

In these expressions b is not a free parameter but it satisfies the quadratic constraint

b2
c
3/2
1 f2

4

c
5/2
2

+ 4bρ2 + 8c1Λ + 6c3ρ3 = 0 . (3.50)

The constraint (3.50) comes from the fact that the first order equation (3.29) is generically quadratic
in the first derivatives. However, notice that in the case f4 = 0 the above constraint becomes linear,
consistently with the fact that in the previous section the local solution did not have branches.

At this point we can look for numerical solutions. Notice that a generic choice for the free
constants is not consistent since we also have to require that the discriminant of the equation (3.50)
is non-negative in order for b to be real. We have not yet analyzed in detail the resulting moduli
space of solutions, but we have found that for an open set in the space of c1, c2, c3 and f4 one of
the branches gives numerical solutions that consistently end on diverging-dilaton O8− planes. Near
such a point the fields behave as

eW ∼ t− 1
4 , eφ ∼ t− 5

4 , eλ2 ∼ t− 1
2 , eλ3 ∼ t− 1

2 , with t ≡ |z − z0|, (3.51)

analogously to their behavior at z = π
2 in the analytical solution (3.40). The local form of the

metric near this singular locus is

ds2
10 ∼ t−

1
2 (ds2

dS4
+ ds2

M2
+ ds2

M3
) + t

1
2 dt2, eφ ∼ t− 5

4 , with t ≡ |z − z0| , (3.52)
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and we interpret it as describing a diverging-dilaton O8-plane extended along dS4×M2 ×M3.
Moreover, we find that all the possibilities compatible with the constraint (3.45) can be realized,

finding numerical solutions for all the cases

{ρ2, ρ3} = {−1, 0}, {ρ2, ρ3} = {−1, 1}, {ρ2, ρ3} = {0,−1}, {ρ2, ρ3} = {1,−1} .
(3.53)

The case {ρ2, ρ3} = {1,−1} is particularly interesting since it allows for an internal S2. We are
going to explore this possibility in section 3.3 where this S2 will become the sphere transverse to
an O6-plane which will replace the diverging-dilaton O8-plane.

3.2 Discussion of singularities

We now pause for a moment our business of looking for non-supersymmetric solutions in order to
analyze the singularities we have spotted in the previous constructions, in particular the one we
identify with a diverging-dilaton O8− plane. We will come back to our main mission in the next
section, where we will build solutions in which this singularity is not present.

First of all, to avoid confusion, we remark that in our constructions we have already discarded
the singularities for which all the fields do not behave at leading order as string theory solutions
under better control, e.g. the flat space O-planes and D-branes solutions we have described in 1.2.3.
We are not going to discuss those singularity in this section. Instead, the singularities we will focus
on are the ones we have identified as the backreaction of a diverging-dilaton O8−. They have been
identified by comparison with the singular behavior of O8− solution in flat space and in the type
Ĩ model we have described in 1.2.4. For these singularities we have also checked that boundary
conditions of the form (3.13) are satisfied for all the fields, with the correct tension τ−.

Singularities of this kind also arise in supersymmetric AdS solutions (e.g. the in the AdS6 [52]
case we have recovered in the previous section, in the AdS7 solutions [53] we are going to describe
later and in AdS3 [54]). Whether these singular supergravity solutions can be lifted to solutions of
UV-complete theories is not a question that can be answered by working in supergravity alone. As
we have already discussed, in a strongly coupled and strongly curved region, supergravity is in fact
the least important contribution to the full string theory equations of motion. Notice that, albeit in
this discussion we are putting the strongly coupled and strongly curved breakdowns of supergravity
on the same footing, they are conceptually very different problems. As we have explained in section
1.2, the perturbative expansion in the curvature arises as a result of a perturbative treatment of
the world-sheet theory. In principle, this can be avoided if we are able to perform computations
without resorting to the perturbative expansion. In practice, it has been used in [105] to show that
without Ramond-Ramond fluxes it is impossible to construct de Sitter vacua, even at the full non-
perturbative order in the curvature. The problem with large string coupling is instead conceptually
different since we are not even able to formulate string theory beyond the perturbative description.
For AdS backgrounds these difficulties can be overcome by working in a dual description, for
example, by employing the AdS/CFT correspondence to compare the supergravity results with
field theory computations, even in presence of singularities. As an example, for the AdS7 solutions
with O8 and O6 planes this has been successfully done [55]. For the AdS8 solution we have studied
in chapter 2 we have proposed that maybe CFT techniques, like the conformal bootstrap, can give
hints on the reliability of these solutions. In the dS case holography is less developed but given the
recent progresses (see footnote 4) we hope that simple constructions like the ones we have presented
in this chapter might be amenable of a non-perturbative analysis.
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In any case, we need a better understanding of the singularity described above (and, as we will
see in the next section, of all the orientifold singularities) and we cannot rely on supergravity alone
to resolve these issues. Another way of saying it is that the fate of the singular solutions we have
found by working in the supergravity approximation depends on string theory correction of either
type. Since our solutions depend on some moduli, we expect these solutions to survive for at most
some choices for these moduli. As an example, in the degenerate solutions with only F0 turned
on, we have seen that there is a continuous ‘rescaling modulus’ c, that can be used to make the
ill-defined region arbitrarily small but never make it disappear. This rescaling is a symmetry of
the supergravity equations of motion but not of the full string theory equations. For example the
eight-derivative corrections at tree-level in string coupling (see e.g. [106, 107] for a recent summary)
have the form

Stree
R4 ∼

∫
M10

√
−ge−2φ

(
t8t8 +

1

8
ε10ε10

)
R4 . . . , (3.54)

where t8t8 and ε10ε10 are short-hands for combinations of metric and Levi-Civita tensors contrac-
tions. The eight-derivative action (3.54) breaks the overall rescaling (3.35) of the two-derivative
action as it scales as e4c. Thus c will not be a symmetry of the corrected equations of motion, and
a solution of the full equation will exists at most for some values of c. It would be very interesting
to systematically explore the effect of the higher derivative corrections on these, or more general,
solutions to see if they help to smoothen or even completely wash away these singularities. If they
do it at small coupling then one would have obtained in this way a reliable solution.

In the meantime, a criticism on the validity of our singular solutions arose in the literature
[64]. This criticism is obtained by integrating a combination of the non-corrected supergravity
equations of motion even in the strongly-coupled region. This procedure implicitly assumes a
stronger boundary condition than (3.13) for the strongly-coupled O8−. As we are going to review
in section 3.2.1, this stronger version is obtained by looking at the subleading behavior of the fields
in the strongly-coupled region. We consider instructive to analyze this issue in supergravity, as we
are going to do it extensively in the rest of this section, in order to understand the limitations of
this approximation, but we do not think that the validity of these solutions in the full theory can
be decided in one way or the other by working at the supergravity level alone. In section 3.2.2 we
relate the ambiguity on the boundary conditions to the space in which the variations of the fields
are taken to belong, and we conclude in section 3.2.3 with a suggestion where to look for a possible
physical determination of the allowed fluctuations.

3.2.1 Different forms of the jump conditions

For convenience of the reader we rewrite here the boundary conditions (3.18), which have been
derived from the equations of motion for a finite-coupling O8+ sitting at z = 0:

eW−φW ′ = −1

4
F0, eW−φφ′ = −5

4
F0, eW−φλ′ = −1

2
F0, for z → 0+ . (3.55)

Notice that the sign of the derivatives is related to the sign of F0, and as such we can formally
use the above expressions to describe O8±-planes at the same time, thus making them valid also
for z → z+

0 . The specification ‘formally’ comes from the fact that we have computed the relations
(3.55) by assuming that the all functions were continuous at z = 0 with only a finite a jump on
their first derivatives such that, as in equation (3.11), their second derivative would produce a δ-
function proportional to this jump. This procedure is not justified for strongly-coupled O8− plane
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since at z = z0 the functions are not even continuous, and the ‘jump’ of the first derivatives would
be infinite. We have also commented that the alternative procedure of isolating a total derivative
such that one could define the jump through an integration by parts requires to divide both sides
of the equations of motion by zero. Either way, we see that the equations of motion are ambiguous
when evaluated on top of the infinite-coupling O8− plane. For example, one could argue that the
form (3.55) is not the ‘correct’ extrapolation in this case and that the correct one is perhaps

W ′
?
= −1

4
eφ−WF0, φ′

?
= −5

4
eφ−WF0, λ′

?
= −1

2
eφ−WF0, for z → z+

0 , (3.56)

where both sides have been divided by eW−φ. Obviously, in the finite case the two expressions are
equivalent, but in the infinite coupling case both sides of the equations (3.56) have both a diverging
and a finite piece and one might be tempted to match both of them. Let us see it more explicitly.
For a strongly-coupled O8− plane, the metric functions and the dilaton are logarithmically divergent
at t ≡ |z − z0|

W = q1 log(t)+q2+q3t+· · · , φ = q4 log(t)+q5+q6t . . . , λ = q7 log(t)+q8+q9t . . . , (3.57)

such that
eφ−W = tq3−q1(eq4−q2 + eq4−q2(q6 − q5) + · · · ) . (3.58)

Matching the leading order behavior of both sides of the equations (3.56) requires to impose

q1 = −1

4
, q4 = −5

4
, q7 = −1

2
, eq5−q2F0 = 1 . (3.59)

Imposing that the they agree also at the subleading order would also require to set

q3 = q6 = q9 = 0 , (3.60)

resulting in more conditions. Since the conditions (3.55) and (3.56) are not equivalent in the
strongly-coupled case, we give them two different names, calling them respectively the permissive
and the restrictive boundary conditions.

From this point of view the restrictive boundary conditions look unnatural: we are extrapolating
the supergravity equations of motion in a region where they are going to be heavily corrected (notice
that also the localized actions (3.9) are going to receive corrections) and we use them to impose
some conditions on a subleading behavior of the fields. Moreover, one could continue this procedure
and multiply the original conditions (3.55) by an even more diverging function like e2φ−2W , which
would require even the next coefficient to vanish.

However, there is another point of view from which the restrictive boundary conditions might
look more natural. As in [64, Fig. 1], one can consider the combination

f = 5W − φ . (3.61)

Subtracting the first two conditions in (3.55) with the appropriate relative factor then gives

e−4W eff ′ = 0 for z → z+
0 . (3.62)

Since ef remains finite and different from zero at z = z0, the above condition is equivalent to

e−4W f ′ = 0, for z → z+
0 , (3.63)
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and one might be tempted to impose

f ′
?
= 0 . (3.64)

However, since e−4W ∼ |z − z0|, the condition (3.63) is not equivalent to (3.64), the first being
the permissive one and the second being the restrictive one. An alternative way of rephrasing this
discussion is that evaluating (3.56) once the conditions (3.59) have been imposed , i.e. on a solution
that already satisfies (3.55), will result in a mismatch. In [64] this mismatch is interpreted as a
wrong coupling of the O8−.

We will now try to carefully re-derive these boundary conditions from the action, from two
different points of view.

3.2.2 Derivation from the action

In this section we try to understand if the ambiguities we have described in the previous section can
be avoided with a careful re-derivation of the equations of motion from the low-energy action. We
will soon understand that the answer is no, and this is a consequence of the fact that the low-energy
action itself is incomplete in the strongly-coupled and strongly-curved region. In doing so, we will
relate the different forms of the boundary conditions to different possible choices for the space in
which we take the variations of the fields to belong when computing the equations of motion.

As a boundary contribution

With the aim of avoiding dubiously-defined δ-functions, in this section we derive the equations of
motion in the setting where the internal space is seen as the product

M5 × [0, z0] , (3.65)

with the two boundaries corresponding to the loci where the O8± planes sit. In the process we keep
track of all the boundary terms, which also have to vanish in order for a solution of the equation of
motion to be a stationary point of the action. By imposing this condition we obtain the boundary
conditions that the fields have to satisfy.

In this description we have to be careful to include all the relevant boundary terms. First of all,
the variation of a bulk term in the action can yield a boundary term when we integrate it by parts
in order to extract an equation of motion. Moreover, as usual when dealing with space-times with
boundaries in General Relativity, the action should already contain a boundary term known as the
Gibbons-Hawking-York (GHY) term [108, 109]. The presence of this term is needed in order to have
a well-defined variational problem in cases where the Lagrangian is already formulated with two-
derivatives of the fields, as it is the case in General Relativity. Indeed, the Ricci scalar appearing in
Einstein-Hilbert (EH) action involves two derivatives of the metric. When varying the EH action
in order to compute the equations of motion we obtain boundary contributions proportional to the
derivative of the variation of the metric. Schematically, they are of the form nM∂MδgNP , where
n is the unit vector normal to the boundary and δgMN is the variation of the metric. The GHY
term is defined such that its variation cancels these terms. Without its inclusion, it is necessary to
restrict too much the variational problem by imposing boundary condition both on the variations
of the metric at the boundary and on the derivatives of such variations. In the Einstein frame, the
standard GHY term has the form

SGHY,E =
2

κ2

∫
∂M10

√
−hE∇EMnME , (3.66)
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where use the letter E to distinguish the quantities defined in the Einstein frame

gE ≡ e−
φ
2 g . (3.67)

The other quantities appearing in (3.66) are hE , the determinant of the induced metric on the
boundary, and nE is the unit vector field normal to the boundary. More geometrically, this term
is the integral of the trace of the extrinsic curvature of the boundary. In the string frame, the
equivalent term producing the same cancellation is

SGHY =
2

κ2

∫
∂M10

√
−he−2φ∇MnM . (3.68)

Let us explicitly compute it. First of all, notice that it does not arise as a simple change of frame
of the GHY term in Einstein frame, since such a change would produce extra pieces involving the
derivatives of the dilaton. Instead, these extra pieces cancel with the ones coming from the change
of frame of the bulk Einstein action

S0
E ≡

1

κ2

∫
M10

√
−gE

(
RE −

1

2
∇φ∇φ− 1

2
e

5
2φF 2

0

)
(3.69)

(we have simplified the bulk action to include only the fields relevant to this discussion). Indeed,
applying the transformation (3.67), the Einstein frame bulk action then becomes

S0
E =

1

κ2

∫
M10

√
−g
[
e−2φ(R+ 4(∇φ)2)− 1

2
F 2

0

]
+

9

2κ2

∫
∂M10

√
−he−2φn · ∇φ (3.70)

≡ S0 +
9

2κ2

∫
∂M10

√
−he−2φn · ∇φ . (3.71)

A simple computation then shows that the last piece in (3.71) cancels with a contribution coming
from the change of frame GHY action

SGHY
E =

2

κ2

∫
∂M10

√
−hE∇E · nE (3.72)

=
2

κ2

∫
∂M10

e−
9
4φ
√
−h 1√

−gE
∂M

(
gMN
E

√
−gEnEM

)
(3.73)

=
2

κ2

∫
∂M10

e
φ
4

√
−h 1√

−g
∂M

(
e−

9
4φgMN√−gnM

)
(3.74)

=
2

κ2

∫
∂M10

e−2φ
√
−h 1√

−g

[
∂M

(
gMN√−gnM

)
− 9

4

√
−g∂MφgMNnM

]
(3.75)

=
2

κ2

∫
∂M10

e−2φ
√
−h∇ · n − 9

2κ2

∫
∂M10

e−2φ
√
−hn · ∇φ , (3.76)

where we have used that n = e−
φ
4 nE . Combining (3.71) and (3.76) we immediately obtain

S0
E + SGHY

E = S0 + SGHY . (3.77)

Finally, we add to our action the contributions coming from the localized DBI actions on the two
end-points, getting the combined action

S1/2 = S0 +
1

2
SDBI + SGHY , (3.78)
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where SDBI is the usual

SDBI = −
∑
i=±

τi

∫
Σi

e−φ
√
−h . (3.79)

Notice the subscript 1/2 and the same factor in front of the DBI reminding us that we are working
with just half of the space-time in this section.

We can now vary the action (3.78) to obtain the equations of motion. For simplicity of exposition
we focus on the dilaton equation of motion. We start from S0. Its variation will produce two terms:
a piece proportional to the bulk equations of motion, which we denote by E0, and a boundary
contribution

δφS
0 =

∫
M10

δφE0 +
8

κ2

∫
∂M10

δφ
√
−he−2φ∇φ · n (3.80)

=

∫
M10

δφE0 +
8

κ2

∫
∂M10

√
−g4
√
g5δφe

5λ−2φφ′ ,

where in the second line we have evaluated all the quantities on the ansatz (3.1), for which
√
−h = e−W+5λ√−g4

√
g5, and n = eW∂z . (3.81)

The variation of the DBI then gives

1

2
δφS

DBI =
1

2

∑
i=±

τi

∫
Σi

δφe−φ
√
−h (3.82)

=
1

2

∑
i=±

τi

∫
Σi

√
−g4
√
g5δφe

−φ−W+5λ . (3.83)

Finally, the variation of the GHY term contributes with

δφS
GHY = − 4

κ2

∫
∂M10

√
−hδφe−2φ∇MnM (3.84)

= − 4

κ2

∫
∂M10

δφe−2φ
√
−h 1√

−g
∂M

(√
−ggMNnN

)
(3.85)

= − 4

κ2

∫
∂M10

√
−g4
√
g5δφe

−2φ+W∂z(e
5λ−W ) (3.86)

= − 4

κ2

∫
∂M10

√
−g4
√
g5δφe

−2φ+5λ(5λ′ −W ′) . (3.87)

Collecting now all the boundary terms, and evaluating them at the location of the O8− plane, we
obtain

κ2δφS|O8− = −4

∫
∂M10

√
−g4
√
g5δφe

−W+5λ−φ
(
eW−φ(5λ′ −W ′ − 2φ′)− 1

8
κ2τ−

)
. (3.88)

On a solution of the bulk equations of motion E0 = 0 we should also make sure that (3.88)
vanishes. However, observe that on top of the diverging-dilaton O8− plane the function in front of
the of the parenthesis behaves as

δφe−W+5λ−φ ∼ δφ

|z − z0|
. (3.89)
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Thus, the two versions of the boundary conditions, the restrictive and the permissive one, arise as
different possibilities for the behaviors of δφ, i.e. the space in which we are taking the variations of
the fields to belong. Assuming for δφ a power-like behavior

δφ ∼ |z − z0|α , (3.90)

and noticing that the expression in the parenthesis behaves as(
eW−φ(5λ′ −W ′ − 2φ′)− 1

8
κ2τ−

)
∼ k1 + k2|z − z0|+O(|z − z0|2) , (3.91)

we have to satisfy the condition

|z − z0|α−1(k1 + k2|z − z0|+O(|z − z0|2)) = 0 . (3.92)

We then recognize the two natural possibilities:

1. 0 < α < 1. We only have to impose one condition for this boundary term to vanish, i.e.
k1 = 0. This gives a linear combination of the permissive boundary conditions (3.55).

2. α = 0. We have to impose also the cancellation of the subleading term in the parenthesis, by
imposing the two constraints k1 = k2 = 0. This gives a linear combination of the restrictive
boundary conditions (3.56)

In addition we also have two more peculiar possibilities:

a) α > 1. This choice would impose no condition at all on the fields since the boundary contribution
automatically vanishes.

b) α < 0. In this case one could also allow for the fluctuations to arbitrarily diverge. This would
impose an arbitrary number of boundary conditions.

Intuitively, the bigger the space in which one takes the variations to belong, the smaller is the space
of allowed solutions, since one is varying along more directions in the field space, imposing in fact
more constraints.

Finally, we also notice that a natural requirement might have been for the fluctuation to be
square integrable, i.e.

δφ ∈ L2(M10, g) ⇒
∫
M10

√
−g(δφ)2 <∞.

Since
√
−g = e−2W+5λ√−g4

√
g5, on top of the O8− it behaves as

√
−g ∼ 1

|z−z0|2 , thus requiring

α > 1
2 , which is included in the possibility 1.

We now derive the same results in the language of distributions, before proposing in section
3.2.3 a physical way to understand in which space the variations δφ have to be taken.

As a δ-function source

In this section we consider the internal space to include the full S1 in Figure 3.1. Hence our internal
space is now

M5 × S1 (3.93)
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and as such it does not have boundaries. The full action is then simply given by the two contributions

S = S0 + SDBI . (3.94)

The DBI action is evaluated on the loci where the two orientifold plane sit, but we can transform
it on an integral on the full space-time that get localized by δ-functions. With this prescription the
variation of the full action (3.94) is

κ2δφSφ =

∫
M10

√
−ge−2φ[(−2δφ)(R+ 4(∇φ)2) + (8∇φ∇δφ)] +

+
∑
i=±

κ2τi

∫
Σi

δφ
√
−he−φ (3.95)

=

∫
M10

δφ
√
−ge−2φ(−2R+ 8(∇φ)2 − 8∇2φ) +

+
∑
i=±

κ2τi

∫
Σi

δφ
√
−he−φ (3.96)

∝
∫
M10

δφe−W+5λ−φ

(
eW−φ(W + 2φ− 5λ)′′ + · · · − 1

4

∑
i=±

κ2τiδi

)
, (3.97)

where in the dots we have included terms with at most one derivative. This is a combination of the
equations of motion (3.4)-(3.6) we have used to derive the conditions on the derivatives in the first
place. However, observe again the factor

δφe−W+5λ−φ ∼ δφ

|z − z0|
. (3.98)

With different choices for δφ ∼ |z − z0|α we can interpret the δ-function in the bracket in different
ways. In particular, the number of conditions we have to impose in the various cases is the same we
have presented in the previous section. However, notice that in the case where only one constraint
is imposed it can be done by using a well defined δ-function, by rewriting the equation (3.97) as

eW−φ(W + 2φ− 5λ)′′ + · · · − 1

4

∑
i=±

κ2τiδi = 0 . (3.99)

Instead the cases that require more than one condition to be imposed do so with the use of a not
well-defined product of distributions of the form

1

|z − z0|
δ(z − z0) . (3.100)

A possibility to avoid these ill-defined expressions is to work with a different set of variables that
does not diverge on top of the O8−. A natural set of variables with this property is the one directly
inspired by the flat space solution:

H1 ≡ e−4W , H2 ≡ e−
4
5φ, H3 ≡ e−2λ . (3.101)

In this language the ansatz (3.1) now reads

ds2
10 = H

−1/2
1 ds2

M4
+H

1/2
1 (dz2 +H−1

3 ds2
M5

) eφ = H
−5/4
2 , (3.102)
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and the full set of the equations motion turns out to be

Λ =
F 2

0

√
H1

H2

8H1H2
2

− 5H3κ

4H1
− (H ′1)2

8H3
1

+
25(H ′2)2

16H1H2
2

+
5(H ′3)2

4H1H2
3

+ (3.103)

+
5H ′1H

′
2

16H2
1H2

− 25H ′2H
′
3

8H1H2H3∑
i=±

κ2τiδi = −H
5/4
2 H ′′1

H
5/4
1

− F 2
0

4
√
H1

H
5/4
2

− 4H
3/4
1 H

5/4
2 Λ + (3.104)

+
H

5/4
2 (H ′1)2

H
9/4
1

− 5 4
√
H2H

′
1H
′
2

2H
5/4
1

+
5H

5/4
2 H ′1H

′
3

2H
5/4
1 H3∑

i=±
κ2τiδi = −H

5/4
2 H ′′3

4
√
H1H3

− F 2
0

4
√
H1

H
5/4
2

− 2H
5/4
2 H3κ
4
√
H1

+ (3.105)

− 2H
3/4
1 H

5/4
2 Λ +

7H
5/4
2 (H ′3)2

2 4
√
H1H2

3

− 5 4
√
H2H

′
2H
′
3

2 4
√
H1H3∑

i=±
κ2τiδi = −

4
√
H2H

′′
2

4
√
H1

− 4F 2
0

4
√
H1

5H
5/4
2

− 2H
5/4
2 H3κ
4
√
H1

− H
5/4
2 (H ′1)2

5H
9/4
1

+ (3.106)

+
2H

5/4
2 (H ′3)2

4
√
H1H2

3

+
4
√
H2H

′
1H
′
2

2H
5/4
1

− 5 4
√
H2H

′
2H
′
3

2 4
√
H1H3

+
(H ′2)2

4
√
H1H

3/4
2

− 8

5
H

3/4
1 H

5/4
2 Λ .

The first equation is a first order equation so that it does not involve δ-functions. Near the O8−
the variables Hi remain finite, and they behave as

H1 = a1|z − z0|+ a2(z − z0)2 +O(|z − z0|3) (3.107)

H2 = 5

√
a1F 4

0 |z − z0|+ a4(z − z0)2 +O(|z − z0|3) (3.108)

H3 = a3|z − z0|+
a2a3

5a1
(z − z0)2 +O(|z − z0|3) . (3.109)

Notice that now their behavior is similar to the behavior near the finite-coupling O8. In particular,
these functions are continuous with a discontinuous derivative and we can compute their second
derivatives as in equation (3.11):

H ′′i = (Hi)
′′

0 + ∆H ′iδ(z − z0) . (3.110)

The jump is now finite and we can match the coefficients of the δ-functions on both sides of the
equations (3.103)-(3.106). This procedure is equivalent to the permissive boundary conditions, so
that our numerical solutions correctly reproduce the δ-function in these equations.

3.2.3 Finite masses

We have seen from two different points of view that the difference between the permissive and the
restrictive boundary conditions can be traced back to the space in which we take the variations
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of the fields to belong when computing the equations of motion. In this section we will try to
understand if we can give some physical motivation to prefer a particular choice. A place where the
fluctuations become relevant is the study of perturbations around a given background, for example
in the context of a Kaluza-Klein reduction. Indeed, the Kaluza-Klein action will be an action for
the fluctuations δφ we have been discussing in the previous sections. In the following we analyze it
at the quadratic level in the picture where the internal space does not have boundaries. Notice that,
in general, this is a convoluted computation where first the different spins need to be decoupled to
extract the physical information. We do not perform this complete analysis here, but we only focus
on a single block.

The second variation of the action with respect to φ is

δ2
φS =

8

κ2

∫
M10

e−2φ√−g∇δφ∇δφ+
∑
i

τi

∫
Σi

e−φ
√
−hδφδφ . (3.111)

Now we expand the dilaton perturbation on a not-yet specified basis of functions on the internal
space:

δφ(x, y) ≡
∑
k

ϕk(x)fk(y) , (3.112)

where x and y denote coordinates on the external and internal space-time respectively. Plugging
this decomposition in (3.111) we get

δ2
φSφ =

8

κ2

∫
M4

√
−g4g

µν
4 ∂µϕ

i∂νϕ
k

∫
S1

dz

∫
M5

√
g5e
−4W+5λ−2φfifk + (3.113)

+
8

κ2

∫
M4

√
−g4ϕ

iϕk
∫
S1

dz

∫
M5

√
g5e

5λ−2φ∂zfi∂zfk + (3.114)

+
8

κ2

∫
M4

√
−g4ϕ

iϕk
∫
S1

dz

∫
M5

√
g5e

3λ−2φgab5 ∂afi∂bfk + (3.115)

+
∑
j

τj

∫
M4

√
−g4ϕ

iϕk
∫
M5

√
g5fifke

−W+5λ−φ . (3.116)

When the integrals in the internal space are performed (and the last term is evaluated on top of the
sources) we get an action for a tower of scalar fields ϕi’s in the external space-time. In particular,
the first line gives their kinetic terms and the other pieces give their mass matrix. Observe that
all the pieces involving an integral in dz converge, if the fk’s do not diverge. The only potentially
diverging term is (3.116) since on top of the O8−

e5λ−W−φ ∼ 1

|z − z0|
. (3.117)

Thus in order for (3.116) to give a finite contribution to the mass-matrix we need the fi’s to behave
as

fi ∼ |z − z0|α, α >
1

2
. (3.118)

This requirement is in agreement with the permissive boundary conditions but not with the restric-
tive ones. However, as we have already emphasized, this is only a piece of the full KK reduction,
and it might be possible that in the full computation different naively divergent term combine to-
gether to give a finite contribution even without imposing the condition (3.118) on the fluctuations.
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This may require some regularization of the various divergent pieces and thus the result might
depend on the ‘scheme’ chosen to regularize them. We have not analyzed these possibilities yet as
it would require to look at the full KK reduction. Thus we do not consider the condition (3.118)
to be a proof, but just as an hint that this procedure might give useful constraints on the space of
allowed fluctuations for the supergravity problem to be well-defined. However, we stress again that
a confirmation of the validity of these solutions has to be found beyond the supergravity limit.

To recap, we have seen that different forms of the boundary conditions are mapped to different
choices for the space of the allowed fluctuation of the fields around a given background. These
fluctuations become the four-dimensional fields of the effective theory. This has also consequences
for the moduli of the solutions. For example, we have noticed that in the case where F0 is the only
flux turned on there is a continuous rescaling of the supergravity equations of motion, which we
have labeled by c in (3.21), that can be used to generate new solutions. We have already argued
that this modulus is going not to be free when stringy corrections are considered and it will be
fixed in a fully corrected solution, if any. However, now we can see that it cannot be interpreted
as a four-dimensional field already at the two-derivative level. Indeed, a variation corresponding to
the action of c acts on the dilaton as

φ→ φ+ c , (3.119)

thus δφ = c. This fluctuation is not in the class (3.118), as it does not vanish on the O8− plane.

3.3 Solutions with O6− planes

In this section, we come back to the study of dS4 solutions of massive type IIA supergravity.
Building on the previous results, we will start the construction of richer models with extra fluxes
threading the internal cycles. Given the uncertainty surrounding its definition, we will try to avoid
the use of diverging-dilaton O8− planes. However, thanks to the famous no-go theorem [65] we
know that orientifold planes are important ingredients for constructing classical de Sitter solutions.
In this section, we will find solutions where the O8− planes are replaced with O6− planes.

3.3.1 Setup

We explore the metric ansatz (3.26) with the addition of more internal fluxes. The idea is to impose
again the presence of O8+ planes, and to see if we can get new consistent endpoints, different than
the diverging-dilaton O8−. In particular, we also allow the presence of the RR flux F2 on the
internal space. This flux couples electrically to D6-branes and O6-planes. As we have seen in
equation (3.45), when fluxes other than F0 are present, it is possible to allow for a positively curved
factor in the internal space. Anticipating a solution with an O6-plane we then take this factor to
be a sphere S2, which will be the sphere transverse to the O6-plane. All in all, we work with the
ansatz

ds2
10 = e2W ds2

M4
+ e−2W (e2Qdz2 + e2λ3ds2

M3
+ e2λ2ds2

S2), (3.120)

with all the functions only depending on the coordinate z. Again M3 is an Einstein space with
curvature RM3

= 3ρ3, and the cosmological constant of M4 is normalized as RM4
= 4Λ. Notice

that in the ansatz (3.120) we have introduced a gauge redundancy Q, which will help us to describe
within the metric ansatz (3.120) a known class of AdS7 solutions which will guide our construction.
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The most general choice for the fluxes compatible with the symmetries of the metric is

H = hdz ∧ vol2 +h2 vol3, (3.121)

F2 = f2 vol2, (3.122)

F4 = f41 vol3 ∧dz + f42 vol4, (3.123)

F0 6= 0, (3.124)

where a priori h, f2, f41 and f42 are all functions of the coordinate z.

Equations of motion

Away from sources, the unique solution of the equations of motion for the fluxes (1.23)-(1.25) and
their Bianchi identities (1.17)-(1.20), with non-vanishing F0, is given by

h = f ′2/F0, h2 = 0, f42 = cost, f41 =
1

F0
eQ−6W−2λ2+3λ3(F0c1 − f42f2), (3.125)

where c1 is an integration constant. The equations for the fluxes are then completely satisfied up
to the differential equation

f ′′2 = e2(Q−5W+φ)(F0c1f42 + (e8WF 2
0 − f2

42)f2) + f ′2(Q′ − 4W ′ + 2λ′2 − 3λ′3 + 2φ′). (3.126)

This local form of the equation of motion has to be supplemented with appropriate boundary
conditions for the fluxes, which we are going to discuss in the next section where we focus on a
specific choice for the sources. To simplify the analysis we restrict to the case F4 = 0 even though
the more general case might reveal interesting new features. In particular, we now set f41 = c1 = 0.
Moreover, we reduce the gauge redundancy to a constant parameter by setting

Q(z) = q0 . (3.127)

Specializing the dilaton (1.21) and the Einstein (1.22) equations of motion to our ansatz (3.120) we
obtain

−8Λe2q0−4W =
(f ′2)2e4W−4λ2

F 2
0

− f2
2 e
−4λ2+2q0+2W+2φ − F 2

0 e
2q0−2W+2φ (3.128)

− 4(λ′2)2 − 12(λ′3)2 − 24λ′2λ
′
3 + 6ρ3e

2q0−2λ3 + 4e2q0−2λ2

− 8(φ′)2 + 16λ′2φ
′ + 24λ′3φ

′ − 8W ′φ′ + 16(W ′)2

−W ′′e2λ2−W−φ = −1

4
f2

2 e
−2λ2+2q0+W+φ − 1

4
F 2

0 e
2λ2+2q0−3W+φ (3.129)

− Λe2λ2+2q0−5W−φ − 2W ′φ′e2λ2−W−φ + 2λ′2W
′e2λ2−W−φ

+ 3λ′3W
′e2λ2−W−φ − eq0

16π
κ2τ6δ6 −

1

4
δ8κ

2τ8e
2λ2+q0−2W

−λ′′2e2λ2−W−φ =
(f ′2)2e−2λ2+3W−φ

2F 2
0

− 1

2
F 2

0 e
2λ2+2q0−3W+φ − e2q0−W−φ (3.130)

− Λe2λ2+2q0−5W−φ − 2λ′2φ
′e2λ2−W−φ + 2(λ′2)2e2λ2−W−φ

+ 3λ′2λ
′
3e

2λ2−W−φ − 1

2
δ8κ

2τ8e
2λ2+q0−2W
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−λ′′3e2λ2−W−φ = −1

2
f2

2 e
−2λ2+2q0+W+φ − 1

2
F 2

0 e
2λ2+2q0−3W+φ − Λe2λ2+2q0−5W−φ (3.131)

− ρ3e
2λ2−2λ3+2q0−W−φ − 2λ′3φ

′e2λ2−W−φ + 3(λ′3)2e2λ2−W−φ +

+ 2λ′2λ
′
3e

2λ2−W−φ − eq0

8π
τ6δ6κ

2 − 1

2
δ8κ

2τ8e
2λ2+q0−2W

−φ′′e2λ2−W−φ =
(f ′2)2e−2λ2+3W−φ

4F 2
0

− 1

2
f2

2 e
−2λ2+2q0+W+φ − F 2

0 e
2λ2+2q0−3W+φ (3.132)

− 3

2
ρ3e

2λ2−2λ3+2q0−W−φ − 2Λe2λ2+2q0−5W−φ − 3λ′3φ
′e2λ2−W−φ

+ 2W ′φ′e2λ2−W−φ − 4(W ′)2e2λ2−W−φ − 2λ′2φ
′e2λ2−W−φ

+ (λ′2)2e2λ2−W−φ + 3(λ′3)2e2λ2−W−φ + 6λ′2λ
′
3e

2λ2−W−φ

− e2q0−W−φ − 3eq0

16π
τ6δ6κ

2 − 5

4
δ8κ

2τ8e
2λ2+q0−2W .

Equation (3.128) is a first order equation which will act as a constraint. Each of the other four
equations involves a second derivative of a different function. To distinguish between the tension
of the O8+ and of the O6−, we have changed the notation with respect to the previous section
by defining τ8 ≡ τ+. In particular, the tension of the O6− plane (τ6) enters in the equations of
motion since we have also included in the full action the corresponding localized term. However,
as in the flat space solutions in section 1.2.3, the formal δ-function localizing the O6− plane (δ6) is
located outside of the physical space-time and it is thus not clear how it really affects the equations
of motion. For this reason, we will take into account the presence of an O6− plane by imposing
its charge as in equation (3.136), and we will recognize it from the behavior of the fields at the
boundary of its ‘hole’. The same procedure has been employed to find the AdS7 solutions we will
review in section 3.3.2. Trying to use the uncorrected supergravity equations of motion beyond
this boundary does not appear to be physically meaningful since approaching this locus the string
coupling starts diverging. Moreover, trying to cross it would eventually lead to an imaginary metric
and dilaton.

Flux quantization

From now on, we will focus on setups where the coordinate z starts from an O8+ plane sitting
at z = 0 and ends at z = z0 at the boundary of the hole produced by an O6. The effect on the
space-time due to the O8+ projection is to impose on the solution the symmetry z → −z. The O6
action instead acts as an antipodal map on the transverse S2, which is thus RP2. More details on
settings with combined orientifold planes can be found in [110, 111, 112].

The presence of an O8+ makes the flux F0 jump according to its Bianchi identity:

∆F0 = −κ2τ8. (3.133)

Since F0 is odd across an O8-plane, we have ∆F0 = 2F0|z→0+ . Combining the two equations we
get in our conventions

F0|z→0+ =
n+

0

2π
, n+

0 = −4. (3.134)

The behavior of F2 on the O8-plane requires some care. Away from O6/D6 and NS5/ONS5 we
have to satisfy the Bianchi identities

dF2 = F0H, dH = 0. (3.135)
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In particular, H does not have to jump. Since on top of an O8+ plane F0 jumps as in (3.133), then
dF2 has to jump accordingly. The O6 at z = z0 is not defined through a δ-function, since the δ6 is
outside of the space-time, but through the boundary condition

f2(z0) = 1. (3.136)

This choice fixes the flux quantization for F2. Finally, we have to impose also the flux quantization
for H: ∫

M3

H = (2π)2N. (3.137)

To impose it, we integrate the Bianchi equation on half of the internal space,∫
M3
2

dF2 =

∫
M3
2

F0H, (3.138)

and we use (3.137) and the fact that H is even across the O8+ to obtain

4π(f2(z0)− f2(0)) = F+
0

1

2
(2π)2N. (3.139)

By writing F0 ≡ n0

2π and using (3.136), we get

f2(0) = 1− n+
0 N

4
, (3.140)

where for a simple O8+ (i.e. without D8s on top of it) n+
0 = −4. Summing up, for a solution of

the type O8+-O6− we have to impose the conditions (3.134), (3.136) and (3.140), which account
for the flux quantization of F0, F2 and H.

We conclude this section deriving a constraint on the cosmological constant. By integrating the
equations of motion across the O8+plane at z = 0, we obtain the usual boundary conditions

λ′i = −1

2
F0e

q0−W+φ, W ′ = −1

4
F0e

q0−W+φ, φ′ = −5

4
F0e

q0−W+φ, at z = 0 . (3.141)

By plugging these conditions into the first order equation (3.128) we get

Λ =
1

8
f2

2 e
−4λ2+6W+2φ − 3

4
ρ3e

4W−2λ3 − 1

2
e4W−2λ2 − (f ′2)2e−4λ2−2q0+8W

8F 2
0

+ (3.142)

+
c1f2f42e

−4λ2−2W+2φ

4F0
− 1

8
c21e
−4λ2−2W+2φ − f2

2 f
2
42e
−4λ2−2W+2φ

8F 2
0

− 1

8
f2

42e
2φ−6W

at z = 0 .

For completeness, in the second line of (3.142) we have reinstated the contribution of F4. Similarly
to (3.45) we observe that with a negative ρ3 we can obtain a positive cosmological constant.

3.3.2 Review of AdS7 solutions

A notable class of solutions that can be descried within our ansatz (3.120)-(3.126) is given by AdS7

solutions. They have been first found numerically in [47], then analytically in [48] and finally put in
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the following form in [49]. Similarly to our description of the AdS6 solutions around equation (3.38),
these AdS7 backgrounds are seen in our ansatz as AdS4 × H3 solutions, where H3 is a compact
hyperbolic space with the same Einstein constant of AdS4

ρ3 = Λ < 0 . (3.143)

In our language, the local form of the metric functions is given by

e2W =
√

2π

√
−α
α̈
, e2λ2 =

2π2X5/2α2

X5α̇2 − 2αα̈
, λ3 = 2W, q0 = 2π2X−5/2, (3.144)

the cosmological constant has the value

ρ3 = Λ = −2 +X5

4X5/2
,

and F2 and the dilaton are obtained from

eφ = X5/4 25/434π5/2
(
−αα̈
)3/4

√
X5α̇2 − 2αα̈

, f2 =
α̈

2× 34π2
+

F0πX
5αα̇

X5α̇2 − 2αα̈
. (3.145)

The equations of motion then force α to be a piece-wise degree 3 polynomial satisfying the condition

...
α = −162π3F0. (3.146)

If eight-dimensional sources are present, F0 changes accordingly to its Bianchi identity (3.133), and
...
a jumps. Nevertheless one can impose that the metric and the fields are continuous. The metric
is then given by

1√
2π
ds2

10 =

√
−α
α̈
ds2AdS7

+

√
− α̈
α
X−5/2

(
dz2 +

α2

α̇2 − 2X−5αα̈
ds2
S2

)
. (3.147)

Supersymmetric solutions are obtained for X=1, while non-supersymmetric ones are obtained
for X = 21/5 [113]. However, when seen as AdS4 × H3 solutions, both the choices give non-
supersymmetric backgrounds6. From now on we adopt the AdS4×H3 point of view, which we will
then generalize.

Different sources are chosen by specifying the correct boundary conditions for the polynomial

α = a0 + a1z +
a2

2!
z2 − 162π3F0

3!
z3 . (3.148)

The various possibilities are the following.

• a0 = a2 = 0. The metric locally reads

ds2
10 ∼ (ds2AdS4

+ ds2
H3

) +X−5/2(dz2 + z2ds2
S2) . (3.149)

This corresponds to having a regular point at z = 0 since the internal S2 shrinks regularly.

6There is a procedure for obtaining instead supersymmetric AdS4 ×H3 but it produces more involved configura-
tions [114].
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• a0 = 0, a2 6= 0. The metric locally reads

ds2
10 ∼ z

1
2 (ds2AdS4

+ ds2
H3

) + z−
1
2X−5/2(dz2 + z2ds2

S2) . (3.150)

Comparing with the solutions in section (1.2.3) we interpret it as describing at z = 0 a D6
extended along AdS4 ×H3.

• a2 = 0, a0 6= 0. The metric locally reads

ds2
10 ∼ z−

1
2 (ds2AdS4

+ ds2
H3

) + z
1
2X−5/2(dz2 + kds2

S2) . (3.151)

This is the metric describing an O6− plane extended along AdS4 ×H3, expanded around the
boundary of its hole, as described in section (1.2.3).

• a1 = a2 = 0. We recognize the local metric

ds2
10 ∼ z−

1
2 (ds2AdS4

+ ds2
H3

+ kds2
S2) + z

1
2 dz2 (3.152)

to be the one of a diverging-dilaton O8-plane extended along AdS4 ×H3 × S2.

• a1 = 0, a2 6= 0. In this case the metric does not stop at z = 0, but it has a non-differentiable
point if also F0 jumps crossing this point. Different regions with different values of F0 can
be connected on the locus at z = 0. From the supergravity point of view the resulting con-
figuration can thus per interpreted as a finite-coupling O8+ plane or a stack of D8-branes.
In the AdS7 setting, solutions constructed in this way are the holographic duals of the six-
dimensional conformal field theories we are going to study in Chapter 4.

In these examples we have only looked at the metric, but using (3.145) one can check that also the
dilaton and the fluxes behave properly near the various endpoints. Notice that these are only the
local behavior near the sources and one can build global solutions by specifying these conditions on
the two endpoints.

We now describe explicitly how to build a non-supersymmetric AdS4×H3 solution with O8+ and
O6− planes, which will then deform numerically to obtain de Sitter solutions. Other than letting
the appropriate coefficient to vanish on the different endpoints, we have to impose the correct flux
quantization conditions that we have studied in the previous section. Hence, if we want an O8+ at
z = 0 and an O6−-plane at z = z0 we have to impose

α̇(0) = 0, α̈(z0) = 0, f2(z0) = 1, f2(0) = 1− n+
0 N

4
. (3.153)

Moreover, for a simple O8+ (i.e. without D8’s on top) we have to impose n+
0 = −4 . In the gauge

fixed as in (3.147), z0 depends on N as

z0 =
4− n+

0 N

2n+
0

= −N + 1

2
, (3.154)

and the requirement that z0 > 0 forces N < −1. Thus, a part from the choice of the integer N , the
solution is completely specified by the function α. In Figure 3.3 we plot the behavior of the various
fields for a solution with a given N .
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Figure 3.3: An AdS4 × H3 solution with n+
0 = −4 and N = −20. The plotted functions are

e4φ(blue), e4W (green, rescaled), eλ2(orange, rescaled). For these solutions λ3 = 2W . On the left
it starts from an O8+ plane and on the right it ends on the boundary of the hole produced by an
O6− plane. Notice that the S2 does not shrink there as eλ2 does not reach zero.

3.3.3 Numerical solutions

In this section, we look for dS4 solutions involving an O8+ plane and an O6− plane. Our strategy
is to take a large N (thus with small dilaton and small curvature) non-supersymmetric AdS4 ×H3

solution described in the previous section and numerically rise the cosmological constant to positive
values.

We start by building the local solution near an O8+ plane at z = 0. By imposing the boundary
conditions (3.141) we obtain the expressions

e−4W = 1 +
F0e

q0z

a
3/4
1

+
1

2
e2q0z2

(
− f2

20

a
3/2
1 a2

2

− 4Λ

)
+O(z3) (3.155)

e−
4
3φ = a1 +

5

3
4
√
a1F0e

q0z +

z2

(
6a

3/2
1 b2

F 2
0

+ e2q0(10a2
2F

2
0 − 9f2

20)

)
18
√
a1a2

2

+O(z3) (3.156)

e−2λ3 = 1 +
F0e

q0z

a
3/4
1

+

z2

(
2e2q0

(
a2(a2Λ + 2)− 2f2

20

a
3/2
1

)
+ b2

F 2
0

)
6a2

2

+O(z3) (3.157)

e2λ2 = a2 −
a2F0e

q0z

a
3/4
1

+ z2

(
e2q0

(
a2F

2
0

a
3/2
1

+ a2Λ + 1

)
− b2

2a2F 2
0

)
+O(z3) (3.158)

f2 = f20 + bz +
F0e

q0z2(f20F0e
q0 − a3/4

1 b)

2a
3/2
1

+O(z3). (3.159)
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Some comments are in order.

• Since in this case we preferred to keep Λ and ρ3 as continuous parameters, we fixed the
redundancy in the parametrization of the metric by setting e−4W and e−2λ3 equal to 1 on top
of the O8+.

• q0 is just a gauge redundancy and we can use it to rescale the length of the interval.

• f20 and F0 are discrete parameters depending on N and n0 as in (3.134) and (3.140):

f20 = 1− n+
0 N

4
, F0 =

n+
0

2π
. (3.160)

For a simple O8+ without D8-branes on top of it we have to take n+
0 = −4.

• b is not a free parameter, but it satisfies a quadratic constraint coming from the first order
equation (3.128)

b = ±F0e
q0

√
f2

20

a
3/2
1

− 2a2(3a2ρ3 + 4a2Λ + 2). (3.161)

The two roots correspond to the two possible choices for the sign of f ′2(0). We find that only
the positive root gives solutions with a singularity we are be able to recognize as an O6-plane.
Moreover, notice that in order to have real solutions the expression inside the square root has
to be non-negative. This gives a constraint on the initial parameters of the solution, which
therefore cannot be independently initialized.

Summing up, the local solution near the O8+ plane depends on four continuous parameters a1, a2, ρ3

and Λ and two discrete ones, N and n+
0 . These parameters have to be chosen such that b defined in

(3.161) is real. To hit an O6− we then need to find a point where f2 = 1, requiring one fine-tuning.
Moreover, the O6− is identified by the behavior of the fields near the boundary of the ‘hole’, as in
(3.151). Correspondingly, we have to tune the parameters (ρ3, a1, a2) in order to reach a point z0

where the functions behave as

f2(z0) = 1, eλ2 ∼ const, eW ∼ |z − z0|−
1
4 , eλ3 ∼ |z − z0|−

1
2 , eφ ∼ |z − z0|−

3
4 .

(3.162)
Near such a point, the metric, the dilaton and the fluxes have the same local expression as in
(3.151), with AdS4 replaced by dS4. Notice that the supergravity approximation ceases being
reliable already approaching the boundary of hole, since the dilaton starts growing and eventually
diverges just like the O6− in flat space. Figure 3.4 shows a typical solution with this behavior.

Notice the similarities between Figure 3.4 and Figure 3.3. The main difference is that now
λ3 6= 2W , allowing for the seven-dimensional space to be split into spaces with different curvatures.
We have not-yet analyzed the more complicated space of solutions we obtain in this way, but it
seems that there are some free parameters which are not determined by the conditions (3.162). One
might wonder if also in this case more restrictive boundary conditions could fix them. Again, given
the appearance of a strongly coupled region it is not clear that this question should be formulated
within supergravity. When the Romans mass is turned off, it is known that the singularity is
resolved in M-theory, where the O6− is lifted into a smooth geometry given by the Atiyah-Hitchin
metric [99, 100, 101]. When F0 is present a similar mechanism is not known.
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Figure 3.4: A numerical dS4 solution with Λ = 2.7× 10−3 and ρ3 = −2.1× 10−1. It starts from an
O8+ plane (on the left) and ends at the boundary of the hole produced by an O6− plane (on the
right). The functions are e4φ(blue), e4W (green), eλ2 (orange, rescaled) and e2λ3(purple). On the
right, the functions behave as in equation (3.162).

A heuristic test one might try perform, is to analytically continue solutions as the one in Figure
3.4 in the non-physical region, where the metric and dilaton are imaginary, and check whether
they have the same pole the flat space solutions have. For the analytic AdS7 solutions we are
able to follow this procedure and the continuation of the solution in Figure 3.3 has a pole at
z0 = −N2 . Instead, for our numerical dS4 solutions the situation is less clear. In Figure 3.5 we
show the continuation inside the hole of the solution in Figure 3.4, zoomed into the region across
the boundary.
Notice that the qualitative behavior of the functions in Figure 3.5 inside the hole is different from
their behavior in the flat space solution. In particular H ≡ e−4W , is not diverging and eλ2 ∼
(z − zfin)0.1696, eλ3 ∼ (z − zfin)0.562 and eφ ∼ (z − zfin)0.5126. It might turn out to be possible to
choose the free parameters in the numerical solutions such that the pole in the unphysical region
is reproduced, but it is not clear that this procedure is physically meaningful. Even if some extra
conditions have to be imposed, we need to understand them by referring only to the physical space-
time. An indication might come from a more careful analysis of the mass of the object behind the
singularity.

Finally, we conclude with a comment on the physical value of the cosmological constant. Up to
now Λ was only a numerical parameter. Its physical value in units of the four dimensional Planck’s
mass is obtained as

Λphys =
Λ

M2
p

, with M2
P = κ2 Vol2 Vol3

∫
dzeQ−4W+2λ2+3λ3−2φ. (3.163)
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Figure 3.5: Zoom around the boundary of the hole of the analytic continuation of the solution in Fig-
ure 3.4. The functions are e4φ(rescaled, blue), e4W (rescaled, green), e2λ3(purple) and eλ2(rescaled,
orange). Notice that both the metric and the dilaton become imaginary on the right half of the
plot.

Performing this integral7 for the solution in Figure 3.4 we obtain

Λphys ∼
1

κ2
Vol3 10−9. (3.164)

This small number is expected from the AdS7 solutions, where at large N the Planck’s mass scales
as N5 and Λ remains constant [49].

7There is almost no difference in stopping the integral on the boundary of the hole or on top of the O6 since the
contribution of the hole is very small.
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Chapter 4

Holographic RG flows

In this chapter we change our point of view and we use supergravity as a tool to study quantum
field theories, by employing the so-called AdS/CFT correspondence.1 In particular, we will analyze
the physics of Renormalization Group (RG) flows between six-dimensional Superconformal Field
Theories (SCFTs) through a holographic seven-dimensional supergravity description.

In section 4.1 we introduce the class of field theories we are interested in. As we are going
to see, these six-dimensional theories are identified by the choice of an integer N, an ADE group
G, and a pair of nilpotent elements in its (complexified) Lie algebra. We will refer to this set of
information as the theory data. We focus on the G = SU(k) case, and in section 4.2 we propose
a seven-dimensional gravitational holographic description of these SCFTs. Our strategy will be to
add to a known universal consistent truncation the degrees of freedom that capture the physics
of the D-branes. In section 4.3 we check the validity of our proposal by finding a correspondence
between the theory data and the vacua of our gravitational theory. Moreover, we also perform
extra quantitative tests of our proposal by comparing with known results both in ten-dimensional
supergravity, where the holographic duals have been originally found, and in the quantum field
theories. In doing so, we quantitatively understand the range of applicability of our theory.

We then try in section 4.4 to connect the vacua we have found through domain wall solutions,
i.e. smooth geometries interpolating between them. When such solutions exist, they are interpreted
as the holographic realization of RG flows connecting the corresponding dual field theories. We will
find that in our theory these supersymmetric flows are described by a widely studied equation,
known as Nahm equation. Applying known mathematical results on the space of solutions to this
equation, we will be able to show that these interpolating geometries exist if and only if a certain
condition on the nilpotent elements associated to the connected vacua is met. This condition
matches the one previously conjectured on the quantum field theory side of the duality, which is
then confirmed by our results.

An unexpected outcome of this work is that we have been able to perform very precise qualitative
and quantitative checks on the physics of six-dimensional field theories by employing a supergravity
theory which is not a consistent truncation of string theory. An interesting question is to understand
if and to which extent this theory is reliable also ‘far’ from the original supersymmetric vacua around

1In this chapter we will use the main ideas and tools of AdS/CFT correspondence [21, 115, 116, 117] without
reviewing them. The literature on this fascinating subject is breathtakingly vast and a good entry point is the famous
review [118].
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which it has been constructed. For example, it might turn out that it is also able to capture, in
a more simple description, even some interesting non-supersymmetric sectors of the quantum field
theories we are going to discuss. Perhaps, it might also contain non-trivial de Sitter backgrounds
which are not just ‘artifacts’ of this effective approximation. This chapter is based on the published
work [3].

4.1 The six-dimensional field theories

A lot of evidence has been accumulated in the literature on the existence of an interesting class
of six-dimensional supersymmetric conformal field theories. These interacting fixed points with
N = (1, 0) supersymmetry2 are labeled by an integer N , an ADE group G and two nilpotent
elements µL, µR ∈ gC. We will refer to this set of data as the theory data and we denote the
corresponding theories as

T NG,µL,µR . (4.1)

For G = SU(k), these theories have been proposed to describe the dynamics of D-branes probing
orbifold singularities [120, 121] and more general systems of NS5-D6-D8 branes [122, 123]. For
G = SO(2k) and Ek the theories were described in [124, 125, 126] and can be engineered by adding
O6-planes to the IIA constructions of the SU(k) theories, or with F-theory constructions.

In this thesis, we are going to focus on the G = SU(k) case. The corresponding theories can be
engineered in type IIA string theory by considering N+1 NS5-branes living inside the world-volume
of k overlapping D6-branes, in a setting with or without D8-branes stacks where the D6-branes can
end.

To discuss their properties in relation to the theory data, we first introduce some definitions
and results in the theory of nilpotent orbits of semisimple Lie groups. For all the mathematical
background we will refer to [127]. An element µ ∈ gC (the complexification of the Lie algebra g)
is said to be nilpotent if it exists a k > 0 such that µk = 0. Notice that with this definition we
are implicitly working in the fundamental representation, but the same results hold in (and can be
translated to) any finite-dimensional representation.

Given a nilpotent element µ ∈ gC we define its nilpotent orbit as the set

Oµ ≡ {gµg−1|g ∈ G} , (4.2)

and its commutant , or centralizer , as the set

CG(µ) ≡ {g ∈ G|gµ = µg}. (4.3)

The flavor symmetry of the generic theory (4.1) is then the group3

flavor(T NG,µL,µR) = CG(µL)× CG(µR). (4.4)

In particular, the flavor symmetry of the theory

T NG,0,0 , (4.5)

2Since in six dimensions the superconformal algebra fixes all the supersymmetry generators to have the same
chirality, the supersymmetry is usually denoted as N = (1, 0) or N = (2, 0), which have respectively 8 and 16
supercharges. More details can be found in [119].

3We will ignore possible extra abelian factors, since they will not play any role for us.
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associated to the choice of the trivial element for both for µL and µR, is

flavor(T NG,0,0) = G×G (4.6)

Notice that the flavor symmetry (4.4) is always a subgroup of (4.6).
It has been proposed in the literature [125, 128] that the theories with a givenN can be connected

by an RG flow if and only if the corresponding nilpotent orbits are related by partial ordering . This
ordering is defined as follows. An orbit Oµ is said to be larger than another orbit Oµ′ if Oµ′ belongs
to the closure of Oµ i.e.

Oµ′ < Oµ if Oµ′ ⊂ Oµ. (4.7)

The proposal on the RG flows states, in this case, that the theory associated to µ′ can flow in the
infrared to the SCFT labeled by µ, where the flavor symmetry has been partially Higgsed to (4.4).
We can understand better the hierarchy of theories by starting from the theory (4.5) sitting at the
top. The quaternionic dimension of its Higgs moduli space has been computed in [129] and it is
given by

N + 1 + dim(G). (4.8)

The structure of this moduli space is not completely understood, but the dim(G) directions are
supposed to be related to N , the nilpotent cone of G, defined as the set of all its nilpotent elements.
This space turns out to have many singularities and the type of singularity of a µ ∈ N depends on
its orbit. By giving a vacuum expectation value to fields corresponding to points µL and µR lying
in singular orbits, one breaks the conformal symmetry and triggers an RG flow. This RG flow will
eventually land on a new SCFT in the infrared (choosing a point on a smooth orbit is expected to
lead to a free theory). This theory is conjectured to be (4.1) and its Higgs moduli space now has
quaternionic dimension

N + 1 + dim(G)− dim(OµL)− dim(OµR). (4.9)

The starting nilpotent cone N is now reduced to a space where the OµL and the OµR directions
have been quotiented away. A new RG flow can now be triggered by choosing a new nilpotent
element in this space. By iterating this procedure we get the proposed hierarchy of RG flows and
we can understand its connection with the partial ordering of orbits.

Let us describe more explicitly the partial ordering and the hierarchy of RG flows for the
G = SU(k) case. By performing a Jordan block decomposition, each nilpotent element of su(k)C
can be written in the following form

µ =

 Jd1
Jd2

. . .

 with Jd ≡

 0 1
0 0 1

. . .


 d . (4.10)

Two nilpotent elements whose Jda are related by a permutation are conjugated, and as such belong
to the same orbit. In order to avoid repetitions, we can order the Jda such that the da are listed in
increasing order

da ≤ da+1 .

In this way, we have identified a nilpotent orbit in SU(k) with a partition of k:

[d1, d2, . . .], such that
∑
a

da = k. (4.11)
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For example, to the single big Jordan block Jd we associate the partition [k], while to the trivial
element µ = 0 we associate the partition [1, . . . , 1] ≡ [1k]. These partitions can be described by
Young diagrams, where the da are the number of blocks in the a-th row in the diagram. The
opposite convention is also used in the literature in different contexts, where the emphasis is on the
object which we call the transpose partition µt. It is easier to define µt from its Young diagram,
which is simply obtained by reflecting the diagram of µ along a diagonal axis. For example, for
k =6 we can easily see from the diagrams

[16] 7→ , [6] 7→ (4.12)

that [16]t = [6] and [6]t = [16] .
The transpose partition can be used to more easily write the quaternionic dimension of Oµ

dim(Oµ) =
1

2

(
k2 −

∑
a

(µta)2

)
. (4.13)

From this formula we can readily see that the trivial element µ = 0 gives a trivial nilpotent orbit.
Indeed µ = [1k] and µt = [k] so that

dim(Oµ=[1k]) =
1

2
(k2 − k2) = 0. (4.14)

On the other side, a nilpotent element corresponding to a single k-dimensional block, µ = [k], has
transpose partition µt = [1k]. The quaternionic dimension of its nilpotent is thus

dim(Oµ=[k]) =
1

2

(
k2 −

∑
a

(µta)2

)
=

1

2
(k2 − k) =

1

2
k(k − 1). (4.15)

The combinatorial data encoded in the partition can also be used to readily write down the flavor
symmetry associated to generic pair of µL and µR. To this end, we first define the set of numbers

fL,Ra ≡ (µL,R)ta − (µL,R)ta+1. (4.16)

As an explicit example, consider the diagram

(4.17)

corresponding to the partition

µ = [1, 2, 2, 5] ⇒ µt = [4, 3, 1, 1, 1] . (4.18)

70



From the definition (4.16) (with f6 = 0) we compute

f1 = 1, f2 = 2, f3 = 0, f4 = 0, f5 = 1. (4.19)

Notice that the fa can also be defined as the number of blocks Ja with dimension a. Alternatively,
with our identification, this corresponds to the number of rows in the diagram having a blocks. The
flavor symmetry of the theory can now be written as

flavor(T NG,µL,µR) = S

(∏
a

(U(fLa ))

)
× S

(∏
a

(U(fRa ))

)
. (4.20)

As an example, the theory associated to µL = µR = 0 has k blocks of dimension 1, so it has only
fL,R1 = k and the corresponding flavor symmetry is

flavor(T NSU(k),0,0) = SU(k)× SU(k).

Instead, if we keep one block trivial (say, the right one) and we take the other one to be associated
to µ = [k], we have µt = [1, . . . , 1] and so the only non-zero integer is fLk = 1. Thus, the flavor
symmetry of the corresponding theory is just

flavor(T NSU(k),[k],0) = SU(k). (4.21)

From the Young diagrams we can also easily read the partial ordering between the corresponding
orbits. We say that the diagram associated to µ dominates µ′ (µ′ < µ) if µ′ can be obtained from
µ by removing a box from an higher row and adding it to a lower row. In Figure 4.1 we can see
an example of the full hierarchy for k = 6. From this figure it is also clear that the ordering is just
partial, and as such not all the corresponding theories can be connected by one (or multiple) RG
flows.

Figure 4.1: The partial ordering between Young diagrams corresponding to partitions with k = 6.
The arrows go from the bigger element to the smaller one.

Finally, we introduce another point of view that allows to label the theories (4.1) and which will
be important for the connection with the supergravity description. We start with some definitions.
We call a standard triple {H,X, Y } a triple of non-zero elements in gC that satisfy the commutation
relations

[H,X] = 2X, [H,Y ] = −2Y and [X,Y ] = H. (4.22)

The elements H, X and Y are called neutral , nilpositive and nilnegative respectively. The impor-
tance of this definition comes from the Jacobson-Morozov theorem.
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Theorem 1 (Jacobson-Morozov) Let gC be a complex semisimple Lie algebra. If X is a nonzero
nilpotent element of gC, then there exists a standard triple for gC whose nilpositive element is X.

Thus, a given nilpotent element µ ∈ gC can always be thought of as part of a standard triple.
From the definition in (4.22) we see that this triple spans an sl2,C algebra. With a change of basis,
we can bring the elements of the standard triple into three anti-hermitian matrices σi that satisfy
the commutation relation

[σi, σj ] = εijkσk. (4.23)

In other word, given a nilpotent element µ we can define an embedding

σ : su ↪→ gC. (4.24)

The matrices σi belong to gC and satisfy the su2 commutation relations, i.e. they provide an (in
general) reducible representation of su2. This representation can be decomposed as a direct sum of
irreducible representations:

σi =

 σi1
σi2

. . .

 , (4.25)

where the σia have dimensions da. We can label the irreducible representations with their spins la
so that the blocks obey the usual properties of spin representations

da = 2la + 1, Tr(σiaσ
j
a) = −κ2

aδ
ij , κ2

a ≡
la(la + 1)(2la + 1)

3
=
da(d2

a − 1)

12
. (4.26)

The holographic dual of the T NSU(k),µL,µR
theories have been identified in [128] to be the AdS7

solutions we have briefly introduced in section 3.3.2. As we have seen, the metric has a round S2

factor, on which an SU(2) isometry acts realizing the R-symmetry of the dual theory. The local
solution is fully determined by a function α(z) which satisfies the constraint (3.146):

...
α(z) = −162π3F0. (4.27)

The Romans mass F0 is a constant that jumps of an amount

∆F0 =
nD8

2π
(4.28)

when crossing stacks of bound systems of D8/D6 branes. As such, the slope of α̈ changes accordingly.
In this language it is easy to describe the relation of a given AdS7 configuration with a T NSU(k),µL,µR

theory: the µta give the slope of α̈ in each region. This is identification is illustrated in Figure 4.2
with a picture taken from [49].

The U(fL,Ra ) factors with a 6= 1 appearing in the flavor groups (4.20) are realized by the stacks

of D8-branes, while the U(fL,R1 ) are identified by stacks of D6 at the end of the interval. Thus, the
theory T NSU(k),0,0 sitting at the top of the RG hierarchy is dual to a solution without D8 branes and
with two stacks of k D6 branes on the two ends of the interval. The other theories are then obtained
by moving some of the D6 branes from the poles of the S3 into the interior, where they ‘open up’
into D8 branes. From this construction it is clear that to engineer the theories with G = SU(k)
we have to consider for α only boundary conditions that describe D8-branes, D6-branes or regular
points. If we instead consider boundary conditions that give O6-planes, as we did in section 3.3.2,
we can engineer the theories with G = SO(2k). Considering also O8-planes boundary conditions
gives theories outside the class (4.1) .
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Figure 4.2: A picture taken from [49], where in each region r ≡ − α̈
81π2 = n0z and s = n0.

4.2 Gauged supergravity description

As we have seen at the end of the previous section, the SCFTs we are considering have a ten-
dimensional holographic description. However, we can ask if it is possible to repack the relevant
degrees of freedom needed to capture the physics of RG flows into a simpler seven-dimensional
gravitational theory. A possibility is to truncate the original theory by keeping only a subset of its
degrees of freedom, and repack them into a set of seven-dimensional fields. In general, a truncation
of a theory is said to be a consistent truncation when all the solutions of the reduced theory can
be lifted to solutions of the original theory.

In [113] a consistent truncation of massive type IIA supergravity around its supersymmetric
AdS7 solutions has been constructed. This truncation leads to a theory called minimal gauged
supergravity , which we are going to review in a moment. However, this theory does not contain
enough information to study the RG flows we are interested in, since it has a single supersymmetric
vacuum. In other words, it captures only a common sector of all the vacua, forgetting their indi-
vidual details. This consistent truncation has also been derived from Exceptional Field theory in
[130]. As a result, all the ten-dimensional AdS7 solutions are identified in this description, which
can thus be used only to study properties common to all the T NSU(k),µL,µR

theories, such as their
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compactification to four- and three- dimensional field theories, as it has been done in [113] .
To be able to study the connections between different AdS7 vacua, we first need to tell them

apart in the seven-dimensional theory. To this end, we would like to have a consistent truncation
that keeps more modes of the internal manifold and includes the degrees of freedom living on the
D-brane stacks. Up to now, this more general consistent truncation has not been found, and some
attempts in the framework of the Exceptional Field Theory have shown that it is not possible to
obtain it at the two-derivative level [131].

Instead of deriving a consistent truncation from the ten-dimensional theory, we can try to add
to the minimal gauged supergravity the fields that can capture the extra degrees of freedom we
need to study the RG flows. We are not trying to find a consistent truncation, but we want that
our proposed theory satisfies some criteria that makes it suitable to our purposes:

• It should have some vacua in one-to-one correspondence with the choice of the two Young
diagrams defining the T NSU(k),µL,µR

theories;

• The residual gauge symmetry on these vacua has to match (4.20), the flavor symmetry of the
dual SCFT.

The second requirement comes from the general properties of the gauge/gravity duality, which
states that a global symmetry of the field theory is mapped to a gauge symmetry of the gravitational
theory.

In order to connect the different vacua with domain-wall solutions, we have to able to describe
them in the same theory. Recalling that the generic flavor group (4.20) is always a subgroup of
SU(k) × SU(k), our natural proposal is to couple the minimal gauged supergravity to two SU(k)
vector multiplets, which we will use to gauge an SU(k) × SU(k) subgroup of the full symmetry
group of the resulting theory. The different SCFTs in (4.1) would then correspond to vacua where
the gauged group has been partially Higgsed to (4.4).

Let us be more precise by describing the details of the gauged-supergravity theory we are going
to use. The field content of the complete theory is

• 1 gravity multiplet

(emµ , ψ
A
µ , A

i
µ, χ

A, Bµν , σ) i = 1, 2, 3 A = 1, 2 . (4.29)

This is the full field content of the minimal theory introduced in [132]. The R-symmetry is
SU(2)R and the multiplet includes a triplet of gauge fields Aiµ and two doublets of fermions,

ψAµ and χA. The triplets and the doublets transform respectively in the adjoint and in the
fundamental representation of SU(2)R as their i and A indices denote. The other fields,
neutral under the R-symmetry group, are the vielbein emµ , a two-form Bµν and a scalar σ
which we will call dilaton.

• n vector multiplets
(ARµ , λ

A
R, φ

i
R), R = 1, . . . n . (4.30)

The field content of each vector multiplet is composed by a vector, a doublet of fermions and
a triplet of scalars. Since in the end we want to gauge an SU(k) × SU(k) subgroup of the
global symmetry group, we take n = 2(k2 − 1) vector multiplets.
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The coupling of the minimal theory to the vector multiplets has been studied in [133] and reviewed
e.g. in [134, 135] . We refer to the last two for the results on this gauged-supergravity theory. In
total, we have 3n scalars coming from the vector multiplets. These scalars parametrize the scalar
manifold

Mφ =
SO(3, n)

SO(3)× SO(n)
. (4.31)

This manifold can be parametrized by matrices LIJ ∈ SO(3, n). We follow the notation of [136]:
the index I runs from 1 to 3 + n, and it is raised and lowered with ηIJ = diag(1, 1, 1,−1, . . . ,−1).
It splits as I = (i, R), both of them raised and lowered with δ’s.

Since in the theory we also have 3 + n vectors, we could gauge a (3 + n)-dimensional subgroup
G of the SO(3, n) global symmetry group. This is possible only if the structure constants of G with
all the indices lowered are antisymmetric:

fIJK = −fJKL, with fIJK ≡ f L
IJ ηJL . (4.32)

In our construction, we will gauge the particular subgroup

G = SU(2)R × SU(k)× SU(k), (4.33)

so that the structure constants split as

fIJK = (g3εijk, gLfrst, gRfr̂ŝt̂), (4.34)

where the frst and fr̂ŝt̂ are the structure constants of the two copies of SU(k), with indices going
from 1 to k2 − 1. This construction is consistent with the results of [135], where it is shown that,
in order to allow for AdS vacua, the gauge group G has to be of the form G = G0 × H with H
compact and semisimple and G0 ⊃ SU(2). The Lagrangian of the theory is then completely fixed
by supersymmetry, up to a small caveat. In order to allow for AdS vacua, the two-form B needs
to be dualized into a three-form and the Lagrangian has to be supplemented by a topological mass
term, which depends on a real constant h.

We will not need here the full Lagrangian, since we are only interested in supersymmetric
solutions. Indeed, in order to find them we only need to set to zero the variations of all the
fields with respect to fermionic variations, and then all the equations of motions automatically
follow. As it is common in supersymmetric theories, the variations of the bosonic fields vanish if
the background fermions are set to zero, which is the case for the solutions we are interested in.
The only non-trivial equations are then given by the variations of the fermions

δψµ = 2Dµε−
√

2

30
e−

σ
2Cγµε−

4

5
he2σγµε , (4.35)

δχ = −1

2
γµ∂µσε+

√
2

30
e−

σ
2Cε− 16

5
e2σhε , (4.36)

δλR = iγµP iRµ σiε−
i√
2
e−

σ
2CiRσiε , (4.37)

where ε is the fermionic parameter of the supersymmetry transformation and we have suppressed
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the R-symmetry indices. To write down these expressions we have used the definitions

(Pµ)iR ≡ LIR
(
∂µδ

K
I + f K

IJ AJµ
)
LRI , (4.38)

CiR ≡ 1√
2
f K
IJ LIjL

J
kLKRε

ijkR , (4.39)

C ≡ − 1√
2
fIJKL

I
iL

J
j L

K
k ε

ijk , (4.40)

where we recall that the LIJ are the SO(3, n) matrices parametrizing the scalar manifold (4.31).
Finally, to compute the cosmological constant and the masses of the oscillations around our

vacua, we also need the scalar potential of the theory:

V =
1

4
e−σ

(
CiRCiR −

1

9
C2

)
+ 16h2e4σ − 4

√
2

3
he

3
2σC. (4.41)

4.3 Vacua

The first requirement that our gauged-supergravity description has to satisfy is to contain AdS7

vacua in one-to-one correspondence with the choice of the nilpotent elements µL and µR defining
the T NSU(k),µL,µR

theories. For simplicity, we will now focus on the case where µR is trivial, so that
we can select different theories through the choice of a single nilpotent element µ ≡ µL. The more
general case where both Young diagrams are non-trivial is a simple generalization, and can be found
in [3, Section 6].

In order to preserve all the symmetries of the vacuum, all vector fields have to vanish and the
scalars have to be set to constant values. Other than the dilaton, we have at our disposal the 3n
scalars coming from the vector multiplets. In order to be able to identify the vacua with the choice
of a nilpotent element µ, we want to find a map

µ 7→ φiR . (4.42)

Thanks to the Jacobson-Morozov Theorem, we already know that we can associate to a generic
nilpotent element µ a triplet of elements in su(k), by building the σi matrices as in equation
(4.25). Notice that the σi would generically belong to su(k)C. However, a standard theorem in the
representation theory of Lie groups [137, Theorem 4.28] guarantees that every finite-dimensional
representation of a compact Lie groupG is equivalent to a unitary one. This implies that every finite-
dimensional representation of its Lie algebra g is equivalent to an anti-hermitian representation,
meaning that we can take σi ∈ su(k). We can then expand the matrices σi on a basis for the
fundamental representation of su(k):

σi ≡ σirT rf , r = 1, . . . , k2 − 1. (4.43)

The numbers σir have the right structure to be associated to scalars φir.
4 More generally, given a

choice of µ we can build the scalars
φir = ψσir , (4.44)

where ψ is a constant. We could have in principle chosen different constants ψr in the above
equation but the vacuum equations quickly set all of them to be equal.

4Recall that we are considering µR = 0, so that all the φir̂ vanish.
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With this identification, we can immediately build a generic element of the scalar manifold
(4.31). Indeed, we can use the quotient with respect to SO(3) × SO(n), to bring an element of
so(3, n) in the form (

0 φiR
φRi 0

)
, (4.45)

which can then be exponentiated to build the LIJ as

LIJ = exp

[(
0 φiR
φRi 0

)]
. (4.46)

Finally, notice that this ansatz for the scalars automatically breaks the original gauge group to
(4.4). Indeed, by definition, this group leaves µ invariant, and so also the σi in (4.44).

Before checking our ansatz against the BPS equations, let us point out that a very particular
case of this ansatz has been already studied in [134]. That paper considered the particular case of
the minimal theory coupled to only three vector multiplets, obtaining in this way the gauge group
G = SU(2) × SU(2). This is a particular case of our construction where one of the two Young
diagrams is not present and the other one has been specialized to k = 2. The only non-trivial
Young diagram for SU(2) then only leaves the possibility φir ∝ δir and [134] found that indeed this
choice leads to a new vacuum.

We can now proceed to check if this ansatz can solve the BPS equations for supersymmetric
vacua. We normalize the T rf such that Tr(T rf T

s
f ) = −δrs and, in order to compute the exponential

in (4.46), we first compute

φirφ
j
r = −Tr(φirT

r
f φ

j
sT

s
f ) (4.47)

= −Tr(φiφj) (4.48)

= ψ2
∑
a

κ2
aδ
ij (4.49)

≡ α2δij , (4.50)

where we have used the properties of the spin representations in (4.26) and we have defined

α2 ≡ ψ2κ2, κ2 =
∑
a

κ2
a. (4.51)

We also need to study the object
P st ≡ φsjφtj , (4.52)

which, by (4.50), we notice it is proportional to a projector:

P rsP st = φrjφ
s
jφ
s
kφ

t
k (4.53)

= α2φrjδ
kφtk (4.54)

= α2P rt. (4.55)

With these two properties the matrix exponential can be easily computed and we get

LIJ =

(
coshαδij sinhα

α φir
sinhα
α φsj δrs + coshα−1

α2 P rs

)
. (4.56)
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To find BPS solutions we need set to zero the variations of the fermions in (4.35), (4.36) and (4.37).
Since all the scalars are constant the P irµ vanish, so that the equations δχ = δλr = 0 give the
conditions

Cir = 0, C = 48
√

2he
5
2σ. (4.57)

Evaluating these quantities on our ansatz we obtain

C = −3
√

2
(
−g3(coshα)3 +

gL
κ

(sinhα)3
)
, (4.58)

Cia =

√
2

α
coshα sinhα

(
−g3 coshα+

gL
κ

sinhα
)
φia , (4.59)

and imposing (4.57) we also get

tanh(ψκ) = κ
g3

gL
, e

5
2σ =

g3gL

16h
√
g2
L − g2

3κ
2
. (4.60)

Finally the equation δψµ = 0 gives a differential equation for the Killing spinor ε, which we do not
need here.

To recap, for each choice of a nilpotent element µ we have managed to find a corresponding
BPS vacuum of the minimal theory coupled with n vector multiplets. The scalars in the vector
multiplets are given by (4.44), where the matrices σi are the ones appearing (4.25). These matrices
are associated to µ thanks to the Jacobson-Morozov Theorem. The constant ψ and the dilaton are
then obtained from (4.60).

As already emphasized, since we do not have a consistent truncation there is no guarantee that
these vacua correspond to the ten-dimensional ones. Nevertheless, this rich structure is encouraging.
Before looking for the domain wall solutions connecting these vacua, we first perform additional
cross checks on their validity, by matching with finer properties of the original ten-dimensional
supergravity solutions and with known results on the dual quantum field theories. More precisely,
we match the cosmological constant with the one obtained in type IIA supergravity and the masses
of the scalar perturbations with the dimension of the dual operators. These two qualitatively
different cross checks will help us to understand the regime of validity of our gravitational dual
description.

4.3.1 Cosmological constant

The cosmological constant on our vacua can be evaluated by directly computing the value of the
scalar potential (4.41), which gives

V = −240e4σh2 . (4.61)

Comparing this generic value with the value V0 obtained for the trivial vacuum (which is obtained
by taking the limit κ→ 0 in all the expressions) we get(

VµL
V0

) 5
4

=
e5σ

e5σ0
(4.62)

=
1

1− κ2 g
2
3

g2L

. (4.63)
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We want to understand how the quantity (4.63) scales in the holographic limit

da →∞, N →∞, da/N ≡ δa finite, (4.64)

where it has been computed in [49] for the type IIA vacua and matched with the field theory results
for the anomaly coefficient a. From (4.26) we see that in this limit

κ2
a ∼

d3
a

12
, (4.65)

so that

κ2 ∼ 1

12

∑
a

d3
a =

1

12

∑
a

a3fa , (4.66)

where we have used the fact that the fa are the numbers of blocks with dimension a, as noted below
equation (4.19). The expression for the a anomaly given in [49] can be rewritten as

aµL = N3 k
2

12
−N k

6

∑
a

a3fa + . . . . (4.67)

Since the anomaly coefficient a is proportional to L5
AdS, which in turn is proportional to V −

5
2 , by

taking the ratio of a for the different theories we can rewrite it as(
VµL
V0

)− 5
2

IIA

= 1− 2N−2k−1
∑
a

a3fa + . . . . (4.68)

From (4.63) we see that instead in our gauged-supergravity description we have(
VµL
V0

)− 5
2

= 1− 2κ2 g
2
3

g2
L

+ . . . . (4.69)

To write this expression we have assumed that we are in the regime where κ2 g
2
3

g2L
� 1. We are going

to comment this assumption in a moment. This result coincides with (4.68) upon the use of (4.66)
and the identification of the seven-dimensional parameters and the ten-dimensional ones as

1

12

g2
3

g2
L

=
1

Nk2
. (4.70)

However, this identification requires some comments. Since k =
∑
a da =

∑
afa we have that in

the holographic limit k scales as

k ∼ N
∑
a

δa , (4.71)

so that all the terms in (4.67) actually scale like N5, included some in the . . . in equation (4.69).
These terms are important and indeed in [49] they have been used to correctly match the gravi-
tational computation with the field theory one. However, if we try to directly include these terms
in our identification we fail. Since we are not working in a consistent truncation, a mismatch at
a subleading order is inevitable. In particular, the vector multiplets we have added to the pure
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minimal supergravity in order to capture the physics of the degrees of freedom living on the D-
branes are described here by the usual two-derivative quadratic action. However, in ten dimensions
they arise from the DBI action, which is not quadratic in their field strength. As anticipated, our
theory could never completely reproduce the results of massive type IIA. For a perfect matching
one would ideally need to improve the vector multiplet action by adding higher-derivative terms to
it. At the moment this is beyond the state of the art. However, it is natural to expect that these
higher order terms are not relevant when the vacuum expectation values (vevs) of the fields in the
vector multiplets are not too large. It is natural to interpret this requirement as the δa being not
too large, even though the da = δaN are large in the holographic limit. With this requirement the
terms in the . . . are in fact subdominant. Related to it, with this assumption we can also see that
upon our identification of the parameters we have that the quantity

κ2 g
2
3

g2
L

∼
∑
a δ

3
a∑

a δ
2
a

(4.72)

is indeed small, an assumption we have made in order to derive (4.69).
To recap, we have obtained a perfect match between our seven-dimensional supergravity and

the IIA theory, in the regime where vevs of the fields in the vector multiplets are not too large and
the use of the quadratic action can be quantitatively justified.

4.3.2 Masses and dimensions of the dual operators

We can now consider scalar perturbations around our backgrounds and compute their masses. We
will then compare these results with the expectations from the field theory side. We can regard this
comparison as a different consistency check on the ability of our seven-dimensional supergravity
description to capture the relevant physics of the dual field theories.

The easiest perturbations we can consider are the ones associated to the dilaton σ and to the
direction ψ in the scalar manifold, i.e. perturbations such that δφi ∝ φi. For these two cases we
can readily evaluate

m2
σ =

4

5
∂2
σV |vac = − 8

L2
AdS

, m2
ψ =

1

3κ2
∂2
ψV |vac =

40

L2
AdS

, (4.73)

where the factors 4
5 and 1

3κ2 have been included in order to canonically normalize the fields in the
Lagrangian. These masses satisfy the BF bound5, and as such do not generate any instability, as
is expected for supersymmetric solutions. We can then take the usual holographic relation

m2L2
AdS = ∆(∆− 6) , (4.74)

where ∆ is the conformal dimension of the dual operator and it is defined to be the highest solution
of the above equation. From it we obtain for these two modes with masses (4.73) the dimensions

∆ = 4 and ∆ = 10. (4.75)

There are many other scalars related to perturbations δφi that are not proportional to the φi. For
the theory with only the SU(k)L vector multiplet turned on there are 3(k2 − 1) − 1 of them. In

5In AdS space the squared masses of scalar fields can be negative, if they are not too much negative. The scale is
dictated by the cosmological constant and the precise bound is known as Breitenlohner-Freedman (BF) bound [138].
In our seven-dimensional case it reads m2 > − 9

L2
AdS

.
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order to compute their masses we have to compute the variations δLIJ induced from the variations
δφi. We will not report here the full computation (more details can be found in [3, Section 4.4] ,
but we only quote the main results. The quadratic perturbation of the scalar potential is

δ2V = −8 Tr(δφiδφi − 2[σi, δφj ][σi, δφj ] + 2[σi, δφj ][σj , δφi] + [σi, σj ][δφi, δφj ]) , (4.76)

where the σi are the background triplets. Taking into account the factors coming from the kinetic
term Tr(∂µδφ

i∂µδφi) we obtain the mass matrix for the canonically normalized scalars:

(M ij)αβ = −8(δij(1 + 2jkjk)− 2j(ijj))αβ (4.77)

where we have defined
[σi, T fr ] ≡ jirsT fs (4.78)

with T fr the basis of the fundamental representation of su(k). From this expression we can compute
all the masses and the corresponding conformal operator dimensions. An important feature of
the full mass spectrum is the appearance of massless scalars, corresponding to marginal operators
(∆ = 6). They would suggest the presence of deformations of our vacua and their existence would
be in tension with the general arguments of [135, 139] which forbid supersymmetric deformations
of AdS7 vacua. These putative marginal deformations appear in two classes (see [3, Table 1]). In
the first class, the number of massless scalar is the same as the number of the broken generators in
the Higgsing of the gauge group

SU(k)L → S(ΠaU(fLa )) . (4.79)

As such their are not independent modes but can be understood as being ‘eaten’ by the massless
vectors that have acquired a mass in the process. Instead, the other class of marginal operators
can be explicitly shown to be related to non-supersymmetric deformations. Combining these two
effects we have no contradictions with the results of [135, 139].

4.4 Domain wall solutions

Let us recap the construction so far. We have taken a universal consistent truncation around the
AdS7 vacua of massive type IIA supergravity and we have modified it by adding non-abelian vector
multiplets. The idea behind this construction is that these new fields could be able to tell the vacua
apart by capturing the degrees of freedom living on the stack of D-branes. We have performed
some quantitative checks on this proposal by showing that the resulting gravitational theory has
many AdS7 vacua in one-to-one correspondence with the data of the dual field theory. Moreover,
we have also been able to use our theory to reproduce quantitative features of these vacua, by
comparing both with ten-dimensional gravitational results and with quantum field theory results.
In this process, we have also understood the limitations of our approach as being related to the
restriction to the two-derivative action for the fields in the vector multiplet.

We now use our theory to study the physics of RG flows between the different SCFTs. We find
that the equations governing these flows are a class of well studied differential equations known as
Nahm equations, and we show that they have solutions with the correct boundary conditions only
in the cases conjectured by the field theory arguments reviewed in section 4.1.
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4.4.1 Equations governing the flows

A renormalization group flow connecting two conformal field theories with a holographic dual is
described in the gravitational theory as a domain wall geometry interpolating between the two
corresponding AdS vacua. In our case, these solutions, if they are allowed, are smooth geometries
which are contained within the following class of seven-dimensional metrics

ds2
7 = e2A(ρ)ds2

Mink6
+ e2B(ρ)dρ2. (4.80)

In order for these metric to interpolate among two AdS7 vacua, the function A is required to have
the following asymptotic behavior:

A→ A±ρ for ρ→ ±∞. (4.81)

The constants A± are then related to the radii of the two AdS7 spaces. Moreover in this gauge
both B and all the scalars have to go constant values at the two endpoints of the coordinate ρ.
Since in particular we are interested in flows connecting the vacua we have found in the previous
sections, we will impose the boundary conditions

φi(−∞) = φiµL−, φ(∞) = φiµL+, (4.82)

where the φiµL± are the values the scalars have in the vacua associated to the field theories at the
endpoints of the RG flows. Notice that also in this section we are still keeping µR = 0, so that the
connected vacua are specified only by µL. The limits ρ→ ±∞ represent respectively the ultraviolet
(UV) and infrared (IR) limit of the RG flow. For later convenience let us parametrize the gauge
redundancy in (4.80) in terms of a function Q defined as

Q(ρ) ≡ B(ρ)− σ(ρ)

2
. (4.83)

On a generic point along the flow, the scalars φi will not be proportional to σi as in (4.44), so
that the quantities C and Cia are different from the expressions we computed in (4.58) and (4.59).
Moreover the P irµ do not vanish anymore since the various quantities are not constant along the
flow. All in all, we obtain the expressions

P irρ = −φir
sinhα

α
∂ρ(coshα) +

(
δrs +

coshα− 1

α2
Prs

)
∂ρ

(
sinhα

α
φis

)
, (4.84)

1√
2
Cir = −g3

α
cosh2 α sinhαφir + gL

sinh2 α

2α2

(
δrs +

coshα− 1

α2
Prs

)
[φj , φk]sε

ijk , (4.85)

√
2C = 6g3 cosh3 α+ gL

sinh3 α

α3
εijk Tr(φi[φj , φk]), (4.86)

where we recall that α was defined in (4.50) by Tr(φiφj) ≡ −α2δij and Prs was defined in (4.52).
Since we are looking for supersymmetric flows we still need to solve the BPS equations (4.35),
(4.36) and (4.37), where we now plug the quantities we have just computed. We start by imposing
δλr = 0. In order to get rid of the projector appearing in P irρ , we notice that the object

Πrs ≡
(
δrs +

coshα− 1

α2
Prs

)
(4.87)
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is an invertible operator, whose inverse is given by

Π−1
rs ≡

(
δrs −

coshα− 1

α2 coshα
Prs

)
. (4.88)

Applying this inverse operator to both sides of the equation δλr = 0 we obtain the following set of
first order differential equations

e−Q∂ρΦ
i = coshα

(
−g3Φi +

1

2
[Φj .Φk]εijk

)
, with Φi ≡ gLφi

tanhα

α
. (4.89)

We see that the gauge choice
e−Q = coshα (4.90)

simplifies equation (4.89) that then reads

∂ρΦ
i = −g3Φi +

1

2
[Φj .Φk]εijk. (4.91)

This equation is a variant of a Nahm equation, to which it can be mapped through a change of
variables. We will study it in more detail in the next section, where we will show that it admits
solutions with the boundary conditions (4.82) if and only if the corresponding vacua are related by
partial ordering, confirming in this way the field theory expectation.

For the remaining part of this section let us show that the other BPS equations can be solved
with the correct asymptotics once a solution for Φi(ρ) (and so for α(ρ)) is obtained. We impose
the projection eBγρε = ε on the Killing spinor and we replace the commutator by using (4.91),
obtaining the differential equations

∂ρ

(
e−

5
2σ

coshα

)
+ g3

e−
5
2σ

coshα
− 16h

cosh2 α
= 0 (4.92)

coshα∂ρA−
1

5
(g3 coshα− ∂ρ coshα)− 4

5
he

5
2σ = 0 . (4.93)

Once α(ρ) is determined, these equations can be readily solved for σ(ρ) and A(ρ). The first one is
analytically solved by performing an integral:

e−
5
2σ(ρ) = 16he−g3 coshα(ρ)

∫ ρ

ρ0

eg3y

cosh2 α(y)
dy . (4.94)

A linear combination of (4.92) and (4.93) then gives the equation

∂ρ
(
e4A+σ

2 coshα
)

= g3e
4A+σ

2 coshα (4.95)

which can be readily solved for A as

A(ρ) =
1

4

(
g3ρ− log(coshα(ρ))− 1

2
σ(ρ)

)
+A0 , (4.96)

where A0 is an integration constant.
So, once the modified Nahm equation (4.91) is solved, a solution for A and σ is obtained

explicitly. Moreover, it can be shown that they obey the appropriate boundary conditions for RG
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flows we have described at the beginning of this section. In particular, the precise values of σ± and
A± agree with the ones we have computed in section 4.3. An interesting quantity to compute is
the ratio of the cosmological constants between the two vacua:(

V+

V−

) 5
4

=
g2
L − κ2

−g
2
3

g2
L
− κ2

+g
2
3

. (4.97)

As we are going to see in the next section, our modified Nahm equation admits solutions only if
κ+ < κ−, so that V+ < V−, in agreement with the expected behavior for a domain wall solution
representing an RG flow.

4.4.2 Nahm equation

We have reduced the problem of finding BPS flows to the study of the modified Nahm equation
(4.91) with the boundary conditions (4.82). With the simple change of variables

Φi ≡ −g3

2
Ai, ρ ≡ 2

g3
t, (4.98)

our modified Nahm equation is mapped to the equation

∂tA
i = −2Ai − 1

2
[Aj .Ak]εijk. (4.99)

This equation has been already studied in the mathematical literature. In particular, its space of
solutions has been analyzed in [140]. In the following, we will refer to [140] to describe this space,
by translating the results which are relevant to us in our language.

The main result of [140] (Theorem 1) states that the moduli space of solutions of equation (4.91)
with the boundary conditions (4.82) is the space

OµL− ∩ S(µL+) , (4.100)

where S(µL+) is the so-called Slodowy slice: the affine space defined by

S(µ) ≡ {Y + q | [X, q] = 0} . (4.101)

In the above definition Y and X are respectively the nilnegative and nilpositive elements of the
triple σi associated to µ, as defined in and below equation (4.22). The space (4.101) has two
important properties that are relevant for our construction:

1. it intersect Oµ only at Y ;

2. it meets only those nilpotent orbits whose closure contains Oµ.

By property 2, the space (4.100) is non-empty if and only if the closure of OµL− contains OµL+
,

i.e., if and only if
OµL+

< OµL− , (4.102)

by the definition (4.7). In other words, the flow can go from the UV fixed point associated to µL+

to the IR fixed point associated to µL− if and only if µL+ dominates µL−. This result confirms the
field theory conjecture we have described in Section 4.1.
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For completeness, we now give an explicit example of such a flow. This example is taken from
[141], where it used to study domain walls for N = 1∗ field theories in four dimensions. Adapted
to our case, it describes the flows starting from the UV nilpotent element µL+ = 0. In this case, a
solution of the Nahm equation (4.91) with the correct boundary conditions is given by

Φi =
g3

1 + eg3ρ
σiµL− (4.103)

for any µL−. Let us check it explicitly. On a generic point of the solution we can compute

Tr(ΦiΦj) =

(
g3

1 + eg3ρ

)2

Tr(σiµL−σ
j
µL−) (4.104)

= −
(

g3

1 + eg3ρ

)2

κ2
−δ

ij . (4.105)

By comparing this result with the definition of Φi,

Tr(ΦiΦj) = g2
L

tanh(α)2

α2
Tr(φiφj) (4.106)

= −g2
L

tanh(α)2

α2
α2δij , (4.107)

we can extract a relation for α

tanh(α) =

(
g3

gL

κ−
1 + eg3ρ

)
. (4.108)

We can now invert the definition of Φi and substitute the solution (4.103) and the relation (4.108),
obtaining the result

φi = g−1
L

α

tanh(α)
Φi (4.109)

=
g3

gL

1

1 + eg3ρ
α

tanhα
σiµL− (4.110)

=
α

κ−
σiµL− (4.111)

=
α

ψ−κ−
φiµL− . (4.112)

By taking the limit ρ→ −∞ of (4.108) and comparing the result with the expressions in the vacua
(4.60) we get

lim
ρ→−∞

α = κ−
g3

gL
= κ−ψ− and lim

ρ→∞
α = 0. (4.113)

Taking the limits ρ→ ±∞ of (4.113) and using these results, we immediately see that the φi satisfy
the correct boundary conditions. Finally, from the expressions (4.94) and (4.96) we can also extract
the asymptotic behavior of A and σ and explicitly verify their asymptotics.

We conclude this section with another non-trivial check of our gauged-supergravity description,
which consists in computing the conformal dimensions of the scalars triggering the flows determined
by the Nahm equation. In order to do this we need to check the general behavior of the scalar fields
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around the UV fixed points. In particular, as shown in [139], we should find that six-dimensional

SCFTs do not admit relevant deformations. With the change of variables s ≡ e−g3ρ and T i ≡ Φi

g3s
the Nahm equation becomes

∂sT
i = −1

2
[T j , T k]εik. (4.114)

We now study properties of the solutions near the UV, i.e., for ρ→∞ corresponding to s→ 0. It
is easy to check that near such a point the Nahm equation (4.114) admits solutions consisting of a
pole plus a regular part:

T i =
1

s
T i−1 + spT ip +O(sp+1), p > 0 (4.115)

where the T ip are constant matrices. Transforming back to the original coordinates we get

g−1
3 Φi = T i−1 + sp+1T i0 +O(sp+2) (4.116)

= T i−1 + e−(p+1)g3ρT i0 +O(e−(p+2)g3ρ) (4.117)

= T i−1 + e
−(p+1) 4

L+
ρ
T i0 +O

(
e
−(p+2) 4

L+
ρ
)

(4.118)

= g−1
3 φiµ+

+ e
−(p+1) 4

L+
ρ
T i0 +O

(
e
−(p+2) 4

L+
ρ
)

(4.119)

where in the last step we have rewritten g3 in terms of the AdS7 radius at the UV point:

g3 =
4

L+
. (4.120)

Since near the UV the space is asymptotically AdS, we compare expression (4.119) to the generic
expansion of a scalar field

δφi = ϕAe
−(6−∆) ρL + ϕBe

−∆ ρ
L + · · · , (4.121)

where ϕA and ϕB are respectively the non-normalizable and the normalizable mode. Via the
AdS/CFT correspondence they are associated respectively to a source for the dual operators or to
a vacuum expectation values of the dual relevant operators triggering the flow. In order for our
deformation to correspond to a source, we need to have

6−∆ = 4(p+ 1) ⇒ ∆ = 2− 4p . (4.122)

Assuming that the flow is triggered by an unitary operator, i.e with ∆ > 2, we see that the only
possibility is p = 0 corresponding to ∆ = 2. However this would correspond to a free scalar field,
which cannot trigger an RG flow. This result is in agreement with [139]. In particular, we see that
in our case the flows are triggered by giving a vacuum expectation value for the scalar fields with
conformal dimension

∆ = 4(p+ 1). (4.123)

In order for it to be associated to a relevant operator (∆ < 6) the only possibility is then p = 0, for
which ∆ = 4.
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