
plants

Article

Sustainability Perspectives of Vigna unguiculata L.
Walp. Cultivation under No Tillage and Water
Stress Conditions

Lorenzo Guzzetti 1, Andrea Fiorini 2, Davide Panzeri 1, Nicola Tommasi 1, Fabrizio Grassi 3,
Eren Taskin 4, Chiara Misci 4, Edoardo Puglisi 4,* , Vincenzo Tabaglio 2 , Andrea Galimberti 1

and Massimo Labra 1

1 Department of Biotechnology and Bioscience, University of Milan-Bicocca, Piazza della Scienza 2,
20126 Milano, Italy; lorenzo.guzzetti@unimib.it (L.G.); davide.panzeri@unimib.it (D.P.);
nicola.tommasi@unimib.it (N.T.); andrea.galimberti@unimib.it (A.G.); massimo.labra@unimib.it (M.L.)

2 Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84,
29122 Piacenza, Italy; andrea.fiorini@unicatt.it (A.F.); vincenzo.tabaglio@unicatt.it (V.T.)

3 Department of Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy; fabrizio.grassi@uniba.it
4 Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84,

29122 Piacenza, Italy; eren.taskin@unicatt.it (E.T.); chiara.misci1@unicatt.it (C.M.)
* Correspondence: edoardo.puglisi@unicatt.it; Tel.: +39-0523-599249

Received: 25 November 2019; Accepted: 27 December 2019; Published: 30 December 2019 ����������
�������

Abstract: Nowadays, agriculture is facing the great challenge of climate change which puts the
productivity of the crops in peril due to unpredictable rain patterns and water shortages, especially
in the developing world. Besides productivity, nutritional values of the yields of these crops may
also be affected, especially under low mechanization and the low water availability conditions of the
developing world. Conservation agriculture (CA) is a topic of emerging interest due to the provision of
adequate yields and reduced environmental impact, such as greenhouse gas emissions, by being based
on three main principles: minimum soil disturbance (reduced or no tillage), cover crop maintenance,
and crop rotation. The aim of this study was to assess the impact of CA management on the growth
performance and the nutritional profile of cowpea (Vigna unguiculata L. Walp), a pulse of African origin,
commonly known as black eye bean under field conditions. A field experiment was designed to assess
the effect of conventional tillage (CT) and no-tillage (NT) combined with the usage of a set of cover
crops, coupled to normal and deficient water regimes. Cowpea was revealed to be able to grow and
yield comparably at each level of the treatment tested, with a better ability to face water exhaustion
under CA management. After a faster initial growth phase in CT plots, the level of adaptability of this
legume to NT was such that growth performances improved significantly with respect to CT plots.
The flowering rate was higher and earlier in CT conditions, while in NT it was slower but longer-lasting.
The leafy photosynthetic rate and the nutritional profile of beans were slightly influenced by tillage
management: only total starch content was negatively affected in NT and watered plots while proteins
and aminoacids did not show any significant variation. Furthermore, significantly higher carbon and
nitrogen concentration occurred in NT soils especially at the topmost (0–5 cm) soil horizon. These findings
confirm the capability of CA to enrich soil superficial horizons and highlight that cowpea is a suitable
crop to be grown under sustainable CA management. This practice could be pivotal to preserve soils and
to save agronomical costs without losing a panel of nutrients that are important to the human diet. Due to
its great protein and aminoacidic composition, V. unguiculata is a good candidate for further cultivation
in regions of the word facing deficiencies in the intake of such nutrients, such as the Mediterranean
basins and Sub-Saharan countries.
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1. Introduction

The Green Revolution (1960–1980s) was aimed at improving the agronomic productivity and
nutritional features of the major staple crops worldwide (e.g., maize, rice, and wheat) [1]. Most of the
crop varieties were selected to deal with emerging environmental and biotic stresses (i.e., desertification,
nutrient-poor soils, and extreme temperatures) and were expected to produce yields several times
higher than minor crops and the local varieties. Unfortunately, overcoming some of these obstacles
was not always possible in a sustainable way and during the past three decades, cultivation practices
have been demanding a higher and higher use of water and agrochemicals (e.g., fertilizers, pesticides,
and herbicides), to enhance (or maintain) maximum crop yields [2,3]. Environmental hazards, the poor
maintenance of long-term plant and soil productivity and the higher costs in terms of agrochemicals
and energy consumption produced the modern crisis of agriculture. To address this crisis and
environmental concerns of the consumers, in recent years, the principles of Sustainable Agriculture
were continuously promoted worldwide [4,5]. Therefore, for the green revolution of the 21st century,
the practices of Organic farming (OF) and Conservation Agriculture (CA) are deemed environmentally
friendly approaches to agriculture. Traditionally, OF is based on the creation of the correct ecosystems
for the crop productivity with a holistic approach that considers maintenance and health of the soil,
plants, and livestock, with strictly regulated use of external inputs while focusing on farm production
and recycling of needed products (e.g., composting wastes and green mulching) and the adoption
of integrated strategies against plant pests. On the other hand, CA represents a set of three crop
management principles: (i) direct planting of crops with minimum soil disturbance, (ii) permanent soil
cover by crop residues and cover crops, (iii) crop rotation [6]. Through these strategies, CA guarantees
an optimum environment for the rhizosphere to capture nutrients and water [5]. The adoption of
no-till (NT) and the maintenance of a crop residue mulch on the surface have assumed an important
role, especially in the geographical areas characterized by consistent rainfall and the consequent risk of
soil leaching [7]. Although most of the production zones in the Mediterranean region are characterized
by hot summers and rainy winters, global warming has been increasing the risk of (i) soil degradation
due to soil losses in response to the greater drought and torrential rainfall; (ii) soil salinization due
the increase of droughts, irrigation, and sea level; and (iii) soil carbon stock depletion because of the
increase of temperature and drought [8]. Therefore, the application of CA principles has the potential
in the Mediterranean regions to preserve soil structure and fertility, as well as to improve productivity
and quality of crops [9–11].

Promotion and research on CA in many instances have focused on the first two principles, which
are minimum soil disturbance/no-tillage and surface crop residue. Species belonging to Fabaceae could
also enhance soil fertility thanks to the nitrogen-fixing symbionts. Moreover, there are several legume
crops that are also able to grow under stress conditions [12], such as water/salt stress, and could be
adapted to no-tilled soils. Sub-Saharan Africa is an important source of stress-resistant legume grain
cultivars, such as species belonging to the genera Vigna and Lablab [13–15], and some of these could
also be adapted to grow under the Mediterranean climatic conditions.

In this study, we selected Vigna unguiculata L. Walp (also known as cowpea) to investigate
the ability of this species to grow in the Mediterranean region under CA conditions. The species
was adequate for such study due to the fact that its beans are rich in proteins and carbohydrates
and have relatively low-fat content [16]. Moreover, Vigna unguiculata beans show an aminoacidic
pattern that is complementary to that of many foods consumed in the Mediterranean area, such
as cereal grains. These aspects make V. unguiculata a ‘strategic’ crop for the Mediterranean diet.
Furthermore, V. unguiculata is attracting the attention of consumers and researchers due to its beneficial
health properties, including anti-diabetic, anti-cancer, anti-hyperlipidemic, anti-inflammatory, and
anti-hypertensive properties [17].

Specifically, in this work, the response of V. unguiculata to NT soil management both with and
without irrigation was investigated. Plant growth features and plant productivity, in terms of straw
biomass and grain yield, were evaluated. At the same time, the response of the soil carbon (C) and
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nitrogen (N) stock to NT was verified. Emissions of greenhouse gases CO2 and N2O from NT soils are
highly variable and depend on complex interactions among soil properties (i.e., soil water content, soil C
and N), microbes, and the cultivated plant. Usually, the increased soil organic C (SOC) in surface layers
of no-till soils is widely found but may not be associated with increased C sequestration throughout the
soil profile [18]. Therefore, the evaluation of the relative carbon balance under NT vs. CT is essential to
better estimate the potential of NT to sequester additional C into the soil. Furthermore, there is no
accordance in the scientific literature about the effect of NT in N sequestration and dynamics [18].

Moreover, the metabolic features of the seeds, in terms of nutritional components after boiling
(to imitate the conditions of consumption and the effective intake for humans), were assessed.

2. Material and Methods

2.1. Experimental Design and Treatments

A one-year field experiment was carried out on a long-term field study (initiated in 2010) at
the CERZOO experimental research station in Piacenza (45◦00′18.0” N, 9◦42′12.7” E; 68 m above sea
level), Po valley, Northern Italy. The soil is a fine, mixed, mesic, Udertic Haplustalf (Soil Survey
Staff 2014), with a silty clay loam texture (sand 122, silt 462, and clay 416 g kg−1) in the upper
layer (0–30 cm). The main physical-chemical properties of the soil are reported in Fiorini et al. [19].
The climate is temperate, and the mean annual temperature and precipitation are 12.2 ◦C and 890
mm, respectively. Climatic data were collected from an automated meteorological station positioned
in the experimental field (Figure S1 in Supplementary Materials). The experimental design was a
randomized complete block (RCB) with four repetitions and two tillage treatments: conventional
tillage (CT) and no-tillage (NT). In detail, (i) CT included an autumn plowing (35 cm) and two passages
of rotating harrow in spring (15–20 cm) to prepare the seedbed, and (ii) NT consisted of direct sowing
on a soil untilled for 7 years using a double-disk opener planter for seed deposition. Between 2011
and 2017, the crop sequence was a three-year crop rotation, with soybean (Glycine max L. Merr.),
durum winter wheat (Triticum turgidum L. var. durum), and maize (Zea mays L.). During winter
off-seasons, a mixture of winter cover crops was sown in NT plots, right after harvesting the previous
main crop. The species composing the cover crops mixture were rye (Secale cereale L.), hairy vetch
(Vicia villosa L.), crimson clover (Trifolium incarnatum L.), Italian rye-grass (Lolium multiflorum Lam.),
and radish (Raphanus sativus L.). In 2018, 15 m2 (5 m × 3 m) within each plot (1430 m2; 65 m × 22 m)
were cropped with V. unguiculata, both under CT and NT. The experiment was established to compare
responses of cowpea cultivation to contrasting tillage systems. NT and CT planters were calibrated in
order to obtain the same sowing depth in both treatments. The distance between planting rows was
50 cm, and the distance between seeds on the same row was 10 cm. Sowing of cowpea was carried out
on May 18th (sowing depth: 3–4 cm) and the harvest took place on August 9th. No fertilizers were
applied during the growing season, and weeds were suppressed weekly by hands.

On July 20th, when cowpea plants were at the beginning of the blooming, each plot was divided
into two subplots. The first one was sprinkler irrigated to prevent water stress (20 mm per time, for a
total of three irrigation events), whereas, in the second sub-plot, any kind of natural or artificial water
input was prevented by temporarily covering those sub-plots through greenhouses to induce and to
simulate the dry season.

2.2. Biomass and Morphophysiological Sampling and Analysis

During the whole growing seasons, plants (N = 320) were measured weekly for a total of 7 surveys
to detect the following parameters: the dimension of the canopy (cm), the total number of leaves, and
number of flowers. Plants were labelled univocally in order to follow the growing performance of each
individual over time. After the greenhouses settlement, to evaluate the role of water exhaustion on
plants, in each subplot three plants were randomly chosen to be undergone to Pocket PEA Chlorophyll
Fluorimeter (Hansatech Instruments, Pocket PEA, 2013) measurements, providing an estimate of the
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Fv/Fm ratio. Fv is the fluorescence variable, calculated as Fm − Fo, where Fo is the fluorescence origin
and Fm is the fluorescence maximum.

Measurements took place from the 5th to the 7th survey on the same labelled plants in a time
range between 10 a.m. and 1 p.m.

After the 7th survey, grain yield and above-ground biomass weight were measured by harvesting
three randomly selected 2.0 × 1.0 m squares from each subplot. Above-ground biomass was manually
cut at the soil level and weighed. Grain and straw were also separated. The dry weight biomass
of cowpea (grain and straw) was gravimetrically determined by drying biomass at 70 ◦C until
constant weight.

Fruits derived from the remaining plants were harvested and stored at −20 ◦C before
phytochemical analyses.

2.3. Measurement of Soil Physical Properties

To determine soil C and N stock, soil bulk density (BD, 0–30 cm), SOC, and N concentration in the
0–20 cm layer (0–5 and 5–15 cm) were measured right after harvesting cowpea. Four randomly selected
undisturbed soil core samples were collected on August 20th, 2018 from each subplot, using a steel
auger of 5 cm diameter. Soil BD was determined according to the cylinder method [20], while samples
to determine SOC and N concentration were air-dried, ground with a rubber pestle, and sieved to 2 mm.
About 1 g of dry soil per each sample was weighed and used to determine C and N concentration by
Dumas combustion method with an elemental analyzer varioMax C:N (VarioMax C:NS, Elementar,
Germany). Soil carbonate removal was not necessary due to the low carbonate content in the soil.

To estimate the effect of watering on soil, the gravimetric water content was measured on a
weekly basis, both in watered (W) a non-watered (NW) plots (Figure 1). From May 18th to July 20th
precipitation events occurred for a total of 121 mm. After July 20th, in W sub-plots, precipitation and
irrigation events consisted of 38 and 60 mm (three irrigations of 20 mm each), respectively.
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2.4. Chemical Characterization of V. unguiculata Seeds

Phytochemical analysis was carried out on the cowpea seeds that were boiled in water for one
hour and then were left to cool down for another hour, as suggested by Olaleke et al. [21], in order to
mimic the conditions of cooking and consumption. Subsequently, seeds were dried at 50 ◦C overnight
and then ground to a fine powder.

2.4.1. Evaluation of Total Starch Content (TSC)

The TSC content was indirectly evaluated by measuring the amount of NADPH in samples after
an enzymatic treatment by using the Kit Megazyme® Total Starch AOAC Method 996.1 1 and AACC
Method 76.13. Briefly, 50 mg of dry powder was added to 200 µL of ethanol 80% v/v and 1 mL of KOH
2 M and left stirring for 20 min at 4 ◦C. Then, 4 mL of a sodium acetate buffer 1.2 M Ph = 3.8 were
added followed by the addition of 50 µL of α-amylase (8300 U/mL) and then 50 µL of amyloglucosidase
(AMG, 3300 U/mL). Samples were incubated for half an hour at 50 ◦C and then centrifuged at 3000 rpm
for 10 min to recover the supernatant. For each sample, the reaction mixture was prepared as follows
in a quartz cell: 1 mL H2O, 25 µL of the supernatant, 50 µL of a buffer solution pH = 7.6, 50 µL
NADP+/ATP. The solution was incubated for 3 min at room temperature and then the absorbance was
read at 340 nm against the blank containing water instead of sample.

Then, 10 µL of a solution containing hexokinase (HK) and glucose-6-phosphate-dehydrogenase
(G6PDH) was added. After an incubation of 5 min at room temperature, the absorbance was read
against the blank again at 340 nm. TSC is expressed as g of total starch per 100 g of dry powder.

2.4.2. Total Protein Content (TPC)

The extraction of amino acids and proteins from dry seeds was performed as in Olaleke et al. [21]
with minor modifications. Briefly, 2 g of dry powder were extracted in 50 mL of an aqueous solution
of theanine at a concentration of 10 µg/mL. Theanine was chosen as internal standard as it is not
biosynthesized in beans. The solution was stirred at 500 rpm for 5 min. Then samples were centrifuged
at 5000 rpm for 30 min and the supernatant was recovered and freeze-dried. Yields of extraction were
recorded by weighing freeze-dried extracts.

The Total Protein Content (TPC) was evaluated by using the Bradford assay as follows: 1 mL of
50% Coomassie-Brilliant Blue Bradford reagent (ThermoFisher) was incubated at room temperature
with 2 µL of extract of known concentration for a minute. Absorbance was read against blank at 595 nm
and fitted on a calibration curve made up with BSA (Bovine Serum Albumin) in a range between 0 and
6 mg/mL. TPC was expressed as g total proteins per g of extract and was then multiplied per the yield
of extraction to be expressed on g of dry powder.

2.4.3. Amino Acidic Content and Characterization

The evaluation of the amino acid content was performed by High Performance Liquid
Chromatography coupled to a Diode Array Detector (HPLC-DAD), 1260 Infinity II LC System
(Agilent, 2018). A calibration curve was made up by using an amino acid mixed solution (Merck,
analytical standard, 17 amino acids plus tryptophan) in a range between 0.078 mM and 1.25 mM.
The column used for this analysis is an Agilent Poroshell HPH C18 (100 × 4.6 mm, 2.7 µm) with a
guard column (AdvanceBio Oligo 4.6 × 5 mm, 2.7 µm) and it was kept at 40 ◦C. Mobile phases were
phosphate buffer (10 mM Na2HPO4 pH = 8.2) and Acetonitrile:Methanol:Water (45:45:10). The elution
program is (%B): 0–0.35 min 2%, 13.4 min 57%, 13.5 min 100%, 15.7 min 100%, 15.8 min 2%, 18 min end.
Flow rate was constant at 1.5 mL/min. Solvents were HPLC grade, whereas the buffer, solutions
and samples were pre-filtered with a 0.22 µm filter. As derivatizing agent, OPA (o-Phthaldialdehyde
reagent, Merck) was chosen for its capacity to bind amino groups and act as fluorophore. The injection
volume was 10 µL. The signal used to visualize the fluorescence was set at 338 nm bandwidth 10 nm
with a reference wavelength of 390 nm bandwidth 20 nm. Spectra were collected during analysis in a
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range between 200 nm and 500 nm with a step of 2 nm, to have a side control and make identifications
easier. All data were displayed and analysed on Agilent ChemStation software.

2.5. Plant Morphometry, Photosynthetic Efficiency, and Phytochemistry

Data deriving from the field activity were analyzed through the software R(Version 3.3.3 ©
2019–2016) and particularly by the lme4 and glmmTMB, mgcv and gamm4 package. Linear Mixed
Effect Models (LME) or Generalized Linear Mixed Effect Models (GLMM) were initially applied.

However, when considering trends in time of morphological parameters, model validation
confirmed non-linear pattern in the residuals, therefore, the application of GAMMs (Generalized
Additive Mixed Models) was required after confirming through the AIC evaluation.

Specifically, canopy was assumed to be Gamma distributed (data were considered
Gamma-distributed because of the occurrence of negative fitted values), number of leaves and flowers
was considered Poisson distributed but they were then switched to a negative binomial distribution to
deal with overdispersion. Concerning the evaluation of Fv/Fm ratio from PEA measurements, only
data from the 5th to 7th survey were provided, so the (b) model was directly run. This ratio is an index,
therefore it was assumed to be beta-distributed. Models were run providing for a double random effect,
which is the individual nested within the plot. Model validation was performed by plotting residuals
from each model against fitted values as well as each covariate and random component. Because of
the high tendency of violation of independence as a consequence of temporal correlations (data were
collected week by week), a corARMA1 correction was provided for each model [22]. The selection of
the best model was provided by following the Aikaike Criterion (AIC) through the anova function.

Concerning plant chemical parameters, TPC, TSC, and total amino acidic content were analyzed
through a GLMM as above, considering the plot as random factor (R, Version 3.3.3© 2019–2016 and
particularly by the lme4 and glmmTMB package). Data were assumed to be binomially distributed but
necessitated a switch to a beta-binomial distribution due to over-dispersion. The fixed effect was time
in interaction with the management condition (tillage, irrigation) in order to evaluate their effect on
response variables in time by exploiting 95% confidence bands.

2.6. Soil Properties

The soil C and N stock (Mg ha−1) at 0–30 cm depth was calculated as follows: profile soil stock
(Mg ha−1) = (soil C/100) × BD (Mg m−3) × depth (m) × 10,000 (m2 ha−1). Likewise, soil N stock on the
soil was determined.

Data on soil C and N (both concentration and stock), as well as on grain yield and straw biomass of
cowpea, were subjected to analysis of variance (ANOVA) with a split plot design following procedures
outlined by Gomez and Gomez [23] and using the “agricolae” package of RStudio 3.3.3. The main-plot
factor was the tillage system (NT vs. CT), while the subplot factor was water management (W vs.
NW plots). When the Shapiro–Wilk test and the Levene’s test did not confirm the assumptions of
ANOVA, data were log-transformed before analysis. Tukey’s honestly significant difference (HSD) as a
post hoc was used to test for significant differences in variables among treatments with a p-value of
0.05 as the threshold for statistical significance.

3. Results

3.1. Biomass and Grain Yield

No significant differences were detected between grain yield on plant grown under NT and CT
conditions (Figure 2) and with and without irrigation. Concerning the straw biomass, significant
higher production in the W plots than in the NW ones (6.78 vs. 5.18 Mg ha−1; +31%) was observed.
Conversely, no difference was found between CT and NT plots (Figure 2).
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The interaction between the tillage system and water supply showed significant differences in
cowpea straw biomass while not in the grain yield production (Figure 2). In detail, CT-W and NT-W
had the highest straw biomass with 6.94 and 6.63 Mg ha−1, respectively. CT-NW had the lowest straw
biomass (4.22 Mg ha−1), while NT-NW did not show a significant difference compared to the other
conditions (Figure 2).

3.2. Morphometrics and Growth Parameters

Planting density was measured in all plots and subplots at the late flowering stage (R4-R5) and
was as follows: under CT, the W (CT-W) and the NW (CT-W) subplots had an average of 16.8 and
15.3 plants m−2, respectively; under NT, the W (NT-W) and the NW (NT-NW) subplots had on average
value of 18.5 and 17.5 plants m−2, respectively.

Figure 3 shows the results related to the morphometric parameters detected: number of flowers
(intended as a reproductive parameter), dimension of the canopy, and total number of leaves (intended as
growth parameters). The flowering period took place starting from the 4th week. As Figure 3a shows,
CT plots revealed a sudden blooming followed by a likewise sudden interruption, while NT plots
showed a more contained but constant blooming. Therefore, blooming was significantly higher
between the 4th and the 5th week in CT plots and then significantly higher in NT plots. No effects were
due to no irrigation (see 95% confidence bands). Concerning vegetative parameters, the obtained data
(Figure 3b,c) suggested that a significant difference resides in the decrease of the total number of leaves
caused by the absence of irrigation at the 6th week, followed by recovery during the last survey. As far
as tillage is concerned, it was found that at the beginning of the growth season (from the 1st to the
3rd week) both plants canopy expansion and total number of leaves were significantly higher in CT, then
during the 4th survey, no differences were detected between the two groups, while from the 5th week
to the end NT plots showed a significantly higher performance for both the considered parameters.
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Figure 3. Models showing the trend of (a) number of flowers, (b) canopy length, and (c) number of
leaves during the experimental period in the four treatments. CT=conventional tillage, NT=no tillage,
W = watered, NW = not watered.

3.3. Efficiency of Photosynthesis and Metabolic Profile

Figure 4 shows the results relative to photosynthetic efficiency, TSC, TPC, and amino acid content.
Results suggested that metabolic features were lowly affected by tillage management. Photosynthetic
efficiency (Figure 4) was comparable between the two treatments (χ2 = 5.03, p = 0.17). Concerning
proteins (Figure 4b), TPC was not significantly influenced by treatments (χ2 = 6.14, p = 0.11).

Also, the total amino acidic content (Figure 4d) did not show any significant difference between
treatments (χ2 = 4.15, p = 0.25), with an average amount ranging between 0.5% and 2% of the dry matrix.

Finally, TSC was clearly influenced by treatments (χ2 = 29.63, p < 0.001). In particular, both CT (β
= 0.3 ± 0.1, p = 0.004;) and NW (β = 0.29 ± 0.05, p < 0.001) caused an increase in the TSC of about 4.5%
and 3.3%, respectively. The interaction resulted to be significant as NT coupled to W caused the most
dramatic decrease in TSC (β = −0.23 ± 0.06, p < 0.001).
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3.4. Soil Organic Carbon and Total Nitrogen

Concerning soil chemical characteristics, a significant difference in C and N concentration occurred
between NT and CT, especially at the topmost (0–5 cm) soil horizon. In detail, C and N concentrations
in this soil layer were 59% and 27% higher under NT than under CT. No significant difference in soil C
and N concentration was found in the 5–30 cm soil layer. (Tables 1 and 2). Overall, soil C stock in the
0–30 cm soil layer was statistically affected by the tillage system and was 2.58 Mg ha−1 higher in NT
than in CT soil (+5%). Conversely, soil N stock in the same soil layer did not statistically differ between
NT and CT, even though NT tended to increase soil N stock value by 4% (Tables 1 and 2).

Table 1. Soil organic carbon. Values are mean ± SEM. Significance levels: * < 0.05, ** < 0.01, *** < 0.001.

Condition Code C Concentration 0–5 cm
(g C kg−1 soil)

C Concentration
5–30 cm (g C kg−1 soil) C Stock (Mg ha−1)

Tillage
CT 12.49 ± 1.48 12.39 ± 0.88 48.56 ± 3.37

NT 19.92 ± 0.73 12.5 ± 0.76 51.15 ± 2.24

Signif. *** n.s. *

Water
W 16.17 ± 4.06 12.49 ± 0.76 49.98 ± 2.81

NW 16.24 ± 4.22 12.4 ± 0.88 49.73 ± 3.51

Signif. n.s. n.s. n.s.

Interaction

CT-W 12.46 ± 0.92 12.43 ± 1.03 48.69 ± 3.53

CT-NW 12.51 ± 2.07 12.34 ± 0.87 48.43 ± 3.74

NT-NW 19.88 ± 0.97 12.54 ± 0.54 51.27 ± 1.24

NT-NW 19.96 ± 0.55 12.45 ± 1.02 51.03 ± 3.19

Signif. n.s. n.s. n.s.
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Table 2. Nitrogen content in the soil. Values are mean ± SEM. Significance levels: * < 0.05, ** < 0.01,
*** < 0.001.

Condition Code N Concentration 0–5 cm
(g N kg−1 soil)

N Concentration
5–30 cm (g N kg−1 soil) N Stock (Mg ha−1)

Tillage
CT 1.49 ± 0.21 1.49 ± 0.1 5.84 ± 0.46

NT 1.9 ± 0.21 1.57 ± 0.1 6.1 ± 0.37

Signif. ** n.s. n.s.

Water
W 1.72 ± 0.37 1.55 ± 0.11 6.04 ± 0.39

NW 1.67 ± 0.22 1.52 ± 0.12 5.91 ± 0.48

Signif. n.s. n.s. n.s.

Interaction

CT-W 1.41 ± 0.09 1.48 ± 0.1 5.76 ± 0.37

CT-NW 1.57 ± 0.28 1.5 ± 0.12 5.93 ± 0.58

NT-NW 2.03 ± 0.22 1.62 ± 0.06 6.32 ± 0.08

NT-NW 1.76 ± 0.08 1.53 ± 0.13 5.88 ± 0.43

Signif. n.s. n.s. n.s.

4. Discussion

4.1. Suitability of V. unguiculata for Mediterranean CA

Our findings, overall, suggest that tilling is not fundamental to guarantee cowpea growth and
yield. Therefore, cowpea is a crop suitable for CA practices and could be cultivated in harsh conditions
such as arid and semiarid regions, where not all the crops perform well. For instance, grain yield in
common bean Phaseolus vulgaris L. is highly affected (−70%) under drought conditions [24].

Usually, tillage alters the physical-chemical properties of soil, and NT vs. CT may greatly impact
plant growth and yield [25]. Unfavorable effects of NT on crop yield have been widely reported
immediately after the conversion from CT [26]. This is because NT may increase soil strength and BD
in the initial years due to transient compaction of soil [27], thus reducing the root growth of plants [28].
However, it has also been shown that negative effect usually expires from three to five years after the
conversion from CT to NT [19]. Our experimental activities with seven-year NT corroborated this
improvement of yield potential under NT in the medium-long term.

No-till is usually indicated to enhance the water content of soil [29], which is of primary importance
to sustain crop yield, especially under arid and semi-arid climates [30]. Our data show that NT tended
to mitigate soil water losses compared with CT and cowpea tolerated NW conditions well under NT.

These results are in line with earlier studies reporting the high potential of NT to enhance crop
yield in non-irrigated field management [31]. The efficacy of cowpea to grow under water deficient
conditions and with reduced or no tillage was also documented by Moroke et al. [32] in the experimental
area of Texas, and by Ahamefule and Peter [33] in Nigeria. Moroke and co-workers [32] suggested
that the cultivation of this species enhances the residual soil water and the presence of surface residue
management due to cover crops and NT systems usually increases the whole stored soil water.

In the Mediterranean basin, mean temperatures are constantly increasing and precipitation pattern
is changing towards hot and dry summer seasons as a consequence of climate change. In this context,
European production of pulses has been constantly declining (from 5.8 to 1.8 million ha from 1961
to 2013), mainly due to the introduction of more specialized and intensive crops such as wheat, rice,
and corn [34–36], but also as a consequence of productive instability of highly water-demanding
species [37]. However, the European Commission [38,39] welcomes initiatives to increase the EU’s
plant protein production in a sustainable and agro-ecological way. Since cowpea can be considered
as a leguminous species with reduced water demand and high drought tolerance [40], it may be
considered to support the cultivation of legumes in Europe replacing currently cultivated species that
have higher water demands [37]. In addition, we indicate that cowpea is also a reliable alternative
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to the common Mediterranean bean (P. vulgaris) in North-African countries, especially because of
high drought tolerance during the reproductive phase [41]. Therefore, combining NT through the
cultivation of species and cultivars of pulses highly resistant to water stress (such as the cowpea) could
support the resumption of legume cultivation in Europe and in the Mediterranean basin to deal with
the ongoing claims about pulses and climate change [42].

Concerning the growth parameters, our experiment shows that plants initially grow better on CT
soils, but after having joined a critical dimension the NT treatment helps to maintain and stimulate a
more pronounced growth in a significant manner. This is particularly true if soil treatment is associated
with NW. Generally, the two treatments on the global pattern are not significantly different, but this is
due to a balance on the whole values associated with pretty large variations during the growing season.
Also, leafy photosynthetic efficiency did not differ between treatments. Therefore, we highlight a great
capability of the cowpea to grow under reduced tillage and low water regime.

Many studies focused on the impact of CA on crop yields [6], while no attention was given to
morphological adaptations and metabolic profiling. The latter is an important aspect, impacting on
nutritional importance and sustainability of this crop.

Generally, the main constituents of the seeds were not strongly affected by treatments (NT and NW)
with the exception of TSC. TSC is normally related to a plant’s ability to photosynthesize, therefore,
some studies conducted on V. unguiculata seeds showed a reduction in TSC under NW, also in order
to increase the number of free analytes able to gather water through osmosis [43]. Here, we found
an increase in TSC in NW conditions. Maybe this could be related to the maintenance of a high
photosynthesis rate, also without irrigation. As a matter of fact, NW is not always related to starch
degradation in plant tissues [44]. These data further confirm a good resistance of this species against
drought, a condition highly dangerous for many crop species not equally able to adapt to climate
changes [45]. Finally, in terms of protein and amino acids, our analyses confirm that cowpea is an
important source of these nutritional components and the growing condition did not affect their
amount. Considering that in the Mediterranean area, especially in the Eastern and African sides,
diets are deficient in terms of protein and amino acid intake [16,46] and despite the change in food
regimes that lead to a decrease of the intake of animal proteins, we estimate that cowpea could be a
great support or even a crucial aliment to compensate these lacks. Moreover, the cowpea amino acidic
content is two times higher than the widespread common bean P. vulgaris [16], therefore this species
could be a good substitute for the traditional legume crops.

4.2. Conservative Cultivation of V. unguiculata Enhances Soil Fertility

As well documented, Fabaceae are able to accumulate organic nitrogen thanks to symbiotic
interactions at the rhizosphere level. This phenomenon has positive effects also on soil fertility;
however, soil management could also affect organic and inorganic components. For instance, CT
is considered a major cause of soil C and N depletion as a consequence of soil organic matter
mineralization [47]. NT has been widely indicated as a key strategy to increase C storage in arable
soils. Our results are in line with this consideration as they show that converting CT to NT increased C
stock by 2.58 Mg ha−1 on a silty clayey soil (Table 1), which means that NT increased the potential
of soil to sequester C by 0.32 Mg ha−1 yr−1 under our experimental conditions. This is consistent
with the previous findings of a review study by West and Post [48]. These authors reported that NT
may increase C sequestration in soil by 0.20–0.57 Mg ha−1 yr−1, according to the complexity of crop
rotation. Also Aguilera et al. [49], in a recent meta-analysis reported a 0.44 Mg ha−1 yr−1 higher soil C
sequestration under NT in the surface 34 cm of soil under a temperate climate.

Our findings also suggested that considering soil C expressed as concentration (g kg−1) instead of
as mass (Mg ha−1) may lead to overestimating the role of NT for soil C sequestration. However, we
underline that we have data from the last eight years about the used NT soil patches, and our surveys
showed an increase in soil C concentration in the 0–30 cm soil layer of, on average, 11% compared
with CT. Conversely, soil C stock, which takes into account soil BD, was only 5% higher under NT
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than under CT. This is because lower BD of soil in the surface layers under NT (especially 0–5 cm)
reduces the actual impact on soil C accumulation [18]. Nevertheless, NT did not reduce soil C stock
in the subsurface soil layers (5–30 cm), and the net impact of NT on soil C stock in the 0–30 cm soil
was positive.

Concerning nitrogen, the soil tillage could increase soil oxygen exposure and this promotes soil
organic matter mineralization and soil N depletion [50]. Therefore, increasing soil organic matter in
soils is a key way not only to increase soil C stock and mitigate climate change but also to enhance soil
fertility and thus sustain food production [51].

As expected, our results showed that the evolution in soil N concentration and stock followed
a similar pattern to that of soil C levels. Converting CT to NT led to a significant increase of soil N
concentration in the 0–5 cm soil layer (Table 2). These results confirmed that variation of soil C and
N levels as induced by NT differed considerably depending on the surface (0–5 cm) or subsurface
(5–30 cm) soil layers [52]. Mazzoncini et al. [53] also found that soil C and N accumulated under NT
may be mainly attributed to soil C and N variation in the topmost (0–10 cm) soil layer, which is in
substantial agreement with our results (Tables 1 and 2). This is mainly due to the fact that NT limits
the direct input of fresh organic matter to the subsoil, thus reducing the downward movement of soil
organic matter, which is usually increased only in the surface 10 cm of soil. In addition, reducing soil
disturbance decreases N mineralization and losses especially in the topmost soil layers [53], due to a
lower temperature [54] and aggregate turnover [55] in non-tilled soils than in tilled ones.

5. Conclusions

In conclusion, CA can offer many advantages in the Mediterranean context. First of these, is the
saving of energy and costs. Studies performed on cowpea in a semiarid area of India showed that
zero tillage practices provide a considerable energy saving (−17.1 GJ ha−1) due to the lower input
compared to CA [56]. The energy efficiency should be about 13 times higher in zero tillage systems
than in conventional ones. However, Dixit et al. [56] showed that cowpea yield (intercropped with
sorghum) was significantly higher in the context of conventional agriculture compared with NT.

Another key point of CA is the ability to reduce the impact on the greenhouse effect by
anthropogenic gases emission. As suggested by Powlson [18] the total carbon sequestration in
NT condition could reach about 0.3 Mg ha−1 yr−1; our data confirm that the total CO2 sequestration
per year was estimated to be 0.32 Mg yr−1.

This is due also to the usage of a cover crop mixture during the winter period which provided for
better capture of the CO2, while in Powlson [18] the meta-analysis took into account predominantly
field not managed with cover crops. This underlines the importance of the integration of cover crops
in zero tillage management.

Finally, concerning the ability of the soil to save water, our data suggested an increase of SOC in
NT area against CT. Previous studies suggested that in the context of the Mediterranean geographical
area, an increase of about 0.4% SOC may lead to an increase of up to 34% of water saving [57].

Regarding all these elements and knowing that cowpea is a very interesting stress-tolerant minor
crop with a short time maturity (about 60 days), cowpea could be introduced not only to relieve and
reduce agricultural impact and climatic changes but also to supply a lot of vegetable-derived nutrients,
like proteins and amino acids.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/1/48/s1,
Figure S1: Evolution of daily precipitation (bars) and average daily temperature (line) of the field site during the
course of the experiment.
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