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Abstract

In this thesis we consider three different financial applications that involve arithmetic

averages of a stochastic process, whose distribution is unknown, therefore the related

problems preclude explicit true solutions. We propose moment-based approximations and

study problems in exotic derivatives pricing, credit risk and random number sampling and

show that this kind of solution can efficiently reduce the computational cost of already

existing methodologies in the literature. The first chapter of the thesis presents moment-

based approximations as well as some relevant technical details, including some facts

about the so-called moment problem, common approximations techniques, a literature

review linked to the use of moments in finance and numerical illustrations. In the second

chapter, we propose accurate moment-based closed-form expressions for the price of Asian

options when the underlying asset price is represented by a mean-reverting stochastic

process with jumps. In the third chapter, we introduce an efficient methodology, based

on moment matching, for the calibration of the default intensity, which is modelled by an

exponential Ornstein-Uhlenbeck process and apply this result to the calculation of Credit

Value Adjustment (CVA) in presence of wrong way risk for interest rate derivatives. In the

fourth chapter, we consider the problem of simulating stochastic volatility models. Exact

simulation schemes have been proposed in the literature for various models, but these are

not computationally efficient due to the need to simulate the time-integral of the variance

process, whose distribution function is not explicitly known. In this case, we show how to

compute the moments of this and develop a new simulation methodology which achieves

an exceptional runtime-accuracy balance compared to some exact simulation scheme.

Within the spirit of the first chapter, we revisit in the final chapter the pricing problem

of Asian options for a double exponential jump diffusion model where the jump intensity is

a stochastic process of Hawkes type. This dynamics has been introduced in the literature

to model the jump clustering phenomenon, which is widely observed in financial and

commodity markets. We derive the characteristic function of the integral of log-returns

and focus on the evaluation of geometric Asian options.
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Introduction

It often happens in quantitative finance that certain key quantities do not admit explicit

expressions that can be computed exactly, therefore one must resort to numerical meth-

ods. Nevertheless, the use of numerical methods usually can be quite cumbersome so there

is a need to develop suitable speed ups while remaining accurate, i.e., we need to take care

of the speed-accuracy tradeoff. In this thesis, we consider three such problems in finance,

including the pricing of Asian option, credit risk modelling and stochastic volatility mod-

els simulation; all three involve an arithmetic average, that is, our key quantity, with an

unknown distribution law and we propose solutions based on approximating distributions

based on the moments of the arithmetic average. We start by providing, in Chapter 1,

some theoretical background about the use of moments to approximate unknown dis-

tributions, emphasizing the so-called moment problem and approximation techniques,

including also several practical examples. In Chapter 2, we tackle the problem of Asian

options’ pricing when the underlying dynamics are represented by an exponential Lévy

driven Ornstein-Uhlenbeck process. In that case, the unknown distribution of the arith-

metic average is required, so first we derive formulas for its moments and then employ

them to approximate its distribution and produce pricing formulas. In Chapter 3, we

consider the problem of computing CVA (Credit Value Adjustment) for interest rate

derivatives. CVA is the correction to the value of a derivative instrument that accounts

for the probability of default of the counterparty. We compute this under the assumption

that the probability of default of the counterparty and the credit exposure are correlated,

i.e., in the presence of wrong (or right) way risk. We show that, under the specified model,

the problem is expressed in terms of a partial differential equation (PDE) that depends

on the arithmetic average of the default intensity process, whose distribution is unknown.

We propose a methodology based on the moments of this average to perform parameter

calibration to real data. Our results are accurate and are obtained considerably faster

than using other methods based on Monte Carlo simulation. In Chapter 4, we propose

an efficient methodology for the simulation of stochastic volatility models. In this case,

the key quantity is the arithmetic average of the variance process, whose distribution is

again not known. We propose an efficient algorithm to compute its moments and draw

random numbers from such distribution. This allows us to derive an efficient simulation

scheme for stochastic volatility models, which turns out to be much faster than bench-
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mark competitors for a similar level of accuracy. In the final Chapter 5, we derive the

characteristic function of the arithmetic average of the log-returns when the underlying

is given by a jump diffusion process with a stochastic jump intensity of Hawkes-type.

This theoretical result enables us to evaluate geometric Asian options under the specified

model. The use of moments in this chapter is only marginal, in particular, we show how

to compute the moments of some key quantities involved in the pricing procedure to make

the numerical inversion algorithms employed for option valuation more accurate. More

detailed introductions, including literature reviews, research questions and motivations

are given in the first section of each chapter. Chapters 2-4 are joint works with Gianluca

Fusai and Ioannis Kyriakou, whereas Chapter 5 is a joint work with Carlo Sgarra and has

been accepted for publication in Annals of Finance (Brignone and Sgarra, Forthcoming).
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Chapter 1

Approximating densities using

moments

In this chapter we explore the problem of approximating unknown distributions by ex-

ploiting knowledge of their moments. We start by illustrating in Section 1.1 the moment

problem, i.e. the problem of determining if a distribution is the only one with a given

moments sequence. This is important as moment based approximations are more accu-

rate in such cases. Then, we discuss, in Section 1.2, moment matching and orthogonal

polynomials expansion techniques for distributions approximation. A particular focus

will be given to moment matching through two particular systems of distributions, i.e.

the Johnson’s and Pearson’s families, which we will use extensively throughout the the-

sis. After that, we illustrate in Section 1.3 two theoretical results on the error committed

when approximating an unknown distribution with a known one sharing the same first

2n integer moments. In Section 1.4 we provide a (non-exhaustive) literature review on

the usage of moments in finance, with emphasis on applications in option pricing, model

calibration, portfolio management and forecasting. In Section 1.5 we put moment based

approximations in practise, considering a well known problem in finance, i.e. the pricing

of Asian options in the Black-Scholes model. We explore several techniques and highlight

their weaknesses and strengths with the support of some numerical results. The scope of

this example is also to highlight the poor performances of some particular moment based

approximations, which, consequently, are not used within the thesis. Finally, we illus-

trate, in Section 1.6, a further numerical experiment on moment problem. We consider an

option pricing problem in which the true density is known but is replaced by another one,

which is totally different, but presents exactly the same sequence of moments. Curiously,

numerical results show that option prices are not so different as one would expect looking

at the densities.
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1.1 Moment problem

Let {µn}∞n=0 a sequence of real numbers with µ0 = 1 and D ⊂ R a fixed interval. Suppose

that there is at least one density f(x), x ∈ D such that:

µn =

∫
D
xnf(x)dx (1.1)

If f(x) is uniquely specified by {µn}∞n=0 we say that the moment problem is determi-

nate, i.e. the distribution is uniquely determined by its moments, otherwise the moment

problem is indeterminate. In other words, the moment problem consists in establishing

whether or not f(x) is the only density with moment sequence given by {µn}∞n=0. In the

case D = [0,+∞) the moment problem is called the Stieltjes moment problem, while

in the case D = (−∞,+∞) we speak of the Hamburger moment problem. In Stoyanov

(1997) we can find several sufficient conditions for the moment problem to be determinate

or indeterminate.

Criterion 1 (moment generating function condition). If a random variable X has

a moment generating function, i.e., E[euX ] <∞ ∀u ∈ (−c, c), where c > 0 is a constant,

then the moment problem is determinate.

Criterion 2 (Carleman condition). If

∞∑
n=1

µ
− 1

2n
2n = +∞ (Hamburger moment problem)

or

∞∑
n=1

µ
− 1

2n
n = +∞ (Stieltjes moment problem)

then the moment problem is determinate.

Criterion 3 (Krein condition). If∫ ∞
−∞
− ln f(x)

1 + x2
dx <∞ (Hamburger moment problem)

or ∫ ∞
0

− ln f(x)

1 + x2
dx <∞ (Stieltjes moment problem)

then the moment problem is indeterminate.

There are two main problems in using above criteria: i) they require the knowledge

of the moment generating function or of the probability density function, ii) they give

4



sufficient conditions only, so that if they are not satisfied nothing about the determinacy

problem can be said. The consequence is that in general it results to be very difficult

to prove the determinacy of the moment problem using algebraic moment. Additional

necessary and sufficient conditions exist in literature (see, for example, Akhiezer, 1965

and Shohat and Tamarkin, 1943), but these conditions are not easy to check in general.

Some other checkable conditions can be found in Lin (2017).

The classical example where the moment problem is determinate (respectively, inde-

terminate) is the normal (log-normal) distribution. Indeed, in the case of the normal

random variable, the first two moments completely characterize the distribution, while

in the case of the log-normal it is possible to show that there exist infinitely many dis-

tributions with exactly the same sequence of moments, some examples are provided in

Stoyanov (1997, pag. 102-104) or Devroye (1986, pag. 693). These facts are well known

and can also be easily checked by Criteria 1, 2 and 3. Other interesting examples of

different distributions sharing the same moments are given in Godwin (1964), Kendall

and Stuart (1977), Widder (1941, pag. 125–126), Lukacs (1970, pag. 20).

1.2 Distribution approximation techniques

In this subsection we show how to approximate unknown distributions given moments.

Fusai and Tagliani (2002, pag. 148) identify some desirable conditions when using ap-

proximations based on moments:

a) the true density is uniquely determined by the infinite sequence of moments;

b) for a given number of moments, the approximated distribution should be positive;

c) for a given number of moments, a bound to the error made is provided;

d) increasing the number of moments considered, the sequence of approximants is

converging to the true distribution in some norm.

The point a) depends on the specific problem one faces while b), c) and d) depend

on the approximation method. Even if conditions a), b), c) and d) typically does not

hold simultaneously, there is some initial reason to think that matching moments will

give a good approximation. For example, Lindsay and Roeder (1997) show that if two

distributions have the same first n moments, then they must cross each other at least n

times. Moreover, Akhiezer (1965, pag. 66) shows that the possible error can be bounded,

and establishes the relevant relationships of the difference between two distributions that

share the same 2n moments (this is studied in Section 1.3). Moreover, even in the cases

where the moment problem is indeterminate, i.e. there are possibly infinite distributions

sharing the same moments, is still possible to get good approximations by fitting moments
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introducing some additional constraints based on partial information about the unknown

distribution. For example, in many practical cases one knows if the unknown distribution

is discrete or continuous, unimodal or multimodal. This partial information can be used

to reduce the set of distributions sharing the same sequence of moments limiting the risk

to approximate the wrong distribution.

In the course of this section we examine two different approximation techniques: mo-

ment matching and polynomial expansions. These will find wide application within this

thesis. Alternative methods are also explored in Section 1.5.

1.2.1 Moment matching

Moment matching is the most popular (and simple) approach for approximating unknown

distributions using moments. Suppose that X is an unknown distribution whose sequence

of moments µn = E[Xn] is known. The idea is to approximate X through an arbitrary

parametric random variable Y sharing the same moments of X. More formally, the

unknown density of X is approximated by the known density fY (y; θ) where θ ∈ Θ ⊂ Rn

is such that E[Xj] = E[Y j], ∀j ∈ {1, n} and Θ is the parameter space. We provide

here an example on implementation of moment matching by fitting the first two integer

moments, it has not only illustrative scope, but also finds application in Chapter 3.

Example 1 (Moment matching with gamma distribution). Suppose to approxi-

mate the density of X by fY (y; θ) = 1
Γ(k)θk

yk−1e−
y
θ , where Γ(·) denotes the gamma func-

tion, i.e. the density of a gamma distribution. The parameter vector θ = [θ, k] can be

estimated by solving the following system of moments:E[X] = kθ

Var[X] = kθ2
⇒

θ = Var[X]
E[X]

k = E[X]
θ

where Var[X] = E[X2]− E[X]2 is the variance of X.

The choice of the approximating distribution is somewhat arbitrary and depends on

many factors, on one hand the higher the number of moments considered the higher the

expected accuracy. On the other hand, including too many moments may decrease the

analytical tractability of the problem (with the result that time consuming numerical

techniques may be required for the solution of the system) and increase the possibility to

obtain an unsolvable system of moments. Another constraint to the choice of the number

of moments occurs when higher order moments are difficult to compute (an example of this

is given in Chapter 2, where computation of higher order moments turns out to be very

computationally intensive). The result is that typically moment matching is implemented

by fitting only the first few integer moments. When the first four integer moments are
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known, two very good ways to fit them is through the Johnson’s and Pearson’s systems

of densities.

Johnson’s system

Consider a continuous random variable X with an unknown distribution. In order to

approximate it, Johnson (1949) derived a system of curves with the flexibility to cover

a wide variety of shapes, under the form of a set of ”normalizing” translations. These

translations transform the continuous random variable X into a standard normal variable

Z according to:

Z = a+ b · g
(
X − c
d

)
,

where a and b are shape parameters, c is a location parameter, d is a scale parameter and

g(·) is a function defining the four families of distributions of the Johnson’s system:

g(u) =



ln(u), log-normal family

ln(u+
√
u2 + 1), unbounded family

ln
(

u
1−u

)
, bounded family

u, normal family

. (1.2)

Such system has the flexibility to match any feasible set of values for the first four

integer moments. Skewness and kurtosis also uniquely identify the appropriate form of

g(·). As a result, the problem of using the Johnson system to approximate an unknown

distribution is reduced to that of finding the values of a, b, c and d that will match

the moments of the unknown target distribution with those of the appropriate family

from the Johnson system. Hill et al. (1976) provide an algorithm that finds, given the

first four integer moments of an unknown distribution, the appropriate family, i.e. the

form of g(·), and find the values of the parameters required to approximate the unknown

distribution. This algorithm is not very intuitive or easy to summarize1, but is very

efficient and typically takes a fraction of a second to compute the required quantities

for a single set of moments. Unfortunately, this algorithm does not ensure convergence,

moreover, the Johnson’s system is better suited for quantile matching than for moment

matching (see Devroye, 1986, pag. 685). Alternative approaches for parameter estimation

given quantiles can be found in Wheeler (1980) and Tuenter (2001). With the parameters

determined as above, the Johnson’s system can be expressed as the inverse of normalizing

1A Matlab® code due to Jones (2014) can be found at the following link: https://it.mathworks.

com/matlabcentral/fileexchange/46123-johnson-curve-toolbox.
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translation given in formula (1.2):

X = c+ d · g−1

(
Z − a
b

)
(1.3)

where

g−1(u) =



eu, log-normal family

eu−e−u
2

, unbounded family

1
1+e−u

, bounded family

u, normal family

. (1.4)

Pearson’s system

Pearson (1895) designed a flexible system of seven distributions whereby for every member

the probability density function f(x) satisfies the following differential equation:

1

f(x)

∂f(x)

∂x
= − a+ x

c0 + c1x+ c2x2
. (1.5)

The shape of the distribution depends on the values of the parameters a, c0, c1 and c2. For

example, the case where c1 = c2 = 0 corresponds to the limit case where X is normally

distributed, indeed we can rewrite (1.5) as:

1

f(x)

∂f(x)

∂x
= −a+ x

c0

⇒ f(x) = Ce
−ax+x2

2
c0 ,

where C denotes the integration constant which is chosen to make
∫∞
−∞ f(x)dx = 1, in

this case C = e
− a2

2c0√
2πc0

ensures that f(x) is the density of a normal distribution with mean

−a and standard deviation c0. Before showing how moments can be used to identify a,

c0, c1, c2, we start by classifying the various shapes into a number of types2. It is evident

that the form of the solution of (1.5) depends on the nature of the roots of:

c0 + c1x+ c2x
2 = 0 (1.6)

and the various types correspond to these different forms of solution. We denote with a1

and a2 the two roots of such equation.

• Type I, Four-parameters beta: corresponds to the case where a1 < 0 < a2, we

2We follow Johnson et al. (1994a, Chapter 4).
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have

c0 + c1x+ c2x
2 = −c2(x− a1)(a2 − x),

putting into (1.5) one gets:

1

f(x)

∂f(x)

∂x
= − a+ x

c2(x− a1)(a2 − x)
⇒ f(x) = C(x− a1)m1(a2 − x)m2 ,

where m1 = a+a1

c2(a2−a1)
and m2 = a+a2

c2(a1−a2)
. Selecting C = 1

B(m1+1,m2+1)(a2−a1)m1+m2+1 ,

where B(·, ·) denotes the beta function, one gets the density of a generalized beta

distribution with location parameter a1, scale parameter a2 and shape parameters

m1 + 1 and m2 + 1 (cfr. Johnson et al., 1994b, Chapter 25):

f(x; a1, a2,m1 + 1,m2 + 1) =
(x− a1)m1(a2 − x)m2

B(m1 + 1,m2 + 1)(a2 − a1)m1+m2+1
, a1 ≤ x ≤ a2.

• Type II, Symmetric four-parameter beta: Corresponds to a special case of

Type I, where the distribution is symmetric (m1 = m2).

• Type III, Shifted gamma: Corresponds to the special case where c2 = 0 and

c1 6= 0. In this case (1.5) becomes:

1

f(x)

∂f(x)

∂x
= − a+ x

c0 + C1x
⇒ f(x) = Ce

− x
c1 (c0 + c1x)m

where m = −ac1−c0
c21

. Setting γ = − c0
c1

and C = e
γ
c1

c2m1 Γ(m+1)
one gets the density of the

generalized gamma distribution with location parameter γ, shape parameter m+ 1

and scale parameter c1 (cfr. Johnson et al., 1994a, Chapter 17):

f(x; γ,m+ 1, c1) =
e
− (x−γ)

c1 (x− γ)m

Γ(m+ 1)cm+1
1

.

• Type IV: Corresponds to the case where equation (1.6) does not have real roots.

The following identity is used to write the density function:

c0 + c1x+ c2x
2 = C0 + c2(x+ C1)2,
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where C0 = c0 − c21
4c2

and C1 = c1
2c2

. Then, we write:

1

f(x)

∂f(x)

∂x
= −−(x+ C0)− (a− C1)

C0 + c2(x+ C1)2
⇒

f(x) = C
(
C0 + c2(x+ C1)2

)−(2c2)−1

e
− a−C1√

c2C0
tan−1

x+C1√
C0
c2


.

No common statistical distributions are known with this density, moreover the

cumulative distribution function can not be computed analytically. Pearson and

Hartley (1972) provide quantiles (percentiles) of Pearson system distributions to

four decimal places for different levels of skewness and kurtosis. By interpolation

these tables can provide approximate values of the cumulative distribution function,

without the need to evaluate C (for which numerical integration would be required).

• Type V, Inverse gamma location-scale: Corresponds to the case where c2
1 =

4c0c2. Equation (1.5) can be rewritten as:

1

f(x)

∂f(x)

∂x
= − a+ x

c2(x+ C1)
⇒ f(x) = C(x+ C1)

− 1
c2 e

a−C1
c2(x+C1)

setting C =

(
a−C1
c2

) 1
c2

Γ( 1
c2
−1)

we recognize that f(x) is the density of a shifted reciprocal

Gamma with location parameter −C1, shape parameter 1
c2
− 1 and scale parameter

a−C1

c2
.

• Type VI, F location-scale: Corresponds to the case where (1.6) has two real

roots with the same sign. Solving (1.5) one gets

f(x) = C(x− a1)m1(x− a2)m2

with m1 = (a1 + c1)/(c2(a2−a1)) and m2 = −(a2 + c1)/(c2(a2−a1)). If a1 < a2 < 0

then is possible to write the probability density function as

f(x) =
ν2

ν1(a2 − a1)
fF (x; ν1, ν2)

where ν1 = 2(m2 + 1) and ν2 = −2(m1 +m2 + 1), else if a1 > a2 > 0 then

f(x) =
(a1 − a2)ν2

ν1

fF (x; ν1, ν2)

where ν1 = 2(m1 + 1), ν2 = −2(m1 + m2 + 1) and fF (x; ν1, ν2) is the probability

density function of a Snedecor-F distribution with numerator degrees of freedom ν1

and denominator degrees of freedom ν2.
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• Type VII, Student’s t location-scale: Corresponds to the case where c1 = a =

0, c0 > 0, and c2 > 0. In this case the solution of (1.5) becomes

f(x) = C(c0 + c2x
2)−(2c2)−1

.

Noting similarity with the Student’s t distribution we get the following expression

for the density

f(x) =
1√

c0/(1− c2)
fT (x; ν)

where ν = 1/c2 − 1 and fT (x; ν) is the probability density function of a Student’s

t distribution.

We conclude this paragraph by showing how to compute a, c0, c1 and c2 given only

the first four integer moments of the distribution {µn}4
n=1. First, note that given the first

four integer moments skewness and kurtosis can be easily computed according to:

Skew[X] =
E[X3]− 3E[X]Var[X]− E[X]3

Var[X]
3
2

Kurt[X] =
E[X4]− 4E[X]E[X3] + 6E[X]2E[X2]− 3E[X]4

Var[X]2

Posing β1 = Skew[X]2 and β2 = Kurt[X], the formulas for a, c0, c1 and c2 are (see

Johnson et al., 1994a, pag. 22):

c0 = (4β2 − 3β1)(10β2 − 12β1 − 18)−1µ2 (1.7)

a = c1 =
√
β1(β2 + 3)(10β2 − 12β1 − 18)−1√µ2 (1.8)

c2 = (2β2 − 3β1 − 6)(10β2 − 12β1 − 18)−1 (1.9)

Given the numerical values of the above quantities and setting k = β1(β2+3)2

4(4β2−3β1)(2β2−3β1−6)
,

is possible to select the appropriate distribution of the family using the following rules

• Type I: k < 0

• Type II: β1 = 0 and β2 < 3

• Type III: 2β2 − 3β1 − 6 = 0

• Type IV: 0 < k < 1

• Type V: k = 1

• Type VI: k > 1
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• Type VII: β = 0, β2 > 3.

Note that µ1 serves to compute variance, skewness and kurtosis but does not appear in

the matching procedure. Is standard practise, indeed, to assume that the expected value

of the approximating distribution is 0 and then shift the distribution by µ1 in order to

match also the first moment.

1.2.2 Polynomial expansions

Polynomials expansions provide attractive alternatives when it comes to probability den-

sity function estimation. They combine the simplicity of fitting a two-parameter density

with the flexibility of correcting for higher order moments, often resulting in fast and

accurate approximations. This approach allows to approximate the unknown density

of X given only the knowledge of its domain and its moments3. Polynomial expansion

technique can be summarized as follows:

1) select an appropriate density p(x) defined on the same domain D of the unknown

density f(x);

2) identify a set of orthogonal (or orthonormal) polynomials, denoted with {Pi(x)}∞i=0,

with respect to p(x);

3) perform polynomial expansion based on the moments of X and the orthogonal

polynomials.

Performing an expansion around p(x) is possible to express the density of X in terms of

the following series (see, for example, Corrado and Su, 1996):

f(x) = p(x)

(
∞∑
i=0

E[Pi(x)]

〈Pi, Pi〉
Pi(x)

)
, (1.10)

with 〈Pi, Pi〉 denoting the norm of the polynomial Pi(x). Of course, for computational

reasons, infinite summation in (1.10) must be truncated, giving the following approxima-

tion for the true density:

f(x) ≈ fN(x) = p(x)

(
N∑
i=0

E[Pi(x)]

〈Pi, Pi〉
Pi(x)

)
.

Hence, some natural questions arise: does fN(x) become increasingly accurate and con-

verge when adding more terms? If yes, under which condition? Does fn(x) integrate to

3A similar technique is the Edgeworth series expansion, but, due to its poor practical performances,
it is not used throughout this work. Hence, we don’t describe here its theoretical properties but simply
briefly recall it in Section 1.5
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1? These problems have been tackled in Filipović et al. (2013) which prove first that∫
D fn(x) = 1 ∀n ∈ N+ and then the following

Theorem 1.1. If f(x) is weighted square integrable, i.e.:∫
D

f(x)2

p(x)
dx <∞, (1.11)

then

lim
n→∞

∫
D

(f(x)− fn(x))2

p(x)
dx = 0. (1.12)

This result can be interpreted as: if (1.11) holds true then fn(x) becomes increasingly

accurate when adding more terms (which is equivalent to adding more moments).

For sake of clarity, we summarize here three different polynomial expansion techniques

based on three different densities, the first two have been used in literature for the case

where the true distribution is defined on R, the third one for the case where the domain

is R+. Other possible choices based on the gamma and bilateral gamma distributions are

contained in Filipović et al. (2013). Further choices for p(x) and Pi(x) are necessary4 when

alternative domains are considered, in particular Provost (2005) considers approximations

based on Legendre polynomials when the domain is [−1, 1] and approximations based

on Laguerre polynomials when it is [a,+∞) with a ≥ 0. Since in many cases, the

approximating densities are more easily expressed in terms of the cumulants, instead of

moments, we briefly recall the explicit expression for the n − th moment (µn) in terms

of the first n cumulants ({ci}ni=1), and vice versa. This relationship can be obtained by

using Faá di Bruno’s formula for higher derivatives of composite functions. In general,

we have

µn =
n∑
i=1

Bn,i(c1, ..., cn−i+1), (1.13)

cn =
n∑
i=1

(−1)k−1(k − 1)!Bn,i(µ1, ..., µn−i+1) (1.14)

where Bn,i are the incomplete Bell polynomials.

Expansion around standard normal density: the Gram-Charlier A series

We begin by defining the i− th Hermite polynomial Hei(x) as:

Hei(x) := (−1)n
∂i

∂xi
n(x)

n(x)
(1.15)

4We don’t report them since are not used inside this thesis.
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where n(x) denotes the standard normal density. Distinct Hermite polynomials Hei(x)

and Hej(x), i 6= j, satisfy an orthogonality relation using the normal density as a weight-

ing function, i.e. Hermite polynomials are orthogonal with respect to the normal density:

〈Hei, Hej〉 =

∫ ∞
−∞

Hei(x)Hej(x)n(x) = 0.

The norm or weighted-average square of a Hermite polynomial is given by:

〈Hei, Hei〉 = i!,

in practice, Hermite polynomials are easy to compute recursively using the relation:

He0(x) = 1

He1(x) = x

Hei+1(x) = xHei(x)− iHei−1(x).

Given a random variable X, its density can be expressed, according to (1.10), as:

f(x) = n(x)

(
∞∑
i=0

E[Hei(x)]

〈Hei, Hei〉
Hei(x)

)
. (1.16)

In Table 1.1 we report the analytical expression of the first five Hermite polynomials

together with their norm. Note that if X is a standardized distribution (i.e. with zero

mean and unitary variance) then E[Hei(x)] = ci, hence f(x) can be rewritten as:

f(x) = n(x)

(
∞∑
i=0

ci
i!
Hei(x)

)
= n(x)

(
1 +

∞∑
i=3

ci
i!
Hei(x)

)
.

Expansion around standard logistic density

Heston and Rossi (2017) introduce an analogous set of orthogonal polynomials based on

the standardized logistic density:

l(x) =
π

√
3
(

exp
(
πx√

3

)
+ 2 +

(
− πx√

3

)) .
The logistic polynomials are orthogonal with respect to the logistic density:

〈Loi, Loj〉 :=

∫ ∞
−∞

Loi(x)Loj(x)l(x)dx = 0.

We can generate the logistic polynomials recursively via the Gram-Schmidt procedure,

but, according to Heston and Rossi (2017, Formula 31), the most computationally efficient
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Table 1.1: Hermite and logistic polynomials along with their norms

i Hei(x) 〈Hei, Hei〉 Loi(x) 〈Loi, Loi〉
0 1 1 1 1
1 x 1 x 1
2 x2 − 1 2 x2 − 1 16

5

3 x3 − 3x 6 x3 − 21
5
x 3888

175

4 x4 − 6x2 + 3 24 x4 − 78
7
x2 + 243

35
331776
1225

5 x5 − 10x3 + 15x 120 x5 − 70
3
x3 + 407

7
x 2764800

539

approach is to use the following relation:

Loi+1(x) = xLoi(x)− 3i4

(2i+ 1)(2i− 1)
Loi−1(x),

while the norms or weighted-average-squares of the logistic polynomials are:

〈Loi, Loj〉 =
3ii!4

(2i− 1)!!(2i+ 1)!!
.

Finally, the true density of X is given by:

f(x) = l(x)

(
∞∑
i=0

E[Loi(x)]

〈Loi, Loi〉
Loi(x)

)
. (1.17)

The first five logistic polynomials are reported, together with their norms, in Table 1.1.

Note that the moments of X must be used in order to compute E[Loi(x)].

Expansion around log-normal density

In the case where the target distribution is defined on R+ an orthogonal polynomial

expansion based on the log-normal density has been proposed by Willems (2019). In this

case, the weight function is given by the density of a log-normal distribution:

w(x) =
1√

2πσx
exp

(
−(ln(x)− µ)2

2σ2

)
,

with µ ∈ R and σ > 0. Note that we have written the densities in terms of infinite

sums (see for example equations (1.16) and (1.17)), in this case, in order to use a matrix

notation, we consider a finite number N of terms in (1.10). Following Filipović et al.
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(2013), orthonormal polynomial basis is built as follows:
b0(x)

b1(x)
...

bN(x)

 = L−1


1

x
...

xN


where M = LLT (i.e. L is computed by applying Cholesky decomposition on the matrix

M) and M is the Hankel moment matrix:

Mij =

∫ ∞
0

xi+jw(x)dx = e(i+j)µ+ 1
2

(i+j)2σ2

,

with the subscript ”ij” denoting i − th row and j − th column of the matrix, µ and σ

are selected in such a way that the unknown distribution shares with the weight function

the first two moments. Given the orthonormal polynomial basis bn(x) is possible to

approximate the true density f(x) of the unknown distribution X by using the first n

integer moments as follows:

fn(x) = w(x)
n∑
i=0

libi(x), (1.18)

where


l0

l1
...

ln

 = L−1


1

µ1

...

µn

 and µi = E[X i].

1.3 Error bounds

In this section we tackle the problem of finding an appropriate bound to the error one

commits when approximating an unknown random variable X with another one sharing

the same first 2n integer moments. Two different error bounds are provided in literature.

The first one is defined by the following:

Theorem 1.2. Akhiezer (1965, pag. 66)

Let FX(x) be the unknown distribution function and let GX(x) a distribution that

shares with FX(x) the same 2n moments, then:

|FX(x)−GX(x)| ≤ ζn(x), (1.19)
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where

1

ζn(x)
=
(

1 x ... xn
)


1 µ1 ... µn

µ1 ... ... µn+1

...
...

...
...

µn µn+1 ... µ2n


−1

1

x
...

xn

 .

A positive feature of this result is that it is very easy to check (only the moment

sequence {µi}2n
i=1 is needed), but, unfortunately, Lindsay and Basak (2000) show that

this bound results to be tight only in the tails of the distribution. This means that, in

practical applications, the true error will be typically extremely smaller than the error

upper bound.

A second theoretical result is given by the following

Theorem 1.3. Klebanov and Mkrtchyan (1985)

Let FX(x) be the unknown distribution function and let GX(x) a distribution that

shares with FX(x) the same 2n moments, denote the sub-quantity Cn :=
∑n

i=1 µ
− 1

2k
2k , then

L(F,G) ≤ c(µ2)
ln(1 + Cn−1)

C
1
4
n−1

(1.20)

where L(F,G) := inf{ε > 0 : F (x − ε) − ε ≤ G(x) ≤ F (x + ε) + ε} is the Lévy distance

between the distribution functions and c(µ2) is a function that depends on m2.

Note the relationship with Criterion 2 (Carleman condition), if it is satisfied then

C∞ =
∑∞

i=1 µ
− 1

2k
2k = ∞ and L(F,G) = 0, ∀c(µ2). The main limitations of this result are

that it holds only for random variables defined on R (Hamburger moment problem) and

the ambiguity about the form of the function c(·), which makes it not easily applicable

in practise.

1.4 Using moments in finance: a literature review

In this section we provide a literature review on the usage of moments and moment based

approximations in finance.

We start by taking into account problems related to the pricing of financial derivatives,

where unknown distributions are ubiquitous and approximations based on their moments

have been largely adopted. The most emblematic case concerns the pricing of Asian op-

tions. This kind of instruments are particularly difficult to price since their payoff depends

on the arithmetic average of prices which the underlying’s assumes during the life of the

contract, whose distribution is unknown even under simple model assumptions. We will

devote entirely the next section to the usage of moments to price arithmetic Asian options
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under the Black-Scholes model. Considering more complicated underlying’s dynamics,

moment matching has been adopted in Ballotta (2010) for Asian options valuation in the

cases where the underlying evolves according to a Variance Gamma process and in Al-

brecher and Predota (2004) in a Normal Inverse Gaussian (NIG) economy. In Chapter 2

we tackle the more general problem of pricing Asian options in a context where the under-

lying evolves according to a mean-reverting exponential Lévy driven Ornstein-Uhlenbeck

process and propose, among others, moment matching techniques. For what concerns

other derivative instruments, Brigo et al. (2004) and Stace (2007) use moment matching

to price, respectively, basket options and volume weighted average price options in the

Black-Scholes model, Privault and Yu (2016) price bonds in the case where the short rate

evolves according to the Dothan (1978) model, Pellegrino and Sabino (2014) propose the

usage of moment matching to price multi-asset spread options (see the original paper

for the underlying’s dynamics specification) and Prayoga and Privault (2017) for pricing

yield options in the CIR model5. Moreover, moment matching has been adopted also

for real options valuation in project management, we mention, among others, Creemers

(2018), which computes the Net Present Value (NPV) of a project with multiple stages

that are executed in sequence.

For what concerns series expansion, Jarrow and Rudd (1982) pioneered the use of

Edgeworth expansions for valuation of derivative securities and Corrado and Su (1996)

introduced Gram-Charlier expansions. More recently, Filipović et al. (2013) developed

pricing formulas for European options under affine models based on orthogonal polyno-

mials expansions, Heston and Rossi (2017) derive an alternative series expansion which

can be applied for models where the characteristic function of log-returns in unknown,

as, for example, the Hull and White (1987) stochastic volatility model.

Moments are also used to find option price bounds in a model-free framework, more

specifically, Bertsimas et al. (2000) and Gotoh and Konno (2002) show that the lower and

upper bounds to option prices can be found, exploiting the knowledge of the moments, by

solving a semi-definite programming problem. Lasserre et al. (2006) extend this moment

based semi-definite programming approach to the pricing of exotic options, such as Asians

and barriers under simple dynamics for the price process. More recently, Lütkebohmert

and Sester (forthcoming) find price bounds for some exotic options solving an optimal

martingale transport problem with moments constraints.

Outside option pricing, usage of moments have also been suggested for model calibra-

tion purposes. Bakshi and Madan (2000) and Bakshi et al. (2003) show how to compute

risk-neutral moments given a set of European call and put options prices, based on this,

several attempts have been made in literature to calibrate model parameters using the

information provided by the moments. Guillaume and Schoutens (2013) develop a very

simple calibration procedure for Lévy models, in particular, risk neutral moments are

5see Cox et al. (1985).
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computed from a real dataset of option prices and parameters are estimated by solving

(analytically) a simple system of moments. Successively, Guillaume and Schoutens (2014)

extends this moment matching market implied calibration procedure to Markov models.

Furthermore, Feunou and Okou (2018) calibrate the Andersen et al. (2015) option valu-

ation model on real data using the historical time series of risk-neutral moments.

Finally, moments are widely employed in other areas of finance such as portfolio man-

agement and forecasting. The idea of using moments for portfolio optimization dates

back to Markowitz (1952) which selects the optimal portfolio according to the expected

mean and variance of stock returns. Several attempts have been made in literature to

take into account higher order moments in the portfolio selection problem, we mention

among others, Harvey et al. (2010). Moreover, the idea that moments can be used to

predict financial market behavior is widely studied in literature, Bates (1996b) investi-

gates the possibility that option implied higher moments contain significant information

for the future exchange rates, Navatte and Villa (2000) find that the moments contain a

substantial amount of information for future moments, with kurtosis contributing less to

forecasting power than skewness and volatility. Carson et al. (2006) find that the implied

volatility skew has strong predictive power in forecasting short-term market declines.

However, Doran et al. (2007) find that the predictability is not economically significant.

For individual stocks, Diavatopoulos et al. (2008) look at changes in implied skewness

and kurtosis prior to earnings announcements and find that both have strong predictive

power for future stock and option returns. DeMiguel et al. (2011) propose using implied

volatility, skewness, correlation and variance risk premium in portfolio selection, and find

that the inclusion of skewness and the variance risk premium improves the performance

of the portfolio significantly.

1.5 Example: Asian option pricing in the Black-Scholes

model

In this section we test moment matching and series expansion techniques against other

moment based approximations proposed in literature in the context of pricing arithmetic

average Asian options.

Asian options are derivative instruments whose payoff depends on the average value

of the asset price over some time period. They have had a very large success in the last

years, because they reduce the possibility of market manipulation near the expiry date

and offer a better hedge to firms having a stream of positions, a discussion about this

is presented in Chapter 2. Actually there is no closed form solution for the price of this

option because in the usual Black-Scholes framework, the arithmetic average is a sum of

correlated lognormal distributions for which there is no recognizable density function. In
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order to price such options, several attempts in the literature have been made based on

Monte Carlo simulation, moments based approximations, Partial Differential Equations

(PDEs), binomial trees, Laplace transform inversion and lower and upper bounds for the

option price (we refer to Fusai and Tagliani, 2002 for a detailed literature review). With

the scope of testing the approximation techniques illustrated throughout this section, we

consider approximations based on the integer moments of the unknown distribution of

the arithmetic average.

Alternative approximations based on the moments of transformations of the arith-

metic average have also been suggested. Dufresne (2000) uses Laguerre expansions of

the price in terms of the moments of 1
A(T )

, Fusai and Tagliani (2002) propose approx-

imations based on the moments of ln(A(T )), while D’Amico et al. (2003) consider the

fractional moments of the arithmetic average. All these approaches are able to produce

extremely accurate results due to the fact that moment problem is determinate for such

transformations of A(T ), but, unfortunately, moments are not easy to be computed and

time consuming numerical techniques are required even under the simple assumption of

a geometric Brownian motion as driving process for the stock price6.

We start by briefly recalling the Black-Scholes model, then we show how to compute

the moments of the arithmetic average and finally we show how to implement moment

based approximations to price arithmetic Asian options under this model.

1.5.1 Black-Scholes model

In the Black-Scholes model the underlying asset price evolves, under the risk-neutral

measure, according to a Geometric Brownian Motion:

dS(t) = rS(t)dt+ σS(t)dW (t) (1.21)

where r is the instantaneous risk free rate, σ is the instantaneous volatility and W (t) is

a Brownian motion. Solution of equation (1.21) is

S(T ) = S(0)e

(
r−σ

2

2

)
T+σW (T )

, (1.22)

where T is the final date and S(0) is the stock price at the initial date. Assuming zero

dividend yield and that the arithmetic average is computed continuously in time in the

period [0, T ], we define:

A(T ) =
1

T

∫ T

0

S(t)dt =
S(0)

T

∫ T

0

e

(
r−σ

2

2

)
t+σW (t)

dt. (1.23)

6For example, the computation of the moments of 1
A(T ) requires to solve numerically differential-

difference equations.
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The payoff of the arithmetic average Asian call option with fixed strike K is given by

(A(T )−K)+, hence the price can be computed as

p = e−rTE
[
(A(T )−K)+] = e−rTE

[(
S(0)

T
Y (T )−K

)+
]

= e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fY (y)dx, (1.24)

where Y (T ) :=
∫ T

0
e

(
r−σ

2

2

)
t+σW (t)

dt and fY (·) is its density. Since the distribution of Y (T )

is unknown the pricing problem is essentially reduced to the determination of fY (·).

1.5.2 Moments of Y (T )

The most used approximations in pricing Asian options are those based on the tentative of

recovering the density of the average from its moments. In order to do that an expression

for the moments of the arithmetic average is needed and can be found in Geman and Yor

(1993, pag. 359):

µn = E [Y n(T )] =
n!

σ2n

{
n∑
j=0

d
( vσ )
j exp

((
σ2j2

2
+ σjv

)
T

)}
(1.25)

where

d
(β)
j = 2n

∏
i 6=j

0≤i≤n

(
(β + j)2 − (β + i)2

)−1
, v =

r − σ2

2

σ
.

An alternative way to compute such moments based on the theory of polynomial processes

has been recently suggested by Willems (2019).

On one hand, since the moment problem for the log-normal density is indeterminate,

one might expect that approximations of the arithmetic average based on a sequence of

algebraic moments might either fail to converge, or converge to another distribution with

the same moments. On the other hand, in the case of the arithmetic average we have

a convolution of an infinite number of log-normal distributions and this convolution can

change the distribution from a heavy tail density (the log-normal) to a light-tail density

(the arithmetic average) and so there could be a (little) possibility that the moments

determine uniquely the distribution. But we need to remark that Geman and Yor (1993)

have shown that the Carleman’s criterion is not satisfied in the case of the average of the

geometric Brownian motion and so nothing can be said about the determinacy problem.

Despite that, several approximations based on the moments of the arithmetic average

have been proposed in literature, a detailed review is given next.
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1.5.3 Approximations based on the first 2 moments

When only the first two integer moments are available moment matching is the most

popular approach. Approximations based on the log-normal and the reciprocal gamma

distributions have been proposed.

Log-normal approximation

The idea suggested by Turnbull and Wakeman (1991) and Levy (1992) is to approximate

the unknown distribution of the arithmetic average with the known one of the log-normal

distribution, whose parameters are estimated by moment matching. In other words, the

density of Y (T ) is approximated through

fLN(y;µ, σ) =
1

y
√

2πσ
e−

(ln y−µ)2

2σ2 , (1.26)

where µ and σ are computed as:E[Y (T )] = eµ+σ2

2

E[Y 2(T )] = e2µ+2σ2
⇒

σ2 = ln E[Y 2(T )]
E[Y (T )]2

µ = ln(E[Y (T )])− σ2

2

.

Substituting (1.26) into (1.24) one gets

p ≈ pLN := e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fLN(y)dy

= e−rT
S(0)

T

(
eµ+σ2

2 Φ

(
µ+ σ2 − ln(K?)

σ

)
−K?Φ

(
µ− ln(K?)

σ

))
, (1.27)

where K? = KT
S(0)

and Φ(·) is the cumulative distribution function of the standard normal.

Reciprocal gamma approximation

Milevsky and Posner (1998) have proved that the stationary density for the arithmetic

average of a geometric Brownian motion is given by a reciprocal gamma density, i.e. the

reciprocal of the average has a gamma density. Consequently, the authors propose to

approximate fY (Y ) through a moment matched inverse gamma density

fRG(y; a, b) =
ba

Γ(a)
y−a−1e−

b
y (1.28)
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whose parameters are computed by solving the system of momentsE[Y (T )] = b
a−1

Var[Y (T )] = b2

(a−2)(a−1)2

⇒

a = E[Y (T )]2

Var[Y (T )]
+ 2;

b = (a− 1)E[Y (T )]
.

Substituting (1.28) into (1.24) one gets

p ≈ pRG := e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fRG(y)dy

= e−rT
S(0)

T

(
E[Y (T )]G

(
b

K?
, a− 1, 1

)
−K?G

(
b

K?
, a, 1

))
, (1.29)

where G(x; a, b) =
∫ x

0
fRG(y; a, b)dy is the cumulative distribution function of a Gamma

random variable.

1.5.4 Approximations based on the first 3 moments

In the case where the first three integer moments are available, more sophisticated ap-

proximating random variables have been suggested by Lo et al. (2014). We provide here

a brief review and refer to the original paper for more details.

Shifted log-normal

Milevsky and Posner (1998) and Lo et al. (2014) propose to add a third shifting parameter

to the standard log-normal approximation of Levy (1992) and Turnbull and Wakeman

(1991) and approximate Y (T ) by the following density

fSLN(y;µ, σ, h) =
1

(y − h)
√

2πσ
e−

(ln(y−h)−µ)2

2σ2 , y > h (1.30)

whose parameters are estimated by solving the system of moments
E[Y (T )] = h+ eµ+σ2

2

Var[Y (T )] = e2µ+σ2
(
eσ

2 − 1
)

Skew[Y (T )] =
(
eσ

2
+ 2
)√

eσ2 − 1

⇒


h = E[Y (T )]−

√
Var[Y (T )]

Skew[Y (T )]

(
1 +B

1
3 +B−

1
3

)
σ2 = ln

(
1 + Var[X]

(E[Y (T )]−h)2

)
µ = ln (E[Y (T )]− h)− σ2

2
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where B := 1
2

(
Skew[Y (T )]2 + 2−

√
Skew[Y (T )]4 + 4Skew[Y (T )]2

)
∈ (0, 1]. Substitut-

ing (1.30) into (1.24) one gets

p ≈ pSLN := e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fSLN(y)dy

= e−rT
S(0)

T
((E[Y (T )]− h)Φ(d1)− (K? − h)Φ(d2)) , (1.31)

where d1,2 =
ln(E[Y (T )]−h

K?−h )±σ
2

2

σ
and Φ(·) as in (1.27).

Shifted Gamma

Chang and Tsao (2011) propose a three-parameter shifted gamma distribution to approx-

imate the sum of log-normal distributions. Its probability density function is

fSG(y; a, b, h) =
(y − h)a−1

baΓ(a)
e−

y−h
b , y > h, b > 0 (1.32)

with parameters computed according to
E[Y (T )] = h+ ab

Var[Y (T )] = ab2

Skew[Y (T )] = 2√
a

⇒


a = 4

Skew[Y (T )]2

b =
√

Var[Y (T )]
a

h = E[Y (T )]− ab

.

Substituting (1.32) into (1.24) we get

p ≈ pSG := e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fSG(y)dy

= e−rT
S(0)

T

(
(E[Y (T )]− h)

(
1−G

(
K? − h

b
, a+ 1, 1

))
+

− (K? − h)

(
1−G

(
K? − h

b
, a, 1

)))
, (1.33)

with G as in (1.29).

Shifted reciprocal gamma

Lo et al. (2014) propose to extend the work of Milevsky and Posner (1998) by adding

a shift parameter to the approximating reciprocal gamma distribution. The resulting
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density is

fSRG(y; a, b, h) =
ba

Γ(a)
(y − h)−a−1e−

b
y−h , y > h, b > 0 (1.34)

with parameters estimated through moment matching7


E[Y (T )] = h+ b

a−1

Var[Y (T )] = b2

(a−1)(a−2)

Skew[Y (T )] = 4
√
a−2

a−3

⇒


h = E[Y (T )]−

√
Var[Y (T )]

Skew[Y (T )]

(
2 +

√
4 + Skew[Y (T )]2

)
a = 2 + (E[Y (T )]−h)2

Var[Y (T )]

b = (E[Y (T )]− h)(a− 1)

.

Substituting (1.34) into (1.24) we get

p ≈ pSRG := e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fSRG(y)dy

= e−rT
S(0)

T

(
(E[Y (T )]− h)G

(
b

K? − h
, a− 1, 1

)
− (K? − h)G

(
b

K? − h
, a, 1

))
,

(1.35)

with G as in (1.29).

1.5.5 Approximations based on the first 4 moments

When the first four integer moments are available several methods have been proposed

in literature to produce accurate approximations. We briefly consider moment matching,

series expansion and maximum entropy methods. These approximations allow to avoid

important differences in terms of skewness and kurtosis between the approximating and

true distributions. We stress that series expansion and maximum entropy methods are

more general and allow to take into account more than four moments.

Johnson’s and Pearson’s systems

Moment matching can be implemented by using the Johnson’s and Pearson’s system

of distributions. The procedure for family selection and density approximation have

been outlined in Section 1.2.1. To the best of our knowledge, there are not results in

literature concerning Asian option pricing by using the Johnson’s or Pearson’s system

of distributions. Despite that, implementation is straightforward in the Black-Scholes

model since moments of Y (T ) can be computed easily. Denoting with fJ(y) and fP (y)

the densities of the moment matched Johnson’s and Pearson’s system of distributions,

7Note that in order the first three integer moments to exist we need that a > 3.
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the price can be computed according to

p ≈ pJ := e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fJ(y)dy. (1.36)

p ≈ pP := e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fP (y)dy. (1.37)

It is not said that the integrals in (1.36) and (1.37) can be solved analytically but depends

on which distribution of the family is selected. In any case, the price can be obtained

easily through numerical integration.

Polynomial expansions

We consider two different polynomial expansions, the first around the standard normal

density (i.e. Gram-Charlier expansion), the second around the log-normal.

• Yamazaki (2014) proposes to use a Gram-Charlier expansion around the standard

normal distribution to price Asian options. Since Y (T ) is defined on R+ while the

standard normal density on R, the author proposes to work with the standardized

version of Y (T ), i.e. x := (Y (T ) − E[Y (T )])/
√

Var[Y (T )] and approximate its

unknown distribution through (1.16). The resulting pricing formula is obtained by

plugging (1.16) into (1.24):

p ≈ pGC−N :=
S(0)

T

[
(c1 −KT )Φ

(
c1 −KT√

c2

)
+
√
c2φ

(
c1 −KT√

c2

)
+
∞∑
n=3

√
c2(−1)nqnHen−2

(
c1 −KT√

c2

)
φ

(
c1 −KT√

c2

)]
,

where q3 := c3/(3!c
3/2
2 ), q4 := c4/(4!c2

2), q5 := c5/(5!c
5/2
2 ), q6 := (c6 + 10c2

3)/(6!c3
2),

etc. (refer to Yamazaki, 2014, pag. 87 for the general formula)

• The expansion based on polynomials that are orthogonal with respect to the log-

normal distribution derived by Willems (2019) can be used to price continuously

monitored arithmetic Asian options in the Black-Scholes setting. Is interesting to

note that all terms in the series are fully explicit and no numerical integration nor

any special functions are involved in pricing formulas. The procedure to derive the

approximating density function has been already outlined in Section 1.2.2, hence,

by substituting (1.18) into (1.24) one gets the pricing formula:

p ≈ pOP−LN := e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fOP−LN(y)dy (1.38)
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where fOP−LN(·) is given by (1.18). Willems (2019) also show that the integral can

be solved analytically, interested reader may refer to Willems (2019, Formula 5).

Edgeworth expansion

Turnbull and Wakeman (1991) and Ritchken et al. (1990) propose to use a fourth-order

Edgeworth series expansion. Given fLN(y;µ, σ) defined as in (1.26) the Edgeworth ap-

proximation to the true density is given by

fEDG(y;µ, σ) = fLN(y;µ, σ) +
4∑
j=1

kj
j!

∂jfLN(y;µ, σ)

∂yj
(1.39)

where kj is the difference between the i− th cumulant of the exact distribution and the

approximate distribution. Plugging (1.39) into (1.24) we get

p ≈ pEDG := e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fEDG(y)dy. (1.40)

The main problem of the Edgeworth series is that increasing the number of matched

moments does not ensure an improvement in the resulting approximation, moreover, it

can lead to negative densities. In formula (1.40) Edgeworth expansion is implemented

around the log-normal density because the arithmetic average of the stock price is defined

on R+, Ju (2002) considers the Edgeworth series for approximating the distribution of

ln(Y (T )) with a normal distribution and obtains a very efficient pricing formula (see

Roncoroni et al., 2015, Chapter 18), but, since its range of application is restricted to the

Black-Scholes setting we don’t enter in details of this approximation technique.

Maximum entropy

Another well known and widely diffused method for distribution approximation is the

maximum entropy principle, developed by Jaynes (1978) and Golan et al. (1996). As-

suming the given moments as known information, the maximum entropy (ME) principle

chooses, out of the distributions consistent with the given partial information, the one

having maximum entropy, or equivalently the most uncertain, accomplishing a principle

of scientific honesty. In our context, we can price Asian options given the first N integer

moments of Y (T ) by approximating fY (·) with the ME density:

fME(y) = exp

(
N∑
j=0

λjy
j

)
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where {λj}Nj=0 are Lagrange’s multipliers that solve the minimization problem

min
λ1,...,λN

N∑
j=1

λjE[Y j(T )] + ln

(∫ ∞
0

exp

(
−

N∑
j=1

λjy
j

)
dx

)
(1.41)

and λ0 is chosen such that
∫∞

0
fME(x)dx = 1. Then, plugging (1.41) into (1.24) one gets

p ≈ pME := e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fME(y)dy. (1.42)

The main drawback of this method is the computational efficiency, note indeed that,

in order to approximate the unknown distribution is necessary to solve an optimization

problem (which is convex but existence of the solution is not ensured, see Kesavan and

Napur, 1992) involving an integral to be computed numerically. Moreover, integral in

(1.42) can be computed only numerically. Since computational efficiency is a crucial

aspect of this thesis, ME approximation does not find application outside this example.

1.5.6 Numerical experiment

We evaluate the performances of the various approximations examined throughout this

chapter by pricing fixed strike continuously monitored Asian options. The different ap-

proximations can be compared in several ways:

a) evaluating with the Kolmogorov-Smirnov criterion the distance between the ap-

proximating distribution and the distribution obtained by Monte Carlo simulation

or the Laplace transform inversion of Geman and Yor (1993);

b) comparing the different approximations with the lower and the upper bound to the

option price as given in Rogers and Shi (1992) and Thompson (1998);

c) evaluating the difference (mean, absolute, percentage) between the option price

coming from the different approximations and the one obtained by the Laplace

transform inversion of Geman and Yor (1993).

For brevity, exploiting the fact that lower bound appears to be very tight, we only consider

the criterion b), but also report the result of the Laplace transform inversion as further

benchmark. Parameters are taken from Fusai and Tagliani (2002) and Lo et al. (2014),

numerical results are reported in Table 1.2.

Some comments are in order, numerical results show that approximations based on

the first three integer moments outperform the ones based on the first two, especially in

a context of high volatility (i.e. the third parameter setting). We note that the shifted

gamma is the worst performing among the ones based on the first three integer moments,
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Table 1.2: Price of Asian options in the Black-Scholes model.

Method r = 0.09, σ = 0.1 r = 0.09, σ = 0.3 r = 0.15, σ = 0.5
Benchmarks

Laplace transform inversion 4.91512 8.82876 14.10024
Lower bound 4.91508 8.82755 14.09498
Upper bound 4.91541 8.83329 14.12496

2 moments approximations
Log-normal 4.92310 8.88576 14.30234
Reciprocal gamma 4.90938 8.78216 13.92346

3 moments approximations
Shifted log-normal 4.91514 8.83183 14.10653
Shifted gamma 4.91549 8.85200 14.15791
Shifted reciprocal gamma 4.91510 8.82572 14.09664

4 moments approximations
Johnson 4.91514 8.82832 14.09313
Pearson 4.91512 8.82949 14.10716
Edgeworth 4.90938 8.80190 13.87252
Gram-Charlier (normal) 4.91500 8.71351 13.38673
Polynomial expansion (log-normal) 4.91505 8.81929 14.06508
Maximum entropy 4.95559 8.80854 14.00206

6 moments approximations
Gram-Charlier (normal) 4.91598 8.95100 16.09646
Polynomial expansion (log-normal) 4.91402 8.82767 14.08110
Maximum entropy 4.95408 8.82602 14.07074

Legend: Contract parameters: S(0) = K = 100, T = 1.
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while shifted log-normal always produces pricing approximations which are inside the

bounds.

When the fourth moment is considered, impressive performances are reported by

Johnson’s and Pearson’s systems of distributions, also in contexts of high volatility. Note

indeed that the price of the option computed by using the Pearson’s approximation always

falls between the lower and upper bounds. About Edgeworth approximation, for high

volatility levels we obtain a bimodal density with negative values, hence the performances

of this kind of approximations are very poor and we don’t recommend their usage for

problems in which the moment problem is not determined. The polynomial expansion

around log-normal distribution largely outperforms the one based on the standard normal.

This is particularly evident for high volatility levels, where the latter diverges when

six moments are used. Moreover, this result is consistent with Filipović et al. (2013)

which suggest to choose the weight function as close as possible to the unknown density

function, in this case, the moment matched log-normal density appears much closer than

the standard normal. Maximum entropy approximation is not only less accurate than

the polynomial expansion (around log-normal density) but also computationally slower.

Hence, polynomial expansion around log-normal density seems to be the best option when

many moments are available.

1.6 An experiment on moment problem

In this section we implement a further numerical experiment related to the moment

problem. More specifically, we investigate what happens when replacing the correct

distribution with another one which is totally different but shares with the true one the

same identical sequence of moments. To this aim we consider the problem of pricing

an European call option in the Black-Scholes model (see Section 1.5.1). Under this

model, indeed, the stock price at maturity can be written as8 S(T ) = S(0)X(T ) where

X(T ) = e

(
r−σ

2

2

)
T+σW (T )

. Note that X(T ) is log-normally distributed, i.e. its density is:

f(x) =
1

x
√

2πv
e−

(ln(x)−m)2

2v , (1.43)

where m = E[lnX(T )] =
(
r − σ2

2

)
T and v = Var[lnX(T )] = σ2T . The price of the

European call option is given by

C = E[(S(0)X(T )−K)+] =

∫ ∞
0

(S(0)x−K)+f(x)dx. (1.44)

8Compare with (1.22).
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Figure 1.1: fa(x) for different levels of a.
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This equation can be solved explicitly, giving rise to the well known Black-Scholes formula

for European call option price

C = S(0)Φ(d1)−Ke−rTΦ(d2), (1.45)

where d1 =
ln(S(0)

K )+
(
r+σ2

2

)
T

σ
√
T

, d2 = d1−σ
√
T and Φ(·) is the cumulative distribution func-

tion of the standard normal. As pointed out in Section 1.1, the log-normal distribution

represent the classical case for which the moment problem is indeterminate, i.e. there

are infinite distributions with exactly the same moment sequence. For example, one can

consider the following class of distributions (cfr. Stoyanov, 1997, pag. 103):

fa(x) = f(x)

(
1 + a sin

(
2π

(
lnx−m√

v

)))
, −1 ≤ a ≤ 1 (1.46)

which is plotted for different values of a in Figure 1.1.

It is possible to show that
∫∞

0
xkfa(x)dx =

∫∞
0
xkf(x)dx, i.e. these distributions share

exactly the same sequence of moments. In this experiment, we replace f(x) with fa(x)

into (1.44) and compare with the exact solution computed through (1.45). Numerical

results are reported in Table 1.3 and show that, despite densities are totally different, the

computed price does not fall so far from the true one, with absolute error in % that is

steadily below 2%. Moreover, from Figure 1.1 is possible to appreciate how the plotted
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Table 1.3: Prices of European call options computed using the wrong density

r = 0.09, σ = 0.1 r = 0.09, σ = 0.3 r = 0.15, σ = 0.5
a Price Abs. err (%) Price Abs. err (%) Price Abs. err (%)
-1 9.6310 0.6766 15.9985 1.3610 26.0345 0.3751

-0.8 9.6180 0.5413 16.0427 1.0888 26.0541 0.3001
-0.6 9.6051 0.4060 16.0868 0.8166 26.0737 0.2250
-0.4 9.5922 0.2706 16.1310 0.5444 26.0933 0.1500
-0.2 9.5792 0.1353 16.1751 0.2722 26.1129 0.0750

0 9.5663 - 16.2193 - 26.1325 -
0.2 9.5533 0.1353 16.2634 0.2722 26.1521 0.0750
0.4 9.5404 0.2706 16.3076 0.5444 26.1717 0.1500
0.6 9.5274 0.4060 16.3517 0.8166 26.1913 0.2250
0.8 9.5145 0.5413 16.3959 1.0888 26.2109 0.3001
1 9.5015 0.6766 16.4400 1.3610 26.2305 0.3751

Legend: Contract parameters: S(0) = K = 100, T = 1, true price corresponds to the case where a = 0.

random variables are similar in the tails but present large differences around the mean;

this finding is consistent with Lindsay and Basak (2000) that show that the error upper

bound presented in Section 1.3 is sharp only in the tails of the distributions. Finally, we

stress how, imposing an additional constraint of unimodality, can help a lot in obtaining

good approximations, note indeed that distributions sharing the same moments of X(T )

are multimodal.

32



Chapter 2

Asian options valuation under

non–Gaussian Ornstein–Uhlenbeck

dynamics

In this chapter, we contemplate distribution approximations for the arithmetic average

of prices when the driving dynamics is given by non-Gaussian mean-reverting processes,

which are omnipresent in financial, insurance and commodity markets. We revisit previ-

ous approximations and suggest new ones. We then derive moment-based average price

approximations attuned to Asian option prices using a model-generic formula for the

moments of the arithmetic average. We highlight the speed-accuracy benefits of the

proposed methods by benchmarking their performances against price lower bounds and

Monte Carlo price estimates.

2.1 Introduction

We devise accurate closed-form expressions for arithmetic Asian options with an under-

lying exponential Lévy-driven Ornstein–Uhlenbeck (OU) asset price process. The key

points of our approach are its modelling capability of mean reversion and presence of

jumps in commodity markets, but also its generality in the sense that its sole require-

ment is the availability of closed-form expression for the cumulant generating function of

the background driving process hence the extensibility of its scope to other markets or

areas of potential interest outlined later. Mean reversion is a principal feature of com-

modity prices, meaning that prices typically concentrate around a mean level for demand

and supply reasons. Interested readers may refer, for example, to Bessembinder et al.

(1995), Eydeland and Wolyniec (2003), Geman (2005, 2008), for more information about

this subject including empirical corroboration and implications of mean reversion. Along

with this, price discontinuities are another ubiquitous feature of commodity and energy
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markets (see, e.g., Hilliard and Reis, 1999, Deng, 1999, Geman and Roncoroni, 2006 for

empirical evidence of jumps in commodity and energy prices).

Although a large volume of the commodities’ literature has focused on price and basic

derivatives’ modelling, the case of exotic payout structures has received less attention

as, by nature, they affect the mathematical tractability rendering the valuation problem

quite challenging. We focus on average-based derivatives, which are prevalent in com-

modity markets and whose trading volume has increased considerably over the recent

years with important commodity exchanges offering such derivatives. For example, char-

terers operating in the freight market typically face freight rate exposure during a voyage

and, as the freight revenue process for a ship in the physical spot market is given by

the prices in this period, most freight derivatives are settled against average spot freight

rates. Also, traded average price options in the London Metal Exchange give the metal

community a flexible way of hedging against fluctuations in the monthly average settle-

ment price for several metals. Crude oil consumers, whose supply price is not fixed, can

use average options to hedge against spikes in oil prices during the supply period. Finally,

in Europe, contracts on the CME Cumulative Average Temperature Index, based on the

accumulated daily average temperatures over a calendar month, are available for summer

months; these allow businesses to hedge against monthly volatility by tracking average

daily temperature in a given city.

In light of the above discussion, we focus on Asian options and refer, for example, to

Fusai et al. (2008), Cai et al. (2014) and Sesana et al. (2014) based on different driving

commodity price dynamics, such as the Cox–Ingersoll–Ross and Constant Elasticity of

Variance diffusions, Marena et al. (2013) with an added independent jump component,

and Shiraya and Takahashi (2011) and Kyriakou et al. (2016) under stochastic volatility.

In this chapter, we consider an exponential Lévy-driven OU process for the underlying

asset price, that is, a Schwartz (1997) type model with Lévy-distributed innovations.

This model choice is corroborated by previous literature that comes to a standstill when

start thinking of exotic nonlinear payoff structures. More specifically, Benth and Šaltytė-

Benth (2004) model energy spot prices with exponential non-Gaussian OU processes,

the modelling philosophy being based on the fact that large price fluctuations frequently

observed in energy, such as oil and natural gas, markets lead to non-normal deviations

from the long-term mean towards which the prices revert. It turns out to be the case that

the normal inverse Gaussian (NIG) is an appropriate driving noise for the returns. The

same model has been used for the spot price of electricity (e.g., see Benth et al., 2018 and

earlier references therein). Börger et al. (2009) extend to a multivariate setting across

different commodities, including power, oil, gas, coal and carbon, whereas Grønborg and

Lunde (2016) model the term structure of futures contracts on oil within the GARCH

model setting with NIG innovations. Finally, Benth and Šaltytė-Benth (2005) use a NIG-

driven OU process for the time evolution of temperature, highlighting also the importance
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of a multidimensional model for temperature across different locations of interest.

In this chapter, we derive the characteristic function of the discretely monitored arith-

metic average of the log-returns of the underlying in the case where it evolves according

to a Lévy driven OU process. Using this result as building block, we derive characteristic

functions of log-returns and integrated log-returns and the moments of the arithmetic

average of the price. These results enable, first, to price European and geometric Asian

options through standard characteristic function inversion methods (see e.g. Carr and

Madan, 1999 and Fang and Oosterlee, 2008). Then, we restrict our attention to the prob-

lem of pricing arithmetic Asian options. We propose moment matching, series expansion

and lower bound pricing approximations. The latter is obtained by extending the lower

bound approximation of Fusai and Kyriakou (2016), originally designed for exponential

Lévy models. For what concerns moment based approximations, several methods have

been proposed in literature to price options under exponential Lévy models: Ballotta

(2010) propose moment matching in the variance gamma model, Albrecher and Predota

(2004) adopt Edgeworth expansion in the case of NIG. Our work differs from their un-

der several aspects: first for the underlying price process specification, which is more

general, allowing for mean reversion; second, for the choice of the approximating distri-

butions; third for the way of computing moments, Ballotta (2010) and Albrecher and

Predota (2004) exploit independence and stationarity of increments under Lévy models,

but, in the present case, these hypothesis are not valid anymore due to the presence of

mean-reversion, requiring some extra labour for moments derivation.

For practical implementation of moment matching, we reconsider approximations for

the unknown distribution law of the arithmetic average by moment matching of the stan-

dard approximating laws outlined in Section 1.5.4, i.e. the shifted versions of log-normal,

gamma and reciprocal gamma. These have been applied originally by Lo et al. (2014) in

the traditional geometric Brownian motion model setting widely used in equities. Aiming

to account for non-Gaussian driving dynamics, we also come up with new suggestions,

modified log-normal power-law distribution and the Johnson’s and Pearson’s system of

distributions (see Section 1.2.1). The last two will produce approximations that take into

account also the kurtosis of the unknown distribution of the arithmetic average, resulting,

expectantly, more accurate for jump models. In addition, we also investigate the usage of

the orthogonal polynomials expansion proposed in Willems (2019). Finally, we adapt the

lower bound of Fusai and Kyriakou (2016) to the proposed model framework. We end up

with a full battery of closed-form expressions for the option prices with grounded corner-

stone the moments of the arithmetic average which we derive under general underlying

model assumptions. The applicability of the proposed approximations is transferable to

expectations of any nonlinear function of linear combination of asset prices. This is of

practical importance as arithmetic averages see broader application in finance, such as

bond pricing (Privault and Yu, 2016), insurance (Cummins and Geman, 1993), economic
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project valuation (Zahra and Reza, 2012 and Creemers, 2018), real option valuation for

commodity projects (Jaimungal et al., 2013), and optimal capacity problems under de-

mand uncertainty (Driouchi et al., 2006).

In this research, we aim for a balance between market realism and rigorous model

analytics that are very attractive for computational scientists. So, what are the sought

merits of closed-form formulae? First, they are easy and can be better understood by

practitioners rather than numerical algorithms, are fast to implement, and expectantly

accurate. Second, replicating the payoff of an option leads to a perfect hedge for the

risk associated with the sale of this option. Therefore, traders and risk managers favour

closed-form formulae for option prices as they also yield closed formulae for the price

sensitivities with respect to changes of various model parameters that constitute the

components of the replicating portfolio. Pricing formulae, indeed, open the door for risk

management as they can be more efficient, from a computational burden perspective, to

implement than a numerical scheme (e.g., see Ballotta et al., 2017).

The remainder of this chapter is structured as follows. In Section 2.2, we present the

underlying model assumptions and basic result about the moment generating function

of the arithmetic average of log-returns of a Lévy driven OU process required for the

mathematical treatment that follows. Section 2.3 includes the analytical derivation of

the characteristic function of log-returns and their arithmetic averages, which are used to

price, respectively, European and geometric Asian options under the specified model. In

Section 2.4 we first derive the moments of the arithmetic average of the underlying price

process and show how to price Asian options exploiting knowledge of the first three-four

integer moments; second, we extend the lower bound of Fusai and Kyriakou (2016) to the

present model. In Section 2.5, we assess the accuracy of the different pricing approaches

on numerical simulations. Section 2.6 concludes the chapter.

2.2 Model and main result

The payoff of the Asian option is given by a suitably defined average of the price process

S(t). In particular, we consider throughout this chapter discretely and continuously

monitored geometric and arithmetic Asian options. In the case of a discrete monitoring we

consider a set of dates 0 =: t0 < t1 < t2 < ... < tn := T and define the geometric average

as Gn(T ) := exp
(

1
n

∑n
j=1 ln(S(tj))

)
, the price of the discretely monitored geometric

Asian option is given by:

pGn = e−rTE[(Gn(T )−K)+]. (2.1)
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In the same way, we define the discrete arithmetic average as An(T ) := 1
n

∑n
j=1 S(tj),

then the price of the discretely monitored arithmetic Asian option is given by:

pAn = e−rTE[(An(T )−K)+]. (2.2)

In the case of continuous monitoring the geometric average isG(T ) := exp
(

1
T

∫ T
0

lnS(t)dt
)

and the corresponding price is

pG = e−rTE[(G(T )−K)+] (2.3)

while the arithmetic average is A(T ) := 1
T

∫ T
0
S(t)dt and the price of the continuously

monitored arithmetic Asian option is given by:

pA = e−rTE[(A(T )−K)+]. (2.4)

Expectations in (2.1), (2.2), (2.3) and (2.4) are computed under the risk neutral measure

and x+ := max(x, 0). Changing to a put-type option is straightforward.

We assume a general (non) Gaussian OU process for the (log) asset returns dynamics

under the historical measure,

dX̃(t) = α(β − X̃(t))dt+ dL(t), (2.5)

where α > 0 is the speed of mean reversion, β is the long-run mean, and L is a general

background driving Lévy process. The solution of the stochastic differential equation

(2.5) is

X̃(t) = X̃(0)e−αt + β(1− e−αt) +

∫ t

0

e−α(t−s)dL(s). (2.6)

The asset price process is given by

S(t) = S(0)e(r−ω̃(t))t+X̃(t), 0 ≤ t ≤ T (2.7)

where r is the constant continuously compounded interest rate1, and ω̃(t) is chosen so

that the discounted price process of the (tradable) asset is a martingale under some risk

neutral measure, i.e. ω̃(t) := ln E[eX(t)]
t

. After some simple algebraic manipulations we get:

S(t) = S(0)e(r−ω(t))t+X(t), (2.8)

1We assume, without loss of generality, that the dividend yield is constant and equal to 0.
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where

X(t) :=

∫ t

0

e−α(t−s)dL(s), ω(t) :=
1

t
ln E[e

∫ t
0 e
−α(t−s)dL(s)]. (2.9)

Note that the stock price process under the risk neutral measure does not depend on the

long run mean β, moreover, quantity ω(t) depends on the specification of the background

driving Lévy process, we present, later, its general analytical expression.

We state here the main theoretical result of this chapter which will be used to compute

the quantity ω(·) and to price aforementioned derivative instruments.

Proposition 2.1. Given X(·) as in (2.9), the following holds

E
[
e
∑n
j=1 γjX(tj)

]
= exp

{
n∑
j=1

∫ tj

tj−1

ψ

(
n∑
k=j

γke
−α(tk−s)

)
ds

}
, (2.10)

where γj ∈ C ∀j ∈ {1, n} and ψ(·) is the logarithm of the moment generating function of

L(1), i.e. ψ(u) := lnE[exp(uL(1))].

Proof.

E
[
e
∑n
j=1 γjX(tj)

]
= E

[
e
∑n
j=1

∫ tj
0 γje

−α(tj−s)dL(s))
]

= E

[
e
∑n
j=1

∫ tj
tj−1

∑n
k=j γke

−α(tk−s)dL(s)

]
= E

[
n∏
j=1

e
∫ tj
tj−1

∑n
k=j γke

−α(tk−s)dL(s)

]
=

n∏
j=1

E

[
e
∫ tj
tj−1

∑n
k=j γke

−α(tk−s)dL(s)

]
,

(2.11)

where the last passage is possible because Lévy processes have independent increments

and intervals of integration are disjoint. In order to solve the last expectation in (2.11),

we register the following theoretical result

Lemma 2.1. Eberlein and Raible (1999)

Let L be a Lévy process. If f : R+ → C is a complex valued, left continuous function

with limits from the right, such that |Re(f)| ≤M , then

E

[
exp

(∫ tn

t0

f(s)dL(s)

)]
= exp

(∫ tn

t0

ψ(f(s))ds

)
,

where ψ(·) is the logarithm of the moment generating function of L(1).

Hence, by applying Lemma 2.1 and substituting f(s) with
∑n

k=j γke
−α(tk−s) one gets:

E

[
e
∫ tj
tj−1

∑n
k=j γke

−α(tk−s)dL(s)

]
= exp

(∫ tj

tj−1

ψ

(
n∑
k=j

γke
−α(tk−s)

)
ds

)
. (2.12)
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Finally, substituting (2.12) into (2.11) one gets:

E
[
e
∑n
j=1 γjX(tj)

]
=

n∏
j=1

exp

(∫ tj

tj−1

ψ

(
n∑
k=j

γke
−α(tk−s)

)
ds

)

from which the thesis follows.

From (2.10), setting n = 1, t1 = t and γ1 = 1 we get the general analytic expression

for ω(t):

ω(t) =
1

t
ln E[e

∫ t
0 e
−α(t−s)dL(s)] =

1

t

∫ t

0

ψ
(
e−α(t−s)) ds (2.13)

For practical applications one needs to specify a dynamics for the background Lévy

process. This choice impacts on tractability of the problem because determines whether

or not the integral in (2.10) can be solved analytically. For sake of generality, we postpone

discussing the choice of the dynamics of the background driving Lévy process to Section

2.5.1, where we also provide analytical expression for ψ(·) under various Lévy models and

show whenever (2.10) can be solved explicitly.

Proposition 2.1 opens doors to pricing options under the specified model. On one

hand it allows to obtain the characteristic function of log-returns and arithmetic average

of log-returns (both discrete and continuous) as special cases, thus (2.1) and (2.3) can

be computed through standard inversion algorithms such as FFT and COS methods (see

Carr and Madan, 1999 and Fang and Oosterlee, 2008), on the other hand computing (2.2)

and (2.4) by means of an exact closed-form solution under standard driving dynamics is

an unsolvable problem. For this, we present, next, important results based on Proposition

2.1 related to the moments of A(T ) and An(T ) that will form the building block of our

proposed solution for the case of the arithmetic Asian options. In particular, we aim to

provide suitable approximations of the distribution of the arithmetic average, exploiting

knowledge of its moments.

2.3 Geometric Asian option pricing

In this section we derive the characteristic functions of the log-returns and arithmetic

average of log-returns. Given these quantities, we can price European and geometric

Asian options under the model specified in equation (2.5) through standard inversion

methods, we use the COS method developed by Fang and Oosterlee (2008), which is

briefly summarized in Appendix A. Considering the imaginary unit i :=
√
−1, we state

the following theoretical results.
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Proposition 2.2. The characteristic function of X(T )

E
[
eiuX(T )

]
= exp

(∫ T

0

ψ
(
iue−α(T−s)) ds) (2.14)

Proof. Follows from Proposition 2.1 considering the special case where n = 1, γ1 = iu

and t1 = T .

Proposition 2.3. The characteristic function of 1
T

∫ T
0
X(t)dt

E
[
e
iu
T

∫ T
0 X(t)dt

]
= exp

(∫ T

0

ψ

(
iu

T

(
1− e−α(T−s)

α

))
ds

)
. (2.15)

Proof. ∫ T

0

X(t)dt =

∫ T

0

(∫ t

0

e−α(t−s)dL(s)

)
dt =

∫ T

0

∫ T

s

e−α(t−s)dtdL(s)

=

∫ T

0

1− e−α(T−s)

α
dL(s)

Hence

E
[
e
iu
T

∫ T
0 X(t)dt

]
= E

[
e

∫ T
0

iu
T

(
1−e−α(T−s)

α

)
dL(s)

]
= e

∫ T
0 ψ

(
iu
T

(
1−e−α(T−s)

α

))
ds
,

where the second equation follows again from Lemma 2.1.

Proposition 2.4. The characteristic function of 1
n

∑n
j=1X(tj)

E
[
e
iu
n

∑n
j=1X(tj)dt

]
= exp

(
n∑
j=1

∫ tj

tj−1

ψ

(
n∑
k=j

iu

n
e−α(tk−s)

)
ds

)
. (2.16)

Proof. Follows from Proposition 2.1 substituting γj with iu
n
∀j.

These results enables pricing European and geometric Asian (continuously and dis-

cretely monitored) options in an accurate and fast way, defining

R := (r − ω(T ))T +X(T )

Z :=
1

T

(
r
T 2

2
−
∫ T

0

tω(t)dt

)
+

1

T

∫ T

0

X(t)dt

Zn :=
1

n

n∑
j=1

(r − ω(tj))tj +X(tj)

we get the following pricing formulas for, respectively, European, geometric continuous
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and geometric discrete Asian options:

pE = e−rTE
[
(S(T )−K)+

]
= e−rT

∫ ∞
ln K
S(0)

(S(0)er −K)fR(r)dr

pG = e−rTE
[
(G(T )−K)+

]
= e−rT

∫ ∞
ln K
S(0)

(S(0)ez −K)fZ(z)dz

pGn = e−rTE
[
(Gn(T )−K)+

]
= e−rT

∫ ∞
ln K
S(0)

(S(0)ez −K)fZn(z)dz

where the probability density functions fR(·), fZ(·) and fZn(·) can be obtained through

numerical inversion of their characteristic functions:

E[eiuR] = eiu(r−ω(T ))TE[eiuX(T )]

E[eiuZ ] = e
iu
T

(
r T

2

2
−
∫ T
0 tω(t)dt

)
E[e

iu
T

∫ T
0 X(t)dt]

E[eiuZn ] = e
iu
n

∑n
j=1(r−ω(tj))tjE[e

iu
n

∑n
j=1X(tj)].

2.4 Arithmetic Asian option pricing

Since pricing arithmetic Asian options by means of exact closed form solutions is an

unsolvable problem we consider some approximations. First, we derive formulas for the

moments of the arithmetic average (both in the continuous and discrete setting) and

then we revisit some pricing approximation techniques illustrated in Section 1.5. Finally,

exploiting again Proposition 2.1 we derive a very sharp lower bound price approximation

for the arithmetic Asian options.

2.4.1 Moments of the arithmetic average

Next, we show how to obtain the moments of the arithmetic average within the general

model framework defined in the previous section. For notational convenience, we decide

to work with the following transformation of the arithmetic average2: Yn(T ) := An(T )
S(0)

n

and Y (T ) := A(T )
S(0)

T . Given the moments of Yn(T ) and Y (T ), recovering the moments of

An(T ) and A(T ) is straightforward.

Proposition 2.5. The m-th moment of Yn(T ) is given by

E[Y m
n (T )] =

∑
γ1+γ2+...+γn=m

(
m

γ1, γ2, ..., γn

)
e
∑n
j=1 γj((r−ω(tj))tj)+

∫ tj
tj−1

ψ(
∑n
k=j γke

−α(tk−s))ds.

(2.17)

2Note that notation now coincides with the one of Section 1.5.
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Proof. Since Yn(T ) =
∑n

j=1 e
(r−ω(tj))tj+X(tj) then

E [Y m
n (T )] = E

[(
n∑
j=1

e(r−ω(tj))tj+X(tj)

)m]

= E

[ ∑
γ1+γ2+...+γn=m

(
m

γ1, γ2, ..., γn

) n∏
j=1

e((r−ω(tj))tj+X(tj))γj

]

=
∑

γ1+γ2+...+γn=m

(
m

γ1, γ2, ..., γn

)
e
∑n
j=1 γj((r−ω(tj))tj)E

[
e
∑n
j=1 X(tj)γj

]
,

where we have used the multinomial theorem for the second step. As expectation in the

last equation coincides with the result of Proposition 2.1 the thesis follows.

Remark 2.1. The term
∑

γ1+γ2+...+γn=m indicates that the sum is taken for any combi-

nation of {γj}nj=1 such that their sum is equal to m. Hence, despite no numerical methods

are required at any stage when computing moments of An(T ), computational complexity

increases for high n and m because of elevated number of possible combinations of {γj}nj=1

which determines the number of evaluations of E
[
e
∑n
j=1X(tj)γj

]
.

We consider now the continuous arithmetic average.

Proposition 2.6. The m-th moment of Y (T )

E[Y m(T )] = m!

∫ T

0

dt1

∫ T

t1

dt2 · · ·
∫ T

tm−1

exp

{
m∑
j=1

(r − ω(tj))tj+

+

∫ tj

tj−1

ψ

(
m∑
k=j

e−α(tk−s)

)
ds

}
dtm, (2.18)

Proof. From Bharucha-Reid (1960, pag. 344–345),

E[Y m(T )] =

∫ T

t0

· · ·
∫ T

t0

e
∑m
j=1(r−ω(tj))tjE[exp(X(t1) + · · ·+X(tm))]dt1 · · · dtm

= m!

∫ T

t0

dt1

∫ T

t1

dt2 · · ·
∫ T

tm−1

e
∑m
j=1(r−ω(tj))tjE[exp(X(t1) + · · ·+X(tm))]dtm.

The thesis follows Proposition 2.1 considering the special case where γj = 1 ∀j ∈ {1,m}.

Finally, the moments of the arithmetic average are computed according to:

E[Amn (T )] =

(
S(0)

n

)m
E[Y m

n (T )]

E[Am(T )] =

(
S(0)

T

)m
E[Y m(T )].
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.

2.4.2 Pricing using moments

The price of the fixed strike arithmetic average Asian call options is

p = e−rTE

[(
S(0)

T
Y (T )−K

)+
]

= e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fY (y)dx, (2.19)

while in the discrete case

pn = e−rTE

[(
S(0)

T
Yn(T )−K

)+
]

= e−rT
S(0)

T

∫ ∞
KT
S(0)

(
y − KT

S(0)

)
fYn(y)dx, (2.20)

Hence, we aim to approximate the unknown distribution of Y (T ) and Yn(T ) through

their moments, which have been derived in Section 2.4.1. Moment matching and series

expansion are considered. We start by taking into account the approximations proposed

in Lo et al. (2014), i.e. the shifted log-normal, shifted gamma and shifted reciprocal

gamma. For these cases we have already shown in Section 1.5.4 how to estimate the

parameters of the approximating distribution by using the moments of Y (T ) and ob-

tained the corresponding closed form approximations, which are given in formulas (1.31),

(1.33) and (1.35). Then we also come up with a new suggestion: the modified log-normal

power law distribution (MLP). This random variable is a generalization of the log-normal

distribution with a third parameter controlling the tail behavior. Indeed, contrarily to

Lo et al. (2014) that operate in a classical Black-Scholes framework, we consider jump

models, which can possibly lead to extreme events and heavier tails in the distribution

of the arithmetic average. A brief description of the MLP distribution is given next,

for brevity, we omit the details of the forms of the associated probability density and

cumulative distribution functions, which can be found in Basu et al. (2015), and rather

merely present the resulting pricing expressions following from the general formula. All

these approximations are based on the first three integer moments, but, in order to im-

prove pricing accuracy, we also include the fourth moment and approximate the value of

the option through Johnson’s and Pearson’s systems of distributions, this is important

when dealing with jump models since allows to take into account also the kurtosis of

the unknown distribution. In these cases we implement moment matching by follow-

ing the procedure described in Section 1.2.1 and then compute pricing approximations

through formulas (1.36) and (1.37). In addition, we also consider the orthogonal polyno-

mial expansion proposed by Willems (2019), which has been described in Section 1.2.2

with corresponding pricing formula given in (1.38). Alternatively, we could consider the

methodology developed by Yamazaki (2014), see Section 1.5.5, but performances of this

approach are worse than the alternative orthogonal polynomial expansion based on the
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log-normal density3. This is for a theoretical reason: Filipović et al. (2013) suggest that

polynomial expansion is more efficient when implemented around a distribution as close

as possible to the unknown density, in this case, the moment matched log-normal density

appears much closer than the standard normal. This is also confirmed by the numerical

test reported in Section 1.5 (see Table 1.2).

Modified lognormal power-law (MLP)

Finally, we consider the case of the modified lognormal power-law distribution with ini-

tial lognormal distribution parameters m, s and parameter a controlling the power law

behaviour, which we calculate by matching raw moments given by

E[Y k(T )] =
a

a− k
exp

(
s2k2

2
+mk

)
, a > k

(see Basu et al., 2015). Parameter a can be calculated from

(a− 2)3aE[Y 2(T )]3

(a− 3)(a− 1)3E[Y (T )]3
= E[Y 3(T )].

This equation can be solved explicitly (we use Mathematica®) and possesses four different

solutions. The value of a will be the only real solution such that a > 3. Given a, the

remaining parameters are given by

s2 = ln
a(a− 2)E[Y 2(T )]

(a− 1)2E[Y (T )]2
, m = −s

2

2
+ ln

(a− 1)E[Y (T )]

a
.

The relevant pricing formula is

p̃MLP
0 :=

∫ ∞
K

aeam+a2s2

2 x

2x1+a
erfc

{
as2 − lnx+m

s
√

2

}
dx

−K

(
1− 1

2
erfc

{
− lnK +m

s
√

2

}
− eam+a2s2

2

2Ka
erfc

{
as2 − lnK +m

s
√

2

})
,

where

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt

is the complementary error function. The probability density function of the MLP dis-

tribution is displayed for different values of a in Figure 2.1.

3We have also considered to price the Asian option by standardizing the unknown distribution of
the arithmetic average and implementing polynomial expansion around the standard normal and logistic
distributions, see Section 1.2.2, but this approach has been largely outperformed by the polynomial
expansion around the moment matched log-normal density, hence we don’t propose that approach in
this thesis.
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Figure 2.1: Probability density function of the modified log-normal power law distribution for different
levels of a
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Legend: other parameters m = 0.1, s = 0.25.

2.4.3 Error upper bound

In order to establish an upper bound to the error committed when approximating an

unknown distribution Y with another one Ỹ sharing the same 2n moments, we recall

the result from Akhiezer (1965, pag. 66) which have been outlined in Section 1.3, given

two cumulative distribution functions FY (x) and FỸ (x) sharing the same first 2n integer

moments:

|FY (x)− FỸ (x)| ≤ ζn(x), (2.21)

where

1

ζn(x)
=
(

1 x ... xn
)


1 µ1 ... µn

µ1 ... ... µn+1

...
...

...
...

µn µn+1 ... µ2n


−1

1

x
...

xn


and µn is the nth moment of the unknown distribution. The error bound (2.21) is then

applicable to expected values of functions of the underlying random quantity.

Example 2. The price of the Asian put option with fixed strike price K is given by

e−rTE
[
(K − Y (T ))+

]
= e−rT

∫ K

0

F (x)dx ≈ e−rT
∫ K

0

F̃ (x)dx.
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Figure 2.2: Error upper bound Error upper bounds for a continuum of strike prices

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.02

0.04

0.06

0.08

0.1

Legend: ζn(x) (left plot): the case of an approximating distribution function that shares 2n moments

with the original distribution function (see 2.21). e−rT
∫K
0
ζ(x)dx (right plot): the case of the fixed-strike

Asian put option price with the unknown distribution function of the arithmetic average approximated
by a distribution function that has the first 2n moments matched (see 2.22).

Then, from (2.21),

e−rT
∫ K

0

|FY (x)− FỸ (x)| dx ≤ e−rT
∫ K

0

ζn(x)dx. (2.22)

Figure 2.2 shows a simple implementation of (2.21)–(2.22) based on the moments of

the discrete arithmetic average (12 monitoring dates) in the case where the background

driving Lévy process is a Brownian motion. Two comments are in order. The error upper

bound becomes tighter the more moments we take into account. This becomes partic-

ularly sharp with decreasing option moneyness, consistently with Lindsay and Basak

(2000) who show that this bound is sharp only in the tails of the distributions.

2.4.4 Lower bound price approximation

In this section we consider a price approximation for Asian options in the form of a lower

bound (LB). More specifically, we adapt the lower bound of Fusai and Kyriakou (2016) to

the case of the underlying asset price dynamics (2.5) and present an analytical expression

for it in the Fourier domain.
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Discrete monitoring

For notational convenience, we split the time interval according to 0 < ∆ < 2 · ∆ <

... < n ·∆ := T , note that X(∆j) is thus equivalent to what we called X(tj) throughout

the rest of this chapter. The lower bound for the discretely monitored arithmetic Asian

option is given by:

pLB
0 := E

[
e−rT

(
S(0)

n

n∑
j=1

e(r−ω(∆j))∆j+X(∆j) −K

)
1{S(0)

n

∑n
j=1(r−ω(∆j))∆j+X(∆j)>λ}

]

≤ E

[
e−rT

(
S(0)

n

n∑
j=1

e(r−ω(∆j))∆j+X(∆j) −K

)+]

Multiplying and dividing by S(0) we get

pLB
0 := S(0)pLB

1

where

pLB
1 := E

[
e−rT

(
1

n

n∑
j=1

e(r−ω(∆j))∆j+X(∆j) −K?

)
1{ 1

n

∑n
j=1(r−ω(∆j))∆j+X(∆j)>λ?}

]

where K? = K
S(0)

and λ? = λ
S(0)

satisfies

∫
R
e−iλ

?u

(
n∑
k=1

E
[
e(r−ω(∆k))∆k+X(∆k)+ iu

n

∑n
j=1(r−ω(∆j))∆j+X(∆j)

]
+

−K?nE
[
e
iu
n

∑n
j=1(r−ω(∆j))∆j+X(∆j)

])
du = 0.

The optimal lower bound is then given by

pLB
1 =

e−δλ
?−rT

2π

∫
R
e−iuλ

?

Φ(u; δ)du

where δ > 0 ensures integrability and

Φ(u; δ) =
1

iu+ δ

(
1

n

n∑
k=1

e(r−ω(∆k))∆k+
i(u−iδ)

n

∑n
j=1(r−ω(∆j))∆jE

[
eX(∆k)+

i(u−iδ)
n

∑n
j=1X(∆j)

]
+

−K?e
i(u−iδ)

n

∑n
j=1(r−ω(∆j))∆jE

[
e
i(u−iδ)

n

∑n
j=1X(∆j)

])
. (2.23)

We aim now to find the analytical expressions of the expectations in (2.23). Let’s define

X(j∆) :=
∫ j∆

0
e−α(j∆−s)dL(s), we find two alternative representations for X(∆j), which
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will be used next:

X(j∆) =

∫ j∆

0

e−α(j∆−s)dL(s) =

j∑
m=1

∫ m∆

(m−1)∆

e−α(j∆−s)dL(s) (2.24)

=

j∑
m=1

∫ m∆

0

e−α(j∆−s)dL(s)−
∫ (m−1)∆

0

e−α(j∆−s)dL(s)

=

j∑
m=1

(∫ m∆

0

e−α(m∆−s)dL(s)−
∫ (m−1)∆

0

e−α∆e−α((m−1)∆−s)dL(s)

)
e−(j−m)α∆

=

j∑
m=1

(X(m∆)−X((m− 1)∆)e−α∆)e−(j−m)α∆ =

j∑
m=1

Zme
−(j−m)α∆ (2.25)

where Zm := X(m∆)−X((m− 1)∆)e−α∆. From which follows:

n∑
j=1

X(j∆) =
n∑
j=1

j∑
m=1

Zme
−(j−m)α∆ =

n∑
j=1

Zj

n−j+1∑
m=1

e−α∆(m−1) =
n∑
j=1

ZjCj (2.26)

where Cj := eα∆−e−α∆(n−j)

eα∆−1
. Recalling that

Zj = X(j∆)−X((j − 1)∆)e−α∆

=

∫ j∆

0

e−α(j∆−s)dL(s)−
∫ (j−1)∆

0

e−α∆e−α((j−1)∆−s)dL(s)

=

∫ j∆

0

e−α(j∆−s)dL(s)−
(∫ j∆

0

e−α(j∆−s)dL(s)−
∫ j∆

(j−1)∆

e−α(j∆−s)dL(s)

)
=

∫ j∆

(j−1)∆

e−α(j∆−s)dL(s),

we can compute the following quantity:

X(k∆) +
i(u− iδ)

n

n∑
j=1

X(j∆) =
k∑
j=1

∫ j∆

(j−1)∆

e−α(k∆−s)dL(s) +
i(u− iδ)

n

n∑
j=1

ZjCj

=
k∑
j=1

∫ j∆

(j−1)∆

(
e−α(k∆−s) +

i(u− iδ)
n

Cje
−α(j∆−s)

)
dL(s)+

n∑
j=k+1

∫ j∆

(j−1)∆

i(u− iδ)
n

Cje
−α(j∆−s)dL(s)
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Taking exponential:

eX(k∆)+
i(u−iδ)

n

∑n
j=1X(j∆) =

k∏
j=1

e
∫ j∆
(j−1)∆(e−α(k∆−s)+ i(u−iδ)

n
Cje
−α(j∆−s))dL(s)×

×
n∏

j=k+1

e
∫ j∆
(j−1)∆

i(u−iδ)
n

Cje
−α(j∆−s)dL(s)

Exploiting the fact that Lévy increments are independent and intervals of integration are

disjoint we take expectation and get the following

E
[
eX(k∆)+

i(u−iδ)
n

∑n
j=1 X(j∆)

]
=

k∏
j=1

E
[
e
∫ j∆
(j−1)∆(e−α(k∆−s)+ i(u−iδ)

n
Cje
−α(j∆−s))dL(s)

]
×

×
n∏

j=k+1

E
[
e
∫ j∆
(j−1)∆

i(u−iδ)
n

Cje
−α(j∆−s)dL(s)

]

=
k∏
j=1

e
∫ j∆
(j−1)∆

ψ(iue−α(k∆−s)+ i(u−iδ)
n

Cje
−α(j∆−s))ds×

×
n∏

j=k+1

e
∫ j∆
(j−1)∆

ψ( i(u−iδ)n
Cje
−α(j∆−s))ds

= exp

(
k∑
j=1

∫ j∆

(j−1)∆

ψ

(
iue−α(k∆−s) +

i(u− iδ)
n

Cje
−α(j∆−s)

)
ds+

+
n∑

j=k+1

∫ j∆

(j−1)∆

ψ

(
i(u− iδ)

n
Cje

−α(j∆−s)
)
ds

)
,

where we have applied again Lemma 2.1 for the second passage.

Same reasoning applies to E
[
e
i(u−iδ)

n

∑n
j=1X(∆j)

]
which is obtained by following the

same procedure but neglecting the term X(k∆).

Continuous monitoring

For the continuously monitored Asian call option LB is given by

p̃LB
0 := E

[
e−rT

(
S(0)

T

∫ T

0

e(r−ω(t))t+X(t)dt−K
)

1{S(0)
T

∫ T
0 (r−ω(t))t+X(t)dt>λ}

]
≤ E

[
e−rT

(
S(0)

T

∫ T

0

e(r−ω(t))t+X(t)dt−K
)+
]
, (2.27)

Multiplying and dividing by S(0) we get

p̃LB
0 := S(0)p̃LB

1 , (2.28)
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where

p̃LB1 := E

[
e−rT

(
1

T

∫ T

0

e(r−ω(t))t+X(t)dt−K?

)
1{ 1

T

∫ T
0 (r−ω(t))t+X(t)dt>λ?}

]
(2.29)

where K? = K
S(0)

and λ? = λ
S(0)

satisfies

∫
R
e−iλu

(∫ T

0

E
[
e(r−ω(t))t+X(t)+ iu

T

∫ T
0 (r−ω(t))t+X(t)dt

]
dt−K?TE

[
e
iu
T

∫ T
0 (r−ω(t))t+X(t)dt

])
du = 0.

This lower bound has the following inverse Fourier transform representation:

p̃LB
1 =

e−δλ
?−rT

2π

∫
R
e−iuλ

?

Φ(u; δ)du, (2.30)

where the constant δ > 0 ensures integrability and

Φ(u; δ) :=
1

iu+ δ

(
1

T

∫ T

0

e(r−ω(t))t+
i(u−iδ)
T

(r T
2

2
−
∫ T
0 ω(t)tdt)E

[
eX(t)+

i(u−iδ)
T

∫ T
0 X(t)dt

]
dt+

−K?e
i(u−iδ)
T

∫ T
0 (r−ω(t))tdtE

[
e
i(u−iδ)
T

∫ T
0 X(t)dt

])
. (2.31)

Expectations in (2.31) can be computed analytically exploiting Proposition (2.1):

E
[
e
i(u−iδ)
T

∫ T
0 X(t)dt

]
= E

[
e
i(u−iδ)
T

∫ T
0 X(t)dt

]
= e

∫ T
0 ψ

(
i(u−iδ)
T

(
1−e−α(T−t)

α

))
dt

(2.32)

and

E
[
eX(t)+

i(u−iδ)
T

∫ T
0 X(t)dt

]
= E

[
e

∫ t
0 e
−α(t−s)+ i(u−iδ)

T

(
1−e−α(T−s)

α

)
dL(s)+

∫ T
t

i(u−iδ)
T

(
1−e−α(T−s)

α

)
dL(s)

]

= e

∫ t
0 ψ

(
e−α(t−s)+ i(u−iδ)

T

(
1−e−α(T−s)

α

))
ds+

∫ T
t ψ

(
i(u−iδ)
T

(
1−e−α(T−s)

α

))
ds

(2.33)

where, for last passage, we have exploited independence of increments of Lévy processes

and Lemma 2.1.

2.5 Numerical analysis

In this section we perform an extensive numerical study in order to test the proposed pric-

ing formulas. We start by specifying a dynamics for the underlying’s price process. Next,

we show numerical performances of the proposed formulas, with model parameters taken

from literature concerning option pricing under Lévy models. Finally, we summarize and
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comment results.

2.5.1 The background driving Lévy process

Theoretical results stated in the previous sections are valid for a generic background

driving Lévy process (BDLP), but for practical implementation one needs to specify a

dynamics for such process. Numerical efficiency depends on the key quantity

∫ tj

tj−1

ψ

(
n∑
k=j

γke
−α(tk−s)

)
ds, (2.34)

which appears (under several forms) in any pricing formula. The symbolic computing

language Mathematica® is used to solve the integral in (2.34). Codes for implementing

the general formula (2.10) are given in Appendix C.1. We obtain full explicit solutions for

the cases where the BDLP is a Brownian motion (BM), double exponential jump diffusion

(DEJD), hyper-exponential jump diffusion (HEJD)4 and normal inverse gaussian (NIG).

In the cases of variance gamma (VG) and CGMY the integral can still be solved but the

solution is only in terms of special functions, i.e. the polylogarithm function (for VG)

and Gaussian hypergeometric function (for CGMY). Finally, (2.34) can not be solved

analytically in the cases of the Merton jump diffusion (MJD), Meixner and generalized

hyperbolic (GH) models. This findings are summarized in Table 2.1. Even in the cases

where (2.34) does not possess analytical solution, option pricing can still be implemented

by solving the integral numerically. In what follows we restrict our attention to the cases

where (2.34) can be solved analytically, i.e. BM, DEJD, NIG, VG and CGMY. For sake

of simplicity and brevity, we don’t consider the more general HEJD model for numerical

experiments but restrict our attention to the DEJD model.

2.5.2 Asian options pricing

Since characteristic functions of log-returns and their arithmetic averages (both continu-

ous and discrete) are known analytically, European and geometric Asian option pricing

is implemented through the COS method (which is briefly summarized in Appendix A),

with infinite summations truncated at the 27− th element. Results are reported in Table

2.2. We consider in the discrete case, n = 12 monitoring dates, but the formula can be

modified to take into account a different number of dates. Since the method is exact,

we don’t report any benchmark (correctness has been checked through comparison with

Monte Carlo simulation5).

4This is a generalization of the DEJD (see Cai and Kou, 2011).
5Monte Carlo simulation of the CGMY model is not a trivial task, we employ the simulation scheme

proposed by Ballotta and Kyriakou (2014) for the simulation of the BDLP in that case.
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Table 2.1: Features of the Background driving Lévy processes

BDLP ψ(u) Solution of (2.34)

BM σ2u2

2
Full explicit

DEJD λ
(

η1p
η1−u + η2(1−p)

η2+u
− 1
)

+ σ2u2

2
Full explicit

HEJD λ
(∑m

i=1
piηi
ηi−u +

∑n
j=1

(1−pj)θj
θj+u

− 1
)

+ σ2u2

2
Full explicit

MJD λ
(
e
δ2u2

2
+µu − 1

)
+ σ2u2

2
No analytical solution

NIG 1−
√
−kσ2u2−2kθu+1

k
Full explicit

VG − ln(− 1
2
kσ2u2−kθu+1)

k
In terms of polylogarithm function

CGMY CΓ(−Y )
(
(G+ u)Y −GY −MY + (M − u)Y

)
In terms of hypergeometric function

Meixner log
((

cos
(
b
2

)
sech

(
1
2
(−iau− ib)

))2δ
)

No analytical solution

GH
(

α2−β2

α2−(β+u)2

)λ
2 Kλ(δ

√
α2−(β+u)2)

Kλ(δ
√
α2−β2)

No analytical solution

Legend: parameterization as in Cont and Tankov (2004) for BM, DEJD, MJD, NIG, VG, Meixner; as
in Cai and Kou (2011) for HEJD; as in Eberlein and Prause (2002) for GH. Kλ(·) denotes the modified
Bessel function of the second kind.

Next, we focus on assessing the accuracy of our moment-based approximations of

the arithmetic average price distribution in the context of Asian call option pricing. In

this analysis, we consider three examples of background driving Lévy processes for (2.5):

Brownian motion, DEJD, and NIG process, i.e. the cases for which (2.34) can be solved

explicitly (see Table 2.1). Proposition 2.6 contains a formula for the moments of the con-

tinuous arithmetic average of the stock price. This formula is in the form of an iterated

integral, meaning that m−dimensional integration is required in order to compute the

m−th moment. As part of this research, we have considered several numerical integration

techniques and found that the best performing is the Gauss-Legendre quadrature method

(see Press et al., 1992) or Abramowitz and Stegun (1968, Formula 25.4.29) which largely

outperformed the Matlab’s built-in global adaptive quadrature. For practical implemen-

tation one needs to specify how many Gaussian nodes must be considered to approximate

the integral, this choice impacts both on accuracy and efficiency of the method. In Ta-

bles 2.3, 2.4, 2.5 and 2.6 we report the prices of continuously monitored arithmetic Asian

options for various BDLPs, levels of the speed of mean reversion and number of Gauss-

Legendre quadrature nodes. In order to test the accuracy we also report the absolute

error in % of the pricing approximation with respect to a benchmark for the true op-

tion price. This is generated by a very accurate Monte Carlo simulation strategy using

the lower bound with known expected value given by (2.28) as control variate (hence-

forth referred to as CV-LB)6. To this end, we employ standard CV Monte Carlo setup

6Fu et al. (1999) have implemented previously a similar efficient simulation approach for pricing
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Table 2.2: Prices of European and geometric (continuous and discrete) Asian options for different levels
of the speed of mean reversion α.

OU parameter: α = 0.1 European Geometric Asian (cts) Geometric Asian (n = 12)
BDLP Price CPU Price CPU Price CPU

BM
σ = 0.1

5.8034 0.0076 3.1183 0.0105 3.3387 0.0357

BM
σ = 0.5

20.3280 0.0036 10.5820 0.0077 11.3139 0.0038

DEJD(
σ=0.1,λ=3,p=0.6
η1=25,η2=25

) 7.1235 0.0061 3.8196 0.0171 4.0876 0.1194

DEJD(
σ=0.5,λ=5,p=0.6
η1=25,η2=25

) 20.8995 0.0040 10.8467 0.0088 11.5986 0.0046

NIG(
k=0.1222,θ=−0.4091

σ=0.2637

) 12.6149 0.0113 6.7396 0.0247 7.2015 1.0627

NIG(
k=0.1222,θ=−0.6819

σ=0.4395

) 19.2269 0.0040 10.0016 0.0117 10.6946 0.0120

VG(
k=0.2470,θ=−0.4671

σ=0.1967

) 12.5133 0.7297 6.6856 0.7843 7.1431 0.9445

VG(
k=0.7940,θ=−0.3053

σ=0.1669

) 12.1699 0.6967 6.3988 0.8522 6.8475 0.9370

CGMY(
C=0.5,G=2
M=3.5,Y=0.5

) 17.0662 1.8525 8.6004 2.4374 9.2313 2.4916

CGMY(
C=0.1,G=2
M=3.5,Y=1.5

) 18.7581 1.8084 9.7465 2.3342 10.4263 2.5394

OU parameter: α = 0.5
BM

σ = 0.1
5.2414 0.0035 2.8563 0.0083 3.0510 0.0036

BM
σ = 0.5

17.3382 0.0035 9.3373 0.0080 9.9301 0.0036

DEJD(
σ=0.1,λ=3,p=0.6
η1=25,η2=25

) 6.3114 0.0042 3.4587 0.0090 3.6897 0.0056

DEJD(
σ=0.5,λ=5,p=0.6
η1=25,η2=25

) 17.8185 0.0039 9.5692 0.0094 10.1776 0.0040

NIG(
k=0.1222,θ=−0.4091

σ=0.2637

) 10.9241 0.0042 6.0167 0.0106 6.4014 0.0121

NIG(
k=0.1222,θ=−0.6819

σ=0.4395

) 16.5101 0.0042 8.8900 0.0112 9.4591 0.0128

VG(
k=0.2470,θ=−0.4671

σ=0.1967

) 10.8880 0.6936 5.9975 0.7721 6.3817 0.9241

VG(
k=0.7940,θ=−0.3053

σ=0.1669

) 10.6713 0.8255 5.7970 0.9913 6.1797 1.0233

CGMY(
C=0.5,G=2
M=3.5,Y=0.5

) 14.6675 1.6827 7.6849 2.3458 8.2080 2.7695

CGMY(
C=0.1,G=2
M=3.5,Y=1.5

) 16.0267 1.9690 8.6216 2.2399 9.1751 2.9832

Legend: S(0) = K = 100, r = 0.0367, T = 1, parameters sets from Fusai and Kyriakou, 2016 (DEJD),
Černý and Kyriakou, 2011 (NIG), Guillaume and Schoutens, 2013 (VG), Poirot and Tankov, 2006
(CGMY). CPU time is expressed in seconds.
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with the CV coefficient estimated in a pilot run, e.g., Glasserman (2004) and Cont and

Tankov (2004). Our choice of the Monte Carlo benchmark is justified by its high accuracy

and flexible adaptability to different underlying model assumptions, with a, nevertheless,

notable computational burden (refer to Tables 2.3, 2.4, 2.5, 2.6 for relevant reports).

Moments of the discrete arithmetic average does not require numerical methods (nor

approximations) at any stage, but higher order moments are still computationally de-

manding for high number of monitoring dates, see Remark 2.1. We consider n = 12

monitoring dates and accuracy is measured by computing the absolute error in % with

respect to a benchmark for the true option price which is computed by means of a

Monte Carlo simulation where, in analogy with the continuous case, the lower bound

price approximation is adopted as control variate (denoted CV-LB). We also include in

our numerical experiments an approximation based on higher order moments, i.e. we

implement the orthogonal polynomial expansion outlined in Section 1.2.2 considering six

moments (OP-6). Numerical results for discrete Asian options are reported in Tables 2.7

and 2.8.

2.5.3 Results

Let us first consider the pricing of European and geometric Asian options. In these

cases pricing procedure is exact but computational efficiency depends on the solution of

(2.34): when it is full explicit (i.e. BM, DEJD and NIG) pricing procedure is almost

instantaneous, with the discrete Asian options slightly more computationally demanding

due to the more involved structure of the characteristic function of the arithmetic average

of log-returns. In the cases of VG and CGMY, the solution of (2.34) is in terms of special

functions, consequently, pricing procedure is more expensive passing from few milliseconds

in the case of (for example) NIG to approximately 0.7 seconds in the case of VG and

2 seconds for CGMY (note, indeed, that evaluation of polylogarithm function is less

expensive than hypergeometric), see Table 2.2 for exact prices and computing times.

Next, we consider pricing continuously monitored arithmetic average Asian options.

Lower bound is certainly the most accurate approximation but also the most computa-

tional intensive, see for example Table 2.4: in the case of NIG, produced pricing approxi-

mation is very accurate but computing time is enormous (1119.1574 seconds). Hence, the

lower bound is used only to compute CV-LB, i.e. the benchmark for the true price of the

option. About performances of moment based approximations for continuously monitored

arithmetic average Asian options we start by noting the computational-accuracy trade-off

implicit in the choice of the number of Gauss-Legendre quadrature nodes, i.e., the higher

the number of nodes, the higher the (expected) accuracy and the computing burden7.

continuous arithmetic Asian options using, instead, the continuous geometric Asian option as control
variate

7Unfortunately, since we are dealing with approximations and not exact solutions, it may happen
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Table 2.3: Arithmetic Asian options prices computed through various moment based approximations
for α = 0.1 and different number of Gauss-Legendre quadrature nodes (Part 1)

No. nodes = 6 No. nodes = 12 No. nodes = 24

Method Price Abs err. % CPU Price Abs err. % CPU Price Abs err. % CPU
BDLP: BM with σ = 0.1

Benchmarks: CV-LB (s.e., CPU) = 3.1768 (7.7522e-08, 8.3918), LB (CPU) = 3.1766 (0.6050)

SLN 3.1875 0.3372 0.0023 3.1797 0.0925 0.0076 3.1776 0.0252 0.0157
SG 3.1883 0.3620 0.0016 3.1805 0.1171 0.0056 3.1784 0.0497 0.0155
SRG 3.1873 0.3288 0.0015 3.1794 0.0842 0.0035 3.1773 0.0168 0.0159
MLP 3.1863 0.2998 0.0075 3.1785 0.0549 0.0122 3.1764 0.0126 0.0253
OP-3 3.1867 0.3125 0.0021 3.1789 0.0677 0.0074 3.1768 0.0004 0.0204
J 3.1875 0.3373 0.0160 3.1797 0.0926 0.0508 3.1776 0.0253 0.5826
P 3.1874 0.3334 0.0200 3.1796 0.0887 0.0621 3.1775 0.0214 0.5800
OP-4 3.1873 0.3291 0.0042 3.1795 0.0844 0.0391 3.1773 0.0170 0.5602

BDLP: DEJD with σ = 0.1, λ = 3, p = 0.6, η1 = 25, η2 = 25

Benchmarks: CV-LB (s.e., CPU) = 3.9255 (2.2836e-07, 19.4010), LB (CPU)= 3.9253 (2.8928)

SLN 4.0039 1.9564 0.0026 3.9928 1.6855 0.0088 3.9898 1.6109 0.0368
SG 4.0109 2.1280 0.0036 3.9998 1.8564 0.0080 3.9968 1.7816 0.0397
SRG 4.0016 1.9014 0.0034 0.0048 1.6307 0.0089 3.9876 1.5562 0.0411
MLP 3.9871 1.5430 0.0052 3.9762 1.2728 0.0106 3.9732 1.1984 0.0410
OP-3 3.9945 1.7272 0.0048 3.9836 1.4577 0.0094 3.9806 1.3835 0.0396
J 3.9307 0.1309 0.0213 3.9204 0.1310 0.0977 3.9176 0.2031 1.4224
P 3.9430 0.4418 0.0270 3.9325 0.1775 0.1044 3.9297 0.1047 1.4434
OP-4 3.9238 0.0435 0.0103 3.9137 0.3039 0.0804 3.9109 0.3755 1.3971

BDLP: NIG with θ = −0.4091, k = 0.1222, σ = 0.2637

Benchmarks: CV-LB (s.e., CPU) = 7.0756 (1.7888e-06, 51.9735), LB (CPU)= 7.0726 (21.2278)

SLN 7.1847 1.5190 0.0070 7.1608 1.1905 0.0228 7.1543 1.1000 0.1126
SG 7.1854 1.5287 0.0075 7.1615 1.2004 0.0205 7.1550 1.1099 0.1155
SRG 7.1845 1.5156 0.0091 7.1606 1.1871 0.0219 7.1540 1.0965 0.1128
MLP 7.1847 1.5190 0.0101 7.1608 1.1905 0.0225 7.1543 1.1000 0.1087
OP-3 7.2828 2.8450 0.0095 7.2576 2.5083 0.0223 7.2507 2.4154 0.1148
J 7.0978 0.3128 0.0500 7.0750 0.0078 0.2974 7.0688 0.0962 4.6101
P 7.1007 0.3543 0.0424 7.0779 0.0332 0.3323 7.0717 0.0552 4.5797
OP-4 7.1968 1.6845 0.0402 7.1722 1.3466 0.2840 7.1654 1.2535 4.4710

Legend: CV-LB = control variate lower bound (assumed to be the true option price), LB = lower bound,
SLN = shifted log-normal, SG = shifted gamma, SRG = shifted reciprocal gamma, MLP = modified
log-normal power law, OP-3 = orthogonal polynomial expansion (based on the first three moments), J
= Johnson, P = Pearson, OP-4 = orthogonal polynomial expansion (based on the first four moments).
Further notes: refer to Tables 2.1 and 2.2.
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Table 2.4: Arithmetic Asian options prices computed through various moment based approximations
for α = 0.1 and different number of Gauss-Legendre quadrature nodes (Part 2)

No. nodes = 6 No. nodes = 12 No. nodes = 24

Method Price Abs err. % CPU Price Abs err. % CPU Price Abs err. % CPU
BDLP: BM with σ = 0.5

Benchmarks: CV-LB (s.e., CPU) = 11.6954 (5.1753e-06,7.4397), LB (CPU)= 11.6809 (0.3509)

SLN 11.7572 0.5258 0.0025 11.7154 0.1706 0.0087 11.7039 0.0725 0.0156
SG 11.8472 1.2813 0.0019 11.8047 0.9262 0.0090 11.7930 0.8283 0.0153
SRG 11.7317 0.3094 0.0017 11.6900 0.0461 0.0060 11.6785 0.1443 0.0154
MLP 11.7310 0.3036 0.0095 11.6890 0.0549 0.0290 11.6774 0.1539 0.0171
OP-3 11.7144 0.1626 0.0023 11.6722 0.1988 0.0096 11.6606 0.2985 0.0157
J 11.7384 0.3668 0.0190 11.6968 0.0123 0.0453 11.6854 0.0856 0.5708
P 11.7500 0.4652 0.0214 11.7083 0.1100 0.0560 11.6968 0.0120 0.5746
OP - 4 11.6935 0.0164 0.0052 11.6516 0.3755 0.0423 11.6401 0.4746 0.5571

BDLP: DEJD with σ = 0.5, λ = 5, p = 0.6, η1 = 25, η2 = 25

Benchmarks: CV-LB (s.e., CPU) = 12.0331 (5.9699e-06,19.5054), LB (CPU)= 12.0165 (3.0071)

SLN 12.0983 0.5392 0.0036 12.0552 0.1830 0.0080 12.0433 0.0846 0.0391
SG 12.1958 1.3343 0.0039 12.1520 0.9784 0.0081 12.1400 0.8802 0.0363
SRG 12.0713 0.3162 0.0035 12.0283 0.0403 0.0083 12.0164 0.1388 0.0388
MLP 12.0720 0.3218 0.0053 12.0286 0.0378 0.0105 12.0166 0.1370 0.0427
OP-3 12.0542 0.1751 0.0048 12.0106 0.1878 0.0093 11.9986 0.2880 0.0432
J 12.0724 0.3257 0.0223 12.0295 0.0296 0.0864 12.0178 0.1277 1.4077
P 12.0879 0.4534 0.0290 12.0448 0.0971 0.1090 12.0330 0.0012 1.4787
OP-4 12.0276 0.0462 0.0113 11.9844 0.4068 0.0907 11.9725 0.5064 1.4614

BDLP: NIG with θ = −0.6819, k = 0.1222, σ = 0.4395

Benchmarks: CV-LB (s.e., CPU) = 10.8344 (5.7110e-06,2247.8054), LB (CPU) = 10.8200 (1119.1574)

SLN 11.0249 1.7281 0.0073 10.9852 1.3727 0.0842 10.9743 1.2747 0.0943
SG 11.0564 2.0080 0.0079 11.0165 1.6530 0.0683 11.0056 1.5551 0.0983
SRG 11.0145 1.6352 0.0092 10.9749 1.2797 0.0581 10.9640 1.1816 0.0991
MLP 11.0249 1.7281 0.0104 10.9852 1.3727 0.0505 10.9743 1.2747 0.0944
OP-3 11.1034 2.4222 0.0097 11.0627 2.0633 0.0607 11.0515 1.9642 0.1026
J 10.8682 0.3110 0.0502 10.8306 0.0355 0.3413 10.8202 0.1311 4.0930
P 10.8881 0.4928 0.0464 10.8502 0.1451 0.2487 10.8398 0.0492 4.4408
OP-4 11.1369 2.7162 0.0464 11.0945 2.3439 0.2494 11.0828 2.2410 4.4602

Legend: refer to Table 2.3 for further notes.
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Table 2.5: Arithmetic Asian options prices computed through various moment based approximations
for α = 0.5 and different number of Gauss-Legendre quadrature nodes (Part 1)

No. nodes = 6 No. nodes = 12 No. nodes = 24

Method Price Abs err. % CPU Price Abs err. % CPU Price Abs err. % CPU
BDLP: BM with σ = 0.1

Benchmarks: CV-LB (s.e., CPU) = 2.9075 (2.8542e-07, 7.4839), LB (CPU)= 2.9074 (0.3227)

SLN 2.9196 0.4143 0.0015 2.9108 0.1125 0.0031 2.9084 0.0293 0.0148
SG 2.9201 0.4304 0.0023 2.9113 0.1284 0.0030 2.9088 0.0452 0.0148
SRG 2.9195 0.4089 0.0012 2.9106 0.1071 0.0030 2.9082 0.0239 0.0150
MLP 2.9189 0.3910 0.0112 2.9101 0.0891 0.0054 2.9077 0.0058 0.0170
OP-3 2.9192 0.3996 0.0031 2.9104 0.0978 0.0039 2.9079 0.0146 0.0168
J 2.9197 0.4183 0.0375 2.9108 0.1125 0.0425 2.9084 0.0294 0.5528
P 2.9195 0.4121 0.0335 2.9107 0.1103 0.0532 2.9083 0.0271 0.6020
OP-4 2.9195 0.4098 0.0044 2.9107 0.1080 0.0338 2.9082 0.0248 0.5663

BDLP: DEJD with σ = 0.1, λ = 3, p = 0.6, η1 = 25, η2 = 25

Benchmarks: CV-LB (s.e., CPU) = 3.5504 (5.3655e-07, 18.0723), LB (CPU)= 3.5502 (2.5307)

SLN 3.6193 1.9038 0.0036 3.6068 1.5632 0.0067 3.6034 1.4692 0.0319
SG 3.6239 2.0288 0.0026 3.6113 1.6870 0.0061 3.6079 1.5928 0.0324
SRG 3.6178 1.8634 0.0025 3.6053 1.5231 0.0062 3.6019 1.4293 0.0318
MLP 3.6070 1.5679 0.0051 3.5946 1.2292 0.0081 3.5912 1.1358 0.0338
OP-3 3.6134 1.7430 0.0034 3.6010 1.4040 0.0071 3.5976 1.3105 0.0328
J 3.5604 0.2808 0.0155 3.5489 0.0438 0.0777 3.5457 0.1332 1.2552
P 3.5694 0.5327 0.0179 3.5577 0.2043 0.0784 3.5545 0.1138 1.2473
OP-4 3.5553 0.1389 0.0093 3.5440 0.1807 0.0749 3.5409 0.2688 1.2707

BDLP: NIG with θ = −0.4091, k = 0.1222, σ = 0.2637

Benchmarks: CV-LB (s.e., CPU) = 6.3024 (4.9978e-06,43.3353), LB (CPU)= 6.2996 (17.1755)

SLN 6.4031 1.5731 0.0091 6.3760 1.1539 0.0179 6.3685 1.0381 0.0969
SG 6.4032 1.5733 0.0069 6.3760 1.1541 0.0173 6.3685 1.0383 0.0948
SRG 6.4031 1.5731 0.0070 6.3760 1.1539 0.0176 6.3685 1.0381 0.0950
MLP 6.4031 1.5731 0.0071 6.3760 1.1539 0.0176 6.3685 1.0381 0.0949
OP-3 6.4930 2.9346 0.0070 6.4643 2.5045 0.0173 6.4564 2.3856 0.0980
J 6.3326 0.4768 0.0384 6.3068 0.0698 0.2420 6.2997 0.0425 3.9672
P 6.3343 0.5036 0.0344 6.3085 0.0960 0.2417 6.3014 0.0165 3.9584
OP-4 6.3982 1.4964 0.0276 6.3706 1.0705 0.2396 6.3631 0.9530 3.9718

Legend: refer to Table 2.3 for further notes.
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Table 2.6: Arithmetic Asian options prices computed through various moment based approximations
for α = 0.5 and different number of Gauss-Legendre quadrature nodes (Part 2)

No. nodes = 6 No. nodes = 12 No. nodes = 24

Method Price Abs err. % CPU Price Abs err. % CPU Price Abs err. % CPU
BDLP: BM with σ = 0.5

Benchmarks: CV-LB (s.e., CPU) = 10.2898 (1.6291e-05,8.0249), LB (CPU)= 10.2748 (0.4136)

SLN 10.3551 0.6303 0.0017 10.3070 0.1674 0.0031 10.2938 0.0394 0.0152
SG 10.4170 1.2216 0.0016 10.3684 0.7579 0.0030 10.3550 0.6296 0.0150
SRG 10.3363 0.4501 0.0013 10.2885 0.0126 0.0029 10.2753 0.1407 0.0147
MLP 10.3325 0.4131 0.0034 10.2844 0.0528 0.0051 10.2711 0.1817 0.0166
OP-3 10.3205 0.2973 0.0021 10.2723 0.1701 0.0036 10.2591 0.2995 0.0158
J 10.3444 0.5278 0.0099 10.2965 0.0657 0.0384 10.2834 0.0622 0.5554
P 10.3495 0.5769 0.0182 10.3015 0.1142 0.0465 10.2884 0.0139 0.5573
OP-4 10.3172 0.2653 0.0046 10.2693 0.1991 0.0336 10.2562 0.3276 0.5418

BDLP: DEJD with σ = 0.5, λ = 5, p = 0.6, η1 = 25, η2 = 25

Benchmarks: CV-LB (s.e., CPU) = 10.5839 (1.6726e-05,17.9512), LB (CPU)= 10.5669 (2.5846)

SLN 10.6529 0.6550 0.0026 10.6033 0.1907 0.0063 10.5897 0.0622 0.0445
SG 10.7209 1.2853 0.0026 10.6706 0.8201 0.0062 10.6568 0.6914 0.0377
SRG 10.6326 0.4654 0.0025 10.5832 0.0011 0.0061 10.5696 0.1274 0.0349
MLP 10.6286 0.4285 0.0048 10.5790 0.0390 0.0081 10.5653 0.1684 0.0368
OP-3 10.6151 0.3016 0.0036 10.5654 0.1677 0.0071 10.5517 0.2975 0.0360
J 10.6371 0.5076 0.0142 10.5878 0.0444 0.0786 10.5742 0.0838 1.2365
P 10.6441 0.5730 0.0231 10.5946 0.1090 0.0879 10.5810 0.0194 1.2308
OP-4 10.6092 0.2462 0.0096 10.5599 0.2200 0.0792 10.5463 0.3490 1.2173

BDLP: NIG with θ = −0.6819, k = 0.1222, σ = 0.4395

Benchmarks: CV-LB (s.e., CPU) = 9.6307 (1.7127e-05,44.5368), LB (CPU)= 9.6164 (17.4205)

SLN 9.7757 1.4828 0.0077 9.7307 1.0275 0.0173 9.7183 0.9016 0.0963
SG 9.7907 1.6343 0.0072 9.7456 1.1791 0.0173 9.7332 1.0532 0.0931
SRG 9.7706 1.4314 0.0067 9.7256 0.9760 0.0168 9.7133 0.8501 0.0937
MLP 9.7757 1.4828 0.0068 9.7307 1.0275 0.0171 9.7183 0.9016 0.0936
OP-3 9.8722 2.4464 0.0067 9.8259 1.9862 0.0173 9.8131 1.8588 0.0946
J 9.6528 0.2286 0.0320 9.6103 0.2123 0.2386 9.5986 0.3342 3.9466
P 9.6632 0.3364 0.0303 9.6205 0.1059 0.2383 9.6088 0.2281 3.9655
OP-4 9.8617 2.3426 0.0265 9.8141 1.8684 0.2344 9.8010 1.7372 3.9517

Legend: refer to Table 2.3 for further notes.
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Table 2.7: Discretely monitored (n = 12 monitoring dates) Arithmetic average Asian option prices
(Part 1)

α = 0.1 α = 0.5

Method Price Abs. err. (%) CPU Price Abs. err. (%) CPU
BDLP: BM with σ = 0.1

CV-LB
std. err.

3.3970
0.1145e-06

– 5.7706 3.1023
0.1012e-06

– 5.8132

LB 3.3968 0.0043 0.0470 3.1021 0.0044 0.0322
SLN 3.3970 0.0008 0.3268 3.1022 0.0030 0.1175
SG 3.3978 0.0259 0.1839 3.1027 0.0129 0.1528
SRG 3.3967 0.0078 0.2100 3.1020 0.0084 0.1219
MLP 3.3960 0.0286 0.3026 3.1016 0.0202 0.1585
OP-3 3.3963 0.0205 0.3291 3.1018 0.0149 0.1191
J 3.3970 0.0008 0.3942 3.1022 0.0030 0.2143
P 3.3969 0.0030 0.4409 3.1021 0.0051 0.2178
OP-4 3.3967 0.0066 0.2743 3.1020 0.0069 0.1707
OP-6 3.3968 0.0038 0.8321 3.1021 0.0055 0.5102

BDLP: DEJD with σ = 0.1, λ = 3, p = 0.6, η1 = 25, η2 = 25

CV-LB
std. err.

4.1933
0.5880e-04

– 27.8876 3.7816
0.5102e-04

– 27.9909

LB 4.1929 0.0085 2.8473 3.7812 0.0099 4.3401
SLN 4.2574 1.5056 0.5439 3.8334 1.3522 0.1635
SG 4.2647 1.6746 0.2031 3.8381 1.4727 0.2065
SRG 4.2551 1.4515 0.2594 3.8319 1.3132 0.1698
MLP 4.2409 1.1236 0.2731 3.8216 1.0469 0.1794
OP-3 4.2472 1.2687 0.1828 3.8271 1.1884 0.1672
J 4.1838 0.2279 0.3786 3.7753 0.1680 0.2453
P 4.1961 0.0674 0.4669 3.7841 0.0669 0.2406
OP-4 4.1812 0.2895 0.4209 3.7734 0.2172 0.2356
OP-6 4.2179 0.5829 2.2203 3.8005 0.4977 1.0900

BDLP: NIG with θ = −0.4091, k = 0.1222, σ = 0.2637

CV-LB
std. err.

7.5363
0.4021e-03

– 9.9102 6.6864
0.3362e-03

– 9.9891

LB 7.5348 0.0200 2.5214 6.6848 0.0235 2.7389
SLN 7.6145 1.0270 0.3832 6.7512 0.9597 0.3476
SG 7.6156 1.0414 0.3185 6.7513 0.9606 0.3345
SRG 7.6141 1.0219 0.3332 6.7512 0.9594 0.3147
MLP 7.6145 1.0270 0.3290 6.7512 0.9597 0.3336
OP-3 7.7192 2.3692 0.3424 6.8462 2.3333 0.3214
J 7.5279 0.1120 1.0178 6.6820 0.0656 1.0143
P 7.5309 0.0720 0.9602 6.6837 0.0405 0.9396
OP-4 7.6419 1.3812 0.9766 6.7569 1.0434 1.0636
OP-6 7.4320 1.4042 1.0323 6.5901 1.4614 0.9731

Legend: CV-LB = Control variate with lower bound (assumed to be the true option price), OP-6 =
orthogonal polynomial expansion (based on the first six moments). Further notes: refer to Tables 2.2
and 2.3.
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Table 2.8: Discretely monitored (n = 12 monitoring dates) Arithmetic average Asian option prices
(Part 2)

α = 0.1 α = 0.5

Method Price Abs. err. (%) CPU Price Abs. err. (%) CPU
BDLP: BM with σ = 0.5

CV-LB
std. err.

12.4356
0.0021

– 5.9083 10.8942
0.0018

– 5.6833

LB 12.4154 0.1625 0.1581 10.8723 0.2014 0.0514
SLN 12.4358 0.0017 0.1397 10.8880 0.0577 0.1136
SG 12.5325 0.7733 0.1457 10.9537 0.5432 0.1607
SRG 12.4087 0.2169 0.1313 10.8682 0.2399 0.1284
MLP 12.4142 0.1728 0.1427 10.8696 0.2269 0.1148
OP-3 12.4031 0.2625 0.1382 10.8604 0.3117 0.1177
J 12.4160 0.1584 0.2093 10.8771 0.1578 0.1884
P 12.4289 0.0537 0.2455 10.8825 0.1077 0.1876
OP-4 12.3781 0.4646 0.2268 10.8546 0.3653 0.1844
OP-6 12.4070 0.2309 0.5827 10.8755 0.1727 0.4952

BDLP: DEJD with σ = 0.5, λ = 5, p = 0.6, η1 = 25, η2 = 25

CV-LB
std. err.

12.7912
0.0019

– 11.2023 11.2023
0.0019

– 24.6128

LB 12.7715 0.1547 3.1382 11.1807 0.1928 1.7359
SLN 12.7956 0.0343 0.1723 11.1999 0.0209 0.1465
SG 12.9001 0.8442 0.1373 11.2720 0.6188 0.1372
SRG 12.7670 0.1899 0.1469 11.1786 0.2123 0.1311
MLP 12.7740 0.1353 0.1844 11.1800 0.1991 0.1430
OP-3 12.7627 0.2236 0.1605 11.1698 0.2907 0.1408
J 12.7684 0.1788 0.2457 11.1840 0.1640 0.2397
P 12.7856 0.0440 0.2671 11.1914 0.0974 0.2460
OP-4 12.7319 0.4663 0.2390 11.1614 0.3662 0.2514
OP-6 12.7601 0.2441 1.0254 11.1835 0.1681 1.0303

BDLP: NIG with θ = −0.6819, k = 0.1222, σ = 0.4395

CV-LB
std. err.

11.5623
0.0013

– 10.3423 10.1895
0.0013

– 9.9255

LB 11.5551 0.0625 3.4587 10.1890 0.0048 2.6305
SLN 11.6663 0.8912 0.3926 10.2863 0.9414 0.3375
SG 11.7024 1.1969 0.3409 10.3035 1.1067 0.3781
SRG 11.6545 0.7903 0.3411 10.2805 0.8855 0.3116
MLP 11.6663 0.8912 0.3233 10.2863 0.9414 0.3231
OP-3 11.7484 1.5838 0.3359 10.3891 1.9209 0.3157
J 11.5097 0.4575 1.0318 10.1660 0.2314 0.9418
P 11.5311 0.2712 0.9745 10.1769 0.1240 0.9453
OP-4 11.8058 2.0623 0.9552 10.3956 1.9831 0.9358
OP-6 11.5813 0.1634 0.9516 10.1521 0.3681 0.9711

Legend: refer to Tables 2.2, 2.3 and 2.7 for further notes.
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Moreover, we note a significant upward shift in total computing time whenever we pass

from 3 parameters approximations to 4. Indeed, computing time for fourth moment is

much higher than for third, this fact prevents us from considering further approxima-

tions based on more than four moments, which would be much slower. Despite a bit

more computational demanding, approximations based on first four integer moments are

much more accurate, in particular, impressive are the performances of the Johnson’s (J)

and Pearson’s (P) system of distributions which largely outperforms the orthogonal poly-

nomial expansion implemented around the log-normal distribution (OP-4). Note indeed

that absolute error in % is far below 1% throughout all the parameter settings explored

(even for a small number of Gaussian quadrature nodes for which pricing procedure is

extremely fast). The benefit of including the fourth moment becomes more prominent in

models with jumps and with low speed of mean reversion. Moreover, the Pearson’s system

approximation outperforms the Johnson’s one throughout all the parameter settings and

seems to be preferable in general. Among three parameters approximations we have that

the shifted gammma (SG) is certainly the worst performing, this is consistent with Lo

et al. (2014) which draw the same conclusion under the Black-Scholes model. SLN, SRG

and MLP have similar performances, with MLP outperforming the others throughout

parameter settings explored in Tables 2.3 and 2.5.

In the following section, we summarize and present our conclusions.

2.6 Conclusions

We propose and survey different pricing expressions for the Asian option value for Lévy-

driven OU processes that turn out to be appropriate to model returns in commodity

markets and do not require special computing skills, hence Asian options become a viable

hedging tool for various operators in these markets. Regarding geometric Asian options

we derive the characteristic functions of log-returns and their arithmetic averages opening

doors to exact option pricing through standard inversion algorithms. Furthermore, we

consider a variety of Lévy models as background driving processes highlighting whether or

not the problem becomes analytically tractable and implications for pricing performances.

For what concerns the more complicated case of arithmetic Asian options our approach

relies on moment-based approximations that are flexible with conventional empirical reg-

ularities, such as mean reversion and discontinuous price movements. To this end, we

present a general expression for the raw moments of both the continuous and discrete

arithmetic average which we implement within our proposed model framework. More-

over, extending Fusai and Kyriakou (2016), we derive a very sharp lower bound to both

that accuracy does not increase with the number of nodes. A typical situation where this can happen is
when the price approximation underestimate the true price and the approximated price decreases with
the number of nodes considered.
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continuously and discretely monitored arithmetic average Asian option price.

In light of the discussion in the previous section, we can draw some interesting con-

clusions. Despite the attention that series expansions have received in the literature of

derivatives’ pricing (e.g., see Tanaka et al., 2010, Yamazaki, 2014 and Willems, 2019),

they might not be a robust, hence an unreliable, method of choice for moment indetermi-

nate problems and when only few moments are available (as in the present work). Having

tested different background driving models under mild or stressed market conditions, the

accuracy of these approximations seems to be the most susceptible to such changes. The

lower bound is very sharp, but also more intricate, especially for non expert users, and

less fast. Approximations based on moment-matching, on the other hand, are easy, fast

to compute and accurate. Despite more time consuming, including the fourth moment

into the pricing approximation entails an extra benefit in terms of accuracy, especially in

jump models, where kurtosis plays a crucial role. This happens both in continuous and

discrete monitoring settings. In particular, approximations implemented using four inte-

ger moments through the Johnson’s and Pearson’s distributions are the most accurate,

this is also consistent with the results reported in Table 1.2. Among this two distribu-

tions, the Pearson’s family is preferable resulting generally slightly more accurate with a

similar computing time. Theoretical support to this evidence is given by the fact that, as

stated in Section 1.2.1, the Johnson’s system is more suited for quantile matching than

moment matching (see Devroye, 1986).
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Chapter 3

Wrong Way CVA for interest rates

derivatives

In this chapter we show how to calculate Credit Value Adjustment (CVA) for interest

rates derivatives in presence of Wrong Way Risk (WWR). Modeling the default intensity

as in Hull and White (2012) we propose a procedure for parameters calibration based on

moment matching and show how to compute Wrong Way CVA through the numerical

integration of the solution of a Partial Differential Equation (PDE). Numerical experi-

ments, conducted on a variety of interest rates derivatives such as bond options, caplets

and swaptions, highlight the accuracy of the proposed method.

3.1 Introduction

Counterparty risk is a combination of market exposure and credit risk, in particular mar-

ket factors determine the magnitude of the exposure and credit risk determines the default

probability of the counterparty. According to Canabarro and Duffie (2003), its valuation

is the first line of defense in credit risk management and Credit Value Adjustment (CVA),

which consists in the adjustment to the value of derivatives to reflect the possibility of

default of the counterparty before the expiry date, is the main tool to price credit risk.

The financial crisis of 2007-2009 has highlighted the importance of this counterparty risk

measure: according to the technical report of B. C. of Banking Supervision (2011), around

two thirds of the credit losses were CVA losses. Ruiz et al. (2015) provide many practical

examples on how CVA is of remarkable importance in many areas of finance, such as

pricing of financial derivatives, calculation of margins and economic/regulatory capital.

For its calculation, the probability of default of the counterparty and the credit expo-

sure are often considered independent but the efficacy of independent CVA is limited. In-

deed, in many practical cases the credit exposure is related to the counterparty’s default
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time1. In particular, positive (negative) correlation among these two variables implies

presence of Wrong (Right) Way Risk. Since the dependence between market factors and

credit risk is a crucial aspect in CVA calculation, large part of literature has been devoted

to its modelization. We refer to Li and Mercurio (2015) for an exhaustive list of the dif-

ferent methodologies and as source of references. For what concerns the specific case of

interest rates markets, a way for incorporating wrong-way and right-way risk into CVA

calculations is relating directly the dynamics of the short rate and the default intensity

(or, equivalently, hazard rate), for example Brigo et al. (2013) use CIR (and CIR ++)

process with and without jumps and Hull and White (2012) propose a log-normal setting

for the default intensity.

We use an approach similar to the one proposed by Hull and White (2012). Their

model links the default intensity of the counterparty to the value of the transactions

outstanding between the dealer and the counterparty. In the original paper, the authors

stress that this is not the only possible approach and suggest that alternative variables

can be related to the default intensity. The chosen variable must ”affect the value of

the counterparty’s portfolio” and ”have a big effect on the counterparty’s health”. The

authors also suggest to use the short rate when dealing with interest rates derivatives.

This is our choice. In particular, we model the short rate using a 1-factor Hull and White

model and relate the default intensity with the diffusive component of the short rate.

This choice allows us firstly to calculate explicitly the correlation between the default

intensity and the short rate. Secondly, following the calibration scheme proposed by Hull

and White (2012), to estimate the deterministic component of the default intensity from

market data through a moment matching approach, and thirdly to reduce the problem of

the calculation of Wrong Way CVA to the numerical integration of the solution of a PDE.

The main advantage of our method is that it does not require Monte Carlo simulation

in any step allowing for faster implementation. We stress, indeed, that the mathemat-

ical complexity of parameters calibration and CVA calculation (both with and without

independence assumption) induced many authors to resort to Monte Carlo simulation,

see for example Canabarro and Duffie (2003), Crépey (2015), Gregory (2012), Ghamami

and Goldberg (2014), Glasserman and Yang (2016) and Ballotta et al. (2016). The usage

of moment matching approximation introduces some approximation error but the mean

reverting nature of the 1-factor Hull and White model mitigates it.

This chapter is organized as follows: Section 3.2 contains the description of the model,

in Section 3.3 we derive an analytical representation of the correlation between the short

rate and the default intensity, in Section 3.4 we describe moment matching method and

show how to implement it to calibrate the parameters of the default intensity, in Section

1According to the International Swaps and Derivatives Association (ISDA), this happens typically
when the probability of default of the counterparty is correlated with a macroeconomic variable which
also affects the value of derivatives transactions.
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3.5 we derive a general formula for the calculation of Wrong Way CVA for interest rates

derivatives, Section 4.6 contains numerical results, conclusions are presented in the last

section.

3.2 Model setup

We consider a 1-factor Hull and White (1990) model to describe the short rate dynamics:

r(t) = r(0)e−γt +

∫ t

0

e−γ(t−u)ϑ(u)du+ σ

∫ t

0

e−γ(t−u)dW (u), (3.1)

where γ is the speed of reversion parameter, σ is the diffusion coefficient and ϑ(·) is

the deterministic long run mean and is chosen to fit the market discount curve. We set

Z(t) =
∫ t

0
e−γ(t−u)dW (u) and we have that

Z(t) ∼ N
(

0,
1− e−2γt

2γ

)
.

As in Hull and White (2012) the default intensity (or equivalently the hazard rate) is

assumed to be

λ(t) = eαZ(t)+β(t). (3.2)

Here the parameter α allows us to capture the dependence between the short rate and the

hazard rate. The deterministic function β(·) allows us to fit the market term structure of

default probability, extracted from quotations of defaultable bonds or from CDS spreads

(see for example Ballotta et al., 2016).

3.3 Correlation between default intensity and short

rate

In order to understand the role of α, let us consider the correlation between r(t), and

λ(t). We have

Cov[r(t), λ(t)] = Cov
[
σZ(t), eαZ(t)+β(t)

]
= σeβ(t)Cov

(
Z(t), eαZ(t)

)
= σeβ(t)E[Z(t)eαZ(t)] = σeβ(t) ∂

∂α
E[eαZ(t)],
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where we have assumed that it is possible to interchange derivative and expectation. In

the adopted Gaussian HJM model, we have

E[eαZ(t)] = e
1
2
α2Var[Z(t)],

where Var[Z(t)] = 1−e−2γt

2γ
in the 1-factor Hull and White model. Therefore

Cov[r(t), λ(t)] = σeβ(t)αVar[Z(t)]e
1
2
α2Var[Z(t)],

and noting that

Var[r(t)] = σ2Var[Z(t)], Var[λ(t)] = e2β(t)+α2Var[Z(t)]
(
eα

2Var[Z(t)] − 1
)
,

we get

ρ(r(t), λ(t)) =
σeβ(t)

(
e

1
2
α2Var[Z(t)]

)
αVar[Z(t)]√

σ2Var[Z(t)]
√
e2β(t)+α2Var[Z(t)](eα2Var[Z(t)] − 1)

=
σ
(
e

1
2
α2Var[Z(t)]

)
αVar[Z(t)]

σ
√

Var[Z(t)]
√
eα2Var[Z(t)](eα2Var[Z(t)] − 1)

=

(
e

1
2
α2Var[Z(t)]

)
α
√

Var[Z(t)]√
eα2Var[Z(t)](eα2Var[Z(t)] − 1)

=
α
√

Var[Z(t)]√
eα2Var[Z(t)] − 1

In conclusion, the parameter α controls the correlation between the short rate and

the hazard rate and we notice that the full range of values in the interval [−1, 1] can be

recovered. This is shown in Figure 3.1, where the correlation between the short rate and

the intensity process is plotted for different horizons and different values of α. Considering

the limit of the correlation as α tends to zero, we have that it approaches α
|α| , i.e. ±1

depending on the sign of α. So, for α→ 0 we achieve the maximum positive or negative

dependency between the short rate and the default intensity.

3.4 Calibration of β(t) in the 1 factor Hull-White

model

In order to calculate Wrong Way Risk CVA we are interested in calibrating α and β(·) in

equation (3.2). Hull and White (2012) describe two different methods for the calculation

of α based on historical time series of credit spread and then (assuming that α is known)

propose a procedure that allows to estimate β(·) based on market data. The procedure

can be summarized as follows:
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Figure 3.1: Relationship between ρ(r(t), λ(t)) and α for different maturities and γ.
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Legend: The first subplot is obtained with γ = 0 (which corresponds to the case where the short rate
follows a Ho-Lee dynamics), otherwise we have the 1-factor Hull and White model.

1 Define β(·) as a piecewise constant function:

β(t) =



β1 if 0 < t ≤ t1

β2 if t1 < t ≤ t2
...

βn if tn−1 < t ≤ tn = T

, (3.3)

where 0 < t1 < · · · < tj < · · · < tn := T .

2 Let us suppose to have a term structure of survival probabilities Q(0, tj). Assuming

that β1, · · · , βj−1 are given, recursively solve the following equation:

Q(0, tj) = E0

[
e−

∫ tj
0 eαZ(s)+β(s)ds

]
, (3.4)

with respect to βj. The authors calculate the expectation on the right hand side

through a Monte Carlo simulation.

The drawback of this approach is that the numerical solution of an equation involving

a Monte Carlo simulation can be quite heavy from a computational point of view. The

aim of this section is to propose an alternative procedure for the estimation of β(·). In

particular, we propose to approximate the expected value in equation (3.4) through a

moment matching procedure.
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3.4.1 Moment Matching

Let’s denote X(t) :=
∫ t

0
eαZ(s)+β(s)ds. We assume a parametric distribution for X(t).

Its parameters are estimated equaling moments of X(t) with the ones implied by the

supposed distribution. In particular, we define a new random variable Y (t) having a

parametric distribution fY (y; θ) and the parameter vector θ is chosen so that Y (t) has

the same moments as X(t). Therefore we approximate E
[
e−X(t)

]
by E

[
e−Y (t)

]
. Notice

the significant advantage of this procedure when the characteristic function of Y (·) is

known analytically: the iterative solution of (3.4) does not require anymore Monte Carlo

simulation.

In the following subsection we show how to implement the moment matching pro-

cedure in this context. In order to reduce the computational effort and improve the

accuracy of the approximation we need to carefully choose the supposed distribution. In

particular, we need a random variable with the following characteristics: its density must

be unimodal and with positive support (note indeed that our problem is related to the

difficult problem of determining the distribution of the sum of log-normal random vari-

ables); the system of moments must be solvable analytically; the approximating random

variable must have moment generating (or alternatively characteristic) function. In ad-

dition, for simplifying the computational cost, we also require that the parameter vector

to be bi-dimensional, so that we fit mean and variance, a standard procedure when we

deal with approximating the sum of log-normal r.v.’s.

According to those criteria a possible approximation is based on the Gamma distri-

bution. In principle, other distributions can be used (see, for example, Section 1.5) for

other suitable distributions), but the Gamma ensures the best trade-off between accuracy

and computational cost thanks to the simplicity of its characteristic function.

We recall here some properties of the Gamma distribution that will be used in the

next subsection for the calibration of β(·): if Y ∼ Γ(θ, k) then θ = Var[Y ]
E[Y ]

and k = E[Y ]
θ

; the

characteristic function is E[e−itY ] = (1 − itθ)−k and eβY ∼ Γ(k, eβθ). See also Example

1.

Finally, let us denote X(tj, βj) :=
∫ tj

0
eαZ(s)+β(s)ds where we have put in evidence the

dependence of X(·, ·) on βj only, assuming that β1, · · · , βj−1 have already been computed.

Moments can be computed numerically according to the following:

Proposition 3.1. The first two moments of X(tj, βj) are given by:

E [X(tj, βj)] =

∫ tj

0

eβ(s)+α2

4γ
(1−e−2γs)ds

E
[
X2(tj, βj)

]
=

∫ tj

0

(∫ tj

0

eβ(s)+β(u)+α2

4γ
(2−e−2γs−e−2γu)+α2

2γ
(e−γ|u−s|−e−γ(u+s))ds

)
du,

where β(t) is defined as in (3.3).
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Proof. It is similar to the proof of Proposition 2.6. For the first moment, we have

E [X(tj, βj)] = E

[∫ tj

0

eαZ(s)+β(s)ds

]
=

∫ tj

0

E
[
eαZ(s)+β(s)

]
ds =

∫ tj

0

e
1
2
α2
(

1−e−2γs

2γ

)
+β(s)

ds.

For the second moment, following Bharucha-Reid (1960, pag. 344–345), we have

E
[
X2(tj, βj)

]
=

∫ tj

0

(∫ tj

0

eβ(s)+β(u)E
[
eα(Z(s)+Z(u))

]
ds

)
du.

The thesis follows by computing the inner expectation, which can be done easily using

the properties of the normal distribution.

3.4.2 Methodology

We propose now an iterative method for a steepwise calibration of the function β. The

first step is the calculation of β1, which can be estimated solving the following equation:

Q(0, t1) = E0

[
e−

∫ t1
0 eαZ(s)+β1ds

]
.

Implementing moment matching (we suppose that
∫ t1

0
eαZ(s)ds ∼ Γ(θ, k)) we get a closed

form approximation for β1
2:

Q(0, t1) ≈ (1 + θeβ1)−k

β1 ≈ ln

(
Q(0, t1)−1/k − 1

θ

)
. (3.5)

Once β1 is known, the whole curve of β(·) can be estimated using an iterative procedure:

at each step, starting from j = 23, we have to solve the following equation:

Q(0, tj) = E0[e−X(tj ,βj)].

Let us suppose that the approximating distribution of X(tj, βj) is Y ∼ Γ(k(βj), θ(βj))
4.

Solving the system of moments we get:

θ(βj) =
Var[X(tj, βj)]

E[X(tj, βj)]
, k(βj) =

E[X(tj, βj)]

θ(βj)
.

2Parameters are estimated equating theoretical moments of Gamma distribution with the moments
of
∫ t1
0
eαZ(s)ds which are computed numerically according to Proposition 3.1.

3Note that at time tj the variable βj is the only unknown. For example, if j = 2 then β(t) ={
β1 if 0 < t ≤ t1
β2 if t1 < t ≤ t2

, where β1 has been calculated in the previous step, while β2 is the unknown.

More in general, if we consider tj then β1, β2, · · · , βj−1 are known, βj is the only unknown.
4We stress again the fact that the parameters depend on the unknown βj .
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Figure 3.2: Calibration of β(t)
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Legend: first subplot: estimation of β(t) as in (3.3) using Monte Carlo (blue line) and moment matching
(red line). Second subplot: comparison between the true market term structure of default probability
and the ones obtained using β(t) as estimated in the first subplot. Model parameters: α = 0.5, γ = 0.2,
maturities = {1, 2, 3, 4, 5} years, Q = {0.9672, 0.9196, 0.8544, 0.7757, 0.6722}; Monte Carlo parameters:
N◦ of simulations=105, N◦ of points in grid = 2000.

with the first two moments of X computed according to Proposition 3.1. Finally, exploit-

ing the analytical expression of the characteristic function of the Gamma distribution, it

is possible to solve numerically5 the following equation with respect to βj:

Q(0, tj) = (1 + θ(βj))
−k(βj).

Repeating the procedure for every j we get the whole curve of β(t) (see Figure 3.2).

Clearly, the goodness of the proposed method relies on the efficiency of the moment

matching procedure. In particular, on one hand, when α is very high the above method

performs poorly. On the other hand, a large mean reversion is of great help and the

method produces very accurate results. In their paper Hull and White (2012) use, for

numerical experiments, values of α not larger than 0.0423, for which the proposed method

performs extremely well.

3.5 CVA estimation in presence of Wrong Way Risk

In this section we illustrate how to calculate the CVA of an interest rate derivative

allowing for dependence between interest rate and default intensity. Following Ghamami

5for example using fsolve function in Matlab®(integrals are solved numerically using the Gauss-
Legendre algorithm).
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and Goldberg (2014) we calculate CVA in presence of WWR as follows:

CV AWWR =

∫ T

0

E0

[
D(t)V (r(t))λ(t)e−

∫ t
0 λ(s)ds

]
dt, (3.6)

where D(t) = e−
∫ t
0 r(s)ds is the discount factor (r(t) is as in formula 3.1), V (r(t)) denotes

the credit exposure (i.e. V (r(t)) = max(0,Π(r(t))), where Π(r(t)) is the exposure of a

generic interest rate derivative whose underlying is r(t)) and λ(t) is as in (3.2). Denoting

φ(t) := r(0)e−γt +
∫ t

0
e−γ(t−u)ϑ(u)du, so that r(t) = φ(t) + σZ(t) and substituting r(t)

and λ(t) in formula (3.6) we obtain:

CV AWWR =

∫ T

0

E0

[
e−

∫ t
0 r(s)dsV (r(t))eαZ(t)+β(t)e−

∫ t
0 e

αZ(s)+β(s)ds
]
dt

=

∫ T

0

E0

[
e−

∫ t
0 φ(s)ds−

∫ t
0 σZ(s)dsV (r(t))eαZ(t)+β(t)e−

∫ t
0 e

αZ(s)+β(s)ds
]
dt.

Taking all the deterministic components outside the expectation one gets:

CV AWWR =

∫ T

0

e−
∫ t
0 φ(s)ds+β(t)E0

[
e−

∫ t
0 σZ(s)dsV (r(t))eαZ(t)e−

∫ t
0 e

αZ(s)+β(s)ds
]
dt. (3.7)

Now we restrict our attention to the expected value in the last equation. Let’s start

noting that:

αZ(t)−
∫ t

0

σZ(s)ds = α

∫ t

0

e−γ(t−u)dW (u)− σ
∫ t

0

(∫ s

0

e−γ(s−u)dW (u)

)
ds

= α

∫ t

0

e−γ(t−u)dW (u)− σ
∫ t

0

(∫ t

u

e−γ(s−u)ds

)
dW (u)

= α

∫ t

0

e−γ(t−u)dW (u)−
∫ t

0

σ

γ

(
1− e−γ(t−u)

)
dW (u)

=

∫ t

0

H(t, u)dW (u) ∼ N

(
0,

∫ t

0

H2(t, u)du

)
where H(t, u) = αe−γ(t−u) − σ

γ
(1− e−γ(t−u)) and

∫ t

0

H2(t, u)du =
2σe−γt(αγ + σ)− e−2γt(αγ + σ)2 − 4σ(αγ + σ) + (αγ + σ)2 + 2γσ2t

4γ3
,

where the variance of the Gaussian distribution has been computed resorting to the

isometry property of the Brownian motion. Consider now the following Radon-Nykodim

derivative:

L(t) =
e
∫ t
0 H(t,u)dW (u)

E0[e
∫ t
0 H(t,u)dW (u)]

=
e
∫ t
0 H(t,u)dW (u)

e
1
2

∫ t
0 H

2(t,u)du
= e

∫ t
0 H(t,u)dW (u)− 1

2

∫ t
0 H

2(t,u)du,
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We can perform the following change of measure:

E0

[
eαZ(t)−

∫ t
0 σZ(s)dsV (r(t))e−

∫ t
0 λ(s)ds

]
dt = E0[eαZ(t)−

∫ t
0 σZ(s)ds]E0[L(t)V (r(t))e−

∫ t
0 λ(s)ds]

= E0[eαZ(t)−
∫ t
0 σZ(s)ds]Ẽ0[V (r(t))e−

∫ t
0 λ(s)ds],

and E0[eαZ(t)−
∫ t
0 σZ(s)ds] = e

1
2

∫ t
0 H

2(t,u)du. Applying Girsanov’s theorem we find the dynam-

ics of the Brownian motion under the new measure. We have

W̃ (t) = W (t)−
∫ t

0

H(t, u)du = W (t)−
(
αγ + σ − e−γt(αγ + σ)− γσt

γ2

)
,

and using Itô’s lemma we get the dynamics of W̃ (t):

dW̃ (t) = dW (t) + k(t)dt,

where

k(t) = αe−γt − σ

γ

(
1− e−γt

)
.

So, we can rewrite the dynamics of Z(t) under the new measure as follows:

dZ(t) = (−γZ(t))dt+ dW (t)

= (−γZ(t))dt+ dW̃ (t)− k(t)dt

= (−γZ(t)− k(t))dt+ dW̃ (t).

The calculation of the CVA allowing for the wrong-way risk is now related to the com-

putation of the following integral

CV AWWR =

∫ T

0

e−
∫ t
0 φ(s)ds+β(t)e−

1
2

∫ t
0 H

2(t,u)duẼ0

[
V (r(t))e−

∫ t
0 e

αZ(s)+β(s)ds
]
dt. (3.8)

We now discuss how to compute the inner expectation. We set r(t) = φ(t) + x(t) where

x(t) = σZ(t) and

dx(t) = (−γx(t)− σk(t))dt+ σdW̃ (t).

The Feynman-Kac representation theorem ensures equivalence between

u(x, t) = Ẽ0[V (φ(t) + x(t))e−
∫ t
0 exp(ασ x(s)+β(s))ds]

and the solution of the following PDE:∂u
∂t

(x, t) + (−γx(t)− σk(t)) ∂u
∂x

(x, t) + 1
2
σ2 ∂2u2

∂x2 (x, t)− eα xσ+β(t)u(x, t) = 0

u(x, T ) = V (φ(T ) + x)
. (3.9)
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Table 3.1: Calibration of β(t) through Monte Carlo simulation (MC) and moment matching (MM) for
various parameter settings

α = 0.05, γ = 0.1 α = 0.05, γ = 0.3 α = 0.15, γ = 0.1 α = 0.15, γ = 0.3
t MC MM MC MM MC MM MC MM
1 -3.4003 -3.4013 -3.4001 -3.4012 -3.4050 -3.4059 -3.4039 -3.4053
2 -2.9870 -2.9880 -2.9865 -2.9876 -2.9991 -3.0000 -2.9954 -2.9967
3 -2.6110 -2.6154 -2.6103 -2.6147 -2.6279 -2.6322 -2.6205 -2.6259
4 -2.3382 -2.3376 -2.3371 -2.3366 -2.3572 -2.3564 -2.3475 -2.3478
5 -1.9446 -1.9550 -1.9435 -1.9540 -1.9623 -1.9724 -1.9527 -1.9638

CPU 51.4286 0.0590 51.0063 0.0557 51.5588 0.0511 51.4162 0.0626

Legend: parameters of Monte Carlo simulation and default probabilities are as in Figure 3.2, numerical
integration is implemented using 30 nodes.

Table 3.2: Credit exposure for various derivative instruments.

Instrument V (r(t))
Bond option (P (t, T )−K)+

Caplet (P (t, Ti−1)− P (t, Ti)(1 +Kτi))
+

Swaption (
∑n

i=1(P (t, Ti−1)− P (t, Ti)(1 +Kτi)))
+

Legend: P (t, T ) denotes the price at time t of a bond with maturity T in the 1 factor Hull and White
model, τi = Ti − Ti−1 denotes the year fraction and K the strike.

We solve this PDE numerically for 0 ≤ t ≤ T using the pdepe solver in Matlab®.

The time steps of the numerical solution of the PDE are dictated by the nodes of the

Gauss-Legendre quadrature adopted to compute the integral in (3.8).

Finally, we note that the case of independent CVA can be obtained by posing α = 0,

the result will be that the default intensity becomes deterministic and formula (3.7)

drastically simplifies.

3.6 Numerical results

In this section we present the numerical performance of the procedure proposed in Section

3.4 and the Wrong Way CVA calculation derived in Section 3.5.

We start by illustrating the results of the calibration of β(t) proposed in Section 3.46.

These are reported in Table 3.1 where we compare the calibration via moment matching

and via Monte Carlo. Numerical results show that moment matching is extremely accu-

rate (even for large maturities) and much faster than Monte Carlo (which is implemented

using 105 simulations). Moreover we note that β(t) is only slightly sensitive to the choice

of the model parameters α and γ.

6We are assuming that β(t) is as in (3.3) with T = 5.
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Figure 3.3: Bond yield in % and estimated φ(t)
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Legend: model parameters: σ = 0.25 and γ = 0.3.

Therefore, that bond pricing function of the 1-factor Hull-White model is required at

various stages of the PDE solution. Closed form solution is available for this problem

but note that, in our case, we need to evaluate P (t, T ) (for various t ∈ [0, T ]) given the

information at time 0, see for example equation (3.7):

P (t, T ) = Et

[
e−

∫ T
t r(s)ds

]
= Et

[
e−

∫ T
t φ(s)ds−

∫ T
t σZ(s)ds

]
= e−

∫ T
t φ(s)dse−B(t,T )x(t)+A(t,T ),

where A(t, T ) = − σ2

2γ2 (B(t, T )− T + t)− σ2

4γ
B(t, T )2 and B(t, T ) = 1

γ

(
1− e−γ(T−t)).

We calibrate φ(t) on market data following the procedure described in Brigo and

Mercurio (2006, Chapter 1). As market data we use the yield curve at 7/05/2019

of the Euro area obtained using Government bond, nominal, all issuers whose rating

is triple A (https://www.ecb.europa.eu/stats/financial_markets_and_interest_

rates/euro_area_yield_curves/html/index.en.html), see Figure 3.3. Then
∫ T
t
φ(s)ds

is computed numerically via the trapezoidal rule.

Finally, we compute Wrong Way CVA solving numerically equation (3.7). We start

by defining the integrand in (3.7) as:

Λ(t) := e−
∫ t
0 φ(s)ds+β(t)E0

[
e−

∫ t
0 σZ(s)dsV (r(t))e−

∫ t
0 e

αZ(s)+β(s)ds
]

and plot Λ(t) for different levels of α, see Figure 3.4.

In order to compute the integral in (3.8) we use the Gauss-Legendre quadrature

74

https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html


Table 3.3: Wrong Way CVA for various instruments and parameter settings

MC 95% C.I. PDE Abs. diff.
σ = 0.05, γ = 0.1, α = 0.05

Bond option 7.7968·10−3 (7.7703,7.8232)·10−3 7.7482·10−3 4.86e-05
Caplet 1.0319·10−3 (1.0274,1.0364)·10−3 1.0102·10−3 2.17e-05
Swaption 5.6936·10−3 (5.6771,5.7101)·10−3 5.7075·10−3 1.39e-05

σ = 0.25, γ = 0.3, α = 0.05
Bond option 12.7730·10−3 (12.6793,12.8668)·10−3 12.7060·10−3 6.7e-05
Caplet 14.3789·10−3 (14.3643,14.39359)·10−3 14.2596·10−3 0.0001193
Swaption 50.2793·10−3 (50.2406,50.3180)·10−3 50.3261·10−3 4.68e-05

σ = 0.05, γ = 0.1, α = 0.15
Bond option 6.3211·10−3 (6.3008,6.3414)·10−3 6.2859·10−3 3.52e-05
Caplet 1.2916·10−3 (1.2857,1.2975)·10−3 1.2768·10−3 1.48e-05
Swaption 6.7030·10−3 (6.6825,6.7234)·10−3 6.7306·10−3 2.76e-05

σ = 0.25, γ = 0.3, α = 0.15
Bond option 10.1650·10−3 (10.0941,10.2359)·10−3 10.0617·10−3 0.0001033
Caplet 15.1366·10−3 (15.1207,15.1526)·10−3 15.0530·10−3 8.36e-05
Swaption 52.8810·10−3 (52.8375,52.9245)·10−3 52.9969·10−3 0.0001159

Legend: All the instruments have maturity T = 5. We consider bond option with strike K = 1, caplet
with K = 0.1 and payment time Ti = 4 and a swaption with payment times {1, 2, 3, 4, 5} and K = 0.025.
Parameters of Monte Carlo simulation and default probabilities are as in Figure 3.2. We use 10 nodes to
compute the integral in formula (3.6), for the solution of the PDE we use the following time discretization:
10001 equispaced points in [0, T ], space discretization: 2001 equispaced points in [−2, 2]. ”Abs. diff.”
indicates the difference in absolute value between the Wrong Way CVA computed through Monte Carlo
simulation (MC) and through PDE.

method. In Table 3.3 we report the results of the calculation of Wrong Way CVA

through Monte Carlo and PDE approach for different parameter settings. Whatever

the calibration procedure adopted in the calculation of β(t), we smooth the piece-wise

constant function via a spline interpolation at the Gauss-Legendre nodes dictated by the

calculation of the integral.

Numerical results show that the PDE approach allows substantial improvements with

respect to Monte Carlo simulation. In particular, the computational cost is drastically

reduced and accuracy is guaranteed until the fourth significant digit. Finally, we compute

the CVA for the caplet case varying the level of α. Results are reported in Table 3.4 and

show the same behaviour as the results in Hull and White (2012, Tables 1-4).

3.7 Conclusions

In this chapter we have proposed an efficient method, combining moment matching and

solution of a PDE, to compute the Wrong Way CVA for different interest rates derivatives.

In this way, we avoid the time consuming Monte Carlo simulation proposed in Hull and
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Figure 3.4: Λ(t) for different levels of α
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Legend: Bond option (left subplot), caplet (central subplot) and swaption (right subplot), parameters:
σ = 0.25, γ = 0.3.

Table 3.4: Wrong Way CVA in the case of Caplet for different values of α

α -0.05 -0.03 -0.01 -0.001 0.001 0.01 0.03 0.05
CV AWWR · 103 13.4484 13.6134 13.7776 13.8512 13.8676 13.9410 14.0367 14.2596

Legend: Other parameter: σ = 0.25, γ = 0.3. Further notes: see Table 3.3.
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White (2012). Our approach requires firstly the implementation of a recursive procedure

based on moment matching for the calibration of the deterministic function of time β(t) to

the survival probability term structure extracted from CDS quotes. Then, the Wrong Way

CVA calculation is performed through a PDE approach exploiting a change of measure.

Our method turns out to be much faster and accurate than Monte Carlo simulation (as

shown in Table 3.1). This fact implies a significant advantage when default intensity

of many different counterparties must be estimated. The calculation of the Wrong Way

CVA can be done via Monte Carlo simulation or combining moment matching and the

numerical integration of a PDE. Our numerical results show that the approximation is

accurate at least to four significant digits (see Table 3.3) and allows a substantial reduction

in the computational cost respect to the procedure proposed in Hull and White (2012).
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Chapter 4

Conditional Monte Carlo methods

under stochastic volatility models

The simulation of popular volatility models, such as Heston, stochastic alpha-beta-rho

and Ornstein–Uhlenbeck type, represents a nontrivial longstanding problem with var-

ious solution attempts made in the literature, preponderated by stochastic differential

equation discretization techniques with inevitable inherent biases. Alternatively, we have

seen exact methods which are able to restore the convergence rate of unbiased simula-

tion, while nevertheless being perceptibly computationally demanding. We propose a

new solution for generating sample trajectories that turns out to be conceptually simple

with a straightforward implementation based on moment-based probability distribution

construction of the key random quantity, that is, the integrated stochastic variance con-

ditional on the variance level at the endpoints of the given time period. Crucially, the

method retains the exactness of some of its predecessors while improving the speed and

flexibility across payoff structures, including options that are path-independent or depen-

dent on the maximum (or minimum) of the underlying asset price process, such as barrier,

lookback and hindsight options. Numerical experiments highlight the accuracy-runtime

benefits of our proposed methodologies.

4.1 Introduction

In this chapter, we propose efficient Monte Carlo methods for simulation in the Heston,

stochastic alpha-beta-rho (SABR) and Ornstein–Uhlenbeck stochastic volatility (OU-

SV) models. The application is extendable to models that involve jumps. Stochastic

volatility is a salient and well-documented feature of financial returns that constitutes

a primary factor driving the option prices (e.g., see Bakshi et al., 1997). To this end,

various volatility models have been proposed in literature, including, among others, Hull

and White (1990), Scott (1987), Stein and Stein (1991), Heston (1993), Schöbel and

78



Zhu (1999), Barndorff-Nielsen and Shephard (2001) and Hagan et al. (2002), which are

generally capable of explaining in a self-consistent way the so-called volatility smile effect

while assuming realistic dynamics for the underlying (see Gatheral, 2006).

They are usually specified by pairs of stochastic differential equations (SDEs), for the

price of an asset and its variance (or volatility). Typically, these SDEs do not yield simple

exact solutions rendering them notoriously difficult to simulate accurately. Because of the

increased problem dimensionality, Monte Carlo simulation remains the method of choice

for computing expected values of nonlinear functions of the driving processes on several

occasions, including cases of path-dependence and advanced stochastic volatility models

where Fourier or Laplace-transform solutions for the derivative’s price are inexistent or

slow to compute. Over the years, several discretization methods for SDEs have been

proposed in literature (refer, for example, Chen et al., 2012 for a review), inevitably

yielding a bias, though, that can be hard to quantify accurately besides rendering the

procedure particularly tedious. To circumvent this, a few attempts have been made to

simulate exactly, or, perhaps, more precisely phrased, recover the O(s−1/2) convergence

rate of an unbiased Monte Carlo estimator for simulating derivative prices with a total

computational budget s, such as Broadie and Kaya (2006), Cai et al. (2017) and Li and

Wu (2019) for, respectively, the Heston model (and variants with jumps), SABR and OU-

SV. These approaches have proved to be able to produce accurate results. At the core,

these rely on simulation of the integral of the variance over a time interval conditional

on the variance level at its endpoints, which appears in the stochastic price dynamics.

Although accurate, a serious demerit of such an approach, as pointed out in the seminal

work of Broadie and Kaya (2006), has been the implicit need to recover the unknown

distribution function of the conditional integrated variance using obvious techniques, such

as inversion of the associated Laplace transform, which becomes a heavy load and almost

impracticable when generating entire sample trajectories. Additional complexities might

arise due to bias arising in model-specific cases and which need to be treated with care,

such as in SABR, where the conditional asset price distribution is not exactly known (see

Islah, 2009 and Cai et al., 2017) or a lognormal-based approximation of the integrated

variance is used Chen et al., 2012, or in Heston where a central discretization of the time

integral might be implemented (Andersen, 2008) or alternative law representations of it

might be considered (Glasserman and Kim, 2011) for potential speed-up.

The various runtime-precision concerns, in addition to the sophistication of imple-

mentation on several occasions, still hinder the way between a method and its end user,

making space for further research. In this chapter, we aim to unify simulation in a

stochastic volatility framework in a simple and practicable manner and unblock the road

to universality for different models such as Heston, SABR and OU-SV with speed-up

and accuracy advances. More specifically, first, we employ an adaptively modified mo-

ment generating function from Choudhury and Lucantoni (1996) to compute fast the first
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four moments of the conditional integrated variance and, thereby, an accurate Pearson

system to approximate its probability distribution over the entire range. This allows

us to easily generate random samples from it, as well as fast bypassing computationally

intensive Laplace transform inversion. In addition, our contribution extends to further

refinements of the proposed method applicable to path-independent and special cases of

path-dependent contracts, such as barrier and lookback, and model specifications as we

explain later on. In particular, we obtain conditionally simplified pricing formulae for

these options which are evaluated with the aid of Monte Carlo to result in improved price

estimates.

The remainder of the chapter is structured as follows. In Section 4.2, we introduce

the models under consideration in this chapter. Section 4.3 presents a succinct outline of

the exact simulation of the volatility models in question and the associated conditional

distribution arguments. Section 4.4 represents the core of this chapter where we portray

our random number generation mechanism using an efficient moment-based probability

distribution build-up. In Section 4.5, we move forward on conditional Monte Carlo meth-

ods for path-independent contracts or payoffs dependent on the maximum (or minimum)

of the underlying asset price process during the life of the derivative. Section 4.6 presents

our numerical study. In Section 4.7 we present some ideas for further research, concerning

the pricing of alternative path dependent derivative instruments and extensions to more

sophisticated stochastic volatility models. Section 4.8 concludes the chapter. Required

explicit Laplace transform expressions are deferred to the appendix.

4.2 Stochastic volatility models

Consider a filtered probability space (Ω,F , Q, {Ft}) on which two independent standard

Brownian motions W1 and W2 are defined. We consider the following models which are

given under the risk neutral measure Q by the solutions to the following SDEs:

• Heston:

dS(t) = rS(t)dt+ σ(t)S(t)(ρdW2(t) +
√

1− ρ2dW1(t)), (4.1)

dσ2(t) = k(θ − σ2(t))dt+ vσ(t)dW2(t), (4.2)

where S(t) in (4.1) gives the dynamics of the asset price at time t, r is the risk neutral

drift given by the continuously compounded risk-free interest rate, and σ(t) the

volatility at time t represented by a square-root diffusion. In the defining dynamics

(4.2) of σ(t), θ is the long-run mean variance, k the speed of mean-reversion, v the

parameter that controls the volatility of the variance process, and ρ ∈ [−1, 1] the

instantaneous correlation between the return and volatility (or variance) processes;
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SABR:

dS(t) = σ(t)S(t)β
(
ρdW2(t) +

√
1− ρ2dW1(t)

)
, (4.3)

dσ(t) = vσ(t)dW2(t), (4.4)

where S(t) describes the dynamics of an asset’s forward price at time t, constant

β ∈ [0, 1], and volatility σ(t) evolves according to a geometric Brownian motion;

OU-SV:

dS(t) = rS(t)dt+ σ(t)S(t)
(
ρdW2(t) +

√
1− ρ2dW1(t)

)
, (4.5)

dσ(t) = k(θ − σ(t))dt+ vdW2(t), (4.6)

where the volatility process σ(t) at time t (4.5) is now represented by a Gaussian

OU model.

4.3 Unified simulation framework

For each of the models in the previous section, exact simulation schemes have been

proposed to simulate the asset price at some future time t by conditioning on the values

generated by the volatility (or variance) process and the asset price at time u < t.

Step 1 Simulate 
σ2(t) = v2(1−e−k(t−u))

4k
χ′2d (λ) , Heston

lnσ(t) ∼ N
(
lnσ(u)− 1

2
v2(t− u), v2(t− u)

)
, SABR(

σ(t),
∫ t
u
σ(s)ds

)
∼ N (µ,Σ), OU-SV

, (4.7)

where for the Heston model χ′2d (λ) denotes the noncentral chi-squared distribution

with d := 4θk/v2 degrees of freedom and noncentrality parameter

λ := 4ke−k(t−u)σ2(u)/v2(1− e−k(t−u))

and for the OU-SV model the bivariate normal distribution has mean vector

µ :=

(
(σ(u)− θ)e−k(t−u) + θ

θ(t− u) + (σ(u)− θ)1−e−k(t−u)

k

)

and covariance matrix

Σ :=

(
v2

2k
(1− e−2k(t−u)) v2

2k2 (1− e−k(t−u))2

v2

2k2 (1− e−k(t−u))2 − v2

2k3 (1− e−k(t−u))2 + v2

k2 (t− u− 1−e−k(t−u)

k
)2

)
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(for the latter, see Li and Wu, 2019).

Step 2 Simulate

Ψ(u, t)
D
=



(∫ t
u
σ2(s)ds

∣∣∣σ(u), σ(t)
)
, Heston((∫ t

u
σ2(s)ds

)−1
∣∣∣∣σ(u), σ(t)

)
, SABR(∫ t

u
σ2(s)ds

∣∣∣σ(u), σ(t),
∫ t
u
σ(s)ds

)
, OU-SV

. (4.8)

Hitherto in the literature, exact simulation of (4.8) relies on numerical inversion of

the Laplace transform of the conditional integrated variance (refer to the appendix

for the different models), which is nevertheless the hardest and most time-consuming

step of the whole simulation scheme, and subsequent application of the inverse

transform method for the simulation. In the following section, we present a new

approach to this simulation problem that still hinges on the Laplace transform

but circumvents its numerical inversion ensuring a balanced speed-accuracy. We

postpone further discussion of this until then.

Step 3 Simulate (
S(t)

∣∣∣∣σ(u), σ(t),

∫ t

u

σ2(s)ds, S(u)

)
in the

i) Heston model (Broadie and Kaya, 2006):

lnS(t) ∼ N
(

lnS(u) + r(t− u)− 1

2

∫ t

u

σ2(s)ds− ρ

v
kθ(t− u)

+
ρ

v

(
σ2(t)− σ2(u) + k

∫ t

u

σ2(s)ds

)
, (1− ρ2)

∫ t

u

σ2(s)ds

)
; (4.9)

ii) OU-SV model (Li and Wu, 2019):

lnS(t) ∼ N
(

lnS(u) +
(
r − ρv

2

)
(t− u) +

ρ

2v
(σ2(t)− σ2(u)) +−ρkθ

v

∫ t

u

σ(s)ds

+

(
ρk

v
− 1

2

)∫ t

u

σ2(s)ds, (1− ρ2)

∫ t

u

σ2(s)ds

)
; (4.10)

iii) SABR model with β = 1:

lnS(t) ∼ N
(

lnS(u)− 1

2

∫ t

u

σ2(s)ds+
ρ

v
(σ(t)− σ(u)), (1− ρ2)

∫ t

u

σ2(s)ds

)
;

(4.11)
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iv) SABR model with β ∈ [0, 1), ρ = 0 and {S(t)} with an absorbing boundary at 0

(Islah, 2009, Cai et al., 2017)

P

(
S(t) = 0

∣∣∣∣σ(u), σ(t),

∫ t

u

σ2(s)ds, S(u)

)
= 1−Qχ2

(
A0;

1

1− β

)
,

P

(
S(t) ≤ y

∣∣∣∣σ(u), σ(t),

∫ t

u

σ2(s)ds, S(u)

)
= 1−Qχ′2

(
A0;

1

1− β
, C0(y)

)
(4.12)

for any y > 0, where

A0 :=

(∫ t

u

σ2(s)ds

)−1(
S(u)1−β

1− β

)2

, C0(y) :=

(∫ t

u

σ2(s)ds

)−1(
y1−β

1− β

)2

,

Qχ2(·; d) and Qχ′2(·; d, λ) are, respectively, the chi-squared and noncentral chi-

squared cumulative distribution functions;

v) SABR model with β ∈ [0, 1), ρ 6= 0 and {S(t)} with an absorbing boundary at 0:

P

(
S(t) = 0

∣∣∣∣σ(u), σ(t),

∫ t

u

σ2(s)ds, S(u)

)
≈ 1−Qχ2

(
A; 1 +

β

(1− β)(1− ρ2)

)
,

P

(
S(t) ≤ y

∣∣∣∣σ(u), σ(t),

∫ t

u

σ2(s)ds, S(u)

)
≈ 1−Qχ′2

(
A; 1 +

β

(1− β)(1− ρ2)
, C(y)

)
(4.13)

for y > 0, where

A :=

(
S(u)1−β

1−β + ρ
v
(σ(t)− σ(u))

)2

(1− ρ2)
∫ t
u
σ2(s)ds

, C(y) :=

(
y1−β

1−β

)2

(1− ρ2)
∫ t
u
σ2(s)ds

.

4.4 Moment based random numbers generator

We start by showing how to compute efficiently the moments of Ψ(u, t). Then, we consider

the problem of generating random numbers given moments and, finally, we show how to

include this moment based random number generator into a scheme for the simulation of

stochastic volatility models.

4.4.1 Computation of moments

For the models considered in this chapter, the Laplace transform L(a) = E(e−aΨ(u,t))

exists in some closed form as shown in the appendix. Traditionally, the moments of

Ψ(u, t) are obtained from

E [Ψ(u, t)n] = (−1)n
∂n

∂an
L(a)

∣∣∣∣
a=0

. (4.14)
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However, computing the moments from (4.14) might not be practicable as the Laplace

transform might be given by special functions, which is, in fact, the case with the stochas-

tic volatility models in this chapter. For example, consider the relevant Laplace transform

(B.1) in the case of the Heston model. Evaluating the first three moments of Ψ(u, t) from

(4.14), using, e.g., the symbolic toolbox of Mathematica®, requires 97 evaluations of the

modified Bessel function of the first kind, which is highly computationally intensive and

endangers numerical errors.

In this chapter, we bypass this problem by numerical inversion of an adaptively mod-

ified moment generating function introduced by Choudhury and Lucantoni (1996). To

this end, let µn be the n-th moment which is given by

µn ≈
n!

2nlrnnα
n
n

{
L(αnrn) + (−1)nL(−αnrn) + 2

nl−1∑
j=1

<(L(αnrne
πij/nl)e−πij/l)

}
, (4.15)

where i :=
√
−1 and <(z) denotes the real part of z. We adopt the choice rn = 10−γ/(2nl)

to achieve accuracy of the order of 10−γ. Algorithm 1 summarizes the procedure for

computing the first N moments as well as the parameter l and the adaptive αn.

Algorithm 1 Numerical inversion of adaptively modified moment generating function

Input: N , γ, L(·)
Output: {µn}Nn=1

1: Set l = α1 = 1 and compute µ1 from (4.15)

2: Compute α2 = 1/µ1 and µ2

3: Set l = 1 ∨ 2 and α1 = α2 = 2µ1/µ2 and compute new values for µ1 and µ2 (from
4.15)

4: Set n = 3

5: while n ≤ N do

6: l = 1 ∨ 2, compute αn = (n− 1)µn−2/µn−1

7: Compute µn from (4.15)

8: n = n+ 1

9: end

The proposed method has several merits. First, for a known Laplace transform, we

do not require recovery of the distribution function of the conditional integrated variance

by transform inversion which has been standard in the literature since Broadie and Kaya

(2006). Due to this, it is, second, fast: for the first three moments, the Laplace transform

is evaluated 9 times, hence, for example, for (B.1), the modified Bessel function of the

first kind is evaluated just 18 times which is a considerable reduction. Third, it is very

accurate: using γ = 11 as per the suggestion of Choudhury and Lucantoni (1996), the

error appears, consistently with them, only in the eleventh to thirteenth significant place.

Finally, the Laplace transform can be evaluated at multiple points concurrently, which
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is favourable for our applications requiring multiple moment computations for different

random realizations of (4.7).

4.4.2 Random numbers given moments

The next step is to find an efficient way to draw random numbers from an unknown

distribution given its moments sequence. As part of this research, we explore several ways

of generating random numbers from the distribution of the conditional integrated variance

Ψ(u, t) given knowledge of its first four integer moments µ1, µ2, µ3, µ4. In particular, we

have explored algorithms based on scale mixtures, series expansion and moment matching.

Algorithms based on scale mixtures are analyzed in Hörmann et al. (2004, pag. 325)

and consist in generating random numbers from a mixture1 of two Bernoulli random

variables with the given first four integer moments. Secondly, we have explored a series

expansion technique: given the moments is possible to implement a Cornish-Fisher expan-

sion (see Abramowitz and Stegun, 1968, pg. 935) to approximate the inverse cumulative

distribution function of the unknown distribution and, subsequently, draw random num-

bers using the inverse transform method (see, for example, Robert and Casella, 2010).

Finally, as suggested in Devroye (1986), we consider moment matching. More specif-

ically, we implement approximations based on the Johnson’s and Pearson’s system of

distributions (see Section 1.2.1) and draw random numbers from the moment matched

distribution belonging to the family. Among all these methods internal (unreported) nu-

merical tests have shown superior performances of the Pearson’s system. Indeed, though

very fast, algorithms related to scale mixtures and series expansion have presented poor

performances in terms of accuracy, with biases significantly larger than algorithms based

on moment matching. Johnson’s and Pearson’s system of distributions have presented

similar performances in terms of accuracy but the Pearson’s system resulted to be much

faster. This is mainly due to the fact that the procedure for family selection and param-

eter estimation given moments is faster for the Pearson’s system than for the Johnson’s

one. Note indeed (see Section 1.2.1) that the set of rules for family selection in the Pear-

son’s system is very simple, while for the Johnson’s is more complicated, involving the

Hill’s algorithm. This algorithm must be ran for every random realization of (4.7) and

may happen that, for certain parameter settings, it is very slow to converge (moreover,

failure to convergence is also possible, see Simonato, 2011).

For these reasons, given the moments µ1, µ2, µ3, µ4 computed according to Algorithm

1, we implement moment matching through the Pearson’s system of distributions and

draw random numbers from the selected distribution of the family. Note that, for six out

of seven distributions belonging to the system (these are summarized in Section 1.2.1),

1Several ways exist to create the mixture, we explore the usage of the uniform and normal distribu-
tions, see Hörmann et al. (2004, pag. 325) for more details.
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random numbers generation is straightforward with routines readily available in most of

the statistical softwares. Hence, from a computational point of view, the only remaining

problem is to draw random numbers from the Type IV distribution of the Pearson’s

system. Amos and Daniel (1971) and Bouver and Bargmann (1974) provide extensive

tables of quantiles, which can be used for random numbers generation through inverse

transform sampling. We consider a different approach throughout this work, i.e. the one

based on the exponential rejection method for log-concave densities developed in Devroye

(1986, Section 7.2) which is adapted to the case of the Pearson Type IV distribution by

Heinrich (2004).

The whole procedure for random numbers generation from Pearson’s system of dis-

tributions given the first four integer moments is briefly summarized in Algorithm 2.

Algorithm 2 Moment matching: Pearson’s family
Input: µ1, µ2, µ3, µ4

Output: random sample Ψ(u, t)

1: Compute skewness =
µ3−3µ1(µ2−µ2

1)−µ3

(µ2−µ2
1)1.5 and kurtosis =

µ4−4µ1µ3+6µ2µ2−3µ4
1

(µ2−µ2
1)2

2: Set β1 = skewness2, β2 = kurtosis

3: Set c0, a, c1 and c2 as in (1.7), (1.8) and (1.9)

4: Set k = β1(β2+3)2

4(4β2−3β1)(2β2−3β1−6)

5: Select family type according to selection rules given at the end of Section 1.2.1

6: Draw random numbers Y from the selected distribution

7: Set Ψ(u, t) = Y ·
√
µ2 − µ2

1 + µ

8: return Ψ(u, t)

In principle, due to the efficiency of Algorithm 1, we could consider also higher order

moments to generate random realizations from Ψ(u, t). But, unfortunately, these are

not computationally efficient as in the case of four. Indeed, algorithms based on scale

mixtures are specifically designed to math four moments (hence not applicable for higher

orders), Cornish-Fisher expansion may diverge when including many term (note indeed

that Cornish Fisher approximation is the Legendre inversion of the Edgeworth expan-

sion of a distribution, which typically diverges when including many moments, see, for

example, Fusai and Tagliani, 2002). Moreover, despite some methods exist in order to

make the Pearson’s system to match more than four moments, this rely on numerical

methods (see Rose and Smith, 2002, Chapter 5). Another possibility would be to resort

to the Fleishman’s family of distributions (see Devroye, 1986, pag. 694), but, also in this

case, numerical methods are required to match more than four moments. We stress that

addition of, for example, numerical solution of an integral in the simulation procedure

would be an unacceptable cost since, as moments depend on the realization of (4.7), it
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should be repeated for any simulation, causing, possibly, a procedure which is slower than

exact simulation schemes with a benefit in terms of accuracy not commensurate with the

extra labor involved. Finally, we will study in Section 4.6 how far are the higher order

moments of 4-moments matched Pearson distribution to the true ones in the context of

the Heston model, and will show that in practise the difference is very small also under

challenging model parametrizations.

4.4.3 Stochastic volatility models simulation using moments

Typically, exact simulation schemes are too slow to be applied for the simulation of the

whole price trajectory, implying that their most common application concerns pricing

path independent derivative instruments for which the Laplace transform of Ψ(u, t) is

numerically inverted only once. As will be shown in the course of Section 4.6, the proposed

method allows to reduce drastically the computing time, opening doors to the simulation

of the stock price process on a set of discrete observation dates. We summarize the

methodology in Algorithm 3.

Algorithm 3 Conditional moments-matched sampling scheme

Input: Parameters of the model specified in (4.1) and (4.2), (4.3) and (4.4) or (4.5)
and (4.6), T (maturity), N (No of monitoring dates)
Output: S(t) for t = {0,∆, 2∆, 3∆, ..., T} (path of the underlying’s price)

1: Set ∆ = T
N

2: for t = 0 : ∆ : T −∆ do

3: Given σ(t) generate σ(t+ ∆) or
(
σ(t+ ∆),

∫ t+∆

t
σ(s)ds

)
using (4.7)

4: Define Laplace transform of Ψ(t, t+ ∆) (see Eq. 4.8)

5: Compute moments of Ψ(t, t+ ∆) using Algorithm 1

6: Sample from Ψ(t, t+ ∆) given moments using Algorithm 2

7: Sample S(t+ ∆) using (4.9), (4.10), (4.11), (4.12) or (4.13)

8: end for

9: return S(t) for t = {0,∆, 2∆, 3∆, ..., T}.

This algorithm allows to obtain the stock price trajectory at some discrete dates with

many possible applications in different areas of finance. Note that, if one is interested

only in the distribution at the final date T of the stock price (as in the case, for example,

of path independent derivative instruments pricing), is sufficient to pose N = 1. In this

work, we apply Algorithm 3 to the problem of pricing derivative instruments and we

will show in Section 4.6 that is fits very well this purpose. Despite that, we must also

point out that the discounted stock price trajectory built according to Algorithm 3 does

not constitute a true martingale due to the fact that the random realization from Ψ(u, t)

comes from an approximation (even if very accurate). For this reason, following Andersen
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(2008), we also show that is possible to apply a martingale correction. From definition

of martingale we need that:

E[S(t)|S(u)] = er(t−u)S(u), ∀u ≤ t (4.16)

using the law of iterated expectations we get:

E[S(t)|S(u)] = E

[
E

[
S(t)

∣∣∣∣∣σ(t), σ(u),

∫ t

u

σ2(u)

] ∣∣∣∣∣S(u)

]
(4.17)

where inner expectations are known from (4.9), (4.10), (4.11), (4.12) and (4.13). Our

procedure follows now from Andersen (2008, Proposition 7); we consider, for illustrative

purposes, the Heston model, solving inner expectation in (4.17) we get

E[S(t)|S(u)] = S(u)er(t−u)− ρ
v

(kθ(t−u))E
[
e(

ρk
v
− 1

2)
∫ t
u σ

2(s)ds+ ρ
v

(σ2(t)−σ2(u))+
√

(1−ρ2)
∫ t
u σ

2(s)dsZ
]

(4.18)

where Z ∼ N (0, 1) (see also Broadie and Kaya, 2006, pag. 222). Defining K? :=

−ρ
v
(kθ(t− u)), in order to (4.16) hold true we need:

K? = ln
(
−E

[
e(

ρk
v
− 1

2)
∫ t
u σ

2(s)ds+ ρ
v

(σ2(t)−σ2(u))+
√

(1−ρ2)
∫ t
u σ

2(s)dsZ
])
, (4.19)

where the key quantities involved in the expectation have been already simulated and,

consequently, the expected value can be computed simply taking the average. Hence,

substituting the quantity −ρ
v
(kθ(t − u)) with K? computed as in (4.19) into (4.9) is

possible to apply a martingale correction with the result that Algorithm 3 will produce

a martingale process for the discounted stock price.

4.5 Advancing conditional Monte Carlo methods

In this section, we present conditional Monte Carlo methods to improve the efficiency

of the simulation estimators for the prices of both path-independent, such as European

plain vanilla, and path-dependent options with payoffs dependent on the maximum (or

minimum) of the trajectory of an underlying asset’s price, such as barrier and lookback

options.

4.5.1 European path-independent options

Aiming to improve the efficiency of the simulation estimators under stochastic volatility

models, Willard (1997) proposed a conditional Monte Carlo approach. Let Π(·) be a

generic payoff function which depends on the price of the underlying asset at some ter-
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minal time t > u, S(u). Conditional on a path of the volatility process, the derivative’s

price at time u is given by

E[e−r(t−u)Π(S(t))] = E[e−r(t−u)E[Π(S(t))|Fσt ]].

Thereby, the volatility can be treated as a deterministic quantity and the conditional

derivative’s price then boils down to that in the simplified model framework. For example,

Willard (1997) presents the case of the conditional Heston model which is a lognormal

model. Inspired by this, we remove the remaining block to a universal application that

comprises different stochastic volatility models, such as SABR (β = 1) and OU-SV, but

also path-dependent contracts.

Heston, SABR (β = 1) and OU-SV models

In what follows, let BS(S(u), σ̂) be the Black–Scholes price of a European plain vanilla

call option written on some asset with initial price S(u) and constant volatility σ̂. The

strike price is K, the maturity time T and the continuously compounded risk-free interest

rate r. Then,

E
[
e−r(t−u)(S(t)−K)+

∣∣Fσt ]
= e−r(t−u)

{
em+ 1

2
s2Φ

(
m+ s2 − lnK

s

)
−KΦ

(
m− lnK

s

)}

= BS

S(u)ψ,

√
1− ρ2

(t− u)

∫ t

u

σ2(s)ds

 , (4.20)

where x+ := max(x, 0), Φ is the standard normal cumulative distribution function, and

m := E [lnS(t)| Fσt ] and s2 := Var [ lnS(t)| Fσt ] (4.21)

are given by (4.9)–(4.11) for the Heston, OU-SV and SABR (β = 1) models. In addition,

ψ :=



exp
{
−ρ2

2

∫ t
u
σ2(s)ds+

+ρ
v

(
σ2(t)− σ2(u)− kθ(t− u) + k

∫ t
u
σ2(s)ds

)} , Heston

exp
{
−ρ2

2

∫ t
u
σ2(s)ds+ ρ

v
(σ(t)− σ(u))

}
, SABR (β = 1)

exp
{
−ρv

2
(t− u) + ρ

2v
(σ2(t)− σ2(u))− ρ

v
kθ
∫ t
u
σ(s)ds

+ρk
v

∫ t
u
σ2(s)ds− ρ2

2

∫ t
u
σ2(s)ds

} , OU-SV

.
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SABR model (β 6= 1)

In this case, we consider conditioning arguments and results from Cai et al. (2017, The-

orem 5.1). Assuming that {S(t)} have an absorbing boundary at 0 and β 6= 1, we get

E
[
(S(t)−K)+

∣∣Fσt ]{
= C0(1)−

1
2(1−β)A

(1+γ0)/2
0 (1−Qχ′2(C0(K); 3 + γ0, A0))−KQχ′2(A0; 1 + γ0, C0(K)) ρ = 0

≈ C(1)−
1

2(1−β)A(1+γ)/2Ξ(−ρ2γ
2
, C(K), 3 + γ,A)−KQχ′2(A; 1 + γ, C(K)) ρ 6= 0

(4.22)

where

γ0 :=
β

1− β

γ :=
β

(1− β)(1− ρ2)
,

Ξ(p, k, δ, α) := 2p
∞∑
n=0

e−
α
2

(α
2

)n Γ(δ/2 + p+ n, k/2)

n!Γ(δ/2 + n)

and A0, C0(·) are as in (4.12), A and C(·) are as in (4.13).

4.5.2 Option payoffs dependent on maximum or minimum

Next, we present conditional Monte Carlo methods for path-dependent options with

payoffs dependent on the maximum or minimum of the underlying asset price process

during the life of the contract.

Heston and SABR (β = 1) models

Although the following exposition is expansible to lookback options, for the sake of exem-

plification, we focus here on the case of an up-and-out barrier call option with terminal

payoff

Π(S(t)) := (S(t)−K)+1{
max
u≤t≤T

S(t)≤M
},

where M is the fixed barrier level. Conditional on the information of the volatility path

generated up until time T , the derivative’s (forward) price is given by

E[Π(S(t))|Fσt ].

This way, we gain access to the conditional joint distribution of the (log) price of the

underlying asset and its maximum (or minimum) in the Heston model and we get from
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De Gennaro Aquino and Bernard (forthcoming)

E[Π(S(t))|Fσt ] =

∫ ln M
S(u)

0

∫ x

ln K
S(u)

(S(u)ex −K)
2(2x− y)√

2πs3
e−

(2x−y)2−2my+m2

2s2 dydx, (4.23)

where m and s2 are as defined in (4.21). An analytical solution to (4.23) can be obtained

with the aid of a symbolic toolbox such as Mathematica®.

Remark 4.1. The pricing expression (4.23) refers to a continuously monitored barrier

option. In addition, this can be indirectly extended to the case of a discretely monitored

option using correction such as in Broadie et al. (1999).

SABR (β 6= 1, ρ = 0) model

By conditioning with respect to the variance path, the SABR model with ρ = 0 reduces

to a CEV diffusion, therefore conditional Monte Carlo methods for lookback and barrier

options are still feasible. For illustration, we consider a lookback put option with terminal

payoff

Π(S(t)) =

(
K − min

0≤t≤T
S(t)

)+

.

Then, by conditional CEV diffusion, we recall from Davydov and Linetsky (2001, Lemma

1, Propositions 4–5) that

E[Π(S(t))|Fσt ] =


∫ K

0
F (y;S(u), t)dy, S(u) ≥ K

K − S(u) +
∫ S(u)

u
F (y;S(u), t)dy, S(u) < K

, (4.24)

where F (·; ·, ·) satisfies

∫ ∞
0

e−atF (y;x, t)dt =
1

a

√
x

y

Kv

(√
2ax−(β−1)

σ(T )(β−1)

)
Kv

(√
2ay−(β−1)

σ(T )(β−1)

) , 0 < y ≤ x, (4.25)

Kv(·) is the modified Bessel function of the second kind with v degrees of freedom and

a := 1/(2(β − 1)). Relevant results for barrier options are available in Davydov and

Linetsky (2001, Proposition 3). It is worth highlighting that the pricing expression above

depends only on σ(T ) (see Eq. 4.7) resulting in a perceptible speed-up of the simulation

as the use of the Laplace transform (B.6) for the purpose of simulating the integrated

variance is entirely sidestepped. Finally, F (·; ·, ·) is computed by numerical inversion of

(4.25).
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Table 4.1: Parameter settings for the Heston and OU-SV models

H 1 H 2 H 3 H 4 H 5 H 6 OU-SV 1 OU-SV 2 OU-SV 3
S(0) 100 100 100 100 100 100 100 100 100
k 6.21 2 0.5 0.3 1 6.2 4 4 4
θ 0.019 0.09 0.04 0.04 0.09 0.02 0.02 0.02 0.02
v 0.61 1 1 0.9 1 0.6 0.1 0.1 0.1

σ2(0) 0.010201 0.09 0.04 0.04 0.09 0.02 0.04 0.04 0.04
ρ -0.7 -0.3 -0.9 -0.5 -0.3 -0.7 -0.7 -0.7 -0.7
r 3.19% 5% 3% 3% 3% 3% 9.531% 9.531% 9.531%
T 1 5 1 1 1 1 1 3 5

Legend: Notation as in formulae (4.1), (4.2), (4.5) and (4.6). H 1 and H 2 are taken from Broadie and
Kaya (2006), H 3-6 are taken from Glasserman and Kim (2011), OU-SV 1-3 from Li and Wu (2019).

Table 4.2: Parameter settings for the SABR model

SABR 1 SABR 2 SABR 3 SABR 4 SABR 5 SABR 6
S(0) 0.05 0.05 0.05 0.05 1.1 100
β 0.3 0.3 0.3 0.55 0.7 0.6
v 0.6 0.6 0.6 0.03 0.1 0.2

σ(0) 0.4 0.4 0.4 0.2 0.2 0.3
ρ 0.0 0.0 0.0 0.0 0.0 0.0
r 0 0 0 0 0 0
T 1.0 3.0 5.0 1.0 1.0 1.0

Legend: Notation as in formulae (4.3) and (4.4). Parameters in SABR 1, SABR 2 and SABR 3 are taken
from Cai et al. (2017, Table 4), in SABR 4, SABR 5 and SABR 6 are taken from Cai et al. (2017, Table
1).

4.6 Numerical study

4.6.1 Parameter settings

We start by identifying the parameters used for numerical experiments. We select the

same used by Broadie and Kaya (2006), Glasserman and Kim (2011), Cai et al. (2017)

and Li and Wu (2019) in the original papers where exact simulation schemes are pro-

posed. This choice allows for a direct comparison between our proposed method and the

exact ones, whose measures of performances, i.e. root mean squared errors (RMSEs),

are reported in original papers. Parameter settings for Heston and OU-SV models are

reported in Table 4.1, for SABR in Table 4.2.

Note that for SABR model, we don’t consider the case where ρ 6= 0, where exact

simulation schemes does not exist (see Section 4.5 or, equivalently, Cai et al., 2017,

Proposition 2.1). Despite that, we stress that the proposed method can still be used in

that case since approximations are required in simulating the forward price process and

92



Figure 4.1: Computing time (in seconds) for the first integer moments of conditional integrated variance
in the Heston model
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Legend: performances of analytical derivation are presented in left subplot, performances of Algorithm
1 in the right subplot.

not the conditional integrated variance.

4.6.2 Moments computation

We show here numerical performances of Algorithm 1 in computing moments of the

conditional integrated variance. We consider here the Heston model since it is the most

complicated from a computational point of view as Laplace transform in (B.1) depends

on the modified Bessel function of the first kind. In Figure 4.1 we report the CPU

time in seconds required for computing the first four integer moments of the conditional

integrated variance for different numbers of simulations (i.e. for different numbers of

realizations of the terminal variance), through analytical derivation (i.e. Eq. 4.14) of

the Laplace transform in (B.1) and Algorithm 1. Results show that computing moments

through Algorithm 1 allows for a significant computational saving with CPU time reduced

by a factor of 6. This is due to the fact that the modified Bessel function of the first kind

is evaluated a smaller amount of times.

Next, we investigate the following problem: we are matching the first four integer

moments through the Pearson’s system but what about higher order moments? How far

are they from the true ones? In order to answer this question we implement the following

numerical experiment: simulate 104 different random realizations for the terminal vari-

93



Figure 4.2: Actual vs supposed higher order moments
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Legend: parameter setting H 4.

ance, consider only four of them (we choose to select them according to the percentile),

compute the first eight integer moments through Algorithm 1 and compare with higher

order moments of the moment matched distribution belonging to the Pearson’s system.

For numerical experiment, we consider the parameter setting H 4 since is the one where

the proposed method presents the largest bias (this evidence will be presented, later, in

Table 4.3). Results are reported in Figure 4.2 and show that the supposed higher order

moments are extremely close to the true ones. Despite we are presenting here results

related only to H 4, similar (or even better) results have been obtained also for the other

parameter settings2.

4.6.3 Pricing European options

We evaluate accuracy of the proposed method by a direct comparison with exact simu-

lation methods proposed by Broadie and Kaya (2006), Cai et al. (2017) and Li and Wu

(2019). For the Heston model we also consider as benchmark the Gamma Expansion

method proposed by Glasserman and Kim (2011). Root mean squared error (RMSE) is

used to compare performances: if P̂ is the simulation estimator used for the derivative

price and P is the true price, then the bias and the variance of the estimator are given

2We don’t report here, for brevity, additional figures related to different parameter settings of per-
centiles.
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Table 4.3: Estimated biases and standard errors of the proposed method.

H 1 H 2 H 3 H 4 H 5 H 6
Option price 6.8061 34.9998 6.7304 7.0972 11.3743 7.0737
bias -0.0002 -0.0058 -0.0007 0.0073 -0.0005 0.0023
standard error (×103) 0.3946 0.7959 0.2378 0.2117 0.2593 0.4565

Legend: option contract parameters: S(0) = K = 100, Number of simulations = 108, parameter settings
as in Table 4.1.

by

bias = E[P̂ ]− P, variance = E[(P̂ − E[P̂ ])2], (4.26)

RMSE is then defined as

RMSE = (bias2 + variance)
1
2 . (4.27)

For each model and parameter setting, bias is estimated using 108 simulation trials with

derivative prices computed by using conditional Monte Carlo methods, i.e. through (4.20)

and (4.22), in order to reduce the standard error.

Let’s start by considering the Heston model. We first evaluate the bias resulting from

the proposed simulation method. Table 4.3 reports the estimated biases and standard

errors for at-the-money options for the parameter settings in Table 4.1 together with

exact option prices and confirms that biases are very small.

Next, we compare results with the exact simulation and the Gamma Expansion

schemes. Numerical results are shown in Table 4.4. RMSE is taken from the original

papers, e.g. Broadie and Kaya (2006, Tables 1 and 2) and Glasserman and Kim (2011,

Table 7), while computing time is obtained by implementation of the Gamma Expansion

method with infinite summations truncated at the tenth element. Figure 4.3 illustrates

the speed-accuracy trade-off of the various methodologies. Each figure plots the RMSE

against computing time on a log-log scale for each method and parameter setting. Fi-

nally, we compute the convergence rate by estimating the slopes of the lines in Figure 4.3

through a simple linear regression where the logarithm on base 10 of time in seconds is

the regressor and the logarithm on base 10 of the RMSE is the dependent variable. As

evident from Figure 4.3, estimated coefficients are very close to the optimum −1
2
.

Let’s consider now SABR and OU SV models. We apply moment matching and

compare RMSEs with exact methods proposed by Cai et al. (2017) and Li and Wu

(2019). Numerical results are reported in Table 4.5.
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Table 4.4: Speed and accuracy of the proposed method compared with exact and gamma expansion
simulation schemes

Exact Moment matching Exact Moment matching

No. sims RMSE CPU RMSE CPU RMSE CPU RMSE CPU

H 1 H 2

104 0.0750 0.2092 0.0746 0.0802 0.6125 0.1195 0.6364 0.0857
4 · 104 0.0373 0.7796 0.0372 0.2922 0.2904 0.4783 0.2879 0.3014
16 · 104 0.0186 3.2520 0.0185 1.1783 0.1464 1.9149 0.1470 1.2207
64 · 104 0.0093 12.7837 0.0093 4.8006 0.0726 7.6479 0.0723 4.8880
256 · 104 0.0046 51.0394 0.0046 18.7324 0.0362 30.3411 0.0367 19.5991

Gamma expansion Moment matching Gamma expansion Moment matching

No. sims RMSE CPU RMSE CPU RMSE CPU RMSE CPU

H 3 H 4

104 0.0489 0.1820 0.0489 0.0843 0.1050 0.2149 0.1087 0.0904
4 · 104 0.0246 0.7418 0.0247 0.3125 0.0507 0.8463 0.0526 0.3271
16 · 104 0.0123 3.1070 0.0123 1.2354 0.0257 3.3845 0.0273 1.2689
64 · 104 0.0061 12.3070 0.0062 4.9161 0.0132 14.5513 0.0152 5.0985
256 · 104 0.0031 49.4725 0.0031 19.4959 0.0068 55.9411 0.0099 20.0944

Gamma expansion Moment matching Gamma expansion Moment matching

No. sims RMSE CPU RMSE CPU RMSE CPU RMSE CPU

H 5 H 6

104 0.1889 0.3568 0.2164 0.0907 0.0784 0.3226 0.0822 0.0730
4 · 104 0.0973 1.2743 0.0987 0.3245 0.0394 1.1840 0.0414 0.2862
16 · 104 0.0489 5.4148 0.0502 1.2724 0.0198 5.1863 0.0205 1.1032
64 · 104 0.0248 22.4245 0.0245 5.1089 0.0099 21.8374 0.0105 4.5873
256 · 104 0.0124 90.2900 0.0123 20.2172 0.0050 89.5185 0.0056 18.0950

Legend: K = 100, other parameters as in Table 4.1.
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Figure 4.3: Speed and accuracy comparisons between exact simulation and gamma expansion schemes
and the proposed moment based one
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Legend: parameters as in Table 4.1.

Table 4.5: Speed and accuracy comparison for SABR and OU-SV models

Exact Moment matching Exact Moment matching

No. sims RMSE CPU RMSE CPU RMSE CPU RMSE ·104 CPU

SABR 1 SABR 2

104 0.4080 0.6898 0.4095 0.0694 0.3950 0.7025 0.4018 0.0614
4 · 104 0.2040 2.6759 0.2106 0.2540 0.1980 2.6832 0.2035 0.2282
16 · 104 0.1030 10.8399 0.1126 1.3278 0.0996 11.0898 0.1082 1.2360
64 · 104 0.0514 41.5034 0.0689 5.3678 0.0499 43.2027 0.0643 5.0225

Exact Moment matching Exact Moment matching

No. sims RMSE CPU RMSE CPU RMSE CPU RMSE CPU

SABR 3 OU-SV 1

104 0.3860 0.6914 0.3866 0.0610 0.1529 7.8694 0.1495 0.0293
4 · 104 0.1930 2.7214 0.1960 0.2295 0.0764 32.2796 0.0752 0.0684
16 · 104 0.0976 10.5206 0.0975 1.1631 0.0382 127.7071 0.0378 0.5590
64 · 104 0.0489 43.6587 0.0490 4.8123 0.0192 466.6427 0.0192 2.2737

Exact Moment matching Exact Moment matching

No. sims RMSE CPU RMSE CPU RMSE CPU RMSE CPU

OU-SV 2 OU-SV 3

104 0.4703 10.0329 0.4283 0.0272 0.7648 9.4976 0.6752 0.0249
4 · 104 0.2345 37.6895 0.2162 0.0640 0.3774 38.0485 0.3322 0.0617
16 · 104 0.1176 148.8763 0.1068 0.5052 0.1891 154.1310 0.1681 0.5094
64 · 104 0.0591 458.1360 0.0537 2.2862 0.0951 579.0554 0.0841 2.3021
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4.6.4 Path dependent derivative instruments

We evaluate the performances of our conditional moment based Monte Carlo approach

in pricing path dependent derivative instruments.

Continuous monitoring

We start by considering the more complicated case of a continuous monitoring setting.

In this context we apply pricing formulas developed in Section 4.5.2 and show the prices

of continuously monitored up and out call barrier and lookback put on minimum options

under the Heston model and lookback put on minimum under the SABR (ρ = 0) model.

In this case pricing formulas which can be used for computation of a true option price are

not available, hence, computation of bias and RMSE is precluded. In order to evaluate

correctness of the proposed method, we still report some benchmark results. For the

Heston model we use the pricing method proposed by De Gennaro Aquino and Bernard

(forthcoming). This is based on the numerical inversion of the joint characteristic func-

tion of the variance and its integral. We employ, as suggested by the authors, 2D COS

method (see Ruijter and Oosterlee, 2012) to obtain the joint probability density func-

tion and then compute option prices through numerical integration. Results are reported

in Table 4.6. We note some discrepancies between the prices computed through Monte

Carlo simulation and 2D COS method. The most evident are in the parameter settings

H 4 and H 5. In order to understand which of the two pricing procedures fail to pro-

duce the correct price we proceed with the following experiment: consider H 4, compute

the corresponding European call option price and compare with the true one computed

through standard (1D) COS method. The result is that the true price is 11.3743 (see also

Table 4.3) against 11.4193 produced by 2D COS and 11.3694 obtained through our Monte

Carlo simulation scheme (with 104 simulations). Hence, 2D COS results inaccurate under

certain parameter settings.

Secondly, we compute prices of lookback put on minimum options both in Heston and

SABR (ρ = 0) models. The choice of this instrument depends on the fact that it turns

out to be less computationally demanding than other options written on maximum (or

minimum) in the case of the SABR model. Note indeed that formula (4.24) only involves

definite integrals and the only special function involved is the modified Bessel function of

the second kind. Pricing alternative written on maximum (or minimum) options would

be more computationally intensive due to the presence of improper integrals and other

special functions, such as Whittaker function (we refer to Davydov and Linetsky, 2001

for more details and explicit formulas). Finally, we specify that, in order to implement

formula (4.24), we compute the integral numerically using the global adaptive quadrature

method and use the Euler inversion algorithm of Abate and Whitt (1995) to invert the

Laplace transform in (4.25). As benchmarks we consider in this case the 2D COS for

98



Table 4.6: Barrier option prices in the Heston model

H 1 H 2 H 3 H 4 H 5 H 6
2D COS 4.5577 0.4239 6.2011 3.9100 1.9543 3.9439

Conditional Monte Carlo with moment matching, 105 simulations

Price 4.5588 0.4217 6.2399 4.1281 1.8182 3.9364
s.e. 0.0084 0.0007 0.0087 0.0069 0.0051 0.0071

CPU 0.8073 0.8386 0.8008 0.8767 0.8492 0.7584
Conditional Monte Carlo with moment matching, 106 simulations

Price 4.5549 0.4214 6.2239 4.1247 1.8216 3.9519
s.e. 0.0027 0.0002 0.0028 0.0022 0.0016 0.0022

CPU 9.0835 9.0827 9.7867 9.3907 9.2173 8.3119
Conditional Monte Carlo with moment matching, 107 simulations

Price 4.5547 0.4211 6.2234 4.1259 1.8221 3.9505
s.e. 0.0008 0.0001 0.0009 0.0007 0.0005 0.0007

CPU 86.9056 88.9092 90.8531 90.4657 92.4597 83.2074

Legend: K = 100, barrier level = 120, other parameters as in Table 4.1.

the case of the Heston model and the sampling scheme developed by Chen et al. (2012)

for the SABR. Results for Heston model are reported in Table 4.7. Similarly to the

case of the up and out call barrier option, we note discrepancies between the prices.

This is particularly evident in parameter setting H 5 (for which the numerical inversion

of the joint characteristic function appears very complicated). Proceeding as described

above, we note that true price of the European option is 11.3743, while the one computed

through 2D COS is 11.4193 and through Monte Carlo simulation (with 104 simulations)

is 11.3729. Thanks to these results, we also state superiority of our proposed method

in pricing continuously monitored written on maximum (or minimum) options under the

Heston model with respect to 2D COS adopted by De Gennaro Aquino and Bernard

(forthcoming).

Finally, we report prices of lookback put on minimum options under SABR (ρ = 0) in

Table 4.8. Also in this case, we note a big difference between prices in the case of SABR

6. This discrepancy is due to the fact that we are computing the price of continuously

monitored option using a discretization grid. Morever, we stress that the benchmark is

not an ”exact” simulation scheme: it is based on approximations, hence, is not expected

exact coincidence between the prices.

Discrete monitoring

In order to test accuracy of Algorithm 3, we consider the problem of pricing a discretely

monitored (with 12 monitoring dates) arithmetic average Asian option in the Heston

model (see Eq. 2.2 for its payoff specification). The algorithm works for any stochastic

volatility model considered throughout this work but we choose the Heston model because
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Table 4.7: Prices of put on minimum lookback options in the Heston model

H 1 H 2 H 3 H 4 H 5 H 6
2D COS 1.9179 8.9025 2.4293 3.6693 8.0595 2.1962

Conditional Monte Carlo with moment matching, 105 simulations

Price 1.9211 8.8792 2.8467 3.7207 8.8516 2.2001
s.e. 0.0123 0.0344 0.0311 0.0279 0.0335 0.0125

CPU 0.9418 0.8045 0.8163 0.8951 0.8938 0.7524
Conditional Monte Carlo with moment matching, 106 simulations

Price 1.9154 8.9221 2.8235 3.7389 8.7708 2.1920
s.e. 0.0039 0.0109 0.0097 0.0088 0.0105 0.0039

CPU 9.4718 9.6611 9.7001 9.6342 9.8464 8.3108
Conditional Monte Carlo with moment matching, 107 simulations

Price 1.9225 8.9224 2.8320 3.7343 8.7849 2.1963
s.e. 0.0012 0.0035 0.0031 0.0028 0.0033 0.0012

CPU 90.1315 91.7200 90.9875 92.7497 94.1687 83.8275

Legend: K = 90, other parameters as in Table 4.1.

Table 4.8: Prices of put on minimum lookback options in the SABR (ρ = 0) model

104 simulations 105 simulations
Method Price s.e. CPU Price s.e. CPU

SABR 4
Chen et al. (2012) 0.0256 0.0001 28.3843 0.0255 0.0000 258.9329

Formula (4.24) 0.0256 0.0000 23.2103 0.0256 0.0000 214.1672
SABR 5

Chen et al. (2012) 0.1589 0.0011 26.5118 0.1611 0.0004 242.8413
Formula (4.24) 0.1633 0.0002 18.8153 0.1630 0.0000 172.6288

SABR 6
Chen et al. (2012) 3.6917 0.0282 27.8818 3.7396 0.0090 256.7871

Formula (4.24) 3.3143 0.0157 16.8790 3.3129 0.0050 164.2185

Legend: K = S(0), other parameters as in Table 4.2.
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Table 4.9: Estimated biases for pricing a discretely monitored (12 monitoring dates per year) arithmetic
average Asian option in the Heston model through Algorithm 3

H 1 H 2 H 3 H 4 H 5 H 6
Option price 3.5665 18.1581 4.1062 4.3219 6.6506 3.8591
bias 0.0005 -0.0013 0.0001 0.0007 0.0002 -0.0001

Legend: option contract parameters: S(0) = K = 100, Number of simulations = 108.

of the fact that a very accurate pricing procedure for discretely monitored arithmetic

average Asian option exists. More specifically, we employ the very sharp lower bound

pricing approximations developed by Fusai and Kyriakou (2016) for the option price

as control variate within a Monte Carlo simulation. The resulting option prices are

provided in Table 4.9 and are supposed to be extremely accurate. Then, we simulate

price trajectories through Algorithm 3 and compute the price of discretely monitored

arithmetic average Asian option, biases for parameter settings in Table 4.1 are reported

in Table 4.9.

Next, we compute RMSE of the proposed method and compare with results of the

Quadratic Exponential scheme (QE) proposed by Andersen (2008) which is used as bench-

mark. In order to compare the performances of the proposed method and the benchmark

we select 150 time discretization steps per year for implementation of the QE scheme,

with this choice we obtain similar CPU times for both methods and can compare accuracy

simply looking at the RMSEs. These are reported, together with the computing times,

in Table 4.10 and Figure 4.4.

4.6.5 Comments on numerical results

We comment here the performances of Algorithm 3 in pricing both path dependent and

independent derivative instruments.

For what concerns the path independent case, we point out the impressive perfor-

mances of our proposed method. First, it is faster than exact simulation schemes (and

Gamma Expansion) used as benchmarks. The reason is evident: no numerical meth-

ods are required at any stage, with the obvious consequence that the whole simulation

procedure results extremely fast. Moreover, as shown in Figure 4.1 the usage of Algo-

rithm 1 instead of analytical derivation for moments computation allows to speed up the

code perceptively, especially in the Heston model, where the Laplace transform depend

on the modified Bessel function of the first kind. Contrarily, exact simulation schemes

crucially depend on numerical methods, such as numerical integration and root finding

algorithms, the consequence is that a speed-accuracy trade-off is intrinsically established:

on one hand, increasing the desired accuracy of numerical methods allows to eliminate

simulation bias but increases the computing time, on the other hand, diminishing the
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Table 4.10: Speed and accuracy comparison for Asian option pricing for Heston model

QE Moment matching QE Moment matching

No. sims RMSE CPU RMSE CPU RMSE CPU RMSE ·104 CPU

H 1 H 2

104 0.0424 1.3520 0.0381 1.2321 0.3230 7.3106 0.2606 6.9714
4 · 104 0.0260 4.3703 0.0192 4.3874 0.2209 23.8769 0.1387 26.6618
16 · 104 0.0201 17.4439 0.0096 19.3048 0.1855 96.0225 0.0684 114.7599
64 · 104 0.0179 88.1052 0.0025 76.9831 0.1731 501.6341 0.0171 480.7504

QE Moment matching QE Moment matching

No. sims RMSE CPU RMSE CPU RMSE CPU RMSE CPU

H 3 H 4

104 0.0363 1.0525 0.0310 1.1284 0.0607 1.1162 0.0581 1.1039
4 · 104 0.0238 3.3223 0.0155 4.5351 0.0342 3.4724 0.0287 4.3373
16 · 104 0.0195 13.2218 0.0078 18.6096 0.0231 13.6736 0.0145 18.4828
64 · 104 0.0180 55.0731 0.0020 77.7490 0.0184 61.2445 0.0037 78.7453

QE Moment matching QE Moment matching

No. sims RMSE CPU RMSE CPU RMSE CPU RMSE CPU

H 5 H 6

104 0.1084 1.3928 0.1068 1.2773 0.0471 1.4900 0.0447 1.2398
4 · 104 0.0600 4.6011 0.0525 5.2758 0.0284 5.1578 0.0221 5.1414
16 · 104 0.0387 18.7495 0.0262 22.1779 0.0211 20.4507 0.0111 21.9403
64 · 104 0.0292 83.7759 0.0065 91.8810 0.0182 100.7752 0.0028 89.4101

Figure 4.4: Speed and accuracy comparisons between the QE scheme and the proposed moment based
one
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Legend: parameters as in Table 4.1.
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accuracy may help reducing the computational burden but would introduce some bias3.

Second, it is accurate, as reported in Table 4.3, the bias is extremely small, appearing

only in the third-fourth decimal place. This evidence allows us to state that in the path

independent case the proposed simulation scheme is almost unbiased as confirmed also

by RMSEs reported in Tables 4.4, 4.5 and Figure 4.3, where is possible to see how close

are the RMSEs to the ones obtained in the original papers where the exact simulation

schemes are proposed (resulting, in some cases, even smaller). Hence, we also ask our-

selves which factors explain such good performances of the method, not only in terms

of computing time, but also in terms accuracy. First, note that, due to existence of its

Laplace transform, the moment problem for the random variable Ψ(u, t) is determinate

(see Criterion 1), thus is reasonable to approximate Ψ(u, t) through its moments. Second,

as shown in Figure 4.2, also higher order moments are implicitly matched. Third, the

Pearson’s system is explictly designed for moment matching (see Devroye, 1986) and is

very flexible covering a variety of shapes ensuring a very good fitting to the true but

unknown distribution of Ψ(u, t). These facts provide the theoretical basis which ensure

that the proposed method is highly accurate.

The recent result of De Gennaro Aquino and Bernard (forthcoming) regarding the

joint distribution of time changed Brownian motion and its maximum (see Section 4.5)

allows to extend the results obtained in the case of path independent derivative instru-

ments to the path dependent. This implies that in order to price these kind of options

is sufficient to simulate (only one time) Ψ(u, t) and then apply pricing formulas such as

(4.23) to price options extending the good results outlined above to the case of continu-

ously monitored written on maximum (or minimum) options. Since in this case, to the

best of our knowledge, exact pricing formulas does not exist for the models considered, we

simply report the prices of up and out call barrier and lookback put on minimum options

and compare with the 2D COS method originally proposed by De Gennaro Aquino and

Bernard (forthcoming) in Tables 4.6 and 4.7. Results show that the proposed method is

much more accurate (and also faster) than 2D COS, which fails under some parameter

settings to produce correct option prices. Same methodology applies also to the OU-SV

model. Regarding the SABR (ρ = 0) we propose a conditional Monte Carlo approach to

price continuously monitored written on maximum (or minimum) options and apply to

the case of put on minimum lookbacks. This approach does not depend on the key quan-

tity Ψ(u, t), hence moment based approximations are not necessary. Numerical results

are given in Table 4.8 and show that the proposed method outperforms the benchmark

which is represented by the time discretization based simulation scheme proposed by

Chen et al. (2012) (which is implemented over a very thin time discretization grid in

3The same happens also in the case of the Gamma Expansion method of Glasserman and Kim (2011),
where the choice of the term where truncating the infinite summations impacts both on the accuracy
and the speed of the methodology.
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order to produce, as much possible, continuous monitoring), resulting more accurate and

faster.

Finally, we discuss numerical results of the proposed Algorithm 3 in pricing path

dependent derivatives instrument with finite number of monitoring dates. Despite the

algorithm can be used to simulate each of the models considered throughout this work,

we restrict our attention to the Heston model, for which accurate pricing methodologies

for discretely sampled path dependent options (such as Asian options) exist, allowing us

to compute properly biases (reported in Table 4.9) and RMSEs. In particular, we test the

ability of Algorithm 3 to produce correct price estimates for discrete Asian options and

compare with a benchmark represented by the Andersen (2008) quadratic exponential

scheme. Numerical results show that the proposed method is, for a similar level of CPU

time, much more accurate than the benchmark (see Table 4.10 and Figure 4.4).

4.7 Extensions and further research

In this section we consider some other possible applications of the proposed method. First,

we explore the possibility to extend the Conditional Monte Carlo approach outlined in

Section 4.5 to the pricing of American put options. Second, we investigate the possibility

to adapt (with few modifications) Algorithm 3 in order to simulate more sophisticated

models, such as the Double Heston and the 4/2 stochastic volatility models.

4.7.1 American put options

In the cases of the Heston, SABR (β = 1) and OU-SV models the conditional distribu-

tion of the log-stock price is normal with known mean and variance. Consequently, the

European call option can be computed according to (4.20). Barone-Adesi and Whaley

(1987) propose a simple methodology to find the price of the American put option given

European put option price under the Black-Scholes model. Exploiting this useful fact

and that the European put option prices can be computed by applying the Black-Scholes

formula (see Eq. 4.20) we state that is possible to compute American put option prices

through our method. Unfortunately, two problems arise: first, the method connecting

European and American put option prices is not exact, but only approximated, secondly,

it involves the usage of numerical methods, which must be employed in any simulation.

The result is that the whole procedure may result slow and, possibly, also inaccurate.

Hence, it necessitates of further investigations. In order to show some preliminary result

we compute American put option prices under the Heston model through this method

and compare with the prices reported in Fang and Oosterlee (2011, Table 4). For at the

money option, we obtain an estimated price of 0.5207, which is quite similar to the one

reported by the authors (i.e. 0.520030).
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4.7.2 Simulation of the Double Heston model

Christoffersen et al. (2009) propose a model where the stock price evolves according to

the following triple of SDEs:

dS(t) = rS(t)dt+ σ1(t)S(t)

(
ρ1dW3(t) +

√
1− ρ2

1dW1(t)

)
+ σ2(t)S(t)

(
ρ2dW4(t) +

√
1− ρ2

2dW2(t)

)
dσ2

1(t) = k1(θ1 − σ2
1(t))dt+ v1σ1(t)dW3(t)

dσ2
2(t) = k2(θ2 − σ2

2(t))dt+ v2σ2(t)dW4(t)

where Brownian motions are mutually independent. We note that, since dW3(t) and

dW4(t) are uncorrelated, the couples
(
σ2

1(t),
∫ t
u
σ2

1(s)ds
∣∣∣σ2

1(u)
)

and
(
σ2

2(t),
∫ t
u
σ2

2(s)ds
∣∣∣σ2

2(u)
)

can be simulated separately through the exact simulation method of Broadie and Kaya

(2006) or our method proposed in Section 4.2. Then, we get:

lnS(t) ∼ N (m, s2)

where

m = lnS(u) + r(t− u) +
2∑
j=1

ρj

∫ t

u

σj(s)dWj+2(s)− 1

2

∫ t

u

σ2
j (s)ds,

s =
2∑
j=1

(1− ρ2
j)

∫ t

u

σ2
j (s)ds

and
∫ t
u
σj(s)dWj+2(s) = 1

vj

(
σ2
j (t)− σ2

j (u)− kjθj(t− u) + kj
∫ t
u
σ2
j (s)ds

)
. The proposed

method can thus be extended to the Double Heston model.

4.7.3 Simulation of the 4/2 stochastic volatility model

Grasselli (2017) propose the following stochastic volatility model to describe the stock

price process:

dS(t) = rS(t)dt+ S(t)

(
ασ(t) +

β

σ(t)

)
(ρdW2(t) +

√
1− ρ2dW1(t))

dσ2(t) = k(θ − σ2(t))dt+ vσ(t)dW2(t)

Let’s start noting that the variance dynamics coincides with (4.2), thus σ2(t)|σ2(u) can

be simulated exactly through (4.7). Then, the conditional moment generating function of

Y (t)|σ2(t), where Y (t) := lnS(t), is known analytically (cfr. Grasselli, 2017, Proposition
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4.1):

E[eaY (t)|σ2(t), σu, Y (u)] = exp

(
aY (u) + a

(
r − αβ − αρkθ

v
+
βρk

v

)
(t− u)+

+ a2(1− ρ2)αβ(t− u)

)
exp

(
aαρ

v
(σ2(t)− σ2(u)) +

aβρ

v
ln
σ2(t)

σ2(u)

)
×

×

√
A(a) sinh

(
k(t−u)

2

)
k sinh

(√
A(a)(t−u)

2

) eσ2(t)+σ2(u)

v2

(
k coth( k(t−u)

2 )−
√
A(a) coth

(√
A(a)(t−u)

2

))
×

×

I
2
v2

√(
kθ− v2

2

)2
+2v2B(a)

(
2
√
A(a)σ2(u)σ2(t)

v2 sinh

(√
A(a)(t−u)

2

)
)

I 2kθ
v2 −1

(
2k
√
σ2(u)σ2(t)

v2 sinh( k(t−u)
2 )

) (4.28)

with

A(a) = k2 − 2v2

(
a

(
αρk

v
− 1

2
α2

)
+

1

2
a2(1− ρ2)α2

)
,

B(a) = a

(
βρ

v

(
v2

2
− kθ

)
− β2

2

)
+

1

2
a2(1− ρ2)β2.

Hence, conditional Y (t) can be simulated exactly by inverting numerically (4.28) and

applying inverse transform sampling. The whole procedure is similar to one proposed by

Broadie and Kaya (2006) with the obvious exception that
∫ t
u
σ2(s)ds|σ2(t), σ2(u) is not

involved in the simulation procedure. In order to speed up the code, one can consider the

approach proposed throughout this work, i.e. compute the conditional moments of Y (t)

through Algorithm 1 and generate random numbers from Y (t)|σ2(t), σ2(u), Y (u) through

Algorithm 2. This procedure is expected to be fast, enabling the simulation of the stock

price trajectory at discrete times and, consequently, pricing path dependent derivative

instruments, which, to the best of our knowledge, is an unexplored topic for this model.

4.8 Conclusions

In this chapter we propose a new methodology for simulating stochastic volatility mod-

els. We start from exact simulation schemes and show how to circumvent the most time

consuming step of that methods by computing the moments of the unknown distribution

of the integral of the variance process conditional on the terminal variance. Then, we

show how to create a moment based random numbers generator which is very efficient,

as not requiring any numerical method at any stage. The speed of the procedure allows,

contrarily to exact simulation schemes, to generate whole price trajectories in a reason-
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able amount of time, enabling pricing of path dependent derivative instruments whose

price is observed on a discrete time grid. We apply the method to the Heston, SABR and

OU-SV stochastic volatility models, but, with few modifications, is also possible to ex-

tend the methodology to other, more complicated, models. This is left as future research.

Subsequently, we consider the problem of pricing derivative instruments and show that

proposed method can be successfully embedded into a conditional Monte Carlo frame-

work, allowing to price efficiently a large class of path independent and path dependent

derivative instruments, such as barriers and lookback. The same methodology can be

possibly extended to the pricing of American put options, leaving some other space to

future research. We present extensive numerical results. We start by highlighting the

good performances of the proposed algorithm in computing the moments of the unknown

distribution with respect to more traditional competitors. Then, we test its accuracy by

computing European option prices and performing an extensive comparison with exact

methods. It turns out that, for a similar accuracy, our proposed method is much faster.

In the context of pricing path dependent derivative instrument, we compare the proposed

algorithm with alternative methods proposed in literature based on time discretization.

For similar computing time, our method results more accurate than benchmark competi-

tors.
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Chapter 5

Asian options pricing in

Hawkes-type jump-diffusion models

In this chapter we propose a method for pricing Asian options in market models with

the risky asset dynamics driven by a Hawkes process with exponential kernels. For these

processes the couple (λ(t), X(t)) is affine, this property allows to extend the general

methodology introduced by Hubalek et al. (2017) for geometric Asian option pricing to

jump-diffusion models with stochastic jumps intensity. Although the system of ordinary

differential equations providing the characteristic function of the related affine process

cannot be solved in closed form, a COS-type algorithm allows to obtain the relevant

quantities needed for options valuation. We describe, by means of graphical illustrations,

the dependence of Asian options prices by the main parameters of the driving Hawkes

process, finally, by using geometric Asian options values as control variates, we show that

arithmetic Asian options prices can be computed in a fast and efficient way by standard

Monte Carlo methods.

5.1 Introduction

Several different kind of models have been proposed during the last 40 years in order to

improve the forecasting performances of the Black-Scholes model, which is based on a

geometric Brownian motion description of the risky asset dynamics. In particular, mod-

els with jumps (see Cont and Tankov, 2004) are able to provide smiles for the implied

volatility, although not very realistic for long maturities. Models introducing a stochastic

dynamics for the diffusion coefficient of the Brownian motion, named stochastic volatility

models, can provide smiles realistic only for long maturities. More sophisticated mod-

els introduce both stochastic volatility and jumps in order to provide realistic smiles

for all maturities. The model proposed by Bates (1996a) combines the features of the

jump-diffusion model proposed by Merton (1976) with those of the stochastic volatility
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model proposed by Heston (1993). Barndorff-Nielsen and Shephard (2001) and Barndorff-

Nielsen et al. (2002) introduced a model in which the volatility dynamics is described by

an Ornstein-Uhlenbeck process driven by a subordinator. Another reasonable attempt

to improve the asset price dynamics description has been done by Carr et al. (2003)

and Carr and Wu (2004), which propose the so-called Time-Changed Lévy models. We

mention also the model introduced by Bates (2000), in which an affine (deterministic)

dependence is included between the stochastic volatility and the jumps intensity.

All the above mentioned pricing models in which stochastic volatility features have

been combined with jumps belong to the large family of the so-called affine models,

according to the definition provided by Duffie et al. (2003). This class includes almost all

the most popular pricing models existing in the literature related to many different type of

underlying assets: fixed income securities, credit risk models, equities and commodities.

Many relevant features of these models can be described in a unified way by the very

general framework provided by the affine process approach. For an extensive treatment

of the general properties of affine models and some related technical issues we refer to

Keller-Ressel (2008).

In the paper by Hubalek et al. (2017) a general methodology for geometric Asian

option pricing is introduced, and for several specific models of affine type closed-form

solutions are obtained for the Riccati equations providing the affine characteristics for

the joint dynamics of log-returns, volatility and their average processes, and their joint

moment generating functions. This approach allows to compute the geometric Asian

options price by a simple inversion of a Laplace transform, which represents the only

numerical step in the pricing procedure and for which several fast and accurate algorithms

are available.

Recently, new models have been proposed in order to describe risky assets price dy-

namics, including jumps with self-exciting features. Evidence has been provided that

jumps appear in clusters, this phenomenon is investigated in the paper by Filimonov

et al. (2014), where a large amount of price sudden movements is shown to be of endoge-

nous type, i.e. they are produced by previous sudden movements. The most popular way

to introduce self-excited jumps in the asset price dynamics is by using Hawkes processes.

In the paper by Bacry et al. (2013) a limit order book modelling approach is presented,

offering a micro-structure foundation for Hawkes-type models. Ait-Sahalia et al. (2015)

adopt a Hawkes vector framework in order to describe mutually exciting jumps in the

market and Fulop et al. (2015) propose a Bayesian learning approach to jumps cluster

detection and provide evidence of jumps clustering since the 1987 market crash, which

appeared even more pronounced after the 2008 global financial crisis. Rambaldi et al.

(2015) propose a model based on Hawkes processes in order to describe the foreign ex-

change markets and Kiesel and Paraschiv (2017) introduce a Hawkes-type model in order

to describe the power price dynamics in energy markets.
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Marked Hawkes processes are compound Poisson processes with stochastic intensity;

when the kernel characterizing the self-exciting dynamics is of exponential type, the

couple (λ(t), X(t)), where λ(t) is the jump intensity and X(t) is the log-asset price, is an

affine process. This allows to apply the general framework introduced in Hubalek et al.

(2017) in order to evaluate geometric Asian options.

The purpose of the present chapter is to propose a fast and efficient pricing method

for Asian options in a Hawkes modelling setting. As a reference model we shall adopt the

jump-diffusion model proposed by Hainaut and Moraux (2018), but our approach could

be easily adapted to other models based on Hawkes processes with exponential kernel.

The Riccati equations describing the joint dynamics of log-returns and their arithmetic

average, unfortunately, cannot be solved in closed form, but the well-known COS method

proposed by Fang and Oosterlee (2008) can be used to get option prices with a reasonable

amount of characteristic function evaluations. To our knowledge, this is the first attempt

to solve the valuation problem for Asian options in a Hawkes-type modelling framework.

It is well known that, the usage of the geometric Asian options values as control vari-

ates in a Monte Carlo simulation for arithmetic Asian options pricing allows to reduce

dramatically the variance of the simulation step. We shall use this property in order

to compute the arithmetic Asian options price as well and illustrate how the simula-

tion method can be made fast and efficient once the geometric Asian options values are

obtained through the proposed method.

The plan of the work is the following: in Section 5.2 we introduce our self-exciting

jump-diffusion model by following the proposal by Hainaut and Moraux (2018) and we

illustrate their affine features. Then we formulate the basic results for geometric Asian

options pricing for jump-diffusion models with stochastic intensity by introducing the re-

quired modifications in the approach proposed in Hubalek et al. (2017) for affine stochas-

tic volatility models. In Section 5.3 we derive the closed form solution for the geometric

Asian option prices and illustrate the simulation approach adopted for arithmetic Asian

options valuation, in which geometric Asian options values are in use as a control variate.

In Section 5.4 we show and discuss numerical results, Section 5.5 concludes.

5.2 Model setup

We model the log-returns of the underlying under the risk neutral measure Q through

the following couple of SDEs:

dX(t) =

(
r − σ2

2
− E[eJ − 1]λ(t)

)
dt+ σdW (t) + d

N(t)∑
i=1

Ji

 (5.1)

dλ(t) = α(θ − λ(t))dt+ ηdL(t) (5.2)
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where X(t) := lnS(t), S(t) denotes the price of the underlying at time t, r is the risk-less

rate, σ is the diffusion coefficient, Ji is the size of the i-th jump, N(t) ∼ Poisson(λ(t))

and L(t) is a jump process defined as:

L(t) =

N(t)∑
i=1

|Ji|

with Ji ∼ DE(p, ρ+, ρ−), where DE(p, ρ+, ρ−) is the double exponential distribution, with

probability of positive jumps denoted with p, average sizes of positive and negative shocks

given, respectively, by 1
ρ+ and 1

ρ−
. In agreement with the present notation X(0) = lnS(0).

Remark 5.1. We model directly the asset dynamics under the risk-neutral measure Q.

A measure change preserving the model structure and the relations between parameters

under the historical measure P and the risk-neutral measure Q is proposed in Hainaut

and Moraux (2018), together with an estimation method and a hedging strategy based on

European options trading.

Proposition 5.1. Hainaut and Moraux (2018)

Given the model specified by equations (5.1) and (5.2), consider t ∈ [0, T ] the joint

characteristic function of (X(T ),λ(T )) is given by:

E0[eu1X(T )+u2λ(T )|X(0), λ(0)] = exp (A(0, T ) + λ(0)B(0, T ) + u1X(0)) , (5.3)

for all (u1, u2) ∈ iR2 where A(t, T ) and B(t, T ) are given by the solution of the following

ODEs system: ∂A
∂t

= F (u1, B), B(T, T ) = u2

∂B
∂t

= R(u1, B), A(T, T ) = 0
(5.4)

where E0[·] indicates that the expectation is taken with respect to the risk neutral measure,

F (u1, B) = −αθB −
(
r − σ2

2

)
u1 − σ2

2
u2

1, R(u1, B) = −αB + ku1 − (ψ(Bη, u1) − 1),

k = E0[eJ−1] and ψ(z1, z2) = p ρ+

ρ+−(z1+z2)
+(1−p) ρ−

ρ−−(z1−z2)
is the joint moment generating

function of the distribution of the jumps size and their absolute value.

Errais et al. (2010) show that (X,λ) is an affine process, we aim to exploit this result

extending the validity of Proposition 5.1 to the following quantities:

Y (T ) :=

∫ T

0

X(s)ds, Λ(T ) :=

∫ T

0

λ(s)ds. (5.5)

We get the following theoretical result:
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Proposition 5.2. If (X,λ) is an affine model with functional characteristics (F,R), then

the joint characteristic function of (X(T ), λ(T ), Y (T ),Λ(T )) is given by:

E0[eu1X(T )+u2λ(T )+u3Y (T )+u4Λ(T )|X(0), λ(0)] = exp
(
A(0, T ) + (u1 + u3T )X(0) +B(0, T )λ(0)

)
,

(5.6)

for all (u1, u2, u3, u4) ∈ iR4 where A and B are given by the solution of the following

ODEs system: ∂A
∂t

= F (u1 + u3t, B), A(T, T ) = 0

∂B
∂t

= R(u1 + u3t, B)− u4, B(T, T ) = u2

(5.7)

and F (·, ·) and R(·, ·) are as in Proposition 5.1.

Proof. Since (X,λ) is an affine process, the proof follows from Hubalek et al. (2017,

Proposition 3)

This result enables the pricing of European and fixed strike geometric Asian options

through simple changes of arguments, we are going to detail this in next section. As far

as the Average Strike options are concerned, we need to extend to the present case the

results on the change of numéraire obtained in Hubalek et al. (2017, Section 4). If we

denote by Q0 and Q1 respectively the risk-neutral probabilities with the money market

account and the risky asset as numéraires, the results can be reformulated as follows:

Lemma 5.1. If (X,λ) is affine under Q0 with functional characteristics F 0 and R0, then

it is affine under Q1 with functional characteristics F 1 and R1 given by

F 1(u1, u2) = F 0(u1 + 1, u2), R1(u1, u2) = R0(u1 + 1, u2). (5.8)

Lemma 5.2. If (X,λ) is an affine model, then the joint law of (Xt, Yt =
∫ t

0
Xsds) under

Q1 is described by

E1[eu1X(t)+u2Y (t)|X(0), λ(0)] = exp (C(t, u1, u2) +X(0)(u1 + u2t) + λ(0)D(t, u1, u2))

(5.9)

for all (u1, u2) ∈ iR2, where

∂tC(t, u1, u2) = F 0(u1 + 1 + u2t,D(t, u1, u2)) C(0, u1, u2) = 0 (5.10)

∂tD(t, u1, u2) = R0(u1 + 1 + u2t,D(t, u1, u2)) D(0, u1, u2) = u2. (5.11)

Moreover, the Riccati equations can be extended to all parameters values in the effective

domain (for the definition of the effective domain we refer to Hubalek et al., 2017).

Proof. The proof of the two previous statements follows step by step the proof provided
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in Hubalek et al. (2017), by assuming the stochastic intensity λ as a state variable instead

of the variance.

In next section we are going to illustrate how the general results presented in this

section can be applied in order to get geometric Asian options prices.

Remark 5.2. In the following, in agreement with Hainaut and Moraux (2018), we al-

ways assume the relevant characteristic/moment generating functions and cumulants to

exist finite for the parameters values considered. Conditions on the affine characteristics

granting moments and cumulants existence can be found in Keller-Ressel (2011).

5.3 Option pricing

In this section we show how to price European and Asian (fixed and floating strike) options

for the model specified in (5.1) and (5.2). We start by identifying the characteristic

functions which will be used to get the price of the various derivative instruments, this

will be inverted numerically through the COS method (see Appendix A) to get the price

of European and geometric Asian options. In this context, we also show how to compute

a proper truncation range for an efficient implementation of the COS method. Finally,

we discuss arithmetic Asian options pricing.

5.3.1 Option pricing given the characteristic function

Let’s start recalling that S(T ) := eX(T ) and defining the geometric average of the price

process at maturity as G(T ) := e
Y (T )
T . The price of European and fixed and average strike

geometric Asian options is given, respectively, by:

pE = e−rTE0[(S(T )−K)+] = e−rT
∫ ∞
−∞

(ex −K)+fX(x)dx (5.12)

pGFS = e−rTE0[(G(T )−K)+] = e−rT
∫ ∞
−∞

(e
y
T −K)+fY (y)dx (5.13)

pGAS = e−rTE1[(1− eZ(T ))+] = e−rT
∫ ∞
−∞

(1− ez)+fZ(z)dz, (5.14)

where r is the risk-less rate, T is the option maturity, K is the strike price, S(0)

is the starting price, Z(T ) := Y (T )
T
− X(T ) and f·(·) is the probability density function

(henceforth pdf). Proposition 5.2 and Lemmas 5.1 and 5.2 can be used to derive the

characteristic function of X(T ), Y (T ), Z(T ) through simple changes of arguments. Let’s

start considering the case of European and fixed strike geometric Asian options: in the

case where u2 = u3 = u4 = 0 (respectively, u1 = u2 = u4 = 0) Proposition 5.2 allows to

identify the characteristic function of the log-returns (integrated log-returns) which can
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be inverted numerically to obtain the price of the European (geometric Asian) option.

Similarly, consider replacing u1 = −1 and u2 = u
T

into (5.9), Lemma 5.2 identifies the

characteristic function under Q1 of Z(T ).

These results open the doors to options pricing through standard inversion algorithms,

such as FFT and COS methods. Hainaut and Moraux (2018) propose pricing formulas for

European calls and puts based on FFT, but the COS method is usually preferable because

of its exponential convergence to the true solution (while its computational complexity is

linear), see Fang and Oosterlee (2008). The most obvious consequence is that option price

can be estimated through a smaller number of evaluations of the characteristic functions,

this is particularly important when it is given by time consuming numerical techniques

such as, for example, solution of an ODEs system as in the present case. Main features

of the COS method are summarized in Appendix A.

In what follows, we show how to compute explicitly the cumulants of the probability

density functions involved in (5.12), (5.13) and (5.14). This is important since, as pointed

out by Fang and Oosterlee (2008, pag. 840), if L = 10 then formula (A.5) gives a

truncation error around 10−12, enlarging the interval [a, b] would require larger N to

reach the same level of accuracy.

Remark 5.3. The choice of N impacts on the efficiency of the method as the characteris-

tic function of log-returns must be evaluated N − 1 times. This aspect is crucial when the

characteristic function must be computed through time consuming numerical techniques

such as, for example, by solving an ODEs system.

Hence, given the characteristic function of log-returns, the pdf can be recovered from

formula (A.3). Given the pdf, the price of the option can be computed from equations

(5.12), (5.13) and (5.14) by computing the integral numerically.

5.3.2 Truncation range computation

In this section we show how to compute the moments of log-returns in the model specified

in (5.1) and (5.2) given the characteristic function in (5.3). These will be then used for

computing a proper truncation range for implementation of COS method for European

options pricing. For sake of brevity and clarity, we restrict our attention to the cumu-

lants of log-returns, but the same argument applies also to Y (T ) and Z(T ). Taking the

logarithm of (5.3) one gets the cumulant generating function:

ψ(u1, u2, u3, u4) = A(0, T ) + (u1 + u3T )X(0) +B(0, T )λ(0). (5.15)
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By setting u1 = u, u2 = u3 = u4 = 0, we get the cumulants of log-returns1 according to:

kn =
∂nψ(u)

∂un

∣∣∣∣
u=0

=
∂nA(0, T )

∂un

∣∣∣∣
u=0

+
∂nu

∂un

∣∣∣∣
u=0

·X(0) +
∂nB(0, T )

∂un

∣∣∣∣
u=0

· λ(0), (5.16)

with ∂nu
∂un

∣∣
u=0
·X(0) =

X(0) if n = 1

0 if n ≥ 2
and


∂
∂t

(
∂nA(t,T )
∂un

∣∣∣∣
u=0

)
= ∂nF (u,B)

∂un

∣∣∣∣
u=0

, A(T, T ) = 0

∂
∂t

(
∂nB(t,T )
∂un

∣∣∣∣
u=0

)
= ∂nR(u,B)

∂un

∣∣∣∣
u=0

, B(T, T ) = 0
. (5.17)

Tedious maths show that this system can be solved analytically for each n ∈ N+ (we

don’t report here analytical solution, Mathematica® codes are given in Appendix C.2).

Finally, we stress that, taking the logarithm of (5.9) one gets the cumulant generating

function of Z(T ), which can be used for the case of Average Strike. Given cumulants,

moments can be computed analytically using Faá di Bruno’s formula for high derivatives

of composite functions:

E[Xn] =
n∑
i=1

Bn,i(k1, ..., kn−i+1),

where Bn,i are the incomplete Bell polynomials. A first application of this result concerns

the calculation of the proper truncation range for implementation of the COS method.

We note that moments of ln
(
S(T )
K

)
can be expressed as function of the moments of X:

zn := E

[(
ln

(
S(T )

K

))n]
= E

[(
ln

(
S(0)

K

)
+X

)n]
. (5.18)

By solving equation (5.18) for n = {1, 2, 3, 4} one can compute the cumulants in (A.5)

according to:

c1 = z1, c2 = z2 − z2
1 , c3 = z3 − 3z2z1 + 2z3

1 , c4 = z4 − 4z3z1 − 3z2
2 + 12z2z

2
1 − 6z4

1 .

(5.19)

By substituting these into (A.5) one gets the truncation range.

1Similarly, posing u3 = u, u1 = u2 = u4 = 0 one gets the cumulants of Y (T ).
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5.3.3 Pricing arithmetic Asian options

Since the distribution of the arithmetic average is unknown even under very simple model

assumptions for the underlying’s price (e.g. geometric Brownian motion), simple exact

closed form solutions does not exist for the price of arithmetic average Asian options.

Several techniques based on moments, lower and upper bounds and Monte Carlo simula-

tion have been proposed in literature to approximate their value under different dynamics

for the price process (see, for example, Section 1.5 for the case of Black-Scholes model, or

Fusai and Kyriakou, 2016 for alternative models). In this chapter, since we are dealing

with a very involved dynamics for the log-returns, we consider Monte Carlo methods.

The simulation of a Hawkes process is not a trivial task, Ogata (1981) and Dassios and

Zhao (2013) present exact schemes, with the latter outperforming the former in terms of

runtime speed. Despite that, such method is still very time consuming, as a result, we

choose to simulate the SDE in (5.2) using the Euler scheme2. This choice reduces drasti-

cally the computing time, but introduces a large discretization error. Consequently, crude

Monte Carlo simulation is not a convenient choice and can be only used as benchmark

(a very fine discretization grid and a large number of simulations is needed to achieve a

good accuracy). Runtime-accuracy performances can be highly improved by using control

variates methods, which are easily implementable in our context thanks to the availability

of a semi-closed form solution for the price of geometric (fixed and floating) strike Asian

option (see Kemna and Vorst, 1990 and Fu et al., 1999).

More specifically, let’s denote with A(T ) := 1
T

∫ T
0
S(t)dt the arithmetic average of

the price process, the value of fixed and average strike arithmetic Asian option can be

computed, respectively, as:

pAFS = e−rTE0
[
(A(T )−K)+ + ζ1

(
(G(T )−K)+ − pGFS

)]
, (5.20)

pAAS = e−rTE0
[
(S(T )− A(T ))+ + ζ2

(
(S(T )−G(T ))+ − pGAS

)]
(5.21)

where pGFS and pGAS are computed as in (5.13) and (5.14), the control variates coefficients

ζ1,2 are estimated, following Glasserman (2004) and Cont and Tankov (2004), running

pilot simulations3.

5.4 Numerical results

Numerical results are provided in this section. We start by identifying some parameter

settings taken from literature for the model specified by equations (5.1) and (5.2). By

using the peaks over treshold method, Hainaut and Moraux (2018) calibrate the model

specified by equations (5.1) and (5.2) on the S&P 500 index, we consider three different

2The author acknowledges Luca Gonzato for helpful discussions on the simulation of Hawkes processes.
3In particular we are using here 102 pilot simulations.
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Table 5.1: Parameter settings in literature for the model in (5.1) and (5.2).

r σ α θ η p ρ+ ρ−

A 0.05 0.12 14.71 4.68 244.82 0.36 42.74 -46.17
B 0.05 0.12 14.71 5.57 291.36 0.37 35.58 -39.01
C 0.05 0.12 14.71 6.44 337.08 0.37 30.47 -33.90

Figure 5.1: Probability density functions of X(T ) (left subplot) and Y (T )
T (right subplot)
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Legend: parameter settings as in Table 5.1, final date T = 3 years.

parameter settings taken from their results (these are summarized in Table 5.1). We

note immediately that jumps are very frequent (parameter η is very high) and that since

positive jumps are rarer than negative, the resulting distribution of the log-returns (and,

as a consequence, of the average returns) presents elevated kurtosis and heavy left tail.

The resulting probability density function for the parameter settings in Table 5.1 is shown

in Figure 5.1.

Secondly, we implement the following numerical exercise: compute the price of Eu-

ropean and geometric Asian (fixed and floating strike) call options through Monte Carlo

(which is used as benchmark) and COS method. Following Hubalek and Sgarra (2011)

we consider five different strikes K = {80, 90, 100, 110, 120} and three different maturi-

ties T = {1, 2, 3} years. Prices are computed using the COS method with characteristic

functions as in Proposition 5.2 and Lemma 5.2, and ODEs systems characterizing the

characteristic functions are solved numerically using an explicit Runge-Kutta (4,5) for-

mula4. Absolute and relative tolerances are set equal to, respectively, 10−9 and 10−10.

The truncation range is computed as in formula (A.5) and infinite summations are

4We use the built-in Matlab® function ode45.
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Table 5.2: Price and confidence interval of European call options for different strikes and maturities
calculated through Monte Carlo simulation and the COS method

T = 1 T = 2 T = 3
95% C.I. COS 95% C.I. COS 95% C.I. COS

A
K = 80 (24.0513,24.1074) 24.0884 (28.0686,28.1478) 28.1007 (31.7868,31.8841) 31.8421
K = 90 (15.3780,15.4297) 15.4152 (20.1502,20.2240) 20.1798 (24.3599,24.4520) 24.4117
K = 100 (8.3931,8.4356) 8.4297 (13.4922,13.5574) 13.5210 (17.9296,18.0138) 17.9752
K = 110 (3.8473,3.8778) 3.8785 (8.4248,8.4791) 8.4509 (12.6910,12.7653) 12.7309
K = 120 (1.5052,1.5246) 1.5241 (4.9345,4.9773) 4.9547 (8.6674,8.7310) 8.7028
CPU 115.1754 1.0911 212.1326 1.0728 368.1458 1.0472

B
K = 80 (24.2826,24.3473) 24.3422 (28.5492,28.6411) 28.6035 (32.4618,32.5757) 32.5067
K = 90 (15.9370,15.9961) 15.9928 (21.0221,21.1077) 21.0759 (25.4458,25.5534) 25.4915
K = 100 (9.2439,9.2935) 9.2918 (14.7122,14.7887) 14.7649 (19.3928,19.4919) 19.4373
K = 110 (4.7346,4.7724) 4.7742 (9.8167,9.8824) 9.8657 (14.4075,14.4968) 14.4480
K = 120 (2.1988,2.2257) 2.2275 (6.2912,6.3457) 6.3318 (10.4701,10.5489) 10.5071
CPU 115.0458 1.1361 213.0240 1.0222 384.1418 1.0120

C
K = 80 (24.9868,25.0674) 25.0330 (29.8733,29.9914) 29.9447 (34.2306,34.3800) 34.2774
K = 90 (17.1450,17.2189) 17.1854 (22.9766,23.0872) 23.0442 (27.8994,28.0414) 27.9413
K = 100 (10.8308,10.8950) 10.8673 (17.1704,17.2717) 17.2340 (22.4243,22.5576) 22.4591
K = 110 (6.3776,6.4307) 6.4083 (12.5303,12.6212) 12.5877 (17.8197,17.9434) 17.8490
K = 120 (3.6082,3.6509) 3.6318 (8.9902,9.0706) 9.0398 (14.0420,14.1558) 14.0666
CPU 114.5119 1.0286 228.2773 1.0843 354.4452 1.0414

Legend: Parameter setting as in Table 5.1 and initial price is S(0) = 100. Monte Carlo simulation is
implemented using 106 simulations and discretizing the time grid with 1000 · T equally spaced points.
COS is implemented truncating infinite summations at 27, CPU time is expressed in seconds.

truncated atN = 27. In Table 5.2 we show the price of the European call option computed

through Monte Carlo simulation and the COS method. We note that both procedures

are very accurate with the COS price always falling into the confidence interval provided

by Monte Carlo. In Table 5.3 we show the same results regarding the geometric (fixed

and floating strike) Asian call option. We note that Monte Carlo is less accurate in this

situation (this is particularly evident looking at the price of the floating strike Asian

options) and the bias is certainly due to time discretization.

We also investigate the sensitivity of the price of the fixed strike Geometric Asian call

options on the Hawkes process parameters (α, θ and η), see Figure 5.2. We note that the

parameter α (which indicates the speed of mean reversion of the Hawkes process) impacts

negatively the call option price, indeed, the higher α, the lower the expected number of

jumps (and, consequently, the variance of the distribution at maturity of the average of

log-returns). A similar argument holds for the long run mean jump intensity θ and the

parameter η (which controls the magnitude of jumps in the marked Hawkes process).

Finally, we exploit availability of geometric Asian call options values in order to price

arithmetic Asian call options through the control variates method (see formulas (5.20)
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Table 5.3: Price and confidence interval of geometric (fixed and floating strike) Asian call options for
different strikes and maturities calculated through Monte Carlo simulation and the COS method

T = 1 T = 2 T = 3
95% C.I. COS 95% C.I. COS 95% C.I. COS

A
K = 80 (21.2443,21.2761) 21.2705 (22.4207,22.4646) 22.4542 (23.5066,23.5588) 23.5395
K = 90 (11.9546,11.9848) 11.9971 (13.8471,13.8881) 13.8929 (15.5058,15.5547) 15.5501
K = 100 (4.4014,4.4236) 4.4702 (6.8445,6.8775) 6.9026 (8.8503,8.8915) 8.9056
K = 110 (0.8707,0.8812) 0.9187 (2.5748,2.5963) 2.6254 (4.2865,4.3170) 4.3392
K = 120 (0.1031,0.1068) 0.1169 (0.7450,0.7567) 0.7743 (1.7697,1.7896) 1.8084
AS (4.7818,4.8068) 4.7545 (7.6911,7.7301) 7.6840 (10.2945,10.3458) 10.2930
CPU - FS 115.0179 1.5225 212.1204 1.4365 368.0770 1.3121
CPU - AS 114.9270 1.0027 212.0176 1.4562 367.9541 1.6107

B
K = 80 (21.2016,21.2380) 21.2537 (22.3959,22.4464) 22.4557 (23.5062,23.5666) 23.5551
K = 90 (12.0750,12.1089) 12.1853 (14.0917,14.1382) 14.1983 (15.8227,15.8784) 15.9092
K = 100 (4.7785,4.8039) 4.9527 (7.3992,7.4370) 7.5511 (9.5109,9.5584) 9.6314
K = 110 (1.1896,1.2035) 1.3214 (3.1763,3.2028) 3.3244 (5.0800,5.1168) 5.2063
K = 120 (0.2266,0.2332) 0.2828 (1.1533,1.1699) 1.2556 (2.4438,2.4702) 2.5489
AS (5.3466,5.3766) 5.2231 (8.5373,8.5840) 8.4416 (11.3337,11.3952) 11.2552
CPU - FS 115.0533 2.0634 213.0202 1.7715 384.0936 1.6361
CPU - AS 114.9365 1.0327 212.9111 1.3264 383.9907 1.6529

C
K = 80 (21.1833,21.2270) 21.3327 (22.4272,22.4893) 22.6529 (23.5980,23.6731) 23.8174
K = 90 (12.3513,12.3911) 12.6791 (14.6083,14.6647) 14.9734 (16.4880,16.5568) 16.8109
K = 100 (5.3968,5.4277) 5.8742 (8.3759,8.4230) 8.8429 (10.7006,10.7606) 11.0980
K = 110 (1.7385,1.7583) 2.1507 (4.2506,4.2869) 4.7130 (6.4915,6.5411) 6.9008
K = 120 (0.5110,0.5229) 0.7561 (1.9950,2.0215) 2.3645 (3.7471,3.7867) 4.1116
AS (6.4647,6.5055) 6.0223 (10.2901,10.3548) 9.8779 (13.5475,13.6340) 13.1777
CPU - FS 114.5002 2.2244 228.2661 2.2353 354.3970 1.7965
CPU - AS 114.3982 1.0126 228.1672 1.3011 354.2999 1.6413

Legend: ”FS” denotes ”Fixed Strike”, ”AS” denotes ”Average Strike”. Further notes: refer to Table 5.2.
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Figure 5.2: Price of fixed strike Geometric Asian options for different α, θ and η
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Legend: other parameters are as in parameter setting ”C” (see Table 5.1) with maturity T = 3 years.

and (5.21)). The numerical results are reported in Table 5.4. The usage of control variates

method allows to reduce significantly the number of simulations required to get a good

estimate of the price (indeed we use 105 simulations instead of 106 as in Tables 5.2 and

5.3) and to reduce the time discretization bias.

5.5 Conclusions

With the aim of taking into account the jump clustering phenomena widely observed in

financial markets, we model the log-returns dynamics of the underlying asset through a

self-exciting jump diffusion model of Hawkes-type and, by exploiting the affine features

of the model considered, we derive the characteristic function of the arithmetic average

of log-returns in the form of the solution of an ODEs system. By starting with this

general result as a building block, we derive semi-closed form solutions for geometric

(fixed and floating strike) Asian options under this model by applying the COS method.

We evaluate accuracy and efficiency of such approach through an extensive numerical

study based on the usage of Monte Carlo simulation as a benchmark. Numerical results

show that the proposed pricing method is fast and accurate. Finally, we show that this

closed form solutions can be easily incorporated into a Monte Carlo simulation as control

variables, allowing for an efficient pricing of arithmetic Asian options as well.
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Table 5.4: Price and confidence interval of arithmetic (fixed and floating strike) Asian call options
for different strikes and maturities calculated through Monte Carlo simulation with geometric average
counterpart used as control variable

T = 1 T = 2 T = 3
Price SE ·105 95% C.I. Price SE ·105 95% C.I. Price SE ·105 95% C.I.

A
K = 80 21.3591 0.2717 (21.3575,21.3608) 22.7841 0.6134 (22.7803,22.7879) 24.0815 0.9161 (24.0758,24.0872)
K = 90 12.0743 0.3353 (12.0722,12.0763) 14.1945 0.6795 (14.1903,14.1987) 16.0526 1.0277 (16.0463,16.0590)
K = 100 4.5373 0.4301 (4.5346,4.5399) 7.1622 0.8264 (7.1571,7.1673) 9.3531 1.1462 (9.3460,9.3602)
K = 110 0.9676 0.3950 (0.9651,0.9700) 2.8228 0.9250 (2.8171,2.8286) 4.7074 1.2150 (4.6999,4.7150)
K = 120 0.1315 0.3394 (0.1294,0.1336) 0.8875 0.8663 (0.8821,0.8928) 2.0706 1.1831 (2.0633,2.0779)
AS 4.6855 0.3852 (4.6831,4.6879) 7.4333 0.7735 (7.4285,7.4381) 9.8557 1.2261 (9.8481,9.8633)
CPU - FS 13.2173 26.5489 59.0626
CPU - AS 12.4671 25.0717 37.6292

B
K = 80 21.4056 0.3696 (21.4033,21.4078) 22.9016 0.7821 (22.8967,22.9064) 24.2635 1.3712 (24.2550,24.2720)
K = 90 12.3136 0.4271 (12.3110,12.3163) 14.5958 0.8681 (14.5905,14.6012) 16.5550 1.4746 (16.5458,16.5641)
K = 100 5.0572 0.5528 (5.0537,5.0606) 7.8899 0.9723 (7.8838,7.8959) 10.2040 1.5753 (10.1942,10.2138)
K = 110 1.3925 0.6387 (1.3885,1.3965) 3.5906 1.0223 (3.5842,3.5969) 5.6863 1.6242 (5.6762,5.6964)
K = 120 0.3030 0.7985 (0.2981,0.3080) 1.4321 0.8834 (1.4266,1.4375) 2.9134 1.5680 (2.9037,2.9231)
AS 5.1130 0.5356 (5.1096,5.1163) 8.1028 0.9736 (8.0967,8.1088) 10.6837 1.6420 (10.6736,10.6939)
CPU-FS 13.1373 24.7512 38.7536
CPU-AS 12.5227 23.0554 37.1071

C
K = 80 21.6181 0.6944 (21.6138,21.6224) 23.3743 1.4701 (23.3652,23.3835) 24.9273 3.2365 (24.9073,24.9474)
K = 90 12.9109 0.8226 (12.9058,12.9160) 15.6038 1.6275 (15.5937,15.6139) 17.8027 3.3642 (17.7819,17.8236)
K = 100 6.0463 0.9975 (6.0401,6.0525) 9.3784 1.7325 (9.3677,9.3892) 11.9704 3.4279 (11.9491,11.9916)
K = 110 2.2626 1.0850 (2.2558,2.2693) 5.1484 1.7614 (5.1375,5.1594) 7.6505 3.4157 (7.6293,7.6716)
K = 120 0.8031 1.1175 (0.7962,0.8100) 2.6882 1.7041 (2.6776,2.6987) 4.7280 3.2948 (4.7075,4.7484)
AS 5.8049 1.0628 (5.7983,5.8115) 9.3295 2.0474 (9.3168,9.3422) 12.2271 4.8515 (12.1970,12.2571)
CPU - FS 15.7604 23.0520 41.6911
CPU - AS 13.5132 22.7089 37.5917

Legend: Prices computed according to (5.20) and (5.21). Further notes: refer to Tables 5.2 and 5.3.
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Appendix

A The COS method

Consider a model where the underlying’s price at time T is given by S(T ) = S(0)eX(T ),

where X(T ) is the distribution of log-returns at maturity. The COS method allows to

price efficiently European-style options given only the knowledge of the characteristic

function of X(T ). Suppose to have an European option, whose price can be computed

according to

p = e−rTE[(S(T )−K)+] = e−rT
∫ ∞

0

(S(0)ex −K)+fX(x)dx (A.1)

Given a characteristic function (denoted with φ (·)), the probability density function (pdf

in the following) can be computed as follows:

f(x) =
1

2π

∫
R
e−iuxφ(u)du. (A.2)

Several algorithms can be used to solve the integral in (A.2), we refer to Fang and

Oosterlee (2008) for a review. Among them, the best performances are obtained through

the COS method, where the inverse Fourier integral in (A.2) is computed via cosine

expansion and the pdf is approximated as follows:

f(x) =
∞∑
k=1

Fk cos

(
kπ
x− a
b− a

)
+

1

b− a
≈

N−1∑
k=1

Fk cos

(
kπ
x− a
b− a

)
+

1

b− a
, (A.3)

where Fk = 2
b−aReal

(
φ
(
kπ
b−a

)
· exp

(
−i kaπ

b−a

))
and [a, b] ∈ R is chosen such that:

∫ b

a

eiuxf(x)ds ≈
∫
R
eiuxf(x)dx. (A.4)

In other words, in order to implement the COS method is necessary to truncate the

domain of the pdf through a suitable choice of a and b. In order to do that, Fang and
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Oosterlee (2008) propose the following formulas:

a = c1 − L
√
c2 +

√
c4, b = c1 + L

√
c2 +

√
c4 (A.5)

where L can be chosen arbitrary large and ci denotes the i − th cumulant of ln
(
S(T )
K

)
.

Since cumulants can be expressed as functions of moments, the choice of the truncation

range is related to the moments of log-returns. Hence, given the characteristic function

of log-returns, the pdf can be recovered from formula (A.3). Given the pdf, the price of

the option can be computed from equation (A.1) by computing the integral numerically,

for example using the trapezoidal method.

B Laplace transforms

In this appendix, we provide explicit expressions for the Laplace transforms of the time-

integral of the variance (its reciprocal for the SABR model) conditional on the level of

volatility at the endpoints of the time interval [u, t] (and the integrated volatility in the

case of the OU-SV model).

B.1 Heston model

The Laplace transform of the conditional integrated variance is

L(a) = E

[
exp

(
−a
∫ t

u

σ2(s)ds

)∣∣∣∣σ(u), σ(t)

]
=
γ(a)e−(γ(a)−k)(t−u)/2(1− e−k(t−u))

k(1− e−γ(a)(t−u))
×

exp

{
σ2(u) + σ2(t)

v2

(
k(1 + e−k(t−u))

1− e−k(t−u)
− γ(a)(1 + e−γ(a)(t−u))

1− e−γ(a)(t−u)

)}
×

Id/2−1

(
σ(u)σ(t)4γ(a)e−γ(a)(t−u)/2

v2(1−e−γ(a)(t−u))

)
Id/2−1

(
σ(u)σ(t) 4ke−k(t−u)/2

v2(1−e−k(t−u))

) , (B.1)

where γ(a) :=
√
k2 + 2v2a and Iν(·) denotes the modified Bessel function of the first kind.

Aiming to speed up random sampling from the conditional distribution of the inte-

grated variance, as we explain later, Glasserman and Kim (2011) provide an alternative

characterization for it:(∫ t

u

σ2(s)ds

∣∣∣∣σ(u), σ(t)

)
D
= X1 +X2 +

η∑
j=1

Zj, (B.2)

whereX1, X2, η, Z1, Z2, ... are mutually independent random variables, Zj are independent
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copies of a random variable Z, and η is a Bessel random variable with parameters

ν :=
d

2
− 1, z :=

2k

v2 sinh
(
k(t−u)

2

)σ(u)σ(t).

X1, X2 and Z have the representations:

X1
D
=
∞∑
n=1

1

γn

Nn∑
j=1

Expj(1), X2
D
=
∞∑
n=1

Γn(d
2
, 1)

γn
, Z

D
=
∞∑
n=1

Γn(2, 1)

γn
,

where γn := (k2(t − u)2 + 4π2n2)/(2v2(t − u)2), Nn are independent Poisson random

variables with mean 16π2n2(σ2(u) + σ2(t))/(v2(t − u)(k2(t − u)2 + 4π2n2)), Expj(1) are

independent exponential random variables with mean 1, and Γn(a, b) are independent

gamma random variables with shape parameter a and scale parameter b. Moreover, the

Laplace transforms of X1, X2 and Z are given by

LX1(a) = exp

{
σ2(u) + σ2(t)

v2

(
k coth

k(t− u)

2
− L(a) coth

L(a)(t− u)

2

)}
, (B.3)

LX2(a) =

(
L(a) sinh k(t−u)

2

k sinh L(a)(t−u)
2

) d
2

, (B.4)

LZ(a) =

(
L(a) sinh k(t−u)

2

k sinh L(a)(t−u)
2

)2

, (B.5)

where L(a) :=
√

2v2a+ k2. The proposed decomposition (B.2) by Glasserman and Kim

(2011) enjoys a speed-up gain compared to the original Broadie and Kaya (2006) as, from

(B.4)–(B.5), the Laplace transforms ofX2 and Z do not depend on the level of the variance

at the endpoints of the time interval [u, t], therefore they are numerically inverted once

and stored in the initialization of the Monte Carlo simulation. Also, generating samples

(X1|σ(u), σ(t)) based on inversion of (B.3) is faster as it does not involve evaluation of a

special function.

B.2 SABR model

The Laplace transform of the conditional reciprocal of the integrated variance is

simulation

L(a) = E

[
exp

{
−a
(∫ t

u

σ2(s)ds

)−1
}∣∣∣∣∣σ(u), σ(t)

]

= exp

−
g
(

ln σ(t)
σ(u)

, av2

σ(u)2

)2

− ln
(
σ(t)
σ(u)

)2

2v2(t− u)

 , (B.6)
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where g(x, λ) := arcosh(λe−x + cosh(x)).

B.3 OU-SV model

The Laplace transform of the conditional integrated variance is

L(a) = E

[
exp

(
−a
∫ t

u

σ2(s)ds

)∣∣∣∣σ(u), σ(t),

∫ t

u

σ(s)ds

]
=
f(
√
k2 + 2av2)

f(k)
, (B.7)

where

f(x) :=
x2

2π
√
η(x)

exp

{
− 1

2η(x)v2

[
2x2

(
(σ(t) + σ(u))

∫ t

u

σ(s)ds− σ(u)σ(t)(t− u)

)
+

x2

(
(σ2(t) + σ2(u))(t− u)− 2(σ(t) + σ(u))

∫ t

u

σ(s)ds

)
cosh(x(t− u))+

x

(
x2

(∫ t

u

σ(s)ds

)2

− (σ(t)− σ(u))2

)
sinh(x(t− u))

]}

and

η(x) := 2− 2 cosh(x(t− u)) + x(t− u) sinh(x(t− u)).

C Mathematica® codes

C.1 Proposition 2.1

The following is the code for implementing formula (2.10) in the case where the BDLP

is the Brownian motion, i.e. ψ(u) := u2σ2

2
. Alternative ψ(·) can be found in Table 2.1.

(∗ Def ine the func t i on f ( t , s ) ∗)

f [ t , s ] := Exp[−a ∗( t − s ) ] ;

(∗ Def ine the logar i thm of the moment gene ra t ing func t i on p s i (u) ∗)

p s i [ u ] := uˆ2∗ sg ˆ2/2 ;

(∗ s e t v a r i a b l e n∗)

n = 12 ;

(∗ implement formula 3 .10 ∗)

Exp [Sum [ ( ( I n t e g r a t e [

p s i [ ( Sum[ gam [ k ]∗ f [ t [ i ] , s ] , {k , j , n } ] ) ] , {s , t [ j −1] , t [ j ] } ] ]

C.2 Cumulants in formula (5.16)

The following is the code for computing the first M − 1 cumulants in (5.16). We assume

here, without loss of generality, that X(0) = 0.
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(∗ M denotes the number o f d e s i r e d cumulants − 1∗)

M=5

(∗ Def ine j o i n t moment gene ra t ing funct ion , s e e Propos i t i on 3 . 6∗ )

p s i [ z1 , z2 ] :=p∗ rp /( rp−(z1+z2 ) ) + (1−p)∗rm/(rm−(z1 − z2 ) )

(∗ Def ine f u n c t i o n a l c h a r a c t e r i s t i c , s e e Propos i t i on 3 . 6∗ )

F [ u , tau ] := −(−a∗ th∗B[ u , tau ]−( r−sg ˆ2/2)∗u − sg ˆ2/2∗u ˆ 2 ) ;

R[ u , tau ]:=−(a∗B[ u , tau ]+k∗u−( p s i [ u ,B[ u , tau ]∗ eta ] −1)) ;

(∗ Compute cumulants ∗)

For [ i =1, i<M, i ++,

Pr int [ i ] ;

(∗ Compute d e r i v a t i v e o f R with r e s p e c t to u∗)

Rprime = D[R[ u , tau ] ,{u , i } ] / . {D[B[ u , tau ] ,{u , i }]−>y [ t ] ,D[B[ u , tau ] ,{u , n } ]

−>Part [ fvec t , n ] } / . u−>0/.B[ 0 , tau ]−>0;

(∗ Solve the f i r s t order l i n e a r ODE∗)

s o l =DSolve [{ y ’ [ t ]==Rprime , y [0]==0} , y [ t ] , t ] ;

f [ t ] := y [ t ] / . s o l [ [ 1 ] ] ;

(∗ Save the value o f f [ t ] in a l i s t f o r l a t e r usage in the f o r c y c l e ∗)

I f [ i >1, f v e c t = Append [ fvec t , f [ t ] ] , f v e c t=L i s t [ f [ t ] ] ] ;

Pr int [DB[ i ] ] ;

Pr int [ S imp l i f y [ f [ t ] ] ] ;

(∗ Compute d e r i v a t i v e o f F with r e s p e c t to u∗)

Fprime = D[F [ u , tau ] ,{u , i } ] / .D[B[ u , tau ] ,{u , i }]−> f [ t ] / . u−>0/.B[ 0 , tau ]−>0;

(∗ Solve ODE by pas s ing to the i n t e g r a l ∗)

func [ C ] := I n t e g r a t e [ Fprime , t ]+C/ . t−>0;

s o l 2 = Solve [ func [C]== 0 ,C ] ;

Cstar =C/ . s o l 2 [ [ 1 ] ] ;

Pr int [DA[ i ] ] ;

Pr int [ S imp l i f y [ S imp l i f y [ I n t e g r a t e [ Fprime , t ]+ Cstar ] ] ] ;

(∗ i−th cumulant i s now given by DA[ i ] + theta ∗DB[ i ] ) ∗ )

]
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Benth, F. E. and Šaltytė-Benth, J. (2004) The normal inverse Gaussian distribution

and spot price modelling in energy markets. International Journal of Theoretical and

Applied Finance, 7, 177–192.
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