
VIRTUALLY FREE PRO-P PRODUCTS

TH. WEIGEL AND P. A. ZALESSKĬI

Abstract. It is shown that a finitely generated pro-p group G which is a
virtually free pro-p product splits either as a free pro-p product with amal-

gamation or as a pro-p HNN-extension over a finite p-group. More precisely,
G is the pro-p fundamental group of a finite graph of finitely generated pro-p

groups with finite edge groups. This generalizes previous results of W. Herfort

and the second author (cf. [2]).

1. Introduction

In 1965, J-P. Serre showed that a torsion free virtually free pro-p group must be
free (cf. [7]). This motivated him to ask the question whether the same statement
holds also in the discrete context. His question was answered positively some years
later. In several papers (cf. [10], [11], [13]), J.R. Stallings and R.G. Swan showed
that free groups are precisely the groups of cohomological dimension 1, and at the
same time J-P. Serre himself showed that in a torsion free groupG the cohomological
dimension of a subgroup of finite index coincides with the cohomological dimension
of G (cf. [8]).

One of the major tools for obtaining this type of result - the theory of ends -
provided deep results also in the presence of torsion. The first result to be men-
tioned is ‘Stallings’ decomposition theorem’ (cf. [12]). It generalizes the previously
mentioned result to virtual free products.

Theorem 1.1 (J.R. Stallings). Let G be a finitely generated group containing a
subgroup of finite index which is a non-trivial free product. Then G splits either as
a free product with amalgamation or as an HNN-extension over a finite group.

The purpose of this paper is to prove a pro-p analogue of Theorem 1.1.

Theorem A. Let G be a finitely generated pro-p group containing an open subgroup
which is a non-trivial free pro-p product. Then G splits either as a free pro-p product
with amalgamation or as a pro-p HNN-extension over a finite p group.

In the torsion free case Theorem A yields a splitting of G into a non-trivial free
pro-p product.

Corollary B. Let G be a finitely generated torsion free pro-p group which is a
virtual free pro-p product. Then G is a non-trivial free pro-p product.

In contrast to the proof of Theorem 1.1 which uses the theory of ends, the proof
of Theorem A is accomplished by using purely combinatorial methods in pro-p
group theory, and the description of finitely generated virtually free pro-p groups
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obtained by W. Herfort and the second author (cf. [2]). In fact, the techniques of
pro-p groups acting on pro-p trees are used in order to obtain the following more
conceptual version of Theorem A (cf. Thm. 3.6).

Theorem C. Let G be a finitely generated pro-p group containing an open subgroup
H which has a non-trivial decomposition as free product, i.e., there exists non-trivial
closed subgroups A,B ( H such that H = A q B. Then G is isomorphic to the
pro-p fundamental group of a finite graph of pro-p groups with finite edge stabilizers.

Two achievements had caused dramatic advances in the combinatorial theory of
groups; Bass-Serre theory of groups acting on trees and ‘Stallings’ decomposition
theorem’ of groups with infinitely many ends. The results of this paper contribute
to the theory of pro-p groups acting on pro-p trees. Nevertheless, the absense of a
‘Stallings’ decomposition theorem’ in the pro-p context is still overshadowing the
combinatorial theory of pro-p groups.

2. Preliminaries

We will use the notion of graph as introduced by J-P. Serre in [9, §2.1].

2.1. Finite graphs of pro-p groups. Let Γ be a finite connected graph. A graph
of groups G based on Γ is called a finite graph of pro-p groups, if all vertex groups
G(v), v ∈ V (Γ), and all edge groups G(e), e ∈ E(Γ), are pro-p groups, and if
all the group monomorphisms αe : G(e) → G(t(e)) are continuous. So, if (G,Γ)
is an (abstract) graph of groups such that all vertex and edge groups are finitely
generated pro-p groups, then by a theorem of J-P. Serre (cf. [5, §4.8]), (G,Γ) is a
finite graph of pro-p groups.

A finite graph of pro-p groups (G,Γ) is said to be reduced, if for every geometric
edge {e, ē} which is not a loop neither αe : G(e)→ G(t(e)) nor αē : G(e)→ G(o(e))
is an isomorphism. Any finite graph of pro-p groups can be transformed in a
reduced finite graph of pro-p groups by the following procedure: If {e, ē} is a
geometric edge which is not a loop, we can remove {e, ē} from the edge set of Γ,
and identify o(e) and t(e) in a new vertex y. Let Γ′ be the finite graph given by
V (Γ′) = {y} t V (Γ) \ {o(e), t(e)} and E(Γ′) = E(Γ) \ {e, ē}, and let G′ denote
the finite graph of pro-p groups based on Γ′ given by G′(y) = G(o(e)) if αe is an
isomorphism, and G′(y) = G(t(e)) if αe is not an isomorphism. This procedure can
be continued until αe is not surjective for all edges not defining loops. The resulting
finite graph of pro-p groups (Gred,Γred) is reduced.

2.2. The fundamental pro-p group of a finite graph of finitely generated
pro-p groups. Let (G,Γ) be a finite graph of finitely generated pro-p groups. We
define the fundamental pro-p group G = Π1(G,Γ, v0), v0 ∈ V (Γ), of (G,Γ) to be
the pro-p completion of the usual fundamental group π1(G,Γ, v0) (cf. [9, §5.1]). In
general, π1(G,Γ, v0) does not have to be residually p, but this will be the case in all
of our considerations. In particular, edge and vertex groups will be subgroups of
Π1(G,Γ, v0). Since G(e), G(v) are finitely generated, by a theorem of J-P. Serre (cf.
[5, §4.8]), our definition is equivalent to the original definition of the fundamental
group of a graph of groups in the category of pro-p groups (cf. [14]). Note that
the previously mentioned reduction process does not change the fundamental pro-p
group, i.e., one has a canonical isomorphism Π1(G,Γ, v0) ' Π1(Gred,Γred, w0). So,
if the pro-p group G is the fundamental group of a finite graph of pro-p groups, we
may assume that the finite graph of pro-p groups is reduced.
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2.3. The fundamental pro-p group of a finite graph of finite p-groups. Let
(G,Γ) be a finite graph of finite p-groups. By [14, Thm. 3.10], every finite subgroup
of G = Π1(G,Γ, v0) is conjugate to a subgroup of a vertex group of (G,Γ). Hence
G has only finitely many finite subgroups up to conjugation. In particular, every
maximal finite subgroup of G is G-conjugate to a vertex group of (G,Γ), and the
converse is true if (G,Γ) is a reduced finite graph of finite p-groups.

3. Virtually free pro-p products

3.1. Virtually free pro-p groups. A pro-p group G will be called to be a free pro-
p product if there exist non-trivial closed subgroups A and B such that G = AqB.
Otherwise we shall say that G is q-indecomposable. The following properties are
well known.

Proposition 3.1. Let H =
∐

i∈I Hi

∐
F be a finitely generated pro-p group with

a q-decompositon, where Hi are non-trivial q-indecomposable pro-p-groups, and F
is a free pro-p group. Then

(a) I is finite, and Hi, i ∈ I, and F are finitely generated.
(b) Any finitely generated q-indecomposable subgroup A of H is conjugate to a

subgroup of Hi for some i ∈ I. Moreover, if H = A q B for some closed
subgroup B of H, then A is conjugate to some Hi, i ∈ I.

(c) Hi ∩Hh
j = 1 if either i 6= j or h 6∈ Hi.

(d) For K ⊆ Hi, K 6= {1}, one has NH(K) ⊆ Hi. In particular, if Hi is finite,
so is NH(K).

Proof. (a) is obvious. The first statement of (b) follows from the pro-p version
of the Kurosh subgroup theorem [1, Thm. 4.4] and the second statement from [3,
Thm. 4.3]. For (c) see Theorems 4.2 (a) and 4.3 (a) in [4]. In order to prove (d)
take h ∈ NG(K). Then K ⊆ Hi ∩Hh

i , and, by (c), one has h ∈ Hi. �

From Proposition 3.1 one concludes the following properties for virtual free pro-p
products.

Proposition 3.2. Let (G,Γ) be a reduced finite graph of finite p-groups, and suppose
that G = Π1(G,Γ, v0) contains an open, normal subgroup H = F qH1 q · · · qHs,
with Hi non-trivial finite and F free pro-p of rank r, 0 ≤ r <∞, such that r+s ≥ 2.
Then one has the following.

(a) For any edge e of Γ one has G(e)∩H = {1}; in particular, |G(e)| ≤ |G : H|.
(b) |E(Γ)| ≤ 2(r+s)−1 and |V (Γ)| ≤ 2(r+s), where V (Γ) is the set of vertices

of Γ, and E(Γ) is the set of geometric edges of Γ.

Proof. Let X = π1(G,Γ, v0) be the abstract fundamental group of the graph of
groups and Y = X ∩H. Hence G and H are the pro-p completions of X and Y ,
respectively. Moreover, |X : Y | = |G : H|.
(a) Suppose that G(e) ∩ H 6= {1}. Since H is normal in G, NG(G(e)) normalizes
G(e) ∩ H. We claim that NG(G(e)) is infinite. One has to distinguish two cases:
Case 1: {e, ē} is not a loop. In this case NG(G(e)) contains the infinite group
〈NG(v)(G(e)), NG(w)(G(e))〉, where v = o(e), w = t(e). Case 2: {e, ē} is a loop.
Let v = t(e) = o(e), and let ze ∈ G be the stable letter associated with e. If
G(e) = G(v), then NG(G(e)) contains the infinite group 〈ze〉. Otherwise NG(G(e))
contains the infinite group 〈NG(v)(G(e)), zeNG(v)(G(e))z−1

e 〉.
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Since |G : H| <∞, the fact thatNG(G(e)) is infinite implies thatNH(G(e)∩H) =
NG(G(e) ∩H) ∩H is infinite as well contradicting Proposition 3.1(d). Hence one
has G(e) ∩H = {1} as required.
(b) It suffices to show the first inequality. By [9, §2.6, Ex. 3], one has

(3.1)

−χX =
∑

e∈E(Γ)

1

|G(e)|
−

∑
v∈V (Γ)

1

|G(v)|

= − 1

|X : Y |
· χY

=
1

|X : Y |
·
(
r + s− 1−

∑
1≤i≤s

1

|Hi|

)
,

where χX denotes the Euler characteristic of the finitely generated virtually free
group X. Thus one obtains

r + s− 1 ≥ |X : Y |
( ∑

e∈E(Γ)

1

|G(e)|
−

∑
v∈V (Γ)

1

|G(v)|

)
.(3.2)

As (G,Γ) is reduced, for every edge e in a maximal subtree T of Γ the edge group
G(e) is isomorphic to a proper subgroup of G(t(e)). Hence, |G(t(e))| ≥ 2|G(e)|. Let
E+(T ) be an orientation of T such that every vertex of Γ except v0 ∈ V (Γ) is
the terminus of precisely one edge of T , and let f ∈ E(T ) be an edge satisfying
t(f) = v0. Taking into account that |E(T )| = |V (Γ)| − 1, one concludes from (a)
that

r + s− 1 ≥ 1

2
·

∑
e∈E(Γ)\{f,f̄}

|X : Y |
|G(e)|

≥ 1

2
· (|E(Γ)| − 1).(3.3)

This yields the claim. �

From Proposition 3.2 one concludes the following straightforward fact.

Corollary 3.3. Let (G,Γ) be a reduced finite graph of finite p-groups, and suppose
that G = Π1(G,Γ, v0) contains a free open subgroup H of rank r ≥ 2. Then there
exist finitely many reduced finite graphs of finite p-groups (G′,Γ′) up to isomorphism
such that G ' Π1(G′,Γ′, w0).

Let G = Π1(G,Γ, v0) be the pro-p fundamental group of a finite graph of finite
p-groups, and let U be an open and normal subgroup of G. Then, by construction,

Ũ = cl(〈U ∩ G(v)g | g ∈ G, v ∈ V (Γ) 〉) is a closed normal subgroup of G. By

[6, Prop. 1.10], one has a natural decomposition of G/Ũ as the pro-p fundamental

group G/Ũ = Π1(GU ,Γ, v0) of a finite graph of finite p-groups (GU ,Γ), where the

vertex and edge groups satisfy GU (x) = G(x)Ũ/Ũ , x ∈ V (Γ)tE(Γ). Thus we have
a morphism η : (G,Γ) −→ (GU ,Γ) of graphs of groups such that the induced homo-
morphism on the pro-p fundamental groups coincides with the canonical projection

ϕU : G −→ G/Ũ .

Lemma 3.4. Let G = Π1(G,Γ, v0) be the pro-p fundamental group of a finite graph
of finite p-groups, and let H be an open normal subgroup of G that decomposes as a
free pro-p product H =

∐
1≤i≤sHi

∐
F of finite p-groups Hi and a free pro-p group

F . Let U ⊆ H be an open normal subgroup of G such that U ∩Hi 6= Hi for every
i ∈ {1, . . . , s}. If (G,Γ) is reduced, then (GU ,Γ) is reduced.
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Proof. Suppose on the contrary that there exists an edge e in Γ which is not a

loop such that for v = t(e) one has G(v)Ũ = G(e)Ũ ⊆ G/Ũ . Then, by the second
isomorphism theorem,

(3.4) G(v) = G(e)(Ũ ∩ G(v)).

As (G,Γ) is reduced, and thus G(e) 6= G(v), one has Ũ ∩ G(v) 6= {1}. From Propo-

sition 3.1(a) one deduces that Ũ ∩ G(v) is contained in some Hg
i for 1 ≤ i ≤ s and

g ∈ G. If NG(Ũ ∩G(v)) would be infinite, so would be NH(Ũ ∩G(v)) contradicting

Proposition 3.1(d). Hence NG(Ũ ∩ G(v)) is finite and equal to G(v). In particular,
for y ∈ G(v) one concludes that Hgy

i ∩ H
g
i 6= {1}. Hence, by Proposition 3.1(c),

Hgy
i = Hg

i and thus G(v) ⊆ NG(Hg
i ). The maximality of G(v) and the finiteness of

NG(Hg
i ) (cf. Prop. 3.1(d)) imply that G(v) = NG(Hg

i ). By construction, G(e)Hg
i

is a finite subgroup of G containing G(v) (cf. (3.4)). As G(v) is a maximal finite
subgroup of G, this implies that

(3.5) G(e)(Ũ ∩ G(v)) = G(v) = G(e)Hg
i .

Since Ũ ∩ G(v) ⊆ Hg
i , and as G(e) ∩ Hg

i = {1} (cf. Prop. 3.2(a)), one concludes

that Ũ ∩ G(v) = Hg
i . Hence Hi ⊆ Ũ ⊆ U contradicting the hypothesis. �

The proof of the structure theorem for virtual free pro-p products (cf. Thm. 3.6)
in the subsequent subsection is based on the following result due to W. Herfort and
the second author.

Theorem 3.5. (cf. [2, Thm. 1.1]) Let G be a finitely generated pro-p group with a
free open subgroup F . Then G is the pro-p fundamental group of a finite graph of
finite p-groups whose orders are bounded by |G : F |.

3.2. Virtual free pro-p products. The following theorem gives a description of
the structure of virtual free pro-p products.

Theorem 3.6. Let G be a finitely generated pro-p group containing an open sub-
group H which has a non-trivial decomposition as free product, i.e., there exists
non-trivial closed subgroups A,B ( H such that H = AqB. Then G is isomorphic
to the pro-p fundamental group of a finite graph of pro-p groups with finite edge
stabilizers.

Proof. By replacing H by the core of H in G and applying the Kurosh subgroup
theorem for open subgroups (cf. [5, Thm. 9.1.9]), we may assume that H is nor-
mal in G. Refining the free decomposition if necessary and collecting free factors
isomorphic to Zp we obtain a free decomposition

(3.6) H = F qH1 q · · · qHs,

where F is a free subgroup of rank t, and the Hi are q-indecomposable finitely
generated subgroups which are not isomorphic to Zp (cf. Prop. 3.1(a)). By hy-
pothesis, s+ t ≥ 2. By construction, one has for all g ∈ G and for all i ∈ {1, . . . , s}
that Hg

i is a free factor of H. Since Hi is indecomposable, we deduce from Propo-
sition 3.1(b) that the indecomposable non-free subgroup Hg

i of H equals Hh
j for

some j ∈ {1, . . . , s}. Thus {Hg
i | g ∈ G, 1 ≤ i ≤ s } = {Hh

i | h ∈ H, 1 ≤ i ≤ s }.
Step 1: Let B be a basis of neighbourhoods of 1G ∈ G consisting of open normal
subgroups U of G which are contained in H with Hi 6⊆ U for every i = 1, . . . s. For
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U ∈ B put

(3.7) Ũ = cl(〈U ∩Hg
i | g ∈ G, 1 ≤ i ≤ s 〉) = cl(〈U ∩Hh

i | h ∈ H, 1 ≤ i ≤ s 〉).

Then Ũ is a closed normal subgroup of H, and

(3.8) H/Ũ = F qH1Ũ/Ũ q · · · qHsŨ/Ũ

(cf. [3, Prop. 1.18]). The group G/Ũ contains the open normal subgroup H/Ũ

which is a finitely generated, virtually free pro-p group (since U/Ũ is free pro-p

by Theorem 2.6 in [14]), and thus G/Ũ is a finitely generated, virtually free pro-p
group.

Step 2: By Theorem 3.5, G/Ũ is isomorphic to the pro-p fundamental group
Π1(GU ,ΓU , vU ) of a finite graph of finite p-groups. Although neither the finite
graph ΓU nor the finite graph of finite p-groups GU are uniquely determined by

U (resp. Ũ), the index U in the notation shall express that both these objects
are depending on U . Using the procedure described in subsection 2.2 we may
assume that (GU ,ΓU ) is reduced. Hence from now on we may assume that for every

U ∈ B the vertex groups of G/Ũ = Π1(GU ,ΓU , vU ) are representatives of the G/Ũ -
conjugacy classes of maximal finite subgroups. Note that by Proposition 3.2(a),

one has GU (e) ∩H/Ũ = 1.
Step 3: As explained before Lemma 3.4, for V ⊆ U both open and normal in G the

decomposition G/Ṽ = Π1(GV ,ΓV , vV ) gives rise to a natural decomposition of G/Ũ

as the fundamental group G/Ũ = Π1(GV,U ,ΓV , vV ) of a graph of groups (GV,U ,ΓV ).
Moreover, by Lemma 3.4, if (GV ,ΓV ) is reduced, then (GV,U ,ΓV ) is reduced. Thus
in this case one has a morphism η : (GV ,ΓV ) −→ (GV,U ,ΓV ) of reduced graph of
groups such that the induced homomorphism on the pro-p fundamental groups

coincides with the canonical projection ϕUV : G/Ṽ −→ G/Ũ .
Step 4: By Proposition 3.2, the number |V (ΓU )|+|E(ΓU )| is bounded by 4(r+s)−1.
So we have only finitely many graphs ΓU up to isomorphism, when U runs. It follows
that there is a finite graph Γ such that ΓU is isomorphic to Γ for infinitely many U ’s.
Therefore, by passing to a cofinal system C of B if necessary, we may assume that
ΓU = Γ for each U ∈ C. Then, by Corollary 3.3, the number of isomorphism classes
of finite reduced graphs of finite p-groups (G′U ,Γ) which are based on Γ satisfying

G/Ũ ' Π1(G′,Γ, v0) is finite. Suppose that ΩU is a set containing a copy of every
such isomorphism class. For V ∈ C, V ⊆ U , one has a map ωV,U : ΩV → ΩU (cf.
Step 3). Hence Ω = lim←−U∈C ΩU is non-empty. Let (G′U ,Γ)U∈C ∈ Ω. Then (G′,Γ)

given by G′(x) = lim←−G
′
U (x) if x is either a vertex or an edge of Γ, is a reduced

finite graph of finitely generated pro-p groups satisfying G ' Π1(G′,Γ, v0). By
Proposition 3.2(a), G′(e) is finite for every edge e of Γ. This yields the claim. �

Proof of Theorem A. By Theorem C, G is the fundamental pro-p group of a finite
graph of pro-p groups (G,Γ). Let e be an edge of Γ. If by removal of an edge e the
graph Γ becomes disconnected, G splits as a free amalgamated pro-p product over
the edge group Ge. Otherwise it splits as a pro-p HNN-extension over Ge.
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