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Abstract We propose a methodological framework for exploring complex multi-
modal imaging data from a neuroscience study with the aim of identifying a data-
driven group structure in the patients sample, possibly connected with the pres-
ence/absence of lifetime mental disorder. The functional covariances of fMRI sig-
nals are first considered as data objects. Appropriate clustering procedures and low
dimensional representations are proposed. For inference, a Frechet estimator of both
the covariance operator itself and the average covariance operator is used. A permu-
tation procedure to test the equality of the covariance operators between two groups
is also considered. We finally propose a method to incorporate spatial dependencies
between different brain regions, merging the information from both the Structural
Networks and the Dynamic functional activity.

Keywords Data objects · Functional data analysis · Principal components
Multimodal Imaging · Neuroscience
1 Introduction

The following work arises from the StartUp Research experience, a workshop held
at Certosa di Pontignano on June 25–27 2017. Seven groups formed by early-career
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researchers and a senior mentor acting as group leader were challenged to develop
novel methods for analysing a common dataset.

Both researchers and practitioners involved in the field of data analysis are nowa-
days increasingly challenged in confronting with data structures that lie outside the
classical Euclidean framework. That is, thanks to the technological advancements
of measurement machineries, not only datasets are becoming massive in terms of
size (the way-too-exploited buzzword big data is a living proof of the concept) but
also substantial in terms of data complexity. As a consequence, statisticians are
encouraged to sharpen their mathematical and programming skills for tackling the
enormous knowledge-discovery opportunities that lie within these complex datasets.
Object oriented data analysis (OODA) is a framework, firstly introduced in [24], for
approaching data challenges in which the object of the analysis (i.e., the observation
or statistical unit) possesses distinctive features that would not be exploited by per-
forming a classical multivariate analysis after data dimension reduction. Examples
of data objects that are considered by OODA include (but are not limited to) curves,
images, tree structured data and positive semi-definitematrices [14]. In such a context
mathematics plays a fundamental role in rigorously defining the embedding space
and properties of the objects under study, and consequently fostering the develop-
ment of new statistical methodologies. Two central notions are the base-ground for
understanding the conceptual framework of OODA:

• Object Space: is the set in which the mathematical representation of the data lie.
For example, the employed object space for the dynamic functional activity (see
Sect. 2) is the Hilbert space L2 of square-integrable functions.

• Feature Space: is the set of features that numerically represent the data object. The
feature space for the scan-rescan dynamic functional activity of the 24 subjects in
the study (see Sect. 2) is a digitized 70 × 404 × 24 × 2 array.

The OODA framework is particularly appropriate when applied to neuroscience,
where the large use of Magnetic Resonance Imaging (MRI) in the study of brain
connectivity and activity has recently created new challenges for statisticians. The
nature and complexity of data coming from electroencephalography (EEG), func-
tional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) have
favoured the development ofz ad-hocmethodologies greatly expanding the statistical
neuroscience literature [8, 18]. During the StartUp Research workshop our group
attempted to analyse the provided dataset employing mathematical tools coming
from OODA, with the aim of exploring the connectivity structure within subject
brains and across groups of subjects with different traits in order to identify possible
meaningful and significant patterns.

The data comes from a pilot study of the Enhanced Nathan Kline Institute-
Rockland Sample project; it comprisesmultimodal imaging data and subject-specific
covariates for n = 24 subjects, for 12 of which 2 scan-rescan imaging sessions are
available. A detailed description of the project, scopes, and technical aspects can be
found at http://fcon_1000.projects.nitrc.org/indi/enhanced/. The pilot study includes
three data sources:

http://www.webcitation.org/6ASACEUxB)
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• Structural networks: These data measure the anatomical interconnections—
made by white matter fibers—among brain regions of interest, and are collected
from DTI.

• Dynamic functional activity: These data measure the dynamic activity of each
brain region through changes in the blood-oxygen-level dependent (BOLD) signal
during resting state fMRI (R-fMRI) sessions.

• Functional networks: These data measure synchronization in brain activity for
each pair of brain regions, and are obtained from the correlation in dynamic func-
tional activity.

Some missing data are present in the dataset: the Dynamic functional activity for
2 subjects and the Structural networks for 4 subjects were not collected. Addi-
tionally, subject-specific information related to age, whether she/he is left-handed,
right-handed or ambidextrous and her/his current and lifetime mental disorder were
available only for 20 samples, impacting the performance evaluation of the method
proposed in Sect. 7.

In Sect. 2 the necessary framework is introduced and Functional Data Analysis
methods [19] are employed for obtaining the main data object of our analysis: a set
of 22 functional networks numerically represented as correlation matrices. Subse-
quently, a proper distance metric for the aforementioned objects is considered for
performing cluster analysis, as reported in Sect. 3. Section4 considers a low dimen-
sional representation of the data objects, and comparison with the results obtained
by the clustering method is addressed. Section5 reports a formal permutation pro-
cedure to test the equality of the mean functional networks between the two groups
determined in Sect. 3. In order to identify possible different sources of variation a
thorough study of the eigenstructure for the twomean functional networks is reported
in Sect. 6. Section7 considers a possible solution to account for spatial dependence
between Dynamic functional activity of different regions, performing data fusion for
the subset of subjects for which both Structural networks and Dynamic functional
activity are available.

2 Curves and Correlation Matrices as Data Objects

Let us first consider the fMRI signal from the first scan. The data consist of 70 sig-
nals for each of the 24 subjects, corresponding to the BOLD activity of the 70 brain
regions described by the Desikan Atlas [5]. Over the past decades the number of
fMRI studies has increased exponentially [20], fostering the development of sev-
eral methods for the analysis and interpretation of resting-state fMRI data, such as
seed-based correlation analysis, independent component analysis and network-based
models [4].We propose to employ a Functional Data Analysis approach for perform-
ing the analysis, considering each signal as a realization of a stochastic process X (ti )
sampled at times ti , where i = 1, . . . , 403; the last instant of time was not recorded
for several patients and therefore it was not considered in the analysis. Subjects are
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sampled at the same time schedule, so that registration is not deemed to be necessary
[19]. Two subjects are not considered in the following analysis because of missing
data, namely patient with ID 1 and patient with ID 21.

When dealing with functional data the usual starting point is to represent the
data observed on a finite grid of points as functions. This part of the analysis is
called smoothing, and there are several approaches to do it. Two important classes
of smoothers are represented by kernel smoothing and orthogonal basis [19]. Both
approaches sharing the idea of filtering out the short-time variation while keeping
the global shape of the signal: we employ the latter for pre-processing the fMRI
data. Orthogonal basis smoothing relies on the fact that, given an orthogonal basis
for the space of interest, every function can be represented as an infinite linear
combination of bases. A truncated version of the infinite sum provides a continuous
representation of the discrete signal and reduces the dimensionality of the problem.
The following analyses are based on a Fourier expansion, a standard choice in signal
processing literature, with 100 bases. As it happens, it is not clear whether the short-
time oscillations can be treated as noise or they might be related to some specific
conditions of the brain. Future work might consider more appropriate bases such as
wavelets [13] or Hierarchical Component Analysis [23]. An example of a smoothed
function and its residuals for a given brain area and subject is reported in Fig. 1. A first
interesting question that arises from the smoothing process would be to understand
whether the residuals of the smoothing have some kind of clinical interpretation. We
now have 70 functions for each of the 22 subjects, each function related to a different
brain region. We used these functions to construct a correlation matrix between
regions for each of the subjects. More in detail, we can compute the correlation
between pairs of functions for every subject

Cor( fi , f j ) = 〈 fi , f j 〉
|| fi |||| f j || = cos(θi j ), for i, j = 1, . . . , 70. (1)

Here 〈·, ·〉 denotes the inner product

〈 fi , f j 〉 =
∫

Ω

fi f j dμ (2)

on the Hilbert space L2(Ω,B, μ), where Ω = [0, 403], B is the Borel σ -algebra
of [0, 403] and μ the Lebesgue measure. The norm || · || = 〈·, ·〉1/2 is induced by the
inner product in (2). For a more detailed treatment of the underlying Hilbert space
theory for functional data analysis, see [9, 10]. Processing the functional signal
through the operator defined in (1) results in a 70 × 70 correlation matrix for each
of the 22 subjects in the study. In Fig. 2 a subset of the so computed correlations
matrices are graphically represented as heatmaps.

There is a clear difference in terms of correlationmagnitude amongst subjects. Par-
ticularly, it seems that a subgroup of patients (ID 7, 10, 15, 17, 20, 22 and 23) present
a much higher positive correlation between brain regions than the ones recorded for
the rest of the subjects, visible by the overall darker blue areas in the correlation
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Fig. 1 Observed and smoothed signals (left plot) and residuals after the Fourier basis approxima-
tions (right plot) for a given subject and brain area

ID 7 ID 17 ID 11

Fig. 2 Heatmaps of the first scan fMRI signal correlation matrices for 3 patients in the study, each
belonging to a different subgroup identified by visual exploration of the magnitudes in the matrices

plots. Another interesting pattern visible in some patients (ID 6, 12, 14, 17 and 19
primarily) is given by the presence of a specific brain region, namely rh-frontalpole,
that is negatively correlated to the remaining areas identified by the Desikan Atlas. A
third behaviour that emerges from the visual exploration of the plots in Fig. 2 is the
mild negative correlation and/or almost absence of correlation for two brain areas
with the others for some subjects (ID 7, 8, 11, 14, 15, and 23). Particularly, these
two areas are lh-frontalpole and lh-temporalpole. Lastly, there are two subjects (ID
2 and 23 ) that present almost individual patterns in the correlation structure between
brain regions.

3 Clustering of Functional Networks

It is of interest to verify the presence of groups of subjects with similar brain activity,
employing appropriate statistical methods given the complex structure of the objects
under analysis. That is, the aim is to define a suitable distance concept in order to
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characterize proximity amongst objects and subsequently perform cluster analysis
according to the provided metric.

Given the considered context we cannot embed our objects of interest, i.e., the
aforementioned correlation matrices, in a classical Euclidean space. Particularly,
the correlation matrices represented in Fig. 2 are finite-dimensional approximations
of a rescaled covariance operator for functional random processes, and therefore a
suitable inference framework must be considered. Given a random function f taking
values in L2(Ω) we define the covariance operator C f for g ∈ L2(Ω):

C f g(t) =
∫

Ω

E([ f (t ′) − E( f (t ′))][ f (t) − E( f (t))]g(t ′)dt ′. (3)

For a review of definitions and theoretical properties of operators on L2(Ω) see [2].
Denote with PD(p) the space of positive semi-definite symmetric matrices of

dimension p, that is the set of real symmetric matrices having non-negative eigen-
values [1]. We recall that PD(p) is not a vector space and an inner product is not
defined; it is however a Riemaniannmanifold inwhichwe can define a distance. For a
detailed list of non-Euclidean distances for covariance matrices, see for example [6].
However, in a context of functional data, infinite dimensional extension ofmetrics for
positive-semidefinite matrices must be used. Employing the inferential framework
for covariance operators introduced in [17] we are able to extend the matrix-based
distances to the functional case.

With the aim of measuring synchronization in brain activity and their respective
dissimilarities among patients we consider the functional extension of the square
root distance between variance covariance matrices, firstly defined in [6]. That is,
given two covariance operators S1 and S2 their square root distance is defined as

dR(S1, S2) = ||S1/21 − S1/22 ||HS (4)

where || · ||HS denotes the Hilbert-Schmidt norm, generalization of the Frobenius
norm for finite-dimensional matrices. Among the available matrix-based distances
extendable to the functional casewe decided to consider (4) since it takes into account
the full eigenstructure of the covariance operator [17]. The definition of a proper dis-
tance is directly linked to the introduction of a mean value concept, given the chosen
distance. Particularly, letting S1, . . . , Sn be a sample of independent covariance oper-
ators we define its sample Fréchet mean based on the square root distance (4) as

Σ̂ = Δ̂Δ̂� (5)

where

Δ̂ = arginf
Δ

{
n∑

i=1

||S1/2i − Δ||2HS

}
= 1

n

n∑
i=1

S1/2i . (6)
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Fig. 3 Dendrogram from hierarchical clusteringwithWard agglomerationmethod to the functional
network data. The dendrogram highlights the presence of two main clusters not seemingly related
to patients’ mental health status

For proofs and discussion related to the consistency of the sample Fréchet mean
based on the square root distance, refer to [11].

Making use of the square root distance defined in (4) we proceed in trying to
identify possible presence of groups amongst the data objects employing a distance-
based clustering algorithm. Particularly, the analysis was carried out considering
hierarchical clustering with Ward agglomeration method [15].

The result of the clustering algorithm is graphically presented in Fig. 3: the den-
drogram clearly highlights the presence of two different clusters in our sample of
patients. The groups however do not seem to be separated along the additional infor-
mation on the subjects provided in the study. Therefore, even though the difference
between the mean correlation matrices of the two groups results to be statistically
significant (see Sect. 5), interpretation explaining the groupings remains still unclear.
A clinician assessment, together with a thorough consideration of themedical history
of each patient involved in the study would provide insight on groups interpretability
and classification.

In the upcoming section, the problem of finding homogeneous groups amongst
functional networks is differently tackled employing a non-linear dimensionality
reduction technique. Both methodologies agree in terms of identified number of
groups and groups structure.
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4 Low Dimensional Representation

In order to obtain a low dimensional representation of the correlation matrices a
Local Linear Embedding (LLE) algorithm [21] is considered. This method is based
on a simple geometric intuition. Suppose the data consist of N real-valued vectors
Xi , each of dimensionality D, sampled from some smooth underlying manifold. We
expect each data point and its neighbours to lie on or close to a locally linear patch
of the manifold. We can characterize the local geometry of these patches by linear
coefficients that reconstruct each data point from its neighbours. In the first step of
the algorithm one identifies K nearest neighbours per data point, as measured by
Euclidean distance. In the second step the weights Wi j that best reconstruct each
data point Xi from its neighbours are computed, minimizing

n∑
i=1

⎛
⎝Xi −

K∑
j=1

Wi j X j

⎞
⎠

2

.

The weights Wi j summarize the contribution of the j-th data point to the i-th recon-
struction. Finally we can compute the vectors Yi of low dimensional coordinates,
d < n, best reconstructed by the weights Wi j , minimizing

d∑
i=1

⎛
⎝Yi −

K∑
j=1

Wi j X j

⎞
⎠

2

.

This cost function—like the previous one—is based on locally linear reconstruction
errors, but here we fix the weights Wi j while optimizing the coordinates Yi . In Fig. 4
we can see the two dimensional representations (d = 2), for different number of
neighbours (from 3 to 11, starting from the left upper corner). The triangles represent
the patients with lifetime disease, while the colour represents the groups identified
by hierarchical clustering. We firstly note that the algorithm is robust with respect to
the choice of the hyper-parameter K . Secondly, and more relevant for the scope of
our analysis, we recognize that in all the considered representations 5 out of the 7
subjects with lifetime disease are in the red group and the remaining 2 in the black
group (these are patients labelled with ID 8 and 19 respectively). We can also note
that the low dimensional representation preserves the structure of the original space
and the separation performed by the hierarchical clustering is still clearly visible:
an average Adjusted Rand Index of 0.96 between the groupings found with the two
methods, varying K from 3 to 11 in the LLE, is obtained. A formal permutation test
for statistically assessing the significant difference between the two sub-populations
identified by both hierarchical clustering and LLE is developed in the upcoming
section.
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Fig. 4 2-dimensional representation of the correlation matrices through Local Linear Embedding
algorithm for different number of neighbours K . Triangles represent patients with lifetime disease;
colours represent the groups identified by hierarchical clustering of Sect. 3

5 Hypothesis Testing for Correlation Structures

Let us consider the two groups of patients identified in the previous Sections. We
want to verify whether the functional activity, recorded in terms of 70 × 70 cor-
relation matrices for each of the 22 subjects, is significantly different in the 2
groups. We assume that our two samples are such that S(1)

1 · · · S(1)
n1 are random

PD(p) matrices with expectation E(Si ) = Σ1, i = 1, . . . , n1 and S(2)
1 · · · S(2)

n2 are

random PD(p) matrices with expectation E(Sj ) = Σ2, j = 1, . . . , n2. S
(1)
1 · · · S(1)

n1

and S(2)
1 · · · S(2)

n2 are the sample correlation matrices belonging to the first and second
group respectively. Particularly, in our context n1 = 12 and n2 = 10 with patients
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(2, 3, 4, 5, 8, 9, 11, 14, 16, 18, 19, 24) belonging to the first group and patients
(6, 7, 10, 12, 13, 15, 17, 20, 22, 23) to the second group (see Fig. 3). We would like
to test

H0 : Σ1 = Σ2 versus H1 : Σ1 �= Σ2 .

To test these hypotheses we follow a permutational approach along the methods
advanced in [16, 17]. We reformulate the test in terms of square root distances
between covariance objects: the considered test statistic is d(Σ̂1, Σ̂2) where Σ̂1 and
Σ̂2 denotes the Fréchet mean as defined in (6) for the samples in the two groups. H0

is rejected for large values of d(Σ̂1, Σ̂2). The test is simply a two way ANOVA, but
equipped with a proper metric and consequently with a proper definition of sample
mean. If H0 is true, complete exchangeability of the random variables generating
the sample observations holds and therefore, in order to approximate the distribution
of the test statistic under H0, the two samples are pooled together and randomly
assigned to the two groups preserving sample sizes. The test consists in a com-
parison of d(Σ̂1, Σ̂2) with M random permutations computed via Monte Carlo of
d(Σ̂

(m)
1 , Σ̂

(m)
2 ), m = 1, . . . , M ; where Σ̂

(m)
i is the sample mean correlation matrix

for group i in permutation m. The p-value with M = 100 permutations is less than
0.01, with a difference of the two sample means of 2.41. Thus, we conclude that
the two sub-populations have statistically different correlation matrices, confirming
and validating the results previously highlighted by the clustering and LLEmethods.
The same permutation test had been initially applied to groups clustered by subjects
characteristics; notwithstanding, none of the additional information available for the
subjects under study (age, handedness, current/lifetime mental disorder) have been
proved significant in distinguishing different groups. Figure5 shows the heatmaps of
the sample mean correlation matrices of the two considered groups. The difference
between the two is clear, with higher correlation values in the second group.

Σ̂1 Σ̂2

0.00
0.25
0.50
0.75

Fig. 5 Heatmap of the sample mean correlation matrices in the two identified groups
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6 Eingenstructure of the Mean Correlation Matrices

In this Section a comprehensive analysis of the main sources of variability for the
two samplemean correlationmatrices identified in Sect. 3 will be addressed. Figure6
displays the generalized variance in subspaces of increasing dimension for the two
correlation matrices, defined as the cumulative product of their eigenvalues [7].

The generalized variance is proportional to the square of the volumes of the hyper-
ellipsoids projected onto the principal components subspaces. It is clearly visible that
the first group is characterized by a much larger generalized variance, supporting the
significant difference between the two groups highlighted by the permutation test.

A spectral decomposition of the two sample mean correlation matrices is reported
in Fig. 7. Since we are considering correlation matrices, the employed terminology
comes from the Principal Components Analysis literature [12]. Particularly, the vari-
ance denotes the magnitude of the different eigenvalues whereas the contribution
to the total variability is calculated dividing the cumulative sum of the eigenvalues
by their total. The magnitude of the eigenvalues in the first group decreases more
slowly than in the second group, as it was already apparent in Fig. 6. Five components
account for 80% of the total variability in Σ̂2, whereas for Σ̂1 nine components are
necessary for achieving the same contribution.

In order to check whether the source of variability is different in the two groups,
the components (loadings) of the first six eigenvectors for the two sample mean
covariancematrices are plotted in Fig. 8. As it can be seen from the graphs, the source
of variability seems different, especially considering the first three loadings. This is
further highlighted by the graphical representation of the 3-D spatial coordinates for
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Fig. 7 Eigenvalues and relative cumulative sum of eigenvalues for the mean correlation matrices
of the two groups identified in the patients sample
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Fig. 8 Entries of the first 6 loadings vectors (eigenvectors) for the two sample mean correlation
matrices of the two groups identified in the patients sample
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the centroids of the brain regions reported in Fig. 9, where centroids are coloured
according to the first, second and third loading vectors entries respectively. A spatial
pattern seems to be present in the matrices eigenstructure. The present analysis
motivates and justifies the novel approach introduced in the upcoming section, where
we attempt to account for the spatial dependence employing a re-weighted version of
the functional network. Particularly, the structural network (i.e., the count of number
ofwhite fibers that connect each brain region) is interpreted as ameasure of proximity
between the brain regions.

7 Spatial Dependence for Functional Networks

So far, we have only considered the fMRI data corresponding to the 70 regions of
the Desikan atlas as independent. Nonetheless, the spatial dependence has not been
filtered out during pre-processing and it is therefore reasonable to suppose that some
sort of spatial dependence is still present in the registered signals, as it can be graph-
ically seen in Fig. 9. A possible procedure for incorporating the spatial dependence
within our analysis framework would be to exploit the information contained in the
structural networks available for each patient. The structural networks contain the
total number of white matter fibers connecting each pair of brain regions for each
subject. The aforementioned structure can be interpreted as an adjacency matrix:
the intuition behind this definition is that the more white fibers connecting a pair of
brain regions the closer the two brain regions can be considered. Particularly, the
functional networks (identified by the correlation matrices employed in the previous
Sections) can be re-weighted according to the magnitude enclosed in the structural
networks, subject-wise. Considering only the first scan, indicate with duv the count
of how many white matter fibers are found to connect brain regions u and v for a
specific subject. We define the symmetric 70 × 70 weight matrix W induced by the
structural network for each subject having entries as follows:

wuv =
{
1 u = v

duv/
(∑70

u=1

∑70
v=1 duv

)
u �= v

(7)

Subsequently, we define the re-weighted functional networks R as the Hadamard
product between W and the functional networks computed in (1). For obtaining R
both structural and functional networksmust be available, therefore it was possible to
calculate the re-weighted functional networks only for 18 out of 24 patients present
in the study. Notice that R is still a symmetric and positive semi-definite matrix
thanks to Schur product theorem [22]. Employing the same methodology described
in Sect. 3 we perform hierarchical clustering on the re-weighted functional networks:
the dendrogram of the clustering procedure is reported in Fig. 10. Likewise in the
previous analysis the dendrogram highlights the presence of two different clusters,
with a significant difference in their mean correlation matrices (the test in Sect. 5 was
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Fig. 9 Graphical representation of the 3-D spatial coordinates for the centroids of the brain regions,
under different 2-D views. Colour intensity is associated with the entries of the first (top), second
(middle) and third (bottom) loading of Σ̂1 (first rows) and Σ̂2 (second rows) respectively. Shapes
describe hemisphere membership
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Fig. 10 Dendrogram from hierarchical clustering with Ward agglomeration method to the re-
weighted functional network data. The dendrogram highlights the presence of two main clusters,
partially related to patients’ mental health status

repeated and the null hypothesis rejected). In addition, the two identified groups seem
at least partially related to the presence or absence of lifetime mental disorder for
the available set of patients. Although the sample size is very small, we empirically
evaluate the main source of dissimilarity between the two groups of patients with
and without lifetime mental disorder considering their mean re-weighted functional
networks, computed using (5). The preeminent differences are due to the higher
weighted correlations found for patients with lifetime mental disorder between areas
lh - posteriorcingulate and lh - corpuscallosum, rh - posteriorcingulate and lh -
posteriorcingulate, rh - superiorfrontal and rh - caudalmiddlefrontal, rh - corpus-
callosum and lh - posteriorcingulate, compared to the weighted correlations in these
areas for patients with absence of lifetime mental disorder.

8 Conclusions and Future Research Directions

The present work is the result of a 48h workshop during which the authors, guided
by their senior group leader Piercesare Secchi, were asked to propose original sta-
tistical methods for data analysis in neuroscience [3]. We applied several techniques
from Object Oriented Data Analysis literature for exploring data coming from the
Enhanced Nathan Kline Institute-Rockland Sample project. Three different cluster-
ing methods are proposed for the fMRI data, with the last and most promising one
involving the processing of both structural and functional network for each patient.
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Our approach began with the identification of two clusters in the space of the cor-
relationmatrices of the smoothed fMRI signals. These two groups corresponded only
partially to the labelling concerning the presence/absence of mental disease. A non-
linear dimensional reduction technique helped us to visualize the clusters: the two
sub-populations structure is clear in the identified subspace. The difference between
the two groups, formalized through a statistical test in which the null hypothesis was
the equality of the two mean correlation matrices, is highly significant. A deeper
analysis of the eigenstructure of the two mean correlation matrices highlighted the
differences in the sources of variability in the two groups, together with a possible
spatial dependence in the data objects. Lastly, an attempt at performing data fusion
weighting the functional networks with the structural networks is addressed: promis-
ing initial results seem to have been achieved. In particular, employing re-weighted
functional networks, subjects with confirmed presence of mental disease are more
clearly separated from patients with absence of mental disease, fostering the employ-
ment of the aforementioned procedure whenever functional and structural networks
are available. Nevertheless, both a larger sample size as well as knowledge domain
would be necessary for establishing and interpreting the described discoveries.

The StartUp Research workshop has been a challenging yet enriching and unfor-
gettable experience, in which we had the chance to meet, connect and learn from
our peers, colleagues and senior mentors. We early-career researchers had a direct
experience on the essential importance of interaction and knowledge-sharing which,
ultimately, lead to knowledge creation.
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