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Abstract 

The actual gold standard to exclude the malignant nature of thyroid nodules in the clinical 

routine is represented by thyroid Fine Needle Aspirations (FNAs) biopsies. Thyroid FNAs are 

safe and cost-effective. Approximately the 20-30% of cases have an indeterminate for 

malignancy final report. These patients undergo diagnostic (and not therapeutic) 

thyroidectomy, but after surgery the 80% of these thyroid nodules are benign. This 

overtreatment has of course important consequences in the quality of life of the patients and 

high healthcare costs. The application of -omics techniques might have a potential role in the 

research for new diagnostic markers able to discriminate benign from malignant nodules, thus 

minimizing the challenging cases of indeterminate for malignancy.  

Mass spectrometry is one of the most important analytical tools able to obtain information 

regarding the molecular composition of a sample, the presence of biomolecules and their 

abundance. Among the different proteomics approaches able to extract the molecular 

alterations of the different type of specimen’s lesion, Matrix-Assisted Laser 

Desorption/Ionization (MALDI) Mass Spectrometry Imaging (MSI) was strongly emerging. 

MALDI-MSI represents an ideal technology that enables to explore the spatial distribution of 

biomolecules within tissue, integrating molecular and traditional morphological information 

while preserving the integrity of the analysed tissue. Various studies applied MALDI-MSI 

technology for prognostic purposes and for in real time diagnostic setting, showing the 

usefulness, advantages and applicability of MALDI-MSI in different fields of pathology. Due to 

the promising results recently obtained with MALDI-MSI in the identification of proteomic 

signals able to differentiate between benign and malignant cases from the analysis of thyroid 

tissue after surgery, the idea was to apply for the first time MALDI-MSI on real thyroid FNAs 

biopsies.  

Preliminary to the clinical study, the protocol for the proteomic MALDI-MSI analysis was 

optimised to avoid degradation, alteration phenomena, contamination and artefacts formation. 

The methodological improvement of the protocol in a complicated field as thyroid cytological 

specimens played an important role in this study. Challenging technical aspects, such as i) the 

interference of haemoglobin due to the high vascularization of the thyroid organ and ii) the 

stability of the samples over time before the analysis from a morphological and proteomic point 

of view, were overcome through two studies that were planned and analysed as part of the 

thesis. 
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The clinical study for the detection of the potential cluster of signals with discriminant 

capability was originally planned to involve a large sample of thyroid nodules, however, due to 

the slow enrolment rate of malignant cases, the thesis contains only the results of a preliminary 

analysis. Eighteen subjects contributed to the training set with 9 benign and 9 malignant 

thyroid nodules. However, the statistical model was based on data of 81 specific regions of 

interest, according to the morphological triage performed by the pathologist in order to 

overcome false information deriving from non thyrocytes cells. The validation phase was 

performed on 11 patients with different type of lesions (i.e. benign, indeterminate and 

malignant). Results are very promising and highlight the possibility to introduce MALDI-MSI as 

a complementary tool for the diagnostic characterization of thyroid lesions, but a further 

analysis on a more consistent sample of patients is required to corroborate these findings.  

A methodological aspect that emerged from the peculiarity of the proteomic analysis was also 

investigated as part of this thesis. A review of the most used statistical indices for the 

assessment of the similarity between mass spectra profiles was performed and a new measure 

was proposed.  A simulation study was implemented in order to identify the best similarity 

measure to use in comparing proteomic profiles.  
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1 Introduction 

The diagnosis of thyroid lesions is usually performed using a morphological approach on 

image-guided fine needle aspiration biopsy (FNAB). Even if thyroid FNAs are safe, cost-effective 

and represent the gold standard to exclude the malignant nature of thyroid nodules, 

approximately 20-30% of FNABs are considered as “indeterminate for malignancy” and, in 

these cases, surgery is commonly recommended. Nevertheless, post-operative histological 

evaluation highlights that 80% of these uncertain diagnoses are benign lesions. These patients 

undergo diagnostic and not therapeutic thyroidectomy and this overtreatment has important 

consequences in their quality of life and high healthcare costs. 

Omics techniques play an important role in the research for new diagnostic markers and the 

use of molecular techniques for the characterization and identification of biomarkers persists 

as an interesting topic in clinical applications. Different molecular test pointing to gene-

expression classifiers had been proposed to improve the pre-operative risk assessment of 

malignancy on thyroid FNABs, but these methods showed disadvantages in terms of cost-

effectiveness that limit their use in clinical routine. 

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a 

powerful tool to explore the spatial distribution of biomolecules directly on cytological 

specimens, by integrating molecular and morphological evidence. The identification of a 

powerful tool for assisting cytopathologists in thyroid lesions diagnosis had clinical, ethical and 

economical relevance. Preliminary studies showed how MALDI-MSI is able to distinguish 

benign with respect to malignant cases in different cytological samples taken from surgical 

thyroid nodule (ex-vivo cytological samples). Moving forwards from these first results, the aim 

of the clinical project that motivated my thesis was to apply for the first time MALDI-MSI on 

real thyroid FNABs (in-vivo cytological samples) and to test its possible complementary role in 

the diagnosis of thyroid nodules. In particular the main goal of the project was to verify the 

capability of the MALDI-MSI approach in solving “indeterminate for malignancy” and 

“suspicious for malignancy” cases. 

In this 3-year project a consecutive series of more than 1000 patients were expected to be 

enrolled based on the potentiality of recruitment at the San Gerardo Hospital (Monza, Italy). 

Morphological cytological FNA diagnosis were obtained for all the patient according to 5-tiered 

system (THY1: unsatisfactory material, THY2: benign, THY3a: low risk indeterminate for 

malignancy, THY3b: high risk indeterminate for malignancy, THY4: suspicious for malignancy, 
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THY5: malignant). The design was planned to recruit 160 THY2 and 80 THY5 patients for 

inclusion in the training set for the construction of the classifier based on proteomic data, while 

additional 40 THY2, 150 THY3, 60 THY4 and 20 THY5 FNABs foreseen for the validation phase 

of the study.  

This thesis is organized as follows. The general clinical context that characterizes the diagnosis 

of thyroid cancer and a summary of the study protocol is illustrated in Chapter 2, where the 

proteomic analysis by MALDI-MSI is also briefly described from the sample collection of FNABs 

to the pre-processing of mass spectrometry data. An overview of the main statistical 

approaches to deal with high dimensional data is presented in Chapter 3 and the application of 

these methods to the omics field, in particular the proteomic one, is discussed.  

The practical implementation of the clinical project is described in Chapter 4. This chapter 

contains the results of two important steps in the fine tuning of the protocol for the proteomic 

MALDI-MS analysis that deal with the standardization of the sample preparation workflow of 

ex-vivo and in-vivo thyroid FNABs in order to transfer the MALDI-MSI model to routine 

cytological specimens. Chapter 4 contains also the results of the preliminary analysis of the 

clinical study where proteomic data of a training set were used for the classification of thyroid 

lesions in a validation sample.  

One of the statistical challenges that originated from this project was the problem of the 

assessment of the mass spectra similarity. A review of the main approaches existing in the 

literature to assess this issue is presented in Chapter 5, together with a proposal developed 

specifically for this purpose. Results of a simulation study that was set up to investigate the 

performance and the reliability of different similarity measures are also reported in Chapter 5. 

Some final remarks are given in Chapter 6.  
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2 The clinical and proteomic landscape 

2.1 Clinical context 

An increasing incidence of thyroid cancer had been reported in the last decades due to the 

primary detection of small tumour nodules in the preclinical stage [1] [2]. The thyroid is a 

bilobular endocrine gland that is located anteriorly in the lower neck [3]. The main purpose of 

this organ is to produce, store and secrete the iodine-based hormones triiodothyronine (T3) 

and thyroxine (T4); they act on fat, protein and carbohydrate metabolism, as well as on the 

development of central nervous system and general growth. The thyroid hormones are strictly 

regulated by the Hypothalamus-Pituitary-Thyroid axis (HPT) via the secretion of thyroid 

regulating hormones (TRH, from hypothalamus) and thyroid stimulating hormone (TSH, from 

pituitary gland) [4]. 

Palpable thyroid nodules are present up to the 10% of the adult population. Ultrasound could 

detect up to 70% of palpable and not palpable nodules that were identified during the execution 

of an imaging test for other indications [5]. Prevalence is higher in women, elderly and in iodine 

insufficient areas and the frequency increases with age [6]. In Italy, thyroid nodules are the 

second most frequent cause of cancer in women under 45 years [7]. Only 5-15% of patients are 

actually affected by malignant thyroid lesion, so the first purpose is to exclude malignancy [5].  

2.1.1 Diagnostic iter and follow-up 

The main objective of the ultrasound evaluation of a thyroid nodule is to determine whether 

the lesion should be evaluated via FNA or subjected to ultrasound follow-up [8]. Since 

ultrasound is an operator-dependent technique and because of the complexity in the 

interpretation of the ultrasound images, thyroid lesions had been stratified in different risk of 

malignancy in order to standardise the diagnostic procedure and determine the 

appropriateness of the execution of FNA [9]. 

The first diagnostic procedure identified by the guidelines of the American Thyroid Association 

(ATA) and the American College of Radiology (ACR) involves the evaluation of multiple 

ultrasound characteristics as: solid aspect, hypo echogenicity, micro calcifications, irregular 

borders, absence of peripheral halo, intranodular blood flow and shape [5]. Therefore, the ATA 

and ACR guidelines suggested to evaluate thyroid nodules based on combinations of ultrasound 

characteristics, stratifying nodules in 5 groups with a different risk of malignancy [10] 

(Figure1). Biopsies are not recommended for nodules with a diameter lower than 10 mm, since 

a small nodule is usually not a cancer. In the presence of some echographic criteria of suspicion, 
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small nodules with high growth rate during follow-up are eligible for FNA [9]. Currently, 

ultrasound technique is able to detect nodules with a diameter under 5 mm without difficulty. 

These nodules can potentially be biopsied with good results for safety and diagnostic 

performance for the patients [11]. 

Although ultrasonography is a good diagnostic tool, the diagnosis of thyroid lesions is 

performed by image-guided fine needle aspiration biopsy that currently represents the main 

approach to exclude the malignant lesion of thyroid nodules in patients with echography 

suspicious features [11]. An experienced pathologist or technician performs all aspirations. 

Pathologist evaluates 1 to 3 slides prepared as smears for each FNAB needle pass for traditional 

morphological diagnoses. Samples are then classified according to the 5-tiered Italian Society 

for Anatomic Pathology and Cytology and the Italian Division of the International Academy of 

Pathology (SIAPEC-IAP) system [12] (Figure 1). A sample is defined as not representative when 

the number of cells is insufficient for diagnoses: it is required the presence of at least 6 groups 

of 10 well preserved cells [13].  

The World Health Organization (WHO) divided thyroid neoplasms into benign lesions as 

follicular thyroid adenomas (FTA), hyperplastic lesions (HP) to differentiated carcinomas, such 

as papillary thyroid carcinomas (PTC, nearly 90% of thyroid cancer), follicular thyroid 

carcinomas (FTC), anaplastic thyroid carcinomas (ATC) and medullary thyroid carcinoma 

(MTC, represents only the 5% of malignant lesions). 

A classification of benign (THY 2) is assigned in 60-70% of thyroid FNAs. In the majority of the 

cases, THY4 and THY5 are diagnosed as classical PTC or as follicular variant of PTC (fvPTC) 

whereas the THY3 category, defined as “indeterminate for malignancy”, may include FTA, non-

invasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP), Hurtle cells 

carcinoma, PTC and lesion of uncertain malignant potential (UMP) [14]. A surgical approach for 

the THY3 samples is recommended by the international guidelines [15]. After total 

thyroidectomy, 80% of these cases result benign [12], with important implications in terms of 

healthcare costs, operative risks and morbidity, and potential need for a lifelong hormone 

replacement therapy. 

Before the routine use of FNA, only the 14% of the resected thyroid resulted as malignant, after 

FNA practice the percentage increased further than 50% [15]. The diagnostic accuracy of FNA 

was nearly 90%, and the percentage of false positive and false negative was less than 3%, except 

for FTA [13]. 
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To improve the pre-operative risk assessment of malignancy on thyroid FNAs different 

molecular tests, as genetic testing (BRAF, N-H-KRAS point mutations and RET/PTC1, 

RET/PTC3, PAX8/PPAR rearrangements) or gene-expression classifiers (Veracyte, Thyroseq) 

had been proposed. These methods show several disadvantages in terms of cost-effectiveness 

that limit their use in routine diagnostics, and sometimes are inconclusive (i.e. 50% of 

malignant cases were BRAF negative). 

2.1.2 The clinical protocol 

Patients population: consecutive subjects admitted to the Ultra Sound (US)-guided FNA 

ambulatory of the ASST MONZA-BRIANZA (San Gerardo Hospital HSG-UNIMIB, Monza, Italy) 

from 1 June 2017 to 1 June 2019.  

FNA: a standard procedure of US-guideed FNA that includes a minimum of 2 passes for nodule. 

Only “needle washing” from leftover material of every pass was collected and send to MALDI 

examination.Cytologic diagnosis: a morphological cytological FNA diagnosis obtained from all 

subjects according to the 5-tiered reporting system of the British guidelines. 

Histology and follow-up: the cytological diagnosis had been differentially confirmed. In 

particular, BENIGN-THY2 cases were certified by performing a US examination 12-months after 

Figure 1 ATA and ACR guidelines for thyroid nodules based on combinations of ultrasound and cytological 
characteristics, stratifying nodules in groups with a different risk of malignancy 
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the first US-guided FNA and confirming: i) absence of new echographic malignant features ii) 

absence of significant increasing nodule size iii) absence of nodes metastasis iv) no incidence 

of new suspicious nodules. For malignant cases, histological diagnoses were progressively 

collected after thyroidectomy to certify the nature of the nodules. 

Potentiality of recruitment:  around 700 subjects per year for a total of 1400 in a 24-months 

recruitment period. 

Sample size: Training-phase: a) 160 cases with a clear-cut benign diagnosis (THY2); b) 80 cases 

with a clear-cut malignant diagnosis (THY5). 

Validation-phase: a) 150 indeterminate (THY3), b) 50 suspicious (THY4), c) 40 benign (THY2) 

and d) 20 malignant (THY5) Fine Needle Aspiration Biopsies (FNABs) with a subsequent clear-

cut diagnosis based either on follow-up or histology. 

The sample size was estimated on the basis of the mean difference in peak intensities of protein 

expression, assuming that the base 2 logarithm of peak intensities has a Gaussian distribution. 

The MALDI analysis of a total of 240 patients in the training phase, according to a ratio 2:1 

between THY2 and THY5, have a 90% power to detect a 1.5-fold change in the mean intensities 

of the two groups, with an α error of 0.001 and assuming one technical replicate, two-sided test 

and the variance in the log-peak equal to 0.9 (data from previous experiences on thyroid 

tissue). Even in presence of a higher level of variability, with a variance of 1, our study would 

have a power of 80%, to show as statistically significant the same difference. This was an highly 

powered study for the discovery of new markers based on proteomic profiling that properly 

controls for the False Discovery Rate due to multiple testing, since around 150 peaks were 

tested for differences in mean intensities at the biomarker discovery stage.  

Data collection: for each recruited patient demographic and clinical information were collected, 

including: age, sex, number of nodules, echographic parameters, presence of autoimmunity, 

medical history, concomitant therapies, serological TSH levels, history of radioactive exposure.  

Ethics: - the study was approved by the Ethical Committee of the ASST MONZA-BRIANZA; 

-subjects provided signed informed consent. 

 

2.2 Mass spectrometry  

Despite FNA is considered the standard procedure for thyroid nodules diagnoses, due to the 

fact that is an easy-to-perform technique, cost-effective and minimally invasive method [16], 

collected samples usually contain few tumour cells. Limiting the usefulness of cytological 

analyses could create ambiguity in the diagnoses. To address this problem, several groups had 
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used proteomics approach to find potential markers for thyroid tumours from FNA samples 

and other techniques, such as fresh-frozen thyroid tissue specimens obtained after 

thyroidectomy and serum samples [17].  

Proteomics represents a possible complementary analytical strategy that was just routinely 

used in microbiology. In this regard, Matrix assisted laser desorption/ionization (MALDI) mass 

spectrometry imaging (MSI) is a new proteomics technology that explored the composition of 

biomolecules and their spatial distribution in-situ [18]. MALDI imaging had already been used 

to build proteomic signatures of carcinoma in different organs such as oesophagus, breast, 

colon, liver, kidney, stomach, and thyroid gland using histological tissues [19][20]. The 

possibility to investigate material collected by FNAB, available before thyroidectomies (in-vivo 

FNAB), for the preoperative diagnostic phase of thyroid tumours, could reduce the number of 

unnecessary surgeries. 

In the last years the interest in the application of molecular techniques for the diagnoses of 

thyroid lesions has grown, and MALDI-MSI had been used to analyse the proteomic profile in 

thyroid tissues and FNA samples [21][22]. Several groups have worked in this field, as shown 

in the following examples. Because histological analyses on thyroid surgical samples was still 

the most efficient one due to the high quality of the sample, several groups developed different 

strategies and optimised protocol to allow a MALDI-MSI proteomic investigation on surgical 

specimens, fresh frozen (FF) and Formalin-Fixed Paraffin-Embedded (FFPE) tissue specimens 

based on tryptic peptide extraction after enzymatic digestion [23][24].  

In 2017 Pietrowska et al. focused their studies on distinguishing different types of thyroid 

cancer on thyroid tissue samples, and validated a proper classification of MTC and anaplastic 

cancers [25]. In the same years, Galli et al. used MALDI-MSI to investigate Tissue Microarrays 

(TMAs) on different type of thyroid nodules, such as HP, FTA, PTC and fvPTC [21]. A group of 

proteins able to discriminate between HP and FA or HP and PTC was identified. Moreover, 

MALDI-MSI showed the possibility to highlight the heterogeneity of those TMA samples that 

contained both benign and malignant cells. Different groups worked also on rare forms of 

thyroid cancer, as MTC, and their studies showed an high sensitivity and specificity to detect 

MTC [25][26].  

MALDI-MSI has been performed also on cytological specimens, but the approach on this type of 

samples was different. Complementary results on FNA smear samples (liquid biopsy was 

smeared on a glass microscope slide) were obtained in 2016 by Pagni et al.. The application of 

MALDI-MSI on ex-vivo FNAB (FNAB after thyroidectomies) showed the possibility to correlate 
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morphological information with protein expression in the distinction between malignant (PTC) 

and benign lesions [22]. MALDI-MSI demonstrated the ability to distinguish not only benign vs 

malignant lesions, but to reveal significant differences between thyroid lesions with similar 

pathological behaviour. Potential discriminative features were found in the malignant group, 

where PTC and MTC lesions showed independent proteomic profiles.  

A recent work published in 2019 on thyroid lesions, demonstrated the potential use of 

metabolomic analysys (by Desorption Electrospray Ionization Mass Spectrometry DESI-MS 

imaging) on FNA smears to reduce the number of unnecessary diagnostic thyroidectomies [27]. 

Molecular signatures of benign vs FTC and benign vs PTC were found. 

These studies showed how MALDI-MSI, that was an emerging approach, allows to provide 

specific molecular profiles of the thyroid lesions not only on surgical specimens, but also on 

standard FNAB samples used for the clinical routinely diagnoses. 

The imaging approach on in-vivo FNAB specimens to individuate putative discriminant 

biomarkers is still relatively new. The addition of MALDI-MSI into the clinical routine, to 

improve the diagnoses of thyroid nodules especially for indeterminate for malignant cases, is 

promising. Potentially the number of not therapeutic surgery can be reduced, improving the 

life (style) of patients and high healthcare costs.  

A consistent part of this thesis has been dedicated to solve technical aspects on sample 

preparation, such as morphological and protein profile stability, and haemoglobin interference 

problem that suppressed any other protein signature in untreated samples. The technical 

details reported in the following sections are the results of the studies whose results are 

reported in Chapter 5.  

2.2.1 Sample Preparation 

The design of a robust and simple protocol, by focusing on the morphological and protein 

stability of the sample and the repeatability of the workflow, was of great importance. 

Samples were collected by performing 3 or 5 needle passes with a 25-Gauge needle and 

immediately transferred into a falcon tube with preservative mediums, such as CytoLyt 

solution. This solution allowed to preserve the morphology of the samples during 

transportation and over time, to prevent protein precipitation and the lysis of red blood cells.  

Cytological samples deposited into CytoLyt solution were centrifuged for 10 minutes at room 

temperature (RT) to separate cells and aggregates from the cyst fluid, then the pellet was re-

suspended in CytoLyt solution again and the supernatant was discarded and the procedure 

iterated [28][29][30][31]. Finally, samples were transferred onto indium tin oxide (ITO) 
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conductive slides as small cytospin spot and measurement of total protein concentration was 

performed by using a spectrophotometer. 

The amount of material was usually scarce; a limiting number of needle passes can be 

performed due to the aspiration being performed in living patients who do not undergo 

anaesthesia. When the amount of cellular material was enough the specimen was equally 

divided into multiple spot in order to obtain multiple replicates. A maximum of eight cytospin 

spots can be positioned onto one ITO-conductive slide. 

Finally, dry and washing steps were performed. Cytospin samples onto ITO-slides were dried 

under vacuum two times, respectively for 30 and 15 minutes, interspersed by a consecutive 

washing steps of 30 seconds each, with increased concentration of ethanol (70%, 90% and 

95%) in order to remove salt and lipid contamination that could unfavourably affect the quality 

of MALDI-MSI data [32][33]. Then ITO-slides were stored at -80°C until the day of the analyses 

at the spectrophotometer. 

Before MALDI-MSI analyses, cytospin spots were stabilised to room temperature, dried under 

vacuum for 30 minute, and the MALDI-matrix sinapinic acid was uniformly deposited, using the 

iMatrixSpray automated spraying system. Different types of matrix exist, depending on the 

nature of the analyte to analyse and the mass range of the analyses. 

The analysis reported in this study were performed with a MALDI- time of flight (MALDI-TOF) 

mass spectrometer. This type of instrument is one of the most commonly used, since it allows 

to analyse a wide variety of molecules such as proteins, peptides and lipids. After the solvent 

evaporates, the matrix co-crystallises with the molecules of the sample. When the laser of the 

MALDI instruments hits the sample, the matrix absorbs the energy and transfer it from the laser 

to the analyte molecules, which are now ionised, causing their detachment from the ITO-slides. 

Ions extracted from the sample, enter and move in a drift space free from electromagnetic fields 

under vacuum. 

The mechanism of operation of a TOF analyser is very simple: it separates ions according to 

their velocity and examines the time that an ion took to run across the flight tube and the 

amount of ions hitting the detector concurrently. Ions with different m/z will arrive separately 

to the detector because the lighter ions of the same charge fly faster than the heavy ones and 

arrive to the detector earlier. The detector records the impacts of the ions and transform them 

into electric signals, obtaining mass spectra for each sample. Signal abundance is directly 

proportional to the quantity of the same ions hitting the detector plate.  
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Concluding, the molecules present in the sample are ionised in the source and separated in the 

TOF analyser depending on their mass to charge (m/z) ratio and finally a mass spectrum is 

generated, with the m/z ratio in the x-axis and the relative aboundance (intensity) on the y-

axis. 

The TOF analyser can work in two different ways: linear and reflectron (Figure 2). In the first 

one, the analytes are detected at the end of the flight tube. In the reflected mode, ion mirrors 

reflect the ions and an electrical field is applied before the detector to increase the resolution 

of the mass analyser, i.e. incrementing the ability of the analyser of separating two ions with 

small difference in their mass to charge ratios (m/z), generating two different peaks in the 

spectrum. In this work linear MALDI-MSI was used. 

After the MALDI analyses, the matrix was removed with 70% concentration of ethanol and the 

ITO-slides were stained and digitally scanned in order to directly correlate the molecular 

information to the morphological data. 
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Figure 2  MALDI mass analyser can work in two different ways: in linear mode (A) or in reflectron mode (B) which 
add an electrical field and a mirror to reflect the flight of the ions incrementing the ability to separate 
them. 
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2.2.2 Data acquisition 

MSI technique maps the biological molecules as proteins, peptides, lipids and metabolites 

visualizing their distribution in the biological sample [34]. To generate MSI data with a MALDI 

instrument, the sample was divided into multiple pixels depending on the laser characteristic. 

The distance between two consecutive shots (raster) depends on the laser size, a reduction of 

the raster increases the spatial resolution leading to the visualisation of single cells [35]. 

Mass spectra (MS) were acquired for each single point (pixel) in which the laser beams hit the 

surface of the sample. Once we arranged the mass spectra data by their pixel positions, we 

obtained a set of MSI data structured as a data cube. The acquisition of one single spectrum for 

each pixel led to the possibility to reconstruct the spatial distribution of a given analyte (at a 

specific m/z value) on the sample. This made up an intensity image, which maps the 

distribution of the specific molecules on the specimens, colouring image pixels according to the 

abundance in each spectra of the m/z chosen (Figure 3). The advantage of MSI instead of MS 

data is that MSI also incorporate spatial information in MSI proteomic data. 

 

For each sample, an overall average spectrum of the entire specimen, single spectra from each 

pixel of the sample or average spectra of regions of interest (ROIs) could be obtained. ROIs 

contain pathological areas of interest, annotated by the pathologist, to reduce the bias made by 

the not informative pixels, only the part of cancer and non-cancer cell were selected. 

Figure 3 Experimental plan: from thyroid biopsies to MALDI-MSI analysis, spectra generation and imaging 
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The average spectrum was obtained calculating the mean value of intensity of each m/z. The 

average evens the spatial molecular information, specific signals (peaks) of a defined area 

might not be represented in the average spectrum. It would have been suitable if the samples 

were homogeneous and all single spectrum had similar peak intensities.  

2.2.3 Pre-processing: 

Before statistical analyses, data have to be visualised and pre-processed in order to smooth the 

intra and inter-sample variability in intensities and m/z localisation due to technical variations 

as sample preparation and mass spectrometric instrumentation [36][37].  

The elaboration phase was divided in five steps: baseline, smoothing, normalisation, alignment 

and peak picking. 

Baseline: 

The baseline is a line that connects all the lowest value of the spectrum, usually with an 

exponential shape; it is related to electrical noise and chemical impurities in the sample. The 

baseline noise is estimated and subtracted from the original spectrum, bringing all the 

intensities to start from zero. A high baseline leads to false intensity values. Several algorithms 

could be performed. The SNIP method replaces for each data point the minimum between the 

data itself and the mean of the extreme of a define window, centred in the data point observed. 

Small window can lead to a strength erosion of peaks intensity, so the width of the window has 

to be greater than the base of shape of the peak considered; large window leads to a loss of 

small peaks and intensity of small m/z values, cutting the base of peaks. The Top-Hat method 

applies a two erosion filter, a moving minimum erosion filter and subsequently a moving 

maximum dilation filter. As the SNIP method, it depends on a moving window, whose size could 

lead to artefacts or loss of information. The Convex Hull method connects the extremities of the 

spectrum with a convex curve. It does not take into account the local variations of the spectrum, 

losing informative portions of the mass spectrum. The Median filter substitutes each data point 

with the median of the define window of which is the central point. Width window has to be 

larger than the base of the peak shape. Iterative Convolution algorithm uses a Gaussian filter to 

estimate the normal shape of each peak and estimates the baseline as an interpolation of all the 

minimum of this Gaussian curve. 

Smoothing: 

Smoothing process removed false positive peaks corresponding to artefacts, smooth out 

fluctuations and highlight the shape of the spectrum. Common approaches are the Savitzky-

Golay filter, the Moving Average, the Gaussian and the wavelet transform. Savitzky-Golay filter 



16 

 

interpolates data point with low-degree polynomial function, returning a polynomial curve. It 

preserves the shape of the spectrum, the intensity value of peaks and their position along m/z 

axis. The Moving Average filter moves a define window along the spectrum, calculates the 

average of extremes data and replaces these values to the original ones. Large windows could 

lead to a loss of intensity value of the peaks, while small windows are computationally 

expensive. Gaussian filter smooths the spectra using a Gaussian kernel, assuming that each peak 

follows a Gaussian distribution. 

Normalization: 

Another task in the pre-processing stage was the normalization. Normalization divides all the 

intensities of a spectrum for a fix scaling factor. It is indispensable to bring all the spectra to the 

same intensity range in order to compare spectra not only within the same analyses but also 

among different ones. One of the most frequently used approaches is the Total Ion Current (TIC) 

approach. It divides each intensity by the sum of all the intensities in the mass spectrum. It is 

the most suitable method for MSI data pre-processing, but it is not robust in the presence of an 

high intense peak. The TIC corresponds entirely to that signal suppressing all the other 

intensities. To overcome this problem, TIC could be performed with the exclusion of that peak, 

or the Median method could be used; it divides each intensity by the median intensities of the 

entire spectrum, being robust in the presence of high intense peaks. However, it is sensitive to 

the noise variability and a not symmetrical noise profile could lead this method to generate 

significant artefacts. Other alternative to TIC normalization is the Root Mean Square (RMS), 

which scales intensity by the sum of the squares of the intensities. It is appropriate in presence 

of small variations in peak intensities but, as for the TIC, it is not robust in presence of 

prominent peaks. Other studies perform a normalisation step respect to the largest peak or 

performing a linear scaling with the smallest and the largest peak intensities. 

Alignment:  

Consequently, spectra must be aligned; slightly differences in m/z values had to be recognised 

as the same and aligned with the same m/z names, so peaks in different spectra that represent 

the same protein species were matched. Peak alignment was performed firstly by extracting 

the most suitable peaks from a reference spectrum and then matching peak maxima of all the 

spectra to the reference ones. Other less frequently used methods regarding peak alignment 

have been proposed by Kim and Zhang that took advantage from mass spectral similarity 

measure, such as correlation functions, to affect the performance of peak matching-based 

alignment, increasing the alignment accuracy [38]. Another one is the complete linkage 
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hierarchical clustering performed on the m/z axis: the same peaks that are shifted each other’s 

in different spectra were grouped under the same tight cluster [39].  

Peak picking: 

Finally, peaks detection identified peaks in the mass spectrum. Peak picking extracts the 

information regarding the only true informative peaks. In some Peak Picking algorithm 

spectrum noise is estimated, and only peaks with a Signal-to-Noise ratio (S/N) higher than an 

arbitrary threshold are retained for statistical analyses. Other processes, as the Orthogonal 

Matching Pursuit, estimate how much a peak looks like a Gaussian curve and detect as peak the 

m/z value that corresponds to the global maximum of each Gaussian shape [40][37].  

Only the information regarding the intensity and m/z value of the informative peaks were 

retained for the statistical analyses.
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3 Overview of Statistical Methods 

Various statistical methods can be applied in the omics field, but two are the main approaches 

usually considered in the workflow of a omics’ analysis. Firstly, unsupervised methods can be 

applied in order to explore the data structure. Data quality, such as outliers identification, is 

evaluated and potential clusterings and mutual relations are investigated. Then, supervised 

methods are used to construct either diagnostic, prognostic, or predictive models, based on the 

specific clinical question. The main aspect differentiating unsupervised from supervised 

methods is that the first can only be used for exploratory analysis because no prior information 

regarding the label of the data is available. Sometimes, when the unsupervised analysis fails, no 

further investigation with supervised analysis might be useful. In other situations in which the  

specific contexts of unsupervised and supervised analyses are so different and there is no 

relationship between the two, both the approaches are performed.  

This chapter is divided into four sections. The first two present an overview of the different 

approaches used to handle high dimensional problems either with unsupervised and 

supervised analysis. Advantages and weaknesses of the different algorithms are discussed. 

None of these algorithms works best for every problem, because there are different factors, 

such as the size and structure of data, which play an important role on the choice of the 

approach to used. One of the most popular classifier in the omics field, the regularized 

regression model, is reviewed in the third section. It allows to create a linear regression model 

selecting the most informative features without losing information about individual features. 

In the last part of this chapter the typical process for the identification and evaluation of 

proteomics biomarkers is presented.  

 

3.1 Unsupervised analysis 

Unsupervised statistical analyses are useful to perform an initial exploration of the collected 

data, and can be divided into two major groups: dimensionality reduction (e.g. Variance 

thresholds, Correlation threshold, Principal Component Analyses, Neural networks) and 

clustering methods (e.g. Hierarchical Clustering Analyses and Partitioning methods). Class 

discovery uses structure inside the data to suggest interesting group’s membership. If samples 

do not separate clearly, maybe also the classifier would not yield good results. 

3.1.1 Dimensionality reduction 
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When dealing with hundreds to thousands number of features, it is useful to reduce the 

dimensionality of the space while preserving the information present in the entire dataset. Two 

main approaches are available for dimensionality reduction: feature selection and feature 

extraction. 

3.1.1.1 Feature selection 

Feature selection is used for filtering out irrelevant or redundant variables from the high 

dimensional dataset. The key difference with respect to feature extraction is that this last one 

creates new variables from the original ones as a combination of them, while feature selection 

keeps a subset of the original features. 

Feature selection can be both supervised (e.g. Genetic Algorithms, Stepwise Selection, 

Univariate Analysis, Significance Analysis of Microarray) and unsupervised (e.g. Variance 

thresholds, Correlation threshold). 

Furthermore, some supervised algorithms build a feature selection inside the model, i.e. 

Regularized Regression and Random Forest that are exhaustively explained later. 

Variance thresholds: 

Variance threshold is a feature selector that removes all low-variance features. The idea is 

really simple, feature that have not higher change between the observation do not add much 

information. It is recommended to use a lower threshold not to lose possible informative 

variables. As all the univariate analysis do not take into account any correlation between the 

features, the variance of individual features is evaluated. Because variance is dependent on 

scale, it is always recommended to normalize the features before applying variance thresholds. 

As an extreme use of this technique, if a threshold of zero is applied, only features with non-

zero variance are kept, while all the features that have same value in all the samples are 

removed. Because the focus of this thesis is on proteomics analysis, a choice on this feature 

selector had to be done. In proteomics field it is not easy to have features with low variance due 

to the analytical variability of the sample (i.e. cytospin sample preparation, MALDI-MSI sample 

preparation, instrumental analysis).  

Correlation threshold: 

The same idea could be applied on correlation task. All the features that are highly correlated 

with the others can provide redundant information. All pairwise correlation between all the 

features had to be evaluated. Then,  between two highly correlated features, those that have the 

largest mean absolute correlation with other features are discarded. Applying a lower 

threshold, informative variables could be lost. In the omics filed as well as in genetics, even if 
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two features are highly correlated, they may have to be retained because are involved in the 

same genetic process and can not be separated for clinical interpretability . 

3.1.1.2 Feature extraction 

Aim of feature extraction is to retain all the information, reducing the number of variables by 

creating a new set of latent variables that are a combination of the original ones. As with feature 

selection, some algorithms already perform feature extraction inside the model. One of the most 

popular algorithms of this class are neural networks. As feature selection, feature extraction 

can be unsupervised (e.g. Principal Component Analysis, Neural networks) and supervised (e.g. 

Linear Discriminant Analysis and its variants, Support vector machine, K-nearest neighbour, 

Random forest). 

Principal Component Analysis: 

Principal Component Analysis (PCA) is one of the most popular techniques used in high 

dimensional data [1]. 

Dimensionality reduction in PCA is feasible by finding a new set of orthogonal latent variables 

(principal components) that are a linear combination of the originals and explain as much as 

possible variance of the independent variables. The first principal component (PC1) shows the 

direction of the highest variance, PC2 is orthogonal to the first and represent the direction of 

the maximum variance remained. The projection of the data into the new space PC1xPC2 yields 

maximum separation between data. The fraction of variance explained by a principal 

component is the ratio between the variance of that principal component and the 

total variance, which is the sum of variance of all the Principal Components. PCA is an 

unsupervised learning method; it works without taking into account the dependent variable. 

Before performing PCA, data have to be scaled and centered, because it is sensitive to the 

different scale of features, otherwise features that have the largest scale would dominate in the 

new latent variables, explaining the major amount of variance. A supervised version of the 

principal component analysis exists that works by estimating a sequence of Principal 

components that have maximal dependence on the response variable.  

Neural networks: 

Artificial Neural Networks (ANN) are machine learning models inspired by real biological 

neural networks which compose animal brains. They are characterized by a set of artificial 

neurons connected to one another in several ways, depending on the type of function that has 

to be learned by the network. 
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A Self-Organizing Map (SOM) is a type of ANN which applies the concept of competitive learning 

in order to train the neural network, instead of the error minimization approach used by other 

neural networks. Competitive learning enables the network to learn in an unsupervised way, 

since the input vectors are evaluated iteratively only against network neurons using an 

arbitrary distance function in order to find the so-called Best Matching Unit (BMU) neuron. 

Then its weights are updated allowing the network to learn a pattern based on the given 

training set [2]. SOMs are used for dimensionality reduction because they are essentially a map 

from a N-dimensional vector space to a 2-D topological space in which artificial neurons and 

their corresponding connections are arranged together. 

Autoencoders are network models composed by two connected Feedforward Neural Network 

(a type of ANN), named encoder and decoder, respectively. The encoder reduces an input vector 

of dimension n to a vector of lower dimension m, and the decoder tries to map the reduced 

feature space to the original input of dimension n, but instead of minimizing the error between 

labels, it tries to minimize the error between the real input and the input reconstructed by the 

decoder. This approach is an unsupervised learning method because labels are not necessary 

to train the network, since input vectors are compared against a reconstructed version of 

themselves. Hence, the output of the encoder network is the representation of the original 

feature space encoded into a lower and user-defined dimension, and so identifying a 

dimensionality reduction approach using neural networks [3]. 

3.1.2 Clustering  

Clustering is an unsupervised learning algorithm that searches for natural groupings of 

observations, called clusters. Methods are divided into two main approaches: partitioning and 

hierarchical techniques. Partitioning methods differ from hierarchical ones due to the fact of 

having to previously decide the number of clusters in which observations have to be divided. 

3.1.2 .1 Hierarchical Clustering Analysis 

HCA is used to group analogues observations into the same cluster according to the similarity 

among each other [4]. Divisive HCA uses a top-bottom approach, starting from a unique group, 

which is consecutively divided into different subgroups estimating the pairwise distance 

among data observations and generating a dendrogram, e.g. tree. Conversely, agglomerative 

HCA uses a bottom-up approach; single observations are grouped together according to their 

similarity into clusters. HCA can be performed after PCA to highlight the presence of different 

similar clusters that can be correlated with the outcome, using the selected principal 

components. In the clustering algorithms the use of different cluster techniques could highlight 
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different behaviour of the sample. For example, in the hierarchical cluster trees, complete 

linkage is adequate to detect separation in groups of the samples, while single linkage was 

rather appropriate to identify outliers. 

3.1.2 .2 Partitioning analysis 

Partitioning methods can be divided into parametric and non-parametric models. Model based 

techniques are a broad family of algorithms designed for modelling an unknown distribution 

as a mixture of simpler ones, where each sub-groups of similar data follows a classical 

distribution [5]. They are more flexible with respect the non-parametric form because each 

cluster could have a different variance. Different algorithm based on non parametric models 

were proposed and the most widely used are described below. 

K-mean: 

Conversely, Heuristic partitioning methods are not based on formal models; an example was 

the k-means clustering method [6]. In k-means, data observations are partitioned into k 

different clusters, minimizing the distance intra cluster and maximizing the distance inter 

groups. The number of clusters, k, must be chosen a priori, as the metric to be used to calculate 

distance. Another disadvantage involves the structure beyond data. In K-means clusters are 

grouped around centroids, resulting in globular, perfectly separated, clusters with similar sizes. 

If the underlying structure in data are not globular, the algorithm could produce poor clusters.  

Partitioning around medoids: 

Partitioning around medoids (PAM) or k-medoids is a clustering algorithm that works similarly 

to the k-means, attempting to minimize the distance between data [7]. In contrast to k-means, 

in which center of a cluster is calculated as the average between the points in the cluster, PAM 

choses centers among input data points. As k-means the number of clusters into which the 

observations have to be partitioned, has to be chosen a priori. Compared to k-means it is more 

robust to noise and outliers, because k-means minimizes the sum of the squared Euclidean 

distance while k-medoids minimizes the sum of all the pairwise dissimilarities. 

Affinity propagation: 

Affinity propagation [8] is a relatively new clustering algorithm that unlike clustering 

algorithms such as k-means or k-medoids, does not require the number of clusters to be 

determined or estimated before running the algorithm. Affinity propagation takes as input a 

measure of similarity between each pair of data. Similarities between data are calculated and 

preference to group membership are voted.  

 

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-medoids


26 

 

3.2 Supervised analysis 

By contrast, the class prediction is most closely associated with classification problems. Starting 

from samples with a priori knowledge of their class membership, the supervised method tries 

to allocate new observations to these classes. Several statistical tools had been developed that 

measure the strength of the (univariate) association between the individual features and the 

response variable and differ each other for the way to assess the weights given to the features. 

In the omics field (i.e. genomic, lipidomics, proteomics, metabolomics) two main problems 

could be encountered: data dimensionality higher than the observations and possible 

multicollinearity (high correlation levels among the variables). 

When a large number of features needs to be included in a model, univariate and multivariable 

regression analyses are not recommended, because, although simpler and useful in ranking 

features according to their ability in prediction, they are prone to big mistakes. Univariate 

analysis is used to select variables that show good performance at separating samples in classes 

of interest, with the strong assumption of no interaction effects between features also in 

absence of information from individual variables. Furthermore, albeit an adjustment for 

multiple comparisons (type I error control) must be applied, the level of significance can 

become so little that it is impossible to find significant variables.  

To overcome this problem, different statistical methods had been developed with the primary 

aim of reducing the number of features, filtering out irrelevant and redundant information. The 

strategy is to identify, in a large number of variables, those features that were differentially 

expressed in a pre-specified population so that they could be included in a class prediction. In 

such a way it is possible to reduce the number of variables (e.g. genes, proteins) needed in the 

future to classify the individual patient, according to the observed value of the biomarkers. For 

example, Tibshirani et al. developed the Significance Analysis of Microarray (SAM) [9] that uses 

repeated permutations of the data to determine if the expression of any features are 

significantly related to the response controlling for the False Discovery Rate. 

In omics data, the number of detected variables usually exceeds the number of samples, even 

in a relatively large study with many biological samples, so overfitting is another potential 

pitfall. This reduction could be done in two different ways, selecting the most relevant features 

or by summarizing the multiple original variables constructing new latent variables. 

3.2.1. Feature selection 

Genetic algorithm: 
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Genetic algorithm (GA) is a search operation that reflects the process of natural selection.  GA 

has two main use, find the best weights for a neural network or performed a supervised feature 

selection.  In the second case GA seeks to find a collection of markers (called chromosome in 

GA) that separate cases and control, each chromosome is evaluated by a fitness function 

following  these simple steps. Intensity variables had to be previously scaled to lie between 0 

and 1, then sample is clustered according to the Euclidean distance.  

GA is similar to the K-means, with the main difference that the second algorithm is an 

unsupervised method.  

Few studies applied GA to mass spectrometry analysis, because of its computational complexity 

without an increment in classification accuracy when it is comparable to other popular 

approaches as classification tree, boosting and PAM algorithm [10]. 

Stepwise algorithm: 

Stepwise algorithm is a supervised feature selection method based on a sequential process of 

selection [11]. Two different formulations of these methods exist: forward and backward. In 

forward stepwise search features were add one at a time at the model, if the new variable 

increased the accuracy of the classifier then the features are retained, otherwise, it is discarded. 

it is suggested to be used when a large set of predictor variables are to be managed. Backward 

stepwise is the same process but reversed, starting from a full model then one at a time each 

feature were discarded until performance reaches the optimal results in sensitivity and 

specificity. This method  is used when a modest number of predictor variables are available and 

the focus is to eliminate a few of them. Stepwise regression is able to manage with a large 

number of potential biomarkers even if a high amount of potential predictor variable means a 

high quantity of different models to be tested in order to select the relevant variables. One of 

the main advantages of these methods is the possibility to look at the order in which variables 

were removed or added giving information about the different levels of importance of the 

predictor variables. In addition, it is not able to deal with correlated variables, in fact, if two 

predictor variables in the model are highly correlated, only one may be retained into the model. 

This is not a problem in the major clinical setting, conversely, in the omics field, it can be a 

problem if correlated variables involved in the same genetic process had both to be retained. 

3.2.2. Feature extraction 

The number of latent variables determines the complexity of the model, a high number of latent 

variables might lead to an overestimation of the effects of the variables, leading to perfect 

classification, while a low set of these new variables could lead to under-fitting data, due to the 
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fact that the new variables do not retain enough information from the independent original 

variables. The most used latent variable approach for classification models in omics field are 

PLS-DA [12], Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), 

diagonal linear discriminant analysis (DLDA), PCA followed by LDA [13]; in other works non-

parametric classification approach was used, such as support vector machines (SVM), the 

nearest neighbour classification (KNN) and random forest classifiers. The aim is the 

development of a classification model able to discriminate between outcomes, following 

decision rules. In the supervised classification, the discrimination rule is built using a training 

sample, a set of patients with prior information about their group membership. Statistical 

methods are used to divide the feature space into regions that better separate samples in 

categories. These regions are divided by smooth curves that define decision  boundaries. Non-

parametric methods, such as SVM, are able to divided data points with non linear hyperplanes, 

while other parametric models as LDA separated samples linearly, which is not usually possible 

in high dimensional data, but are useful if the data distribution is known prior. 

Support Vector Machines: 

The SVM approach was developed by Vapnik [14], it maps validation data points into a high 

dimensional space where a maximal separating hyperplane is constructed to better maximize 

the minimal difference between observations belonging to different classes. SVM with linear 

kernel is similar to logistic regression, however, its strength is due to the fact that can be used 

with non-linear kernels to model non-linear decision boundaries. It is fairly robust respect 

overfitting. 

K Nearest Neighbor: 

The KNN method is first introduced by Fix and Hodges [13] to perform discriminant analysis 

when probability densities are unknown or difficult to determine. Each new observation is 

assigned to the class most common among its k nearest neighbors. Usually, Euclidean distance 

is used to identify the k neighbors. Larger k reduced the misclassification error but made 

boundaries rule between different class membership less distinct and more complex 

decreasing. 

Classification tree:  

Classification tree (CART model) [15] uses decision tree algorithm for classification or 

regression models. Each node represents a decision rule on input independent variable. Leaf 

nodes of the tree contain the independent variable, which determines prediction. Following 

rules through the decision tree, new observations are classified. Classification tree is robust to 



29 

 

outliers, is scalable and could model non-linear decision boundaries thanks to its hierarchical 

structure. 

Random Forest: 

Random Forest combines predictions from different individual decision trees, in which 

thresholds of feature values determine whether the observation belongs to a class or to another 

[16]. 

Neural Network: 

A Feedforward Neural Network (FNN) [17], which exploits backpropagation algorithm, is a 

type of ANN trained using a set of labelled input vectors, adjusting connections weights based 

on the distance between real labels and network predicted labels, thus this kind of model 

resides inside the category of supervised machine learning.  

All these methods are the so called black-box: features were combined together in order to 

minimize the classification error without taking into account how there were groups and their 

real importance in the classification problem. Moreover, when another observation had to 

classify the model had to be run again. 

Linear discriminant analysis and further extension: 

Conversely, different parametric classifiers had been successful in handling high dimension 

dataset for classification problems. Different classifier derived by Linear Discriminant Analysis 

(LDA) specifically designed in multivariate analysis with a latent variable approach and 

depends on the assumption of data distribution. LDA assumes that data follow multivariate 

normal distributions with mean and covariance matrix estimated from the training sample. 

Standard LDA procedure, similar to the regression analysis, attempted at expressing an 

outcome as a linear combination of other features or measurements, is closely similar to PCA 

and factor analysis because of look for linear combinations of features that better explained the 

data. In LDA covariance matrix is assumed to be the same for all classes. Then, the main 

objective of LDA is to find a projection matrix that maximizes the ratio of the determinant of 

the between-class covariance matrix respect to the determinant of the within-class covariance 

matrix (Fisher’s criterion). In order to use LDA, we need to compute the inverse of the 

covariance matrix and so not only the estimation of k different means but also the estimation 

of k(k+1)/2 different variance, supposing to have k different variables. If the number of 

estimation is a fraction of the total number of samples, the models could be unstable due to the 

covariance matrix becomes singular. To solve this problem, Yu and Yang [18] have developed 

the Diagonal LDA algorithm (DLDA). Instead of using the entire covariance matrix, the DLDA 

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Factor_analysis
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used the main diagonal, diagonalized the two covariance matrix. Another extension is the QDA, 

in which the covariance matrix is not assumed to be equal in all the groups, so the decision 

boundary could be curved. 

Finally, Partial least squares discriminant analysis (PLS-DA) became popular in omics field, 

where many predictor variables (frequently correlated) and relatively few samples are  usual 

PLS-DA is a variant of Partial least squares regression PLS-R that could be used when the 

response variable Y is categorical. Under certain circumstances, PLS-DA provides the same 

results that of linear discriminant analysis (LDA) but is especially suited to deal with 

multicollinearity [12]. 

 

3.3 Penalized Regression Models 

The main problem in dimensionality reduction through the construction of latent variables, as 

a combination of the original ones, is the loss of information about individual features. If the 

interest is to identify specific features, such as proteins to subsequently carry out a clinical 

investigation like genetic studies or identify biomarkers research in the serum samples, instead 

of only correctly classified new indeterminate samples, supervised regression models had to be 

performed. In the high dimensional setting we deal with a huge number of biological features 

and we are interested in identifying a subset of biomarkers which characterizes patients 

according to their label. From a statistical point of view, this consists in fitting a selected 

regression model. In regression models, the selection and elimination of irrelevant variables 

for the classification problem could be included in the workflow of the model itself, e.g. 

penalized regression models (LASSO).  

The Ridge regression and the Least Absolute Shrinkage and Selection Operator (LASSO) are 

two mainly used penalized regression methods [19]. Both consist in fitting a model that 

includes all the predictors and the estimated coefficients are shrunken toward zero relative to 

the least square estimates. The shrinkage (or regularization) has the effect of reducing variance 

and, only for LASSO, can perform variable selection. 

Given an omics dataset, we denote 𝑿 the predictors matrix of dimension 𝑛 𝑥 𝑝, where 𝑛 is the 

total number of dependent variables (observations/response) and 𝑝 the number of 

independent variables (features).  The estimation of  𝜷 parameters is performed by maximizing 

the penalized log likelihood defined as:  

ℓ𝑝𝑒𝑛(𝜷, 𝜆; 𝑿) = ℓ(𝜷; 𝑿) − 𝑝𝜆(𝜷) 

Of note, when we maximize this function  we are not only maximizing the log-likelihood: 
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max
𝛽

ℓ𝑝𝑒𝑛(𝜷, 𝜆; 𝑿) = max
𝛽

{ℓ(𝜷; 𝑿) − 𝑝𝜆(𝜷)} 

The penalizing parameter, introduced in the models, induces bias but reduces the mean 

squared error; the penalty term is a factor that permits to balance the bias-variance trade-off, 

the balance between under- and over-fit. The higher the weight of the penalty term is, the closer 

to the origin are the 𝜷 coefficients, due to the fact that the penalty term is non decreasing in the 

coefficients: 

∀(𝜷, 𝜷⋆) ∶  |𝜷| ≤ |𝜷⋆|,    𝑝𝜆(𝜷) ≤ 𝑝𝜆(𝜷⋆) 
Ridge regression: 
The Ridge regression penalizes the size of regression coefficients using the squared L2 norm 

penalty factor, i.e adding the squared magnitude of the coefficient as penalty factor, thus 

reducing variability and improving the accuracy of linear regression models. 

                                           𝑝𝜆(𝜷) = 𝜆𝜷⊤𝜷 = 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1     with  |𝜷| = (|𝛽1|, . . . , |𝛽𝑝|)
⊤

 

Ridge regression however does not perform variable selection.  

Lasso regression: 
Conversely, the standard LASSO method is a shrinkage and selection method that performs 

feature selection using an L1 norm penalty factor, i.e. adding the absolute value of magnitude 

of the coefficient as penalty factor, while constructing the predictive model (it is considered an 

embedded method).  

                                         𝑝𝜆(𝜷) = 𝜆𝟏⊤|𝜷| = 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1      with  |𝜷| = (|𝛽1|, . . . , |𝛽𝑝|)

⊤
 

Elastic net regression: 

The elastic net [20] is a regularized regression method that linearly combines the L1 and 

L2 penalties of the lasso and ridge methods. 

𝑝𝜆(𝜷) = 𝜆1𝟏⊤|𝜷| + 𝜆2𝜷⊤𝜷                    𝜆1, 𝜆2 ≥ 0 

            = 𝜆 [𝛼𝟏⊤|𝜷| +
1 − 𝛼

2
𝜷⊤𝜷]         𝛼 ∈ [0, 1] 

When the coefficient 𝛼 = 0, the Elastic net reduces to the Ridge regression, while 𝛼 = 1 yields 

to the Lasso regression. Balancing the two penalty terms, Elastic net can perform variable 

selection while holding accuracy in the prediction. Elastic net tends to retain or discard together 

groups of features that are highly correlated.  

3.3.1 The choice of the shrinkage parameter through cross-validation 

The results of a penalized regression can vary dramatically, depending on the value of the  

penalty factor: the higher it is, the more the partial likelihood is penalized. 

Cross-validation  is used to select the optimal penalty parameter. The idea is to find the value 

of 𝜆 that provides the best estimates of 𝜷, which minimize the mean prediction error and 

maximise the cross validated penalized likelihood. Given a number of candidate values for  𝜆, 
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for each of them observations are randomly split in 𝐾 different folds, and penalized likelihood 

is calculated in all the data without the 𝑘𝑡ℎfold: 

ℓ−𝑘(𝜷) = ℓ(𝜷) − ℓ(−𝑘)(𝜷) = 𝑐 − (𝑦𝑘 − 𝑿𝑘
⊤𝜷)2 

where 𝑐 is a constant value over the 𝐾 folds due to the fact that the log-likelihood is calculated 

over all subjects. 

The cross-validated log-likelihood is defined as 

𝑐𝑣𝑙𝜆 = ∑ ℓ𝑘(�̂�(−𝑘)
𝜆 )

𝑘

= 𝑘 ∗ 𝑐 − ∑[𝑦𝑘 − 𝑿𝑘
⊤�̂�(−𝑘)

𝜆 ]
2

𝑘

 

where 𝑘 ∗ 𝑐 is the constant value summed across the 𝐾 folds and �̂�(−𝑘)
𝜆  is obtained by 

maximizing the penalized log-likelihood with penalty 𝜆 when fold 𝑘 is left out. Finally, the 𝜆 final 

value is 𝜆𝑐𝑣𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜆  𝑐𝑣𝑙𝜆   [21]. 

3.3.2 Robustness of cross-validation 

Given that the choice of the shrinkage parameter has an high effect on model results, the 

robustness of cross validation in lasso has been investigated during the years. Furthermore, the 

penalty factor could vary considerably due to the randomly assignment of observations to the 

𝑘 folds. The main approaches to evaluated the robustness of cross validation follows: 

Percentile Lasso: 
In the percentile-lasso [22] and Stability Selection  [23] the penalized cross-validated process 

is iterated 𝑀different times, in each of which subjects are randomly assigned to the 𝐾 folds. For 

each iteration the selected 𝜆𝑐𝑣𝑙
[𝑚]

 are retained and the empirical distribution is computed over all 

iterations: {𝜆𝑐𝑣𝑙
[𝑚]

}
𝑚=1,...,𝑀

 .  

Finally, the high-rank percentile of the empirical distribution is selected as the optimal value. 

Stability Selection: 

In the stability selection method the shrinkage parameter 𝜆𝑐𝑣𝑙
[𝑚]

 is estimated for each of the 

𝑀iterations, but the empirical distribution of the selection probability of each of the 𝛽 

coefficients is computed and informative biomarkers are selected as the ones that have an 

empirical selection probability that is higher than a pre-specified threshold. 

3.3.3 More complex penalties models 

More complex penalized models exist based on the specific aims of the feature selection and 

available information regarding the data. 

Adaptive Lasso: 

The adaptive lasso [24] differs from the standard lasso as the penalty factor 𝜆 is not equal for 

all the 𝛽 coefficientsbut each regression coefficient is differently weighted. This situation can 
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occur when prior information is available for some features and one does not want to give 

heavy weights to non-informative covariates but aims to retain the most important ones. This 

is achieved by variable-specific penalties 𝜆𝑗 = 𝜆𝜔𝑗: 

𝑝𝜆,𝝎(𝜷) = = 𝜆𝝎⊤|𝜷| = 𝜆 ∑ 𝜔𝑗|𝛽𝑗|

𝑝

𝑗=1

 

Usually, if no prior knowledge is available, weights are defined as the inverse of the regression 

coefficients 𝜔𝑗 = 1 |𝛽𝑗|⁄  estimated on the same data in different ways, such as using a 

previously fitted full model or applying one of the penalized regression methods described 

above [25]. The problem of these methods is that the weight calculation process is performed 

on the same data successively used in the adaptive lasso, so we are bringing the solution in the 

direction we choosed, leading to overoptimistic results. On the other hand, we tend to find 

significant biomarkers even if there are not as we will never get a null model. For this reason it 

is perhaps better to perform an initial global test, testing the null hypothesis in which all the 

regression coefficients are equal to zero against the alternative hypothesis that al least one 

coefficient is different from zero. If the null hypothesis is rejected then one of the previous cited 

model can be used to calculate the weights of the adaptive lasso. Performing an initial ridge 

model, estimated regression coefficients are distorted towards zero without collapsing in zero 

as in the lasso model, and coefficients that are closest to zero will be weighted more. Conversely, 

using a lasso model, the solution of the adaptive lasso will be a subset of the simple lasso. 

Group Lasso: 

In the group lasso, the idea similar to the previous extended model, but with penalty factors 

applied differently for subgroups of covariates [26]. This model can be useful when different 

variables play a common role, i.e a group of proteins or genes in the same pathway. 

𝑝𝜆(𝜷) = 𝜆 ∑ √𝑝𝑔‖𝜷𝑔‖
2

𝐺

𝑔=1

= 𝜆 ∑ √𝑝𝑔𝜷𝑔
⊤𝜷𝑔

𝐺

𝑔=1

 

With 𝜷𝑔 the vector of the coefficients in the group 𝑔. 

The term ‖𝜷𝑔‖
2

represents the Euclidean distance of the sequence of group of coefficients from 

the origin. If a subgroup of covariates has an higher cardinality with respect to another group, 

the first group of biomarkers will be more penalized. 

Sparse Group Lasso: 

An extended version of the group lasso is the sparse group lasso [27]. Sometimes we are not 

necessarily interested in keeping all the biomarkers belonging to the same group in the final 
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model. In addition to the group lasso, a simple lasso component could be added. In this way the 

penalization of the single markers increases. 

𝑝𝜆(𝜷) = 𝛼𝜆‖𝜷‖ +  (1 − 𝛼)𝜆 ∑ √𝑝𝑔‖𝛽𝑔‖
2

𝐺

𝑔=1

 

Fused Lasso: 

In the fused lasso [28] the spatial component in the variable matrix is taken into account, so 

that two far away biomarkers are more penalized. This can be useful in genes sequences of mass 

spectra, in which the proximity of markers has to be considered, since two nearest genes 

possibly be involved in the same process  have to be both retained in the model. 

𝑝𝜆(𝜷) = 𝜆1‖𝜷‖ + 𝜆2 ∑|𝛽𝑗 − 𝛽𝑗−1|

𝑝

𝑗=2

 

 

3.4 Model building 

A typical sequence of data analyses in proteomics biomarker research started checking for 

separability of the data by unsupervised cluster methods. Dealing with high dimensional 

setting, variable selection is another useful step. It could improve the performance of the 

classification model, dealing to an easy interpretation of the model by a biological point of view. 

Variable selection leads to over-optimistic and not generalizable results when it is performed 

using the same groups of samples that had been used to create the classification model. To avoid 

this, different approaches are available. It is usually preferred to have either an external set of 

data to use for a prior variable selection or to have prior information given by previous research 

(pilot study) or by known knowledge (additional information e.g. clinical knowledge). Another 

possibility is to use not supervised analysis on the same set of data on which the model had to 

be performed. Unsupervised analysis gives us information on features involved in the 

separation of observations without the use of prior information on these data, such as the class 

to which they belonged. Then this information could be used as prior information and then on 

the same training set classification models could be constructed. Last, as previously mentioned, 

supervised regression models that performed variable selection inside the model could be used 

an alternative when no external or prior knowledge are available.  

Since it is always possible to find classifiers that accurately classify the data on which they were 

developed even if there is no relationship between expression of any of the genes and outcome, 

it is mandatory that the whole process underwent a rigorous validation procedure. 
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To validate the resulting models, a number of samples must be left out as a validation set. Using 

the constructed multivariate models, the class labels of the test set are predicted, so if the data 

to be predicted were used to train the classifier, then results look better than they should 

(problem known as “overfitting”). 

Thus, validation is a central and not-negligible step of classifier development to provide the 

transportability of the classifier to another population.  What had been developed on the 

training cohort should be validated in a new cohort blinded to the previous results.   

As previously described, cross-validation consists in partitioning the data in k-equal fold 

subsets. One of this subset is omitted from the development of the classifier and will be used as 

a test set. The remaining dataset is used to completely develop the classifier by fitting a 

penalized regression or other models. Then, patients of the test set will be classified. The 

procedure is repeated by including patients, previously classified as test patients, in the training 

set and switching patients of the training set to internal validation set. In this way all partitions 

work as training and test set in a k-loops cross-validation. In this way, optimal tuning parameter 

is selected, informative features are selected, their correspondence regression coefficients are 

estimated and the internal accuracy of the model is evaluated. 

After cross validation, the prediction model has to be validates on a second independent 

dataset.  

In this way, the performance of the classifier measured by this system truly reflects its accuracy 

in classifying patients who are not included in the development phase but are selected from an 

identical population. 

The discrepancy between the predicted class and the actual class is evaluated with performance 

parameters of the model, such as sensitivity (True Positive Rate, TPR), specificity (True 

Negative Rate, TNR), Positive Predictive Value (PPV) and Negative Predictive Value (NPV). 

Another step has to be performed to correctly identify a variable as a true biomarker and 

quantify its weight in the classification performance. Due to the fact that estimation of the 

regression coefficients are biased because of the shrinkage parameter, a standard regression 

with only the selected variables of a previous penalized regression had to be performed on 

external validation dataset to estimate the real weight of the variables. 

Finally, the classifier had to be evaluated on an external validation cohort to assess performance 

and reliability of the model, in a different population from the one used to construct the 

classification model.   
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The schematic presentation of the typical procedure of data analysis is reported in the following 

figure. 
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4 Proteomic and Clinical studies 

Preliminary to the clinical study, that was the main focus of the thesis, the protocol for the 

proteomic MALDI-MSI analysis was optimized to avoid degradation, alteration phenomena, 

contamination and artefacts formation. The methodological set-up of the proteomic protocol in 

a complicated field like that of the thyroid cytological specimens was a fundamental 

requirement for the conduction of the clinical study. Challenging technical aspects, such as i) 

the interference of haemoglobin due to the high vascularization of the thyroid organ and ii) the 

stability of the samples over time before the analysis from a morphological and proteomic point 

of view, were overcome through two studies whose design and results are reported in the first 

two sections of this chapter.  

The clinical study for the detection of the potential cluster of proteomic signals with 

discriminant capability was originally planned to involve a large sample of thyroid nodules, 

however, due to the slow enrolment rate of malignant cases, section 3 contains only the results 

of a preliminary analysis. This interim evaluation involved data from 18 subjects with benign 

and malignant thyroid nodules and, an additional sample of 11 patients with different type of 

lesions (i.e. benign, indeterminate and malignant) was used for validation. Results are very 

promising and highlight the possibility to introduce MALDI-MSI as a complementary tool for 

the diagnostic characterization of thyroid lesions, but the final analysis is required to 

corroborate these findings. 

 

4.1 The management of haemoglobin interference for the MALDI-MSI proteomics 

analysis of thyroid fine needle aspiration biopsies 

4.1.1 Introduction 

Although most thyroid nodules are diagnosed using a morphological approach, a significant 

challenge is related with the 20-30% of fine needle aspiration biopsy (FNAB) cases that are 

deemed to be indeterminate for malignancy (THY3 and THY4 according to the British system 

for reporting thyroid cytopathology) [7]. So far, patients with a THY3 diagnosis undergo 

diagnostic (and not therapeutic) total thyroidectomy, which has a significant impact on the 

lifestyle of the patient (in terms of potential related morbidity and the needing of lifelong 

hormone therapy) and places a hefty financial burden on the health care system. Moreover, the 

postoperative histological diagnosis of THY3 cases highlight that approximately 70% of the 

nodules were benign and the thyroidectomies unnecessary. Therefore, it is of paramount 
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importance to assist pathologists in the diagnosis of the indeterminate lesions of thyroid 

FNABs. Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) 

is a powerful tool in clinical proteomics allowing the investigation of the spatial distribution of 

biomarkers directly on tissues and cytological specimens, and the integration of molecular and 

morphological evidence [1–3]. Nowadays, only few studies have been published on MALDI-MSI 

for the identification of new possible proteins to support thyroid cancer diagnosis [4–6], all 

whilst using ex-vivo thyroid cytological samples. Nevertheless, significant blood contamination, 

generated by the abundant vasculature of thyroid lesions and by the cutaneous vasculature of 

the neck, is a frequent feature in thyroid FNABs [2]. In fact, the abundant presence of 

haemoglobin in FNABs is a cause of unsatisfactory rate in traditional cytology. Erythrocytes, 

present in large amounts in the suspension of cells, are also challenging for mass spectrometric 

analysis, as haemoglobin suppresses the ionisation of other protein signals. Amann et al. 

developed a sample preparation method for MALDI-MS analysis in order to reduce 

haemoglobin interference from simulated and clinical lung FNAB, suggesting the use of an 

erythrocyte lysis buffer [8]. They were able to obtain high quality MALDI-MS spectra of clinical 

FNABs, however the haemoglobin signal was still significantly observed, even after the 

erythrocyte lysis step [8]. Accordingly, we investigated the possibility to efficiently reduce the 

presence of haemoglobin and, consequently, increase the rate of analysable specimens in order 

to pave the way for future studies focusing on biomarkers discovery with MALDI-MSI. 

Moreover, this protocol may also be applicable to other specimens where significant 

contamination of haemoglobin is observed. For this purpose, we compare three protocols (the 

air-dried, the ethanol-fixed conventional smears and the liquid based preparation (LBP)) that 

are routinely used in clinical practice for the cytological diagnosis of thyroid FNABs in the 

context of MALDI-MSI proteomics analysis [9–11] (Supplementary Figure 1 in appendix A). 

4.1.2 Material and Methods 

4.1.2.1 Sample collection and preparation 

The study was approved by the Ethical Committee of the San Gerardo Hospital (cod. AIRC 

MFAG- 18/11/2016). Ex-vivo cytological samples of 9 patients who underwent thyroidectomy 

at the Department of Surgery of San Gerardo Hospital, Monza, Italy, were collected within 30 

minutes following the surgical procedure. Sampling was performed using a 25-Gauge needle. 

Three independent samples were collected from each surgical specimen and treated with 

different sample preparation methods: Protocol A) conventional air-dried smear (n=9), 

Protocol B) EtOH immediately fixed smear (n=7) and Protocol C) ThinPrep LBP (n=9). In 
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protocol A, specimens were transferred and smeared from the syringe directly onto indium tin 

oxide (ITO) conductive slides (Bruker Daltonics, Bremen, Germany), then air-dried for 

approximately 30 minutes at room temperature and finally washed with 70%, 90% and 95% 

EtOH solutions for 30 seconds each. In fact, it is common practice for protein MSI analysis to 

perform washing steps, in order to remove salt and lipid contamination that can unfavourably 

affect the quality of MALDI-MSI data [12,13]. In protocol B, the air-drying step was excluded 

whilst in protocol C, the cytological samples were immediately transferred into a falcon tube 

filled with the ThinPrep® CytoLyt (Hologic, Marlbourough, MA, USA) methanol-based buffered 

solution, prepared following the manufacturer instruction of the ThinPrep® 2000 System 

(Hologic, Marlbourough, MA, USA) and transferred as a monolayer of cells onto ITO glass slides. 

Then, all slides were dried under vacuum for 15 minutes and stored at -80°C until the day of 

the analysis. A second group of samples (real in-vivo FNAB), taken from 19 patients who 

underwent FNAB, were prepared using protocol A (n=7) and protocol C (n=12). Before 

MALDI-MSI analysis, cytological specimens were equilibrated to room temperature, dried 

under vacuum for 30 minutes and the MALDI-matrix sinapinic acid (10 mg/ml in 60:40 

acetonitrile:water w/0.2% trifluoroacetic acid) was uniformly deposited, with an optimised 

method, using the iMatrixSpray (Tardo Gmbh, Subingen, Switzerland) automated spraying 

system.  

4.1.2.2 MALDI-MSI analysis and staining procedure 

MALDI-TOF-MSI was performed using an ultrafleXtreme MALDI-TOF/TOF (Bruker Daltonik 

GmbH) in positive-ion linear mode, using 300 laser shots per spot, with a laser focus setting of 

3 medium (diameter of 50 µm). Protein Calibration Standard I (Bruker Daltonics), that contains 

a mixture of standard proteins within the mass range of 5730 to 16950 Da, was used for 

external calibration (Mass accuracy ±30ppm). Spectra were recorded within the m/z 3000-

20000 range. Data acquisition and visualisation was performed using the Bruker software 

packages (flexControl 3.4, flexImaging 4.1). After the analysis, the MALDI-matrix was removed 

with 70% EtOH and the slides were stained with haematoxylin and eosin (H&E), digitally 

scanned using an a ScanScope CS digital scanner (Aperio, Park Center Dr., Vista, CA, USA) and 

images were co-registered to the MSI-datasets in flexImaging.  

4.1.2.3 Data analysis 

Data pre-processing (MALDIquant package) and statistical analysis were performed using the 

open-source R software v.3.4.3. [14]. The individual average spectra were processed by 

performing baseline subtraction (SNIP method, iteration 100), smoothing algorithm (Moving 
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Average method, half window width 2), normalisation (Total Ion Current, TIC), alignment and 

peak picking (S/N ≥ 6). Peaks that appeared in at least 5% of all individual average spectra 

were used for the statistical analysis. The open-source software mMass v.5.5 

(http://www.mmass.org) was used to confirm mass spectra alignment. The non parametric 

Kruskall-Wallis test (two-sided, α=0.05)  was used to compare the different protocols in terms 

of 3 specific signal intensities (α and β Haemoglobin and Histone H4) and a post-hoc Dunn test, 

with Benjamini & Hochberg adjustment, was applied for pairwise comparisons. 

4.1.3 Results and Discussion 

The average spectra, obtained after TIC normalisation, of ex-vivo cytological samples 

collected from the same patient and treated with the three protocols A, B and C were 

compared, for descriptive purposes, in Figure 1a. The normalised intensities [A.U.] of the α 

and β Haemoglobin chains were clearly decreased in Protocol C, with respect to protocols 

A and B, with a concomitant increase of other signals in the m/z range 3000-15000, for 

example such as that corresponding with Histone H4 at m/z 11306 [8, 15], which was 

selected as an exemplary signal due to its presence in all samples (a panel of other 

statistically significant signals is provided in Supplementary Figure 2 in appendix A). The 

overall comparison of the signal intensities among the three protocols was statistically 

significant for αHaemoglobin (p=0.005), βHaemoglobin (p=0.02), and Histone H4 

(p=0.00008), with paired post-hoc comparisons underlying significant differences 

between protocol A and B vs C for αHaemoglobin, and Histone H4, and between protocols 

B vs C for βHaemoglobin  (Figure 1b, 1c and 1d). Mass error calculated on the average mass 

was αHaemoglobin -188 ppm; βHaemoglobin, -64 ppm; Histone H4, -89 ppm).  One of the 

most remarkable features of MALDI-MSI is the possibility to co-register the in situ 

proteomic information with the histological image and to focus the data analysis solely on 

specific regions of interest (e.g. malignant or benign thyrocytes), excluding areas which 

could confound the results, in order to obtain their specific proteomic fingerprint [6].For 

this purpose, a region of interest (ROI) of 25 pixels was carefully selected by the pathologist 

containing mostly thyrocytes. Inter-patient variability of their specific spectra profiles was 

investigated analysing specimens from two malignant and two benign thyroid lesions 

(randomly chosen among all the samples). 
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Figure 1: Comparison of the three independent sample preparation protocols using thyroid ex-vivo 
cytological samples from the same patients: a) spectra overlap of protocol A (red), protocol B (blue) and 
protocol C (green) from a single patient, zoomed in the regions m/z 15000-16000 and m/z 11000-
11650; b) boxplots and individual values of the normalized intensity [A.U.] of αHaemoglobin, c) 
βHaemoglobin and d) Histone H4. The box contains data that fall between the first and third quartiles, 
the horizontal line indicates the median, and the brackets delineate 1.5 times the interquartile range 
(with data outside this range defining outliers).  

A high degree of heterogeneity was evident when protocols A and B were used (Figure 2) due 

to the presence, or absence, of haemoglobin and its suppressing effect on any other protein 

signals. On the contrary, two comparable profiles, in which the haemoglobin interference was 

no longer a limiting factor, were obtained with protocol C (Figure 2). The number of total 

signals observed for each protocols in the samples a, b, c and d, as well as the number of 

common signals (peaks with a S/N≥6 present in both spectra) between THY5 samples (a vs. b) 

and THY2 samples (c vs. d) are shown in Supplementary Table 1 in appendix A. It is evident 

that when using protocols A and B the number of common signals is very low, in a range from 

0 to 5 common signals, whereas with protocol C the number of common peaks increases 

noticeably. Moreover, Histone H4 and Haemoglobin signal intensities, taken from the ROIs, 

among the three protocols (Supplementary Figure 3 in appendix A) show the same trends 

observed in the average spectra, endorsing that protocol C clearly reduce ion suppression. The 

prospect to correlate molecular and cytological images and to select specific regions of interest, 

such as thyrocytes clusters, makes the MALDI-MSI proteomic approach highly valuable and 

suitable to enter the diagnostic routine in order to support the pathologist in the diagnosis of 

cytological samples.  
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Figure 2. Histograms obtained from thyrocyte regions of interest taken from ex-vivo cytological samples of 
two THY5 patients (a, b) and two THY2 patients (c, d) prepared with protocols A, B and C. A total number 
of 167 peaks were detected in at least 5% of all the samples with S/N≥6. In the histogram of each single 
patient, the bars half coloured in green represent the peaks with S/N≥6 whereas the blue bars represent 
the peaks with S/N<6. The y-axes are the normalised intensity [A.U.] of the signals. The red arrows 
indicate the bars who correspond to αHb and βHb 

The presence of haemoglobin signals per se is not the only challenging aspect; in fact, improper 

sample handling and collection could cause red blood cell haemolysis even in areas of sample 

where they are not present. During sample preparation with protocols A and B, the cytological 

sample is smeared onto the slide and this approach could lead to the rupture of erythrocyte 

cells membranes, thus the haemoglobin is released all over the sample. With protocol C, red 

blood cells haemolysis was markedly reduced, due to the minimal amount of red blood cells 

that remain in the sample following the treatment. In fact, the mechanical filtration step 

simplifies the complexity of the cytological sample by minimising not only the amount of red 

blood cells but also of debris and inflammatory cell [16]. As it stands, LBP in thyroid FNAB is an 

acceptable alternative to traditional smears [17,18]. Pathologists have now learnt to recognise 

specific diagnostic criteria related with thyroid LBP, such as nuclear modifications (the size is 
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smaller, the nuclear-to-cytoplasmic ratio is bigger, nucleoli are prominent, grooves more 

obvious and pseudoinclusions are less evident). The cytoplasms are also less abundant in LBP. 

These changes are most probably due to a lack of the smearing effect that can be a potential 

cause of dry or degenerative artefacts in conventional smears [19]. Moreover, with protocol C, 

cells are distributed in a monolayer and it was much easier to select a ROI of only one type of 

cellular component. On the contrary, when conventional smears were used, the overlap of 

several cellular aggregates containing different cell types was commonly observed. The 

protocol C, that was able to reduce Hb contamination, was then evaluated with real in-vivo 

FNABs specimens, in comparison to protocol A, used in previous thyroid ex vivo studies [4–6]. 

The same trend, observed for protocol A and C of thyroid ex-vivo cytological samples, was also 

observed for thyroid FNABs (Supplementary Figure 4c in appendix A). Haemoglobin was 

detected in 7 out of the 7 conventional air-dried smears (protocol A), whereas Histone H4 was 

not detected in any of the samples. On the contrary, FNABs specimens treated with protocol C 

showed low amount of haemoglobin and an enhancement of any other proteins signals in the 

m/z 3000-16000 range. We also noticed that, when thyroid FNABs specimens were treated 

with protocol A, the rate of unusable samples was higher than that for ex-vivo cytological 

samples, since the vasculature of the neck skin is an additional source of haemoglobin 

contamination. The co-registration of the H&E stained image of the ThinPrep monolayer 

sample with the molecular image enabled us to underline the localisation of the signals present 

in our spectra with specific compartments (Supplementary Figure 4d in appendix A). As shown 

in Figure S4d, the signal at m/z 5063 was localised in the stroma and the one at m/z 11306 in 

the thyrocytes. 

4.1.4 Conclusions 

In conclusion, we highlight the possible role of LBP for the MALDI-MSI analysis of thyroid 

cytological samples. In particular, the LBP workflow based upon Protocol C allowed us to 

manage the haemoglobin interference, obtaining high-quality spectra to be used for a more 

reliable in situ profile comparison. The application of this protocol to in-vivo cytological 

samples should enable the discovery of protein biomarkers that can potentially assist 

cytopathologists in the diagnosis of thyroid nodules by integrating morphological information 

with proteomics data.  
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4.2 Feasibility study for the MALDI-MSI analysis of thyroid fine needle aspiration 

biopsies: evaluating the morphological and proteomic stability over time 

4.2.1 Introduction 

In clinical application and molecular pathology, matrix-assisted laser desorption/ionization 

mass spectrometry imaging (MALDI-MSI) is an emerging technology which enables the spatial 

distribution of biomolecules within tissue to be combined with the traditional morphological 

information [1]. Hence, for diagnostic, or prognostic purposes, along with predicting response 

to therapeutic treatment, biological specimens, such as tissues and biopsies, must be properly 

collected and handled in order to assure the preservation of the morphological structure and 

the proteomic profile, avoiding degradation or alteration phenomena, contamination and 

artefacts formation [2,3]. So far, several attempts have been aimed at preventing sample 

degradation [4]. Two of the most commonly used approaches for sample preservation and 

stabilization in pathology and proteomics are chemical fixation (e.g. formalin followed by 

paraffin wax embedding) [5,6] and snap-freezing [7]. Another approach developed to preserve 

proteins from degradation is the use of an additive-free procedure based on heat-fixation of the 

tissue [8]. The integrity of the complexity of cellular morphology is usually maintained, but 

changes in the fine structure has been observed [9]. In recent years, MALDI-MSI has been used 

in combination with conventional air-dried cytological smears with the ability to generate 

specific protein profiles for malignant, benign and different subtypes of thyroid lesions using 

fine needle aspiration biopsies (FNABs) specimens [10–12]. Centralized MSI analysis, typically 

carried out in multicenter studies, are challenging because the cytological smears have to be 

carefully shipped, avoiding sample degradation. Nowadays, the liquid based preparation (LBP) 

[13] is the gold standard for cervical preparation, which is usually performed by alcohol fixation 

of the conventional smear [14]. Moreover, the LBP is also more widely used among 

cytopathologists for evaluating thyroid FNABs specimens [15]. Regarding cytological samples, 

the use of methanol-based, buffered preservative mediums, such as CytoLyt and PreservCyt 

solutions during transportation became increasingly diffuse in the cytopathological practice 

[16]. These solutions avoid protein precipitation, lyse red blood cells, reduce the amount of 

mucus and preserve the morphology of the cytological samples during transportation and slide 

preparation [16,17]. Based on manufacturer’s instructions, the morphological stability of the 

cytological sample is guaranteed until six weeks when the sample is stored between 30 °C and 

4 °C in the PreservCyt solution, whereas in CytoLyt up to 8 days at room temperature. 

Numerous studies [18–21] have investigated the stability of human genomic and human 
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papilloma virus (HPV) DNA and RNA from cervical cytological samples in PreservCyt medium, 

underlining their stability for extended periods. Cuschieri et al. proved that HPV RNA within 

clinical cervical samples were stable in PreservCyt up to 14 days at room temperature [19]. 

Moreover, Tarkowski et al. have demonstrated that RNA was suitable for successful molecular 

assays, such as RT-PCR, even after one year of storage [20]. However, there are no studies 

evaluating how thyroid FNABs sample preparation in CytoLyt and PreservCyt solutions 

influence their stability over the time of storage for proteomic studies. Accordingly, assessing 

the stability of cytological specimens is of paramount importance for the collection of samples 

based on a robust and simple protocol to be implemented in clinical pathology units. In the 

present study, we investigated the morphological and proteomic stability over time, evaluating 

the intra-day and inter-day variability of the data generated by MALDI-MSI, analysing thyroid 

FNABs prepared with the proposed protocol. In addition, we explored the morphological and 

proteomic stability of the thyroid FNABs after 7 days, 14 days and 2 months of storage at 4 °C 

in the preservative solutions. 

4.2.2 Material and Methods 

4.2.2.1 Chemicals and Reagents 

ThinPrep® CytoLyt and ThinPrep® PreservCyt solutions (methanol-based buffered 

preservative solutions) were purchased from Hologic (Marlbourough, MA, USA). Sinapinic acid 

matrix was purchased from Bruker Daltonics (Bremen, Germany). All the other chemicals were 

purchased from Sigma-Aldrich (Milan, Italy). 

4.2.2.2 Sample collection and preparation 

Fine needle aspirations were taken from (n=19) patients who underwent ultrasound-guided 

procedures at the Department of Radiology, San Gerardo Hospital, Monza, Italy. Cytological 

samples were diagnosed as THY1c/not diagnostic-cystic (n=3), THY2/benign (n=9), 

THY3/indeterminate (n=2), THY4/suspicious for malignancy (n=1) and THY5/malignant 

(n=4) according to the British system for reporting thyroid cytopathology. THY4 and THY5 

samples were confirmed to be malignant by post-operative histopathology. Supplementary 

Table 1 in appendix B summarizes the demographic and clinical characteristics of the enrolled 

subjects. Samples were collected with a 25-Gauge (G) needle and immediately transferred into 

a falcon tube filled with CytoLyt solution. The Ethics Committee of the hospital San Gerardo 

Hospital, Monza, Italy, approved the study (AIRC MFAG - 2016). Cytological samples deposited 

into CytoLyt solution were centrifuged at 800 g for 10 minutes at room temperature, using a 

Centrifuge 5804 R equipped with an S-4-72 rotor (Eppendorf, Hamburg, Germany), the 
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supernatant was discarded, the pellet was re-suspended in 200 µL of PreservCyt solution and 

transferred in an eppendorf tube. Subsequently, samples were centrifuged at 800 g for 10 

minutes at room temperature using a Centrifuge 5424 R equipped with a FA-45-24-11 rotor 

(Eppendorf, Hamburg, Germany); the supernatant was discarded and the pellet resuspended 

in a final volume of 100 µL of PreservCyt solution. When the amount of cellular material was 

adequate, the sample was equally divided in order to obtain multiple replicates. Finally, 

samples were transferred onto indium tin oxide (ITO) conductive slides (Bruker Daltonics, 

Bremen, Germany) by centrifugation (800 g for 15 minutes, at room temperature) using a 

Hettich® ROTOFIX 32A centrifuge equipped with a Swing-Out rotor 1624, carriers 1660 and 

slide carriers for two chambers 1670 (Hettich Lab Technology, Tuttlingen, Germany). The 

cytospin preparations were prepared using cyto chambers with a diameter of 6.2 mm in order 

to obtain a monolayer of cells. A maximum of eight cytospin spots were positioned onto one 

ITO-conductive slide. ITO-slides with cytospin samples were dried under vacuum for 30 

minutes. Finally, consecutive washing steps of 30 seconds each, with increased concentration 

of ethanol (70%, 90% and 95%), were performed in order to remove salt contamination. The 

slides were then dried under vacuum for 15 minutes and stored at -80°C until the day of the 

analysis. 

4.2.2.3 MALDI-MSI Sample preparation 

Cytospin cytological specimens were brought to room temperature and dried under vacuum 

for 30 minutes. MALDI matrix (10 mg/ml sinapinic acid in 60:40 acetonitrile:water w/0.2% 

trifluoroacetic acid) was uniformly deposited, with an optimized method, using the 

iMatrixSpray (Tardo Gmbh, Subingen, Switzerland) automated spraying system. 

4.2.2.4 Experimental design 

FNABs specimens were split into several samples for the intra-day (n=7 patients) and inter-

day repeatability (n=5 patients) evaluations. In addition, the sample stability in PreservCyt 

solution after 7 days (n=6 patients), 14 days (n=6 patients) and 2 months (n=2 patients), and 

the sample stability in CytoLyt solution after 7 days (n=2 patients) were studied. The malignant 

samples (n=5) were prepared at t0 in PreservCyt solution. The general workflow of the study 

is represented in Figure 1 and the experimental design is summarized in Supplementary Table 

2 in appendix B. Samples were stored in PreservCyt and CytoLyt solutions at 4 °C until the day 

of the cytospin deposition onto the ITO-slides.   



51 

 

 

4.2.2.5 MALDI-MSI analysis 

MALDI time of flight (TOF) MSI was performed using an ultrafleXtreme MALDI-TOF/TOF 

(Bruker Daltonik GmbH) in positive-ion linear mode, using 300 laser shots per spot, with a laser 

focus setting of 3 medium (diameter of 50 µm) and a raster width of 50 x 50 µm. A mixture of 

standard proteins within the m/z range of 5,730 to 16,950 (Protein Calibration Standard I, 

Bruker Daltonics) was used for external calibration. Spectra were recorded in the m/z range 

3,000-20,000. Data acquisition and visualization were performed using the flex software 

package by Bruker Daltonics (flexControl 3.4, flexImaging 4.1). After MALDI-MSI analysis, the 

MALDI-matrix was removed by increasing concentration of EtOH (70% and 95%) and the 

cytological specimens were stained with hematoxylin and eosin (H&E). High resolution 

cytological images were recorded using a ScanScope CS digital scanner (Aperio, Park Center 

Dr., Vista, CA, USA). 

4.2.2.6 Data analysis 

Overall average mass spectra from the MALDI-TOF-MSI datasets were exported in CSV format 

and loaded in the open-source R software v.3.4.3 to perform the pre-processing operations that 

were carried out using the MALDIquant R package [22]. Baseline subtraction with SNIP method 

and iteration 100; moving average smoothing used half window size of 2; total ion current (TIC) 

normalization, divided spectrum intensities by the sum of all the intensities values of the 

spectrum itself; spectra alignment and peak picking with a S/N of 6, were performed. Spectra 

Figure 4. General Workflow: i) Cytological sample preparation, ii) MALDI-MSI sample preparation and 
analysis, iii) spectral pre-processing and iv) statistical analysis 
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alignment was verified using the open-source software mMass v5.5 (http://www.mmass.org) 

[23,24]. 

The similarity of the mass spectra was evaluated by using two score systems, accounting for 

the frequency of common peaks and the matching of signal intensity. 

Assume 𝑋 = (𝑥𝑖)𝑖=1,...,𝑁𝑋
and 𝑌 = (𝑦𝑖)𝑖=1,...,𝑁𝑌

are the sequences of the intensities in the reference 

(𝑋) and the query spectra (𝑌), where 𝑁𝑋 and 𝑁𝑌 are the cardinality of the m/z values. The first 

score system (S3) ranges from 0–3 and is the sum of three components (i.e. fit, retrofit and 

spearman’s correlation) which contributes 1 at most [25]. The fit is defined as the ratio of the 

common peaks in the two spectra and the 𝑁𝑌 peaks detected in the query spectrum: 

𝐹𝐼𝑇 =
𝑛𝑋∩𝑌

𝑛𝑌
, 

while, the retrofit is defined as the ratio of common peaks in the two spectra and the 𝑁𝑋 peaks 

in the reference spectra: 

𝑅𝐹𝐼𝑇 =
𝑛𝑋∩𝑌

𝑛𝑋
, 

where 𝑛𝑋∩𝑌 is the number of shared mass peaks. The Spearman's Correlation is a measure of 

association between the ranks of the intensities of the common peaks 𝑛𝑋∩𝑌: 

𝜌𝑠 =  
∑ [(𝑟𝑗 − �̅�) ∗ (𝑠𝑗 − �̅�)]

𝑛𝑋∩𝑌
𝑗

√∑ (𝑟𝑗 − �̅�)
𝑛𝑋∩𝑌
𝑗

2
∗  √∑ (𝑠𝑗 − �̅�)

𝑛𝑋∩𝑌
𝑗

2
 

where 𝑟𝑗  and 𝑠𝑗  are the ranks of 𝑥𝑗  and 𝑦𝑗  (𝑗 = 1, … , 𝑛𝑋∩𝑌), while �̅� and �̅� are their mean values. 

The second score system (S4) ranges from 0–4 and extends S3 to include a fourth feature that 

measures the overlap (𝑂𝑉), which takes into account the whole shape of the two spectra. This 

latter index measures the overlapping area between the empirical distributions of two 

sequences of intensities on ranked m/z: 

𝑂𝑉 = �̂�𝑛𝑋∪𝑌
𝑋 ∩  �̂�𝑛𝑋∪𝑌

𝑌  

where �̂�𝑛𝑋∪𝑌
𝑋  and �̂�𝑛𝑋∪𝑌

𝑌 are the empirical distribution function, and 𝑛𝑋∪𝑌 the m/z values either in 

the 𝑋 or the 𝑌 spectra [26]. For calculations, we used the overlapping R package.  

Mimicking an equivalence trial, in order to establish whether no meaningful difference exists 

between the proteomic profiles in time (i.e. t0 vs. t7days and t0 vs. t14days), the 95% confidence 

intervals (CI) of the observed mean similarity indices should be inside a pre-specified interval 

of equivalence [27]. Since no recognized reference exist, we have conservatively used the CI 

calculated on the inter-day comparison. 

To further assess spectra similarity in time, Principal Component Analysis (PCA) and 

hierarchical clustering analysis were also performed. PCA was carried out with the prcomp 

http://www.mmass.org)/
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function in the stats R package. Data were scaled and centered before the analysis due to PCA 

being sensitive to different scales of features. Hierarchical clustering analysis was performed 

with the function hclust in the stats R package, using complete linkage method to show similar 

clusters on the selected principal components that explained as much as possible variance of 

the original independent variables. 

4.2.3 Results and Discussion 

Tissue specimens need to be properly handled to ensure not only the integrity of the 

morphological structure but also to avoid protein degradation [2]. Several protocols have been 

developed for this purpose, such as chemical fixation followed by paraffin wax embedding and 

snap-freezing [4]. Heat-fixation of the tissue is also used, but changes in the fine structures of 

the cells has been observed [9]. The stabilization of cytological samples, based on CytoLyt and 

PreservCyt solutions, is employed in the clinical laboratory to preserve cervical cytological 

samples for the analysis of RNA and DNA after long-term storage [14,20].  

Here, we propose a sample preparation protocol for the analysis of thyroid FNA by MALDI-MSI 

that combines stabilization in preservative solutions followed by cytospin deposition. In 

particular, we investigate the experimental repeatability of the proteomics analysis of 

cytological samples and their stability in time in both preservative solutions, focusing on mass 

spectra similarities. 

4.2.3.1 Cytospin sample preparation: morphology evaluation 

The washing steps in preservative solutions followed by cyto-deposition were able to 

guarantee high cellular adequacy (Supplementary Figure 1 in appendix B). Cell morphology 

was generally satisfactory in different specimens from the same patient, independently from 

the time of storage in the preservative media (Supplementary Figure 1 in appendix B). With 

regard to the conventional smear [11], our protocol has the advantage of being more efficient, 

reducing the sample-to-sample variability and enabling up to 8 spots to be placed onto a single 

ITO-slide. Moreover, the cytospin spot size is approximately 6 mm in diameter, while the 

conventional smear size is extremely variable and in the order of centimetres (approximately 

2-3 cm). Therefore, the time of MALDI-MSI analysis of one cytospin-spot is drastically reduced 

compared to the conventional smear.  
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4.2.3.2 Mass spectra similarity: qualitative comparison 

The variability of the signal intensities among replicates prepared at different times in one 

patient is reported in Figure 2 and, similarly, a comparison of spectra obtained from all the 

replicates is shown in Supplementary Figure 2A (ID: P316) as well as spectra comparison of 

multiple sample prepared at t0 (Supplementary Figure 2B in appendix B). The heatmap in 

Figure 2A shows how the normalized signal intensities of the peaks in ranked m/z change 

among the replicates whose mean intensity values (and 95% CI) are represented in the 

distribution in Figure 2B. Furthermore, the dendrogram in the upper part of Figure 2A shows 

that the t0 intra-day replicates are highly similar even if a slight separation is seen in samples 

evaluated in t0_day1 versus t0_day2, most probably reflecting an additional source of analytical 

variability. The distance between t7days/t14days and t0 is higher than the one observed between 

t0_day1 and t0_day2, since these samples were stored in the PreservCyt solution for 7 days and 14 

days before deposition onto the ITO-slides. Nevertheless, the two spectra, t7days and t14days, were 

clustered together, also reflecting the same sources of analytical variability (i.e. cytospin sample 

preparation, MALDI-MSI sample preparation, instrumental analysis) given that they were 

similar to the spectra at t0 (Supplementary Figure 2A in appendix B). The spectrum of the 

Figure 2. Normalized intensities [AU] of the peaks (M/Z) detected in seven replicates of patient 
P316 (t0 day1.1, t0 day2.1, t0 day2.2, t0 day2.3, t 7days, t 14days……..t 2months). A) The 
heatmap shows the signal intensities of each of the peaks that were rescaled to have a mean 
of 0 and SD of 1; B) the histogram shows the mean intensities of each of the peaks detected 
at different times (error bars represent the 95% confidence interval). 
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replicate at t2months is very marginal, suggesting that longer storage time in the PreservCyt does 

not preserve the specimens (Figure 2A) and, looking at the spectra in Supplementary Figure 

2A, it is evident how peak intensities and the spectra as a whole change with respect to the 

other replicates. On the contrary, the variability of the peak intensities among replicates of the 

same patient until 14 days seems to not depend on the increased storage time in the PreservCyt 

solution, but more likely reflects the analytical variability due to the cytospin-deposition onto 

the ITO-slides in different days. These results are in good agreement with those previously 

reported for cervical cytological samples that were stable until 14 days [19]. Similar results are 

seen in the short (t0_day1 and t0_day2) and in the long term (from t0 to t2months) in Supplementary 

Figure 3 (P262) and Supplementary Figure 4 (P319) in appendix B, respectively. 

The unsupervised learning method PCA was employed to further investigate and visualize mass 

spectra similarity among all those obtained from all the patient replicates (Supplementary 

Figure 5A in appendix B). From the PCA score chart, it is evident that replicate samples from 

the same patient are grouped together and that the similarity of spectra were preserved 

independently from the time of storage in PreservCyt solution. Moreover, the hierarchical 

clustering analysis (Supplementary Figure 5A in appendix B) highlights how malignant samples 

are clustered together and separated from benign samples. When further replicates have been 

prepared at t0 (intra-day and inter-day), one sample (for each patient) was randomly chosen 

as reference among all the intra/inter-day replicates. To evaluate the intra/inter-day variability 

at t0, two query spectra were randomly chosen from the remaining intra-day and inter-day 

spectra, respectively. Finally, the spectrum of each replicate prepared at different time of 

storage in PreservCyt solution were compared with the reference spectrum. Figure 3 illustrates 

all the paired comparisons between replicates in one patient (ID: P316), using the reference 

spectrum t0_day2.2. The graphs in A and B are obtained considering only the common peaks 

between spectra. In graphs A, the normalized intensities of the peaks in the reference spectra 

(x-axis) are plotted against the normalized intensity of the peaks of the query spectra (y-axis). 

When the intra-day and inter-day replicates are compared with the reference spectrum, 

common peaks have very similar intensities, since the points lie mainly near the bisector. In 

graphs B, the common peaks are ranked with respect to their increasing intensities in the 

reference spectra (x-axis) and plotted versus the normalized intensities (y-axis). The way in 

which the intensity of the common peaks increased are very similar in the query and reference 

spectra, when the intra/inter-day comparisons are considered. Dissimilarities in the highest 

signals intensities, in the comparisons with t7days, t14days and t2months, were observed. However, 



56 

 

as previously stated, these differences are not entirely surprising. The analytical variation of 

the peak intensities is a well-known problem in MALDI protein analysis. It was reported that 

the mean CV in the peak intensities for protein profiling varies among studies from 4% to 26% 

[28,29]. This variability is strictly related to the MALDI-sample preparation, which involved 

matrix deposition (crystals heterogeneity), and the desorption/ionization processes [30]. 

However, it also depends on the heterogeneity of the tissues consecutive sections or, like in our 

experiments, on the intra-sample heterogeneity of cytological replicates. For this reason, the 

graphs presented in C provide a better representation since they considered the whole spectra 

and take into account overlap of the complete spectra (see section 2.6). The percentage of the 

overlap of the comparisons varies from 98-93% for the intra/inter-day, to 51% for the one at 

t2months. The shape of the spectra density is conserved for the comparisons until t14days, where 

the overlap is 80%. Noticeably, the minimum OV index is 74% when all patients are considered. 

4.2.3.3 Mass spectra similarity: quantitative scores for stability evaluation 

To better investigate the stability of the samples over time, we quantified the degree of mass 

spectra similarity with a score (S3) that we derived from a previous study [25] We also 

considered a new score (S4) that equally weight the number of signals and peak intensities, 

differently from S3, that placed more emphasis on the number of signals. In order to evaluate 

intra-day and inter-day repeatability, both S3 and S4 were calculated for all the possible 

comparisons in each patient (e.g. for P316, intra-day: t0_day2.1 vs. t0_day2.2, t0_day2.1 vs. 

t0_day2.3, t0_day2.2 vs. t0_day2.3; inter-day: t0_day2.1 vs. t0_day1.1, t0_day2.2 vs. t0_day1.1, 

t0_day2.3 vs. t0_day1.1). The distributions of intra/inter-day of S3 and S4 values in the box 

plots of Supplementary Figure 6 (in appendix B) overlap, showing slight heterogeneity. This is 

also underlined by the CV values reported in Supplementary Table  3 in appendix B, which 

ranged from 7.37 to 12.43. Moreover, the CVs calculated in all the replicates of each subject 

reached values below 12.31% (Supplementary  Table 5 in appendix B). When one query 

spectrum at t0_intra-day, t0_inter-day, t7days and t14 days was compared with one reference 

spectrum randomly selected among the t0 replicates, no remarkable differences among the 

scores of all paired combinations were observed (Figure 4). The 95% CI of each paired 

comparison, using both S3 and S4 scores, are reported in Table 1, and show that the one 

calculated for the comparison of t0 vs. t7days is almost completely contained in the 95% CI of 

the inter-day comparison. This suggests that the two evaluations can be considered equivalent, 

but the same conclusion does not hold for the t0 vs. t14days comparison. However, the inter-day 
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CV was surprisingly low, compared to both literature and our experience using MALDI-MSI 

[28,29], with values of 12.03% and 10.54% for S3 and S4, respectively.  

Figure 3. P316 comparisons between the reference spectrum t0 day2.2 and the query spectra t day2.3, t0 day1.1, 
t7days, t14days, t2months prepared at different times of storage, are shown. A) Graphs show the normalized 
intensity [AU] of the peaks of the reference spectrum (x-axis) plotted against the normalized intensity 
[AU] of the peaks of the query spectra (y-axis). Only common peaks are considered. The black line is 
the bisector. B) Graphs show the common peaks ranked respect to their increasing intensities in the 
reference spectrum (x-axis) and plotted versus the normalized intensities [AU] (y-axis). The peaks 
intensities of the reference spectrum are represented by black dots, whereas the peaks intensities of 
the query spectra are represented by red dots. C) Graphs show the overlapping area of the shape of the 
spectra density of the reference (pink area) and the query (blue area). 
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Based on this consideration, we recalculated the 95% CI under the assumption of a 20% CV 

value, which is more representative of the routinely MALDI-TOF variability, and of 30%, in case 

of the worst acceptable hypothetical analytical session (Supplementary Table  4 in appendix B). 

When a CV of 20% and 30% were used to calculate the 95% CI of the comparison t0 vs tinter-day, 

a high intersection and a complete overlap where also observed for the t0 vs. t14days 95% CI. 

These results suggest no substantial deviations from t0 when the cytological samples are stored 

in PreservCyt until 14 days.  Both S3 and S4 scores were split in their components (fit and 

retrofit, spearman’s correlation and overlap) to investigate their relative contribution 

(Supplementary Figure 7 in appendix B). Results showed that spearman’s correlation was the 

one that most unfavorably affected the evaluation of mass spectra similarities (Supplementary 

Table 5 in appendix B), and this might depend on variations among peak intensities observed 

in MALDI-MSI experiments. Finally, to further ascertain the sample stability until 14 days, all 

spectra referred to a different storage time for three patients (P316, P319, P390) were 

compared to the t0 spectrum of all patients (example: P262 t0 versus t0_day1, t0_day2, t7days, t14days 

of P316) in order to assess whether differences between patients remain unchanged 

independently from the sample storage. Regardless of which spectra was used as a reference 

(t0_day1, t0_day2, t7days or t14days), the relation between spectra of two patients was not influenced 

by the time of storage. Indeed, in all paired combinations, the S4 had an average CV of 10.72% 

(range 2.73% - 28.66%), which is comparable to the value observed in inter-day variability (CV 

= 10.43%, Supplementary Table  3 in appendix B). We also have investigated the stability after 

7 days of storage in the CytoLyt solution (P384, P386). The mass spectra similarity scores (S4) 

Figure 4. Heatmap (A) and 3-D histograms (B) of the S3 score obtained from all the spectra comparison 
between a randomized reference spectrum t0 and the query spectra t0_intra-day, t0_inter-day, t7days, t14days 
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between spectra at t0 and t7days were 3.04 and 2.98, respectively, and were beyond the 74.5% 

of the total score S4. Although these results refer solely to two patients, they are in line with 

what we previously observed for the sample stability in the PreserveCyt solution and suggest 

that the samples also remain stable in the CytoLyt solution for at least one week. 

4.2.4 Conclusions 

In this work, we have assessed the morphological and proteomic stability of thyroid FNABs in 

PreservCyt (until 14 days of storage) and CytoLyt (until 7 days of storage) solutions, with 

MALDI-MSI analysis. In addition, we introduced a new feature in the similarity score to equally 

take into account the number of signals (fit and retrofit) and their intensities (spearman’s 

correlation and spectra overlap). The major limitation of this study was the low cellularity of 

thyroid FNABs which cannot always be split in multiple replicates in order to increase the 

sample size. However, this study represents a step forward towards the implementation of 

MALDI-MSI, combined with a trustworthy and robust sample preparation methodology, into 

the cytopathology routine, integrating the morphology with the proteomics data to improve the 

diagnosis of thyroid FNABs and pave the way for a further study aimed at the classification of 

benign, malignant and indeterminate FNABs. Towards this second aim, we are now enrolling 

more than 500 patients of THY2-THY3 and THY4/5.  

Likewise, the findings of this study could be useful and straightforwardly extended to other 

biological liquid based specimens. 
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4.3 MALDI-MSI as a Complementary Diagnostic Tool in Cytopathology: A Pilot 

Study for the Characterization of Thyroid Nodules 

4.3.1 Introduction 

The application of innovative technologies, such as Matrix-Assisted Laser 

Desorption/Ionization (MALDI) Mass Spectrometry Imaging (MSI), on cytological thyroid 

specimens is feasible and robust protocols are now available, enabling the molecular signature 

of different lesions to be characterized [1-3]. After the pioneering phase, challenging technical 

aspects of this approach, such as the interference of haemoglobin and the stability of the 

samples, were overcome [4,5]. Furthermore, recent technical improvements related to the 

increased lateral resolution that can be achieved by MALDI-TOF-MS instrumentation enable the 

detection of small cell subpopulations based on their different protein profiles (i.e. profiles of 

single cell-types), even within regions that are indistinguishable at the microscopic level, 

highlighting how molecular imaging can be combined with traditional pathology to generate 

protein signatures and build classification models [7-9]. Moreover, we have reported that 

MALDI-MSI is able to distinguish benign and malignant cases in different cytological thyroid 

specimens [1-3]. Moving forwards from the first results obtained using ex-vivo cytological 

smears taken from surgical procedures, the present study applies MALDI-MSI on real Fine 

Needle Aspirates (FNAs). Even if thyroid FNAs are safe, cost effective and efficient diagnostic 

tools, a significant rate of 20-30% of cases is still indeterminate for malignancy [10]. Ancillary 

tests like immunohistochemistry and genetics may improve the diagnostic performances but, 

theoretically, MALDI-MSI could represent an alternative option too [1-3]. To the state of the art, 

MALDI-MSI was restricted to translational research and the reproducibility across multiple 

centres was the largest remaining obstacle in moving it towards clinical routine. However, 

promising results came from microbiology, where MALDI-MSI based classifiers applied the 

technology in real time in the diagnostic setting. Recently published studies showed the 

usefulness, advantages, and applicability of MALDI MSI in different fields of pathology 

(diagnosis, prognosis and treatment response) [10]. The preliminary findings of our trial are 

encouraging especially for the methodological improvement of the protocol and the feasibility 

of the technique in a particularly complicated field like thyroid cytological specimens. A 

statistical model, able to manage the big data that were generated by this high-throughput 

proteomics approach, was applied for the characterization of thyroid lesions. Our results 
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suggest an association between pathological thyroid features and proteomic information from 

the FNAs, representing the basis for proteomic signatures that are predictive of disease status. 

4.3.2 Material and Methods 

The study was carried out in accordance with the relevant guidelines and regulations; the 

protocol was approved by the ASST Monza Ethical Board (Associazione Italiana Ricerca sul 

Cancro Associazione Italiana Ricerca sul Cancro-AIRC-MFAG 2016 Id. 18445, HSG Ethical Board 

Committee approval October 2016, 27102016). Appropriate informed consent was obtained 

from all patients included in the study. The present study considers a subset of the consecutive 

series of subjects who underwent ultrasound (US)-guided FNAs in Monza and were 

prospectively enrolled in an AIRC-granted clinical study that was powered to discover new 

markers for the diagnosis of thyroid nodules.   

4.3.2.1 Pathology  

US-guided FNAs were performed using a 25-gauge needle at the Department of Radiology, San 

Gerardo Hospital. One or two passes per nodule were executed and needle washing from every 

pass was sent for proteomics MALDI-MSI analysis [6]. In blind, pathologists evaluated the 

corresponding Pap-stained smears for traditional morphological diagnosis and were classified 

according to the 5-tiered Italian SIAPEC system for reporting thyroid cytopathology [11]. We 

certified benign-Thy2 cases by performing a US examination of patients 12-months after the 

first US-guided FNA confirming absence of new echographic malignant features, absence of 

significant increasing of nodule size, absence of nodes metastasis, and no incidence of new 

suspicious nodules. For malignant cases, histological diagnoses were progressively collected 

after thyroidectomy to certify the nature of the nodules. The training set included 9 subjects 

with a confirmed benign diagnosis at the pathologist’s morphological examination 

(hyperplastic nodules/Thy2) and 9 patients that were classified as malignant papillary thyroid 

carcinoma (PTCs/Thy5). An additional 11 patients were involved in the validation set and their 

cytological classes included: Thy2 (n=4), Thy3 (n=1), Thy4 (n=1), Thy5 (n=4) and 1 PTC-

metastatic lymph node. Table 1 summarizes the relevant clinical-pathological characteristics 

for all the cases in the study.   
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TRAINING SET 

Study lesion code Age (years) Sex Nodule size (mm) FNA Classification at follow-up or histology 

262 81 F 30 THY2 Hyperplastic 

268 81 F 10 THY2 Hyperplastic 

302 63 F 15 THY2 Hyperplastic 

308 32 F 10 THY2 Hyperplastic 

384 71 F 20 THY2 Hyperplastic 

475 39 F 25 THY2 Hyperplastic 

565 69 M 22 THY2 Hyperplastic 

1046 56 F 18 THY2 Hyperplastic 

1122 76 F 11 THY2 Hyperplastic 

213 48 F 15 THY5 PTC 

250 87 F 20 THY5 PTC 

436 69 M 14 THY5 PTC 

440 45 F 23 THY5 PTC-FV 

442 40 F 15 THY5 PTC 

992 46 F 13 THY5 PTC-FV 

995 61 F 50 THY5 PTC-FV 

1012 69 M 18 THY5 PTC-FV 

1076 38 F 14 THY5 PTC 

VALIDATION SET 

1081 79 F 35 THY2 Hyperplastic 

1083 49 F 15 THY2 Hyperplastic 

1123 36 F 36 THY2 Hyperplastic 

1156 53 F 11 THY2 Hyperplastic 

1149 30 F 15 THY5 PTC 

1084 60 M 11 THY5 PTC-FV 

1126 54 M 20 THY5 PTC 

1187 * 24 F 25 THY5 PTC 

1082 49 F 35 THY3 Hyperplastic 

1202 36 M 20 THY4 PTC- FV 

1188 * 24 F 25 
Metastas

is 
Lymph node 

Legend: M=male, F=female, PTC=Papillary Thyroid Carcinoma, FV=Follicular Variant 

*The two lesions are from the same patient 

Table 1. Clinical information of the lesions and the patients included in the study. Green corresponds to Thy2 

hyperplastic nodules; blue corresponds to nodules with an indeterminate for malignancy or suspicious 

cytological diagnosis; in red malignant Thy5 cases are listed. 
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4.3.2.2 In situ proteomics: MALDI-MSI 

Needle washing from thyroid FNAs were collected into a CytoLyt solution (20% buffered 

methanol-based solution, ThinPrep™ 2000 system, CYTYC Corporation, Hologic), samples were 

prepared as previously described and finally transferred as a cytospin spot onto ITO glass slides 

[4,5; 12-14]. Then, all slides were washed with increased concentration of ethanol (70%, 90% 

and 95%) for 30 s each, dried under vacuum for 15 min and stored at − 80 °C until the day of 

the analysis (mean 24-48 hours after the time of biopsy). Before MALDI-MSI analysis, 

cytological specimens were equilibrated to room temperature, dried under vacuum for 30 min 

and the MALDI-matrix sinapinic acid (10 mg/ml in 60:40 acetonitrile:water w/0.2% 

trifluoroacetic acid) was uniformly deposited, with an optimised method, using the 

iMatrixSpray (Tardo GmbH, Subingen, Switzerland) automated spraying system. MALDI-TOF-

MSI was performed using an ultrafleXtreme MALDI-TOF/TOF (Bruker Daltonik GmbH) in 

positive-ion linear mode, using 300 laser shots per spot, with a laser focus setting of 3 medium 

(diameter of 50 μm) and a pixel size of 50 x 50 μm. Protein Calibration Standard I (Bruker 

Daltonics), that contains a mixture of standard proteins within the mass range of 5730 to 

16,950 Da, was used for external calibration (mass accuracy ± 30 ppm). Spectra were recorded 

within the m/z 3000–20,000 range. Data acquisition and visualisation were performed using 

the Bruker software packages (flexControl 3.4, flexImaging 5.0). After the analysis, the MALDI 

matrix was removed with 70% EtOH and the slides were stained with haematoxylin and eosin 

(H&E), digitally scanned using a ScanScope CS digital scanner (Aperio, Park Center Dr., Vista, 

CA, USA) and images were co-registered to the MSI datasets in flexImaging for the integration 

of proteomic and morphological data. Regions of interest (ROIs) containing pathological areas 

will be comprehensively annotated. Satisfactory specimens should include at least 6 groups of 

10 thyrocytes, as SIAPEC guidelines [15].  

4.3.2.3 Statistical analysis 

Quartiles, ranges, mean and standard deviation (sd) were calculated for descriptive purposes. 

The analysis on proteomic data in the training set was performed on ROIs that included only 

epithelial cells, while for each patient in the validation set, three different approaches were 

tested: the average spectra generated from the MALDI-MSI analysis, the spectra from each ROIs 

selected by the pathologist and all the single spectra of the imzML MALDI-MSI analysis (pixel 

by pixel). The spectra were processed by performing baseline subtraction (median method), 

smoothing (moving average method, half window width 2.5), normalization (total ion current, 

TIC), peak alignment, and peak picking (S/N ≥ 6). Pre-processing was performed separately 
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between training and validation set, in order to not influence the data of the validation. The 

open-source software mMass v.5.5 (http://www.mmass.org) was used to confirm mass spectra 

alignment. Only peaks with an absolute intensity of more or equal than 0.0003, after TIC 

normalization, were retained. Intra- and inter-patient filters were applied on the detected 

features in the training set: i) only the features (m/z) detected in at least 25% of the ROIs within 

the same patient were considered and ii) the features (m/z) that were common to at least 25% 

of the Thy2 and to 25% of the Thy5 were included in the model and considered to be those most 

representative of benign and malignant lesions, respectively. For the two groups in the training 

set (benign vs malignant lesions), a logistic regression with a Lasso regularization method was 

performed [16-18]. To select the Lasso penalising parameter, and to assess the predictive 

accuracy within the training set, cross-validation was performed. The validation was done in 

blind from the patient’s histological diagnosis and considering only the features selected by the 

Lasso model to quantify the probability of malignancy. Data pre-processing (MALDIquant 

package) and statistical analyses (glmnet package) were performed using the open-source R 

software v.3.5.0.  

4.3.3 Results 

The cohort of 28 patients included in this study had an average age of 54 years old (sd=17) and 

23 (79%) were females. The average nodule diameter was 20 mm (sd=9). In the group of 

patients used in the training phase, the selected ROIs varied in terms of the number of clusters 

and cells that composed the placards. In the Thy2 cases, an average number of 10 ROIs 

(range=5-22, median=9) was recorded by the pathologist, while, in the Thy5 cases, a mean of 

8 ROIs (range=4-19, median=6) was selected. To compensate for this variability, equivalent 

groups of ROIs were generated for each patient: 5 groups of ROIs for Thy2 cases and 4 ROIs for 

Thy5 cases, each comprising from 1 to 7 ROIs. These were then used to calculate the average 

spectra for the statistical analysis. ROIs from Thy2 lesions had an average number of 9 pixels 

(range=3-39, median=7) while in the Thy5 had an average of 31 (range=3-162, median=13). 

Therefore, 45 mean spectra were generated for the benign and 36 for the malignant lesions and 

used for the statistical analysis of the training data. After pre-processing and the two intra- and 

inter-patient filters, 69 features were found to be the most representative of Thy2 and Thy5 

lesions, 20 of these were selected from the statistical model as the most discriminant to 

correctly distinguish samples and quantify their probability of being malignant lesions 

(Supplementary Table 1 in appendix C). Then, the capability of the features included in the 

model to discriminate benign from malignant lesions was also tested on each single pixel 
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present in the analysed specimens. This was performed using the same groups of patients 

included in the training phase (Supplementary Figure 2a, 2b in appendix C). A complete overlap 

of the cytological diagnosis and MALDI-MSI results was observed. In particular, specimens of 

the benign group were observed to be very homogeneous (uniformly distributed green colour, 

Figure 1a), indicating that all the protein profiles were similar. In the validation phase on 11 

additional lesions (10 patients), three different approaches were applied based on: i) average 

of spectra of the ROIs, ii) overall average spectra of the entire FNA, irrespective of the 

morphological selection of the ROIs, and iii) pixel by pixel analysis (Supplementary Figure 1 in 

appendix C). 

Figure 1. Examples of pixel by pixel images and distributions of the probabilities of being malign in the 
training and validation set of benign Thy2 nodules. a) imzML MALDI-MSI data of the Thy2 P_308 
in the training sample; b) Haematoxylin and Eosin (H&E) staining of P_308; c) Validation of Thy2 
samples using imzML MALDI-MSI data. 
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Figure 3. Validation set of indeterminate for malignancy (Thy3), suspicious (Thy4) cases and 
metastatic lymph node. Pixel by pixel images and distribution of the probabilities of being 
malignant for each pixel in the MALDI-MSI analysis. 
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The average number of ROIs for the specimens used in the validation phase was 12 (2-25, 

median 11), with a mean number of pixel for each ROI of 15 (1-208, median 5). The model 

correctly classified all the benign cases (four Thy2, as shown in Figure 1c, and one 

morphological Thy3, as shown in Figure 3). In the malignant scenario, three Thy5 cases were 

particularly challenging due to the paucity of cells (Figure 2e: P_1126) or to a heterogeneous 

background of benign/malignant cells (Figure 2c: P_1084, cytological image not shown) or 

colloid-rich, cystic variant PTC (Figure 2c: P_1187, cytological image not shown). As a 

consequence, the proteomic analysis did not identify diagnostic signals of alert at the first 

screening classifying these samples as benign (Figure 2c). Patients Thy5 P_1149 and Thy4 

P_1202, both adequate specimens, were correctly classified based on the distribution of the 

probabilities to be malignant using both ROIs and pixel by pixel data (Figure 2c, 2h and 3; 

Supplementary Table 2b, 2c and 3c in appendix C)). Then, an additional experiment was 

planned to support the hypothesis to justify the incorrect classification using ex-vivo 

specimens. Samples from the same nodules (taken ex-vivo after thyroidectomy, as previously 

described [19]) were now correctly classified as malignant by the model, due to a greater 

amount of neoplastic clusters that did not limit the analysis (Figure 2d, 2f, 2g). Analysis of an 

in-vivo specimen of a metastatic lymph node (P_1188) resulted in a correct classification as 

malignant based on ROIs but as benign in the pixel by pixel classification (P_1188). Specimen 

collected ex-vivo from this lymph node was correctly classified both based on ROIs and pixel by 

pixel model (Figure 3). Finally, the comparison of the three methodological approaches 

employed for the validation set highlights improved discriminant power in both the pixel by 

pixel and ROI-analysis with respect to when the average spectra of the whole sample was 

employed (Supplementary Table 2 and 3 in appendix C)). This result underlines the particular 

strengths of MALDI-MSI that could be exploited to support, as complementary tool, the 

fundamental diagnostic role of the pathologist. 

4.3.4 Discussion 

4.3.4.1 Proteomics for the diagnosis of thyroid carcinoma 

The development of new diagnostic tools to support cytopathologists in the diagnostic triage of 

indeterminate for malignancy thyroid nodules can be approached from the alternative 

perspective offered by proteomics [20,21]. Previous reports enlightened the possibility to apply 

imaging methods such as MALDI-MSI to cytological specimens to combine the analytical power 

of traditional morphology and molecular signatures [22]. Preliminary experiments were done 

using ex-vivo specimens taken from surgical samples [19], while in the present study true 
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needle washing specimens were used. The feasibility of the MALDI-MSI approach to spatially 

localize proteins in a cancer cells area is enlighten in Supplementary Figure 3 in appendix C. 

This represents an intriguing and important methodological step, leading to the recovery of 

left-over material from the FNAs that can be recovered by washing the needle and stabilizing 

the cells for 2 weeks [5]. This procedure allows specimens to be collected from centers that 

don’t have a diagnostic unit with proteomics facilities and then shipped to the referee lab within 

the following ten days. In the near future, the more systematic enrollment of patients from 

multiple centres could ensure the generation of diagnostic libraries containing molecular 

signatures, which include different malignant and rare histotypes for research purposes.  

4.3.4.2 Big data and biostatistics: a requirement for the introduction of proteomics in clinics   

Indeed, the application of proteomics as a routine option for the characterization of challenging 

cases also requires the development of an enlarged network given that the validation of 

protocols, biostatistic models and putative analytical features is related with the inter-

laboratory reproducibility, standardization of workflows and diagnostic strengthening of the 

methods. In particular, with the advent of molecular techniques like next generation 

sequencing (NGS) and proteomics approaches (MALDI-MSI), biostatistics models and 

bioinformatics that can manage big data are necessary for improving the confidence of 

pathologists [23,24]. Statistical models of cancer at the genomic, proteomic and transcriptomic 

levels have proven effective in developing diagnostic and prognostic molecular signatures, as 

well as in identifying pathogenetic pathways [25]. High-throughput experimental tools allow 

for the simultaneous measurement of thousands of biomolecules, integrating heterogeneous 

data into quantitative predictive models to significantly improve cytological diagnoses. 

Molecular diagnostic workflows can be divided into those that employ unbiased statistical 

inference and those that also incorporate a priori constraints of specific biological interactions 

from data [26]. In the present study, a diagnostic model was trained using clear-cut benign or 

malignant cases to identify specific discriminant features to be tested in the validation phase. 

Three different approaches were used: the analysis of groups of ROIs that the pathologists 

selected using morphological criteria, a pixel by pixel approach, and examination of the average 

spectrum of the whole sample.  

4.3.4.3 Training phase: features selection for benign and malignant thyroid FNAs discrimination 

The histograms in Figure 1 and 2 show how the probability of being malignant could be 

associated can be effectively represented with curves and the samples from FNAs should not 

pass the diagnostic proteomic triage whenever a signal of alert was pointed out. After the 
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application of filters, biostatisticians designed a combination of features that was able to 

correctly distinguish all the training cases, in blind, when they were re-tested. The highest 

probability to be malignant of 7% (overall mean of the 3rd quartiles = 2.89%, sd = 2.03%) for 

the Thy2 and the minimum of 28% (overall mean of the 3rd quartiles = 81.81%, sd = 22.66%) 

for Thy5 was observed in the training phase (Supplementary Table 3a, 3b in appendix C).  

4.3.4.4 Validation phase of the selected features and pixel-by-pixel classification of thyroid FNAs  

Results obtained in the pixel by pixel validation phase showed that all benign lesions, including 

the Thy3 (later confirmed as benign after surgical resection), have a 3rd quartile value of the 

probability of being malign below 7%. The malignant lesions had a 3rd quartile above 28% with 

the exception of specimens with scarce cellularity or a heterogeneous background. These 

specimens stressed the model due to particularly challenging nodules that were representative 

of the diagnostic situation characterizing routine thyroid pathology. Samples with issues in 

terms of quantitative adequacy, haemorrhagic slides, colloid-rich or very heterogeneous FNAs 

with interspersed macrophages and lymphocytes are all good examples of challenging 

specimens. In benign lesions, a minimum amount of cells was sufficient to confirm the nature 

of the hyperplastic goiter and no signal of alert was recorded. In the malignant group, three 

FNAs from histologically proven PTC (Thy5) were not correctly assigned (Figure 2c) due to the 

quality of the samples taken from the patient. Two different situations were highlighted: 

samples with paucity of malignant thyrocytes or with high inflammatory or colloidal 

background. In fact, when the analyses were repeated with samples taken ex-vivo from the 

thyroid of same patients after surgical removal, they were easily diagnosed as malignant by our 

diagnostic tool due to the increased quality of the specimens with a greater amount of 

neoplastic clusters (Figure 2d). An in-vivo specimen of a metastatic lymph node was also 

misclassified as benign only in the pixel by pixel classification (P_1188). A possible explanation 

for this failure could be due to the low number of thyrocytes present in the sample. As a 

consequence, the correct classification was obtained when using the ROIs, where the 

background was less impacted by the quality of the spectra, but this confounded the model in 

the pixel by pixel classification. However, the specimen that was collected ex-vivo was correctly 

classified using either the ROIs or the pixel by pixel model (P_1188: Figure 3 and 

Supplementary Table 2c1 in appendix C). This suggests that, once the pathologist certified the 

presence of a satisfying quantity of neoplastic cells in the washing material, the model also 

correctly triaged malignant PTC cells in a sample taken from a metastatic lymph node. 

4.3.5 Conclusions 
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Notwithstanding the consideration that the diagnostic validity of the model needs to be verified 

in the large cohort of patients that is currently under enrollment, the present study introduces 

an original methodological approach to build a proteomic diagnostic tool in thyroid 

cytopathology by taking advantage of MALDI-MSI technology. The next step will be to 

systematically test the workflow and to putatively identify the most significant features 

employed by the classification model. The direct consequences of successful results could be 

the use of MALDI-MSI proteomics as a complementary approach for the characterization of 

indeterminate for malignancy thyroid nodules. Despite the technical challenges of this study, 

the application of proteomics and imaging may help to elucidate key biomolecular events and 

pathways in oncogenic processes [27,28]. Collectively, this represents an important paradigm 

for both the fundamental characterization of cancer systems and the discovery of molecular 

targets for diagnostic application. 
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5 An insight into the indices of similarity between mass spectra  

The quantitative evaluation of mass spectra similarity has been often employed to investigate 

reproducibility and repeatability of analytical methods. Moreover, these mass spectra 

similarity approaches have been occasionally used for classification purposes comparing query 

samples to reference spectral libraries. Several mass spectra similarity indexes had been 

developed, but the statistical evaluation of their reliability for mass spectra comparison was 

never assessed.  

Different similarity measures present in literature are reviewed and compared in this chapter, 

and a new score system based on overlap is also proposed. The statistical performances of these 

measures have been compared through simulated mass spectra that mimic those from real 

proteomic data observed in thyroid cancer. Simulation protocols and results are reported and 

the limits and benefits of the different approaches are also discussed.  

 

5.1 Introduction 

In the clinical application of mass spectrometry, similarity scores have been often employed to 

evaluate not only the agreement of an unknown sample with respect to a reference compound 

in spectral libraries [1], but also to evaluate analytical methods reproducibility [2] and 

repeatability [3]. Different mass spectra similarity scores have been used for different purposes 

over the years. Several papers evaluated the performances of one or two scores per time using 

real mass spectrometry data. Only few studies investigated mass spectra similarity scores using 

mass spectra generated from replicates of real reference library spectra [4] or limited 

simulated mass spectra [5].  

Two scores were initially proposed for the comparison of mass spectrometry profiles: the 

Probabilitity-Based Matching (PBM) of McLafferty et al. [1] and the similarity measure of Hertz 

et al. [6]. Subsequently, Stein and Scott reviewed and compared the performances of five 

different algorithms, namely: PBM, dot-product (cosine correlation), Hertz similarity measure, 

Euclidean and absolute value distance. These five algorithms were used to compare a test 

spectrum against reference spectra using a mass spectra database. Results indicated that the 

PBM and the Hertz similarity measure, the two algorithms constructed specifically for mass 

spectra comparisons, performed worst, while the dot-product function had good performances. 

Finally, they described a new optimal composite algorithm (i.e. the Stein and Scott measure), 

which achieved the best performances. This index was obtained from the cosine correlation 
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score by weighting spectra for intensity and m/z value, and by adding a term based on ratio of 

peak pair intensity. Moreover, Wan et al. highlighted that the cosine index is able to differentiate 

between very similar mass spectra, where the Similarity Index (SI) fails [5]. 

Koo et al. investigated for the first time the compound identification accuracy of different mass 

spectra similarity measure through simulations, generating spectra from existing reference 

library. These simulations showed that Partial and Semipartial correlation indices had the best 

performance in accuracy, but the worst in computation time, compared to cosine correlation, 

Stein and Scott measure, and Discrete Fourier Transform (DFT) composite measure [7]. 

Additional similarity scores that have been used to investigate mass spectra similarity are: fold 

difference, intensity match, Spearman’s correlation, Person’s correlation, Euclidean distance, 

Manhattan distance, fit, retrofit [1]. Most of these similarity scores were applied in electrospray 

ionization mass spectrometry analysis and no studies investigated their performances. We 

proposed a new score never used in the evaluation of the similarity of protein spectra, called 

overlap [3]. All the measures we reviewed were included in the simulation study that we made. 

The purpose was to investigate for the first time the performances of different mass spectral 

similarity scores applied to linear matrix assisted laser desorption ionization -time of flight-

mass spectrometry (MALDI-TOF-MS) data.  

 

5.2 Review of the existing measures 

In the description of the different similarity scores, the PBM, the Hertz, the Partial and 

Semipartial correlation indices were not taken into account. The first two were excluded due to 

their low performance, which is widely documented in the literature, while Partial and 

Semipartial correlation indices were not considered due to their field of application that is 

different from our context.  

Consider two given spectra 𝑋 = (𝑥𝑖)𝑖=1,...,𝑁𝑋
  and 𝑌 = (𝑦𝑖)𝑖=1,...,𝑁𝑌

, where the generic  𝑖𝑡ℎ peak 

represents a mass-to-charge value (𝑚 𝑧⁄ ), while 𝑁𝑋 and 𝑁𝑌 are the total number of 𝑚 𝑧⁄  values 

in 𝑋 and 𝑌 spectra.  

1)Cosine correlation: 

The dot-product term [5], also known as the cosine correlation index, is used to obtain the 

cosine angle between the direction in space of the query and reference sequences of intensity 

signals. It is defined as follows: 

𝑆𝐶 =
𝑋 ∘  𝑌

‖𝑋‖ ⋅  ‖𝑌‖
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where   𝑋 ∘  𝑌 = ∑ 𝑥𝑖𝑦𝑖
𝑁
𝑖=1  , ‖𝑋‖  =  √∑ 𝑥𝑖

2𝑁
𝑖=1  and 𝑁 was the total number of 𝑚 𝑧⁄  values used in 

the comparison. Note that 𝑆𝐶  ranges between −1 and 1, and it is always non-negative if 𝑋 and 

𝑌 are non-negative intensities.  

The dot-product index varies between 0 when the spectra are completely different and even 

when do not contain common ions and 1 when spectra are identical. Even if spectra are pre-

processed, in particular normalized to the sum of peak intensities, the cosine similarity index, 

as well as others measures (e.g. fold difference) that will be introduced later, is independent 

from normalization. 

2)Stein and Scott index: 

An improved optimized dot-product cosine correlation system, called Stein and Scott 

Composite similarity [1], weights spectra for intensity and m/z value and adds a term based on 

the ratio of peak pair intensity.  

Firstly, the ratio of peak pair 𝑆𝑅 is as follows: 

𝑆𝑅(𝑋, 𝑌) =
1

𝑁𝑋∩𝑌
∑ (

𝑦𝑖

𝑦𝑖−1
⋅

𝑥𝑖−1

𝑥𝑖
)

𝑛
𝑋∩𝑌

𝑖

 

where 𝑛 = −1  or 1 if the term in parentheses was less than or greater than unity, respectively. 

The value 𝑁𝑋∩𝑌  is the number of non-zero peaks in both the reference and the query spectra, i.e 

the number of shared mass peaks.  

The Stein and Scott Composite similarity is calculated by: 

𝑆𝑆𝑆(𝑋, 𝑌) =
𝑁𝑋 ⋅  𝑆𝐶(𝑋, 𝑌) + 𝑁𝑋∩𝑌 ⋅ 𝑆𝑅(𝑋, 𝑌)

𝑁𝑋 + 𝑁𝑋∩𝑌
 

where 𝑁𝑋 is the number of non-zero peak intensities existing in the query spectra. In the 

literature this similarity score is constructed only for weighted intensities, so its original 

formulation is:  

𝑆𝑆𝑆(𝑋, 𝑌) =
𝑁𝑋 ⋅  𝑆𝑊𝐶(𝑋, 𝑌) + 𝑁𝑋∩𝑌 ⋅ 𝑆𝑊𝑅(𝑋, 𝑌)

𝑁𝑋 + 𝑁𝑋∩𝑌
 

 where 𝑆𝑊𝐶 is the weighted cosine correlation formula in which 𝑋 and 𝑌 are considered as 

weighted spectra 𝑊𝑋 and 𝑊𝑌,  𝑆𝑊𝐶(𝑋, 𝑌) = 𝑆𝐶(𝑊𝑋 , 𝑊𝑌) =
𝑊𝑋∘ 𝑊𝑌

‖𝑊𝑋‖⋅ ‖𝑊𝑌‖
=

∑ 𝑊𝑥,𝑖⋅𝑊𝑦,𝑖
𝑁
𝑖=1

√∑ 𝑊𝑥,𝑖
2𝑁

𝑖=1 ⋅ √∑ 𝑊𝑦,𝑖
2𝑁

𝑖=1

 , 

and 𝑆𝑊𝑅(𝑋, 𝑌) = 𝑆𝑅(𝑊𝑋, 𝑊𝑌) =
1

𝑁𝑋∩𝑌
∑ (

𝑊𝑦,𝑖

𝑊𝑦,𝑖−1
⋅

𝑊𝑥,𝑖−1

𝑊𝑥,𝑖
)

𝑛
𝑋∩𝑌
𝑖 , where 𝑊𝑥,𝑖 and 𝑊𝑦,𝑖 are non-zero 

weighted intensities having common 𝑚 𝑧⁄  value defined as 𝑊 = [𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦]𝑎[𝑀𝑎𝑠𝑠]𝑏 , 𝑎 
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and 𝑏 are the weight factors for peak intensity and m/z values, respectively. For our purpose, 

these formulae are considered without weighted intensity as previously reported. 

3)Similarity Index: 

Similarity Index (SI) method [8], is defined as: 

𝑆𝑆𝐼 =
√∑ {

𝑥𝑖 − 𝑦𝑖

𝑥𝑖 + 𝑦𝑖
× 100}

2
𝑁
𝑖=1

𝑁
 

4)Discrete Fourier composite index: 

The Discrete Fourier transform (DFT) index converts an original spectral signal 𝑍 = (𝑧1, . . . , 𝑧𝑛) 

into a new signal 𝑍𝐹 = (𝑧1
𝐹, . . . , 𝑧𝑛

𝐹) as follows [9]: 

𝑧𝑘
𝐹 = ∑ 𝑧𝑑exp (−

2𝜋𝑖

𝑛
𝑘𝑑) , 𝑘 = 1, . . . , 𝑛

𝑛

𝑑=1

 

where the notation 𝑖  in this case is the imaginary unit and not the 𝑖𝑡ℎpeak, called 𝑘. By using 

the Euler's formula that defines exp(𝑖ϕ) = cosϕ +  𝑖 sinϕ, the original equation becomes: 

𝑧𝑘
𝐹 = ∑ 𝑧𝑑𝑐𝑜𝑠 (−

2𝜋

𝑛
𝑘𝑑)  +  𝑖 ∑ 𝑧𝑑𝑠𝑖𝑛 (−

2𝜋

𝑛
𝑘𝑑)

𝑛

𝑑=1

, 𝑘 = 1, . . . , 𝑛

𝑛

𝑑=1

 

We have a new transformed signal, whose real part 𝑍𝐹𝑅 = (𝑧1
𝐹𝑅 , . . . , 𝑧𝑛

𝐹𝑅) is defined as follow: 

𝑧𝑘
𝐹𝑅 = 𝑅𝑒(𝑧𝑘

𝐹) = ∑ 𝑧 ⋅ 𝑐𝑜𝑠 (−
2𝜋

𝑛
𝑘𝑑)

𝑛

𝑑=1

 

where the function 𝑅𝑒(⋅) is the real part of the imaginary number. 

The DFT with real composite similarity is defined as follow: 

𝑆𝐷𝐹𝑇(𝑋, 𝑌) =
𝑁𝑋 ⋅  𝑆𝐶(𝑋, 𝑌) + 𝑁𝑋∩𝑌 ⋅ 𝑆𝐶(𝑋𝐹𝑅 , 𝑌𝐹𝑅)

𝑁𝑋 + 𝑁𝑋∩𝑌
 

5)Pearson’s correlation: 

The correlation between two sequences of intensities is defined in standard terms as the 

covariance of the two sequences divided by the product of the standard deviations: 

𝑆𝑃 = 𝐶𝑜𝑟𝑟(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋)√𝑉𝑎𝑟(𝑌)
 

where 𝐶𝑜𝑣(𝑋, 𝑌) was the covariance between 𝑋 and 𝑌 and 𝑉𝑎𝑟(𝑋) was the variance of 𝑋. 

6)Fold difference: 

It is the ratio of protein amount between two spectra, and it is used to detect differences of 

various proteins concentration in complex mixtures [10]. It is defined as  
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𝑆𝐹𝐷 =
∑

𝑥𝑖

𝑦𝑖

𝑁
𝑖=1

𝑁
 

7)Spearman’s correlation: 

Spearman’s correlation is the non-parametric version of the Pearson’s correlation 

coefficient 𝑆𝑃 = 𝐶𝑜𝑟𝑟(𝑋, 𝑌). It is defined as a measure of association between the ranks of the 

intensities of the common peaks 𝑛𝑋∩𝑌: 

𝜌𝑠 =
∑ [(𝑟𝑗 − �̅�) ∗ (𝑠𝑗 −  �̅�)]

𝑛𝑋∩𝑌
𝑗

√∑ (𝑟𝑗 − �̅�)
2𝑛𝑋∩𝑌

𝑗 ∗ √∑ (𝑠𝑗 − �̅�)
2𝑛𝑋∩𝑌

𝑗

 

where 𝑟𝑗  and 𝑠𝑗  were the ranks of 𝑥𝑗  and 𝑦𝑗  (𝑗 = 1, . . . , 𝑛𝑋∩𝑌), while �̅� and �̅� were their median 

values.  

8-9)Fit and retrofit: 

These two measures are only based on the cardinality of the m/z values in the two spectra, and 

the number of shared mass peaks [11]. The fit is defined as the ratio of the common peaks in 

the two spectra and the 𝑛𝑌 peaks detected in the query spectrum: 

𝐹𝐼𝑇 =
𝑛𝑋∩𝑌

𝑛𝑌
 

while the retrofit is defined as the ratio of common peaks in the two spectra and the  𝑛𝑋 peaks 

in the reference spectra: 

𝑅𝐹𝐼𝑇 =
𝑛𝑋∩𝑌

𝑛𝑋
 

10)Overlap: 

The overlap (𝑂𝑉) takes into account the whole shape of two spectra [12]. This latter index 

measured the overlapping area between the empirical distributions of two sequences of 

intensities on ranked 𝑚 𝑧⁄ : 

𝑂𝑉 = �̂�𝑛𝑋∪𝑌
𝑋 ∩  �̂�𝑛𝑋∪𝑌

𝑌  

where �̂�𝑛𝑋∪𝑌
𝑋  and �̂�𝑛𝑋∪𝑌

𝑌  were the empirical distribution function, and 𝑛𝑋∪𝑌 were the 𝑚 𝑧⁄  values 

either in the 𝑋 or the 𝑌 spectra. 

11)Intensity match: 

Intensity match is an improvement of the correlation system, in which the perfect 

correspondence of peaks abundance between spectra is investigated. This score focus on the 

agreement between two sequences of signals within a 30% range on intensity variability. 

12)Lin’s concordance correlation: 
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The Lin’s concordance correlation coefficient measures the agreement between two sequences 

of variables [13][14]. The Lin’s CCC  is defined as:  

𝑆𝐿𝐼𝑁 =
2𝑟𝑠𝑋𝑠𝑌

(�̅� − �̅�)2 + (𝑠𝑋)2 + (𝑠𝑌)2
 

This index is equivalent to 1 minus the ratio of expected orthogonal squared distance from the 

line Y = X and the expected orthogonal squared distance from the line Y = X assuming 

independence. Like a correlation coefficient -1 ≤ 𝑆𝐿𝐼𝑁≤ 1: values near +1 indicate strong 

concordance between X and Y, values near -1 indicate strong discordance and values near zero 

indicate no concordance.  

13)Kendall’s correlation: 

It is used to measure the ordinal association between two measured quantities. 

𝑆𝐾 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

𝑛(𝑛 − 1)
2

 

14-15)Euclidean and Manhattan distances: 

They calculated the distance between the intensity of two sequences of data.  

               𝑑𝑖𝑠𝑡𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑁
𝑖=1         and        𝑑𝑖𝑠𝑡𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 = √∑ |(𝑥𝑖 − 𝑦𝑖)|𝑁

𝑖=1  

 

A summary of the properties and characteristics of the reviewed similarity measures are 

reported below. 

ID Score Domain  Value of  
perfect 

agreement 

Characteristics 

1 Cosine correlation [0;1] 1 Angle between direction of intensities 
2 Stein and Scott index [1;+∞] 1 Ratio of intensities 
3 Similarity index [0;100] 0 Difference of intensities 
4 Discrete Fourier Transformation [0;1] 1 Composition of waves sinusoid 
5 Person’s correlation [-1;1] 1 Linear relation of intensities 
6 Fold difference [1;+∞] 1 Ratio of intensities 
7 Spearman’s correlation [-1;1] 1 Ranks of the intensities 
8 Fit [0;1] 1 Number of signals 
9 Retrofit [0;1] 1 Number of signals 
10 Overlap [0;1] 1 Density function 
11 Intensity match [0;1] 1 Linear relation of intensities 
12 LIN’s concordance correlation [-1;1] 1 Concordance of intensities 
13 Kendall’s correlation [-1;1] 1 Ranks of the intensities 
14 Euclidean distance [0;+∞] 0 Difference of intensities 
15 Manhattan distance [0;+∞] 0 Difference of intensities 
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5.3 Simulation study 

In order to evaluate the performances of the reviewed indices a comprehensive simulation 

study was carried out mimicking the proteomic profiles observed in thyroid cancer. Two main 

simulation protocols were set-up to consider two completely different shapes of the spectra, 

contrasting a situation of picks uniformly distributed vs picks not uniformly distributed. In each 

protocol, various scenarios of mass profiles, with masses ranging from 3,000 to 15,000 m/z, 

were investigated, with different numbers of truly relevant peaks, percentage of shared 

common peaks, different variability on peaks intensity and localization along the m/z axis.  

All the simulated spectra were pre-processed following the same strategy: baseline subtraction 

(median method), smoothing (moving average method, half window width 2.5), normalization 

(total ion current, TIC), peak alignment, and peak picking (signal-to-noise ratio, S/N ≥ 6). Only 

peaks with S/N ≥ 6 and an abundance greater or equal to 0.0003 were considered as relevant 

peaks. The choice of the cut-off was justified by the magnitude of the intensities that we 

identified as relevant in our experience in thyroid cancer.  

Spectral comparisons were made between couples of simulated mass profiles for intra- and 

inter-group comparisons.  

5.3.1 Simulation protocol 1 

The first simulation protocol have explored a uniform distribution of the peaks along the m/z 

axis. The spectra generation followed this strategy: 

1. Two reference spectra, one for each group, were generated with the same pre-defined 

number of informative peaks, but with different percentages of common m/z values. The 

remaining m/z values (allowing to reach the pre-defined number of true peaks) were 

randomly generated by a uniform distribution along the m/z  axis.  

2. Given the localization of m/z values along the axis, the corresponding peaks abundance 

was simulated from a uniform distribution with an absolute intensity ranging from 3.5 

to 200. The abundance of m/z common peaks were forced to overlap, with small random 

variations from a normal distribution. Non-common peaks were free to have different 

intensity values. An exponential distribution was used in generating the baseline 

spectra, while the background random noise followed a gaussian distribution with mean 

equal to the baseline value at each m/z point and standard deviation 10^(-5).  

3. For each reference spectrum, 99 replications were generated by small random changes 

in peak intensities with respect to the reference ones to obtain 100 replicates for each 

of the two groups.  
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4. Each configuration was replicated 20 times changing the m/z localisation along the axis. 

 

Overall, we investigated 30 scenarios obtained by combining 3 different values for the number 

of informative peaks, 5 values for the percentage of common peaks and 2 values for intensity 

variability of common signals, as reported in the table below: 

 

n° of relevant peaks: 40, 25, 10 

% of common signals: 90, 75, 50, 25, 10 

% of intensity variability: 30, 5 

 

Examples of the raw spectra (without pre-processing) generated with 15 (A), 25 (B) and 40 

(C) relevant peaks between a mass range of 3000-15000 m/z are reported in the graph below. 

 



84 

 

5.3.2 Simulation protocol 2 

The second simulation protocol have explored a non uniform distribution of the peaks along 

the m/z axis. Specifically, the m/z axis was divided into three regions (3000-7000; 7000-11000; 

11000-15000) and the spectra generation followed this strategy: 

1. The first reference spectrum was generated in order to have in the first region twice or 

five times the percentage of peaks compared to each of the other two regions. 

2. The second reference spectrum was generated symmetrically with respect to the first 

one, with the same percentage of peaks that fell into the third region, while the 

remaining percentage of signals were equally distributed in the first two regions. 

3. No common peaks was generated between the two different reference spectra. In order 

to overcome this problem, peaks generated in the second region were the same between 

the two reference spectra and with the same number of m/z. Moreover, the percentage 

of signals in the third region of the first reference spectrum was chosen among the 

percentage of signals in the third region of the second reference spectrum, due to its 

highest amount of signals in that region.  Similarly, we have done the same for the first 

region of the second reference spectrum, which were chosen among the m/z value 

generated for the first reference spectrum in the first region. In the same way, the 

informative peaks in the first region of the second spectrum were chosen among the 

informative peaks generated for the first spectrum in the first region.  

4. For each reference spectrum, 99 replicates that differ from the reference spectra only 

for peak intensities were generated.  

5. Each configuration was replicated 20 times changing the m/z localisation along the axis. 

 

Overall, we investigated 4 scenarios obtained by combining 2 different values of the number 

of informative peaks, 2 values for the percentage of relevant peaks in each of the three 

regions and 1 values for intensity variability of common signals, as reported in the table 

below: 

n° of relevant peaks  40, 25 

% of relevant peaks in each region:  

- first group 

- second group 

 

(70, 15, 15) - (50, 25,25) 

(15, 15, 70) - (25, 25, 50) 

% of intensity variability 5 
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Examples of the raw spectra (without pre-processing) generated with 25 (A) and 40 (B) 

relevant peaks between a mass range of 3000-15000 m/z and with a density of 50% of the 

relevant peaks in the richest regions, are reported in the graph below. 

5.3.3 Details on the analyses 

The 200 spectra generated for each scenario led to a 5000 paired spectra comparisons in each 

of the two groups evaluating similarity between replicates, while 5050 inter-group 

comparisons were performed. Each configuration was replicated 20 times changing the m/z 

localisation along the axis, for a total of 5000x20x2 intra-group comparisons and 5050x20 

inter-group comparisons.  

A total of 15 scores were considered and each score was evaluated at three different level of 

detected signals: 

1. First level: only common peaks with an absolute intensity greater or equal than the cut-

off of 0.0003 (after TIC normalization) were retained for paired comparisons.  

2. Second level: all the m/z values with an absolute intensity greater or equal than the cut-

off either in the first or the second spectrum are taken into consideration for the 

comparison. 

3. Third level: the whole spectra were retained and all the detected signals with S/N ≥ 6, 

were taken into account.  
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An example of a spectrum (after pre-processing) generated with 25 relevant peaks in a mass 

range of 3000-15000 is reported in the graph below. Colored points show the detected signal 

involved in the three levels evaluation: (A) only signals greater than the threshold and in 

common with another hypothetical spectrum (25% of common peaks) (green points) were 

retained for the analysis; (B) all the signals greater than the threshold (blue points) were 

retained for the analysis; (C) all the signals of the spectrum  (orange points) were retained for 

the analysis. 

Replicates of the same sample were required to evaluate the reliability of the different 

similarity measures, since no recognized standard of reference exists. The 95% confidence 

interval (CI) of the median of the scores obtained for each paired comparison between two 

different replicates represented the gold standard. In order to assess the performance of 
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different scores in evaluating spectra similarity, the CIs of the median of each paired inter-

group comparisons were calculated and compared to the intra-sample CIs [6].  

5. 4 Results  

5.4.1 Protocol 1 

First level (Figure 1,2,3,10,11,12 in appendix D): 

At the first level, only common peaks with intensity greater than the threshold were considered 

in the pairwise comparison. Since we looked at common peaks with the same intensity values, 

a similar behavior among the different scenarios is expected. In each score an increment in 

variability of the distribution of the estimated values was observed when the percentage of 

common peaks in the inter-sample analysis decreased. When comparing the same score, this 

behavior is attenuated when the number of informative peaks increased (15, 25, 40). 

Pearson, Spearman, Kendall and LIN correlation reached negative estimated values and had 

high heterogeneity. These scores work on intensity agreement: the less the number of signals 

to be correlated (i.e. for the scenario of 15 relevant generated m/z and 10% of common signals, 

correlation is calculated on only 2 intensity values), the higher was the bias in the results even 

though little variability in intensity (5%).  The Stein and Scott index, Euclidean and Manhattan 

distance showed a tendency to underestimate similarity when the percentage of common peaks 

decreased. The degree of underestimation cannot be evaluated because these measure had not 

a bounded domain, therefore only the comparison with the intra-sample analysis can be 

discussed. In Euclidean and Manhattan distances the differences in the estimated median 

values were of low magnitude: the 95% CIs for each scenario in the inter-sample analysis was 

completely contained in the 95% CI of the intra-sample comparison. Conversely, Stein and Scott 

index showed a decreasing trend of the inter-samples analyses with respect to intra-sample 

analysis. 

With an increment in peaks intensity variability (30%) these results were more marked, except 

for Cosine, DFT and Overlap that showed expected estimate values.  

Second level (Figure 4,5,6,13,14,15 in appendix D): 

At the second level analysis all the m/z values greater than the threshold of 0.0003 were 

retained in the analysis. If a peak was greater than the threshold in only one spectrum (non-

common peaks), the intensity value at the same m/z was retained for the second spectrum, 

irrespectively from its value. The focus of the analysis was to highlight the ability of different 

scores to detect dissimilarities between spectra at different percentage of common peaks. 
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Pearson, Spearman and Kendall correlation indices showed median estimated values around 

0.5 in the inter-sample comparison in the presence of 75% of common peaks and when 15 

peaks were generated. When the number of relevant peaks increased (i.e. 25, 40), the estimated 

median value was around 0.5 in the scenario with the 90% of common peaks, even if it was 

expected to be (asymptotically) near 1. When the intensity variability increases at 30% also the 

estimated median value related to 90% of common peaks scenario decreased to a value lower 

than 0.5, irrespective to the number of relevant peaks. This suggested that non-common peaks 

heavily affected Pearson, Spearman and Kendall correlation, although, boxplots decreased 

according to the decrease of the percentage of common peaks. Intensity match and SI gave more 

reliable results. Indeed, the first score worked with a greater tolerance when comparing signal 

intensities, while the second took into account the percentage of dissimilarity in peaks 

intensities. An increment of intensity variability (30%) lead to underestimation in similarity 

for Intensity match (e.g. intra-sample analysis showed an estimated median value around 0.45), 

while SI lead to the same results showed in the scenarios with 5% variability. Conversely, scores 

that considered the whole shape of the spectra, like the overlap, lead to an overestimation of 

mass spectra similarity when the percentage of common peaks decreased. On the other hand, 

with the increment in intensity variability the estimated median value slightly decreased. This 

phenomenon derives from the fact that there is always an overlap between two density 

functions due to the uniform distribution of m/z value along the entire mass range. The 

overestimation of mass spectra similarity decreased when the number of relevant signals 

decreased. 

Results showed that Fold difference and Stein and Scott index are sensible to intensity value of 

non-common signals. Since all the m/z values of the two spectra were taken into account, the 

ratio between the intensity value of the background noise and informative peaks was 

calculated, leading to infinite value. A possible solution to this problem, as suggested in the 

literature, was to substitute noise values with the threshold value. In the Fold difference score 

this brought to reasonable results, the trend on boxplots of “fold difference” and “fold difference 

literature” was the same. On the other hand, Stein and Scott index using the same solution was 

not able to take difference between the different scenarios, leading to the same result for all the 

different percentage of common peaks. 

Third level (Figure 7,8,9,16,17,18 in appendix D): 

No relevant differences were found between the results at second and third level of retained 

peaks in Cosine correlation, DFT, Overlap, Fold difference and Euclidean and Manhattan 
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distance. Pearson and LIN correlations led to better performances. Conversely, Spearman and 

Kendall correlations failed both in the intra and in the inter-sample analysis for all the three 

sets of generated signals (i.e. 15, 25, 40), showing similarity measures lower than zero. 

Intensity match had estimated median values lower than 0.08 when 15 relevant signals were 

generated, and 0.20 when 15 relevant signals were generated. Similarity index underestimated 

both in the intra and in the inter-sample analyses. Indeed, in all the scenarios the estimated 

median values were higher than 90. Stein and Scott index showed no trend with the decrease 

of the percentage of common peaks, with all the boxplots lying on the same range of values.  

5.4.2 Protocol 2 

First level (Figure 19,20,25,26 in appendix D): 

The four different types of correlations (i.e. Pearson, Spearman, Kendall and LIN correlation) 

underestimated the median expected value for the inter-sample analysis, with median values 

around 0.6-0.7 for a total number of 40 informative peaks generated. This effect increased with 

the decrease of the generated peaks (25), with estimated similarity values around 0.5-0.6. The 

worst performance was reached by the Intensity match that showed results in the inter-sample 

analysis lower than 0.2. The Cosine, DFT, Fold difference and overlap indices reached the best 

results, with similarity responses in the inter-sample analysis superimposable to the ones of 

the intra-sample analysis: median values greater than 0.8 for the overlap score, around 0.9 for 

the cosine score, and 0.94 for the DFT. A completely overlap in the 95% CIs of the intra and 

inter-analysis for the Fold difference score was observed. The Euclidean and Manhattan 

distance, Similarity index and Stein and Scott index, showed discrepancies in their estimated 

median values between intra and inter-sample analysis, leading to completely non overlapping 

boxplots. 

Second level (Figure 21,22,27,28 in appendix D): 

When a percentage of 50% of generated peaks fell in the first or third regions and the remaining 

50% was equally distributed in the other two regions, an overlap of 70% was expected. Cosine 

correlation, DFT, Overlap reached this response in the inter-sample analysis, with better results 

obtained for the DFT and overlap, and an minimal underestimation for the cosine (median 

results around 0.6) and overestimation for the DFT (median results around 0.8). With the 

increment of the number of generated peaks (40), these estimated median values decreased.  

When the 70% of the peaks fell in the first or third region and the remaining 30% was equally 

distributed in the other two regions, the expected overlap was of 35%. In the case of 25 

generated peaks, DFT had a median value greater than 0.6, Cosine around 0.4 and Overlap score 
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around 0.35. When the number of generated peaks increased to 40, DFT showed results slightly 

lower than 0.6 and were around 0.35 for the cosine. The Overlap index showed the same 

behavior as before. Pearson, Spearman, Kendall, LIN correlation and Intensity match showed 

median estimated values around 0.2 in the inter-sample analysis, and the first four measures 

reached negative values increasing the number of peaks in the richest region.  

The Euclidean and Manhattan distance showed an increment in the differences between the 

median estimated values of the intra and inter analysis with the decrease of the number of 

relevant peaks. This is reasonable, because the lower the number of signals, the greater should 

be the influence of the difference between peak intensities. In the same way, the greater the 

number of peaks within the richest regions on the m/z axis that resulted in fewer common 

peaks between the two spectra, the greater the spectra dissimilarity.  

Third level (Figure 23,24,29,30 in appendix D): 

The results in analysis at the third level were mainly comparable to those obtained at the 

second level. 

 

5.5 Discussion  

5.5.1 Protocol 1 

The relevant factors to discuss about the results of the simulations from Protocol 1 are: the 

number of relevant signals, the percentage of common peaks, the localization of m/z signals 

and their intensity variability. 

Localization of m/z signals: 

Looking at the intra- and the inter-sample comparison between spectra with the 90% of 

common signals, an overall increase of variability was reached according to the decrease of the 

number of informative peaks generated. A small number of peaks migth bring different 

localization scenarios of m/z values, leading to similar or completely different shape of the 

spectra (Figure in paragraph 5.3.1).  

Number of informative signals: 

Another problem was the effect of the background noise. The average number of relevant 

generated signals among spectra was pre-defined, with small variability given by the presence 

of noise that might get out from the spectrum other signals. Scores were more sensitive to noise 

when the number of relevant peaks decreased. In this case, an increase in the number of 

informative peaks reduced the effect of this problem, because the non-real signals were 

mediated by the effect of the increasing number of relevant signal. 
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Intensity variability: 

A serious problem in mass spectra similarity measures is the variability in signal intensities 

caused by analytical variability (i.e. sample preparation, instrumental analysis, spectra 

misalignment). As suggested in the literature various method to align and scaling spectra to 

compensate for spectra differences (pre-processing workflow) had to be performed to discard 

anomalous peaks. The problem could not be totally eliminated, but only controlled. The less are 

the detected signals, the greater the influence of this problem. A little variability in peak 

intensities could cause a loss in the reliability of the match, when the score is only based on 

peaks intensities. These evidences suggested that the correlation measures should be used only 

when the comparison is at the first level because at the second level they might lead to non-

informative results. The percentage of common peaks to use had to be consistent, since the risk 

is to obtain biased results. Other measures that take into account intensity variability, such as 

the Intensity match, might have better performance than the correlation indices at either levels. 

SI, which works similarly to the Intensity match, could be a valid similarity measure, with 

opposite interpretation with respect to the Intensity match. When comparing two spectra, the 

differences between the spectra had to be greater than the SI that was calculated in a 

repeatability study (intra-sample). Euclidean and Manhattan distances, Stein and Scott index, 

and fold difference always need a reference value to be compared, that is obtained in the 

repeatability study that is not always feasible in the clinical practice.  As previously reported in 

the result section, Fold difference and Stein and Scott index are sensible to the intensity value 

of non-common signals. A possible solution, suggested in the literature by Wan et al. was to 

substitute noise value with the threshold value. In this way, false signals are introduced, leading 

to false results and a higher risk of changing the data.   

In conclusion, overlap and DFT led to good results also when intensity variability increases, but 

showed a flat estimation when the percentage of common peaks decreased. The Overlap score 

is preferable due to the higher computational time of DFT score, and to the fact that DFT 

depends on parameters that had to be set and that could lead to different results (no 

investigation were done on this aspect). Overlap and DFT failed when the Cosine score was able 

to differentiate between very similar spectra. The Cosine correlation showed to have the best 

performance in all the scenarios.  

Lastly, some of the proposed measure are constructed to work on the whole mass spectrum 

(e.g. overlap, cosine correlation), rather than on the restricted spectrum obtained considering 

only the only most abundant peaks detected (e.g. Correlation scores). In the first case the whole 
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shape of the spectra was considered and low abundance peaks that could provide information 

were retained. While, in the second case the spatial distribution of the ions along mass-to-

charge (m/z) axis was lost, but certainly the background noise was discarded. 

5.5.2 Protocol 2 

The second protocol of simulations led to slightly different conclusions. Correlation’s scores 

showed the best performances, but always with an underestimation of the expected results. 

Again, this suggests that the correlation scores are heavily affected by intensity values, since 

they looked for completely correspondence in intensities. Moreover, in proteomics analysis, the 

background noise that perturbs the intensity values brings to non reliable results mostly for 

the correlation scores that work on ranked data (i.e. Spearman and Kendall correlation). This 

negative effect increased when the analyses were performed at the third level for all the types 

of scenarios taken into consideration in this work. Overlap showed the best results as compared 

to DFT and Cosine, differently to the results found in Protocol 1.  

In conclusion: 

 A perfect score usable in all the situations does not exist.  

 Euclidean distance, Manhattan distance, Fold difference, Similarity index and Stein and 

Scott index can only be considered when an intra-sample analysis is available as gold 

standard to make the interpretation of inter-sample comparisons possible. Only the 

ratio between the estimated median values of the scores in the inter-sample analysis 

compared to the ones obtained in the intra-sample analysis can be evaluated. Moreover, 

we suggest to use Fold difference and Stein and Scott index only for the comparison of 

common peaks. 

 Pearson’s correlation, Spearman’s correlation, Kendall’s correlation and LIN’s 

concordance correlation led to the worst results since they search for a complete 

correspondence in peaks intensities between two spectra. The suggestion is to use them 

only in the comparison of common peaks, to highlight if common peaks had also 

common intensities. Intensity match can be a useful substitute of Correlation due to the 

fact that it takes into account a greater intensity variability that is common in mass 

spectrometry analysis. 

 The best performers are the Cosine and DFT when the m/z values are uniformly 

distributed along the m/z axis (simulation protocol 1), and Overlap when the scores are 

not uniformly distributed along the m/z axis (simulation protocol 2). 



93 

 

 The global results of these simulations provide the rationale for the construction of 

composite scores able to take into account different aspects. Fit and Retrofit, which 

compared two spectra based only on the number of common peaks, without bias 

generated by looking at peaks intensity, had to be retained. Cosine correlation and 

overlap could be two additional scores to include in the composite score system since 

they efficiently consider signal intensities. Furthermore, the Overlap index include 

information also on the whole shape of the spectra.  
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6 Discussion 

MALDI-MSI represents an ideal tool to explore the spatial distribution of proteins directly in-

situ, integrating molecular and cytomorphological information and enabling the discovery of 

potential diagnostic markers in thyroid cytopathology. Given the amount of data generated 

from MALDI-MSI analysis, it is of paramount importance to use proper statistical methods in 

order to find discriminant features for thyroid nodules classification. However, many technical 

challenges had to be solved in order to reach this goal. The first one was the interference of 

haemoglobin. In fact, red blood cells present in the fine needle aspiration biopsy (FNAB) 

specimens caused ion suppression of other proteins during the MALDI-MSI analysis due to 

large amounts of haemoglobin. We planned a study comparing three protocols that used ex-

vivo cytological samples collected from fresh thyroid nodules of 9 patients who underwent total 

thyroidectomy: (A) conventional air-dried smears; (B) cytological smears immediately fixed in 

ethanol; (C) ThinPrep liquid base preparation (LBP). Protocol C and A were also evaluated 

using real FNABs. The study highlighted the possibility to manage the haemoglobin interference 

when LBP was used as sample preparation protocol, obtaining high-quality MALDI-MS spectra 

that could be used for a more reliable comparison of in situ protein profiles.  

The sample preparation protocol was then further improved and the second technical challenge 

regarded the morphological and proteomic stability of the samples in the preservative 

solutions. Mass spectra similarity was investigated on intra-day, inter-day replicates and on 

samples stored at 4°C and prepared at different time points. Results showed no degradation of 

the cellular morphology and good stability of the protein profiles when the specimen was 

placed for up to 14 days in PreservCyt solution. 

Assessing the similarity of mass spectra is a major topic in mass spectrometry data comparison. 

A review of the most used scores for the evaluation of mass spectra proteomic profiles 

similarity was performed and a new index of Overlap was proposed here. A simulation study 

was implemented, investigating different scenarios, in order to identify the best similarity 

measures to compare proteomic profiles. In particular, it was observed that the best similarity 

measure could be reached by combining the scores with the best performances into a unique 

composite score: fit, retrofit, overlap and cosine correlation. 

The optimization of the proteomic protocol paved the way for the clinical question of this thesis: 

the classification of benign vs malignant for the qualification of the indeterminate TYR 3 FNABs. 

Unfortunately, this was done only on a subset of the target sample size due to a low rate of 

enrolment of patients with malignant lesions. However, the statistical model was based on the 
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analysis of a considerable number of Region of Interests (ROIs), according to the morphological 

triage performed by the pathologist. For the two groups in the training set (benign vs malignant 

lesions), a logistic regression with a Lasso regularization method was performed and twenty 

features were selected from the statistical model as the most discriminant to correctly 

distinguish samples and quantify their probability of being malignant lesions. Finally, the model 

was validated on a different group of patients using the overall average spectra of all the 

analysis, the spectra from each ROI and a pixel by pixel approach using all the single spectra of 

the MALDI-MSI analysis. Successful results were obtained, with the correct classification of 

different types of thyroid lesions being achieved. Notwithstanding the consideration that the 

diagnostic validity of the model needs to be verified in the large cohort of patients that is 

currently under enrolment.  

The plan for the future is to perform the final analysis of the MALDI spectra on a training set 

that involves 80 clear-cut diagnosis of THY2 and 25 THY5, numbers quite far from the ones 

originally planned (i.e. 160 vs 80). This is due to the convergence of two conditions: i) the 

current rate of THY5 has declined compared to the past and ii) some samples have been 

discarded since the challenging needle washing material from FNABs is sometimes too scarce 

to make possible the MALDI analysis. However, it should be noted that the final analysis will be 

performed on data derived from the ROIs, so that each subject will contribute with multiple 

spots of information. 

Furthermore, since for certain types of thyroid lesions, as the follicular lesions and Noninvasive 

Follicular Thyroid Neoplasm With Papillary-Like Nuclear Features (NIFTP), the distinction 

between benign and malignant nodules is possible only after histology, because the cytological 

report is almost always THY3. We will introduce into the training set some THY3 cytological 

specimens with these diagnoses in order to train the model to recognize also these uncertain 

cases for which the traditional morphological diagnosis is not possible.  

Moreover, since multiple sources of information are available for the same subject, we will 

consider a second analysis that integrates different omics data. Proteomics, genetics and 

clinical/pathological data will be combined using the Integrative Lasso with Penalty Factors, 

method (IPF-LASSO). This method is based on the regression model with L1 LASSO 

penalization in which each omics group will be differently penalized assigning one penalty 

factor to each modality determined by cross-validation. Finally, we foresee also a 

methodological development that extends the aforementioned Lasso models to handle the 

classification of the heterogeneous group of benign and malignant thyroid lesions. 
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In conclusion, the direct consequences of these successful results reported in this thesis could 

be the use of MALDI-MSI proteomics as a complementary approach for the characterization of 

indeterminate for malignancy thyroid nodules also in particularly challenging situations, as in 

case of “needle washing” material from FNABs. Despite the technical challenges of this study, 

the application of proper proteomics, imaging and statistical approaches may help to elucidate 

key bio molecular events and pathways in oncogenic processes. Collectively, this represents an 

important paradigm for both the fundamental characterization of cancer systems and the 

discovery of molecular targets for diagnostic application.  

 



APPENDIX  A 

Supplementary materials of: 

The management of haemoglobin interference for the MALDI-MSI proteomics 

analysis of thyroid fine needle aspiration biopsies 

 

Supplementary Figure 1. General Workflow for the sample preparation of ex-vivo and in-vivo FNAB by 
MALDI. 



Supplementary Figure 2. Comparison of the three independent sample preparation protocols using thyroid 
ex-vivo cytological samples from the same patients and boxplots and individual values of the 
normalized intensity [A.U.] of six signals (a,b,c,d,e,f). The box contains data that fall between the first 
and third quartiles, the horizontal line indicates the median, and the brackets delineate 1.5 times the 
interquartile range (with data outside this range defining outliers). 

 

 

1) 
Sample 

N° of peaks 

Protocol A Protocol B Protocol C 

a 26 4 16 

b 11 13 18 

c 22 22 20 

d 35 33 22 

2) 
Samples comparision 

N° of common peaks 

Protocol A Protocol B Protocol C 

a vs. b 1 2 11 

c vs. d 2 5 14 

Supplementary Table 1. Summary of the peak histogram presented in Figure 2: 1) total number of peaks in 
samples a, b, c, d with Protocols A, B and C, respectively; 2) number of common peaks when comparing 
a with b and c with d using the three protocols 

 

 



Supplementary Figure 3. Comparison of the three independent sample preparation protocols using ROIs of 
thyroid ex-vivo cytological samples from the same patients: boxplots and individual values of the 
normalized intensity [A.U.] of a) αHaemoglobin, b) βHaemoglobin and c) Histone H4. The box contains 
data that fall between the first and third quartiles, the horizontal line indicates the median, and the 
brackets delineate 1.5 times the interquartile range (with data outside this range defining outliers). 

 

 

Supplementary Figure 4. Boxplots and individual values of the normalised intensity [A,U.] of a) 
αHaemoglobin, b) βHaemoglobin and c) Histone H4, comparing 7 air-dried and 12 thyroid FNABs 
samples. d) H&E staining image and MALDI molecular image and localization of the signal at m/z 5063 
in the stroma region (blue) and the signal at m/z 11306 in the thyrocyte cells (green). 

 

 

 

 



APPENDIX  B 

Supplementary materials of: 

Feasibility study for the MALDI-MSI analysis of thyroid fine needle aspiration 

biopsies. evaluating the morphological and proteomic stability over time 

 

Supplementary Figure  1. H&E staining of the cytospin-based sample preparation of P308 prepared at t0 and 
after 14 days of storage in PreservCyt solution. An 8X zoom on a cluster of thyrocytes is shown for both 
cytospin samples. 

 

 

 

 



 

Supplementary Figure  2. (A) Spectra comparison of all replicates of P316; (B) Spectra comparison of the 
replicates at t0 in PreservCyt of P262, P319, P292, P308. 

 

 

Supplementary Figure  3. Normalized intensities [A.U.] of the peaks (m/z) detected in seven replicates of 
patient P262 (t0_day1.1, t0_day1.2, t0_day1.3, t0_day2.1, t0_day2.2, t0_day2.3,). (A) The heatmap shows the signal 
intensities of each peaks that were rescaled to have mean 0 and standard deviation 1; (B) the 
histogram shows the mean intensities of each peaks detected at different times (error bars represent 
the 95% confidence interval).  



 

 

 

Supplementary Figure  4. Normalized intensities [A.U.] of the peaks (m/z) detected in seven replicates of 
patient P319 (t0_day2.1, t0_day2.2, t0_day2.3, t_7days, t_14days, t_2months). (A) The heatmap shows the signal 
intensities of each peaks that were rescaled to have mean 0 and standard deviation 1; (B) the 
histogram shows the mean intensities of each peaks detected at different times (error bars represent 
the 95% confidence interval).  

 

 

 

 

 

 

 



 

Supplementary Figure  5. (A) Principal Component Analysis of the spectra of all the replicates at t0 and after 
storage at 4°C in PreservCyt after 7 and 14 days, the dots in light blue are the malignant samples; (B) 
Hierarchical Clustering Analysis of the spectra of all the replicates at t0 (red) and after storage at 4°C in 
PreservCyt after 7 (blue) and 14 (green) days, the five malignant samples are colored in light blue. 

 

 



 

Supplementary Figure  6. Box-plots, for the intra-day and inter-day repeatability, of the (A) S3 and (B) S4 

scores. Color dots represent the score paired comparisons for each patient. 



 

Supplementary Figure  7. Scatter plots for the components of S3 and S4 (fit and retrofit sum together, 
spearman’s correlation and overlap). (A) Graphs show the three components of all the possible intra-
patient combinations for intra-day and inter-day scores. (B) Graphs show the three components for all 
the spectra comparisons between the randomized reference spectrum t0 and the query spectra t0_intra-

day, t0_inter-day, t7days, t14days. 

  



Patient ID 
Cytological 

classification 
Sex 

Age 
(years) 

P213 THY5 F 47 

P250 THY5 F 87 

P262 THY2 F 80 

P284 THY2 M 67 

P292 THY1 F 78 

P295 THY4 F 34 

P296 THY3 M 75 

P299 THY1 F 54 

P302 THY2 F 63 

P308 THY2 F 32 

P316 THY2 F 70 

P319 THY2 F 50 

P329 THY2 F 46 

P332 THY3 F 43 

P384 THY2 F 71 

P386 THY2 F 76 

P390 THY1 F 51 

P442 THY5 F 39 

P453 THY5 F 66 

 

Supplementary Table  1. Clinical and demographic characteristics of the patients included in the study. 

  



Patient ID t0 t7days t14days t2months 

P262 
3x t0_day1 
3x t0_day2 

-- -- -- 

P284 1 1 -- -- 

P292 1 1 -- -- 

P296 1 1 -- -- 

P299 1 -- 1 -- 

P302 1 -- 1 -- 

P308 1 -- 1 -- 

P316 
1x t0_day1 
3x t0_day2 

1 1 1 

P319 3x t0_day1 1 1 1 

P329 
2x t0_day1 
3x t0_day2 

-- -- -- 

P332 
2x t0_1day 
3x t0_2day 

-- -- -- 

P384 1 1* -- -- 

P386 3x t0_day1 1* -- -- 

P390 
2x t0_day1 
1x t0_day2 

1 1 -- 

P213 1 -- -- -- 

P250 1 -- -- -- 

P295 1 -- -- -- 

P442 1 -- -- -- 

P453 1 -- -- -- 

Supplementary Table  2. Experimental design. The number of replicates for each patient at different time of 
preparation (t0, t7days, t14days, t2months) are reported in each column. The asterisk is referred to the 
replicates of P384 and P386 stored in CytoLyt solution for 7 days. 

  



Index Evaluation N Min Max Median Mean SD CV% 

S3 

Intra day 24 2.09 2.87 2.57 2.51 0.27 8.64 

Inter day 26 1.88 2.76 2.50 2.37 0.30 12.43 

S4 

Intra day 24 2.95 3.83 3.45 3.41 0.25 7.37 

Inter day 26 2.71 3.72 3.37 3.26 0.34 10.43 

Supplementary Table  3. S3 and S4 scores of the intra-day and inter-day paired comparisons. The total 
number of observations (N), minimum (Min), maximum (Max), mean, median, standard deviation (SD) 
and the coefficient of variation (CV) are calculated. 

 

 

Index Comparison 

 

t0 vs. t0_inter-day t0 vs. t0_inter-day t0 vs. t0_inter-day t0 vs. t7 days t0 vs. t14 days 

S3 (CV 12.03%) (CVH 20%) (CVH 30%) 
  

 
2.15-2.65 1.98-2.82 1.77-3.03 1.96-2.40 1.75-2.09 

S4 (CV 10.54%) (CVH 20%) (CVH 30%) 
  

 
2.97-3.58 2.70-3.85 2.42-4.14 2.80-3.33 2.53-2.92 

Supplementary Table  4. In the first column are reported the 95% confidence intervals (CIs) for the inter-
day comparison. The 95% CI of t0 vs. t7days and t0 vs. t14days are compared to the 95% CIs of t0 vs. t0_inter-

day   calculated with an hypothetical coefficient of variation (CVH) of 20% and 30%. 
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Supplementary Table  5. S3 and S4 scores of the intra-day and inter-day paired comparisons of t0_intra-day and 
t0_inter-day. The mean, standard deviation (SD) and the coefficient of variation (CV) are calculated. 

 



APPENDIX  C 

Supplementary materials of: 

MALDI-MSI as a Complementary Diagnostic Tool in Cytopathology: A Pilot Study 

for the Characterization of Thyroid Nodules 

 

 

Supplemetary figure 1. Example of single spectra from 4 benign (green) and 4 malignant (red) 
patients of the training set. 



 

 

 

 

  

Supplementary Figure 2a. Pixel by pixel images and distribution of the probabilities of 
being malignant for each pixel in the training set of Thy2 nodules. 



Supplementary Figure 2b. Pixel by pixel images and distribution of the probabilities of 
being malignant for each pixel in the training set of Thy5 nodules. 



  

Supplementary Figure 3. MALDI-MSI molecular images of an area of an area of a malignant 
specimen and spatial localization of two m/z features in the (A) cancer cell clusters (feature 
A); and (B) stromal area (feature B); (C) Haematoxylin and eosin stained image and (D) Total 
ion count normalized average spectrum. 
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Supplementary Table 1. Percentage of features per ROI in each Thy2 and Thy5 sample of the training set. 

  



                                                      

    A) 
  
  

        Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

  Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

  Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

    

                    

                

THY2 
P_1083 
in-vivo 

Average 
Spectrum 

0,00% 

Hyperplasia 

  

THY2 
P_1123 
in-vivo 

Average 
Spectrum 

0,00% 

Hyperplasia 

  

THY2 
P_1156 
in-vivo 

Average 
Spectrum 

0,00% 

Hyperplasia 

    

    Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

          

      ROI 01 0,00%   ROI 01 0,01%   ROI 01 0,02%     

    

THY2 
P_1081 
in-vivo 

Average 
Spectrum 

0,03% 

Hyperplasia 

  ROI 02 0,87%   ROI 02 2,01%   ROI 02 0,02%     

      ROI 03 0,00%   ROI 03 5,61%   ROI 03 0,07%     

    ROI 01 0,96%   ROI 04 0,00%   ROI 04 36,48%   ROI 04 0,00%     

    ROI 02 0,12%   ROI 05 0,00%   ROI 05 1,29%   ROI 05 0,57%     

    ROI 03 0,21%   ROI 06 0,00%   ROI 06 17,73%   ROI 06 0,01%     

    ROI 04 0,71%   ROI 07 0,00%   ROI 07 3,42%   ROI 07 0,01%     

    ROI 05 0,03%   ROI 08 0,02%   ROI 08 0,09%   ROI 08 0,16%     

    ROI 06 0,01%   ROI 09 0,06%   ROI 09 1,68%   ROI 09 0,00%     

    ROI 07 0,14%   ROI 10 0,00%   ROI 10 0,22%   ROI 10 0,68%     

    ROI 08 0,38%   ROI 11 0,00%   ROI 11 0,27%   ROI 11 0,27%     

    ROI 09 1,60%   ROI 12 0,00%   ROI 12 0,24%   ROI 12 0,03%     

    ROI 10 1,74%   ROI 13 0,00%   ROI 13 0,02%   ROI 13 0,10%     

    ROI 11 0,01%   ROI 14 0,00%   ROI 14 0,01%   ROI 14 3,94%     

                ROI 15 0,01%   ROI 15 0,05%   ROI 15 8,20%     

                ROI 16 0,00%   ROI 16 0,00%   ROI 16 0,58%     

                ROI 17 0,00%               ROI 17 0,25%     

                ROI 18 0,00%               ROI 18 0,02%     

                ROI 19 0,03%               ROI 19 0,01%     

                ROI 20 0,01%               ROI 20 0,06%     

                ROI 21 1,12%               ROI 21 0,00%     

                ROI 22 0,04%               ROI 22 3,13%     

                ROI 23 0,03%                             

                ROI 24 0,00%                             

                ROI 25 0,04%                             

                                                      

                                                      

                                                      

    B) 
  
  

        Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

  Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

  Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

    

                    

                

THY5 
P_1084 
in-vivo 

Average 
Spectrum 

0,00% 

PTC 

  

THY5 
P_1126 
in-vivo 

Average 
Spectrum 

0,00% 

PTC 

  

THY5 
P_1187 
in-vivo 

Average 
Spectrum 

0,00% 

PTC 

    

    Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

          

      ROI 01 0,00%   ROI 01 0,23%   ROI 01 0,00%     

    

THY5 
P_1149 
in-vivo 

Average 
Spectrum 

16,42% 

PTC 

  ROI 02 0,00%   ROI 02 0,66%   ROI 02 0,00%     

      ROI 03 0,00%   ROI 03 27,93%   ROI 03 0,00%     

    ROI 01 85,17%   ROI 04 0,00%   ROI 04 1,93%   ROI 04 0,00%     

    ROI 02 98,32%   ROI 05 0,00%   ROI 05 0,08%   ROI 05 0,00%     

    ROI 03 89,47%   ROI 06 0,01%   ROI 06 1,42%   ROI 06 0,00%     

    ROI 04 20,91%   ROI 07 0,00%   ROI 07 1,33%   ROI 07 0,00%     

    ROI 05 1,19%   ROI 08 0,03%   ROI 08 24,61%   ROI 08 0,02%     

    ROI 06 10,03%   ROI 09 0,01%   ROI 09 31,11%   ROI 09 0,00%     

    ROI 07 0,15%   ROI 10 0,02%   ROI 10 12,63%   ROI 10 0,00%     

    ROI 08 0,09%   ROI 11 0,01%   ROI 11 2,27%                 

    ROI 09 0,94%   ROI 12 0,04%   ROI 12 12,51%                 

    ROI 10 72,44%   ROI 13 0,00%   ROI 13 31,16%                 

    ROI 11 76,47%   ROI 14 0,01%   ROI 14 11,63%                 

    ROI 12 27,48%   ROI 15 0,00%   ROI 15 1,50%                 

                                                      

                                                      
                B1) 

  
  

        Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

  Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

    

                              

                            

THY5 
P_1126 
ex-vivo 

Average 
Spectrum 

100,00% 

PTC 

  

THY5 
P_1187 
ex-vivo 

Average 
Spectrum 

99,98% 

PTC 

    

                Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

        

                  ROI 01 100,00%   ROI 01 100,00%     

                

THY5 
P_1084 
ex-vivo 

Average 
Spectrum 

99,41% 

PTC 

  ROI 02 99,93%   ROI 02 100,00%     

                  ROI 03 100,00%   ROI 03 74,22%     

                ROI 01 89,26%   ROI 04 99,98%   ROI 04 100,00%     

                ROI 02 96,84%   ROI 05 100,00%   ROI 05 100,00%     

                ROI 03 93,18%   ROI 06 100,00%   ROI 06 64,23%     

                            ROI 07 100,00%   ROI 07 98,93%     

                            ROI 08 100,00%   ROI 08 100,00%     

                            ROI 09 100,00%                 

                            ROI 10 100,00%                 

                            ROI 11 100,00%                 

                                                      

                                                      
                                                      

                                                      

    C) 
  
  

        Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

                            

                                        

                

THY4 P_1202 

Average 
Spectrum 

99,67% 

PTC 

                            

    Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

                              

      ROI 01 99,99%                             

    

THY3 P_1082 

Average 
Spectrum 

1,21% 

Hyperplasia 

  ROI 02 98,67%                             

      ROI 03 99,83%                             

    ROI 01 1,81%   ROI 04 93,21%                             

    ROI 02 0,62%   ROI 05 99,96%                             

                ROI 06 99,99%                             

                ROI 07 99,99%                             

                                                      

                                                      
    C1) 

  
  

        Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

                            

                                        

                

THY5    
LYMPH 

P_1188 
ex-vivo 

Average 
Spectrum 

99,84% 

PTC 

                            

    Cytological 
Diagnosis 

Patient OBJECTS Probability 
Histological 
Diagnosis 

                              

      ROI 01 90,15%                             

    

THY5    
LYMPH 

P_1188 
in-vivo 

Average 
Spectrum 

83,11% 

PTC 

  ROI 02 58,92%                             

      ROI 03 2,92%                             

    ROI 01 48,75%   ROI 04 20,86%                             

    ROI 02 58,62%   ROI 05 97,56%                             

    ROI 03 41,86%   ROI 06 86,03%                             

    ROI 04 95,83%   ROI 07 98,27%                             

    ROI 05 51,06%   ROI 08 99,44%                             

    ROI 06 16,70%   ROI 09 97,02%                             

    ROI 07 54,56%   ROI 10 53,85%                             

    ROI 08 70,71%   ROI 11 99,67%                             

    ROI 09 56,18%   ROI 12 83,40%                             

    ROI 10 70,97%   ROI 13 100,00%                             

                ROI 14 67,52%                             

                ROI 15 96,53%                             

                ROI 16 100,00%                             

                ROI 17 96,56%                             

                ROI 18 34,18%                             

                ROI 19 59,42%                             

                                                      

                                                      

 

  

Supplementary Table 2. Probability of being malignant for each patient of the validation set (ROIs and 
average spectrum). A) Thy2 patients, B) Thy5 patients, B1) ex-vivo samples of Thy5 patients, C) Thy3 
and Thy4 patient, C1) lymphnode sample (P_1188), in-vivo and ex-vivo. 



A) THY2 Training 

Study lesion code Minimum 1st Quartile Median  Mean 3rd Qurtile Maximum 

P_262 0,00 0,00 0,00 2,02 2,00 69,00 

P_268 0,00 0,00 0,00 1,12 1,00 56,00 

P_302 0,00 1,00 2,00 3,11 5,00 24,00 

P_308 0,00 1,00 2,00 3,03 4,00 64,00 

P_384 0,00 0,00 0,00 2,36 2,00 88,00 

P_475 0,00 1,00 2,00 6,74 7,00 97,00 

P_565 0,00 0,00 1,00 1,54 2,00 72,00 

P_1046 0,00 0,00 0,00 2,42 2,00 77,00 

P_1122 0,00 0,00 0,00 0,46 1,00 13,00 

Overall             

mean 0,00 0,33 0,78 2,53 2,89 62,22 

sd 0,00 0,50 0,97 1,80 2,03 27,75 

 
B) THY5 Training 

Study lesion code Minimum 1st Quartile Median  Mean 3rd Qurtile Maximum 

P_213 1,00 16,00 36,00 44,91 72,25 100,00 

P_250 0,00 28,00 59,00 57,09 88,00 100,00 

P_436 0,00 12,00 84,00 61,98 98,00 100,00 

P_440 0,00 13,00 39,00 44,40 72,00 100,00 

P_442 0,00 8,00 14,00 20,02 28,00 98,00 

P_992 1,00 58,00 89,00 75,42 98,00 100,00 

P_995 2,00 73,00 93,00 81,69 98,00 100,00 

P_1012 1,00 29,00 64,00 61,11 95,00 100,00 

P_1076 0,00 30,00 61,00 57,89 87,00 100,00 

Overall             

mean 0,56 29,67 59,89 56,06 81,81 99,78 

sd 0,73 22,16 26,59 18,22 22,66 0,67 

Supplementary Table 3. Distribution of the probabilities to be malignant in the pixel by pixel analysis for 

Thy2 (a) and Thy5 (b) training set. 

  



C) Validation 

Study lesion 

code 

Cytologic 

Diagnosis 
Minimum 1st Quartile Median  Mean 3rd Quartile Maximum 

P_1081 THY2 0,00 0,00 0,00 0,98 1,00 15,00 

P_1082 THY3 0,00 1,00 2,00 2,93 4,00 57,00 

P_1083 THY2 0,00 0,00 0,00 1,84 1,00 85,00 

P_1084 in vivo THY5 0,00 0,00 0,00 0,06 0,00 17,00 

P_1084 ex vivo THY5 1,00 28,00 63,00 58,88 90,00 100,00 

P_1123 THY2 0,00 0,00 2,00 3,63 5,00 59,00 

P_1126 in vivo THY5 0,00 1,00 4,00 8,88 11,00 98,00 

P_1126 ex vivo THY5 3,00 81,00 97,00 85,98 100,00 100,00 

P_1149 THY5 0,00 7,00 20,00 31,95 53,00 100,00 

P_1156 THY2 0,00 0,00 1,00 3,02 3,00 93,00 

P_1187 in vivo THY5 0,00 0,00 0,00 0,40 0,00 66,00 

P_1187 ex vivo THY5 0,00 30,00 57,00 57,51 86,00 100,00 

P_1188 in vivo THY5 0,00 0,00 0,00 1,39 2,00 15,00 

P_1188 ex vivo THY5 1,00 13,00 27,00 37,00 56,00 100,00 

P_1202 THY4 0,00 15,00 40,00 45,11 75,00 100,00 

 
Supplementary Table 3c.  Distribution of the probabilities to be malignant in the pixel by pixel analysis for 

the validation set. 
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