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ABSTRACT

Cloud systems are large scalable distributed systems that must be
carefully monitored to timely detect problems and anomalies. While
a number of cloud monitoring frameworks are available, only a
few solutions address the problem of adaptively and dynamically
selecting the monitored indicators, based on the actual needs of
the operator. Unfortunately, these solutions are either limited to
infrastructure-level indicators or technology-specific, for instance,
they are designed to work with OpenStack only.

This paper presents the VARYS monitoring framework, a
technology-agnosticMonitoring-as-a-Service solution that canmon-
itor KPIs at all levels of the Cloud stack, including the application-
level. Operators use VARYS to indicate their monitoring goals
declaratively, letting the framework to perform the operations nec-
essary to achieve a requested monitoring configuration automati-
cally. Interestingly, the VARYS architecture is general and extend-
able, and can be used to support increasingly more platforms and
probing technologies.
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1 INTRODUCTION

Cloud computing adoption has demonstrated its undeniable ben-
efits. It provides savings in IT resources, including a reduction in
the operational costs and the flexibility to pay only for what is
used [7, 17, 32]. Cloud computing also allows business to be more
competitive thanks to computing platforms that provide scalability
and high-performance resources, enabling and simplifying the con-
struction of configurable, reliable, and adaptable applications [31].

The flexibility and adaptability requirements that characterize
the Cloud environmentmay threat the health of the running applica-
tions [21, 24], which must be constantly monitored to timely reveal
misbehaviors and anomalies [2]. Monitoring cloud applications
can be however challenging. An effective fine-grained monitoring
system should be able to collect data from all the layers of a cloud
system, including applicative indicators; should be able to dynami-
cally adapt the monitoring system, opportunistically deploying and
undeploying probes based on the current monitoring goals; and it
should support the presence of multiple operators that interact with
the monitoring system according to different objectives.

Existing open source and commercial products implement useful
but limited monitoring capabilities. For instance, Elastic Stack [9]
and Prometheus [23] are extensively used to monitor cloud applica-
tions, but they implement limited forms of adaptation and require
significant manual effort to be configured and used.

Monitoring-as-a-Service (MaaS) solutions address both automa-
tion and flexibility by defining frameworks that support the declar-
ative configuration of the monitoring system. That is, users specify
the key performance indicators (KPI) that must be collected (e.g.,
cpu and memory usage), and the framework reconfigures the mon-
itoring system to collect the required KPIs. For example, Cloud-
Watch [3] is aMaaS that provides the ability to reconfigure the set of
monitored KPIs, even if limitedly to the infrastructure. MonPaaS [8]
and Monasca [14] provide more general MaaS solutions that can
potentially deal with a range of KPIs collected at various levels and
from different components. However, MonPaaS and Monasca are
platform-specific solutions (they are both designed to work with
OpenStack), they require non-trivial engineering to incorporate
additional (e.g., application level) indicators, and can be configured
through low-level APIs not providing a high-level interface suitable
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for the operator. Finally, there are monitoring frameworks that
have been designed to address specific aspects, such as monitoring
elastic and adaptive tasks [30] and achieving scalability [18].

In this paper we present VARYS, a MaaS solution, and relative
framework, that is designed to be both technology-agnostic and
extensible, and that can be used to cost-effectively collect a vari-
ety of KPIs, including application-specific indicators. VARYS fully
supports the dynamic deployment and redeployment of probes,
based on high-level monitoring goals specified by the users of the
monitoring system. To obtain a flexible but also powerful monitor-
ing system, the interaction with VARYS is driven by a model that
categorizes the KPIs that can be collected. This model is exploited
by the operator to control the monitoring system. The designed ar-
chitecture finally supports a multi-user perspective, decoupling the
MaaS client nodes, which can be present in a number of instance,
from the MaaS server, which orchestrates the monitoring process.
VARYS is part of a more general framework that we are developing
to cost-effectively control the health of Cloud applications [26].

The paper is structured as follows. Section 2 presents the VARYS
solution. Section 3 discusses its implementation, representative
scenarios, and time figures. Section 4 provides final remarks.

2 VARYS

In this section, we briefly illustrate VARYS and its architecture.

2.1 The VARYS Approach

The purpose of VARYS is to enable users to declaratively man-
age their monitoring goals, while avoiding the burden of delving
into technicalities and freeing them from dealing with different
underlying Cloud technologies. VARYS provides a same monitoring
management environment to stakeholders with different profes-
sional background (e.g., managers, technicians, etc.) and different
monitoring goals, and is characterized by the following capabilities.

Model-driven: the operators can specify their monitoring goals
exploiting a simple tree-like model derived from the ISO 25011
standard about service quality [15, 16]. The model defines multiple
quality attributes that are decomposed into finer grained concepts,
until reaching measurable properties. Operators can actually select
concepts at any level of the tree. The selection is automatically
mapped into the collection of the measurable properties associated
with the leafs of the selected subtree. This request is then turned
into a set of probes that are deployed in the target system.

The model-driven nature of the interaction has several benefits,
including the possibility to use VARYS without having specific
technical skills, that is, it is suitable even for managers. Moreover,
technical users can modify the model, so that the KPIs that can
be collected and the specific organization of the quality attributes
reflect the actual needs of the organization that uses the technology.

Technology agnostic: VARYS is a general MaaS framework
that is designed to support multiple, potentially any, target plat-
form, including VM-based solution [20] and containers-based solu-
tions [5], and multiple probing technologies, such as Elastic Stack
Beats [10], Prometheus Exporters [22] or custom probes. Since all
the decisions that depend on technologies are taken by the frame-
work itself, operators can use the same MaaS solution to target
largely different cloud environments.

Reconfigurable: VARYS offers full MaaS capabilities, that is,
operators can change their monitoring goals at any time. As a
consequence VARYS automatically deploys and undeploys probes
to match the new set of goals. This is done in the context of a
multi-user environment, while optimizing the number of probes
deployed and the resources consumed.

Multi-layers: VARYS supports collecting KPIs from all the lay-
ers of a Cloud stack, including the collection of application-specific
indicators. This is possible because VARYS can incorporate any
probe once annotated with metadata, and is not limited to probing
mechanisms available at the infrastructure level, as other solutions
do. Metadata are used to specify information such as the KPIs that
a probe can collect and how to deploy the probe.

Extensible: VARYS can be extended according to multiple di-
mensions, including: the underlying data storage engine, for in-
stance Elasticsearch [11] and Prometheus [23] can be used inter-
changeably; the set of probes, which can be extended with new
probes once properly annotated; the model, which can be modified
to reflect the quality attributes used by an organization; and the
target platforms, which can be supported by implementing plug-ins
responsible for actuating the required changes on the target system.

2.2 Architecture
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Figure 1: VARYS architecture

Figure 1 shows the architecture of VARYS, which is composed
of three main components: the MaaS Client(s), which implements
the front-end; a MaaS Server, which implements the logic of the
VARYS approach; and theMonitoring Actuation Bridge (MAB), which
is responsible of traducing the technology-independent requests
originated by the MaaS Server into concrete operations that must
be performed on the cloud platform to monitor the services.

The MaaS Client is the entry point to VARYS. The operator
interacts with the MaaS client to produce monitoring requests that
are processed by the MaaS Server. These requests are formulated
as a number of monitoring goals that must be achieved, selected
from a tree-based representation of the quality attributes that can be
monitored. Of course, multipleMaaS clients with different operators
can connect to the same MaaS server.

The MaaS Server receives requests that specify the monitoring
goals that must be satisfied from the MaaS Client, and transforms
these requests into a technology agnostic probe deployment strat-
egy that can be actuated with the Monitoring Actuation Bridge.
The strategy includes the list of probes that must be deployed, the
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list of services that must be monitored with these probes, and the
monitoring pattern that must be used to deploy the probes.

The MaaS Server supports multiple monitoring patterns that can
be actuated depending on the targets that are monitored. In partic-
ular, the probes can be installed in the same computing units that
host the monitored targets, if the computing units are accessible,
or in a separated sidecar computing unit [6]. The former pattern
implies accessing the virtual machine or the container that already
runs the monitored target to deploy the probes. The latter pattern
implies creating new virtual machines or new containers running
the selected probes to collect data from another virtual machine
or container that runs the monitored target. The sidecar pattern is
regularly used with the container technology, since sidecar contain-
ers can share resources with the target containers and monitoring
can be performed seamlessly [6]. Note that the MaaS server iden-
tifies the probes and the pattern to be used for their deployment,
but it does not take any technology-specific choice (e.g., the MaaS
server does not decide if the sidecar must be a container or a virtual
machine, but only that a sidecar must be used for monitoring).

The probes that can be deployed are stored in a probe catalog
and associated with metadata that allow the MaaS server to take
deployment decisions. The metadata include information such as
the patterns supported by the probe (e.g., deployment in a sidecar
versus deployment in the same computing unit that hosts the moni-
tored service), the KPIs that the probe can collect, and the reference
to the deployment artifacts associated with the probe.

TheMonitoring Actuation Bridge (MAB) is the component respon-
sible for mapping the pattern identified by the MaaS Server into a
number of operations, which are performed atomically, to actually
deploy the necessary set of probes. In particular, the Monitoring
Actuation Bridge implements five operations: operations for creat-
ing, updating, and deleting the set of probes present in the cloud
platform, an operation for getting the list of targets that can be
monitored, and an operation for getting the status of the deployed
probes. The capability to address specific cloud environments, such
as applications running on Kubernetes [28] or OpenStack [29], is
achieved through a plug-in architecture whose plug-in components
implement the five interface operations for a specific cloud envi-
ronment. This design allows VARYS to simultaneously cope with
targets deployed over different cloud providers. For instance, the
operation that returns the list of the available targets iterates over
all the active MAB plug-ins to finally return a single list with the
targets returned by each of the plug-ins. Each target is annotated
with metadata that allow VARYS to access the cloud platform that
runs the monitoring target.

The deployed probes push data in a time series database (TSDB)
that stores the collected data. VARYS can be integrated with any
TSDB, as long as probes are properly configured. VARYS also sup-
ports the possibility of using a publish-subscribe channel that de-
couples the probes from the TSDB.

Note that VARYS cannot only deploy probes, but can dynami-
cally undeploy existing probes, deploy additional probes, and so
on, achieving total flexibility in the dynamic (re)definition of the
monitored KPIs. When running multiple clients, the MaaS server
can optimize the number of probes deployed accordingly to the
identified pattern, collecting the data useful to multiple clients once.

3 FRAMEWORK IMPLEMENTATION

This section illustrates the details of the implementation, discusses
representative usage scenarios for our framework, and reports time
figures about deployment operations.

3.1 Implementation Details

{
'human_readable_name': 'Metricbeat CPU Consumption',
'name': 'metricbeat_cpu_consumption',
'supported_target_envs': ['ACCESSIBLE_VM','CONTAINER'],
'supported_cloud_properties': ['cpu_consumption'],
...

Figure 2: Excerpt of probe metadata

Our framework implementation is available at the following Git
repository: https://gitlab.com/learnERC/esec-fse-tool-demo. We
implemented the components of the architecture as follows.

MaaS Client It is a web application built with Vue.js, a progres-
sive framework for building user interfaces [12].

MaaS Server It is a Python web application based on Flask [4]
which exposes a REST API to the MaaS Clients and relies on Re-
dis [25] to fulfill monitoring requests using a job-oriented approach.

Monitoring Actuation Bridge (MAB) It is a Python compo-
nent that exposes a gRPC [13] interface, which is a Remote Proce-
dure Call (RPC) framework used to connect services in and across
data centers. We currently implemented a MAB plug-in for targets
running in Kubernetes. It is able to operate with multiple clusters
and different contexts exploiting the standard kubeconfig file.

Probes Catalog Probe metadata is represented as a JSON doc-
ument. Figure 2 shows an excerpt of the metadata for a probe.
The reported fields include a human readable description of the
probe, the identifier of the probe, the supported targets environ-
ments, and the identifier of the collected KPIs (the identifier of
the KPI must match the identifier associated with the elements
of the tree-model presented to the operators). Our implementa-
tion uses MongoDB [19] to store the metadata. The probes can be
implemented in any language and their deployment approach is
designed within the plug-in. Probes can either push data directly
to the TSDB or publish data in a channel (our implementation uses
Apache Kafka [27]) to decouple communication between the probes
and the TSDB.

Time Series Database Our implementation uses
Elasticsearch [11] as TSDB because it offers the highest flexibil-
ity in terms of the type of data that can be stored (e.g., it can also
store logs and not only numeric KPIs). We already experimented
a version of our framework with Prometheus [23] to check the
flexibility of the design, but we use Elasticsearch as default option.

3.2 Usage Scenario

In this section, we present two representative usage scenarios of
the presented framework: the canonical case of an operator who
exploits VARYS to monitor some services, and an engineer who
customizes and extends our implementation. A video demonstrating
the usage of the framework is available at https://drive.google.com/
file/d/1lqkzkI-T2FqHtQilValhQ0B_IRrCS-Ta/view.

Operator who monitors services Let us assume we have Ku-
bernetes running a Content Management System (CMS), composed
of a front end, an authentication system, a database, and a session
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management service. Let us assume the operator would like to col-
lect KPIs about the amount of resources consumed by the database
service and the number of users who are interacting with the CMS.
To this end, the operator can login into our VARYS service and thus
access the tree with the monitorable KPIs. The operator simply
selects the subtree with KPIs about resource consumption, which
include CPU, memory, and network consumption, and associates
these KPIs with the database service. In addition, the operator se-
lects the KPI that measures the number of users logged into the
CMS and applies the KPI to the CMS service. Finally, it submits the
request. Note that the operator does not have to perform additional
operations, VARYS processes the request and deploys exactly the
probes necessary to collect the required KPIs.

In particular, the MaaS Server exploits the metadata associated
with the probes to determine the probes that both can collect the
selected KPIs and can be deployed on Kubernetes. Moreover, the
MaaS server selects the Sidecar monitoring pattern to deploy the
probes. Finally, once the full set of probes to be deployed has been
determined, it asks the MAB to proceed with the actual deployment.
The MAB interacts with the target platform, in this case Kubernetes,
to put the probes in place.

Finally, the operator can iterate this scenario several times. For
instance, the operator may want to stop collecting KPIs about the
CMS and start collecting resource consumption KPIs from the front-
end component. The MaaS Server turns this request into the un-
deployment and deployment of probes, based on the status of the
current deployment, and passes the set of changes to be actuated
to the Monitoring Actuation Bridge.

If additional operators use the monitoring system, the MaaS
Server exploits information about the deployment to avoid redun-
dancy in the deployment with the respect to the selected pattern.

Engineer who extends the framework VARYS offers useful
opportunities also in terms of the extensions that can be operated
by engineers who want to target unsupported situations.

If the set of KPIs that can be collected must be arranged differ-
ently, the tree-model can be conveniently changed (e.g., adding,
moving and dropping elements and subtrees), as long as the corre-
spondence between KPI names and probes metadata is preserved.

If a new KPI must be collected, the engineer has to perform
four main steps: (i) updating the tree-model to add the new KPI
in the proper subtree; (ii) adding a new probe to the catalog, (iii)
annotating the probes with metadata so that the MaaS Server can
recognize it; and (iv) providing the deployment scripts required by
the available MAB plug-ins.

The actual effort required to complete these steps is variable.
If the probe implementation is already available (for instance as
Elastic Stack Beats, or Prometheus Exporters), the engineer has
only to provide the metadata and the deployment scripts, which
can be often reused across scripts. If a new probe must be imple-
mented, the effort depends on the specific probing technology and
the observability of the metric that must be collected.

If a new target platform must be supported, engineers have to
provide a plug-in implementation that covers the five operations
defined in the Monitoring Actuation Bridge.

Overall, this demonstrates that VARYS is a general purpose
framework for Monitoring-as-a-Service in Cloud environments.

3.3 Timing Figures

We designed and used VARYS in the context of the NGPaaS EU
project [1]. In particular, we assessed the flexibility of our solution
by using our technology with several components of telecommu-
nication systems, implemented with different technologies and
running on different cloud environments.

Since one of the core capabilities of VARYS is its ability to dynam-
ically change the set of collected KPIs, and consequently change the
set of probes running on the target system, we exemplify the cost
of these operations for a RESTful Python application that uses a
MongoDB database, both deployed in a Kubernetes cluster. We used
a simple application on purpose, since the cost of probe deployment
is independent on the complexity and size of the monitored target.
The used cluster includes our VARYS solution, which runs Apache
Kafka, as publish-subscribe communication channel, Logstash to
consume data produced by the probes, and Elasticsearch as time
series database to store the collected values.

We measured the cost of creating, updating and deleting the
full monitoring system when a single replica (1 probe deployed)
and three replicas (3 probes deployed) are available. We repeated
these measurements considering both the case the Docker probe
image is already available (default case in our implementation) and
the case the image must be downloaded from the Web (necessary
the first time a probe is deployed). We considered two metrics, the
time between the request is submitted and the probe is deployed,
and the time between probe deployment and the first data entry
appears in the time series database. Note that the latter measure
is non-deterministically affected by the sampling frequency of the
used probes and the metadata refresh period of the Kafka consumer,
which is 60sec in our setup. Table 1 shows the results.

Table 1: Timing measurements

Request type Number of replicas Cached image Request→ deployment (s) Deployment→ data entry (s)

CREATE

1 NO 13 331 YES 5
3 NO 26 333 YES 14

UPDATE

1 NO 10 171 YES 5
3 NO 18 403 YES 16

DELETE 1 - 6 -
3 - 23 -

We can observe that VARYS is quite efficient. Probes are deployed,
updated, and undeployed in about 5-6 seconds (up to 13 if the probe
is deployed for the first time). Values may require some time to
appear in the database, depending on sampling frequency, network
latency, and channel refresh rate. This may fluctuate between 10
and 40 seconds in average in our setup.

4 CONCLUSIONS

In this paper we presented VARYS, a technology-agnostic MaaS
solution for cloud applications. VARYS can be used to address a
number of diverse cloud platforms and technologies and to collect
virtually any KPI. Moreover, VARYS can be easily extended by
engineers, thus providing a single general-purpose monitoring
platform that can be used every time monitoring capabilities are
required.

Acknowledgements. This work has been supported by the H2020
5G-PPP Phase2 NGPaaS project (Grant Agreement No. 761557) and
the H2020 ERC CoG Learn project (Grant Agreement No. 646867).
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