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Abstract: The past decade has seen an explosion of discoveries and new insights into the diffuse
gas within galaxies, galaxy clusters, and the filaments composing the Cosmic Web. A new decade
will bring fresh opportunities to further this progress towards developing a comprehensive view of
the composition, thermal state, and physical processes of diffuse gas in the Universe. Ultraviolet
(UV) spectroscopy, probing diffuse 104 − 106 K gas at high spectral resolution, is uniquely poised
to (1) witness environmental galaxy quenching processes in action, such as strangulation and tidal-
and ram-pressure stripping, (2) directly account for the baryon content of galaxy clusters in the
cold-warm (T < 106K) gas, (3) determine the phase structure and kinematics of gas participating
in the equilibrium-regulating exchange of energy at the cores of galaxy clusters, and (4) map cold
streams and filaments of the Cosmic Web that feed galaxies and clusters. With a substantial UV un-
dertaking beyond the Hubble Space Telescope, all of the above would be achievable over the entire
epoch of galaxy cluster formation. Such capabilities, coupled with already-planned advancements
at other wavelengths, will transform extragalactic astronomy by revealing the dominant forma-
tion and growth mechanisms of gaseous halos over the mass spectrum, settling the debate between
early- and late-time metal enrichment scenarios, and revealing how the ecosystems in which galax-
ies reside ultimately facilitate their demise.
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1 UV Frontiers: The CGM to Galaxy Clusters & Cosmic Web
Enormous progress has been made over the last decade in our understanding of the diffuse gas
within the circumgalactic medium (CGM), intracluster medium (ICM), and intergalactic medium
(IGM) in the Cosmic Web. Ultraviolet (UV) spectroscopy has been the primary driving force
behind advancements in the CGM, while X-ray and radio techniques have predominantly been
employed for groups and clusters of galaxies. A new decade brings fresh opportunities to build
on this multiwavelength progress towards unraveling the composition, thermal state, and physi-
cal processes within the most massive structures in the Universe, which bear directly on galaxy
evolution, structure formation, and cosmology.

The CGM is a critical piece of the ecosystems within which galaxies live, breathe, and die (see
White Paper by Peeples et al.). We have seen a progression from detecting/confirming/characterizing
the presence and composition of the CGM [1–5] to leveraging diagnostics from larger datasets and
informing rigorous theoretical pursuit of the intimate connection between galaxy evolution and the
CGM [6–12]. Among the notable CGM discoveries are (1) the CGM around star-forming galaxies
is abundant in the gas traced by O VI while the CGM of quiescent galaxies is deficient [13, 14], (2)
the cool and warm-hot phases of the CGM potentially comprise enough mass to solve the ‘missing
baryons’ problem on galaxy scales [for L* galaxies; 15, 16], and (3) the cool gas contents of the
CGM are highly dependent on the galaxy environment [14, 17–19]. These advances have all come
through UV absorption line spectroscopy of background QSOs. Particularly aided by the sensi-
tivity of the Cosmic Origins Spectrograph (COS) aboard Hubble Space Telescope (HST), we are
now able to design absorption line experiments focusing on particular classes of galaxies, e.g., L*
galaxies [20], dwarfs [18, 21, 22], and luminous red galaxies [23–25].

UV astronomy is poised to bring a unique but critical perspective to diffuse gas physics, from
galaxies to galaxy clusters and the Cosmic Web, through the combination of (a) exclusive access
to spectral transitions from cool (104 K) to warm (105 − 106 K) gas and (b) unrivaled spectral
resolution capability for the physical processes of interest. Some progress has been made to apply
similar approaches to more massive structures, such as galaxy clusters and large scale filaments
and voids [e.g., 19, 26–29], but this body of work is decidedly much less mature. Progress is partly
hindered by the fact that massive halos are rarer than less massive halos. This scarcity, coupled
with the underlying paucity of viable UV-bright background sources such as QSOs, have limited
the feasibility of building large statistical samples.

Although focused efforts with HST/COS can make great strides in setting benchmarks for cos-
mological hydrodynamical models, more advanced space-borne UV-sensitive assets, such as the
Large Ultraviolet Optical Infrared [LUVOIR; 30] observatory, stand to bring about a revolution in
our understanding of gas flows, enrichment, and ultimately galaxy evolution on the largest scales.
As currently planned, LUVOIR’s 15m aperture will provide a factor of 50 increase in collecting
area over HST, and improvements in detector and mirror coating technology will boost through-
put dramatically and to broader wavelength coverage. In addition, multi-object spectroscopy [31]
via a micro-shutter array will provide integral field spectroscopy over a 3’×3’ field of view. The
monumental increase in sensitivity provided by LUVOIR translates into two key practical observa-
tional implications: (1) the number density of background sources feasibly observed for absorption
line spectroscopy increases by > 3 orders of magnitude and (2) sources for which we can read-
ily obtain signal-to-noise ratio (S/N) of ∼ 10 with HST/COS may yield S/N > 50 with similar
integration times. In this White Paper, we highlight key science cases where UV spectroscopy
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Figure 1: Properties of the cold-warm gas in the RomulusC high-resolution galaxy cluster simulation, with a mass
of M200 = 1014M� at redshift z = 0.3. Left: The mass-weighted metallicity in bins of temperature and density.
Indicated are the regimes of phase space for which X-ray and UV observations are sensitive. While the gas probed by
X-rays is of nearly uniform enrichment, that probed by the UV exhibits a much wider range of metallicity. Center: A
projection of the predicted H I column density distribution (integration depth 5 Mpc). The dashed white circle denotes
R200. Diffuse gas readily probed by UV spectroscopy is pervasive throughout the cluster, particularly towards the
outskirts. Right: Column density detection limits of UV H I Lyman-α lines as a function of temperature assuming
the lines are thermally broadened. The curves correspond to different S/N levels ranging from those often obtained
with HST/COS (S/N∼10-15) to those readily achievable with an advanced UV mission such as the 15-m LUVOIR
(S/N∼50-75). Covering fraction predictions from RomulusC corresponding to 3 column density limits are marked
with horizontal dotted lines on the right; two are connected to their corresponding shading in the map on the left. The
next generation of UV telescopes will use H I in absorption to uncover the galaxy cluster structures invisible to X-rays.

will provide unique insights into the most massive structures in the Universe, and we discuss how
current (HST/COS) and future (LUVOIR) missions can deliver transformative understanding of
galaxy evolution, galaxy cluster physics, and gas within the Cosmic Web.

2 Galaxy Clusters: a new frontier at all wavelengths
CGM stripping and chemical enrichment in galaxy clusters: Galaxy clusters form at the nodes
of the cosmic web and are the densest pockets of the Universe. Recent multiwavelength obser-
vations (ranging from microwave to optical and X-ray) of galaxy clusters provide unprecedented
views of the distribution of dark matter, gas and stars, enabling a plethora of new insights into the
physics of both cluster cores [e.g., 32] and outskirts [33]. The outskirts of galaxy clusters mark an
exciting new territory for understanding how the clusters connect to the cosmic web, and they offer
a powerful laboratory for studying the properties of the X-ray emitting ICM, chemical enrichment
processes of the ICM, and evolution of galaxies in dense environments. However, the cold-warm
gas in cluster outskirts and around infalling galaxies remains elusive and largely unexplored.

Modern cosmological simulations predict that the relative fraction of 104−6K gas greatly in-
creases beyond the cluster virial radius [Butsky et al., in prep; 34], as also expected given evidence
for a shock at ∼Rvir in SZ data [35]. UV absorption line surveys of cluster outskirts could discern
between competing models, which vary in predicting how quickly these cool/warm gas fractions
rise and how far into the outskirts they begin to exceed the hot gas. The cold-warm gas proper-
ties in cluster outskirts are especially important, because they contain crucial information about
how the metal-rich CGM of infalling cluster galaxies are stripped and subsequently pollute the
chemical content of the ICM [36–41]. As such, further studies of the cold-warm gas in galaxy
clusters promise new insights into the following: Where and how is the CGM of infalling galaxies
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stripped through interactions with the ICM? What quenching mechanisms are most important in
high density environments? How do metals spread in the ICM? What is the role of feedback on the
thermodynamic and chemical properties of the CGM and IGM?

UV spectroscopy can bring a novel perspective to the cold-warm gas in galaxy clusters. Figure
1 shows an H I column density map from the high resolution galaxy cluster simulation RomulusC
[Butsky et al., in prep; 42]. H I is clearly abundant throughout the cluster at column densities
that are near the detection limits for S/N∼10 spectra, which are relative routine for HST/COS
observing QSOs with mFUV . 19. At these brightnesses, one can feasibly construct samples of
background QSO/foreground cluster pairs. Indeed, the few studies targeting clusters with QSO
sightlines generally show a comparable detection rate of H I [19, 26, 43]. However, there appears
to be a dearth of H I absorbers at small velocity separation from the cluster redshift and at very
small impact parameters, suggesting that the gas in the very inner regions is more highly ionized.

Early observational evidence indicates stark differences between the CGM of cluster and field
galaxies. For example, the CGM of cluster galaxies are highly depleted, with an H I covering
fraction of 25% versus nearly 100% for field galaxies [19], illustrating increasing environmental
influence on the composition, kinematics, and ionization state of the CGM [18, 44–47]. A large
sample of QSO sightlines probing clusters, coupled with follow-up galaxy spectroscopy, can make
a good deal of progress in determining where upon infall and to what degree galaxies are stripped.
Such experiments will also inform how the stripping of cluster galaxies contributes to the multi-
phase structure and metal content of the ICM on all scales.

Beyond their high sensitivity to the diffuse gas, another huge advantage of UV techniques to
this field is their high spectral resolution. The highest resolution modes of COS reach FWHM
∼ 18 km/s. With the resolution achievable in the UV, and given sufficient S/N, individual low-
column density cool clouds (with narrow line profiles) will be easily distinguishable from warmer
clouds with broad profiles. UV constraints on the kinematic properties of stripped CGM in galaxy
clusters will be highly complementary to the bulk and turbulent gas motions of the hot ICM, which
will be provided by ongoing and upcoming high-resolution X-ray (e.g., XRISM, Athena, Lynx)
and SZ spectral imaging observatories (e.g., CCAT-prime, NIKA2, MUSTANG2, TolTEC, AtLAST,
LST, CSST, CMB-in-HD) in the coming decade [48, 49, for recent reviews].

Formation and evolution of cluster cores over cosmic time: Progress has also begun in quantify-
ing the cold gas contents of clusters in their infancy. The left-panel of Figure 2 shows a > 400 kpc
Lyα nebula, which also exhibits extended C IV and He II emission, in a z = 2.3 protocluster dis-
covered using narrowband imaging and slit spectroscopy [50]. A large > 100 kpc Lyα nebulae in
the core of an X-ray emitting galaxy cluster at z = 1.99 has also been detected [51]. The presence
of such material, particularly in the core of such a massive virialized halo (and observed on smaller
scales at z ∼ 0 [52, 53]), poses important questions as to its origins: Are streams of gas readily
able to penetrate deep into these massive halos, potentially providing fuel for star formation in the
resident galaxies at high redshift [54, 55]? Are we witnessing condensation directly out of the hot
cluster atmosphere at early times, perhaps taking part in a self-regulating feedback process that
feeds AGN activity and in turn injects energy into the surrounding CGM and ICM [56]?

These recent discoveries described above point towards a broader opportunity to track the evo-
lution of galaxy clusters from the early protocluster phase through the mature ecosystems we ob-
serve at present times. Figure 2 (right) shows one prediction of the evolving mass fraction of 104,
105−6, and > 106 K gas in a simulated cluster. While much is to be learned at z > 2, empirically
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Figure 2: Left: A > 400 kpc enormous Lyα nebula discovered witin a z = 2.3 protocluster [50], revealing a large
reservoir of cold gas in the early stages of cluster formation. Right: The redshift evolution of 104 (cold), 105−6 (warm),
and > 106 K (hot) gas mass fractions within R200 of the RomulusC simulated galaxy cluster. The temperature
distribution in clusters changes dramatically with redshift at z & 2. Systematically pursuing observations of Lyα and
metal line-emitting nebulae (left panel) will place rigid constraints on the evolution of the ICM and cluster members.

constraining this evolution to any later times using ground-based instrumentation has already run
into the unforgivingly hard wall of the UV atmospheric cutoff. A space-based observatory with
integral field spectroscopic capability, such as the Large UV Multi-Object Spectrograph [LUMOS;
31] micro-shutter array aboard LUVOIR, or a balloon-borne experiment like FIREBall [57] could
image the UV line-emitting diffuse gas and measure the kinematics within clusters all the way to
z ∼ 2, where telescopes on the ground can take over. The cool-warm gas constraints provided by
rest-frame UV transitions, such as Lyα, C IV, and He II already observed at z & 2, will provide
benchmarks across cosmic time for cluster formation models.

3 The Cosmic Web
On cosmic, several novel methods have been employed to attempt mapping gas in the filaments,
sheets, and voids composing the Cosmic Web, including stacking the SZ effect signal between mas-
sive halos [59, 60], Lyα absorber statistics [28, 61], and Lyα forest tomography [62, 63]. We focus
on this last method to highlight prospects for studying the Cosmic Web given potential upcoming
UV capability. Figure 3 shows a reconstructed map of Cosmic Web structure traced by Lyα forest
absorption in ground-based spectra of background star forming galaxies. By using background
galaxies instead of quasars, the CLAMATO project increased the projected sightline density from
80 deg−2 to 1500 deg−2. Such sightline densities would be possible for z < 2 (recall the hard
redshift limit for ground-based Lyα surveys) under the current LUVOIR specifications, with the
added efficiency of multi-object spectroscopy for simultaneously observing multiple sightlines.

Lastly, filaments in the Cosmic Web have been of extremely high interest due to their pur-
portedly housing the bulk of ”missing baryons” in the form of warm-hot (105−6K) intergalactic
medium [WHIM; e.g., 64–66]. In addition to broad Lyα features, the extreme UV provides a rel-
atively robust tracer of the WHIM in the Ne VIII 770, 780 Å doublet. The precipitous decline
in HST’s sensitivity below 1150 Å renders Ne VIII features effectively unreachable at z < 0.5.
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Figure 3: A tomographic map of filaments and voids in the Cosmic Web reconstructed from Lyα absorption at z > 2
against background galaxies [58]. Colors represent Lyα transmission, with red regions corresponding to the most
overdense regions inferred from Lyα absorption. The CLAMATO team achieved a high density of sightlines through
this volume by leveraging relatively faint galaxies as background sources rather than QSOs. Even higher sightline
density may be achieved down to z = 0 by coupling this technique with a large aperture UV facility.

Furthermore, Ne VIII features that trace the low density WHIM are expected to be very weak [67].
Herein lies a prime opportunity for future space-based missions: by providing decent throughput
below 1000 Å, they enable galaxy surveys sufficiently wide and deep to map out the large scale
galaxy distribution and, e.g., separate circumgalactic Ne VIII [19] from truly intergalactic material.

4 Prospects for the Next Decade
Here, we summarize the resources that can be leveraged now with HST/COS and in the future with
the LUVOIR observatory as currently conceived.

HST/COS : Large surveys of cluster/QSO sightline pairs can provide a census of the cool-warm
gas contents of galaxies, their outskirts, and pre-accretion shock region. High spectral resolution
δv ∼ 20 km/s enables kinematic separation of physically distinct cool, narrow-line absorption
components and warm, broad-line components, which can in turn help identify bulk flows and
kinematically connect absorbers to galaxies undergoing gas stripping within the cluster.
LUVOIR : A factor of > 50 in sensitivity over HST means the ability to (1) obtain extremely high
S/N (>50) in the same amount of time for the same sources we observe now with HST and (2)
feasibly observe> 1000 background sources per square degree on the sky. Assuming a cluster with
M200 = 1014M� at z = 0.3, this source density translates to &16 potential background sources for
any cluster with at least this mass being observable for absorption studies. The increased sensitivity
plus wavelength coverage down to 1000 Å will provide a full suite of metal line diagnostics from
low-, mid-, and high-ionization species to enable detailed modeling of the physical conditions of
gas in any environment. Integral field spectroscopic capability will enable imaging the diffuse gas
emission [68, 69], e.g., resolving its geometry and kinematics.

UV spectroscopy provides unique insights into the cold-warm gas in and around most massive
structures in the Universe, providing highly complementary views of the baryonic contents of
the universe provided by X-ray and microwave observations (see white papers on these topics).
When taken together, these forthcoming multiwavelength observations will provide a comprehen-
sive view of the gaseous composition and processes in the Universe and deliver transformative
understanding of galaxy evolution, galaxy cluster physics, and gas within the Cosmic Web.
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