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Abstract

Pedestrians, in videos taken from fixed cameras, tend to appear and disap-

pear at precise locations such as doors, gateways or edges of the scene: we refer

to locations where pedestrians appear as sources (potential origins) and the lo-

cations where they disappear as sinks (potential destinations). The detection of

these points and the characterization of the flows connecting them represent a

typical preliminary step in most pedestrian studies and it can be supported by

computer vision approaches. In this paper we propose an algorithm in which a

scene is overlaid by a grid of particles initializing a dynamical system defined

by optical flow, a high level global motion information. Time integration of the

dynamical system produces short particle trajectories (tracklets), representing

dense but short motion patterns in segments of the scene; tracklets are then

extended into longer tracks that are grouped using an unsupervised clustering

algorithm, where the similarity is measured by the Longest Common Subse-

quence. The analysis of these clusters supports the identification of sources and

sinks related to a single video segment. Local segment information is finally

combined to achieve a global set of traces identifying sources and sinks, and

characterizing the flow of pedestrians connecting them. The paper presents the
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defined technique and it discusses its application in a real-world scenario.
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1. Introduction

Crowded scenes are composed of a large number of people, exhibiting differ-

ent behaviors in a relatively constrained space. The vagueness of this definition

is strictly related to the difficulties in defining what a crowd of pedestrian is; we

will not try here to be more specific or precise, but rather highlight the growing

need to consider the presence and behaviors of pedestrians in the environment by

designers, planners and decision makers (see, e.g., a recent report commissioned

by the U.K. Cabinet Office on this subject [1]). In particular, public safety

in crowded situations (e.g. concerts, religious or political gatherings) has be-

come an important research area in the last years, with relevant contributions

from physics, psychology, computer science and, of course, civil engineering.

Acquiring data for this kind of study is obviously absolutely crucial for sake

of understanding the implied phenomena and evaluating developed solutions

for analysis, decision support, prediction. In video surveillance, scene modeling

and understanding is also an important research area. Important tasks of scene

modeling and understanding are (i) extracting motion information (e.g. trajec-

tories), (ii) identification of entry and exit points of trajectories in the analyzed

scene, (iii) characterization of the interaction of trajectories (highlighting, for

instance, crossings or potential conflicts).

Pedestrians in videos taken from fixed cameras tend to appear and disap-

pear at relatively precise and recurring locations, such as doors, gateways or

particular portions of the edges of the scene. Moreover, pedestrian behavior in

a given scene might imply waiting at a certain location then moving whenever

certain conditions are met or given events happen. We refer to locations where

pedestrians appear or start moving as sources (potential origins of a trajec-
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tory) and the locations where they disappear or stop moving as sinks (potential

destinations). Traditionally, crowd analysis is performed by the analyst who

manually identifies and detects different relevant activities in the scene. A por-

tion of video is given to each analyst together with a list of events (behaviors)

and objects to look for. The analyst informs the concerned authorities if any of

the given events or objects are detected. Such kind of manual analysis of video

is labor intensive, time consuming and prone to errors due to weak perceptive

capabilities of humans, but also to the repetitiveness of the activity.

In this paper, we propose an approach for crowd behavior analysis (and, to

a certain extent, understanding in the acceptation of the term adopted by [2])

adopting two novel algorithms, the first able to generate long, dense, reliable

and accurate pedestrian trajectories and the second clustering them to generate

long term reliable and abstract information describing flows in the whole video.

The final results provide directly information characterizing flows but it also

represents a starting point for further high-level analyses of crowd behavior.

The approach starts by dividing the input video into multiple segments of equal

length and, considering that the frame rate of the video is constant, duration.

The initial frame of each segment is overlaid by a grid of particles initializing a

dynamical system defined by optical flow, as discussed by [3]. Time integration

of the dynamical system over a segment of the video provides particle trajec-

tories (tracklets) that represent motion patterns in the scene for a certain time

interval associated to the analyzed segment. We detect sources, sinks and main

flows in the segment (for sake of brevity sometimes we will refer to this informa-

tion as segment local track) by analyzing motion patterns followed by clusters

of tracklets, obtained using an unsupervised hierarchical clustering algorithm,

where the similarity is measured by the Longest Common Sub-sequence (LCS)

metric. To achieve final global tracks, covering all the video, we cluster the

achieved local tracks through the same hierarchical clustering algorithm. Our

main contributions are: (1) Generating dense and long trajectories, (2) identi-

fying sources and sinks, (3) understanding behavior of the crowd in the scene

by considering full length video, (4) achieve the above results without requiring
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object detection, tracking, nor training, targeting employment in naturalistic

conditions. The paper breaks down as follows: the following Section presents

the current state of the art in the identification and characterization of pedes-

trian flows in crowded scenes, while Section 3 presents the overall proposed

approach. Section 3.1 focuses on the algorithm to extract long, dense, accu-

rate and reliable trajectories and Section 3.4 describes in details the clustering

algorithm applied to generate local and global tracks. Section 4 describes the

achieved experimental results, also by comparing the proposed approach with

the most relevant existing alternatives. Conclusions and future developments

end the paper.

2. Related Works

With the advancement in computer vision technology, researchers developed

tracking methods that in certain conditions can automatically detect, track

and identify specific activities in the scene. [4] developed a tracking algorithm

by modeling human shape and appearance as articulated ellipsoids and color

histogram respectively for crowded scenes. [5] use Markov chain Monte Carlo

based particle filter to handle interaction between multiple targets in crowded

scene. [6] detects interest points in each frame by tracking pedestrians, and this

activity is performed by finding correspondence among points between frames.

[7] developed an unsupervised bayesian clustering method to detect individ-

uals in crowd: for each frame, detection of individuals is performed ignoring

the relationship between frames. [8] detect individual objects on the basis of as-

sumption that objects move in different directions. [9] develop a tracking system

by solving data association problem by utilizing Generalized Minimum Clique

Graph (GMCP) in order to detect an individual in different frames of a video.

Intuitively, detection and tracking of individuals rely on the performance of de-

tection and tracking algorithms. However, in crowded scenes, where the number

of objects is often in the order of hundreds, these tasks usually fail due to (i) the

variable and potentially low number of pixels per object and (ii) frequent and

4



severe occlusions related to the constant interaction among the objects (pedes-

trians) in the scene. These challenging characteristics of the analyzed videos

can be at least partly avoided in laboratory situations: for instance, in [10]

the authors successfully gather pedestrians’ trajectories and gather useful data

about their behavior but they employ a manual or automatic but facilitated

form of identification. Moreover, as we will discuss in the experimental evalua-

tion of the presented approach, the adopted tracking algorithm (Lucas-Kanade

tracker - KLT [11]) does not provide sufficiently accurate results in naturalistic

conditions.

Intuitively, detecting sources and sinks (as introduced above) implies detec-

tion and tracking of objects, potentially followed by an analysis of the trajec-

tories: this kind of approach was adopted by [12], which analyses low density

situations and essentially relies on the performance of the tracking algorithm,

which is low in crowded situations. Research in this area has therefore instead

assumed that raw data about pedestrian paths should be considered as noisy

or unreliable: [13], for instance, employ a so-called weak tracking system and

they aggregate raw tracklets through a mean-shift clustering technique allowing

them to identify entry and exit zones in the scene. More recently, in order to

overcome the limitation of traditional tracking methods, research has focused

on gathering global motion information at higher level, often based on optical

flow analysis.

Trajectories capture the local motion information of the video. Long and

dense trajectories (that is, trajectories representing a large number of paths

followed by different pedestrians, reaching a significant length) provide good

coverage of foreground motion as well as of the surrounding context. There

are two types of representations for characterizing motion information from

the video: space-time local features (like corner points, SIFT features etc.) and

dense optical flow [14]. In the first type, features are detected in one frame which

are then tracked through rest of the frames of a video, whereas the second type

is based on dense optical flow, where a flow vector is estimated for every pixel.

Since dense optical flow estimates a change for every pixel it provides a better
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representation of motion in video. A large number of approaches for extracting

feature trajectories from video exist:

• [15] extracts feature trajectories by tracking Harris3D interest points; [16]

used KLT for extracting trajectories represented as a sequence of log-polar

quantized velocities which later on used for action classification;

• [17] also used KLT for extracting trajectories, that are then clustered and

affine transformation matrix representing trajectories is computed for each

cluster;

• [18] extract trajectories by matching SIFT descriptors between two con-

secutive frames;

• [19] combine both KLT tracker and SIFT descriptor matching to extract

long-duration trajectories, and random points are sampled for tracking

within the region of existing trajectories in order to assure dense coverage;

• [20] extract feature point trajectories in the regions of interest; they com-

pute histogram of gradient (HOG) and histogram of optical flow (HOF)

descriptors along the trajectories.

• [21] also uses KLT method for extracting sparse trajectories. The authors

propose Random Topic Model (RTM) for learning semantic regions from

the motions of pedestrians in crowds

• [22] use KLT trajectories and propose Mixture model of Dynamic pedes-

trian Agents (MDA) that analyse the collective behavior of pedestrian in

crowds after learning from the real data.

Resulting trajectories from these approaches are effectively long duration but

they are typically sparse and can not capture whole motion information of the

video because only few feature points are detected.

On the other hand, dense optical flow captures whole motion information of

the video, as we estimate a flow vector for every pixel of a frame; but due to the
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unpredictable nature of the pixel (due to its sensitivity to the illumination), we

can not extract reliable long duration trajectories. There is limited literature

about dense trajectories:

• [23] extract long range trajectories using dense optical flow;

• [24] extract objects from video using dense optical flow trajectories;

• video is represented as set of particles and their trajectories are computed

using variational optical flow in [14];

• in [3], particle trajectories are obtained by overlying a grid of particles on

the initial frame of video, initializing a dynamical system. Time integra-

tion of this dynamical system provides particle trajectories that represent

motion in the scene. This method represents a very useful starting point

for our goals, especially for generating robust local movement trajectories,

although it is not aimed at providing global pedestrian motion information

but just for identifying specific crowding situation or movement patterns.

Generally, these techniques are quite reliable when so called structured crowds [25]

are analyzed: this is mostly due to the nature of this kind of situations, when

flows of pedestrians can include a very large number of individuals that, how-

ever, follow relatively stable flows that are generally well separated and not

conflicting (e.g. people in a marathon, pilgrims performing Tawaf during the

Hajj). Achieved particle trajectories in high density unstructured crowds are,

instead, normally not accurate and unreliable due to (1) severe occlusions that

occur frequently, (2) ambiguities arising at the boundary of the conflicting flows

as reported in [26]. In these cases, a particle can drift to the side of another

motion boundary and it can mix with different motion.

The related works most close to the presented approach are [27] and [28],

which extract motion trajectories using KLT and adopt hierarchical clustering

algorithms for detecting dominant flows in scene. These methods do not consider

the whole video, but they rather consider a portion of it; moreover they do not

actually try to identify sources and sinks of different flows but rather capture
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information about a low number of frames which provide inadequate information

for understanding the overall behavior of the scene. In this paper, we adopted a

similar approach as [3] for extracting motion information, but we overcome the

limitations of the previous approaches by employing rules for extracting highly

accurate and reliable particle trajectories.

3. Proposed Framework

In this paper, we propose an approach for crowd behavior understanding

adopting two novel algorithms, the first able to generate long, dense, reliable

and accurate pedestrian trajectories and the second clustering them to gener-

ate long term reliable and abstract information describing flows in the whole

video. The final results provide directly information characterizing flows but

they also represent a starting point for further high-level analyses of crowd be-

havior. As shown in Figure 1, the approach starts by dividing the input video

into multiple segments of equal length and duration, considering videos with a

constant frame rate. The initial frame of each segment is overlaid by a grid of

particles initializing a dynamical system defined by optical flow, as discussed

by [3]. Time integration of the dynamical system over a segment of the video

provides particle trajectories (tracklets) that represent motion patterns in the

scene for a certain time interval associated to the analyzed segment. We detect

sources, sinks and main flows in the segment (for sake of brevity sometimes

we will refer to this information as segment local track) by analyzing motion

patterns followed by clusters of tracklets, obtained using an unsupervised hier-

archical clustering algorithm, where the similarity is measured by the Longest

Common Sub-sequence (LCS) metric. Results achieved so far are intrinsically

related to a single segment of the analyzed video, associated to a relatively short

time frame. To achieve final global tracks, covering all the video, we cluster the

achieved local tracks through the same hierarchical clustering algorithm. Our

main contributions are:

1. generating dense and long trajectories,
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2. identifying sources and sinks,

3. understanding behavior of the crowd in the scene by considering full length

video,

4. achieve the above results without requiring object detection, tracking, nor

training, targeting employment in naturalistic conditions.

3.1. Achieving Reliable Descriptive Motion Information

The input to our framework is a sequence of frames and, as summarized in

the previous section, a first phase of the overall approach is aimed at achieving

reliable descriptive motion information that will be then further processed to

obtain local and global tracks. As already mentioned, we adopt an overall divide-

and-conquer approach, splitting the overall frame sequence into n segments,

each containing k frames. We then perform a segment local analysis to achieve

tracklets that will be clustered later.

The first step to achieve tracklets is the computation of dense optical flow

between two consecutive frame of every segment. We employ the method pro-

posed by [29] where gray value constancy, gradient constancy, smoothness, and

multi-scale constraints were used to compute highly accurate optical flow. Con-

sider a feature point i in the frame associated to time t of a segment: its flow

vector Zi,t = (Xi,t, Vi,t) includes its location Xi,t = (xi,t, yi,t) and its velocity

vector Vi,t = (vxi,t, vyi,t) (i.e. the velocity vector is made up of the change in

the horizontal and vertical positions); moreover, for each feature point, we can

compute θi, that is the angle or direction of Vi, where 0◦ ≤ θ ≤ 360◦. Then

{Z1, Z2, . . . , Zm} is the motion flow field of all the foreground points of an image.

We can thus initialize a continuous dynamical system in which the velocity

of a point at time t is essentially related to the optical flow of the same point,

which is given by equation 1

Vi,t = F (Xi,t) (1)
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3.2. Particle Advection

The next step is to advect a grid of particles over the optical flow field, that

corresponds to the time interval 1 to T for each segment. We launch a grid

of particles over the first optical flow field of every segment and each initial

position of the particle represents the source point. Ideally, the grid should

have the same resolution of the frame and size of the particle is same as size of

the pixel; nonetheless this would imply huge computational costs. To avoid this

problem, we reduce the resolution of the grid by dividing it by a non negative

constant: consider resx × resy the resolution of the image and c > 1; the

resulting grid G will have a size gx × gy where gx = resx/c and gy = resy/c.

Considering the initial location Xi,t = (xi,t, yi,t) of particles with i ∈ G,

their next location Xi,t+1 at time t+ 1 can be computed by numerically solving

the system of equations achieved by considering equation 1 for all the particles

in G by using following approximation:

X(i,t+1) = F (X(i,t)) +X(i,t) (2)

To achieve a trajectory Ωi for every particle i ∈ G, taking the form Ωi =

{Xi,1, . . . , Xi,T }, where T is the integration time, with T = k (we will use time

and frame number interchangeably), we need to compute a pair of flow maps

ψx and ψy. These maps contain the initial position of each particle and all the

subsequent positions computed according to the above equation, as discussed

in [3].

The trajectory achieve by means of this process represents a movement from

the initial position through time (and through frames) according to the optical

flow. However, when this kind of analysis is carried out on an unstructured

crowded scene (e.g. a subway corridor with pedestrians getting out and in a

platform), where people move towards different and potentially changing direc-

tions, in many cases the particle trajectory could drift from a flow of pedestrians

characterized by a certain direction to a spatially close but distinct and differ-

ent flow, moving towards a significantly different direction. In this case, the

11



Figure 2: Flow associated to different particles: the first one is considered legitimate through-

out the whole segment, whereas the second and third are trimmed due to significant changes

in the flow direction in intermediate frames.

trajectory is erroneous, since pedestrians do not actually change direction so

quickly, and this can effect the final outcome. Consider, for instance, Figure 2:

each row shows the flow information at a given time for a given particle; the

first row exemplifies a normal and legitimate trajectory, whereas the second and

third rows show a situation that we consider an error, since the direction of the

optical flow associated to the particle violently changes in too little time. The

second and third particles, therefore, according to our approach will generate

much shorter tracklets than those generated by current approaches (such as [3])

in which these changes are accepted.

More precisely, to avoid the above introduced defect, we modify equation 2

in the following way:

X(i,t+1) = X(i,t) + F (X(i,t)) ∗Bi (3)

Bi =

 1, if ‖ θi,1 - θi,t ‖2 < λ

0 otherwise

The particle, therefore, continues moving forward if circular distance [30]

between its initial direction θi,1 computed initially and its direction at time t,

θi,t is less than a specified threshold λ.

This approach, avoids errors due to particles drifting from a pedestrian flow
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Figure 3: Tracklets achieved after particle advection.

to a different one, however the achieved trajectories are in general shorter in

length than those extracted by [3]. In the previously mentioned Figure 2, the

length of the extracted tracklets is equal to T frames only for the first particle

whereas the other approach would always lead to tracklets of T frames: the

number of frames of a tracklet is not necessarily an indicator of the actual

length of the associated trajectory, but limiting the number of tracked frames

inevitably leads to achieving shorter trajectories.

After particle advection, short duration particle trajectories called tracklets

are obtained as shown in Figure 3. Some of these tracklets correspond to the

background of the scene or noise and they are not actually part of our analysis.

Therefore, in order to remove these tracklets, we estimate their actual length by

computing the euclidean distance between the start and end points (remind that

abrupt changes in direction of the particles block the trajectory construction, so

most of the tracklets are very close to straight lines). We discard those tracklets

for which ‖ (x1i , y
1
i ) - (xTi , y

T
i ) ‖2 < δ (i.e. those tracklets whose length is very

likely lower than a given threshold δ).
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Figure 4: Example situation of generation of a long track from small tracklets.

3.3. Clustering Tracklets to achieve Local/Global Tracks

Tracklets extracted through particle advection fail to represent important

characteristics of the overall motion and they provide inadequate information

for identifying source and sink points of the dominant flows and also for under-

standing behavior of the scene. To achieve these goals, we need dense and long

trajectories which we can obtain thanks to the following assumptions: (i) a large

number of tracklets corresponding to dominant flows is identified by the previ-

ous phase; (ii) source and sink points of tracklets associated to a common flow

are often spatially close to each other. Our goal is to combine these accurate but

generally short tracklets into longer trajectories. This induces a combinatorial

matching problem that we define and solve recursively for all tracklets detected

for each segment of the video sequence. The example frame shown in Figure 3

intuitively supports the claim that, for most scenes including a relatively large

number of moving pedestrians, these two assumptions generally hold.

Let us now focus on the implications of the second assumption. Some of

the achieved tracklets corresponding to single movements can be quite similar

(in orientation), but their sources and sinks can be spatially different. Our goal

is to combine similar tracklets into longer trajectories. For example, consider

three tracklets Ωi with source point (x1i , y
1
i ) and sink point (xTi , y

T
i ), Ωj with

source point (x1j , y
1
j ) and sink point (xTj , y

T
j ), and Ωk with source point (x1k, y

1
k)

and sink point (xTk , y
T
k ) as shown in Figure 4. These tracklets start and end at

different locations but the sink of one of them is spatially very close to the source
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of a different one: for instance, tracklet Ωj starts very close to the sink point

of Ωi and the source of Ωk is close to sink point of Ωj . We exploit this spatial

closeness of the tracklets in order to obtain longer trajectories. The similarity

among the tracklets is computed by employing longest common sub-sequence

algorithm, which will be discussed in details in the next section. The rationale

of the approach, however, is that similar tracklets are identified and combined

by means of kth order least square polynomial regression as exemplified by the

red line in Figure 4 (computed with k = 3). The outcome of the process, the

red track, is therefore a long trajectory with source point (x1i , y
1
i ) and sink point

(xTk , y
T
k ).

Let us now more formally define the above intuitive approach to achieve

long tracks from shorter tracklets. First of all, we call a tracklet for which we

would like to extract a longer trajectory a query tracklet. Let us now consider the

analyzed scene: we have already overlaid a grid for particle advection, organizing

the scene in “cells”. The query tracklet will be positioned in a cell c, and we can

define neighbor tracklets those ones positioned in the the Moore neighborhood

of c. Finally, we call candidate tracklets those ones that we are considering for

extending the query tracklet. The pseudo-code of the proposed algorithm is

presented in Algorithm 1 and its description is reported here below.

The input to the algorithm is the query tracklet and output is the long tra-

jectory; we also assume that the overall grid including the other tracklets is

available as global information. The function LongTrajectory is divided into

two steps: first of all, we collect all the tracklets that, due to to spatial arrange-

ment, represent a plausibly connected path, but we also filter out tracklets

that are not sufficiently similar to the starting one, because the resulting track

would present an abrupt change of direction. This operation is executed by the

CompleteTrajectory function that operates on an array L initialized by the call-

ing environment (lines 2 and 3 of LongTrajectory) as containing only the query

tracklet Ωq. The function considers the tracklets present in the neighborhood of

the query tracklet, and evaluates if they could represent a plausible continuation

of the related path (line 4), inserting them into an array of candidate tracklets.
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If this array is not empty, the candidate tracklet that best matches the query

one (line 9) is selected, inserted in the array L and then the CompleteTrajectory

is recursively called considering the added query as next starting point (line 13).

When the candidate tracklets array is empty the algorithm ends, returning the

array L containing the tracklets that were added during the recursive execution.

Finally, the resulting set of tracklets is then combined by means of kth order

least square polynomial regression (line 5 of LongTrajectory).

This function is applied to tracklets positioned in every cell of the grid. Some

of them will basically not be extended at all; moreover some of the achieved

tracks will be actually very similar to portions of larger ones: by definition of

the algorithm, in fact, the existence a track spanning across k > 2 cells makes

it very likely that additional k− 2 shorter (but not atomic) tracks are achieved

later on, considering cells explored during the first computation.

The set of achieved tracks still contains also short tracklets, for which no

extension was possible. The goal of this step, however, is to obtain dense and

long trajectories covering all the scene and representing the most significant

motion patterns, therefore we can filter out tracks that are shorter than a given

threshold, analogously as we did to remove noise in the particle advection step

(in this case the euclidean distance estimation of the actual length of the track

is even more plausible since the considered tracks are, by construction, quite

smooth).

Figure 5 shows the achieved long and dense tracks with increasing thresholds:

the number of tracks decreases with growth of the threshold, but trajectories

are still dense enough to represent whole motion of the scene even at the higher

thresholds. Even though it is of course important to avoid setting a threshold

so high that tracks representing important flows are filtered, it must be noted

that the reduction of the number of tracks simplifies the computation associ-

ated to subsequent steps of the overall approach without suppressing important

information.

After achieving dense tracks, the next step is to combine similar tracks into

local tracks by adopting novel hierarchical clustering algorithm. The classical
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Algorithm 1 Generating long tracks starting from tracklets

Input: tracklet Ωq

Output: track Lt

1: function LongTrajectory(Ωq)

2: initialise array L as empty

3: insert Ωq in first position of L

4: L = completeTrajectory(Ωq,L)

5: return polynomial regression on L

6: end function

Input: tracklet Ωq, array of tracklets L

Output: array of tracklets L

1: function CompleteTrajectory(Ωq, L)

2: initialise array C

3: for all tracket t in neighborhood of Ωq do

4: if ‖XT
q −X1

t ‖ ≤ ε then

5: insert t in C

6: end if

7: end for

8: if C is not empty then

9: bestCandidate = arg maxc∈C
LCS(L[0],c)

min(Len(L[0]),Len(c))

10: match = LCS(L[0],bestCandidate)
min(Len(L[0]),Len(bestCandidate))

11: if match > mt then

12: insert bestCandidate in tail of L

13: return CompleteTrajectory(bestCandidate,L)

14: end if

15: else

16: return L

17: end if

18: end function
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(a) Tracks achieved with threshold δ = 1. (b) Tracks achieved with threshold δ = 10.

(c) Tracks achieved with threshold δ = 20. (d) Tracks achieved with threshold δ = 50.

Figure 5: Tracks achieved after the application of the algorithm to generate long tracks from

shorter tracklets with increasing length thresholds.

supervised clustering algorithms can not be used as the number of flows (and

therefore desired clusters) are unknown. Therefore, we propose a novel hierar-

chical clustering algorithm, based on the following procedure.

1. We sort the tracklets in descending order on the basis of their length; in

particular, let L = {T1, T2, . . . , Tk} represent the sorted list of tracklets

and {l1, l2, . . . , lk} the respective length of tracklets, we have than li < lj

with 1 ≤ i < j ≤ k.

2. We set up a list of tracklets to be considered LT , which initially is the

complete list of tracklets excluding T1; we also set up a list of clusters LC ,

initially containing a single cluster associated to the first tracklet T1 (the

longest one) that is also used as initial cluster center;
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3. We select the shortest tracklet from the list LT , say Ts, and compare

it with the centers of all clusters present in LC using longest common

sub-sequence metric, that will be described in the following Section, to

compute similarity measure. If this value is greater than a threshold ε,

then tracklet Ts is assigned to the currently considered cluster, otherwise,

a new cluster is inserted in LC , tracklet Ts is assigned to it and set as its

center. We delete the tracklet Ts from the list LT after assignment to a

cluster.

4. If the cluster’s size exceeds a positive value of S we consider that sufficient

information about the associated flow has already been achieved; therefore

we identify source and sink location and update the center of the cluster

by using Kth order least square polynomial regression. We used S = 30

in our experiments. The cluster source and sink are selected according to

a simple procedure: the selected pair is made up of the source point of a

tracklet and the sink point of (generally another) tracklet that are part

of the cluster and, in particular, the pair for which the euclidean distance

between source and sink is maximum.

5. We repeat the previous step until LT is not empty.

A MatLab-like implementation of the above clustering algorithm is described

in Algorithm 2.

3.4. Longest Common SubSequence Computation

At this stage, we define similarity measure for comparing and clustering

similar trajectories. There are number of approaches for measuring similarity

of the moving object trajectories, such as [31] and [32]. A survey of different

similarity measures for trajectory clustering is reported by [33]: Euclidean and

Dynamic Time Warping (DTW) approaches are more sensitive to noise whereas

Longest Common Sub-Sequence is efficient for series of unequal lengths and it

is more robust to noise and outliers than DTW, as discussed by [34] and by [35].

The key idea of LCS is to match two time-series of tracklets by not con-

sidering all points of the tracklets, that can, to a certain extent, have different
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lengths. The following procedure allows verifying to which extent two trajec-

tories can be considered similar (or matching, according to a certain similarity

measure) and therefore what is the longest portion they have in common.

Let T1 and T2 represent two tracklets with size n and m respectively: T1

= {(xt, yt), t = 1, ...., n} and T2 having analogous structure but m elements;

with T1(i) we denote (xi, yi) with 0 ≤ i ≤ n and analogously for T2. We

compute the similarity among two tracklets by recursively finding a matching

M between portions of these trajectories using a dynamic programming proce-

dure that we will only briefly introduce for sake of space. Two constants are

needed, respectively Φ controlling matching sequences in time, determine as Φ

= max(Length(T1),Length(T2))
2 and Ω which is the spatial matching threshold. For-

mally the matching matrix M comparing T1 and T2 can be computed recursively

as follows:

Mi,j =


0, if i or j are 0

1 +Mi−1,j−1, if ‖ T1(i) - T2(j) ‖2 < Ω and | i − j | < Φ

max(Mi−1,j ,Mi,j−1), otherwise

The similarity measure between two tracklets T1 and T2 is therefore S(T1, T2)

= LCS(T1,T2)
min(n,m) , where LCS is the number of matching points between T1 and T2,

according to the above matching matrix.

4. Experimental Results

This section presents qualitative and quantitative analyses of the results ob-

tained from experiments on the application of the proposed approach to video

sequences made available from other research groups and acquired through field

observations. In particular, we carried out our experiments on a PC of 2.6 GHz

(Core i5) with 4.0 GB memory, running a Matlab implementation of the pre-

sented algorithms; the analyzed data set includes videos made available from

other research groups and described in [36, 27], in addition to videos we acquired
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in past researches described in [37, 38]. The overall set of video includes situa-

tions including both the so called structured and unstructured crowds [39](i.e.

situations with respectively stable and varying flows in the scene), and very

different density conditions.

The analyzed videos we will discuss in the remainder of the section are the

following:

• airport video, Figure 6(a) [36]: this sequence shows a portion of an airport,

including stairs and escalators, with relatively stable pedestrian flows in

medium-low density conditions;

• Hajj video, Figure 6(b) [36]: this sequence was taken in the context of

the yearly pilgrimage to Makkah, Saudi Arabia, and it shows a very high

density situation in which the overall velocity of pedestrians is very low

but characterized by three main and relatively stable movement directions;

• station video, Figure 6(c) [27]: this footage shows a platform in which

pedestrians try to get on and off of a train; flows change in time due to

the congestion that arises near one of the entrances of the wagon, and the

density conditions are very different in distinct areas of the scene;

• escalator video, Figure 6(d) [27]: this is a footage of a portion of a plat-

form in which two main flows lead to and from an escalator; the density

conditions are medium-low and the flows are quite stable, although occlu-

sions due to the presence of a column and other infrastructural elements

are present in the scene;

• university video, Figure 6(e) [37]: this sequence shows the arrival of stu-

dents that are going to undertake an admission test to a bachelor course at

the University of Milano-Bicocca; the density conditions are medium-low

but the number of pixels per person is quite low and many occlusions are

possible also due to the presence of infrastructural elements;

• gallery video, Figure 6(f) [38]: this footage was taken in a commer-

cial/turistic gallery in Milan’s city center, in a Saturday afternoon; the
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(a) Airport video and ground truth. (b) Hajj video and ground truth.

(c) Station video and ground truth. (d) Escalator video and ground truth.

(e) University video and ground truth. (f) Gallery video and ground truth.

Figure 6: Dataset of analysed videos and associated manually defined ground truth.

density conditions are medium-high and the point of vantage causes a very

high number of occlusions, also due to the irregular and varying nature of

pedestrian flows.
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All of the above figures also report a manual annotation describing the dom-

inant flows identified by a human observer, that can be qualitatively compared

to the achieved results, that will be presented later on. Different color codes

are used for representing different flows while source points are always marked

with yellow circles.

Since our framework consists of two major parts, the first aimed at gener-

ating dense long trajectories from short and accurate ones, the second able to

detect sources and sinks of dominant flows, we describe two types of experi-

ments. In the following subsection, we compare our method for the extraction

of long and dense trajectories with baseline tracking techniques, in particular

we consider KLT and SIFT based trajectories by analyzing all of the above

mentioned videos. In this case, we adopt both a qualitative and quantitative

approach, by showing the generated trajectories and also by comparing the num-

ber of trajectories extracted employing different thresholds for their length, to

evaluate the capability of the approach to generate sufficiently long trajectories.

In subsection 4.2, instead, we describe the overall results about the detection

of sources and sinks of dominant flows and we discuss them considering results

achieved in those situations by state-of-the-art methods.

(a) Temporal Plot of Trajectory. (b) Histogram of Trajectory.

Figure 7: Trajectory in Error.
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(a) Temporal Plot of Trajectory. (b) Histogram of Trajectory.

Figure 8: Stable Trajectory.

4.1. Comparison with Baseline Trajectories Extraction Approaches

In order to evaluate improvement obtained with our proposed framework,

we compare our method of generating long and dense trajectories with state

of the art trackers considered as a baseline: in particular, we consider KLT

trajectories adopted by [27, 28, 17, 19], SIFT trajectories adopted by [19, 39],

approach described by Solmaz et al. in [3].

Due to the unavailability of consolidated ground-truth data for this kind

of application, it is difficult to evaluate and compare the precision and, more

generally speaking, quality of the results achieved by the proposed approach and

baseline trackers. We propose here a combination of different quantitative and

qualitative measurements both in the above mentioned videos and in additional

situations.

4.1.1. Quantitative Analysis

In particular, we first examine the performance of the above approaches

when analyzing a synthetic rendered video. High quality rendered videos should

incorporate deforming objects, complex light reflectance, camera motion, optical

artifacts which make mimicking the real world videos very hard and challenging.

However, our intention with this test is to evaluate the ability of the above

24



approaches to consider some background considerations and knowledge about

pedestrian movement employing an extremely simple video including a particle

following different trajectories, to isolate the conceptual analysis the related

paths from technical issues of trackers. In fact, trajectories extracted from

complex videos in crowded environments imply errors and noise due to the

severe occlusions and we want to be able to filter out erroneous paths.

Trajectories belonging to one motion pattern (e.g. the trajectory of the head

of a pedestrian) may drift and become the part of different motion patterns

(e.g. the trajectory of a body part of another pedestrian moving in a different

direction). We call these trajectories as erroneous or occluded. The effect

of this kind of occlusion is schematized in Figure 7: in particular, Figure 7(a)

plots a trajectory extracted from a 25 frames synthetic video of a simple particle

moving in the captured area, while Figure 7(b) shows the orientation histogram

of the trajectory. Since the frame rate of the video is 25 frames per second, this

trajectory is associated to just one second and therefore, considering normal

human locomotion, it should not present a wide variety of orientations, but

rather a main direction with relatively little changes. The orientation histogram

in Figure 7(b) instead reports a wide range of orientations, highlighting the fact

that the trajectory either belongs to noise or occluded with different motion

patterns. In contrast, a more stable trajectory is shown in Figure 8, and it is

characterized by a limited range of orientations as shown in Figure 8(b). On the

basis of these considerations, we defined a plausibility test for each individual

trajectory extracted from the proposed approach and other baseline methods.

For computing this plausibility factor for a given trajectory T{X, θ}, where X

represents the spatial locations and θ represents orientations of the trajectory,

with T containing k points, we perform following steps

1. Compute circular mean, i.e, θµ of θ as in [40] for the given trajectory T .

2. Compute circular distance from the mean for all trajectory points, i.e,

CircDist i = (θµ − θi), with 0 ≤ i < k and where θi is ith point of the

trajectory.
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3. Compute an indicator of smoothness

Smoothi =

 1, if ( θµ - θi ) < Ψ where Ψ is set to 0.7854

0 otherwise

4. Compute the overall trajectory smoothness indicator

Smooth =

∑k−1
i=0 Smoothi

k

We consider a trajectory T as accurate if its smoothness indicator Smooth ≥

γ, where γ is set to 0.5 in all the following experiments. This kind of test, for

instance, would label as accurate the trajectory in Figure 8 but not the one in

Figure 7.

By following this procedure we performed plausibility tests on all other tra-

jectories extracted from the real world analyzed videos. We then compute an

overall plausibility rate by computing the ratio between the number of accurate

trajectories and the total number of extracted trajectories. The mean plausibil-

ity rate, mean length, minimum and maximum lengths of extracted trajectories

for all methods using all the analyzed videos is summarized in Table 4.1.1. Re-

sults show that the sparse methods, i.e, KLT and SIFT , produce a relatively

low number of trajectories compared to other particle based dense methods.

KLT trajectories have approximately the same mean length as the dense meth-

ods but the plausibility is relatively lower. In case of SIFT , the mean precision

rate is high but the mean length of the trajectories is too small as compared to

other methods, and therefore, the trajectories extracted by this method could

not be able to capture the whole motion of the scene. We also run Solmaz

et. al [3] and our algorithm with the same configuration and by initializing the

same number of particles for all the analyzed videos. The plausibility rate of

trajectories extracted by our Short Dense Trajectories (SDT) method discussed

in section 3.1 is very high relative to other methods but with approximately the

same mean length, that would also be insufficient to describe the whole motion

in the scene. We improve the mean length of trajectories by employing our Long

Dense Trajectories (LDT) method discussed in section 3.3 by paying a small cost
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in terms of plausibility. In fact, plausibility rate for LDT is reduced because

the tracks are clustered based on the similarity measure 3.4, which implies the

potential connection of tracklets leading to a change in the flow direction and

therefore to a less smooth but still plausible trajectory.

We further investigate the variation of performance of our and baseline meth-

ods with a changing segment size of the analyzed videos. We divide each an-

alyzed video into five segments of different size, ranging from 10 to 50 frames.

For each segment, we extract features (in case of SIFT and KLT ) or initialize

particles (in case of other methods) in the first frame and tracked through last

frame. In case of LDT, we extract tracks for each segment and then apply al-

gorithm 2. The results of this analysis on the mean plausibility rate are shown

in Figure 9(a): we observe that it generally drops with the growth of the seg-

ment size for all approaches but DLT whose plausibility decreases only slightly.

As we already discussed, the plausibility rate of DLT is lower then DST but

still higher than other methods. The mean length plot for the same analysis is

shown in Figure 9(b): we observe that mean length slightly increases with the

growth of segment size, but for DLT it remains almost constant. This means

that this method is able to capture global motion information in the scene also

with relatively small segments.

Table 1: Summary of mean plausibility and mean length of different methods

Methods # of traj. plausib. mean length max length min length

KLT 2576 0.4973 23.2686 73.0258 2.0142

SIFT 3636 0.7268 4.9273 58.7974 2.0031

Solmaz et al 7633 0.6027 26.0615 86.8846 2.0104

SDT 7633 0.9876 24.9281 87.0447 2.0075

LDT 7633 0.8173 98.0238 320.8929 2.2279

4.1.2. Qualitative Analysis

The qualitative analyses will translate into understandable examples the

implications of the above quantitative analysis.
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(a) Mean Plausibility Rate Plot.

(b) Mean Length Plot.

Figure 9: Evaluation of mean plausibility and length of trajectories with different segment

size.

In order to obtain KLT trajectories, we first identify low-level features (cor-

ner points) in the initial frame using standard Shi-Tomasi-Kanade detector [41].

These corner points are tracked over time by using [42].
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(a) KLT in university scenario. (b) SIFT in university scenario.

(c) Solmaz et al. in university scenario. (d) Proposed approach in university sce-

nario.

Figure 10: Comparison between state of the art trackers (KLT and SIFT) and the proposed

approach in the university scenario.

On the other hand, in order to extract SIFT trajectories, we first extract

SIFT interest points from the initial frame; these points are then tracked through

multiple frames by matching euclidean distance between SIFT descriptors within

a neighborhood. More details about SIFT feature tracking can be found in [43].

Finally, trajectories generated by the application of [3] are more aimed at

supporting crowd behavior understanding rather than implementing a tradi-

tional tracking system; due to this perspective, they represent the closest ap-

proach to the one we are proposing.

Before providing a quantitative analysis of the performances of the above

approaches, a qualitative comparison in the university and gallery videos is
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(a) KLT in gallery scenario. (b) SIFT in gallery scenario.

(c) Solmaz et al. in gallery scenario. (d) Proposed approach in gallery scenario.

Figure 11: Comparison between state of the art trackers (KLT and SIFT) and the proposed

approach in the gallery scenario.

provided in Figures 10 and 11: in the university scenario, SIFT is actually

unable to generate trajectories in good accordance with the ground truth, and

it generates even noticeable false positives, whereas KLT is able to generate

plausible but short trajectories, due to the fact that features that are used for

tracking are not visible in every frame. The approach of Solmaz et al. [3],

instead, produces results that are relatively similar to the trajectories generated

by the proposed approach, although the trajectories are generally shorter and

sometimes erroneous (i.e. continuous but associated to paths that are not really

associated to real pedestrian flows). This difference is due to additional rules in

our approach that avoid the generation of long tracks when base tracklets have

different orientation, and it is even more apparent in the gallery scenario. In
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this situation both SIFT and KLT fail, since this video is extremely problematic

for feature–based approaches due to dynamic occlusions and clutter, whereas

Solmaz et al. [3] produces an extremely high number of tracks basically due

to the fact that optical flow in the walkable area of the gallery is dense and

in a large number of varying directions. The additional rules for filtering non

plausible trajectories we included in the proposed approach are instead able to

consistently reduce this noise.

As above two trackers produce trajectories based on feature points extracted

from the initial frame of video segment, therefore these trajectories are sparse.

Another problem with feature base trajectories is that in high density situations,

due to complex movement of people, and due to severe inter and intra object

occlusions, feature points can not be tracked for long period of time. Therefore,

in high density situations, feature base trajectories are short. These short and

sparse feature based trajectories are inadequate to capture crowd dynamics.

For a quantitative comparison of the results of these approaches, we report

in Figure 12(a) a graphs describing the track density in different scenarios,

that is, the raw number of tracks generated by the different approaches after

removing noise and tracklets whose length is less than 2. Per se, this metric

is not actually an indicator of success of the approach, nonetheless the very

low number of tracks generated by the SIFT approach is an indicator that it

is simply unable to grasp the fundamental motion information of the scene.

In Figure 12(b), instead, we show the percentage of the above tracks that are

longer that a threshold set to 10: once again, SIFT is not adequate to this task

since even if the produces tracks are few, most of the produced ones are not even

long. The other approaches perform similarly in most of the scenarios, in case

of medium-low density and/or structured crowds (i.e. with flows of pedestrians

that are neatly separated and generally stable), whereas some difference can

be highlighted in the university and gallery videos. In these cases, flows of

pedestrians actually mix and cause occlusions (generating problems to KLT)

and a very high number of possible ways of connecting optical flow tracklets

(for Solmaz et al. [3]).
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(a) Track density in the analyzed videos.

(b) Track survival with threshold 10 in the analyzed videos.

Figure 12: Quantitative analyses about track density and survival comparing the proposed

approach and state-of-the-art tracking approaches.

To further characterize these differences, we also report in two extremely
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different scenarios, station and gallery, the variation in the survival rate of

generated tracks with the growth of the length threshold. Results of this analysis

are shown in Figure 13: while for the station video Solmaz et al. [3] produce a

percentage of surviving tracks that is very similar to our approach, and quite

higher than both SIFT and KLT, in the gallery scenario the difference between

the survival tracks ratio is already significant for a length threshold set to 10.

4.2. Identification of Sources and Sinks, and Characterization of Dominant

Flows

In this section, we present results of our proposed framework with reference

to the capability to identify sources, sinks (as defined in the introduction) and

in general to characterize pedestrian flows in the scene. We analyze different

videos to highlight different features and discuss the performance of the proposed

approach also with reference to current approaches to this problem present in the

literature. Once again, we propose both quantitative and qualitative analyses.

4.2.1. Quantitative Analysis

The input to our framework is represented as a sequence of frames and we

divide each video sequence into different temporal segments. The length of each

analyzed video is 350 frames and we set the length K of each segment equal to

50 frames.

We extract global flows by using the trajectories extracted by using our

approach and other baseline methods and finally applying our clustering algo-

rithm 2. In order to quantify the accuracy of each method after employing our

clustering algorithm, we compare the achieved results with ground truth global

flows. We obtained ground truth data for each analyzed video by manual iden-

tification of global flows: the visual plot of manually detected global flows for

each analyzed video is shown in Figure 6.

Since to the best of our knowledge there is no agreed upon mechanism for

evaluating the accuracy in the detection of sources and sinks, and in the char-

acterization of main flows in a scene, we introduced and computed two metrics
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(a) Percentage of remaining tracks with growing thresholds in the station video.

(b) Percentage of remaining tracks with growing thresholds in the gallery video.

Figure 13: Quantitative analyses comparing the survival of trajectories with varying length

threshold in station and gallery videos for the proposed approach and state-of-the-art tracking

approaches.
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(a) Similarity Metric.

(b) Source/Sink Locations Error Metric.

Figure 14: Similarity and source/sink error metrics comparison between proposed approach

and baseline methods.

and in particular: (1) flow similarity metric and (2) source/sink error metric.

We define and compute flow similarity metric by comparing global flows

Gtrack detected by each tracks generation method followed by our clustering
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algorithm with ground truth Gth. The similarity is measured exploiting LCS

and by using the following equation:

Sim =

(∑N
i=1 arg maxj∈[1,M ]

LCS(Gtrackj ,Gthi)
Length(Gthi)

)
N

(4)

In particular, N represents total number of ground truth tracks while M

represents total number of global tracks detected by method for the analyzed

video. The equation considers all the actual N global tracks inn the ground

truth data and selects the extracted track that is most similar to the ground

truth.

We observe that, in this experimentation, N ≤ M uniformly for all ap-

proaches; this is likely caused by the fact that our clustering approach works

very well with long and dense tracklets but cannot merge into a single cluster

tracklets that are too short and not similar according to LCS. We also observe

this kind of situation in clustering tracks achieved with baseline methods, since

these methods generally produce small and implausible tracks in contrast to

DLT that is generally able to capture each dominant motion and to produce

almost the same number of global tracks present in the ground truth as shown

in Figure 15.

We computed mean similarity Sim for each analyzed video adopting the

different track generation techniques and results are shown in Figure 14(a),

which supports both a quantitative and qualitative evaluation: darker blocks,

in fact, show that global tracks identified by our proposed method is closer to

the ground truth than the lighter blocks, associated to the baseline techniques.

The second metric simply measures how far the source/sink locations of

extracted global tracks from the source/sink locations of ground truth data. The

simplest way to compute this metric would be to calculate euclidean distance

between the source/sink locations of global tracks and source/sink location of

ground truth tracks for the analysed video. However, this is implausible for

mostly two reasons: first of all, distance expressed in pixels is dependent on the

type of scene and not necessarily proportional to actual errors in the real world,
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Figure 15: Total number of global tracks found for each method by our clustering algorithm.

due to perspective; second, it is very hard to provide a way to normalize in a

sensible way this kind of metric.

Therefore, in order to alleviate this problem, we build an Association Matrix

that captures the joint probability distribution of source and sink locations of

all the trajectories in the analyzed video. Actually, we build two matrixes, one

constructed employing the ground truth data and another employing the global

trajectories extracted automatically that present the best match to ground truth

ones, as for the similarity metric.

In order to build this matrix, we assume two discrete jointly distributed

random variables X, representing “source” locations of the trajectories and Y

representing “sink” locations. An Association Matrix for n trajectories is shown

below.

P (X,Y ) =



p11 p12 p13 . . . p1n

p21 p22 p23 . . . p2n
...

...
...

. . .
...

pn1 pn2 pn3 . . . pnn


Each row/column of an Association Matrix shows the probability distribu-

tion of the source and sink points of single trajectory Pk over all other n trajecto-

ries in the analyzed video. Let Pk is the distribution of sources and sinks of tra-

jectory k with all other n trajectories and represented as {pk1, pk2, pk3, . . . , pkn},
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where p(k, j), is the joint probability of start and stop locations for trajectories

k and any trajectory j. We use a Gaussian likelihood model [44] to compute the

probability of a trajectory k to start (or stop) from the initial (or final) location

of a (potentially different) trajectory j in the scene as equation 5:

px(k, j) = e−‖
xk−xj
σ ‖ (5)

Where xk and xj are the source (or sink) locations respectively of trajec-

tory k and j. Assuming independence among the trajectories, we multiply the

above values for start and sink points to calculate joint probability p(k, j) for

trajectories k and j. In the same way, we compute joint probabilities of all other

trajectories and after normalization, we obtain an Association Matrix.

Following this procedure, we computed Association Matrixes for ground

truth tracks (AMGth) and the selected global tracks produced by the compared

methods (AMGtrack), in all the analyzed videos. Finally, we computed the

difference between the Association Matrices by using Kullback-Leibler (KL) di-

vergence, also known as relative entropy, denoted by DKL(AMGth||AMGtrack),

computed by using equation 6. The value DKL(AMGth||AMGtrack) is associ-

ated to the loss of information caused by using Gtrack instead of ground truth

data Gtrack, and it should be considered, therefore, an indicator of how distant

the results are from the ground truth.

DKL(AMGth||AMGtrack) =
∑
i

AMGth(i) ln
AMGth(i)

AMGtrack(i)
(6)

Figure 14(b) reports the values of the above metric for evaluating the dis-

tance between the source/sink locations achieved with the proposed method and

other baseline approaches from ground truth. This metric is associated to an

error, so the low values indicate that source/sink of the global tracks lie close

to the ground truth. Results are in line with those related to the flow similarity

metric.

Finally, we also compare our method with most relevant state of the art

techniques, i.e, [35] and [27], in a quantitative way. Both these methods use
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KLT method for extracting trajectories from the crowded scene followed by

clustering algorithm. Since KLT is a sparse method the extracted trajectories

are unreliable and short enough to cover just essential parts of the motion in

the scene. Another limitation with [35] is that during clustering phase, instead

of updating the cluster center, the long trajectory among the set of clustered

trajectories is selected as new cluster center. In this way, several trajectories

representing the single true flow appeared at the end of clustering. The cluster-

ing algorithm is improved in [27] by updating the cluster center, however, the

trajectories produced at the end of clustering are still short and they appear as

different parts of a single unique actual flow. As shown in 16(a), methods [35]

and [27], produce very low similarity values. The reason is that the trajecto-

ries produced by these methods are short and hence equation 4 gives very low

values, and [27] does not provide significant improvement over [35].

4.2.2. Qualitative Analysis

Local tracks can be considered as a by-product of the overall process, but

they can represent useful indications of changes in the situation between different

time slices associated to the different segments. For instance, Figure 17 shows

different local tracks associated to different segments of the station video as well

as the overall global detected tracks: the overall flows are detected correctly

(qualitatively comparing Figure 18(c) with Figure 6(c)), moreover during the

analysis, some flows detected in a given segment (i.e. Figure 17) are not detected

in a following one. This kind of event, beyond the specific situation, could be a

signal that could be interpreted by a higher-level module, performing semantic

analysis of the results, indicating that an area is changing from free flow to a

congested state.

Other situations, similarly characterized by medium-low density situations

and relatively stable flows, yield similar results: Figure 18(a) shows that in the

airport video the main flows are correctly detected in a multi-floor scenario; some

of them are actually correlated, as one merges into another: pedestrians climbing

two staircases actually merge into a single flow in a T-junction, but they are
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(a) Comparison of Similarity Metric.

(b) Comparison of Source/Sink Locations Error Metric.

Figure 16: Comparison with state of the art source and sink identification methods.

detected as two flows. In an analogous way, the university video is also correctly

analyzed, in terms of detection of main flows, as shown in Figure 18(e), but in

this case one of the detected flows is actually generated as a split from another

larger one. These considerations also call for a subsequent phase of semantic
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Figure 17: Local tracks resulting from analysis of segments and final global tracks in the

station scenario.
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analysis after the algorithm, in addition to a quantitative characterization of

the flows that would be necessary to actually define an O/D matrix.

The university video analysis also shows the fact that the proposed approach,

if properly configured (i.e. with thresholds’ values adequate to the specific

scenario that is being analyzed), is robust to occlusions due to infrastructural

elements that interrupt the visibility of a given flow of pedestrians: poles and

tree branches, in fact, do not avoid the completion of tracklets into proper global

trajectories. The escalator video analysis, though, shows that this robustness

has limits: overall flows are in fact detected but the large obstacle (i.e. a

column) combined with the value of the thresholds cause the upper flow to be

split into two motion patterns. Adjusting the thresholds, in this case, could solve

the problem but there could be downsides, such as the acceptance of incorrect

trajectories representing implausible completions of short tracklets.

Finally, the gallery video 18(f) represents a rather extreme scenario that is

being mostly reported to show how the proposed approach is robust to occlu-

sions, difficult lighting conditions, high pedestrian density and lack of apparent

dominant motion patterns. The scenario, in fact, should be analyzed for a

longer time-frame for more interesting and substantial results, that could lead

to an improved understanding of the attractiveness of shops and other potential

interest points in the area.

In conclusion we can stress the fact that the proposed approach can uni-

formly provide very interesting results, from the perspective of characterizing

dominant pedestrian flows, in all the considered crowding conditions. In the sta-

tion and escalator videos the approach described in [27] accurately detects the

flows but the detected tracks are not long enough to capture the whole motion

information, leading to an incomplete characterization of the overall flows.

Similar considerations can be done considering the approach described in [28],

in particular for the airport footage: this approach identifies small tracklets but

complete information about the motion is missing while our results completely

describe flows with their respective sources and sinks. In the Hajj video, more-

over, the approach introduced in [28] detects redundant flows while our method
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(a) Airport video results. (b) Hajj video results.

(c) Station video results. (d) Escalator video results.

(e) UniMiB video results. (f) Gallery video results.

Figure 18: Crowd flow characterization results of the proposed approach in the different

scenarios.

correctly summarizes horizontal flow, although both approaches miss the verti-

cal flow that the human annotator detected, as shown in Figure 6(b).
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4.3. Parameters of Algorithms

Here we discuss parameters setting for proposed algorithms 1 and 2. Since

both algorithms use different parameters therefore we describe parameter setting

for each algorithm separately. Parameters setting for algorithm 1 is described

in table 4.3. step is the first parameter, though not the actual parameter of

algorithm 1, specifies the resolution of grid of particles to be overlaid on the

scene. We fix the value of step to 10 for all the analyzed videos. The resolution

of grid of particles for a given image of size 300x400 with step 10 is 30x40. It

implies that we drop the particle at every 10th pixel location while scanning

from left to right (row wise) or top to bottom (column wise) of an image.

We can also increase the resolution of the grid by lowering the value of step,

but this will make the algorithm computational expensive ending up with the

similar results. ε controls the euclidean distance between the sink point of query

tracklet and source point of neighbor tracklet. We set this value to 7.5 for all

analyzed videos. mt controls the matching ratio. We fix this value to 0.4 for all

the analyzed videos, that implies that our algorithm accepts candidate tracklet

which is at least 40% similar to that of query tracklet.

The description of parameter settings for algorithm 2 is shown in Table 3.

Ω controls the spatial matching of any two input trajectories. Tuning of Ω is

required in order to obtain semantically useful results for a given sequence, since

it depends on the video frame resolution, crowd density, crowd type, i.e struc-

tured or unstructured. We set a low threshold value for gallery sequence, since

it involve complex movement of people. We use higher value of Ω for structured

crowds. This parameter is determined experimentally. Before running the al-

gorithm 2 on a long video sequence, an analyst can tune this parameter to an

appropriate value by observing the video for a short time. Parameter ϕ is the

same as mt and we set it to 0.5 for all video sequences.

Some considerations must be done, finally, on the fact that the passage

between local results, related to a single video segment, and final overall global

motion flow description does not employ temporal information associated to the

local flows (which would probably be necessary for a proper tracking algorithm).
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Table 2: Parameter Setting for Algorithm 1

Variable Description Value

step Control the resolution of grid 10

ε allowed distance between tracklets in Algorithm 2 step( 3
4
)

mt Matching ratio 0.4

Table 3: Parameter Setting for Algorithm 2

Hajj Station Unimib Airport Escalator Gallery

Resolution 384x576 360x480 360x480 360x480 480x480 360x480

Ω 120 90 90 90 120 70

ϕ 0.5 0.5 0.5 0.5 0.5 0.5

The example shown in Figure 17 shows that the clustering technique devised

and adopted for this final passage actually allows considering all flows that, even

just temporarily (i.e. not in all segments), represented a relevant and noticeable

flow of pedestrians. Moreover, the proposed approach actually exploits the fact

that pedestrians tend to follow similar paths in the environment, sometimes

imitating the movement of other pedestrians: the trajectory completion function

described in Algorithm 2, in fact, supports the detection of an overall pedestrian

flow even in a single video segment, even though a single pedestrian would not

be able to cover it, as long as other pedestrians are moving along a similar path.

5. Conclusions and Future Works

The paper presented a framework for the automated analysis of videos in

naturalistic conditions and the identification of points of entrance (sources) and

exit (sinks) of the most significant pedestrian flows. The approach adopts op-

tical flow for the identification of pedestrian movements, and it considers the

analyzed video as a set of sequences. The latter are analyzed separately, produc-

ing tracklets that are then clustered to produce global trajectories, defining both

sources and sinks, but also characterizing the movement of pedestrians in the

scene. The algorithms work according to geometric considerations essentially
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considering the plausibility of extending tracklets associated to optical flow by

connecting them when they represent a smooth continuation one of another,

and then clustering those sharing a significant subsequence.

The approach has been presented in details, also setting it in the current state

of the art. Results of its application to the analysis of videos made available by

other researchers and by our research group have been discussed mainly with

reference to two aspects: (i) the capability of producing long and dense tracks

associated to pedestrian movements, also with reference to the most relevant

approaches present in the computer vision literature, and (ii) the capability of

summarizing pedestrians’ movements, identifying at the same time sources and

sinks. For both aspects, the considered videos cover a wide range of crowding

situations, from medium-low to relatively high crowding conditions, in cases of

structured and unstructured crowds. For both aspects quantitative and qualita-

tive analyses of results have been produced. We plan to make available both the

original videos, ground truth and achieved results through a publicly available

data set by the time this paper is published.

Future works are mainly headed towards four directions:

1. extensions of the approach to produce information that can be more di-

rectly used by modelers for the configuration of simulation scenario, that

is, origin destination matrices and traffic assignments: this point will

require a quantitative characterization of the sources, sinks and main

flows, and it will also imply a different form of experimentation analyz-

ing longer videos, but the quantitative evaluation of this development is

rather straightforward;

2. extension of the approach to consider multi-camera scenarios: the present

approach is very promising but so far we did not analyze large scenarios

in which the analyzed area can only be covered by more cameras and

scenes; this will require a higher level of correlation among results of the

application of the same approach to different videos, a higher level that is

also related to the next point;
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3. extension of the approach to perform a semantic analysis of the results, for

the identification and treatment of situations essentially characterizable as

(i) confluence of different flows in a single one, (ii) separation of initially

joint flows; these situations, as well as the previous one, will likely require

the adoption of some form of knowledge representation and reasoning on

graph-like structures associated either to static spatial representations or

to the results of the application of the proposed approach.
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Algorithm 2 MatLab-like pseudo-code for the clustering long trajectories into

local dominant flows
Input: Long Trajectories T

Output: Local dominant flows T

1: while c 6= 0 do

2: idx← sort(T,′ descend′)

3: while idx 6= ∅ do

4: topidx← idx(1)

5: lidx← length(idx)

6: lowidx← idx(lidx)

7: count← 1

8: idx(topidx)← ∅

9: cluster[clustidx]← T (topidx))

10: for i← 1 : length(idx) do

11: R← LCS(cluster[clustidx],T (lowidx))
min(cluster[clustidx],T (lowidx))

12: if R ≥ ϕ then

13: cluster[clustidx]← UpdateCenter(cluster[clustidx], T (lowidx)))

14: idx(lidx)← ∅

15: lidx← lidx− 1

16: lowidx← idx(lidx)

17: else

18: lowidx← idx(lidx− 1)

19: lidx← lidx− 1

20: end if

21: end for

22: clustidx ← clustidx + 1

23: end while

24: if length(T ) 6= length(cluster) then

25: c← 1

26: else

27: c← 0

28: end if

29: T ← cluster

30: end while
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