
Groups Acting Freely on Calabi-Yau Threefolds

Embedded in a Product of del Pezzo Surfaces

Gilberto Bini∗and Filippo F. Favale†

November 17, 2018

Abstract

In this paper, we investigate quotients of Calabi-Yau manifolds Y embed-
ded in Fano varieties X which are products of two del Pezzo surfaces -
with respect to groups G that act freely on Y . In particular, we revisit
some known examples and we obtain some new Calabi-Yau varieties with
small Hodge numbers. The groups G are subgroups of the automorphism
groups of X, which is described in terms of the automorphism group of
the two del Pezzo surfaces.
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1 Introduction

In [13] and [14] Tian and Yau discover a new Calabi-Yau manifold with Euler
characteristic equal to -6. Let us briefly explain their seminal example. To begin
with, they consider the product X of two cubic Fermat surfaces in P3

C. Next,
they pick a smooth hyperplane section Y in X, which is invariant with respect
to a group G isomorphic to the cyclic group of order three. By adjunction and
by Lefschetz’s Hyperplane Theorem, Y turns out to be a smooth Calabi-Yau
threefold, i.e., a smooth compact Kähler threefold with trivial canonical bundle
and no holomorphic p-forms for p = 1, 2. The Euler characteristic of Y is −18
and the two significant Hodge numbers h1,1(Y ) and h1,2(Y ) are 14 and 23,
respectively. To reduce to Euler characteristic and the Hodge numbers, Tian
and Yau take the quotient of Y with respect to G that turns out to act freely
on it. The quotient manifold Y/G is a Calabi-Yau variety with Hodge numbers
h1,1 = 6 and h1,2 = 9.

In recent years, physicists have focused on Calabi-Yau manifolds with small
Hodge numbers: see, for instance, [2], [4], [3], [6] and [9]. In fact, imagine to plot
the distribution of Calabi-Yau varieties on a diagram with variables the Euler
characteristic χ(Y ) (on the horizontal axis) and the height h(Y ) := h11(Y ) +
h12(Y ) (on the vertical axis). Fix a pair (χ0, h0) of positive integers such that
χ0 is even and −2h0 ≤ χ0 ≤ 2h0. For h0 ≤ 30, it turns out that there are
still a lot of missing examples of Calabi-Yau varieties with Euler characteristic
χ0 and height h0. The example in [13] is even more significant because the
Euler characteristic is −6. In general, special attention is given to those Calabi-
Yau manifolds that have Euler characteristic 6 in absolute value since they
correspond to three-generation families (see, for instance, [3]).

Remarkably, the example in [13] can be generalized in the following way. The
two cubic Fermat surfaces are examples of degree three del Pezzo surfaces, i.e.,
smooth surfaces with ample anticanonical divisor which can be obtained as the
blow-up of P2

C at six points in general position. A first generalization in this
direction was given by Braun, Candelas and Davies in [3]. In that paper, they
discover a new Calabi-Yau manifold with Euler characteristic −6 and small
Hodge numbers. They replace the two Fermat surfaces in P3

C by two del Pezzo
surfaces of degree six and come up with a group of order twelve that acts freely
on a suitable hyperplane section of the product.

In this paper we generalize the examples mentioned above even further and we
put them in a more general context. Indeed, let us consider two suitable smooth
del Pezzo surfaces S1 and S2. The product X is a smooth Fano fourfold, i.e.,
−KX is ample. In X we pick a smooth threefold Y which is in | − KX |. As
pointed out by the example in the Introduction in [11] this requires some work:
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in fact, for some choice of the two del Pezzo surfaces it is not even possible.
Moreover, we pick a finite group G in Aut(S1×S2) that acts freely on Y so that
the quotient variety is a Calabi-Yau manifold. Since the Euler characteristic
χ(Y ) is negative, it is easy to verify that the height of Y/G is less than the
height of Y for any non-trivial group G. Within this set-up, we obtain the two
examples mentioned above; further, we find new Calabi-Yau manifolds with
small Hodge numbers. The smoothness and the free action of G on a suitable
Y are proved as follows. We pick a group G that has only finitely many fixed
points on X. We decompose the representation of G on H0(X,−KX) as a direct
sum ⊕Vi of irreducible subrepresentation. We consider a subspace W such that
for every g ∈ G and every s ∈ W , g∗(s) = λgs for some λg ∈ C∗, i.e. for
every g ∈ G, W is an eigenspace for g∗.We pick a section s ∈ W , if there are
some, so that the corresponding zero locus does not intersect the fixed locus of
G. Next, we look at the base points of the subsystem W ≤ H0(X,−KX). In
case there are some, we take a generic section and prove that the base points
are smooth. This is done by direct computation with MAPLE. A Bertini-type
argument yields the existence of a smooth threefold Y in X on which G acts
freely.

In Section 5 we present the examples we obtain case by case. Except for the
last subsection of that Section, all the examples have height less than 20. Un-
fortunately, we do not obtain any new three-generation manifolds, i.e., a man-
ifold with |χ(Y )| = 6. Moreover, in Section 8, you may find all the exam-
ples of quotients of Calabi-Yau threefolds Y embedded in S1 × S2 by groups
which are of maximal order. In other words, we take the quotient by a group
H ≤ Aut(S1×S2) such that the restriction to Y yields a free action and H can
not have order greater than the groups used. Finally, we investigate the height
of the quotient variety. In several cases, we are able to say that the height for
the quotient threefold is the least possible within this framework.

The following picture represents the tip of the distribution of the Calabi-Yau
manifold with respect to the Hodge numbers. The diagonal axis are h1,1(Y ) and
h1,2(Y ) whereas the horizontal and the vertical axis are χ(Y ) and h(Y ), respec-
tively. We plot only the known manifolds with height less or equal than 31. The
solid dots correspond to quotients found in this paper. The blue rings represent
the ones known until now (with respect to the data collected in [2], [4], [3] and
[6]). The black rings are quotients by groups whose order is maximal. From the
picture below, we can summarize our results as follows. The dots (3, 5), (2, 7)
and (5, 13) represent NEW Calabi-Yau threefolds. There exists a Calabi-Yau
manifold corresponding to the pair (1, 5) with non-abelian fundamental group:
see [4]. Our example in Section 5.1 has abelian fundamental group isomorphic to
the product of the cyclic group of order two and that of order eight. Moreover,
we come up with a Calabi-Yau manifold with Hodge numbers (2, 11) (cf. (5.3)),
which are the same as those described in [4]. Finally, we construct other vari-
eties with greater height (see Section 5.6) but they correspond to existing dots
in the picture below. In all the cases where other Calabi-Yau manifolds already
exist, it would be interesting to know whether our examples are isomorphic to
those or not.
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In some cases, it is not possible to consider non-trivial quotients with our
method. In fact, we prove, for instance, that there does not exist a Calabi-Yau
variety which is the quotient by a group of order seven of a smooth anticanonical
section Y in a product of two del Pezzo surfaces of degree two. This type of
results is collected in Section 6. To prove them, we use the following theorem
which is proved in Section 7. For this purpose, we first use some Mori theorem
of Fano fourfolds which are products of two Fano varieties. Second, we also
recall that for low degree del Pezzo surfaces are toric varieties. Thus, we apply
a theorem due to Demazure (later generalized by D. Cox in [5]) on the structure
of the automorphism group of toric varieties. More specifically, the following
holds (see Section 7).

Theorem. Let S1 and S2 be two del Pezzo surfaces. Then

• If S1 6= S2, Aut(S1 × S2) = Aut(S1)×Aut(S2);

• If S1 = S2 6= P1 × P1, Aut(S×2) = Aut(S)×2 n Z2;

• If S1 = S2 = P1 × P1, Aut((P1)×4) = Aut(P1)×4 n S4, where S4 is the
symmetric group with 24 elements.

Acknowledgments. During the preparation of this work, we asked some ques-
tions and suggestions to various people we kindly acknowledge: Alberto Alzati,
Cinzia Casagrande, Philip Candelas, Igor Dolgachev, Bert van Geemen, Grze-
gorz Kapustka, Michal Kapustka, Antonio Lanteri and Gian Pietro Pirola. This
work was partially supported by MIUR and GNSAGA.
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2 Preliminaries

We say that a complex surface S is a del Pezzo surface if it is projective, smooth,
simply-connected and the anticanonical divisor −KS is ample. Examples of del
Pezzo surfaces are blow-ups of the projective plane in a finite set ∆ of 0 ≤ n < 9
points in general position and P1 × P1. As proved in [7], this list is exhaustive.
We often write dPd to mean a del Pezzo surface that is obtained by blowing up
9−d points of P2 that are in general position. Let S = Bl∆ P2. We can identify
H0(S,−KS) with the vector space of the homogeneous polynomials of degree 3
with variables {x0, x1, x2} such that f(P ) = 0 for all P ∈ ∆. It is easy to show
that h0(S,−KS) = d+ 1 if S = dPd. Moreover, if k = 9− d then

−KS = 3π∗H −
k∑
i=1

Ei,

where H is the hyperplane divisor on the projective plane and the Ei’s are the
exceptional divisors. Thus, K2

S = 9 − k = d. For d ≥ 3 we have that −KS is
very ample. For d = 2 the anticanonical system | −KS | gives a 2 : 1 map of S
in P2 branched along a smooth quartic. For d = 1 the anticanonical model of S
is a finite cover of degree two of a quadratic cone Q ramified over a curve B in
the linear system |OQ(3)|.

Suppose that Y is a Calabi-Yau threefold and that G is a group that acts freely
on Y . Then it is well known that the quotient Y/G has a canonical complex
structure such that the projection on the quotient is holomorphic. Furthermore,
the quotient map is a local isomorphism.

Theorem 2.1. If the action of G is free then Y/G is also a Calabi-Yau threefold.
Moreover, the quotient is projective.

Proof. Take g ∈ G \ {Id}. The manifold Y is a Calabi-Yau threefold, so

h1,0(Y ) = h2,0(Y ) = 0, h3,0(Y ) = 1.

There exists ω ∈ H3,0(Y ) such that ωP 6≡ 0 for all P ∈ Y (this is equivalent to
KY ≡ 0). We want to show that g∗ω = ω. The maps

g∗ : Hp,0(Y ) −→ Hp,0(Y )

are zero for p = 1, 2 whereas for p = 0, g∗ is the identity. We apply the
Holomorphic Lefschetz Fixed Point formula, which in this case reads as follows:

0 = 1− 0 + 0− Tr(g∗ : H3,0(Y ) −→ H3,0(Y )).

Since h3,0(Y ) = 1 (Y is a Calabi-Yau manifold) we get g∗ = Id for p = 3 and
for all g ∈ G. Thus the action of G on H3,0(Y ) is trivial. We have the following
isomorphism ([1], p. 198):

Hp,q(Y/G) ' Hp,q(Y )G;

hence H3,0(Y/G) ' H3,0(Y )G = H3,0(Y ) and there exists a holomorphic
3−form ω̃ on Y/G such that π∗ω̃ = ω and, as π is a local isomorphism,
ω̃P 6= 0 for all P ∈ Y/G. This is equivalent to KY/G ≡ 0. Finally, using
hp,0(Y/G) = hp,0(Y )G one has h1,0(Y/G) = h2,0(Y/G) = 0 and this concludes
the proof. As for the projectivity of Y/G, see, for example, [10], p. 127.
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We will adopt the following framework. We will take two del Pezzo surfaces S1

and S2, their product X = S1 × S2, which is a Fano fourfold, and a smooth
element Y of | −KX |.
First of all, we will define a number M(S1, S2) which bounds the maximum
order of a finite group acting freely on Y and which depends only on the degree
of S1 and S2.

Definition 2.2. Let M(S1, S2) to be the positive greatest common divisor of
χ(Y )/2 and χ(−ι∗KX)), where ι : Y → X is the embedding of Y in X.

Notice that if Y ⊂ S1 × S2 is a Calabi-Yau threefold and G is a finite group
that acts freely on Y , then |G| divides M(S1, S2).

With the definition of M(S1, S2) in mind, we will search for a group G with the
following properties:

(a) G is a subgroup of Aut(S1 × S2);

(b) |G| = M(S1, S2).

Note that if Fix(G) ⊂ X contains a curve L, by the Nakai-Moishezon criterion
of ampleness, −KX ·L > 0, and since Y = −KX we will have some fixed points
on Y . Hence it’s necessary to choose groups whose action on X has at most a
finite number of fixed points.

Finally, Let m(S1, S2, Y ) be

max {|G| | g(Y ) = Y ∀g ∈ G and satisfies (a) and (b)} .

We anticipate that there are cases in which M(S1, S2) > 1 but the only group
with these requests is the trivial group (that is m(S1, S2, Y ) = 1 for all Y ).

3 Necessary Conditions

Assume that S1 and S2 are smooth projective surfaces and Y is a Calabi-Yau
threefold embedded in X = S1 × S2. Then the following result holds:

Theorem 3.1. The Euler characteristic of Y is

−2K2
S1
K2
S2
.

Proof. By the exact sequence of vector bundles

0→ TY → TX → NY/X → 0

and, as Y is a Calabi-Yau manifold ( which implies c1(Y ) = 0), we have:

(1 + c2(Y ) + c3(Y )) · (1 + c1(NY/X)) = ι∗(1 + c1(X) + c2(X) + c3(X) + c4(X))

and, in particular,

c1(NY/X) = ι∗c1(X), c2(Y ) = ι∗c2(X) and

c3(Y ) = ι∗c3(X)− c2(Y )c1(NY/X).
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Using the fact that X is a product of surfaces we have

c1(X) = c1(S1) + c1(S2), c2(X) = c2(S1) + c2(S2) + c1(S1)c1(S2)

and
c3(X) = c2(S1)c1(S2) + c2(S2)c1(S1).

Hence, by the identification H6(Y,Z) ' Z, we have

c3(Y ) = ι∗(c3(X)− c2(X)c1(X)) = c3(X)c1(X)− c2(X)c1(X)2 =

c2(S1)c1(S2)2+c2(S2)c1(S1)2−c2(S1)c21(S2)−c2(S2)c1(S1)2−2c1(S1)2c1(S2)2 =

= −2c1(S1)2c1(S2)2 = −2K2
S1
K2
S2
.

Now, assume Y is asmooth ample divisor in X. Thus, the following isomor-
phisms hold:

H2(Y,Z) ' H2(X,Z) ' H2(S1,Z)⊕H2(S2,Z).

For any divisor class D ∈ H2(Y/G,Z) denote by D1 and D2 divisors classes
such that π∗(D) = D1 +D2, where π is the projection of Y onto the quotient.
Finally, we denote by Ki the divisor classes such that KX = K1 + K2. Then
the following holds.

Theorem 3.2. Let G be a group that acts freely on Y . Then for any D ∈
H2(Y/G,Z) and D1, D2 as above, we have

χ(D) = −D1D2(D1K2 +D2K1)

2|G|
− χ(OS1

)K2D2 + χ(OS2
)K1D1

|G|
.

Proof. We recall that the Riemann-Roch formula for the Calabi-Yau threefold
Y/G is

χ(D) =
D3

6
+
c2(Y/G)D

12
.

The action of G is free, hence

|G|D3 = π∗(D)3 and |G|c2(Y/G)D = c2(Y )π∗(D).

This yields
π∗(D)3 = (D1 +D2)3(c1(S1) + c1(S2)) =

= 3D2
1D2c1(S2) + 3D1D

2
2c1(S1) = −3D1D2(D1K2 +D2K1).

In a similar way, we obtain

c2(Y )π∗(D) = −(χ(S1) +K2
1 )K2D2 − (χ(S2) +K2

2 )K1D1.

Merging these results and using Nöther formula1, we complete the proof.

1χ(OS) =
K2

S+χ(S)

12
.
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We focus our attention on a particular divisor on the quotient: a divisor D
such that π∗D = −ι∗KX =. Such a divisor always exists because the canonical
divisor is G-invariiant for any gruoup of automorphisms G. We can specialize
the previous formula for nD obtaining

χ(nD) = n3K
2
1K

2
2

|G|
+ n

χ(OS1
)K2

2 + χ(OS2
)K2

1

|G|
=
χ(−nι∗KX)

|G|
.

Hence |G| has to divide χ(−nι∗KX) for all2 n. We can obtain a similar condition
using Theorem 3.1: the Euler characteristic of the quotient Y/G of Y by a finite
group G that acts freely is the Euler characteristic of Y divided by the order of
the group. Moreover, it is known that a Calabi-Yau threefold has even Euler
number so we obtain that |G| must divide χ(Y )/2. This gives a motivation to
Definition 2.2.

The following table gives the values of M(S1, S2) for every distinct values of
degrees of S1 and S2, with S1 and S2 del Pezzo surfaces - distinguishing the
case dP8 and P1 × P1.

M(S1, S2) P2 P1 × P1 dP8 dP7 dP6 dP5 dP4 dP3 dP2 dP1

P2 9 1 1 1 3 1 1 3 1 1
P1 × P1 1 16 16 1 2 1 4 1 2 1
dP8 1 16 16 1 2 1 4 1 2 1
dP7 1 1 1 7 1 1 1 1 1 1
dP6 3 2 2 1 12 1 2 9 4 1
dP5 1 1 1 1 1 5 1 1 1 1
dP4 1 4 4 1 2 1 8 1 2 1
dP3 3 1 1 1 9 1 1 3 1 1
dP2 1 2 2 1 4 1 2 1 4 1
dP1 1 1 1 1 1 1 1 1 1 1

For example, if X = dP2×dP5 (M(dP2, dP5) = 1) it isn’t possible to find a pair
(Y,G) with Y embedded in X and Id 6= G ≤ Aut(Y ) that acts freely on Y . If
we choose X = dP5 × dP5 (M(dP5, dP5) = 5) a pair (Y,Z5) with Z5 without
fixed points might exist.

The self-intersection of −KS , where S is a del Pezzo surface, is positive and is
equal to its degree and this, using Theorem 3.1, means that χ(Y ) < 0 regardless
of the choice of which surfaces we are using. Therefore, by recalling that the
action of G is free, we have that the height h := h1,1 + h1,2 of Y and that of

2One could easily check that

|G| divides χ(−nι∗KX) ∀n ∈ Z⇐⇒ |G| divides χ(−ι∗KX).
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Y/G satisfy the following inequality:

h(Y/G) = h1,1(Y/G) + h1,2(Y/G) = 2h1,1(Y/G)− χ(Y )

2|G|

= 2h1,1(Y )G +
|χ(Y )|
2|G|

< 2h1,1(Y ) +
|χ(Y )|

2
= h(Y ).

By finding a group whose order is maximal - and such that the dimension
h1,1(Y )G of the invariant part of H1,1(Y ) is the smallest possible - we obtain
the least possible height for the quotient.

In the following sections we give some examples (both known and new) and
some results of non-existence.

4 Known Examples

With the following examples we revisit some known examples in the framework
presented. The first one is due to Braun, Candelas and Davies and can be found
in [3]. The second one is due to Tian and Yau and is presented in [14] and [13].

4.1 dP6 × dP6 with maximal order 12

There is a unique del Pezzo surface of degree 6 and this surface can be obtained
as the complete intersection of two global sections of OP2×P2(1, 1). Explicitly
we can take S to be the surface in P2 × P2 given by the equations

f = x10x20 − x11x21 and g = x10x20 − x12x22,

where xij is the j-th coordinate on the i-th copy of P2. In this way, S is the
surface obtained by blowing up the points P0 = (1 : 0 : 0), P1 = (0 : 1 : 0) and
P2 = (0 : 0 : 1) of P2 and the exceptional divisors Ei are given by

E0 := V (x11, x12, x20), E1 := V (x10, x12, x21) and E2 := V (x10, x11, x22).

We define S1 = S2 = S and embed X = S×S in (P2)4 using xi0, xi1 and xi2 as
projective coordinates of the i−th P2 for i = 1, 2, 3, 4. Let P be the point

P := ((x10, x11, x12), (x20, x21, x22), (x30, x31, x32), (x40, x41, x42)).

Consider the automorphism of X defined by

g3(P ) = ((x12 : x10 : x11), (x22 : x20 : x21), (x31 : x32 : x30), (x41 : x42 : x40))

g4(x1, x2, x3, x4) = (x4, x3, x1, x2).

It is easy to check that g3
3 = g4

4 = Id and g4g3 = g3g
2
4 hence

G =< g3, g4 >' Z4 n Z3 :=: Dic3,

9



which is called the dicyclic group of order 12. The set of the fixed points Fix of
G is given by the union of

Fix(g3) =
{

(Q1, Q2) | Q1, Q2 ∈
{

(1 : a : a2)× (1 : a2 : a) | a3 = 1
}}

and
Fix(g2

4) = {(T × T ×Q×Q | T,Q ∈ {(1 : ±1 : ±1)}}

so we have a total of 25 fixed points.

We are looking for a global section s of OX(−KX) that is G−invariant and
whose zero-locus V (s) is smooth and doesn’t intersect Fix. We have an exact
sequence

0→< f, g >↪→ H0(P2 × P2,O(1, 1))� H0(S,−KS)→ 0

with the surjection given by the inclusion ι : S → P2 × P2. Hence, we have a
surjection

H0((P2)4,O(1, 1, 1, 1))� H0(X,−KX)

with kernel given by

< f1, g1 > ·H0((P2)4,O(0, 0, 1, 1))+ < f2, g2 > ·H0((P2)4,O(1, 1, 0, 0)).

The representation of Dic3 in H0(X,−KX) ' C49 has an invariant space
H0(X,−KX)G of dimension 5. By direct inspection, we have checked that the
generic invariant section s doesn’t intersect Fix and is smooth. Then Y = V (s)
is a Calabi-Yau threefold with a free action of Dic3.

If we call R the representation of Dic3 in H2(Y,C) ' H2(X,C) given by gi 7→
g∗i ∈ GL(H2(X,C)) ' GL(H2(S,C)⊕H2(S,C)) ' GL(C8) we have

R(g3)! A3 :=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


and

R(g4)! A4 :=



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 −1 −1 −1 0 0 0 0
−1 0 −1 −1 0 0 0 0
−1 −1 0 −1 0 0 0 0
1 1 1 2 0 0 0 0


,

where we used the base

{H1, E10, E11, E12, H2, E20, E21, E22}
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where π∗i (Ej) = Eij and π∗i (π∗H) = Hi. Hence dimH2(Y,C)G = 1, so we
have h1,1(Y/G) = 1. By Theorem 3.1 we know that χ(Y ) = −72 and then
χ(Y/G) = −6 because the action is free. In conclusion, you find below the
Hodge diamond of Y/G

1

0 0

0 1 0

1 4 4 1,

0 1 0

0 0

1

where h(Y/G) = 5. Note that, because h1,1(Y/G) = 1, this example achieves
the minimum of the height for the quotient Y/G, where G is isomorphic to the
Dic3 and Y is as above. It is interesting to note that taking

g′3(P ) = ((x12 : x10 : x11), (x22 : x20 : x21), (x32 : x30 : x31), (x42 : x40 : x41))

the group G′ spanned by g4 and g′3 is cyclic of order 12 and a generator is
g′3g4 := g12. Following the same argument as the previous case it can be shown
that exist a Calabi-Yau Y such that G′ acts on Y freely. The quotient Y/G′ is
hence again a Calabi-Yau and has the same Hodge diamond as Y/G. However
these two manifolds aren’t even diffeomorphic because Π1(Y/G) ' G ' Dic3 6'
Z12 ' G′ ' Π1(Y/G′).

4.2 dP3 × dP3 with maximal order 3

Suppose S1 and S2 del Pezzo surfaces of degree 3. Then −KSi is very ample and
gives an embedding in P3. The surface obtained is a cubic (is called anticanonical
model of Si) and all smooth cubic surfaces in P3 can be obtained in this way.

Set f1 := x3
0 +x3

1 +x3
2 +x3

3 and f2 := y3
0 + y3

1 + y3
2 + y3

3 and consider the Fermat
surfaces Si := V (fi). Denote, as usual, X = S1 × S2 ⊂ P3 × P3 and consider
the automorphism given by

ϕ(x, y) = ((x1 : x2 : x0 : ωx3), (y1 : y2 : y0 : ω2y3))

where ω 6= 1 is a fixed root of z3 − 1. The group G =< ϕ > is cyclic of order 3;
hence we have

Fix(ϕ) = Fix(G) =
{

((1 : ω2 : ω : c), (1 : ω : ω2 : d)) | d3 = c3 = −3
}
.

There is an isomorphism

H0(P3 × P3,O(1, 1)) ' H0(X,−KX)
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so we have to study the polynomial of bidegree (1, 1). The action of Z3 on X
gives a representation of Z3 in H0(X,−KX) and a basis for the invariant space
is {G0, G1, G2, G3, G4, G5} where

G0 = ωx3y0 + ω2x3y1 + x3y2, G1 = ω2x0y3 + ωx1y3 + x2y3,

G2 = x0y1 + x1y2 + x2y0, G3 = x0y2 + x1y0 + x2y1,

G4 = x0y0 + x1y1 + x2y2 and G5 = x3y3.

By direct computation, one can check that the generic section s doesn’t intersect
Fix(Z3) hence the action of G restricted to V (s) is free. For example, taking s
to be G4 +G5 = x0y0 + x1y1 + x2y2 + x3y3 gives a section whose zero locus Y
is smooth and Y ∩ Fix(Z3) is empty.

Assume ϕ ∈ Aut(S1) × Aut(S2) with o(ϕ) = 3. By the Lefschetz fixed-point
theorem, one can show that

h1,1(Y )G = 2 +
2

3
(χ(Fix(π1 ◦ ϕ)) + χ(Fix(π2 ◦ ϕ))) ,

where πi : X → Si is the projection onto the i−th factor of the product X.
In fact, by Lefschet’s Hyperplane Theorem, the group H1,1(Y ) is isomorphic to
H2(X). The dimension of the space of invariants with respect to G is equal
to the traces of the homomorphisms induced on the second cohomology group
of X = S1 × S2 by the elements of G. By linear algebra and the Künneth
formula, the traces on the cohomology groups of the product X is the sum of
the traces on the cohomology on the factors H2(Si) for i = 1, 2. These traces
can be computed via the Lefschetz fixed-point Theorem. In this case we obtain
h1,1(Y/G) = 6. The same number could be obtained by studying the invariant
space of H2(X,C) with respect to the representation of Z3 given by

ϕ 7→ ϕ∗!

[
A1 0
0 A2

]
where A1 and A2 are respectively

0 0 0 1 0 0 0

−1 −1 −1 0 −1 −1 −2

0 0 0 0 −1 −1 −1

0 −1 0 0 0 −1 −1

0 0 −1 0 0 −1 −1

−1 0 0 0 0 −1 −1

1 1 1 0 1 2 3


and



0 0 0 −1 −1 0 −1

0 0 0 0 0 1 0

−1 −1 −1 −1 −1 0 −2

−1 0 0 0 −1 0 −1

0 −1 0 0 −1 0 −1

0 0 −1 0 −1 0 −1

1 1 1 1 2 0 3


.

By Theorem 3.1 we have χ(Y/Z3) = −18/3 = −6; so the Hodge diamond of the
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quotient is the foolowing one

1

0 0

0 6 0

1 9 9 1

0 6 0

0 0

1

In particular the height is h(Y/Z3) = 15.

As shown in [7], up to isomorphism of P3, there are 3 possible pairs (f,G) where
f is a homogeneous polinomial of degree 3 and G is a group fixing f of order 3.
One can show that Fix(f) is either one of the following: 3 points or 6 points,
or one line. Thus, the least value that can be assumed by χ(Fix f) is 3 if we
exclude the case with one line of fixed points. Hence, the example presented
here achieves the minumum for h(Y/G).

5 New Examples

We present some new examples.

5.1 (P1 × P1)× (P1 × P1) with maximal order 16

Take S1 = S2 = P1 × P1 and define X to be S1 × S2. We begin to search for a
group H ≤ (Aut(P1))4 n S4 ≤ Aut(X) such that |H| = 8 and |Fix(H)| < ∞.
Moreover, we want a section s that is an eigenvector for the action of H on
H0(X,−KX) and does not intersect Fix(H). After that, we try to extend H to
a group of order 16 with the same properties.

Let g ∈ (Aut(P1))4nS4 be an element of finite order. Without loss of generality,
we can take g of the form

g̃ ◦ σ :=

((
1 0
0 a1

)
,

(
1 0
0 a2

)
,

(
1 0
0 a3

)
,

(
1 0
0 a4

))
◦ σ

where σ ∈ S4 and ai ∈ C∗ for i = 1, 2, 3, 4.

If the order o(g) of g is 2, we can choose σ ∈ {Id, (12), (12)(34)}. An easy check
shows that

((x : y), (x : a2y), (1 : 0), (1 : 0))

is a line of fixed points if σ = (12) or σ = (12)(34); so we must take σ = Id.
The only possible case is aj = −1 for which

g = g2 :=

((
1 0
0 −1

)
,

(
1 0
0 −1

)
,

(
1 0
0 −1

)
,

(
1 0
0 −1

))
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and
Fix(g2) = {(P1, P2, P3, P4) | Pi ∈ {(1 : 0), (0 : 1)}} .

If o(g) = 4, we can take σ ∈ {Id, (12), (12)(34), (1234)}. The automorphism
σ cannot be a permutation of order 4. In fact, in this case g2 would have a
fixed line, as previously showed. Then, we have Fix(g) ⊂ Fix(g2) = Fix(g2).
Suppose σ = Id or σ = (12) and consider an eigenvector s ∈ H0(X,−KX) =
OX(2, 2, 2, 2)(X). The condition o(g) = 4 is then equivalent to a4

j = 1 for

σ = Id and a2
1a

2
2 = a4

3 = a4
4 = 1 for σ = (12). Necessarily g satisfies g2 = g2

and this implies respectively a2
j = −1 and a1a2 = a2

3 = a2
4 = −1. One can see

that for all P ∈ Fix(g2) there exists a unique element ei of the usual basis of
OX(2, 2, 2, 2)(X) such that ei(P ) 6= 0. For example, we have

x2
1x

2
2x

2
3x

2
4|(1:0)4 = 1 and x2

1x
2
2x

2
3y

2
4 |((1:0)3,(0:1)) = 1.

Then s has to be an element of the eigenspace of both x2
1x

2
2x

2
3x

2
4 and x2

1x
2
2x

2
3y

2
4 ,

but these have different eigenvalues ( 1 and a2
4 = −1 respectively) so s = 0.

Suppose that σ = (12)(34). The conditions o(g) = 4 and g2 = g2 show that g
has to be of the form((

1 0
0 a1

)
,

(
1 0
0 −a−1

1

)
,

(
1 0
0 −a3

)
,

(
1 0
0 −a−1

3

))
◦ (12)(34)

for some a3, a4 ∈ C∗.

Finally, take g to be an automorphism of order 8. Then σ has to be a per-
mutation of order3 4. For example, pick σ = (1324) (that gives the following
conditions on the ai’s: a1a2a3a4 = −1) and let a1 = a2 = a3 = −a4 = 1. A
basis for H0(X,−KX) is given by {e1, . . . e11}, where

e1 =x2
1x2y2y

2
3x4y4 + x1y1x

2
2x3y3y

2
4 − x1y1y

2
2x

2
3x4y4 + y2

1x2y2x3y3x
2
4,

e2 =x2
1x2y2x3y3y

2
4 − x1y1x

2
2y

2
3x4y4 + x1y1y

2
2x3y3x

2
4 + y2

1x2y2x
2
3x4y4,

e3 =x2
1y

2
2x

2
3y

2
4 + x2

1y
2
2y

2
3x

2
4 + y2

1x
2
2x

2
3y

2
4 + y2

1x
2
2y

2
3x

2
4,

e4 =− x2
1y

2
2x3y3x4y4 + x1y1x2y2x

2
3y

2
4 − x1y1x2y2y

2
3x

2
4 + y2

1x
2
2x3y3x4y4,

e5 =x2
1x

2
2x

2
3y

2
4 + x2

1x
2
2y

2
3x

2
4 + x2

1y
2
2x

2
3x

2
4 + y2

1x
2
2x

2
3x

2
4,

e6 =x2
1x2y2x

2
3x4y4 + x2

1x2y2x3y3x
2
4 − x1y1x

2
2x

2
3x4y4 + x1y1x

2
2x3y3x

2
4,

e7 =x2
1x

2
2x

2
3x

2
4,

e8 =y2
1y

2
2y

2
3y

2
4 ,

e9 =x2
1y

2
2y

2
3y

2
4 + y2

1x
2
2y

2
3y

2
4 + y2

1y
2
2x

2
3y

2
4 + y2

1y
2
2y

2
3x

2
4,

e10 =x2
1x

2
2y

2
3y

2
4 + y2

1y
2
2x

2
3x

2
4,

e11 =x1y1y
2
2x3y3y

2
4 − x1y1y

2
2y

2
3x4y4 + y2

1x2y2x3y3y
2
4 + y2

1x2y2y
2
3x4y4.

3By this result, one can show that an element of order 16 cannot exist in (Aut(P1))4 n S4

with the request we made. In fact, if such g existed, g2 would have order 8 and g2 =
(A1, A2, A3, A4) ◦ σ2 with σ2 permutation of order 4. This is not possible for an element of
S4.
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Now, we try to extend the group H. Define h to be the involution of (P1)4 such
that

(xi : yi) 7−→ (yi : xi).

An easy check shows that gh = hg and that the following hold:

Fix(h) = {((1 : ±1), (1 : ±1), (1 : ±1), (1 : ±1))}

and
Fix(g4h) = {((1 : ±i), (1 : ±i), (1 : ±i), (1 : ±i))} .

For every k 6= 0, 4 we have (gkh)2 = g2kh2 = g2k so Fix(gkh) ⊂ Fix(g4) =
Fix(g2). This means that, defining G to be the group generated by g and h,
Fix(G) is a finite set composed of 48 points and G ' Z8 × Z2.

If we take

s =

11∑
i=1

Ciei

and impose both s(P ) = 1 for all P ∈ Fix(g) and h∗(s) = s, we have the
following conditions on the Ci’s:

C3 = C5 = C7 = C8 = C9 = C10 = 1, C1 = C2, C11 = C6, C4 = 0.

By evaluating at the other fixed points, we obtain 4 different non identically-
zero linear-combinations of the Ci’s; so the generic invariant section does not
intersect Fix(G). For example, the section obtained by taking C1 = 1 and
C6 = 2 fulfills all our requests. Moreover, it is smooth, so there exists a group
of order 16 = M(P1 × P1,P1 × P1) that acts freely on a Calabi-Yau threefold
embedded in (P1)4.

The representation of G on H2(Y,C) is given by

g 7→ g∗!


0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

 and h 7→ h∗!


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


so both h and g4 are trivial on H2(Y,C) = H2(P1,C)⊕4.

This action has then a unique fixed class in H2(Y,C) (the sum of the four P1’s).
By Theorem 3.1, we have χ(Y/G) = −128/16 = −8, so the Hodge diamond of
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the quotient Y/G is the following one:

1

0 0

0 1 0

1 5 5 1

0 1 0

0 0

1

In particular, the height is 6 and it’s the least possible for a quotient of a
Calabi-Yau in (P1)4 because h1,1(Y/G) = 1.

5.2 dP4 × dP4 with maximal order 8

As proved, for instance, in [7], every del Pezzo surface of degree 4 can be obtained
as a complete intersection of two quadrics of P4. Moreover, one can choose the
equations to be of the form

f = x2
0 + x2

1 + x2
2 + x2

3 + x2
4 and g = a0x

2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4

where ai 6= aj ∈ C for i 6= j. We choose

g = x2
0 − ix2

1 − x2
2 + ix2

3

and S1 ' S2 ' S = V (f, g) ⊂ P4. Let r be the automorphism which sends
(x, y) to the point

((x0 : x1 : −x2 : x3 : −x4), (y0 : y1 : −y2 : y3 : −y4)) .

Denote by t the automorphism which sends (x, y) to

((y0 : y1 : −y2 : −y3 : y4), (x0 : x1 : x2 : x3 : x4)) .

Consider the groups H =< r, t2 >' Z2 × Z2 and G =< r, t >' Z4 × Z2.

By adjunction −KS1×S2 := −KX ' OX(5, 5) ⊗ OX(−4,−4) = OX(1, 1). The
morphism ι : S × S −→ P4 × P4 induces an isomorphism

ι∗ : H0(P4 × P4,O(1, 1)) −→ H0(S × S,OX(1, 1));

so we can use
{xiyj}0≤i,j≤4

as a basis of the space of sections of the anticanonical bundle. It is easy to see
that the vector space V spanned by

{x0y0, x1y0, x0y1, x1y1, x2y2, x3y3, x4y4}
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is such that for all h ∈ H and for all s ∈ V , h∗(s) = λs for some λ ∈ C∗. By
taking the generic section s ∈ V and imposing r∗s = t∗s = s (so that for every
automorphism g of G, V is an eigenspace with respect to g∗), we obtain

s = A1x0y0 +A3y0x1 +A3x0y1 +A4x1y1 +A7x4y4,

where Ai ∈ C. Let a and b be fixed roots of 2z2 + 1 + i and 2z2 + 1 − i,
respectively. Then

Fix(r) = {(P,Q) |P,Q ∈ {(1 : ±a : 0 : ±b : 0)}}

Fix(t2) = {(P,Q) |P,Q ∈ {(±a : ±b : 0 : 0 : 1)}}

and
Fix(rt2) = {(P,Q) |P,Q ∈ {(±b : 1 : ±a : 0 : 0)}} .

To look for the fixed points of G it suffices to know the fixed points of r, t2 and
rt2. In fact, the following holds:

Fix(t3) = Fix(t) ⊆ Fix(t2) = Fix((rt)2) ⊇ Fix(rt) = Fix(rt3).

An easy check shows that for generic values of A1, A3, A4 and A7, the section s
does not intersect Fix(G).

We can check directly that the section corresponding to A1 = 1, A3 = −2, A4 =
3 and A7 = 1 is smooth and doesn’t intersect Fix(G); so there exists a Calabi-
Yau threefold Y embedded in S1 × S2 with Z4 × Z2 acting freely on Y .

We don’t have an explicit description of a basis for Pic(Y ) = Pic(S1)⊕Pic(S2) '
Z12, but we can use the Lefschetz Fixed Point fomula to get the traces we need
to compute h1,1(Y )G. For example, notice that r = r1 × r2 with ri ∈ Aut(Si);
so the trace of r∗ : H2(S1 × S2,C)→ H2(S1 × S2,C) is equal to the sum of the
traces of

r∗i : H2(Si,C)→ H2(Si,C).

By recalling that

16 = χ(Fix(r)) = χ(Fix(r1 × r2)) = χ(Fix(ri))
2

and by Lefschetz Fixed Point formula, we have

Tr(r∗) = Tr(r∗1) + Tr(r∗2) = χ(Fix(r∗1))− 2 + χ(Fix(r∗2))− 2 = 2(4− 2) = 4.

With the same method we obtain Tr((t∗)2) = Tr(r∗(t∗)2) = 4. We can write t as
(t1× t2)◦σ where σ is the the permutation of the two copies of S. Hence t∗ will
swap H2(S1) and H2(S2) in the sum H2(S1)⊕H2(S2) and this means that its
trace is zero. In the same way we obtain Tr((t∗)3) = Tr(r∗t∗) = Tr(r∗(t∗)3) = 0.
Merging these results and recalling that χ(Y ) = −32, we obtain

h1,1(Y/G) =
12 + 4 + 4 + 4 + 0 + 0 + 0 + 0

8
= 3 and h1,2(Y/G) = 5
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so the quotient has the following Hodge diamond

1

0 0

0 3 0

1 5 5 1

0 3 0

0 0

1

In particular, the height is 8.

5.3 P2 × P2 with maximal order 9

Let (x0 : x1 : x2) and (y0 : y1 : y2) be the projective coordinates on the two
copies of P2 and set a = e2πi/3. Consider the automorphism of P2 × P2 := X
defined by

g := (x0 : ax1 : a2x2)× (y0 : ay1 : a2y2) := g1 × g2

and
h := (x1 : x2 : x0)× (y1 : y2 : y0) := h1 × h2.

It is easy to show that the group G generated by g and h is isomorphic to
Z3 × Z3.
Moreover, it is easy to see that

Fix(G) =(Fix(g1)× Fix(g2)) ∪ (Fix(h1)× Fix(h2))∪
(Fix(g1h1)× Fix(g2h2)) ∪ (Fix(g2

1h1)× Fix(g2
2h2))

where
Fix(gi) = {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)}

Fix(hi) =
{

(1 : 1 : 1), (1 : a : a2), (1 : a2 : a)
}

Fix(gihi) =
{

(1 : 1 : a2), (1 : a2 : 1), (a2 : 1 : 1)
}

Fix(g2
i hi) = {(1 : 1 : a), (1 : a : 1), (a : 1 : 1)} .

Consider the following global sections of OP2(3) = −KP2 :

ei,0 = x3
0 + a2ix3

1 + aix3
2 ei,1 = x2

0x1 + a2ix2
1x2 + aix0x

2
2

ei,2 = x0x
2
1 + a2ix1x

2
2 + aix2

0x2 e0 = x0x1x2

Then g∗(ei,j) = ajei,j , h
∗(ei,j) = aiei,j , g

∗(e0) = h∗(e0) = e0; hence

{e0, ei,j}0≤i,j≤2

is a basis of H0(P2,OP2(3)) composed of eigenvectors of both g∗ and h∗. Since

H0(X,−KX) ' H0(P2,−KP2)⊗H0(P2,−KP2),
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a basis for the space of invariant sections is given by

{ei1,j1 ⊗ ei2,j2}i1+i2≡30,j1+j2≡30 ∪ {e0 ⊗ e0,0, e0,0 ⊗ e0, e0 ⊗ e0} .

By direct computation, we can show that the generic invariant section doesn’t
intersect Fix(G). Moreover, the system |H0(X,−KX)G| is base-point free. By
Bertini’s Theorem, the generic section is smooth. Hence there exists a Calabi-
Yau threefold Y embedded in P2 × P2 equipped with a free action of G.

The space H2(X,Z) is free of rank two and is generated by π∗1H and π∗2H
where < H >= H2(P2,Z). Every automorphism of P2 fixes H, so H2(X,C)G =
H2(X,C). This implies that the following is the Hodge diamond of Y/G :

1

0 0

0 2 0

1 11 11 1

0 2 0

0 0

1.

Its height is 13. An element g ∈ Aut(P2 × P2) = (Aut(P2) × Aut(P2)) n Z2

of order 3 has to be of the form g = g1 × g2 with gi ∈ Aut(P2). This means
that H2(X,Z)<g> = H2(X,Z) and thus the minimum for h(Y/G) is achieved
by this example.

5.4 dP5 × dP5 with maximal order 5

Fix P1 = (1 : 0 : 0), P2 := (0 : 1 : 0), P3 := (0 : 0 : 1) and P4 := (1 : 1 : 1) in P2.
Let S be the unique del Pezzo surface of degree five. It is well known that the
automorphism group of S is isomorphic to the symmetric group of order 120.
The sections of OS(−KS) are the cubics through the points Pi for i = 1, 2, 3, 4.
Hence a basis of H0(dP5,−KdP5) can be taken to be

y1 := x2
0x1 − x0x1x2 y2 := x2

0x2 − x0x1x2

y3 := x2
1x0 − x0x1x2 y4 := x2

1x2 − x0x1x2

y5 := x2
2x0 − x0x1x2 y6 := x2

2x1 − x0x1x2

where x0, x1, x2 is a system of homogeneous coordinates on P2. Consider the
following transformation T on the projective plane, namely:

(x0 : x1 : x2) 7→ (x0(x0 − x2) : x0(x0 − x1) : (x0 − x1)(x0 − x2)).

It is easy to check that T acts as automorphism of S and its action onH0(S,−KS)
is determined by

y1 7→ y1 y2 7→ y1 + y5 − y2

y3 7→ y2 y4 7→ y2 + y3 − y1

y5 7→ −y6 + y5 − y2 y6 7→ −y4 − y1 + y3.
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It’s easy to see that the order of T is five thus G :=< T > is isomorphic to
Z5. Let us now consider the action of G diagonally on X = S × S. We will use
x0, x1, x2 and z0, z1, z2 as projective coordinates on the two P2’s we blow up to
obtain the two copies of S. There is an action of G on H0(X,−KX). Let ω
be a primitive fifth root of unity. The space of invariants under this action is
generated by the following polynomials, namely:

f1g1 = x0x1(x0 − x2)z0z1(z0 − z2),
f1g2 = x0x1(x0 − x2)z2(z1 − z2)(z0 − z1),
f2g1 = x2(x1 − x2)(x0 − x1)z0z1(z0 − z2),

f2g2 = x2(x1 − x2)(x0 − x1)z2(z1 − z2)(z0 − z1),
h1k4, h2k3, h3k2, h4k1,

where we set:

h1 = (1 + ω2)y1 + (ω3 − ω2)y2 + (−2− ω − ω2 − ω3)y3+
+y4 + ω2y5 − ωy6,

h2 = −(ω + ω2 + ω3)y1 + (1 + 2ω + ω2 + ω3)y2+
+(ω3 − 1)y3 + y4 − (1 + ω + ω2 + ω3)y5 − ω2y6,

h3 = (1 + ω)y1 + (−2ω − 1− ω2 − ω3)y2 + (ω2 − 1)y3 + y4+
+ωy5 − ω3y6,

h4 = y1 + (ω2 − 1)y2 + (ω3 − 1)y3 + (1 + ω2 + ω)y4 − (ω + ω2)y5+
−(ω2 + ω3)y6

and ki = hi(z0, z1, z2). It is easy to check that hi are eigenvectors with eigen-
value ωi with respect to the action of T on H0(S,−KS).
Let

s := A1f1g1 +A2f1g2 +A3f2g1 +A4f2g2 +A5h1k4 +A6h2k3 +A7h3k2 +A8h4k1,
(1)

where Ai are complex numbers not all of which are zero. For any choice of the
Ai’s we get a section in H0(X,−KX) which is invariant with respect to G.

The transformation T acts with fixed points on X. They are given by

(1 : 1/(1 + ρ) : 1− ρ)

where ρ satisfies the degree two equation ρ2 + ρ − 1 = 0 and thus there are
four fixed points on X. Note that, by the Lefschetz Formula this is the least
number of fixed points one could obtain. By a suitable choice of the Ai’s, we
restrict to the locus Σ such that the sections s in (1) do not pass through the
fixed points above. It is easy to see that Σ is not empty. For s ∈ Σ the set of
zeroes Y = V (s) is thus invariant with respect to the free action of G on it.

Now, we look for base points of the system above. First, we look for solutions
on P2 × P2 of the equations

f1g1 = f1g2 = f2g1 = f2g2 = h1k4 = h2k3 = h3k2 = h4k1 = 0.

Next, we recall that S is obtained from P2 by blowing-up the points Pi. After
some computation we show that there are 20 base points.
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For each of the base points we checked if they are smooth or not for the generic
section. This is true if we restrict to an dense open set Ω of P7, where {Ai}i=1..8

are interpreted as a homogeneous system of coordinates. For example, let us
take the point

(((1 : 1 : 1), (1 : 1)), (1 + ω2 + ω3 : 1 : ω2 + ω3)),

that is the point whose projection on S1 is the point (1 : 1) on the exceptional
divisor associated to (1 : 1 : 1) and whose projection on S2 is (1 + ω2 + ω3 : 1 :
ω2 + ω3). We first make the substitution x0 = w0 +w1, x1 = w1, x2 = w1 +w2,
so the point (1 : 1 : 1) is mapped to the point (0 : 1 : 0). Next we work in the
local chart where the second coordinate is nonzero. Let ((u, v), (l : m)) be the
coordinate on blow-up. Since m 6= 1, we can consider affine coordinates v, l and,
by the equation of the blow-up, u = vl. Thus, we evaluate all the polynomials
f1g1, f1g2, f2g1, f2g2, h1k4, h2k3, h3k2, h1k4 at w0 = vl, w1 = 1, w2 = v. We
divide by v and then take the derivatives with respect to v, l, z0, z1, z2. These
must be evaluated at l = 1, v = 0 and z0 = 1 + ω2 + ω3, z1 = 1, z2 = ω2 + ω3.
Doing so yields conditions on the Ai’s. These conditions define the equations
of a closed set, the complement of which is the non-empty open set Ω. The
intersection of Ω and Σ yield an open set which contains sections s which are
invariant with respect to G, do not pass through fixed points and such that (s =
0) is smooth at the base points. By Bertini’s Theorem a generic element of Ω∩Σ
is smooth. This yields a Calabi-Yau manifold Y/G with Euler characteristic
−10. As in section 5.1 we compute h1,1(Y/G) using the Lefschetz Formula and
we obtain h1,1(Y/G) = 2. Then h2,1(Y/G) = 7 and the Hodge diamond is the
following one:

1

0 0

0 2 0

1 7 7 1

0 2 0

0 0

1

Note that Y/G realize the minimum for the height.

5.5 P1 × P1 × dP4 with maximal order 4

Let us consider again the del Pezzo surface S2 of degree 4 embedded in P4 used
in section 5.2. If we denote with g1 and h1 the automorphism of S1 = P1 × P1

such that

g1((x10 : x11), (x20 : x21)) = ((x10 : −x11), (x20 : −x21))

and
h1((x10 : x11), (x20 : x21)) = ((x11 : x10), (x21 : x20)),
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we obtain the relation g2
1 = h2

1 = g1h1g
−1
1 h−1

1 = Id that is < g1, h1 >' Z2⊕Z2.
The same holds for the automorphism g2 and h2 of S2 such that

g2((y0 : y1 : y2 : y3 : y4)) = (y0 : y1 : −y2 : y3 : −y4)

and
h2((y0 : y1 : y2 : y3 : y4)) = (y0 : y1 : −y2 : −y3 : y4).

Denote by g = g1× g2 and h = h1× h2; hence we have G :=< g, h >' Z2⊕Z2.

We recall (see Section 5.2) that if a and b are fixed roots of 2z2 + 1 + i and
2z2 + 1− i then

Fix(g2) = {(1 : ±a : 0 : ±b : 0)}

Fix(h2) = {(±a : ±b : 0 : 0 : 1)}

and
Fix(g2h2) = {(±b : 1 : ±a : 0 : 0)} .

It is easy to see that |Fix(α)| = 4 for each α ∈< g1, h1 > \ {Id} and, conse-
quently, that |Fix(G)| = 48.

Analogously to the previous cases, we can conclude that there exists a smooth
Calabi-Yau threefold Y ⊂ X and a group G ' Z2 ⊕ Z2 acting freely on it. The
quotient has the following Hodge diamond

1

0 0

0 5 0

1 13 13 1

0 5 0

0 0

1.

Hence the height of the quotient is 18.

5.6 Other similar examples

For brevity we don’t treat explicitly some examples. These are some threefolds
in P2×dP6,P2×dP3, (P1×P1)×dP6 and dP6×dP4. The threefolds in P2×dP6

and in P2 × dP3 admit a free action of Z3 (in both cases M(S1, S2) = 3). The
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quotients have Hodge diamonds respectively:

1

0 0

0 3 0

1 21 21 1 and

0 3 0

0 0

1

1

0 0

0 4 0

1 13 13 1

0 4 0

0 0

1

These are threefolds with minimal height. The threefolds in (P1×P1)×dP6 and
in dP4 × dP6 admit a free action of Z2 (again this hits the maximum because
M(S1, S2) = 2 for these two cases). The Hodge diamonds are

1

0 0

0 5 0

1 29 29 1 and

0 5 0

0 0

1

1

0 0

0 7 0

1 19 19 1.

0 7 0

0 0

1

6 Results of non-existence

In this section we present some results of non-existence. In particular, we show
that there are cases for which M(S1, S2) > 1 but a group G that fulfills our
requests doesn’t exist.

6.1 dP8 × S, with S ∈ {P1 × P1, dP8, dP6, dP4, dP2}
We will show that in these cases m(S1, S2, Y ) = 1 for all Y . The key points are
Corollary 6.2 and some structural results on Aut(dP8).

Lemma 6.1. If S is a del Pezzo surface and g ∈ Aut(S) is such that o(g) = p
is prime, then g has a fixed point.

Proof. Every del Pezzo surface S is a rational surface. Suppose that the fixed
locus of g is empty. Recall that p is prime. Let G :=< g > be the group
generated by g. Then Fix(G) is empty. In fact, for every n 6≡p 0 there exists m
such that nm ≡p 1; this implies

Fix(gn) ⊂ Fix((gn)m) = Fix(g).
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ThereforeR := S/G is a smooth surface andR is rational. In particular Π1(R) =
{Id}. But this is not possible because S is simply connected, so Π1(R) ' G 6'
{Id}. Hence, g must have at least one fixed point.

Corollary 6.2. For every finite subgroup G of Aut(S), |Fix(G)| > 0.

By [7], every automorphism of a del Pezzo surface S of degree 8 comes from an
automorphism of P2 that fixes the point R such that S = Bl{R} P2. Suppose
S 6= dP8. Then we search for a group G ≤ Aut(dP8)×Aut(S). We are interested
in the cases S ∈

{
P1 × P1, dP6, dP4, dP2

}
for which M(dP8, S) is respectively

16, 2, 4 and 2. It is then enough to show that there are not groups of order
2 whose action is free on Y . Let g = (g1, g2) be an involution. By Corollary
6.2 there exists a fixed point P of g2. The automorphism g1 comes from an
involution of P2, hence it has a line L of fixed points, therefore L×{P} is a line
of fixed points for g.

If S = dP8, then Aut(dP×2
8 ) = Aut(dP8)×2 n Z2. Let G =< g > where

g = (g1, g2). Using the same result as above, we will have a surface of fixed
points. Then, it suffices to analyze the case g = (g1, g2) ◦ τ , where τ is the
involution that switches the two copies of dP8. Then, by changing projective
coordinates, we can assume that

(g1, g2) =

 a 0 0
0 b 0
0 0 1

 ,
 a−1 0 0

0 b−1 0
0 0 1


for some a, b ∈ C∗. It is easy to see that ((ax : by : 0), (x : y : 0)) is a line of
fixed points.

In conclusion, we have shown that m(dP8, S, Y ) = 1 for a del Pezzo surface S
(here we have checked all the cases for which M(dP8, S) 6= 1) and for all Y
Calabi-Yau embedded in dP8 × S.

6.2 dP7 × dP7 with estimated maximal order 7

There is only one del Pezzo surface S of degree 7. It is given as the blow-up of
P2 in P0 = (1 : 0 : 0) and P1 = (0 : 1 : 0). We will show that there does not exist
a section s of −KS×S such that g∗s = cs for some c ∈ C∗ and g ∈ Aut(S × S)
of order 7 which doesn’t intersect the fixed locus of < g >.

By [7], every automorphism of a del Pezzo surface of degree 7 comes from an
element of PGL(3) fixing the set {P0, P1}. Thus, we have

Aut(S) '

〈 1 0 b
0 a c
0 0 d

 ,
 0 1 0

1 0 0
0 0 1

〉 .
Recall that Aut(S × S) = Aut(S)×2 n Z2. Since we need g of order 7, we have
to choose an element of the form g = (g1, g2), where gi ∈ Aut(S) and

gi =

 1 0 bi
0 ai ci
0 0 di

 .
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After a change of projective coordinates that fixes the points P0 and P1, we may
assume bi = ci = 0 so that gi is in diagonal form. The condition o(g) = 7 gives
a7
i = d7

i = 1. Since we need a finite number of fixed points, we must impose
ai 6= 1 6= di and ai 6= di.

In conclusion, we can take g of the form 1 0 0
0 λm1 0
0 0 λn1

×
 1 0 0

0 λm2 0
0 0 λn2


where λ = e2πi/7 and 0 6= ni,mi and ni 6= mi.

The fixed points of gi as an automorphism of P2 are P0, P1 and P2, whereas the
fixed points of gi as an automorphism of S are

{(P0, Q), (P1, Q), P2 |Q ∈ {(1 : 0), (0 : 1)}} .

Here, for example, with ((0 : 1 : 0), (1 : 0)) we mean the point (1 : 0) on the
exceptional divisor E1 = π−1(P1), where we use the standard local description
of S in a neighbourhood of E1 as the surface of C2×P1 such that um = vl with
{((0, 0), (l : m))} = E1. Hence, in total, G :=< g > has 25 fixed points.

We blow up P2 in P0 and P1. Then, the following isomorphism holds:

H0(S,−K2) '< x3
2, x

2
0x1, x

2
0x2, x0x

2
1, x0x

2
2, x

2
1x2, x1x

2
2, x0x1x2 > .

The correspondence is given by taking the strict transform of a polynomial see
as a global section of OP2×P2(3, 3). We call ei the elements of the base on the
first del Pezzo surface and fi the elements of the base on the second one so that,
by the Künneth formula, we obtain

H0(S × S,−KS×S) '< ei ⊗ fj > .

Suppose that s is an eigenvector of H0(S × S,−KS×S) and that s(P ) 6= 0 for
all P fixed points of G. Then, for example,

s(((1 : 0 : 0), (1 : 0)), ((1 : 0 : 0), (1 : 0))) 6= 0

if and only if s belongs to the eigenspace of x2
0x1y

2
0y1 and

s(((1 : 0 : 0), (1 : 0)), ((1 : 0 : 0), (0 : 1))) 6= 0

if and only if s is in the eigenspace of x2
0x1y

2
0y2. But these two eigenvectors have

corresponding eigenvalues λm1+m2 and λm1+n2 and these numbers are different
if and only if m2 6= n2, which it is true by hypotesis. This means that s must
be zero and we have a contradiction.

Albeit M(dP7, dP7) = 7, this shows that an automorphism of S × S with finite
order cannot act freely on a smooth section of −KS×S .
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6.3 dP6 × dP3 with estimated maximal order 9

In this case recall that M(dP3, dP6) = 9. Nonetheless, the maximum order of
G to have a free action on a Calabi-Yau threefold Y embedded in X is 3. We
will also give an example for which m(dP6, dP3, Y ) = 3.

Suppose that G ≤ Aut(dP6) × Aut(dP3) has order 9. Then either G ' Z9 or
G ' Z3 × Z3. First, we will show that if G ' Z9 then G must have a fixed
curve and so it can’t satisfy our assumption on G. Next, we will deal with
the case G ' Z3 × Z3. We’ll first find all the groups whose fixed locus is finite.
Essentially, this will be done by projecting G on Aut(dP6) and Aut(dP3) so that
the projections G1 and G2 satisfy G1 ' G2 ' G ' Z3 × Z3. There is only one
useful choice for G2 =< g2, h2 > whereas there are infinitely many possibilities
for G1, which are parametrized by (C∗)2. Once we fix G1 :=< u, v >, we will
consider all the possible G′s such that the projection of G on Aut(dP3) and
Aut(dP6) are G1 and G2, respectively. This will be done by choosing all the
possible pairs (g1, h1), not necessarily equal to (u, v), that generate G1. We thus
consider the group G :=< g, h >, where g = g1× g2 and h = h1×h2. For every
case we have checked that all the sections of H0(X,−KX) that are eigenvectors
of both g∗ and h∗ are zero on a fixed point of the group G (we will show an
explicit calculation for one of the cases).

Suppose that G ' Z9 and consider its projection G1 on Aut(dP3). Necessarily,
G1 ' G. On the contrary, if G =< g1 × g2 > with g3

1 = Id, G would have
infinitely many fixed points. Hence G1 has to be a group isomorphic to Z9 in
Aut(dP3). If S is a smooth cubic surface in P3 and if g1 ∈ Aut(S) has order 9
then, by [7], there exist a projective automorphism of P3 such that

(S, g1) =

V (x3
0 + x2

2x0 + x2
1x2 + x2

0x1),


1 0 0 0
0 a4 0 0
0 0 a 0
0 0 0 a7




where a satisfies a3 6= 1 = a9. On the other hand, we have

g3
1 =


1 0 0 0
0 a3 0 0
0 0 a3 0
0 0 0 a3

 .
Hence Fix(< g1 >) contains a curve C. This means that, by Corollary 6.2, we
have a fixed curve in Fix(G), which contradicts our assumptions.

Suppose, now, that G ' Z3 × Z3 ≤ Aut(dP6) × Aut(dP3) and consider the
projection G2 on Aut(dP3) so that G2 ' G. Fix two generators g2, h2 of G2

and consider dP3 = V (f) ⊂ P3. By [7], if V (f) is a smooth cubic and G̃ '
Z3 × Z3 ≤ Aut(V (f)), we can change coordinates to obtain f =

∑
y3
i . In this

case Aut(V (f)) ' Z3
3 n S4, where each Z3 acts as multiplication of a variable

by ak (we write the elements in Z3
3 as (1, ak1 , ak2 , ak3)) and S4 = Sym(0, 1, 2, 3)

is generated by the permutation of the variables. By requiring |Fix(G2)| < ∞
we obtain G2 ≤ Z3

3. There is only one group isomorphic to G2 in Z3
3 that has a
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finite number of fixed points on V (f) and it is < g2, h2 > where g2 = (1, 1, a, a2)

and h2 = (1, a, a2, a2). We call V
(2)
i,j the maximal subspace of H0(dP3,−KdP3

)

such that g∗2(s) = ais and h∗2(s) = ajs for every s ∈ V (2)
i,j . This vector space is

the intersection of the eigenspaces Λai of g2 and Λ′aj of h2 relative to aj . The
following table summarizes the situation providing generators for these spaces.

g2\h2 Λ′1 Λ′a Λ′a2

Λ1 x0

Λa x1

Λa2 x2 x3

Now, consider the projection G1 of G on Aut(dP6) = (S3 × Z2) n (C∗)2. Any
element of order 3 can be written in the form diag(1, b, c) ◦ (123)k for some
fixed b, c ∈ C∗ and k = 0, 1, 2. Easy arguments show that G1 cannot satisfy
G1 ≤ (C∗)2 (if it happens, one has |Fix(G1)| =∞) and that G1 has exactly two
non-trivial elements in (C∗)2. These are diag(1, a, a2) and its inverse. Moreover,
these two elements commute with every element of the form (1, b, c) ◦ (123)k,
thus every subgroup of Aut(dP6) isomorphic to Z3×Z3 and with a finite number
of fixed points can be written in the form < u, v > where

u = diag(1 : a : a2) and v = diag(1 : b : c) ◦ (123)

for some fixed b, c ∈ C∗. We define d to be a fixed third root of bc. Set

F0 =x10x20,

F1 =x10x21 +
1

b
x11x22 +

1

c
x12x20,

F2 =x10x22 +
1

c
x11x20 +

b

c
x12x20,

F3 =x10x21 +
a2

b
x11x22 +

a

c
x12x20,

F4 =x10x22 +
a2

c
x11x20 +

ab

c
x12x20,

F5 =x10x21 +
a

b
x11x22 +

a2

c
x12x20,

F6 =x10x22 +
a

c
x11x20 +

a2b

c
x12x20.

Then Fj is an eigenvector of both u and v and the corresponding eigenvalues
are the ones in the following table:

u\v Λ1 Λa Λa2

Λ1 F0 F2 F1

Λa F4 F3

Λa2 F6 F5

This shows that {Fj} form a base for H0(dP6,−KdP6). The following are the
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fixed points of the elements of G1 and G2:

Element Fixed points (k = 0, 1, 2)

((1 : 0 : 0), (0 : 1 : 0)), ((1 : 0 : 0), (0 : 0 : 1)),
u, u2 ((0 : 1 : 0), (1 : 0 : 0)), ((0 : 1 : 0), (0 : 0 : 1)),

((0 : 0 : 1), (1 : 0 : 0)), ((0 : 0 : 1), (0 : 1 : 0))

v, v2 ((1 : dak : (dak)2

b , (1 : 1
dak

: b
(dak)2 )

uv, u2v2 ((1 : dak : (dak)2

ba , (1 : 1
dak

: ba
(dak)2 )

u2v, uv2 ((1 : dak : (dak)2

ba2 , (1 : 1
dak

: ba2

(dak)2 )

Element Fixed points (k = 0, 1, 2)

g2, g
2
2 (1 : −ak : 0 : 0)

h2, h
2
2 (0 : 0 : 1 : −ak)

g2h2, g
2
2h

2
2 (1 : 0 : −ak : 0), (0 : 1 : 0 : −ak)

g2h
2
2, g

2
2h2 (1 : 0 : 0 : −ak), (0 : 1 : −ak : 0)

Suppose g1 = u. Let h1 be any element of G1 such that G1 =< g1, h1 > and
denote Q1 = ((1 : 0 : 0), (0 : 1 : 0)) and Q2 = ((1 : 0 : 0), (0 : 0 : 1)). Then

P1 := ((1 : 0 : 0), (0 : 1 : 0), (1 : −1 : 0 : 0))

and
P2 := ((1 : 0 : 0), (0 : 0 : 1), (1 : −1 : 0 : 0))

are fixed points of g = g1 × g2. Suppose that

s =
∑
i,j

ai,jFiyj

is a section such that g∗(s) = ak1s and that s(Pj) 6= 0. Then

s(P1) =
∑

i=2,4,6

(ai,0 − ai,1)Fi(Q1) 6= 0

and
s(P2) =

∑
i=1,3,5

(ai,0 − ai,1)Fi(Q2) 6= 0.

This means that at least one between xiFj with i = 0, 1 and j = 2, 4, 6 has a non
zero coefficient and the same is true for xiFj with i = 0, 1 and j = 1, 3, 5. But,
if i = 0, 1, g∗(xiFj) = a2xiFj if j = 2, 4, 6 and g∗(xiFj) = axiFj if j = 1, 3, 5.
Then each eigenvector of g is zero if evaluated in P1 or in P2.

The same result is true for every other case: we have checked that, for every
b, c ∈ (C∗), for every choice of g1, h1 generators of G1 =< u, v >, every section
of H0(X,−KX) that is an eigenvector of both g and h where g = g1 × g2

and h = h1 × h2 is zero on at least one fixed point of G =< g, h >. In
conclusion the restriction of the action of a group G ≤ Aut(dP6) × Aut(dP3)
of order 9 to a Calabi-Yau threefold Y ⊂ dP6 × dP3 cannot be free. Hence
m(dP6, dP3, Y ) < M(S1, S2) = 9 for every Y .
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We have obtained m(dP6, dP3, Y ) ≤ 3 for all Y . We now give an example such
that m(dP6, dP3, Y ) = 3. Take dP3 to be the Fermat surface in P3. Call g1 the
automorphism of dP6 such that xi,j 7→ xi,j+1 and g2 the authomorphism

1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω2


of dP3. Notice that the minimum for the number of fixed points for an auto-
morphism of order 3 in Aut(dP6) × Aut(dP3) is achieved by g = g1 × g2. The
dimension of H0(X,−KX)G, where G =< g >, is 10. It can be shown that the
base locus for |H0(X,−KX)G| has only 9 points and that these are

((1 : ωi : ω2i), (1 : ω2i : ωi), (0 : 0 : −ωj : 1))

with 0 ≤ i, j ≤ 2. By direct inspection, the generic invariant section s is smooth
at these points and does not intersect the fixed locus, so, by Bertini’s Theorem,
there exists a Calabi-Yau Y embedded in dP6× dP3 and a group G ' Z3 acting
freely on Y . The Hodge diamond for Y/G is

1

0 0

0 5 0

1 11 11 1

0 5 0

0 0

1

and it’s height is 16, that is the minimum for the height.

7 On the Relation between Aut(S1)×Aut(S2) and
Aut(S1 × S2)

Let X be a projective complex manifold. We will denote by NE(X) the cone of
effective curves of X. An extremal subcone V of NE(X) is a closed convex cone
such that for every v, w ∈ NE(X) if v + w ∈ V then v, w ∈ V . An extremal
ray is an extremal subcone of dimension 1. For every D divisor on X a subcone
V ⊂ NE(X) is said to be D−negative if for every v ∈ V one has v · D < 0.
The Contraction Theorem says that for every extremal KX -negative subcone V
of NE(X) the contraction cV of V is well defined, that is to say, a morphism
cV : X →W with connected fibers such that W is a normal variety. Moreover,
a curve in X is contracted if and only if is numerically equivalent to a curve in V
and the Picard number ρ(W ) is equal to ρ(X)− dim(< V >). For a morphism
f we recall that NE(f) is given by the intersection NE(X) ∩ ker(f∗), where f∗
is the map induced by f on the vector space spanned by NE(X).
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If φ ∈ Aut(S1×S2) we will write φ(x, y) = (φ1(x, y), φ2(x, y)) where φi = πi ◦φ
where πi is the projection of S1 × S2 on Si.

Lemma 7.1. Let S1 and S2 be two del Pezzo surfaces and let φ ∈ Aut(S1 ×
S2) Let πi be the projection from S1 × S2 onto the i-th factor Si for i = 1, 2.
If φ∗(NE(πi)) = NE(πi), then φ(x, y) = (φ1(x), φ2(y)) where φi ∈ Aut(Si).
If φ∗ switches the cones NE(π1) and NE(π2), then S1 = S2 and φ(x, y) =
(φ1(y), φ2(x)) with φ1 ∈ Bihol(S2, S1) and φ2 ∈ Bihol(S1, S2).

Proof. Assume φ∗(NE(πi)) = NE(πi). Fix x1, x2 ∈ S1 and take two distinct
irreducible curves C1 and C2 on S1 whose intersection is non empty and such
that xi ∈ Ci. We have

φ(Ci × y) = Di × yi
because the image of Ci × y is a curve that is numerically equivalent to a curve
in NE(π2). But C1×y and C2×y are two curves with nonempty intersection so
their images have nonempty intersection. In particular y1 = y2 and this implies
that φ2(x, y) = φ2(y). The same argument works with the first component
(φ1(x, y) = φ1(x)) and with φ−1 meaning that φi is an automorphism of Si.

With the same method, if φ∗ switches the two cones, one has

φ(x, y) = (φ1(y), φ2(x))

and that φi are biholomorphism thus S1 = S2.

Lemma 7.2. Let S1 and S2 be two del Pezzo surfaces such that ρ(S1), ρ(S2) ≥ 3.
If ρ(S1) 6= ρ(S2) then

Aut(S1 × S2) = Aut(S1)×Aut(S2).

The same holds if ρ(S1) = (S2) and S1 6= S2. Instead, if S1 = S2 one has

Aut(S1 × S2) = (Aut(S1)×Aut(S2)) n Z2.

Proof. Call X the product S1 × S2. Then X is a Fano fourfold and

NE(X) = NE(X) ∩NE(π1,∗) + NE(X) ∩NE(π2,∗).

In particular, every extremal ray of X is generated by a curve of the type P1×E2

or E1 × P2, where Ei is a (−1)−curve on Si. Observe that the image V ′ of an
extremal subcone V by an automorphism φ is again an extremal subcone. In
fact, if v+w ∈ V ′ for some v, w ∈ NE(X) then φ−1

∗ (v) and φ−1
∗ (w) are effective

curves such that φ−1
∗ (v) +φ−1

∗ (w) = φ−1
∗ (v+w) ∈ V . But if V is extremal both

φ−1
∗ (v) and φ−1

∗ (w) are in V . This implies that v and w are in V ′, so V ′ also
is extremal. This implies that φ induces a permutation of the extremal rays of
X.

Suppose that there exists an extremal curve E × P1 such that φ∗(E1 × P2) =
P1 × E2. Then φ∗ maps the extremal ray V := [E1 × P2] to the extremal
ray V ′ := [P1 × E2]. The contractions cV and cV ′ associated to the extremal
subcones V and V ′ are respectively p1 × Id and Id×p2, where pi : Si → Ŝi
are the blow up with exceptional divisor Ei. Observe that Ŝi is smooth and
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that the fibers of cV and cV ′ have dimension 0 or 1 and are connected. By
construction a curve C is contracted by cV if and only φ∗C is contracted by
cV ′ . These two facts imply that the map f : Ŝ1 × S2 → S1 × Ŝ2 such that
f(P ) = (cV ′ ◦ φ)(c−1

V (P )) is well defined.

S1 × S2

	cV

��

φ // S1 × S2

cV ′

��
Ŝ1 × S2 f

// S1 × Ŝ2

Let’s see that the map f is injective. Call Qi the point of Ŝi such that p−1
i (Qi) =

Ei. If f(Q1 × R1) = f(Q1 × R2) with R1 6= R2 then, to calculate the image
of Q1 × Ri we obtain first two disjoint curves in S1 × S2 of the form E1 × Ri.
Then these two are sent to two disjoint curves of the form Ti × E2 by φ and,
at last, contracted to the same point by cV ′ . This implies that the fiber of this
point with respect to cV ′ contains two disjoint curves and, being connected, has
to be at least of dimension 2. But we have seen that every fiber has dimension
at most 1, so necessarily R1 = R2. By construction f is also surjective and so
it is a bijective map.

The map f is a morphism because it is everywhere well defined and it is holo-
morphic outside Q1×S2 that has codimension 2 in Ŝ1×S2. Hence, by Hartogs’
Theorem, it is holomorphic on Ŝ1 × S2. This is enought to conclude that f is
an isomorphism. This implies

χ(Ŝ1 × S2) = χ(S1 × Ŝ2);

but χ(Ŝi) = χ(Si)−1 because b1(Ŝi) = b1(S1)−1 and hence, by the multiplica-
tivity of χ, we have

(χ(S1)− 1)χ(S2) = χ(S1)(χ(S2)− 1)

and χ(S1) = χ(S2). But this contraddicts the hypothesis ρ(S1) 6= ρ(S2); hence
the image of E × P1 by φ∗ has to be of the same type. This implies that
φ∗NE(πj) = NE(πj) and this is sufficient to conclude that φ can be written as
a product of two automorphisms by Lemma 7.1.

Suppose, now, that ρ(S1) = ρ(S2) ≥ 3. Fix a blow-up model for Si. Then the
(−1)−curves on Si are either Eij , and are contracted to points by the model,
or are sent to curves (lines, conics (ρ(Si) ≥ 5) and cubics (ρ(Si) ≥ 7)). If, for
all j, the image of E1j × P belongs to [Q × E] for some (−1)−curve E that
depends on j, then the same holds true for the other exceptional curves of the
same type: φ(E1 × P ) ∈ [Q × E] for some E depending on E1. Thus, saying
that there exist two exceptional curves Ei × P such that φ(E1 × P ) ∈ [Q× E]
and φ(E1 × P ) ∈ [E′ ×Q] is equivalent to requiring that there are two indices
(for examples j = 1 and j = 2) such that

φ(E11 × P ) ∈ [Q× E2] and φ(E12 × P ) ∈ [E1 ×Q].

Suppose, then, that this could happen. Then, as in the previous case, we can
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construct a commutative diagram

S1 × S2

	cV

��

φ // S1 × S2

cV ′

��
S̃1 × S2 f

// Ŝ1 × Ŝ2

where cV = r × Id and cV ′ = p1 × p2 where r : S1 → S̃1 is the contraction
of two E11 = r−1(R1) and E12 = r−1(R2) whereas p1 and p2 are the blow-up
with exceptional divisor respectively E1 and E2. Note that the cone V spanned
by E11 × P and E12 × P is an extremal subcone because for a >> 0, L :=
O((aH−E11−E12)×S2) is a nef line bundle such that V = NE(S1×S2)∩L⊥.
This implies that its image V ′ is extremal. Again, the construction of f make
sense because cV ′ contracts a curve if and only if cV contracts its preimage and
because all the fibers of cV are connected and have at most dimension one.

Assume f(R1 × Q1) = f(R1 × Q2). The fibers E11 × Qi are mapped to two
disjoint curves of the form Q̃i×E2 and then contracted to the same point. Then
the fiber S of this point has dimension at least 2 (exactly 2 by construction) and
contains Q̃i×E2. Recall that −KX|S

:= D′ is ample so it intersects Q̃i×E2. D′

is then an effective curve that is contracted to a point by cV ′ so its preimage D
intersects E11 ×Qi and is contracted by cV . Hence Q1 = Q2. In a similar way
we dealt with the other cases and prove that f is injective. By construction, f
is also surjective and hence bijective.

Again f is a map that is holomorphic outisde two disjoint smooth subvariety of
S̃1 × S2 whose codimension is 2. Thus, by Hartogs’ Theorem, f is everywhere
holomorphic. Then f is an isomorphism but checking the equality of the Euler
numbers one obtain

2 + ρ(S2) = 2 + ρ(S1) = χ(S1) = χ(S2) + 1 = 3 + ρ(S2)

and then again a contradiction. Hence the two types of extremal rays cannot
be mixed by φ. There are two cases: the first corresponding to the case for
which ∀φ ∈ Aut(S), φ∗NE(πi) = NE(πi) and the second where there exists
φ ∈ Aut(X) that switches the two cones. By Lemma 7.1, in the first case
Aut(S1 × S2) = Aut(S1) × Aut(S2) and S1 6= S2 whereas, in the second, we
have S1 = S2 and Aut(S1 × S2) = Aut(S1)×2 n Z2.

Lemma 7.3. Let S1 and S2 be two del Pezzo surfaces with ρ(S1) ≤ 2 and
ρ(S2) ≥ 3. Then Aut(S1 × S2) = Aut(S1)×Aut(S2).

Proof. There are three cases: ρ(S1) = 1 with S1 = P2 and ρ(S1) = 2 with
S1 = P1 × P1 or S1 = dP8.

If S1 = P2 and φ ∈ Aut(X), fix a point s ∈ S and consider the map obtained as
composition of the inclusion P2 ' P2×{s} ⊂ P2×S2, φ and the projection on S.
The resulting map βs cannot be a dominant morphism because, in this case, P2

would have divisors with negative self-intersection4. Moreover its image cannot

4The pullback D of a (−1)−line E for example.
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have dimension greater than 0; in fact, every surjective map P2 → C induces
a surjective map P2 → P1 but this cannot exist. Hence βs(P2) is a point, or
equivalently, doesn’t depend on P . Hence

φ(P, s) = (α(P, s), β(s))

and the same holds true for φ−1 so β ∈ Aut(S2) and, by a composition with
Id×β−1, we can restrict to the case β = Id. Consider now for a fixed s ∈ S2

the morphism αs : P2 → P2. As before, its image cannot have dimension 1. If
dim(αs(P2)) = 0 then φ(P2×{s}) ⊂ Pt×S2, and because φ is an automorphism,
we would obtain an isomorphism between P2 and a del Pezzo surface of Picard
number strictly greater than 1 which is impossible. Hence αs is a dominant
map. Suppose αs(P ) = αs(Q). Then

φ(P, s) = (αs(P ), s) = (αs(Q), s) = φ(Q, s)

but φ is injective so P = Q and αs is also injective. This shows that αs is an
automorphism for every s and in particular we have a map f : s ∈ S2 7→ αs ∈
PGL(3) = SL(3)/Z3. Then f lifts to a map from S2 to SL(3) that is affine and
then f doesn’t depend on s. So Aut(P2 × S) = Aut(P2)×Aut(S2).

If S1 = P1 × P1 then the extremal rays of X = S1 × S2 are of the form [(P1 ×
P2)×E], [(P1 × P1)×Q] or [(P1 ×P2)×Q] where E is a (−1)−curve on S2. In
particular ((P1 × P2)× E) · (KX) = −1 whereas

((P1 × P1)×Q) ·KX = ((P1 × P2)×Q) ·KX = −2.

In particular, because extremal rays are permuted by every automorphism and
because the intersection numbers are preserved, we have φ∗(NE(πi)) = NE(πi)
and then Aut(S1 × S2) = Aut(S1)×Aut(S2).

If S1 = dP8 and ρ(S2) ≥ 3 then the extremal rays are of the form [E×P2], [(H−
E) × P2] and [P1 × E2] where E is the only (−1)−curve on S1 and E2 is a
(−1)−curve on S2. In particular −KX · ((H − E) × P2) = 2 whereas for all
the other extremal curves the intersection with −KX is 1; hence φ∗ fixes this
extremal ray. Assume that φ∗([E × P2]) = ([P1 × Ei]). Then, denoting V =
R+[E×P2] and V ′ = R+[P1×Ei], we obtain the following commutative diagram

dP8 × S2

	cV

��

φ // dP8 × S2

cV ′

��
P2 × S2 f

// dP8 × Ŝ2

where f is again an isomorphism. This gives χ(S2) = 4 but ρ(S2) ≥ 3 so we
have a contradiction (4 = χ(S2) ≥ 5). Thus NE(Si) = φ∗(NE(Si)) and then
Aut(S1 × S2) = Aut(S1)×Aut(S2).

Lemma 7.4. Let S1 and S2 be two del Pezzo surfaces such that ρ(S1), ρ(S2) ≤ 3.
Then:

• If S1 6= S2, Aut(S1 × S2) = Aut(S1)×Aut(S2);
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• If S1 = S2 6= P1 × P1, Aut(S1 × S2) = (Aut(S1)×Aut(S2)) n Z2;

• If S1 = S2 = P1 × P1, Aut(S1 × S2) = (Aut(P1)×4) n S4.

Proof. If ρ(Si) ≤ 3, Si is a smooth toric variety. For a complete simplicial toric
variety the sequence

1→ Aut0(X)→ Aut(X)→ Aut(N,∆)

ΠS∆i

→ 1

is exact by a result of Cox (see [5]). We will see that this extension is a split
extension in all our cases and hence Aut(X) can be seen as a semidirect product

of Aut0(X) and Aut(N,∆)
ΠS∆i

. The proof will be completed analysing the structure

of these two groups.

We call ∆Si ⊂ Z2 =: Ni the fan of Si and denote with ∆Si(1) = {e0, . . . , eri}
the set of the rays of the fan. The following table summarizes the rays of the
fans we need.

S e1 e2 e3 e4 e5 e6

P2 [1,0] [0,1] [-1,-1]
P1 × P1 [1,0] [0,1] [-1,0] [0,-1]
dP8 [1,0] [0,1] [-1,0] [-1,-1]
dP7 [1,0] [0,1] [-1,0] [0,-1] [-1,-1]
dP6 [1,0] [0,1] [-1,0] [0,-1] [-1,-1] [1,1]

If ∆ ⊂ Z4 = N is the fan of X, then ∆(1) = (∆S1
× {[0, 0]}) ∪ ({[0, 0]} ×∆S2

).
Aut(N,∆) will denote the group of the automorphisms of the lattice N that
fixes the fan ∆. By direct computation, we show that

• If S1 6= S2, Aut(N,∆) = Aut(N1,∆S1)×Aut(N2,∆S2);

• If S1 = S2 6= P1 × P1, Aut(N,∆) = (Aut(N1,∆S1
)×Aut(N2,∆S2

)) nZ2;

• If S1 = S2 = P1 × P1, Aut(N,∆) = S4 n Z4
2.

It is possible to associate a divisor Di to each ei ∈ ∆(1) and we say than ei ∼ ej
iff Di and Dj are linearly equivalent. Call {∆i} the partition of ∆(1) obtained
by taking the quotient with respect to ∼. Call S∆i

the pemutation group over
∆i. It is easy to see that this partition doesn’t mix rays coming from different
factors of the product so we can write S1

∆i
or S2

∆i
to mean a permutation group

that acts on the first or on the second factor. Call H the quotient of Aut(N,∆)
with respect to ΠS∆i = ΠS1

∆i
×ΠS2

∆i
. Then

• If S1 6= S2, H =
Aut(N1,∆S1

)

ΠS1
∆i

× Aut(N2,∆S2
)

ΠS2
∆i

;

• If S1 = S2 6= P1 × P1, H =

(
Aut(N1,∆S1

)

ΠS1
∆i

× Aut(N2,∆S2
)

ΠS2
∆i

)
n Z2;

• If S1 = S2 = P1 × P1, H =
S4nZ4

2

Z4
2
' S4.

Here a small summary of these groups.
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S Aut(NS ,∆S)
∏
S∆i

Aut(NS ,∆S)/
∏
S∆i

P2 Sym(e1, e2, e3) Sym(e1, e2, e3) Id
P1 × P1 < (13), (1234) > < (13), (24) > Z2

dP8 < (24) > < (24) > Id
dP7 < (12)(34) > Id Z2

dP6 Sym(e1, e2, e5)× < − Id > Id S3 × Z2

To see that the sequence splits, consider, for example, the case X = dP8 × dP7

for which H = Id×Z2 =< σ >. This group is generated by the automorphism of
the fan of dP7 that switches the rays associated to the two exceptional divisors
of dP7, thus a section of Aut(X) → H is given by σ 7→ A where A is an
automorphism of P2 that switches the two points that are blown-up to obtain
dP7. All the other cases can be described in a similar way.

Aut0(X) is the connected component of the identity in Aut(X) and now we will
show that Aut0(X) = Aut0(S1)×Aut0(S2). By a result of Cox (see again [5])

Aut0(X) ' Autg(S)

HomZ(Pic(X),C∗)

where Autg(S) is the group of the automorphisms of the homogeneous coor-
dinate ring S of X, regarded as graded C−algebra. This group is spanned
by (C∗)|∆(1)| = (C∗)|∆S1

(1)|+|∆S2
(1)| and by the elements ym(λ) where λ ∈

C and m ∈ R(N,∆) (the elements of R(N,∆) are the roots of Aut(X)).
We show that each ym(λ) can be written in a unique way as the product
of fi ∈ Autg(Ri) where Ri is the coordinate ring of Si. This shows that
Autg(S) ' Autg(R1) × Autg(R2). The group HomZ(Pic(X),C∗) splits as
HomZ(Pic(S1),C∗)×HomZ(Pic(S2),C∗) because Pic(X) = Pic(S1)⊕ Pic(S2).
Then, the quotient can be viewed as a product of the quotient giving

Aut0(X) = Aut0(S1)×Aut0(S2).

The claim follows from the combination of the facts above. For example, con-
sider again the case X = dP8 × dP7. Since Aut(dP8) is connected, we have
Aut0(X) = Aut(dP8)×K, where

K '

〈1 0 ∗
0 ∗ ∗
0 0 ∗

〉 .
Since H = Id×Z2, we obtain

Aut(X) ' (Aut(dP8)×K) n (Id×Z2) =

Aut(dP8)× (K n Z2) = Aut(dP8)×Aut(dP7).

Combining all these results, we obtain

Theorem 7.5. Let S1 and S2 be two del Pezzo surfaces. Then
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• If S1 6= S2, Aut(S1 × S2) = Aut(S1)×Aut(S2);

• If S1 = S2 6= P1 × P1, Aut(S×2) = Aut(S)×2 n Z2;

• If S1 = S2 = P1 × P1, Aut((P1)×4) = Aut(P1)×4 n S4.

8 List of the Threefolds Obtained

In the previous sections we constructed examples of quotients of Calabi-Yau
threefolds Y embedded in S1 × S2 by groups that are of maximal order in the
sense that a group H ≤ Aut(S1 × S2) such that the restriction to Y gives a
free action, cannot have greater order than the ones used. If Y is a Calabi-
Yau threefold and G is a group acting freely on Y the same holds true each
H ≤ G. Moreover Y/H → Y/G is an étale covering. In the following table
we summarize all the quotients analyzed and all the étale coverings obtained by
taking quotient with respect to subgroups. Also the known examples are shown.
The column m(|G|)/M represents the ratio of the maximal order of the existing
group action freely on Y and the estimated (M = M(S1, S2)). In the column
Π1(Y/G) the fundamental group of the quotient is written. When for two
isomorphic subgroups H1 and H2 of G we obtain h11(Y/H1) = h11(Y/H2) and
h12(Y/H1) = h12(Y/H2) we represent them in the table in one row indicating
that multiple subgroups give the same result by their number between round
brackets. For example, taking S1 = S2 = P2 and G ' Z3 ⊕ Z3 there are 4
subgroups of order 3 and each of them gives a manifold with Hodge numbers
(2, 29). In the table this is summarized by writing Z3(4) in the column of
Π1(Y/H). In the last column a ”Y ” means that the height obtained for the
quotient threefold is the least possible, a ”N” means the opposite and a ”?”
means that we don’t know if this is the case or not. The pairs (S1, S2) for which
M(S1, S2) = 1 are omitted.
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S1 S2 max(|G|)/M |G| Π1(Y/H) h11 h12 h min?

P2 P2 9/9
9 Z3 ⊕ Z3 2 11 13 Y
3 Z3(4) 2 29 31 N
1 {Id} 2 83 85 N

P2 dP6 3/3
3 Z3 3 21 24 Y
1 {Id} 5 59 64 N

P2 dP3 3/3
3 Z3 4 13 17 Y
1 {Id} 8 35 43 N

P1 × P1 P1 × P1 16/16

16 Z8 ⊕ Z2 1 5 6 Y
8 Z4 ⊕ Z2 2 10 12 N
8 Z8(2) 1 9 10 N
4 Z2 ⊕ Z2 4 20 24 N
4 Z4(2) 2 18 20 N
2 Z2(3) 4 36 40 N
1 {Id} 4 68 72 N

P1 × P1 dP6 2/2
2 Z2 5 29 34 Y
1 {Id} 6 54 60 N

dP6 dP6 12/12

12 Z12 1 4 5 Y
6 Z6 2 8 10 N
4 Z4 3 12 15 N
3 Z3 4 16 20 N
2 Z2 6 24 30 N
1 {Id} 8 44 52 N

dP6 dP6 12/12

12 Dic3 1 4 5 Y
6 Z6 2 8 10 N
4 Z4(3) 3 12 15 N
3 Z3 4 16 20 N
2 Z2 6 24 30 N
1 {Id} 8 44 52 N

dP6 dP4 2/2
2 Z2 7 19 26 ?
1 {Id} 10 34 44 N

dP6 dP3 3/9
3 Z3 5 11 16 Y
1 {Id} 11 29 40 N

dP5 dP5 5/5
5 Z5 2 7 9 Y
1 {Id} 10 35 45 N

dP4 dP4 8/8

8 Z4 ⊕ Z2 3 5 8 ?
4 Z2 ⊕ Z2 6 10 16 N
4 Z4(2) 4 8 12 N
2 Z2(3) 8 16 24 N
1 {Id} 12 28 40 N

dP3 dP3 3/3
3 Z3 6 9 15 Y
1 {Id} 14 23 37 N

P1 × P1 dP4 4/4
4 Z2 ⊕ Z2 5 13 18 ?
2 Z2(3) 6 22 28 N
1 {Id} 8 40 48 N
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