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a b s t r a c t

The purpose of the present paper is to develop C1 Virtual Elements in three dimensions
for linear elliptic fourth order problems, motivated by the difficulties that standard
conforming Finite Elements encounter in this framework. We focus the presentation
on the lowest order case, the generalization to higher orders being briefly provided in
the Appendix. The degrees of freedom of the proposed scheme are only 4 per mesh
vertex, representing function values and gradient values. Interpolation error estimates
for the proposed space are provided, together with a set of numerical tests to validate
the method at the practical level.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fourth order partial differential equations are used to describe many different physical phenomena such as plate
bending problems and evolution of transition interfaces. In standard H2 conforming finite elements these problems require
a globally C1 piecewise polynomial space and, to get such regularity on a general unstructured partition, a very high
minimal polynomial degree is needed. In [1] there is an analysis on the minimal degree required to build a finite element
space in the Sobolev space Hm(Rd) via the Finite Element Method. In particular, the authors show that for H2 the minimal
polynomial degree is 5 in two dimensions and 9 in three dimensions. It is easy to understand that such compulsory high
polynomial degree increases the computational effort and makes the method unpractical in many situations. For instance,
a conforming C1 finite element space on a tetrahedral mesh will require 220 degrees of freedom per element [2]. To avoid
this high computational effort, there are possible alternatives in the literature, such as non-conforming and discontinuous
schemes (see for instance [3–6]), making use of a mixed formulation (see for instance [7–10]) or construct more complex
discrete spaces obtained by some macro-element strategy (see for instance [11–13]). It must be mentioned that C1 finite
elements are also important because they can be used to build exact discrete Stokes complexes, see for instance [14,15]
and the citations thereof.

Another strategy to get a conforming discrete approximation space in H2 is to follow the recently born Virtual Element
Method (VEM). The VEM is a novel generalization of the finite element method, introduced in [16,17], that allows to use
general polygonal/polyhedral meshes and which has been already successfully applied to a large number of problems
(a very brief list being [18–40]). The Virtual Element Method is not restricted to piecewise polynomials but avoids
nevertheless the explicit integration of non-polynomial shape functions by a wise choice of the degrees of freedom
and an innovative construction of the stiffness matrix. Although the main motivation of VEM is the use of general
polytopal partitions, its flexibility can lead also to different advantages. One, initiated in [41,42] and further investigated in
[43–46], is the possibility to develop C1 conforming spaces, still keeping the accuracy order and the number of degrees of
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freedom at a reasonable level. More specifically, the lowest degree requires only three degrees of freedom for each vertex
independently for the shape of the elements.

Since all the papers above are limited to the two-dimensional case, the purpose of the present contribution is to
develop C1 Virtual Elements in three dimensions. We focus the presentation on the lowest order case (the generalization
to higher orders being briefly provided in the Appendix) for the sake of exposition but also since we believe this is the most
interesting choice in practice. Developing a discrete Virtual Element space in three dimensions needs first the construction
of ad-hoc two dimensional spaces on the faces (polygons) of the polyhedra, one for the function values and one for the
normal derivatives. The final degrees of freedom of the proposed scheme are simply 4 per mesh vertex, representing
function values and gradient component values. Consequently, although VEM can be applied to general polyhedral meshes,
the proposed method becomes appealing also for standard tetrahedral meshes. After developing the method and the
associated degrees of freedom, we prove interpolation estimates for the provided discrete space in standard L2,H1 and
H2 Sobolev norms. Finally, we show a set of numerical tests on classical linear fourth order elliptic problems that validate
the method at the practical level. We also include a comparison, for the standard Poisson problem, with the C0 VEM in 3D.
It is finally worth noticing that, although the present paper is focused on the linear elliptic case, the presented discrete
space could be used also to discretize more complex nonlinear problems, such as the Cahn–Hilliard equation.

The paper is organized as follows. In Section 2 we outline the range of fourth order linear problems under consideration.
In Section 3 we describe the C1 virtual element spaces and provide a set of associated degrees of freedom. In Section 4
we present the numerical method, that is the VE discretization of the problem. In Section 5, we prove the interpolation
and convergence estimates. In Section 6, we present the numerical results. Finally, in Appendix A we briefly outline the
extension to the higher order case.

2. Continuous problem

Let Ω ⊂ R3 be a bounded domain, we consider the following problem: find u(x) : Ω → R such that⎧⎨⎩c1∆2u − c2∆u + c3 u = f in Ω
u = g1 on ∂Ω

∂nu = g2 on ∂Ω
, (1)

where c1 > 0, c2, c3 ≥ 0 are constant coefficients, f ∈ L2(Ω) is the forcing term, ∂nu is the partial derivative of u with
respect to the boundary normal n, g1 ∈ H3/2(∂Ω) and g2 ∈ H1/2(∂Ω) are the Dirichlet data. Note that we have considered
Dirichlet boundary conditions only for simplicity of exposition, the extension to more general cases is trivial. To define
the variational formulation of Problem (1), we introduce the bilinear forms

a∆(v, w) :=

∫
Ω

∇
2v : ∇

2w dΩ ∀v, w ∈ H2(Ω) ,

a∇ (v, w) :=

∫
Ω

∇v · ∇w dΩ ∀v, w ∈ H1(Ω) ,

a0(v, w) :=

∫
Ω

v w dΩ ∀v, w ∈ L2(Ω) ,

(2)

where all the previous symbols refer to the standard notation for functional spaces. We define

V (Ω) :=
{
v ∈ H2(Ω) : v = g1 and ∂nu = g2 on ∂Ω

}
,

and

V0(Ω) :=
{
v ∈ H2(Ω) : v = 0 and ∂nu = 0 on ∂Ω

}
.

The weak formulation of Problem (1) reads: find u ∈ V (Ω) such that

c1 a∆(u, v) + c2 a∇ (u, v) + c3 a0(u, v) = (f , v)Ω ∀v ∈ V0(Ω) , (3)

where (·, ·)Ω is the standard L2-inner product. Due to the coercivity of a∆(·, ·) on the space V0(Ω) the Lax–Milgram lemma
yields the well posedness of the above problem.

Remark 2.1. The method proposed in this paper can be applied also to second order elliptic problems (that is c1 = 0 and
c2 > 0) to get a C1 conforming solution, as shown in the numerical test in Section 6.6.

Remark 2.2. The method of the present paper can be extended to the variable coefficient case by combining this
construction with the approach in [26,47].
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3. C1 Virtual element spaces

Let Ωh be a discretization of Ω composed by polyhedrons. As in the standard VEM framework, we define the local
space and projection operators in a generic polyhedron P and then we glue such local virtual element spaces to define
the discrete global space, Vh(Ωh).

We achieve this goal in two steps. We first define virtual spaces on faces, Sections 3.1 and 3.2, then we define virtual
spaces on polyhedrons in Section 3.3. Since the virtual face spaces essentially correspond to 2D virtual spaces already
defined in [16,42,48], we only make a brief review and refer to such papers for a deeper description.

In order to derive the convergence theory, we will need the following assumptions on the mesh Ωh:

(A1) Each element P is star shaped with respect to a ball BP whose radius is uniformly comparable with the polyhedron
diameter, hP .

(A2) Each face f is star shaped with respect to a disc Bf whose radius is uniformly comparable with the face diameter,
hf .

(A3) Given a polyhedron P all its edge lengths and face diameters are uniformly comparable with respect to its diameter
hP .

Remark 3.1. It is easy to check that under assumptions (A1), (A2) and (A3) each polyhedron is the union of uniformly
shape-regular tetrahedrons all sharing a central vertex.

Let D ⊂ Rd, from now we refer to the polynomial space in d-variables of degree lower or equal to k as Pk(D).

3.1. Virtual element nodal space V∇

h (f )

We define the preliminary space on each face f ∈ ∂P

Ṽ∇

h (f ) :=

{
vh ∈ H1(f ) : ∆τ vh ∈ P0(f ) ,

vh|∂ f ∈ C0(∂ f ) , vh|e ∈ P1(e) ∀e ∈ ∂ f
}
.

where ∆τ is the Laplace operator in the local face variables.
We consider the standard VEM setting proposed in [16] and we build the projection operator Π∇

f : Ṽ∇

h (f ) → P1(f ),
defined by⎧⎨⎩a∇

f (Π
∇

f vh , p1) = a∇

f (vh , p1) ∀p1 ∈ P1(f )

(Π∇

f vh, 1)∂ f = (vh, 1)∂ f
, (4)

where

a∇

f (vh , wh) :=

∫
f
∇τvh · ∇τ wh df ,

here ∇τ is the gradient operator in the local face coordinates and (·, ·)∂ f is the standard L2 inner product over the boundary
of f .

The projection operator Π∇

f is well defined and uniquely determined by the values of the function vh at the vertices
of the face f [16].

Moreover, starting from the space Ṽ∇

h (f ) and the projection operator Π∇

f , we are able to define the nodal space

V∇

h (f ) :=

{
vh ∈ Ṽ∇

h (f ) :

∫
f
Π∇

f vh df =

∫
f
vh df

}
, (5)

whose degrees of freedom are the values of vh at the vertices of f [16,49].

3.2. Virtual element C1 space V∆h (f )

We start from the preliminary space

Ṽ∆h (f ) :=

{
vh ∈ H2(f ) : ∆2

τ vh ∈ P1(f ),

vh|∂ f ∈ C0(∂ f ), vh|e ∈ P3(e) ∀e ∈ ∂ f ,

∇τ vh|∂ f ∈ [C0(∂ f )]2, ∂nevh ∈ P1(e) ∀e ∈ ∂ f

}
,

where ∂nevh denotes the outward normal derivative to each edge.
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We consider the projection operator Π∆
f : Ṽ∆h (f ) → P2(f ) defined by the following relations{

a∆f
(
Π∆

f vh , p2
)

= a∆f (vh , p2) ∀p2 ∈ P2(f )(
Π∆

f vh , p1
)
∂ f

= (vh , p1)∂ f ∀p1 ∈ P1(f )
, (6)

where

a∆f (vh , wh) :=

∫
f
∇

2
τ vh : ∇

2
τ wh df ,

is a bilinear operator and ∇
2
τ refers to the Hessian in the face local coordinates system.

The projection operator Π∆
f : Ṽ∆h (f ) → P2(f ) is well-defined and it is uniquely determined by the values of the

function, vh(ν), and the values of the gradient, ∇τvh(ν), at the face vertices [42,43,48].
We exploit the space Ṽ∆h (f ) and the projection operator Π∆

f to define the virtual element C1 space

V∆h (f ) :=

{
vh ∈ Ṽ∆h (f ) :

∫
f
Π∆

f vh p1 df =

∫
f
vh p1 df , ∀p1 ∈ P1(f )

}
. (7)

A set of degrees of freedom for V∆h (f ) is given by the function and the function gradient values at the face vertices [42,43].

Remark 3.2. We would like to underline that the additional properties on face integrals required by the spaces V∇

h (f )
and V∆h (f ), namely∫

f
vh df =

∫
f
Π∇

f vh df , ∀vh ∈ V∇

h (f ) (8)

and ∫
f
vh p1 df =

∫
f
Π∆

f vh p1 df ∀p1 ∈ P1(f ) , ∀vh ∈ V∆h (f ) (9)

will be essential to define our virtual scheme on polyhedrons.

Finally, we make use of the L2-projection operator on faces Π 0
f : [L2(f )]2 → [P0(f )]2 to approximate the gradient of a

generic function vh ∈ V∆h (f ). Such projection operator is defined by these relations∫
f
Π 0

f (∇τvh) · c df =

∫
f
∇τvh · c df , ∀c ∈ [P0(f )]2 . (10)

This projection operator is computable from the degrees of freedom of V∆h (f ). Indeed, let us consider the right hand
side of Eq. (10)∫

f
∇τvh · c df =

∫
∂ f
vh (nf · c) df =

∑
e∈∂ f

(ne · c)
∫
e
vh de ,

the last integral is exactly computable since the virtual function vh is a polynomial of degree 3 on the edges and such
edge polynomials are uniquely determined by the degrees of freedom of V∆h (f ).

3.3. Virtual element space in P

Given a polyhedron P ∈ Ωh we consider the preliminary space

Ṽh(P) :=

{
vh ∈ H2(P) : ∆2 vh ∈ P2(P),

vh|SP ∈ C0(SP ) ,∇vh|SP ∈ [C0(SP )]3 ,

vh|f ∈ V∆h (f ) , ∂nf vh|f ∈ V∇

h (f ) ∀f ∈ ∂P
}
, (11)

where SP denotes the skeleton (the union of all edges) of the polyhedron P .
This space is composed by functions whose bi-Laplacian is a polynomial of degree 2. The restriction of such functions

on each face is a two dimensional C1 virtual function, see Section 3.2, while their normal derivative on each face is a C0

virtual function, see Section 3.1.
To build a suitable virtual element space in a polyhedron P , we define two sets of linear operators from Ṽh(P) to R:

D0: the values of the function at the vertices, vh(ν);
D1: the values of the gradient components at the vertices, ∇vh(ν).
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We define the projection operator Π∆
P : Ṽh(P) → P2(P) by the following relations{

a∆P
(
Π∆

P vh , p2
)

= a∆P (vh , p2) ∀p2 ∈ P2(P)(
Π∆

P vh , p1
)
∂P = (vh , p1)∂P ∀p1 ∈ P1(P)

, (12)

where we introduced

a∆P (vh , wh) :=

∫
P
∇

2 vh : ∇
2wh dP , (13)

and (·, ·)∂P is the standard L2 inner product over the boundary of P .
As usual in VEM, the second condition in Eq. (12) is needed to select an element from the non-trivial kernel of the

operator a∆(·, ·)P .

Lemma 3.1. The operator Π∆
P : Ṽh(P) → P2(P) is computable and uniquely determined by the values of the linear operators

D0 and D1.

Proof. Let us consider the first condition in Eq. (12). The main issue is how to compute the right hand side since it
involves the virtual function vh. We integrate by parts and we get

a∆P (vh , p2) =

∫
P
∇

2 vh : ∇
2p2 dP

= −

∫
P
∇ vh · div(∇2p2) dP +

∫
∂P

∇ vh ·
[
(∇2p2)n

]
df

=

∑
f∈∂P

∫
f
∇ vh ·

[
(∇2p2)nf

]
df .

Then, we make the following orthonormal vector decomposition

∇ vh = (∇ vh · vf ,̃x) vf ,̃x + (∇ vh · vf ,̃y) vf ,̃y + (∇ vh · nf )nf ,

where vf ,̃x and vf ,̃y are three dimensional unit vectors (tangent to the face) which identify the local two dimensional
coordinate system of f , and nf is the outward pointing normal of the face, see Fig. 1. We plug this decomposition in the
previous equation and we get

a∆P (vh , p2) =

∑
f∈∂P

[
ωvf ,̃x

∫
f
(∇ vh · vf ,̃x) df + ωvf ,̃y

∫
f
(∇ vh · vf ,̃y) df

+ωnf

∫
f
(∇ vh · nf ) df

]
, (14)

where

ωvf ,̃x := vf ,̃x ·
[
(∇2p2)nf

]
, ωvf ,̃y := vf ,̃y ·

[
(∇2p2)nf

]
,

and

ωnf := nf ·
[
(∇2p2)nf

]
,

are constant values so we can move them out from the integral over the face f . Then, the integrals in Eq. (14) are
computable using the face projectors of the previous Sections, which in turn are uniquely defined by the values of D0 and
D1. More specifically, since for (11) we have (∇ vh · nf ) ∈ V∇

h (f ), we can exploit the standard nodal projection Π∇

f and
condition (8). Furthermore, since both (∇ vh ·vf ,̃x) and (∇ vh ·vf ,̃y) correspond to tangent derivatives of vh|f and vh|f ∈ V∆h (f )
those integrals can be computed using (10). Finally, the last condition of Eq. (12) involves only integrals on faces of P and
thus it is computable from D0 and D1 recalling property (9). □

Now we are ready to define the local virtual element space, Vh(P)

Vh(P) :=

{
vh ∈ Ṽh(P) :

∫
P
Π∆

P vh p2 dP =

∫
P
vh p2 dP , ∀p2 ∈ P2(P)

}
. (15)

It is trivial to check that

P2(P) ⊆ Vh(P) .

Lemma 3.2. The set of linear operators D0 and D1 are a set of degrees of freedom for the space Vh(P).
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Fig. 1. The unit vectors vf ,̃x , vf ,̃y and nf for the face f .

Proof. A function wh ∈ Ṽh(P) is the solution of a well-posed bi-Laplacian problem defined in P , whose forcing term is
a polynomial of degree 2,

∆2wh ∈ P2(P) , (16)

and its Dirichlet boundary data are

wh|f ∈ V∆h (f ) , ∂nfwh|f ∈ V∇

h (f ) ∀f ∈ ∂P . (17)

First of all, recalling the definition of the face spaces and their associated degrees of freedom, it is easy to check that D0
and D1 constitute a set of degrees of freedom for the boundary space Ṽh(P)|∂P .

The dimension of Ṽh(P) is equal to the dimension of the data space, i.e. the dimension of the loading term plus the
dimension of the boundary data space. In this particular case we have that

• the dimension of the loading term is 10 since we are dealing with polynomials of degree 2 in the three dimensional
space and

• the dimension of the boundary data space is given by the sum of the cardinality of D0 and D1, #{D0} + #{D1}.

We know that Vh(P) is a subspace of Ṽh(P) obtained by imposing∫
P
Π∆

P vh p2 dP =

∫
P
vh p2 dP ∀p2 ∈ P2(P) , (18)

which can be re-written as a set of 10 linear equations. We deduce that

dim(Vh(P)) ≥ dim(Ṽh(P)) − 10 = #{D0} + #{D1} .

Therefore, once we prove that a generic function vh ∈ Vh(P) with vanishing D0 and D1 values is the zero element of Vh(P),
we deduce that

dim(Vh(P)) = #{D0} + #{D1} ,

and this will complete the proof.
To achieve this goal, suppose that vh ∈ Vh(P) vanishes on D0 and D1. Then

vh|f = 0, and ∂nf vh|f = 0 ∀f ∈ ∂P .

Moreover, since D0 and D1 are zero, we have that Π∆vh = 0, Lemma 3.1, and therefore, recalling (15),∫
P
vh p2 dP =

∫
P
Π∆

P vh p2 dP = 0 ∀p2 ∈ P2(P) . (19)

Since vh ∈ Vh(P), by definition ∆2vh ∈ P2(P). Consequently, we can take ∆2vh as a test function p2 in Eq. (19). Then, if we
integrate by parts two times and we exploit the fact that on the boundary vh and ∂nvh are null, we get

0 =

∫
P
vh∆

2vh dP =

∫
P
∆vh∆vh dP ⇒ ∆vh = 0 .

Thus, since vh is zero on the boundary and its Laplacian is null, vh is the null function. □
To set up the discrete form of Problem (3), the projector operator Π∆

P alone is not sufficient, we also need an
L2−projection operator Π0

P and an H1
−projection operator Π∇

P .
Let us start with Π0

P : Vh(P) → P2(P). This projection operator is determined by the following conditions:

a0P (Π
0
P vh, p2) = a0P (vh, p2) ∀p2 ∈ P2(P) , (20)
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where we defined the bilinear form

a0P (vh, wh) :=

∫
P
vhwh dP . (21)

The subsequent lemma easily follows recalling (15) and the computability of Π∆
P .

Lemma 3.3. The projection operator Π0
P : Vh(P) → P2(P) is computable from D0 and D1 (and actually coincides with Π∆

P ,
see (15)).

Now we consider the projection operator Π∇

P : Vh(P) → P2(P) defined by{
a∇

P

(
Π∇

P vh , p2
)

= a∇

P (vh , p2) ∀p2 ∈ P2(P)

a0P
(
Π∇

P vh , 1
)

= a0P (vh , 1)
, (22)

where

a∇

P (vh , wh) :=

∫
P
∇ vh · ∇ wh dP . (23)

Lemma 3.4. The projection operator Π∇

P : Vh(P) → P2(P) is computable from D0 and D1.

Proof. We have to check that the right hand side of the first equation in (22) is computable using only the degrees of
freedom values D0 and D1. Let us consider the first condition in (22). If we integrate by parts and recall definitions (7)
and (15), we notice that this term depends only on the projection operators Π0

P and Π∆
f , that in turn depend only on D0

and D1 values. Indeed

a∇

P (vh , p2) =

∫
P
∇vh · ∇p2 dP

= −

∫
P
vh∆p2 dP +

∫
∂P
vh (∇p2 · n) df

= −∆p2

∫
P
vh dP +

∑
f∈∂P

∫
f
vh (∇p2 · nf ) df

= −∆p2

∫
P
Π0

P vh dP +

∑
f∈∂P

∫
f
Π∆

f vh (∇p2 · nf ) df . □

3.4. Global virtual space Vh(Ωh)

The global discrete space which will be used to discretize Problem (3) is

Vh(Ωh) := {vh ∈ V (Ω) : vh|P∈ Vh(P)} . (24)

Let us consider the canonical basis functions {φi}i associated with the degrees of freedom D0 and D1, i.e. the functions
φi which take value 1 on the ith degree of freedom and vanish for the remaining ones. It is easy to check that, assuming
for simplicity a uniform mesh family, the basis functions associated with the set D0 satisfy ∥φi∥L∞(Ω) ∼ 1, while the
basis functions associated with D1 behave like ∥φi∥L∞(Ω) ∼ hP , where hP is the diameter of the polyhedron P . Since this
different scaling behavior with respect to the mesh size may yield detrimental effects on the condition number of the
discrete system it is wiser to scale accordingly the second set of degrees of freedom.

Consequently, the global degrees of freedom for Vh(Ω) which we adopt in practice are

C0: evaluations of vh(ν) at each vertex of the mesh Ωh;
C1: evaluations of hν∇vh(ν) at each vertex of the mesh Ωh,

where hν denotes some local mesh size parameter, for instance the average diameter of the neighboring elements. This
choice will be better discussed in Section 6.5. The dimension of Vh(Ωh) is four times the number of mesh vertices.

4. Discrete virtual forms and the discrete problem

When we are solving a PDE via the virtual element method, we have to define a suitable set of discrete forms for the
problem at hand. Such forms are constructed element-by-element and depend only on the local degrees of freedom D0
and D1, also via the projection operators Π∆

P , Π0
P and Π∇

P .
Let P ∈ Ωh and vh, wh ∈ Vh(Ωh), we define the following strictly positive bilinear form sP : Vh(P) × Vh(P) → R,

sP (vh, wh) :=

∑
ν∈P

(
vh(ν)wh(ν) +

(
hν ∇vh(ν)

)
·
(
hν∇wh(ν)

))
, (25)
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where ν is a generic vertex of the polyhedron P and hν is the scaling parameter, see the definition of the degrees of
freedom C0 and C1. Recalling the continuous global form in Eq. (2) and the local bilinear operators defined in Eqs. (13), (21)
and (23), we construct the following local discrete linear forms

a∆h,P (vh, wh) := a∆P (Π
∆
P vh, Π

∆
P wh) + h−1

P sP (vh −Π∆
P vh, wh −Π∆

P wh) ,

a∇

h,P (vh, wh) := a∇

P (Π
∇

P vh, Π
∇

P wh) + hP sP (vh −Π∇

P vh, wh −Π∇

P wh) ,

a0h,P (vh, wh) := a0P (Π
0
P vh, Π

0
Pwh) + h3

P sP (vh −Π0
P vh, wh −Π0

Pwh) ,

(26)

for all vh, wh ∈ Vh(P), where hP is the diameter of the polyhedron P . The construction above is standard in VEM, see for
instance [16,17]. The first term of each bilinear form in Eq. (26) is the so-called consistency part, while the second term is
the stability part. This stability part is scaled in such a way that, under the assumptions (A1)-(A3), there exist two positive
constants c⋆, c⋆ such that

c⋆a
♯

P (vh, vh) ≤ a♯h,P (vh, vh) ≤ c⋆a♯P (vh, vh) ∀vh ∈ Vh(P) , (27)

where, as before, the symbol ♯ stands for ∆,∇ and 0, respectively.

Lemma 4.1 (Consistency). For all the bilinear forms in Eq. (26) it holds

a♯h,P (vh, p2) = a♯P (vh, p2) ∀p2 ∈ P2(P) ,∀vh ∈ Vh(P) , (28)

where the symbol ♯ stands for ∆,∇ and 0, respectively.

Proof. The property in Eq. (28) follows from the fact that the projection operators, Π∆
P , Π∇

P , and Π0
P , are orthogonal

with respect to the bilinear form they are associated with. □
Lemma 4.1 states that the discrete bilinear forms a♯h,P (·, ·) are exact when one of the entries is a polynomial of degree 2.

Finally, as in a standard virtual element framework, the global discrete forms are obtained by summing each local bilinear
form over all mesh elements. Then the discrete problem reads: find uh ∈ Vh(Ωh) such that

c1 a∆h (uh, vh) + c2 a∇

h (uh, vh) + c3 a0h(uh, vh) = (fh, vh)Ωh ∀vh ∈ V0(Ωh) . (29)

where

(fh, vh)Ωh :=

∑
P∈Ωh

∫
P
Π0

P vh fh dP .

Remark 4.1. The scheme of the present paper can be immediately extended to the case where the Laplace operator
is used instead of the Hessian operator in the definition of the fourth order bilinear form. The only modification is to
substitute the form a∆P (·, ·) with

a∆P (v ,w) =

∫
P
∆v∆w dP

and keep the same construction as in (26) for its discrete counterpart.

5. Interpolation and convergence estimates

In the present section we derive convergence estimates for the proposed method, under the geometric mesh assump-
tions (A1)-(A3) of the previous sections. In the sequel, the symbol ≲ will denote bounds up to a constant independent of
h.

Theorem 5.1. Let the mesh assumptions (A1)–(A3) hold. Let u ∈ H3(Ω) be the solution of Problem (3) and uh the solution of
the corresponding discrete formulation (29). Then, it holds

∥u − uh∥2,Ω ≤ c h|u|3,Ω

To derive the proof, following the same identical steps as [16], Theorem 3.1, one gets the ‘‘best approximation’’ bound

∥u − uh∥2,Ω ≲ ∥u − uI∥2,Ω + ∥u − uπ∥2,Ωh + h2
∥f ∥0,Ω , (30)

for any interpolant uI ∈ Vh and piecewise P2-polynomial uπ , and where |·|s,Ωh
denotes a broken (with respect to the

mesh) Sobolev norm of order s, s ≥ 0.
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The second term is immediately bounded by standard polynomial approximation estimates on star-shaped domains
(see for instance [50]), yielding

∥u − uπ∥2,Ωh ≲ h|u|3,Ωh
.

Therefore, the main effort in proving Theorem 5.1 is bounding the first term in the right hand side of (30), that is
showing the interpolation estimates for the space Vh. In order to do so, we will first prove interpolation estimates for the
simpler space

Wh(Ωh) := {vh ∈ V (Ω) : vh|P∈ Wh(P) ∀P ∈ Ωh } ,

where

Wh(P) :=

{
vh ∈ H2(P) : ∆2 vh = 0,

vh|SP ∈ C0(SP ) ,∇vh|SP ∈ [C0(SP )]3 ,

vh|f ∈ V∆h (f ) , ∂nf vh|f ∈ V∇

h (f ) ∀f ∈ ∂P
}
,

Following the same arguments in Section 3.3, it is easy to check that the operators D0 and D1 constitute a set of
degrees of freedom also for Wh(P).

Remark 5.1. By adding and subtracting a piecewise second-order polynomial, then using a triangle inequality and the
continuity ofΠ∆

P in the H2 norm, finally recalling standard approximation results for polynomials on star-shaped domains,
from Theorem 5.1 one can easily derive also∑

P∈Ωh

∥u −Π∆
P (uh)∥2

2,P ≤ c h2
|u|23,Ωh

that states the convergence of the projected discrete solution.

5.1. Interpolation estimates for Wh

In deriving the estimates for the space Wh, we will take full advantage of known results for two-dimensional C0 and
C1 VEM spaces (cited below). In addition, we will use the following standard results on the continuous dependence of
the solution on the boundary biharmonic data in a polyhedron P (see for instance [51,52]).

Given a polyhedron P , let r1, r2 be two scalar functions living on ∂P satisfying r1 ∈ C0(∂P) and r1 ∈ H3/2(f ), r2 ∈ H1/2(f )
for each face f ∈ ∂P . Consider the standard biharmonic Dirichlet problem⎧⎪⎨⎪⎩

∆2v = 0 in P
v = r1 on ∂P

∂nv = r2 on ∂P
(31)

where all the operators are to be intended in weak sense. Below, n will denote the outward normal to the polyhedron’s
boundary (face by face).

Lemma 5.2. Let the auxiliary three-dimensional vector field r = ∇τ r1 + n r2 living on ∂P. Assume that such vector field r is
(component-wise) in H1/2(∂P). Then it holds

|u|2,P ≤ C |r|1/2,∂P .

The constant C here above depends only on the star-shapedness of the polyhedron (the constant appearing in assumption
(A1)-(A2)) and the Lipschitz constant of its boundary.

Note that the condition r ∈ [H1/2(∂P)]3 takes into account the necessary compatibility conditions at the edges. We can
now state the following interpolation result for the Wh space.

Proposition 5.1. Let u ∈ H3(Ω) and wI the only function in Wh that interpolates the nodal values of u and ∇u at all vertices
of Ωh. Then it holds

|u − wI |2,Ω ≲ h|u|3,Ωh
.

Proof. We prove a local interpolation estimate, the global one following immediately by summing over all the elements.
Let P ∈ Ωh. We start by splitting the error u − wI = ẽ + ê where

∆2̃e = 0 in P, ẽ = u − wI on ∂P, ∂ñe = ∂n(u − wI ) on ∂P,

∆2̂e = ∆2(u − wI ) in P, ê = 0 on ∂P, ∂n̂e = 0 on ∂P .
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An integration by parts easily shows that

|u − wI |
2
2,P = |̂e|22,P + |̃e|22,P , (32)

so that we need to bound the two terms above. For the first term, we again integrate by parts twice and obtain, also
recalling that ∆2wI = 0 by definition of Wh(P),

|̂e|22,P =

∫
P
(∆2̂e) ê dP ≤ ∥∆2̂e∥−1,P ∥̂e∥1,P

= ∥∆2u∥−1,P ∥̂e∥1,P ≲ ∥∆2u∥−1,P |̂e|1,P ,

where in the last step we used a Poincaré inequality (̂e vanishes on the boundary of P). The first multiplicative term in
the right hand side is bounded by |u|3,P (to show this it is sufficient to apply the definition of dual norm and integrate
once by parts). The second term corresponds to the L2 norm of ∇ ê, that is a (vector valued) function in H1(P) vanishing
on the boundary (see definition of ê). Therefore a scaled Poincaré inequality immediately yields

|̂e|22,P ≤ |u|3,P ∥∇ ê∥0,P ≲ hP |u|3,P |̂e|2,P (33)

that gives the desired bound for the first term in (32).
For the second term in (32), we make use of Lemma 5.2 and the definition of ẽ. Note that, due to the regularity of u

and the definition of Wh(P), the boundary data in the definition of ê satisfies the hypotheses of the Lemma. Moreover,
it is trivial to check that the vector field r appearing in Lemma 5.2 in this case is nothing but ∇(u − wI ). Therefore we
obtain the bound

|̃e|22,P ≲ |∇(u − wI )|21/2,∂P . (34)

Note that the above bound is uniform (in P) since the elements P are star shaped and have uniformly bounded Lipschitz
constant. Indeed, the observation in Remark 3.1 easily implies that each polyhedron P has a uniformly Lipschitz continuous
boundary (actually, it holds also under the assumption (A1) alone, as shown in [53]).

By definition of the face spaces V∆h (f ) and V∇

h (f ), the components of the vector field ∇wI are in H1(f ) for every face
f ∈ ∂P . Since by definition of Wh(P) the gradient of wI is continuous on the skeleton, we have ∇wI ∈ [H1(∂P)]3. Standard
trace estimates, recalling u ∈ H3(P) imply an analogous property ∇u ∈ [H1(∂P)]3. Therefore, first by space interpolation
theory and then summing on faces, from (35) we get

|̃e|22,P ≲ ∥∇(u − wI )∥0,∂P |∇(u − wI )|1,∂P

≲
(∑
f∈∂P

∥∇(u − wI )∥2
0,f

)1/2(∑
f∈∂P

|∇(u − wI )|21,f
)1/2

.
(35)

We note that, in both terms above, one can split for each face f

∇(u − wI )|f = (∇(u − wI )|f )τ + (∇(u − wI )|f ·nf )nf ,

that is the tangential and normal components of the vector ∇(u − wI )|f . Therefore, for every face f

∥∇(u − wI )∥0,f ≤ ∥(∇(u − wI )|f )τ∥0,f + ∥∂n(u − wI )∥0,f

= |u − wI |1,f + ∥∂nu − ∂nwI∥0,f
(36)

and analogously

|∇(u − wI )|1,f ≤ |u − wI |2,f + |∂nu − ∂nwI |1,f . (37)

We now need to recall that the restriction to faces of the space Wh(P) corresponds, by definition, to C1 virtual spaces in
2D [41–43] and that its normal derivative corresponds to C0 virtual spaces in 2D [16,49]. Therefore the bounds for the first
term in the right-hand side of (36) and for the first term in the right-hand side of (37) follow from known interpolation
theory for C1 virtual spaces in 2D, see [44]. The bounds for the second term in the right-hand side of (36) and for the
second term in the right-hand side of (37) follow from known interpolation theory for C0 virtual spaces in 2D, see [29,54].
Therefore, from (35) combined with (36)–(37), we get

|̃e|22,P ≲
(∑
f∈∂P

h3
f |u|

2
5/2,f + h3

f |∂nu|
2
3/2,f

)1/2(∑
f∈∂P

hf |u|25/2,f + hf |∂nu|23/2,f
)1/2

≲ h2
P |u|

2
3,P ,

(38)

where the last bound above follows from a (face by face) trace inequality. The local result now follows easily combin-
ing (32) with (33) and (38)

|u − wI |2,P ≲ hP |u|3,P ∀P ∈ Ωh. □ (39)
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5.2. Interpolation estimates for Vh

We have the following result.

Proposition 5.2. Let u ∈ H3(Ω) and uI the only function in Vh that interpolates the nodal values of u and ∇u at all vertices
of Ωh. Then it holds

|u − uI |2,Ω ≲ h|u|3,Ωh
.

Proof. Given u ∈ H3(Ω), let wI be its interpolant in Wh. We fix our attention on a generic polyhedron P ∈ Ωh, the global
estimates will then follow from the local ones by summing over all elements. Moreover let the auxiliary space Q = P2(P).
Now we consider the following problem in mixed form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Find ϕ ∈ H2
0 (P), p ∈ Q such that∫

P
∇

2ϕ : ∇
2v dP +

∫
P
p v dP = 0 ∀v ∈ H2

0 (P)∫
P
ϕ q dP =

∫
P

(
Π∆

P (wI ) − wI
)
q dP ∀q ∈ Q .

(40)

We endow the space Q with the norm

∥q∥Q := h2
P∥q∥0,P ∀q ∈ Q .

Problem (40) is a standard problem in mixed form. Since the coercivity on the kernel is clearly guaranteed, in order to
prove its well posedness we need only to check the inf–sup condition (see for instance [55]). Given any q ∈ Q , let T be
any one of the tetrahedra of Remark 3.1 and let bT be the standard quartic bubble on T . Then, noting that b2Tq ∈ H2

0 (P),
standard properties of polynomials yield

sup
v∈H2

0 (P)

∫
P q v dP
|v|2,P

≥

∫
T q (b

2
Tq) dP

|b2Tq|2,T
≳

∥q∥2
0,T

h−2
P ∥q∥0,T

= h2
P∥q∥0,T ≳ h2

P∥q∥Q ,

that is the inf–sup condition for problem (40). Since (40) is well posed, we have

|ϕ|2,P ≲ ∥Π∆
P (wI ) − wI∥Q ⋆ = sup

q∈Q

∫
P

(
Π∆

P (wI ) − wI
)
q dP

h2
P∥q∥0,P

≤ h−2
P ∥Π∆

P (wI ) − wI∥0,P .

Since by definition see (12)∫
∂P

(
Π∆

P (wI ) − wI

)
p1 d∂P = 0 ∀p1 ∈ P1(P) ,

by a Poincaré-type inequality (the standard proof being omitted for the sake of brevity) the above bound becomes

|ϕ|2,P ≲ |Π∆
P (wI ) − wI |2,P .

By a triangle inequality (and recalling that the operator Π∆
P is a projection operator onto P2(P) minimizing the distance

in the H2 seminorm) the above bound leads to

|ϕ|2,P ≲ |Π∆
P (wI − u)|2,P + |Π∆

P (u) − u|2,P + |u − wI |2,P

≤ |Π∆
P (u) − u|2,P + 2|u − wI |2,P .

(41)

The first term above is bounded by standard polynomial approximation, while the second one is bounded using (39). We
get

|ϕ|2,P ≲ hP |u|3,P . (42)

We are now ready to present the interpolant in the Vh space, that is uI = wI + ϕ. We first check that uI ∈ Vh, see
definition (15).

• uI satisfies the conditions at the boundary since ϕ and ∂nϕ vanish at ∂P;
• ∆2uI ∈ P2(P) since ∆2wI = 0 and we deduce that ∆2ϕ = −p ∈ P2(P) from the first equation of (40);
• It is easy to check that, by definition of Π∆

P and integrating by parts, it holds Π∆
P (ϕ) = 0. Therefore, using the second

equation of (40), it immediately follows that, for any q ∈ P2(P),∫
P
uI q dP =

∫
P
(wI + ϕ) q dP =

∫
P
Π∆

P (wI ) q dP =

∫
P
Π∆

P (uI ) q dP .
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Therefore uI ∈ Vh since it satisfies all conditions in the definition. Finally, the result follows from (39) and (42)

|u − uI |2,P ≤ |u − wI |2,P + |ϕ|2,P ≲ hP |u|3,P . □

Corollary 5.3. Let u ∈ H3(Ω) and uI the only function in Vh that interpolates the nodal values of u and ∇u at all vertices of
Ωh. Then it holds

|u − uI |m,Ω ≲ h3−m
|u|3,Ωh

for m = 0, 1.

Proof. Let Uh denote the standard C0 virtual element space of order 1 in 3D (see for instance [49,56]). The degrees of
freedom of such space are simply given by the value at all mesh vertices. Let ψI ∈ Uh be the unique vertex interpolant of
(u−uI ). Since u−wI vanishes at all vertices, ψI = 0. Therefore, also using approximation estimates for C0 virtual element
spaces in 3D (see for instance [29,31]), we get

|u − uI |m,Ω = |(u − uI ) − ψI |m,Ω ≲ h2−m
|u − uI |2,Ω

The result follows using Proposition 5.2. □

Remark 5.2. The above results could be easily extended to the case with lower regularity u ∈ Hs, s > 5/2, since in such
case the above interpolants are still well defined. Instead, extending to the case u ∈ Hs with 2 < s < 5/2 would require
a different kind of interpolation (in the Clément or Scott-Zhang spirit).

6. Numerical results

In this section we numerically validate the theory behind the C1 virtual elements proposed in this paper.

6.1. Domain discretization

We will consider two different computational domains: the standard unit cube [0, 1]3 and the truncated octahe-
dron [57]. We discretize such geometries in three different ways.

• Structured: the computational domain is decomposed by cubes inside the domain and arbitrary shaped polyhedron
close to the boundary, see Fig. 2(a). When we take the unit cube as domain, this type of mesh becomes a standard
structured decomposition composed by small cubes.

• Tetra: a Delaunay tetrahedral mesh of the input domain, see Fig. 2 (b).
• CVT: the domain is discretized via a Centroidal Voronoi Tessellation, i.e. a Voronoi tessellation where the centroid

of the Voronoi cells coincides with the control points of the cells. This kind of mesh can be computed via a standard
Lloyd algorithm [58]. In Fig. 2(c) we show a CVT discretization of the truncated octahedron geometry.

• Random: refers to a Voronoi tessellation where we randomly distributed the control points of the cells inside the
domain and we do not make any optimization on cells’ shape, see Fig. 2(d).

In order to build such meshes we exploit the c++ library voro++ [59] and follow the strategies described in [56],
while for tetrahedral meshes we use tetgen [60]. We construct a sequence of meshes for each type and we define the
mesh-size as

h :=
1
nP

∑
P∈Ωh

hP ,

where nP is the number of polyhedrons Ωh.
We underline that the Random partitions are particularly interesting from the computational point of view. Indeed,

such meshes contain small edges/faces and stretched polyhedrons so the robustness of the virtual element method will
be severely tested.

6.2. Error norms

Suppose that u is the exact solution of the partial differential equation we are solving and let uh be the discrete solution
provided by VEM. We consider the following error quantities:

• H2-seminorm relative error:

eH2 :=
1

|u|2,Ω

( nP∑
P∈Ω

|u −Π∆
P uh|

2
2,P

)1/2

,

where Π∆
P is the ∆−projection operator defined in Eq. (12);
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Fig. 2. Truncated octahedron geometries with Structured (a), tetrahedral (b), CVT (c) and Random (d) discretization.

• H1-seminorm and L2-norm relative errors:

eH1 :=
1

|u|1,Ω

( nP∑
P∈Ω

|u −Π∇

P uh|
2
1,P

)1/2

,

eL2 :=
1

∥u∥2,Ω

( nP∑
P∈Ω

∥u −Π0
P uh∥

2
2,P

)1/2

,

where Π∇

P and Π0
P are the operators defined in Eqs. (22) and (20), respectively;

• l∞-type relative error: We consider the l∞-type error for functions and gradients

el∞ :=
maxν∈Ωh |u(ν) − uh(ν)|

maxν∈Ωh |u(ν)|

e∇

l∞ :=
maxν∈Ωh ∥∇u(ν) − ∇uh(ν)∥∞

maxν∈Ωh ∥∇u(ν)∥∞

,

where ∥ · ∥∞ is the standard l∞ norm of three dimensional vectors.

6.3. Numerical experiments

In the following three Sections we develop three different experiments to validate the proposed method. First of all
we show a convergence analysis of the method, Section 6.4. Then, we analyze different choices of the scaling parameter
hν , Section 6.5. Finally we compare this method with the standard C0 VEM approach proposed in [56], Section 6.6.

The numerical scheme was developed inside the vem++ library, a c++ code built at the University of Milano - Bicocca
during the CAVE project (https://sites.google.com/view/vembic/home).

https://sites.google.com/view/vembic/home
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Fig. 3. Example 1: convergence lines of eH2 (left) and eL2 (right) for the Structured, Tetra, CVT and Random. In the legend we report the convergence
order at each step.

Fig. 4. Example 1: convergence lines of el∞ (left) and e∇

l∞ (right) for the Structured, Tetra, CVT and Random. In the legend we report the convergence
order at each step.

6.4. Example 1: Bi-Laplacian with reaction, h−convergence analysis

Let Ω be the truncated octahedron, we consider the following partial differential equation⎧⎨⎩∆
2u + u = f in Ω

u = g1 on ∂Ω
∂nu = g2 on ∂Ω

, (43)

the right hand side f and the Dirichlet boundary conditions g1 and g2 are chosen in such a way that the solution of Eq. (43)
is

u(x, y, z) := sin(πxyz) .

In the present test we take as parameter hν the mean value of the diameters of all polyhedrons which share the mesh
vertex ν, a quite natural choice, see Section 3.4.

In Fig. 3 we show the convergence lines for the errors in the H2-seminorm and L2-norm. The trend of the H2-seminorm
error is the expected one, see Theorem 5.1, i.e. it is approximately of order 1. The convergence lines of the each type of
mesh are close to each other.

In Fig. 4 we show the trend of the errors el∞ and e∇

l∞ . We did not derive a theoretical proof about the trend of such
errors, but we can empirically deduce from these graphs that the convergence rate of el∞ is between 2 and 3 while the
one of e∇

l∞ is 2.
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Fig. 5. Example 2: trend of the H2-seminorm (left) and L2-norm (right) error with different scaling parameter hν for CVT meshes. In the legend we
report the convergence order at each step.

6.5. Example 2: analysis on hν

In the present section we investigate different choices of the ‘‘local mesh size’’ scaling parameter hν introduced in
Section 3.4, see in particular Equation (25). We consider the following problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆2u = f in Ω
u = g1 on ∂Ω\Γ

∂nu = g2 on ∂Ω\Γ

∆u = 0 on Γ
−∂n∆u = 0 on Γ

, (44)

where Ω is the standard unit cube, Γ are the faces associated with the planes x = 0 and x = 1, where we apply
homogeneous Neumann boundary conditions, f , g1 and g2 are chosen in such a way that the exact solution is the function

u(x, y, z) =
1
12

x4y z .

Before showing the numerical results, we explain the choices we made for the scaling parameter hν . Given a vertex ν
of a mesh, we temporary use the following labels to denote these three collections of diameters:

• hP the diameter of all polyhedrons sharing ν;
• hf the diameter of all faces sharing ν;
• he the diameter of all edges whose endpoint is ν.

Then we can take the mean, the maximum or the minimum of these set of diameters to associate with ν a unique scalar
value hν . These operations give a total of 3× 3 = 9 possible choices for hν . For instance, the label max hf means that we
take as hν the maximum (max) diameter among all the faces (hf ) sharing ν.

We take into account only the set of CVT and Random meshes, because in a structured mesh these choices of hν are
really close to each other.

In Figs. 5 and 6 we show the convergence lines for the set of CVT and Random meshes, respectively.
The trend of the H2-seminorm error is similar for each choice of the scaling parameter hν , indeed the convergence

lines are all indistinguishable except for the minimum he choice, (exhibiting the worst behavior), see Figs. 5 and 6 left.
The behavior of the L2-norm error is more sensitive with respect to the parameter hν but it preserves a similar slope

of the error in all cases. Also in this case the minimum he presents a worse behavior with respect to all the other ones.

6.6. Example 3: Comparison with C0 VEM approach

In this section we consider the same test of Section 3.3 in [56]. We take the truncated octahedron as domain and we
solve the following second order partial differential equation{

−∆u + u = f in Ω
u = g1 on ∂Ω , (45)

and we choose the right hand side f and g1 in such a way that the exact solution is

u(x, y, z) := sin(2xy) cos(z) .
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Fig. 6. Example 2: trend of the H2-seminorm (left) and L2-norm (right) error with different scaling parameter hν for Random meshes. In the legend
we report the convergence order at each step.

Fig. 7. Example 3: trend of the H1-seminorm error with CVT (left) and Random (right) meshes. In the legend we report the convergence order at
each step.

We consider three ‘‘different’’ C0 VEM schemes of degree 2 in 3D which differ in the number of degrees of freedom.
More specifically, given a mesh composed by nP polyhedrons, nf faces, ne edges and nν vertices, we consider the following
choices of C0 or C1 VEM approaches

• c1: the C1 method proposed in this paper,

#dofs = 4nν ,

• c0: a standard C0 VEM [56],

#dofs = nν + ne + nf + nP ,

• c0 static cond: a standard C0 VEM with static condensation of the internal-to-element degrees of freedom,

#dofs = nν + ne + nf ,

• c0 sere: a serendipity C0 VEM with static condensation [47],

#dofs = nν + ne .

The mesh-size parameter behaves as h ∼ #dofs−1/3 so the theoretical slope in a #dof vs H1-seminorm error graph is
expected to be −2/3 in all cases (that corresponds to O(h2) convergence rate).

In Fig. 7 we show the convergence lines of the H1-seminorm error for the set of meshes CVT and Random in terms
of number of degrees of freedom. From these convergence lines, we numerically show that all these methods have the
expected error trend. Moreover, we observe that the error values at each step are close to each other for all methods.

We also observe that for a given level of accuracy, the number of degrees of freedom to get a C1 solution is
approximately the same as for a C0 scheme; clearly, the number of degrees of freedom is only a rough indicator of the
overall computational cost.
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Table 1
Example 3, time comparison among C1 and C0 VEM. Assembling time in seconds, Tass , and solving time in seconds,
Tsol , for different meshes of the CVT and random Voronoi families.

c1 c0 c0 sere

Tass Tsol Tass Tsol Tass Tsol
CVT 1 1 ≈0 ≈0 ≈0 ≈0 ≈0
CVT 2 5 ≈0 1 ≈0 ≈0 ≈0
CVT 3 8 160 5 3 5 2
CVT 4 1695 854 49 208 44 98

c1 c0 c0 sere

Tass Tsol Tass Tsol Tass Tsol
Random 1 ≈0 1 ≈0 ≈0 ≈0 ≈0
Random 2 7 1 1 ≈0 ≈0 ≈0
Random 3 74 11 8 8 7 4
Random 4 884 641 59 325 52 145

As a final comparison, we compare the running times (in seconds) for the C1 scheme and the C0 schemes (original
and Serendipity version). The considered problem is (45) and the adopted meshes are the CVT and random Voronoi. The
results are reported in Table 1, where we present both the assembling and solving time. The code is run in serial on a
Linux machine with processor Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50 GHz. The solution of the linear system is obtained
via the direct solver provided by Pardiso [61]. We underline that the involved times could be reduced by running the
whole code (both assembling and solving) in parallel, but this is beyond the scope of the present work.

From such data we observe that, as expected, both the assembling and solving time of c1 is sensibly greater than the
other types. Indeed the C1 scheme involves a more complex structure in terms of degrees of freedom and projection
operators, in addition to having slightly more DoFs. On the other hand, this is only a rough time comparison based on
our current C++ code; optimizing the codes could lead to smaller differences. We also remind that the purpose of the C1

scheme is on fourth order problems, and here we are only checking its performance on second order problems (for which
it seems a viable, but not optimal, choice).
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Appendix A. A glimpse to the general order case

In this appendix we give a hint on the general order case k > 2, the lowest order case presented in the paper
corresponds to k = 2. We limit ourself to the definition of the local face and polyhedral spaces, i.e. we consider the
same work-flow of Section 3 but omit the proof of these results which can be deduced from the lowest order case.

Starting from the functional spaces defined in the following paragraphs, the generalization of the discrete forms defined
in Eq. (26) becomes technical but straightforward.

To define such functional spaces, we define the polynomial space Ps\Pr (D) as any complement space of Pr (D), i.e. that
verifies

Ps(D) = (Ps\Pr (D)) ⊕ Pr (D) ,

where D is a generic two or three dimensional domain and the integers s > r ≥ 0.

Virtual element nodal space V∇

h,k(f )
We start from the preliminary space

Ṽ∇

h,k(f ) :=

{
vh ∈ H1(f ) : ∆τ vh ∈ Pk−2(f ) ,

vh|∂ f ∈ C0(∂ f ) , vh|e ∈ Pk−1(e) ∀e ∈ ∂ f
}
.

We build the projection operator Π∇

f ,k : Ṽ∇

h,k(f ) → Pk−1(f ), defined in a similar way as in Eq. (4), and the functional
space

V∇

h,k(f ) :=

{
vh ∈ V∇

h,k(f ) :

∫
f
Π∇

f ,kvh q df =

∫
f
vh q df , ∀q ∈ Pk−2\Pk−3(f )

}
.
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The degrees of freedom of such space are the standard nodal VEM ones and they are enough to define Π∇

f ,k. This virtual
element space is standard in the virtual element community, we refer to [16] for more details.

Virtual element C1 space V∆h,k(f )
We generalize the preliminary space defined in Section 3.2 as

Ṽ∆h,k(f ) :=

{
vh ∈ H2(f ) : ∆2

τ vh ∈ Pk−1(f ),

vh|∂ f ∈ C0(∂ f ), vh|e∈ Pk(e) ∀e ∈ ∂ f ,
∇τ vh|∂ f ∈ [C0(∂ f )]2,

∂nevh ∈ Pk−1(e) ∀e ∈ ∂ f

}
,

Starting from the projection operator Π∆
f ,k : Ṽ∆h,k(f ) → Pk(f ) defined in a similar way as Π∆

f , see Eq. (6), we are able
to define the virtual space

V∆h,k(f ) :=

{
vh ∈ Ṽ∆h,k(f ) :

∫
f
Π∆

f ,kvh q df =

∫
f
vh q df , ∀q ∈ Pk−1\Pk−4(f )

}
,

Also in this case the degrees of freedom are enough to define Π∆
f ,k. This space face is similar to the one defined in [42]

and we refer to this paper for more details.
Moreover, it is easy to show that starting from the degrees of freedom of V∆h,k(f ), it is possible to define the L2 projection

operator to approximate the gradient of a function vh ∈ V∆h,k(f ), i.e. Π
0
f ,k−1 (the counterpart of the operator defined

in Eq. (10)).

General order virtual element space in P
Given a polyhedron P ∈ Ωh we consider the preliminary space

Ṽh,k(P) :=

{
vh ∈ H2(P) : ∆2 vh ∈ Pk(P),

vh|SP ∈ C0(SP ) ,∇vh|SP ∈ [C0(SP )]3 ,

vh|f ∈ V∆h,k(f ) , ∂nf vh|f ∈ V∇

h,k(f ) ∀f ∈ ∂P
}
,

In this virtual element space we define the following set of linear operators from Ṽh,k(P) to R:

D0: the values of the function at the vertices, vh(ν);
D1: the values of the gradient components at the vertices, ∇vh(ν);
D2: values of vh(ν) at max{k − 3, 0} internal points for each edge of ∂P;
D3: values of ∇vh(ν) along two normal-to-edge directions at k − 2 internal points for each edge of ∂P;
D4: for each face f ∈ ∂P we define the function moments∫

f
vh q df ∀q ∈ Pk−4(f ) ,

D5: for each face f ∈ ∂P we define the gradient moments∫
f
(∇vh · nf ) q df ∀q ∈ Pk−3(f ) ,

D6: the internal function moments∫
P
vh q df ∀q ∈ Pk−4(P) .

Starting from these linear operators it is possible to determine the projection operator Π∆
P,k : Ṽh(P) → Pk(P) defined

in a similar way as in Eq. (12). It is easy to see that this projection operator is uniquely defined by D1 − D6 through the
face projectors Π∇

f ,k, Π
∆
f ,k and Π 0

f ,k−1. Then the C1 general order virtual elements space defined on polyhedron reads

Vh(P) :=

{
vh ∈ Ṽh,k(P) :

∫
P
Π∆

P,kvh q dP =

∫
P
vh q dP , ∀q ∈ Pk\Pk−4(P)

}
.
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