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Abstract

Automatically describing digital images consists in extracting information that mean-
ingfully represents the depicted elements and their attributes. The specific concept of
“meaningful” can be determined by the final application: in assistance to visually impaired
people, for example, the final user might want to recognize familiar elements such as
landmarks and logos. In the context of driver support for smart cars, it could be useful
to recognize other vehicles and pedestrians, and to tell their distance from the car itself.
A general pipeline for the envisioned scenarios involves three steps: object proposal,
classification, and attributes extraction. In this thesis, several methods have been studied
and developed for each of these steps, and subsequently applied to specific domains with
the intent of comparing the produced solutions with existing works.

Object proposal: one or many subregions containing elements of potential interest are
extracted from the input image.
In this thesis, single-object proposal is achieved using a neural architecture that is
optimized in a novel way, combining genetic programming for the structure optimization
with back-propagation for parameters tuning.
Crossing the gap between object proposal and classification, semantic segmentation is
then addressed with the definition of an original neural architecture that pays particular
attention to computational efficiency for high-throughput scenarios.

Classification: the subregions generated by the object proposal phase are classified into
visual classes.
Logo recognition is reported as a first case study. A new dataset has been collected,
extending tenfolds the existing standard. Its combination with synthetic forms of data
augmentation allows to reach state of the art performance.
Vegetables and fruits recognition is then chosen as a representative example for fine-
grained visual classification problems. The task is addressed by preprocessing images with
object proposal algorithms, and by exploiting the hierarchical structure of the depicted
classes.



Attributes extraction: some subregions, identified as belonging to specific classes, are
being associated with extra information.
For the task of illuminant estimation, an original learning strategy is proposed, that com-
pletely avoids the need for explicitly-annotated illuminant information, relying instead
on alternatively-available object-class annotations.
Distance estimation is reported as a final case study. An alternative data representation
is proposed, which is independent of any specific acquisition device, allowing the training
of richer models for distance estimation.

The role of data and its representation emerges as a common theme throughout the
whole thesis. In particular, the following work describes the path from relying on
existing manual annotations, to gradually reducing this dependency through alternative
representations and learning strategies.

iv



Table of contents

List of figures viii

List of tables x

1 Introduction 1
1.1 Focus of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Significant contributions, and the role of data . . . . . . . . . . . . . . . 4

I Object proposal 6

2 Introduction to object proposal 7

3 Salient object detection 9
3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Bottom-up vs. top-down approaches . . . . . . . . . . . . . . . . 11
3.1.2 Handcrafted vs. machine learning solutions . . . . . . . . . . . . . 11

3.2 Preliminary investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Continuous-valued prediction . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Multiscale analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Automatic fusion of saliency algorithms . . . . . . . . . . . . . . . . . . . 20
3.3.1 Genetic programming optimization . . . . . . . . . . . . . . . . . 21
3.3.2 Back-propagation optimization . . . . . . . . . . . . . . . . . . . 23

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Optimization results . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.3 Extension to other datasets . . . . . . . . . . . . . . . . . . . . . 33



Table of contents

4 Semantic segmentation 36
4.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Accuracy-oriented architectures . . . . . . . . . . . . . . . . . . . 37
4.1.2 Efficiency-oriented architectures . . . . . . . . . . . . . . . . . . . 38

4.2 Dataset and evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Network design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Input downsampling . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Multiresolution encoder . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.4 Fusion module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.5 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.6 Final architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Comparison with other methods . . . . . . . . . . . . . . . . . . . . . . . 45

II Classification 48

5 Introduction to classification 49

6 Classification in cluttered scenes: Logos 52
6.1 Preliminary investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Existing works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.2 FlickrLogos-32 dataset . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.3 Selective search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.4 Deep-feature classification . . . . . . . . . . . . . . . . . . . . . . 55
6.1.5 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.1 Logos-32plus dataset . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.2 Shallower network . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.3 Smarter training strategies . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Main-subject classification: Vegetables and fruits 71
7.1 Datasets and related works . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 Outline of vegetable and fruit recognition . . . . . . . . . . . . . . . . . . 74

7.2.1 Neural baseline architectures . . . . . . . . . . . . . . . . . . . . . 74
7.2.2 Hierarchical labeling . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2.3 Saliency-based proposal . . . . . . . . . . . . . . . . . . . . . . . 75

vi



Table of contents

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

III Attributes extraction 80

8 Introduction to attributes extraction 81

9 Illuminant estimation 83
9.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.2 Proposed method for illuminant estimation . . . . . . . . . . . . . . . . . 85

9.2.1 Object Recognition network . . . . . . . . . . . . . . . . . . . . . 85
9.2.2 Illuminant Estimation network . . . . . . . . . . . . . . . . . . . . 86

9.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.3.2 Input normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.3.4 Analysis on the training-set color bias . . . . . . . . . . . . . . . . 92

10 Distance estimation 93
10.1 Background and related works . . . . . . . . . . . . . . . . . . . . . . . . 95
10.2 Proposed representation for distance information . . . . . . . . . . . . . . 97
10.3 Datasets transformation to common representation . . . . . . . . . . . . 100
10.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.4.1 Training preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 104
10.4.2 Evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.4.4 Applicability of the proposed representation to other methods . . 107
10.4.5 Multi-class evaluation . . . . . . . . . . . . . . . . . . . . . . . . 109

11 Conclusions 113

References 116

vii



List of figures

1.1 Stages of the proposed pipeline for image description and annotation. . . 2

2.1 Possible scenarios for the object proposal phase. . . . . . . . . . . . . . . 7

3.1 Difference in saliency annotation strategy for three datasets. . . . . . . . 10
3.2 Activations of the Fully Convolutional Network for saliency estimation. . 13
3.3 ROC curves derived from continuous-valued and binary prediction. . . . 17
3.4 Schematic view of multiscale analysis at training and inference time. . . . 18
3.5 Average of the three Fβ variants on different datasets. . . . . . . . . . . . 20
3.6 Effect of multiscale analysis on example images. . . . . . . . . . . . . . . 21
3.7 Fusion trees generated through Genetic Programming. . . . . . . . . . . 30
3.8 Different implementation stages of the automatically designed DL-MAE . 32
3.9 Visual results of the extended CNN from DL-MAE . . . . . . . . . . . . . 35

4.1 Simplified representation of the architecture for semantic segmentation. . 39
4.2 The multiresolution network used for semantic segmentation. . . . . . . . 42
4.3 Experimented fusion modules. . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Plot of mIoU vs FPS for comparison with the state of the art. . . . . . . 46
4.5 Semantic segmentation results obtained with the proposed architecture. . 47

5.1 Different approaches for the classification phase. . . . . . . . . . . . . . . 49

6.1 Sample images from the FlickrLogos-32 dataset. . . . . . . . . . . . . . . 54
6.2 Partial representation synthetic data augmentation. . . . . . . . . . . . . 57
6.3 Preliminary results on the Flickr-Logos dataset. . . . . . . . . . . . . . . 58
6.4 Graphical comparison between FlickrLogos-32 and Logos-32plus dataset. 60
6.5 Simple query results and extended query results. . . . . . . . . . . . . . . 61
6.6 Structure of shared keywords among different logo classes. . . . . . . . . 61
6.7 Example of near-duplicates detected by the developed procedure. . . . . 62
6.8 Visualization of the contribution of real and synthetic data augmentation. 65

viii



List of figures

6.9 Detailed training procedure developed for logo recognition. . . . . . . . . 65
6.10 Complete testing procedure applied for logo recognition. . . . . . . . . . 66
6.11 Examples of wrongly-labeled logos. . . . . . . . . . . . . . . . . . . . . . 70

7.1 Some of the challenges specific to fine-grained visual classification. . . . . 71
7.2 Detail of the hierarchical annotation provided with the VegFru dataset. . 73
7.3 Two fully-connected specializations to exploit hierarchical labels. . . . . . 76
7.4 Often-confused class pairs for the best performing model. . . . . . . . . . 77
7.5 Saliency-driven object proposal for example images in the VegFru dataset. 79

8.1 Range of possibilities for the attributes extraction phase. . . . . . . . . . 81

9.1 Schematic representation of the proposed learning strategy. . . . . . . . . 85
9.2 Samples from VegFru dataset, showing the importance of color. . . . . . 88
9.3 Complete pre- and post-processing for the proposed strategy. . . . . . . . 90
9.4 Example color corrections of the proposed method. . . . . . . . . . . . . 92

10.1 Importance of camera parameters in distance estimation. . . . . . . . . . 95
10.2 Visualization of the proposed size-based representation of distance. . . . 98
10.3 Mask generation and ground truth preprocessing. . . . . . . . . . . . . . 100
10.4 Fully Convolutional Network employed for distance estimation. . . . . . . 101
10.5 Difference in content and format among the used training data. . . . . . 102
10.6 Distribution of real_size values of the four datasets. . . . . . . . . . . . 105
10.7 Example per-pixel estimation on a test image. . . . . . . . . . . . . . . . 108
10.8 Example predictions on the people class. . . . . . . . . . . . . . . . . . . 111
10.9 Example predictions on all analyzed semantic classes. . . . . . . . . . . . 112

11.1 Highlighted uses cases in the proposed pipeline. . . . . . . . . . . . . . . 113

ix



List of tables

3.1 Details of the adopted fully convolutional architecture. . . . . . . . . . . 14
3.2 Summary of tested datasets for saliency estimation. . . . . . . . . . . . . 15
3.3 Comparison of performance for binary and continuous-valued estimation. 16
3.4 Evaluation results for different input resolutions and combinations. . . . 19
3.5 The set of functional symbols used in genetic programming. . . . . . . . 22
3.6 Comparison of traditional and continuous statistics computation. . . . . 25
3.7 Availability of input saliency algorithms on various datasets. . . . . . . . 29
3.8 Results for fusion trees at different levels of optimization. . . . . . . . . . 31
3.9 Comparison of the optimized fusion trees with input saliency algorithms. 33
3.10 Comparison of deep learning fusion trees and input saliency algorithms. . 34

4.1 Impact of downsampling on the system performance. . . . . . . . . . . . 40
4.2 Performance and speed on Cityscapes validation set for different encoders. 41
4.3 mIoU and FPS on Cityscapes validation set and for different fusion modules. 43
4.4 mIoU on Cityscapes validation set with different forms of data augmentation. 43
4.5 The proposed network architecture. . . . . . . . . . . . . . . . . . . . . . 44
4.6 Comparison with state-of-the-art methods on Cityscapes test set. . . . . 46

6.1 Official partitions of the FlickrLogos-32 dataset. . . . . . . . . . . . . . . 58
6.2 Performance comparison with other approaches. . . . . . . . . . . . . . . 58
6.3 Details comparison of FlickrLogos-32 and Logos-32plus datasets. . . . . . 60
6.4 Architecture of the shallower neural network used for logo classification. . 63
6.5 Analysis on the contribution of training choices on global performance. . 67
6.6 Best training configuration compared with methods in the state of the art. 69

7.1 Results for baseline architectures on both the super- and sub-class problem. 76
7.2 Results for hierarchical labeling exploitation on the sub-classes problem. . 78
7.3 Impact of saliency-driven object proposal on tested neural architectures. . 78

x



List of tables

9.1 Performance of different algorithms for illuminant estimation. . . . . . . 89

10.1 Cardinality of the chosen datasets. . . . . . . . . . . . . . . . . . . . . . 103
10.2 Error measures on CityScapes validation set for the “people” class. . . . 106
10.3 Errors obtained on different object classes. . . . . . . . . . . . . . . . . . 110

xi



Chapter 1

Introduction

“Can you tell me what it means? [...] Describe the vision, the meaning
is missing.”

P.O.D. - Sleeping Awake

From the retina, through the optic nerve, and finally reaching the visual cortex of
the brain. The human vision system takes place at different levels of this path [165],
allowing people to process the visual information that comes from their environment and
to effectively make sense of it. This form of “understanding” of the visual input played a
crucial role in the survival of the species, and eventually contributed to more abstract
functions, such as the contemplation of beauty in arts and nature [61].

Providing computers with the ability to understand the content of a digital image at
the same level of human beings is considered to be an ambitious and, currently, distant
objective [87]. As each simpler problem is solved, in fact, it is only natural to pose a more
complex one, leading to questions that require complex inference and reasoning in order
to provide an adequate answer [86]. Human-level understanding could then be, rather
than a precise goal, a general compass in conducting scientific research, providing global
drive and direction. Further motivation may then come from practical and concrete
applications: assisting visually-impaired people through object recognition is an excellent
example of a feasible and powerful use of computer vision. Similar techniques can also be
applied to more-commercial uses, such as automatic photo and video tagging of personal
collections. Other forms of image analysis are then involved in the development of smart
cars, where a typical requirement would be to infer the distance between the vehicle and
various items on the road [13].
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1.1 Focus of this work

Image Object
proposal Classification Attributes

extraction

Fig. 1.1 Stages of the proposed pipeline for automatic image description and annotation.

1.1 Focus of this work
The subject of this thesis is the automatic description and annotation of complex scenes.
A complex scene can be defined as an image depicting multiple elements [176]. The final
application will typically determine whether all these subjects should be analyzed, or if
only one is the main object of interest (with the others considered as distraction elements).
For example, in the context of a smart car, every piece of information that is acquired
from visual sensors should be taken into consideration for a safe decision-making phase
[73]. Conversely, any single-object recognition task, such as fine-grained identification of
plants and vegetables, can potentially benefit from the exclusion of non-salient elements
[218]. In both situations, an automatic description of these scenes is at the core of
virtually any computer-vision-driven task. Specifically, the focus of this thesis will be on
categorical description (“annotation”) and numerical description, i.e. assigning a value
to different parts of the input image. Other types of description are possible, including
for example textual information. Although not covered here, textual description of
digital images shares basic techniques of middle-level feature extraction with the methods
involved in this work [202], thus forming a natural extension.

This thesis follows a general pipeline for complex scene description and annotation,
shown in Figure 1.1, which is composed of three main steps:

1. Object proposal

2. Classification

3. Attributes extraction

Such a division can be helpful in structuring and categorizing the addressed tasks, which
will be later introduced. It should be however interpreted as a flexible guide, rather than
a strict formula.

Object proposal. The first step consists in defining one or more subregions of the
input image that are likely to contain an object of interest. As such, this plays an essential
role in the analysis of complex scenes. When the input image is supposed to contain a

2



1.1 Focus of this work

single element, estimating a dense saliency map can produce a useful piece of information
to locate the main subject itself. Once the main object proposal is determined, the
corresponding subregion can then be fed for example to a classification module. Similarly,
if the image contains several objects of interest, an object proposal algorithm should
produce multiple subwindows, which are then also fed to a separate classification module
for further analysis. This two-step separation can be useful in reducing the overall
computational effort by restricting the time-consuming classification phase to a limited
amount of subwindows.

Falling in-between the concepts of proposal and classification is semantic segmentation.
This is the task of automatically assigning each pixel in the image to a class, including
the possibility of a background/reject class. In this alternative formulation, the two
steps of proposal and classification cannot be logically separated. Other works from the
literature that consider the first two steps as a unique block typically include object
detection methods, such as Deformable Part Models (DPM) [68] and the You-Only-
Look-Once (YOLO) architecture [161]. The separate distinction adopted in this thesis is
corroborated by the work of Girshick et al. on “Regions with CNN features” (R-CNN) [82].

Classification. Assigning the content of a digital image (or part of it) to a cate-
gorical class is at the core of many computer vision applications. Different instances
of the problem impose different challenges, as well as facilitations, on its solution. For
example, recognizing planar objects such as traffic signs and brand logos allows for
specific assumptions to be made on the type of distortions that can be encountered in
the wild. The same assumptions cannot be made for recognition of deformable objects,
such as vegetables and fruits, for which different points of view and high intra-class
variability have a stronger influence on the final object appearance. In both situations,
relying on a robust model largely depends on the availability of wide collections of
labelled training data. Whenever this condition cannot be satisfied, transfer learning
has been proven an invaluable resource for good classification performance: a neural
network already trained for the solution of a task with high data availability is used
as starting point for the optimization of a second neural network specific for the final task.

Attributes extraction. Once an object has been identified as belonging to a specific
class, further analysis can be performed to associate the object itself with numerical
attributes. An example is estimating the distance between the subject of interest and
the camera that took the picture, without relying on stereoscopic vision. In this case,

3



1.2 Significant contributions, and the role of data

explicitly or implicitly understanding the semantics of depicted objects is fundamental in
producing a reasonable approximation of their distance from the camera. Attributes can
also be extracted by analyzing the whole image, but still exploiting semantic awareness
to some extent. For instance, illuminant estimation consists in determining the chromatic
properties of the light in the scene, and it can benefit from recognizing the objects depicted
in the image. The estimated illuminant can then be used to color correct the image:
either for aesthetic purposes or as a preprocessing step to other computer-vision-related
tasks.

The structure of this thesis follows the aforementioned pipeline. Part I is dedicated
to object proposal, and presents developed methods for salient object detection, and
for semantic segmentation. Part II addresses classification problems, including logo
recognition, and vegetable recognition. Part III covers attributes extraction, specifically
illuminant estimation and distance estimation.

1.2 Significant contributions, and the role of data
The general-purpose methods here studied and developed, are applied to specific applica-
tions with the intent of comparing the produced work with existing solutions.

The thesis begins with salient object detection, an ill-posed problem first addressed
by heavily relying on manually-annotated images, in order to have a universal concept of
“saliency” to naturally emerge from the data itself. The same problem is then reformulated
as recombining the saliency maps generated by methods existing in literature. This
is achieved using a neural architecture that is optimized in a novel way, combining
genetic programming for the structure optimization with backpropagation for parameters
tuning. This formulation is a first step towards changing the nature of training data, as
the proposed solution takes as input the predictions of existing methods instead of the
original images.

Semantic segmentation is introduced as the crossing bridge between object proposal
and classification. The focus is put on segmentation of street scenes, exploiting a standard
dataset that depicts pedestrians, cars, buildings, and traffic signs. By envisioning a
smart-car application scenario, high emphasis is given on the development of an original
model for semantic segmentation that is highly competitive in terms of accuracy/speed
trade-off.

The focus is later shifted to classification tasks: for logo recognition, the available
datasets were not deemed sufficient, therefore it was felt appropriate to build a new logos

4



1.2 Significant contributions, and the role of data

dataset, extending tenfolds the existing standard. The combination of a new dataset
with synthetic forms of data augmentation allows for state of the art performance in logo
recognition to be reached.

Vegetable and fruit recognition is selected as a case study for fine-grained visual
classification. The task is initially addressed with transfer learning, leveraging on the
discriminative power obtained by pre-training on a different type of input data. Then,
the hierarchical nature of annotated classes is exploited with two proposed techniques, in
order to improve the overall recognition performance.

For the task of illuminant estimation, an original learning strategy is proposed, that
completely avoids the need for explicitly-annotated illuminant information, relying instead
on alternatively-available object-class annotations. Specifically, recognition of vegetable
classes is used as an auxiliary task to latently train a color constancy neural network,
which is made possible thanks to the importance of color in vegetable discrimination.

Finally, for distance estimation, an alternative data representation is proposed, which
is independent from any specific acquisition device. In this alternative description,
each pixel of an image is associated with the size, in real life, of what it represents.
Datasets acquired with different devices can therefore be effortlessly combined to build
more powerful models, and monocular distance estimation can be performed on images
acquired from new devices as well.

A common theme throughout this thesis is the role of data in the development of
computer vision systems, a crucial aspect in the field of machine learning. What emerges
from this work is not only the importance of training data itself, but also the path to
gradually becoming less dependent on it.
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Part I

Object proposal
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Chapter 2

Introduction to object proposal

Image Classification Attributes
extraction

Many subjects

One subject

Object
proposal

Fig. 2.1 Possible scenarios for the object proposal phase.

Following the general pipeline outlined in Chapter 1, the very first step in image
description is the generation of object proposals, i.e. subregions of the input image that
are likely to depict meaningful content for a given subsequent task. A complex scene is
by definition characterized by the presence of multiple subjects. Depending on the final
application, it is then possible to describe two main scenarios, as shown in Figure 2.1:

• Only one object is the subject of interest, and the others should be considered as
distraction elements. In this case, an estimated saliency map can locate the main
subject, and focus the attention of a subsequent classification module, eventually
improving recognition performance.

• Every object is potentially interesting and should be considered for further analysis.
For multiple subjects, the explicit separation between proposal and classification
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phases can reduce the computational burden by restricting the second step to a
smaller set of inputs. An alternative solution consists in semantic segmentation,
which encompasses both object proposal and classification at pixel-level in a unique
step, by exploiting efficient ad-hoc structures, as seen in the following.

The use case of one main object of interest has been approached with the development
of a general-purpose saliency estimation method [17, 18, 14]. In particular, the problem
has been first analyzed with the objective of providing a visual understanding of the
ill-defined concept of “salient object”. This is achieved by training a Fully Convolutional
Network (FCN) on multiple saliency-related datasets, which had been annotated with
drastically different criteria. Then, existing methods for salient object detection have
been combined with the intent of producing a better final estimation of image saliency.
This is done with a novel strategy that exploits genetic programming to automatically
define a backbone CNN, which is then extended and optimized through backpropagation.

The case of multiple objects of interest has been treated in the specialized domain of
semantic street segmentation [141]. This task consists in assigning to each pixel of the
input image a classification label, covering street-related categories plus a background
class. Such formulation effectively puts semantic segmentation in-between the steps
of object proposal and classification. In this context, an encoder-decoder architecture
has been developed, paying particular attention in reaching a proper balance between
accuracy and speed. For a possible smart-car scenario, in fact, both elements are
considered fundamental requirements.

The developed solutions for both single-object and multiple-object proposal are based
on the use of deep learning techniques. Specifically, on Convolutional Neural Networks
designed to produce an output that has a one-to-one spatial correspondence with the
input. For saliency estimation, this means producing a dense map that represents the
probability of each pixel belonging to the foreground. For semantic segmentation, multiple
class-specific probability maps are produced. Selecting the arg-max for each pixel across
different maps allows the production of hard semantic labels with arbitrary shapes.

Alternative techniques for object proposal, that do not rely on machine learning,
involve the use of hand-crafted algorithms and features. Many solutions belonging to this
category [97] approach the inherent ambiguity of class-agnostic image segmentation by
producing multiple overlapping object proposals, therefore aiming at a high recall at the
expense of precision. This is the case for the selective search algorithm [191], which has
been adopted and tuned as the object proposal phase for logo recognition, as described
in Chapter 6.
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Chapter 3

Salient object detection

“Che cosa ti sfugge quando sei certo di aver guardato già dappertutto?
[...] Non è il senso, infatti non c’è niente di semantico.”

Uochi Toki - I fonici

The human vision system is able to efficiently detect salient areas in a scene. These
areas are then further processed by the brain to extract high-level information [179, 175],
a mechanism that inspired the “object proposal - classification – attributes extraction”
steps in the proposed pipeline for image annotation. Visual saliency has been primarily
studied by neuroscientists, cognitive scientists and recently has received attention from
other research communities working in the fields of computer vision, computer graphics
and multimedia. The aim of these researches is to build and exploit computational
visual saliency models in different application domains. In fact, visual saliency can be
used for salient object detection emphasizing object-level regions in the scene that can
serve as a pre-processing step in various computer vision and processing tasks. Salient
object detection is useful for scene recognition [74, 163], object detection [144, 146],
segmentation [122], and tracking [136]. It can also be exploited for image manipulation
and visualization as in applications such as image retargeting [8], image collage [138],
and non-photorealistic rendering [59]. Moreover, in multimedia application saliency can
be exploited for image and video summarization [151, 54, 88], retrieval [77], and image
quality or aesthetic assessment [118, 199].

Despite the clear advantage that would be gained from solving this task, there is
no universally-accepted definition on what makes an element “salient”, thus rendering
saliency estimation particularly challenging. This can be better seen by observing
Figure 3.1: while the main object of interest in the first image can be generally recognized
as the butterfly itself, the other two examples present less obvious answers. Figure 3.1(b)

9



(a) (b) (c)

Fig. 3.1 Difference in saliency annotation strategy for three datasets: THUR15K [45] (a),
PASCAL-S [125] (b), and JuddDB [30] (c).

shows a crowded dining scene with no clear main subject. The annotators of the
corresponding dataset [125] addressed this problem by assigning a decreasing level
of saliency to each segmented element in the images. Note that this saliency rank
was computed by collecting gaze data from multiple observers. In a similar fashion,
Figure 3.1(c) provides another non-trivial example, annotated in the corresponding
dataset [30] with only the most looked-at region, according to human observers.

Both the extreme subjectivity intrinsic to the annotation task, and the criteria
heterogeneity adopted by different dataset curators, contribute to making even more
difficult a problem that is ill-posed in the first place. Methods for saliency estimation
that are based on handcrafted low-level features have always struggled in reaching good
performance [31]. The observed characteristics suggest, in fact, that a data-driven model
with at least some level of semantic awareness would be essential to properly address the
proposed task. A preliminary investigation has been therefore here conducted, with the
specific objective of having a universal concept of image saliency to naturally emerge
from a large set of heterogeneously-annotated data.

In order to make the detection more robust and to improve the generalization
capabilities, then, saliency methods often integrate different features [130] or fuse saliency
maps generated from different methods [137]. However, the features and the combination
strategies are usually empirically designed, i.e. which features to use and how to combine
them remains an open problem. To this extent, the second part of this chapter is focused
on the design of a novel saliency detection approach by leveraging the outputs of existing
saliency detection methods in a supervised way. In particular, a candidate solution for
combining the saliency maps is first created using genetic programming (GP) and a set
of provided symbols. The solution and some of the involved operations have parameters
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3.1 Related works

that cannot be easily (or efficiently) optimized within the GP framework, and they are
therefore used as a blueprint upon which designing the architecture of an equivalent
Convolutional Neural Network (CNN). Within the CNN optimization framework, based
on back-propagation, it is easier to search for the optimal parameters of the GP solution.
Moreover, variants can also be easily created by including additional operations on
intermediate results that can be either ignored or optimized by the CNN.

3.1 Related works

3.1.1 Bottom-up vs. top-down approaches

Traditionally, saliency detection methods can be divided into two categories: bottom-up
and top-down saliency detection. Bottom-up saliency methods are stimuli-driven [103].
The saliency is usually modeled by local or global contrast on hand-crafted visual features,
and knowledge about human visual attention is embedded in the model exploiting some
heuristic priors such as texture [6], background [198], compactness [154], and objectness
[125]. With these methods, no explicit information about the semantics of the salient
regions is provided, but it is indirectly embedded via prior assumptions that are made on
the location, shape or visual properties of the salient regions to be detected. Bottom-up
methods can be considered generic in the sense they can be used in different contexts as
general purposed approaches.

Top-down saliency methods, on the contrary, are designed to find regions in the
images that are relevant for a given task. They are often also referred to as “task-driven
approaches”. These methods usually formulate the saliency detection as a supervised
learning problem [106]. The rationale of top-down saliency methods is to identify image
regions that belong to a pre-defined object category [48]. For this reason, these methods
are theoretically more robust for identifying salient regions in cluttered backgrounds
where bottom-up methods fail due to them relying on visual stimuli and not on semantics.
Since top-down approaches rely on the use of some form of training data to build the
detection model, they can instead be very robust.

3.1.2 Handcrafted vs. machine learning solutions

An alternative categorization of saliency estimation methods can be based on whether
they rely on handcrafted features, or on a machine learning approach. It can be observed,
however, that handcrafted solutions generally rely on a bottom-up logic [31], thus
producing a partial overlap with the original categorization.
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3.2 Preliminary investigation

The method presented in Discriminative Regional Feature Integration (DRFI) [106]
builds a multi-level representation of the input image, and creates a regression model
mapping the regional feature vector of each level to the corresponding saliency score. These
scores are finally fused in order to determine the complete saliency map. In Quantum Cut
(QCUT) [9] authors model salient object segmentation as an optimization problem. They
then exploit the link between quantum mechanics and graph-cuts to develop an object
segmentation method based on the ground state solution of a modified Hamiltonian.
The authors of Minimum Barrier Distance (MBD) [210] present an approximation of
the MBD transform, and combine it with an appearance-based “backgroundness” cue.
The resulting method performs significantly better than other solutions having the same
computational requirements. In Saliency Tree (ST) [131] authors simplify the image
into primitive regions, with associated saliency based on multiple handcrafted measures.
They generate a saliency tree using region merging, and perform a systematic analysis
of such tree to derive the final saliency map. Robust Background Detection (RBD)
[219] introduces boundary connectivity: a background measure based on an intuitive
geometrical interpretation. This measure is then used along with multiple low-level cues
to produce saliency maps through a principled optimization framework.

Recently Convolutional Neural Networks (CNNs) approaches are being used to
automatically learn features in a data-driven way [121, 98, 18]. CNNs-based approaches
mimic well the Human Visual System in that they are able to process visual information
at different levels of details and semantics. This characteristic makes them a very powerful
tool for learning feature representations in different application domains [177, 47, 38, 51].
Recurrent Fully Convolutional Networks (RFCN) [194] adopt a different strategy built
on top of the concept of FCNs, integrating it with backward self-correcting connections
as well as saliency prior knowledge. Multi-Context deep learning (MC) [215], one of
the first solutions to address saliency estimation with the use of convolutional neural
networks, defines a unified framework to represent both global and local context in a
data-driven fashion. The authors of Deeply Supervised Saliency (DSS) [99] introduce
short connections to the skip-layer structures described by the Holistically-Nested Edge
Detector architecture [201], providing an alternative way to generate rich multiscale
feature maps at different layers.

3.2 Preliminary investigation
This preliminary study aims at providing an intuitive understanding of the concept
of “saliency”, based on the consensus of different datasets annotation criteria, and at
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Fig. 3.2 Activations of the Fully Convolutional Network employed for saliency estimation,
with an input example of resolution 256×256 pixels. Details of the VGG-19 network
[181] are omitted for ease of visualization.

acquiring sensibility over the behavior of different evaluation measures. This goal is here
obtained through a Fully Convolutional Neural Network (FCN [133]) that exploits layers
previously trained on recognizing 1000 object classes [173] as the starting point for a
deep analysis of the original input image, in order to produce a per-pixel estimation of its
saliency. The resulting architecture, after being properly trained, is able to generate an
estimation of object saliency that transcends the 1000 classes defined for the pre-training.
These classes are, in fact, used to build a semantically-aware internal representation, but
do not constrain the type of objects that can be identified as being “salient". A simple
proof of this is the “person" category, which is absent from the original set of classes,
but well prominent in the final saliency estimation results, as shown in Section 3.2.1.
The overall structure of the proposed architecture is shown in Figure 3.2, while details
are provided in Table 3.1: the output of layer conv5-3 from a VGG-19 network (Visual
Geometry Group [181]) is mapped to the final problem size (i.e. two channels, for “salient"
and “non-salient") by using a series of Pooling, Convolution, ReLU, and DropOut blocks.
The result is then combined with the outputs of pool4 and pool3 by direct sum. Since
these activations all have a different spatial resolution, two convolutional-transpose layers
(also known as fractionally-strided convolutions) are used to bring them to a compatible
size, and a third one is used to map the result to the original input size. The whole
network is trained end-to-end, eventually updating also the pre-learned weights that
were used to initialize the VGG-19 module. This solution also involves continuous-valued
prediction and multiscale analysis, which are experimentally proven to positively impact
the accuracy of the saliency estimation.
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3.2 Preliminary investigation

Table 3.1 Details of the adopted fully convolutional architecture, with an input example of
resolution 256×256 pixels. Layers marked with [square brackets] come from the original
VGG-19 network [181], whose details are omitted for ease of visualization.

Operation Input
layers

Output
layer

Filter size Stride Output sizeKernel Ch.in Ch.out
MaxPool [conv5-3] pool5 2×2 - - 2 8×8×512
Conv pool5 conv6 7×7 512 4096 1 8×8×4096
ReLU conv6 relu6 - - - - 8×8×4096
DropOut relu6 drop6 - - - - 8×8×4096
Conv drop6 conv7 1×1 4096 4096 1 8×8×4096
ReLU conv7 relu7 - - - - 8×8×4096
DropOut relu7 drop7 - - - - 8×8×4096
Conv drop7 conv8 1×1 4096 2 1 8×8×2
Conv-T conv8 convT1 4×4 2 512 1/2 16×16×512
Sum [pool4], convT1 sum1 - - - - 16×16×512
Conv-T sum1 convT2 4×4 512 256 1/2 32×32×256
Sum [pool3], convT2 sum2 - - - - 32×32×256
Conv-T sum2 convT3 16×16 256 2 1/8 256×256×2

3.2.1 Experimental setup

These experiments have been designed to quantify the practical contribution of each
individual element of the proposed method for preliminary investigation of saliency
estimation, in particular: continuous-valued prediction and multiscale analysis at inference
time. All conducted tests follow the benchmark proposed in Reference 31 in terms of
datasets and evaluation measures.

The seven tested datasets, presented in Table 3.2, offer different types of images and
are annotated with sometimes drastically different criteria, as previously noted. For the
purpose of these experiments, a Leave-One-Dataset-Out (LODO) setup has been adopted,
as the original benchmark does not provide an official training-test split for each dataset.
This solution guarantees overfitting-free results, as the model is never tested on the same
annotation criteria that are used during the training phase. Cross-dataset near-duplicate
removal is also conducted to avoid the same images being present at both training and
test time in the adopted LODO setup.

Different metrics have been used to analyze different aspects of the estimated image
saliency:
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3.2 Preliminary investigation

Table 3.2 Summary of tested datasets for saliency estimation.

Dataset Images Mean size (px) Notes
MSRA10K [130] 10000 400×300 -
THUR15K [45] 6233 450×300 Only 6233/15000 annotated images

DUTOMRON [206] 5166 400×300 -
ECSSD [203] 1000 400×300 -
JuddDB [30] 900 1024×768 Salient object typically very small

PASCALS [125] 850 500×350 High background clutter
SED2 [5] 100 300×250 Two salient objects per picture

F-Measure (Fβ) is the weighted harmonic mean between precision and recall:

Fβ = (1 + β2)Precision × Recall

β2Precision + Recall
(3.1)

In order to give more weight to precision, which is considered to be more important
than recall for this task [1, 130, 31], parameter β2 is set to 0.3. The continuous-valued
saliency estimation can be binarized with different techniques before effectively computing
precision and recall. The adopted benchmark presents three alternative ways to perform
such binarization:

1. Varying fixed threshold: Precision and Recall are computed at all integer thresholds
between 0 and 255, and then averaged.

2. Adaptive threshold [1]: The threshold for binarization is set to twice the mean
value of the predicted saliency map.

3. Saliency Cut [46]: The threshold is set to a low value, thus granting a high recall
rate. Segmentation algorithm GrabCut [171] is then iteratively applied to the
binarized prediction, typically producing a saliency estimation with more precise
edges.

Area Under Curve (AUC) is the area under the Receiver Operating Characteristic
curve. The ROC curve is in turn computed by varying the binarization threshold and
plotting True Positive Rate (TPR) versus False Positive Rate (FPR) values:

TPR = TP

TP + FN
(3.2)

FPR = FP

FP + TN
(3.3)
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3.2 Preliminary investigation

Table 3.3 Comparison of performance for binary estimation and continuous-valued
estimation, on all considered datasets (P, T, J, D, S, M, E). Cross-dataset average is also
reported. For all measures, except MAE, a higher value is better.

Measure Method P [125] T [45] J [30] D [206] S [5] M [130] E [203] Average
Fβ

Varying
Binary 0.763 0.666 0.406 0.706 0.847 0.850 0.864 0.729
Continuous 0.768 0.722 0.408 0.720 0.850 0.859 0.875 0.743

Fβ

Adaptive
Binary 0.688 0.620 0.382 0.678 0.857 0.833 0.783 0.692
Continuous 0.685 0.617 0.380 0.652 0.853 0.834 0.776 0.685

Fβ

Sal Cut
Binary 0.778 0.702 0.409 0.712 0.791 0.890 0.888 0.739
Continuous 0.783 0.707 0.404 0.722 0.810 0.909 0.893 0.747

AUC Binary 0.820 0.851 0.680 0.828 0.844 0.877 0.896 0.828
Continuous 0.949 0.956 0.807 0.950 0.970 0.971 0.979 0.940

MAE Binary 0.122 0.106 0.210 0.079 0.080 0.073 0.065 0.105
Continuous 0.153 0.132 0.272 0.117 0.094 0.110 0.112 0.141

Mean Absolute Error (MAE) is computed directly on the prediction, without any
binarization step, as:

MAE = 1
W × H

W∑
x=1

H∑
y=1

|Prediction(x, y) − GroundTruth(x, y)| (3.4)

where W and H refer respectively to image width and height.

3.2.2 Continuous-valued prediction

Most available datasets for saliency estimation and foreground detection are published
with a binary ground truth [30, 45, 130, 203, 206]. It is therefore natural to approach
the problem as a per-pixel binary classification task, so the FCN has been trained with a
per-pixel softmax cross-entropy loss (the global loss of each mini-batch is computed by
averaging all loss values from the single pixels involved). For datasets providing discrete
annotations [125, 5] a preprocessing threshold has applied, setting to 1 all values greater
than 0. At inference time it is then possible to stop the network processing right after
the softmax layer, in order to effectively produce two complementary continuous maps,
which respectively represent the probability of each pixel being, or not being, salient.
If necessary, the saliency channel can then be binarized by applying a 0.5 threshold
(equivalent to choosing the argmax between the two complementary channels), or using
any of the thresholding techniques described in Section 3.2.1 for evaluation.
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Fig. 3.3 ROC curves derived from continuous-valued and binary prediction on the
DUTOMRON dataset. The graph visually shows the impact of the two solutions on
computing the AUC measure (Area Under Curve).

Table 3.3 presents the comparison between continuous-valued and binary estimation,
for each evaluation measure and each dataset proposed in the adopted benchmark [31].
A cross-dataset average is also provided in the last column, in order to get a global view
of the impact of such contribution.

The introduction of continuous-valued estimation is mostly benefiting AUC: the
area under the ROC curve. This curve is drawn by plotting the FPR-TPR value pairs
obtained at each possible binarization threshold, and collapses to a single point in the
degenerate case of an already-binary image. The standard evaluation procedure provided
with Reference 31 generates an additional trivial solution, corresponding to an all-ones
saliency estimation (FPR:1 and TPR:1). For an already-binary image, this results
in a straight line between two points, and the trapezoid area underlying such line is
missing two large chunks when compared to a continuous-valued evaluation, as shown in
Figure 3.3, resulting in sub-optimal performance.

Conversely, Mean Absolute Error (MAE) is impacted negatively by the transition to
a continuous-valued prediction. This measure is essentially a direct comparison between
prediction and (binary) ground truth, so there is always going to be some residual
difference on “True Positive” areas, as any continuous-valued prediction is rarely giving
100% confidence on any pixel. Such differences, however small, accumulate over the whole
image and result in worse performance according to this particular evaluation measure.

Finally, the effect on Fβ is inconsistent, but on average slightly better than what
can be obtained with a binary output. It can be concluded, therefore, that producing a
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Fig. 3.4 Schematic view of multiscale analysis at training (a) and inference (b) time.

continuous-valued prediction provides a more formally correct setting for the adopted
evaluation procedure, while at the same time yielding overall better results across different
metrics.

3.2.3 Multiscale analysis

As both the input image and the portrayed elements could be of any size, it is fundamental
to create a model for saliency estimation that is able to analyze the image at different
scales. This kind of multiscale awareness should affect the training procedure, introducing
into the learned model pieces of information that come from observing the annotated
data at various scales, as well as the inference procedure, collecting saliency cues at
different levels and appropriately combining them into one final output.

At training time this effect can be obtained as shown in Figure 3.4(a), by cropping
subregions of random size from the input images and annotations, and eventually bringing
them to a common resolution (in this case, 256×256 pixels) in order to exploit fast mini-
batch parallelization. This last resizing step will indeed destroy all information about the
relationship between the crop and the rest of the image, but will work as a form of data
augmentation to take into account the diversity of subject size that can be encountered
at test time.

At inference time, the fully-convolutional nature of the proposed model makes it
possible to process an input of any size, and consequently produce an output of the
same dimensions. This, however, does not guarantee a multiscale analysis of the whole
image. The neural model will, in fact, only analyze the input image on subregions of
limited size (the receptive field is 32×32 pixels), and efficiently apply this processing in a
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Table 3.4 Evaluation results for different input resolutions and combinations (reported
values are averages across all datasets). For all measures, except MAE, a higher value is
better. The configuration selected for subsequent experiments is highlighted in bold.

Input size
(px)

Merging
strategy Fβ Varying Fβ Adaptive Fβ Sal Cut AUC MAE

Unscaled - 0.743 0.685 0.747 0.940 0.141
256 - 0.759 0.686 0.771 0.948 0.131
384 - 0.773 0.698 0.772 0.954 0.124
512 - 0.752 0.687 0.754 0.946 0.141
640 - 0.721 0.671 0.731 0.931 0.168
768 - 0.688 0.649 0.710 0.911 0.195
256, 384 Maximum 0.774 0.677 0.769 0.955 0.136
384, 512 Maximum 0.767 0.679 0.758 0.953 0.141
256, 512 Maximum 0.769 0.666 0.759 0.954 0.149
256, 384 Average 0.781 0.697 0.776 0.957 0.128
384, 512 Average 0.773 0.697 0.769 0.955 0.133
256, 512 Average 0.781 0.697 0.774 0.958 0.137

sliding-window fashion over the whole image. In order to explicitly perform multiscale
analysis, it is necessary to create copies of the input image at different resolutions (a
so-called image pyramid[2]), apply the network as a sliding-window over each pyramid
level, rescale all the predictions to the size of the original input, and merge the results.
This procedure is shown in Figure 3.4(b).

Different scales and different merging strategies can be adopted. The first rows in
Table 3.4 show how rescaling the image to one fixed size, as opposed to feeding the original
image to the neural network, already brings consistently better performance among all
evaluation measures (note that Table 3.4 only reports averages across all seven datasets,
for reasons of readability). By picking the three most effective input sizes, i.e. 256×256,
384×384 and 512×512 pixels, it is then possible to try different combinations. The trained
model potentially assigns a high saliency score to different regions at different scales, so
resizing the predictions to a common resolution, and computing a per-pixel maximum, is
going to preserve such high-confidence outputs from all levels of analysis. This merging
technique, however, does not produce the expected results, possibly suggesting a different
level of relevance for each scale, and possibly requiring a dedicated reasoning for areas
where different scales generate highly disagreeing estimations of saliency. Consistently
with this last hypothesis, averaging the predictions leads to improved performance under
all criteria. Also note that linear combination of independent outputs was shown to be an
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Fig. 3.5 Average of the three Fβ variants on different datasets, for unscaled input and
multiscale approach. The impact of multiscale analysis is most prominent on JuddDB
dataset.

effective way of model stacking in the past [180]. Overall, the best combination consists
in averaging the prediction results from 256-pixel-side images and 384-pixel-side images.

Figure 3.5 shows the impact of multiscale analysis on all seven datasets used for
evaluation, reporting the average of the three Fβ variants as a reference measure. It
can be seen how dataset JuddDB[30] is the most impacted by this strategy, mainly due
to its images being much larger than those of other datasets: the depicted subjects at
native resolution, in fact, have a very different size with respect to the training examples.
PASCALS[125] and DUTOMRON[206] are also positively affected by multiscale analysis
to a meaningful, yet lower, extent.

Figure 3.6 presents three visual examples of the advantage in applying multiscale
analysis. On these images, in fact, a single-scale saliency estimation would generate
“holes” in the prediction due to a limited receptive field, whereas the multiscale strategy
allows the model to consider the whole image. It can be observed, though, that the overall
better estimation comes at the price of coarser predictions. This suggests a direction
for future developments, where the fine-grained results from analysis at high resolutions
might be specifically exploited to provide more accurate details.

3.3 Automatic fusion of saliency algorithms
The following section defines a proposed approach for the automatic design and optimiza-
tion of fusion trees for existing saliency estimation algorithms. In the first phase, genetic
programming techniques are exploited to combine existing saliency maps using a set of
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(a) (b) (c) (d)

Fig. 3.6 Effect of multiscale analysis on example images: input image (a), ground truth
annotation (b), single-scale saliency estimation (c), and multiscale saliency estimation
(d). The content of columns (c) and (d) is here binarized to facilitate the comparison.

provided operations. The obtained fusion trees are then converted into a corresponding
backbone CNN, where all operations are implemented with differentiable functions, there-
fore allowing the optimization of the corresponding parameters using back-propagation.
Finally, the CNN is further extended with additional processing on intermediate levels of
the trees, which are once again optimized through back-propagation.

3.3.1 Genetic programming optimization

The first step consists in finding the sequence of operations that produces the best fusion
of the set of considered input saliency estimation algorithms. The candidate solutions
are encoded as trees of operations, built using a set of terminal symbols T and a set
of non-terminal or functional symbols F . The solution space of all the possible fusion
trees is explored with Genetic Programming to find the optimal subset of input saliency
estimation algorithms and the optimal sequence of operations.

Genetic programming (GP) [111] is a computational method belonging to the evolu-
tionary computation branch of the computational intelligence research area. GP consists
in the automated learning of computer programs by means of a process inspired by
biological evolution. The evolution of such programs is stochastic and makes use of
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Symbol Name Inputs Domain Effect
ERO Erosion 1 spatial Morphological erosion (5 × 5 square)
DIL Dilation 1 spatial Morphological dilation (5 × 5 square)
MF Median 1 spatial 2D median filter (5 × 5 kernel)
MIN MinStack ≥2 stack 1D minimum filter
MAX MaxStack ≥2 stack 1D maximum filter
MED MedianStack ≥2 stack 1D median filter
AVG AverageStack ≥2 stack 1D average filter
LOG Quantization 1 pixel Generalized logistic non-linearity

Table 3.5 The set of functional symbols used in GP with their name, their n-arity, the
domain on which they operate, and their corresponding operators.

genetic operators to find solutions that optimize the given objective function. The
schematic search process of a generic GP algorithm is the following:

1. Randomly create the initial population.

2. Repeat until the maximum number of iterations is reached:

(a) Calculate the fitness value of the individuals.

(b) Select individuals based on fitness value.

(c) Apply genetic operators to obtain new individuals.

(d) Replace the old population with the new one, eventually copying the fittest
individual(s).

3. Return the best individual.

More in detail, given a set of n input saliency estimation algorithms S = {Sk}n
k=1, the

candidate solutions evolved by GP are built using the set of functional (or non-terminal)
symbols F and the set of terminal symbols T = S. The functional symbols correspond
to operations performed on the inputs. The list of operations given in Table 3.5 are
incorporated into the GP framework, along with their functional symbols. They can
be grouped on the basis of the support on which they operate: the first group operates
in the 2D spatial neighborhood of the pixels belonging to the same saliency map; the
second group operates on stacks of pixels across different saliency maps; the third one
operates on individual pixels without considering any neighborhood.

The fitness function is here defined as a weighted average of Mean Absolute Error
(MAE) and F -measure (Fβ) as defined in Section 3.2.1, following the procedure outlined
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in [98]. MAE is computed as the average of all the individual MAEs on the training set
images. Fβ is computed as follows: i) for each possible threshold, Precision and Recall
are computed for every training image; ii) Precision and Recall are averaged over all
the training images; iii) for every threshold, Fβ is computed with β =

√
0.3; iv) the

maximum Fβ across all the thresholds is returned.
Mathematically, the fitness function is defined as:

f = w1 ·
√

Fβ + w2 · MAE (3.5)

with [w1, w2] = [1, −0.01]. The weights are chosen with opposite signs since Fβ should
be maximized while MAE minimized: in this way fitter individuals correspond to larger
fitness values. The magnitudes of the weights have been empirically chosen on the
basis of the difficulty to optimize the corresponding measures, thus with Fβ driving the
optimization process.

3.3.2 Back-propagation optimization

The fusion tree generated from the genetic programming step involves different types of
operations. The intention is to further refine some of these operations by exploiting back-
propagation optimization. In order to do so, it is necessary to build the corresponding
backbone CNN architecture, by representing all tree nodes with differentiable functions,
for the gradients to correctly flow up to the input saliency maps. The resulting neural
network can also be augmented with further operations, defining an extended CNN.
Both backbone CNN and extended CNN are designed as a generalization of the behavior
defined by GP, i.e. in their initialization state they produce the same output. Via
back-propagation, then, the CNNs can be optimized to generate more accurate solutions.

Conversion from fusion tree into CNN

Details of the mapping between operations in the fusion tree and the corresponding CNN
are presented in the following.

• MaxStack and MinStack:
MaxStack is implemented as 3-dimensional max-pooling with kernel of spatial size
1 × 1, and depth D equal to the number of input channels.
MinStack is implemented through 3D min-pooling, i.e. by changing the sign to the
input and output of MaxStack as just defined.
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3.3 Automatic fusion of saliency algorithms

• Dilation and Erosion:
Greyscale dilation with a squared structural element corresponds to 2-dimensional
max-pooling. The kernel has spatial size 5×5 as in the genetic programming setup.
Erosion is obtained through 2D min-pooling, i.e. by changing the sign to the input
and output of dilation.

• AverageStack:
Stacked-channel average is implemented as a convolutional layer with one kernel of
size 1 × 1, depth I equal to the number of input channels determined by GP, and
bias initialized at 0. For the extended CNN, two different behaviors are imposed,
depending on the location of the node:

– Intermediate node:
Convolutional layer with one kernel of spatial size N × N , and depth D. The
best value for N is defined experimentally.

– Input node:
Convolutional layer with a bank of M filters with size N × N , and depth S

equal to the number of all input saliency algorithms. The filters are initialized
to all zeros, except the middle value of the D kernel channels selected by GP.
The layer is followed by a ReLU non-linearity, and by a compacter module that
maps M channels to 1, which is the expected size for the subsequent operation.
The compacter is based on a channel-wise average, minimum, or maximum
operation. The effective final operation is experimentally determined.

The weights of this layer are optimized via backpropagation.

• Quantization:
Quantization is approximated with a generalized logistic function in its 7-parameter
formulation:

y = (K − A) · (Q · exp−B·(x−M) +C)(−1/V ) + A (3.6)

Hard quantization, used in GP, negatively impacts gradient flow, so it is replaced
with a soft quantization implemented as a sigmoid centered in 0.5:
A = 0.0 B = 4.0 V = 1.0 C = 1.0
K = 1.0 Q = 1.0 M = 0.5

This initial configuration is then optimized through back-propagation.

• MedianStack:
Directly implemented as the median operation applied across the depth dimension
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3.3 Automatic fusion of saliency algorithms

Table 3.6 Comparison of traditional statistics computation (True Positives TP, False
Positives FP, False Negatives FN, True Negatives TN) with threshold set to 0.5, and
continuous statistics computation. Highlighted in boldface the different behavior between
the two approaches.

PR GT TP FP FN TN TP’ FP’ FN’ TN’
0.0 0 0 0 0 1 0.0 0.0 0.0 1.0
0.4 0 0 0 0 1 0.0 0.4 0.0 0.6
0.6 0 0 1 0 0 0.0 0.6 0.0 0.4
1.0 0 0 1 0 0 0.0 1.0 0.0 0.0
0.0 1 0 0 1 0 0.0 0.0 1.0 0.0
0.4 1 0 0 1 0 0.4 0.0 0.6 0.0
0.6 1 1 0 0 0 0.6 0.0 0.4 0.0
1.0 1 1 0 0 0 1.0 0.0 0.0 0.0

(i.e. each image coordinate is determined as the median of the corresponding
coordinates from input channels).

• Median:
The median filter is implemented in a two-step processing.
The input is unfolded once per each spatial dimension, i.e. sliding windows are
explicitly replicated using unitary stride and kernel size 5 × 5.
The copies are unrolled along an extra dimension, where the median operation is
applied, effectively producing one value per sliding window location.

At the end of the tree, a final non-linearity is introduced using a logistic function in
the form of Equation 3.6, followed by a clamping of the values between 0 and 1. In this
case, the logistic is initialized as an approximation of the identity function:

A = −1.557 B = 0.666 V = 0.354 C = 0.817
K = 1.165 Q = 19.747 M = −5.856

Clamping replicates the eventual cut-off given by saving the image to file before final
application or evaluation. It also allows the logistic curve to create strong distortions
inside the [0,1] range, preventing instead the loss function from penalizing values outside
of it.
In the extended CNN, the same “logistic+clamping” block is introduced at each node of
the computation (i.e. after each operation).
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3.3 Automatic fusion of saliency algorithms

Loss function

The final objective is to optimize both Mean Absolute Error (MAE) and F -measure (Fβ).
Fβ is the weighted harmonic mean between precision and recall, therefore relying on a
hard thresholding step for computation. MAE is instead evaluated directly on the raw
prediction, without requiring any binarization.
While MAE can be employed in its original form as a loss function, Fβ is not suitable
for back-propagation: according to the procedure defined in [98], in fact, the specific
value for threshold is chosen by performing binarization at different levels, and selecting
the one that eventually produces the best performance. For this reason, the learning
process is here performed with a proposed continuous version of True Positives (TP ),
False Positives (FP ), and False Negatives (FN), in order to avoid both the need for
a hard threshold, as well as the process of its selection. Fβ can be adapted as a loss
function, here called F CC

β , as follows:

1. Let TP ′, FP ′, and FN ′ be the continuous variants of TP , FP and FN :

TP ′ = PR · GT (3.7)

FP ′ = PR · (1 − GT ) (3.8)

FN ′ = (1 − PR) · GT (3.9)

Where PR is the saliency prediction on each pixel, and GT the corresponding
ground truth. The effect of this formulation can be observed in Table 3.6.

2. The above measures are summed over all pixels p in each image i, and the continuous
variants of precision and recall are computed as:

Precision′
i =

∑
p TP ′

p,i∑
p TP ′

p,i +∑
p FP ′

p,i

=

=
∑

p (PRp,i · GTp,i)∑
p (PRp,i · GTp,i) +∑

p [PRp,i · (1 − GTp,i)]
=

=
∑

p PRp,i · GTp,i∑
p PRp,i

(3.10)
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Recall′
i =

∑
p TP ′

p,i∑
p TP ′

p,i +∑
p FN ′

p,i

=

=
∑

p (PRp,i · GTp,i)∑
p (PRp,i · GTp,i) +∑

p [(1 − PRp,i) · GTp,i]
=

=
∑

p PRp,i · GTp,i∑
p GTp,i

(3.11)

3. The continuous precision and recall values are averaged among all images in the
set I, as done in the final evaluation procedure [98]:

Precision′ = 1
|I|

∑
i

Precision′
i (3.12)

Recall′ = 1
|I|

∑
i

Recall′
i (3.13)

4. A continuous variant of Fβ is computed from these values using fixed β =
√

0.3:

F C
β = (1 + β2)Precision′ · Recall′

β2Precision′ + Recall′ (3.14)

5. F C
β is complemented in order to effectively obtain a measure related to error:

F CC
β = 1 − F C

β (3.15)

MAE and F CC
β (complemented continuous Fβ) are then combined into a unique loss

by means of a weighted average. Since it is not desirable, in principle, to have one
measure overweighting the other, the weight is determined by bringing the two losses to
the same value at the beginning of the back-propagation optimization process, i.e. in the
sub-optimal configuration proposed by the genetic optimization.

3.4 Experiments
In this section, the experimental setup is first described by introducing the input saliency
estimation algorithms, the datasets that have been adopted at different phases of the
optimization, and the evaluation metrics. The following experiments are then presented:
different fusion trees are selected from the genetic programming phase, the corresponding
CNNs are generated, and finally evaluated on various datasets for a comparison with the
input algorithms.
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3.4.1 Setup

Most of the data-driven methods behind the exploited input saliency maps were originally
trained on the training set of the MSRAB dataset [130] or its variants, as reported in
[98]. The process of optimizing the best fusion trees, instead, has been here performed
on a subset of the validation set of MSRAB. The prediction quality of the input methods,
in fact, is expected to be slightly lower on “new” images, so it is desirable to emulate,
during the optimization process, the actual input distribution that will be obtained
at inference time. Precomputed saliency maps for the input algorithms are available,
in some cases, only on the MSRA10K dataset [44], which shares 3756 input images
with MSRAB. The MSRAB Validation Subset and MSRAB Test Subset have been
therefore defined, based on the intersection between the original splits of MSRAB and
the entire MSRA10K dataset, in order to establish a common dataset among all input
algorithms. The Validation Subset has been used for optimization, and the Test Subset
for performance comparison against the input algorithms.

Experiments have been conducted on handcrafted and deep learning input saliency
algorithms as shown in Table 3.7. The FCN-based solution presented in the preliminary
investigation from Section 3.2 is here referred to as MFCN. Table 3.7 also reports the
availability of already computed saliency maps for different algorithms on different
datasets.

Special attention has been given to deep learning methods, which are further tested
on additional datasets according to [98], namely: DUTOMRON [205], ECSSD [204],
HKU-IS [120], PASCALS [125] and SOD [140]. Whenever precomputed saliency maps
for a given deep learning method are not available for any one of the involved datasets,
they have been recomputed locally (on all datasets) with official code implementations.
This has been done to avoid exposing the model to different behaviors across tests.

All solutions have been evaluated according to MAE and Fβ as defined in Section 3.2.1,
using the evaluation code provided with [98].

3.4.2 Optimization results

Two different experiments have been conducted. In the first one, genetic programming is
performed only on saliency estimation algorithms that are based on hand-crafted features.
In the second one input maps coming from deep learning based saliency estimation
algorithms are instead considered. The aim of the first experiment is to assess how much
the proposed method can improve over individual methods, and how it compares with
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Table 3.7 Input saliency algorithms on the various datasets that have been used at
different phases of optimization and evaluation. The symbols denote, respectively, #:
unavailability of official saliency maps, G#: only partial availability,  : full availability.
The last column indicates whether saliency maps have been recomputed with official
code (on all datasets) on grounds of the observed availability.

Datasets M [130] D [205] E [204] H [120] P [125] S [140] Computed
Methods locally

H
an

dc
ra

fte
d

(H
C

)

DRFI [193] G#   #  #
DSR [123] G#   #  #
EQC [10] # # # # # # ✓
GMR [205] G#   #  #
HDCT [109] # # # # # # ✓
MB+ [211] # # # # # # ✓
MC [105] G#   #  #
RBD [220] # # # # # # ✓
RC [44] G#   #  #
ST [132] # # # # # # ✓

D
ee

p
le

ar
ni

ng
(D

L)

DCL [121] G#    # # ✓
DHS [128] # #  #  # ✓
DS [124] G#   #   ✓
DRCN [129] # # # # # # ✓
DSS [98] G#      ✓
ELD [116] #   #  # ✓
MDF [120] G#     # ✓
MFCN [18]       
RFCN [195] # # # # # # ✓
SC [216] # # # # # # ✓

deep learning based algorithms. The second experiment aims to assess if the proposed
method is able to improve also the results of state of the art algorithms.

For the first experiment, the fittest individual at the end of the GP optimization is
here analyzed. The fusion tree found, named HC-f , is reported in Figure 3.7(a). From
the analysis of the operation tree it can be seen that HC-f selected only five out of the
ten input saliency estimation algorithms available. The results obtained by the HC-f
fusion tree, HC-f backbone CNN and HC-f extended CNN on the MSRAB-Validation
set are reported in Table 3.8. From the results it is possible to see how the backbone
CNN version of HC-f is able to reduce MAE by almost 57% with a negligible reduction
of Fβ. The extended CNN further reduces MAE of the backbone CNN by almost 5% at
the same time increasing Fβ.
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Fig. 3.7 Fusion trees generated through Genetic Programming. Tree (a) is based on
handcrafted input saliency algorithms, while trees (b) (c) and (d) are based on deep
learning saliency algorithms.
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Table 3.8 Results for fusion trees at different levels of optimization on the MSRAB
Validation Subset. Lower MAE is better, higher Fβ is better.

Optimization MAE Fβ

HC-f
Fusion tree 0.1143 0.9040
Backbone CNN 0.0494 0.9039
Extended CNN 0.0471 0.9074

DL-f
Fusion tree 0.0412 0.9457
Backbone CNN 0.0259 0.9454
Extended CNN 0.0260 0.9439

DL-MAE
Fusion tree 0.0284 0.9447
Backbone CNN 0.0258 0.9457
Extended CNN 0.0253 0.9446

DL-Fβ

Fusion tree 0.0903 0.9464
Backbone CNN 0.0267 0.9467
Extended CNN 0.0252 0.9448

The second experiment is based on the analysis of three individuals within the
population at the last iteration of the GP optimization: the fittest individual (named
DL-f), the individual with the lowest MAE (named DL-MAE ), and the individual
with the maximum Fβ (named DL-Fβ ). The corresponding fusion trees are depicted
in Figure 3.7(b) to (c). From the analysis of the corresponding trees it can be seen
that all the three solutions selected only six out of the ten input saliency estimation
algorithms available. Focusing on DL-MAE , which has the largest variety of operations
used, Figure 3.8 reports the corresponding fusion tree, its conversion into the backbone
CNN and its extended CNN. The results obtained by the fusion tree, backbone CNN and
extended CNN of the DL-f , DL-MAE and DL-Fβ on the MSRAB Validation Subset
are reported in Table 3.8. From the results it can be noticed that the backbone CNNs
produce further improvements of MAE with respect to the corresponding fusion trees,
with the most relevant being DL-Fβ , which sees a drop in error by almost 72%. Fβ

presents a small average improvement across all backbone CNNs. On the contrary, the
extended CNNs tend to produce overall slightly lower values for Fβ. This, however, is
here considered to be an acceptable compromise to reach a further level of reduction for
MAE.

Table 3.9 reports the results of the four extended CNNs on the MSRAB Test Subset,
in a comparison with the input saliency estimation algorithms. HC-f outperforms all
other handcrafted methods, reducing MAE on the second best (MB+) by 50% and
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Table 3.9 Comparison of the optimized fusion trees with input saliency algorithms on
the MSRAB Test Subset. Lower MAE is better, higher Fβ is better.

MAE Fβ

DRFI 0.1201 0.8655
DSR 0.1227 0.8237
EQC 0.1150 0.8612
GMR 0.1251 0.8375
HDCT 0.1477 0.8340
MB+ 0.1095 0.8390
MC 0.1435 0.8404
RBD 0.1120 0.8367
RC 0.1378 0.8354
ST 0.1251 0.8583
HC-f 0.0544 0.8971

MAE Fβ

DSS 0.0461 0.9226
MFCN 0.0738 0.9138
DCL 0.0590 0.9133
DHS 0.0326 0.9408
DS 0.0665 0.9069
DRCN 0.2065 0.7326
ELD 0.0400 0.9229
MDF 0.0793 0.8765
RFCN 0.0605 0.9365
SC 0.0572 0.8871
DL-MAE 0.0250 0.9467
DL-Fβ 0.0253 0.9462
DL-f 0.0253 0.9467

(a) (b)

improving Fβ of DRFI by 4%. The same CNN also results in better performance than
7 out of 10 deep learning methods, according to MAE, and better than three of them
according to Fβ. This suggests to what extent it is possible to reach deep-learning-level
performance by proper fusion of handcrafted solutions.

The three deep learning fusion trees once again exhibit similar performance with
respect to each other, and produce the overall best results in a comparison with the input
saliency methods. DL-MAE in particular outperforms the second best deep learning
method (DHS) in reducing MAE by 23%, and improving Fβ by less than 1%. This is
a further manifestation of the difficulties encountered in significantly improving the Fβ

measure.

3.4.3 Extension to other datasets

With the intent of focusing on the most effective solutions, the deep learning input
algorithms and the resulting fusion CNNs have been also evaluated on other standard
datasets for saliency estimation, namely DUTOMRON [205], ECSSD [204], HKU-IS
[120], PASCALS [125], and SOD [140]. Each of these datasets has been annotated with
potentially different criteria, as noted in the introduction of this chapter, so they constitute
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Table 3.10 Comparison of deep learning fusion trees and input saliency algorithms on
various datasets. Lower MAE is better, higher Fβ is better.

DUTOMRON ECSSD HKU-IS PASCALS SOD
MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ

DSS 0.074 0.761 0.065 0.906 0.050 0.900 0.102 0.823 0.126 0.836
MFCN 0.163 0.702 0.118 0.865 0.115 0.852 0.161 0.783 0.182 0.769
DCL 0.094 0.733 0.080 0.896 0.063 0.893 0.115 0.807 0.131 0.833
DHS 0.027 0.909 0.062 0.905 0.052 0.892 0.092 0.828 0.128 0.825
DS 0.084 0.774 0.080 0.900 0.079 0.866 0.109 0.830 0.127 0.832
DRCN 0.412 0.417 0.343 0.625 0.337 0.578 0.329 0.595 0.342 0.619
ELD 0.092 0.738 0.082 0.865 0.072 0.843 0.122 0.774 0.155 0.765
MDF 0.098 0.697 0.114 0.831 0.095 0.824 0.145 0.764 0.164 0.786
RFCN 0.094 0.747 0.097 0.898 0.078 0.895 0.118 0.829 0.161 0.807
SC 0.098 0.676 0.106 0.816 0.098 0.772 0.148 0.712 0.182 0.704
DL-MAE 0.042 0.844 0.052 0.920 0.039 0.913 0.081 0.849 0.128 0.836
DL-Fβ 0.041 0.850 0.052 0.921 0.038 0.915 0.079 0.855 0.126 0.842
DL-f 0.043 0.844 0.055 0.919 0.041 0.911 0.083 0.851 0.132 0.833

an interesting benchmark to assess the generalization capabilities of the proposed fusion
strategy. Results are reported in Table 3.10.

Although the three optimized CNNs exhibit comparable performance, there is a subtle
yet consistent advantage of DL-Fβ over DL-MAE , differently from what was observed in
the previous experiments. DL-MAE has therefore slightly overfitted on the annotation
choices that are specific to the MSRAB dataset, while DL-Fβ produced a better
generalization. Overall, the CNNs obtained through the optimization process appear to
improve on the input algorithms on all datasets, with the exception of DUTOMRON,
where DHS stands out from all other reported performance values. However, by further
inspection, according to [128] and [98] DHS was trained on both the MSRA10K dataset
and the DUTOMRON dataset itself, thus explaining the observed outlying performance.

Figure 3.9 shows the effect of DL-MAE on different sample images, along with
the exploited input saliency maps coming from the corresponding saliency estimation
algorithms.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 3.9 Visual results of the extended CNN from DL-MAE . Rows (a) and (b) show,
respectively, the starting image and the corresponding ground truth annotation. (c) is
the output of DL-MAE . Rows (d) to (i) are the input saliency maps used by DL-MAE ,
namely: (d) DSS, (e) MDF, (f) MFCN, (g) DHS, (h) ELD, (i) RFCN.
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Chapter 4

Semantic segmentation

“La Golf non c’è, poi mi pare di trovarla [...] e sotto ad un riflettore la
riconosco. Tutta brillante nel suo grigiore metallizzato.”

Offlaga Disco Pax – Dove ho messo la Golf?

Semantic segmentation integrates traditional image segmentation (which partitions
the input image into subregions without a regular shape) with the categorical classification
of each generated subregion. In the adopted pipeline for image understanding, semantic
segmentation falls in-between the steps of object proposal and classification. The most
recent and successful approaches to the problem [134, 39, 40, 42], in fact, do not explicitly
separate the two elements into disjoint processings, but rely on an end-to-end solution
that directly produces the expected output, i.e. a pixel-level classification of the input
image.

The first successful approach to semantic segmentation of recent years is the Fully
Convolutional Network (FCN) [134], already covered in Chapter 3. This solution exploits
the intermediate activations of a deep model previously trained on object recognition, in
order to provide an analysis of the input image at different levels of abstraction. The FCN
model was originally developed, and tested, on the 20 object classes from the PASCAL
Visual Object Challenge [66]. The purpose of this chapter is instead to design a CNN
architecture that can provide semantic segmentation and a global scene understanding in
outdoor street environments. The automotive field, in fact, has seen a strong expansion
in recent years, where a crucial role is played by perception systems for autonomous
vehicles and for assisted driving. The focus is therefore on semantic segmentation of
street images for car-specific applications, where a model is continuously run on vehicles
in order to quickly make decisions in reaction to environmental events. For this reason,
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every architectural choice emerges from a compromise between precision and processing
speed, with the intent of building an efficient architecture based on a lightweight decoder.

The designed network architecture, which relies on multiresolution analysis, achieves
the desired balancing between speed and accuracy. For its development, an incremental
approach has been used, highlighting the advantages and disadvantages of each choice.

4.1 Related works
The great majority of current image segmentation architectures are based on the encoder-
decoder structure [134] to exploit a large receptive field and, at the same time, to produce
high-resolution predictions. Architectures that use dilated convolutions [209, 214, 42]
to expand the receptive field, also adopt some form of downsampling to keep the
computational effort low. Semantic maps are generally produced at 1/8 or 1/16 of
the final resolution, and are subsequently upsampled using either nearest or bilinear
interpolation.

A good compromise between processing speed and accuracy is difficult to achieve, and
it heavily depends on the final application. For this reason, existing works can typically
be categorized into two classes: accuracy-oriented architectures, and efficiency-oriented
architectures.

4.1.1 Accuracy-oriented architectures

The first work that successfully used CNNs for semantic segmentation is FCN [134].
Authors used a pre-trained encoder in conjunction with a simple decoding module,
applying skip connections from the lower-level layers to process high-resolution activation
maps. DeepLab [39] included Dilated Convolutions [208] to increase the context awareness
(i.e. receptive field) of inner layers, while keeping a low number of parameters. Several
methods adopted the Residual Network architecture [91] as encoder (such as DeepLabv2
[40], Resnet38 [200], FRRN [156]), further improving performance on the task of semantic
segmentation. DeepLabv3 [42] and PSPNet [214] introduced the concept of context layers
to further expand the theoretical receptive field of internal activations. These methods
achieve high accuracy on different benchmarks but at the expense of high computational
costs.
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4.1.2 Efficiency-oriented architectures

ENet [152] was developed as a high-speed architecture, drastically increasing the efficiency
of the model, but sacrificing accuracy. ERFNet [169] adopted a very simple encoder-
decoder structure inspired by ENet. ERFNet authors designed the network structure on
Residual Factorial convolutions that efficiently process the input signal with dedicated
filters for each spatial dimension. SegNet [11] exploits high-resolution information by
saving max-pooling indices at the encoding stage, and subsequently using them during
the decoding phase. The design of ICNet [213] is based on a three-branch architecture
with deep training supervision. The authors also experimented with a form of model
compression to further accelerate the network.

4.2 Dataset and evaluation metrics
Experiments were carried out on the Cityscapes [55] dataset: a set of urban street images
annotated with pixel-wise semantic information. It is composed of 5000 high-resolution
images (2048×1024) out of which 2975, 500 and 1525 images belong respectively to train,
validation and test subsets. Annotations include 30 different classes of objects, although
only 19 are typically used for training and evaluation:

• road • pole • sky • bus
• sidewalk • traffic light • person • train
• building • traffic sign • rider • motorcycle
• wall • vegetation • car • bicycle
• fence • terrain • truck • (background)

The dataset is characterized by a vast diversity of scenes, with images taken from 50
cities during different seasons. Acquisitions are all performed at daytime, with good or
medium weather conditions.

Two metrics are used for model validation: mean of class-wise Intersection over Union
(mIoU) for segmentation quality, and Frame Per Second (FPS) for processing speed.
mIoU is defined as the mean of IoU computed independently for each class. IoU (also
called Jaccard Index) is computed as:

IoU = TP

TP + FP + FN
(4.1)

Where TP, FP and FN are the number of True Positive, False Positive, and False Negative
pixels, respectively.
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Fig. 4.1 Simplified representation of the proposed architecture for semantic segmentation.
The input is processed at different resolutions in order to exploit both details and large
receptive fields. The corresponding activation maps are then combined with a fusion
module, and fed through a decoder. Further details are provided in Figure 4.2

FPS is defined as the inverse of time necessary for the network to perform one forward
pass. All the FPS performance values reported in the following sections are referred to a
single NVIDIA Titan Xp GPU.

4.3 Network design
The proposed neural network is a multiresolution architecture that jointly exploits
high-resolution and large context information to produce an accurate segmentation of
the input image. The network relies on an encoder-decoder structure as depicted in
Figure 4.1. The encoder is composed by multiple branches with partially shared-weights.
The task of these branches is to extract fine and coarse features from the input image
subsampled at different resolutions. These multiresolution signals are merged by a
fusion module, analyzed in Section 4.3.4. The decoder performs a compression in the
channels dimension, followed by an upsampling. The output of the network is a class-wise
probability distribution for each pixel. The network architecture is presented in details
in the following subsections.

4.3.1 Evaluation setup

All network configurations have been trained with Stochastic Gradient Descent (SGD)
and momentum set at 0.9. Following [209], the base learning rate was set to 0.001 and
trained for 250 epochs. A fixed step learning rate policy was adopted: the initial value
was decreased two times by an order of magnitude, at 100 and 200 epochs. Different
starting learning rates were tested, as well as the poly learning rate policy from [39],
however the baseline configuration provided the best results. Batch size was found to
be an important parameter, affecting the final model accuracy: different values were
experimented with, resulting in 8 being the best value for this setup. In contrast to what
claimed in [41], increasing the batch size negatively affected the overall performance. A
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Table 4.1 Impact of downsampling on the system performance. This simple way of
speeding-up inference time affects significantly the final accuracy.

Baseline Downsampling ×4
mIoU (%) 65.5 57.5
FPS 6.7 50.6

possible explanation for this phenomenon is that the higher stochasticity introduced by
intra-batch dependencies acts as regularizer, improving the final network performance.

4.3.2 Input downsampling

Input downsampling is a simple way to speed up the inference process, causing however
loss of fine details (e.g. precise borders between classes, or fine textures). To this extent,
two simple explorative experiments were set up, in order to investigate a trade-off between
system speed and accuracy. A DRN-D-22 model [209] was employed as encoder (with
pretraining on Imagenet), and a simple bilinear upsampling was used as decoder. This
base model was trained and tested with two different subsampling values. The same
model was then trained and evaluated with input images subsampled by factor 4. Table
4.1 shows the mIoU of the baseline model without and without subsampling. Model
speed increases from 6.7 FPS to 50.6 but mIoU drops by 8%. This explorative experiment
motivated the search for a smarter strategy, based on multiresolution analysis.

4.3.3 Multiresolution encoder

A multiresolution network is composed of multiple branches, each processing the input
image at a different resolutions. The goal of branches working on lower resolutions
is to extract large context features, whereas the goal of branches that work on higher
resolutions is to extract more local features that will help to recover fine borders in the
decoder. Three different encoder configurations were explored:

1. The first, named enc24, consists of two branches that process input images with
sub-sampling factors 2 and 4.

2. The second configuration, named enc24shared, is similar to the first but weights are
shared between the two branches. Results in Table 4.2 show that the network with
shared branches achieves higher mIoU levels. Weight sharing between branches, as
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Encoder baseline down×4 enc24 enc24shared enc124shared
Multiresolution ✓ ✓ ✓
Shared Parameters ✓ ✓
Subsampling factor 1 4 2 + 4 2 + 4 1 + 2 + 4
mIoU (%) 65.5 57.5 61.5 63.0 64.2
FPS 6.7 50.6 38.7 38.7 24.9

Table 4.2 Performance on Cityscapes validation set and speed (FPS) of different encoder
architectures. The first two structures replicate experiments for input downsampling:
baseline is a full-resolution network, while down×4 is trained and evaluated with down-
sampled input. Columns enc24 and enc124 means 2 and 3 branches with subsampling
factors: (2,4) and (1,2,4) respectively. Column shared means that weights are partially
shared between branches. In bold the configuration adopted in the final model.

pointed out in [24], induces an implicit form of regularization. This configuration
was chosen as the base encoder for the following experiments.

3. In the third configuration, named enc124shared, a further branch was added, with
the objective of processing the full-resolution image. This brought some performance
improvements, but it was not employed in the final model because the whole system
would slow down below the real-time threshold of 30FPS.

The different encoder designs in Table 4.2 have been tested together with a fixed decoder
architecture. The low-resolution branch is composed of all the layers of a Dilated Residual
Network 22 type D (DRN-D-22) [209] with the exception of the last two. The medium-
resolution branch has only the first layers of the DRN-D-22 before dilated convolutions.
Details are shown in Figure 4.2

4.3.4 Fusion module

The purpose of the fusion module is to join information coming from low-resolution
and high-resolution encoder branches. First, the output of the low-resolution branch
is upsampled with a differentiable bilinear filter to match the spatial size of the signal
coming from the medium-resolution branch. The output of the medium-resolution branch
is then expanded from 128 to 512 channels, to match the number of features of the low-
resolution branch. Finally, the two multiresolution signals are merged. Table 4.3 reports
experimental results of four different designs. Both channel concatenation and addiction
were evaluated as fusion strategies: concatenation (denoted by “c”) and addition (denoted
by “+”). Dimensionality reduction was also evaluated, in order to determine its effect on
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Fig. 4.2 The multiresolution network used for semantic segmentation, shown at incre-
mental levels of detail.
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Fig. 4.3 Experimented fusion modules. The four configurations are defined by fusion
strategy (addition “+” or concatenation “c”) and presence or absence of postprocessing
(denoted by the dotted-line box).

the final performance. This is in opposition to the baseline, where the final classification
layer is fed directly with the signal after the fusion operation. Experimental results in
Table 4.3 shows that mIoU measure takes advantage of the postprocessing step, whereas
the overall speed is only slightly affected. The model benefits from the addition of more
non-linearities, and the final upsampling operation is applied to a tensor with a lower
channel dimensionality. Figure 4.3 depicts the four different configurations.
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Configuration 1 2 3 4
Postprocessing No No Yes Yes
Fusion strategy + c + c
mIoU (%) 63.0 63.5 65.8 64.2
FPS 38.7 37.8 37.3 36.4

Table 4.3 mIoU on Cityscapes validation set and FPS for different fusion modules.
Differences are: signal summation or concatenation and presence of a post-processing
step. In bold the configuration adopted in the final model.

Transformation baseline color jitter lighting jitter random scale
mIoU (%) 65.8 62.6 64.2 67.5

Table 4.4 mIoU on Cityscapes validation set with different data augmentation techniques
used during training. In bold the configuration adopted in the final model.

4.3.5 Data augmentation

To make the model more robust to different lighting conditions, several light-related
transformations were investigated: this is potentially an important characteristic for the
envisioned system, which is expected to work on real environments and outdoor scenes.
Two main light transformations were applied: color jitter and lighting Jitter. Color jitter
consists of modifying image brightness, saturation and contrast in random-order. Lighting
jitter is the same jittering used in [113]. Specifically, σ = 0.1 was used as standard
deviation to generate random noise. Geometric transformations were also experimented:
following [209], images were resized with a random scale factor between 0.5 and 2. Table
4.4 shows the results of adopting these data augmentation techniques. Only random scale
brought some improvements, which was therefore included in the training procedure.

4.3.6 Final architecture

The complete network architecture is reported in Table 4.5. The upper part defines the
encoder structure, whereas the bottom part defines the fusion module and the decoder.
The network is composed of a total 19 Million parameters, and requires 58.7 GFLOP to
perform single inference on a 512×1024 image. Most parameters are within the encoder,
and in particular in the residual blocks, presented in [209].

A block is a module composed of three layers: Convolution, Batch Normalization
and ReLU. In particular, blocks with stride = 2 perform input downsampling. Conv +
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Table 4.5 The proposed network architecture. For each module the output size, number
of operations (FLOP) and number of parameters are reported. Block is composed by
Convolution, BatchNorm and ReLU layers. The word Dilated means that convolutions
exhibit a dilation term.

Encoder
Branch-1 Branch-2

Type Output size FLOP Type Output size FLOP Parameters
Subsample 256×512×3 393,2K 0

Block 512×1024×16 1.2G Block 256×512×16 308.7M 2.4K
Block 512×1024×16 1.2G Block 256×512×16 302.4M 2.3K

Block (s=2) 256×512×32 609M Block (stride=2) 128×256×32 302.2M 4.6K
Res. Block 128×256×64 3.9G Residual Block 64×128×64 973.2M 131.4K
Res. Block 64×128×128 3.9G Residual Block 32×64×128 973.1M 524.9K

Dil. Res. Block 32×64×256 1.9G 2.1M
Dil. Res. Block 32×64×512 7.8G 8.4M

Dil. Block 32×64×512 4.8G 2.4M
Block 32×64×512 4.8G 2.4M

Fusion Module
Upsample 64×128×512 16.8M 0

Conv + BN 64×128×512 4.8G Conv + BN 64×128×512 19.3G 3.0M
Sum + ReLU 64×128×512 8.4M 0

Block 64×128×256 1.1G 131.3K
Block 64×128×128 268.5M 32.9K

Decoder
Classification 64×128×19 19.9M 2.5K

Upsample 512×1024×19 39.8M 0
Total FLOP: 58.7G Total: 19M

BN is a single block with a Convolution followed by a Batch Normalization layer. The
network has two branches in the encoder that share the same weights. For this reason, in
Table 4.5 there is only one column with the number of parameters for the two branches.
The difference between branches lies in the signal resolution. Branch-2 is fed with a
downsampled input, and it is the part of the network with the highest computational
burden. Earliest layers of branch-1 are heavier to compute, for this reason branch-1
is shallower by design. The Fusion Module is composed by a first part where signals
are pre-processed independently, followed by a second part where signals are jointly
processed. The decoder ends with a classification layer (i.e. a 1×1 filter convolution)
followed by bilinear upsampling.
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4.4 Comparison with other methods
Table 4.6 reports the performance of the proposed architecture along with state of the
art methods on Cityscapes test set. Dataset and evaluation metrics correspond to those
described in Section 4.2, and the mIoU measure has been computed by the Cityscapes
online evaluation server. This table includes only algorithms that declare their running
time on the Cityscapes leaderboard (those that do not care about processing time are
assumed to be computationally heavy). Most of these methods, e.g. PSPNet, DeepLabv3
[214, 42] achieve very high mIoU levels (DeepLabv3+ is the best-published model to
date, reaching 81.2%). However, they typically rely on multiscale testing to increase
accuracy, which is particularly time-consuming. The proposed network architecture
achieves 68.2% of mIoU on the Cityscapes test set without any postprocessing. FPS in
Table 4.6 refer to a single Titan Xp GPU. The proposed network performs even better
than some methods like Adelaide [126], Dilation10 [208] etc. that do not take speed
into consideration. Only ICNet[213] and ERFNet[169] achieve similar performance in
terms of mIoU while being slightly faster. These make use of different strategies to
reach high-efficiency predictions which are orthogonal to the model proposed in this
chapter. ICNet is based on a similar multiscale architecture, but with a different number
of scales and different fusion modules. Authors of ICNet employed auxiliary losses to
train the network, while the proposed network can be trained end-to-end with a single
cross-entropy loss. In addition to that, to lighten the computational burden of the final
model, they compressed the trained model. This technique is orthogonal to the network
structure design and could be employed in the exact same way to compress the proposed
model. ERFNet model reaches high-efficiency thanks to the use of novel building blocks:
Factorized Convolutions. Again, these design choices can be potentially included in the
proposed solution to improve efficiency.
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Table 4.6 Comparison with state-of-the-art methods on Cityscapes test set.

Name Subsampling mIoU (%) FPS
SegNet [11] 4 57.0 26.4
ENet [152] 2 58.3 121.5
SQ [189] no 59.8 26.4
CRF-RNN [217] 2 62.5 2.2
DeepLab [39] 2 63.1 0.4
FCN-8S [134] no 65.3 4.9
Adelaide [126] no 66.4 0.05
Dilation10 [208] no 67.1 0.4
ICNet [213] no 69.5 47.9
ERFNet [169] 2 69.7 62.6
DeepLab v3+ [42] no 82.1 N/A
This work 2 68.2 43.9

Fig. 4.4 Plot of mIoU vs FPS for comparison of the presented solution with other methods
in the state of the art.
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Fig. 4.5 Semantic segmentation results obtained with the proposed network architecture.
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Chapter 5

Introduction to classification
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Fig. 5.1 Different approaches for the classification phase.

The second step of the proposed pipeline for automatic description and annotation
of complex scenes is the classification of those image parts highlighted by the object
proposal phase. This task has been addressed with the use of deep convolutional neural
networks, which in later years showed unmatched results in classification tasks [115].
Several architectures have been analyzed and employed at different levels, from the
pioneering AlexNet and CIFAR-10 network from [113], moving to the application of the
more compact and more efficient ResNet [91]. Eventually, also state-of-the-art solutions
like the automatically-optimized networks from NasNet [221] have been exploited, and
their generalization capability has been evaluated. As shown in Figure 5.1, neural
networks can be employed for classification tasks in, at least, three ways:

• Learning from scratch. When a large amount of labeled data is available, training
a deep neural network from scratch is a viable option. In this setup, the learnable
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weights that characterize the network layers are randomly initialized by resorting
to different strategies [83]. The classification loss, typically based on cross-entropy,
is used as the entry point for the back-propagation algorithm [172] to incrementally
update the weights until convergence to a stable solution is reached.

• Fine-tuning. Tightly related to the concept of transfer learning, fine-tuning involves
the adoption of a neural network that was pretrained on a different task (typical
examples exploit models trained on the ImageNet dataset [173]). For a classifica-
tion problem, the final fully-connected layer that maps to the original problem
cardinality must be replaced with a new untrained layer, mapping to the new,
proper, cardinality. The learning process is then actuated with the new training
data, and the weights update can be either limited to the new layers, or extended
to the whole model. In this case the first layers start training on the new data from
a meaningful state, as opposed to random initialization, therefore requiring overall
less time for the model to converge.

• Deep features. This training modality also consists in exploiting a neural network
trained on a different task to process the input image. In particular, activations of
layers close to the final output are used as features to describe the input image [82],
as they usually constitute compact representations for abstract concepts. Such deep
features can be used to train other “traditional” classifiers, e.g. Support Vector
Machines [57]. Like fine-tuning, this approach is also especially useful when few
training examples are available, as in this situation a full neural network training
might lead to an overfitted model.

Availability of training data is of paramount importance in performing supervised
training with deep convolutional networks. This is especially the case for learning-from-
scratch scenarios, but it covers a significant role for alternative forms of learning as well.
The importance of data has been made explicit through several literature works about
synthetic and real data augmentation [153, 16]. Synthetic data augmentation reckons on
the application of procedural distortions to the training data, with the goal of virtually
generating new samples. The distortions can be tailored to the specific characteristics
of the problem at hand, as shown in Chapter 6, and generally produce appreciable but
limited improvements. Real data augmentation, on the other hand, consists of collecting
genuinely new training examples, and of annotating them for the specific task of interest.
By nature, this second approach is more expensive to pursue, but it typically has a
stronger positive impact on the final recognition performance. This will be also shown
experimentally in the following chapters.
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Two tasks with different characteristics have been selected as uses cases, with the
intention of addressing the wider possible spectrum of challenges imposed by real-life
applications. The proposed solutions involve all the previously described ways of exploiting
neural networks and data augmentation for classification.

The first category of interest regards brand logos [15, 16]. These visual elements are
characterized by bright colors and sharp edges, a feature that has been exploited in the
following by resorting to the selective search [191] object proposal algorithm for cluttered
scenes. In a preliminary study of the problem, classification of logo regions has been first
addressed with deep features representation, synthetic forms of data augmentation, and
classification via support vector machine. Then, learning from scratch has been made
feasible by collecting and annotating an extended training set (real data augmentation),
and by defining a more compact neural architecture inspired by the CIFAR-10 challenge
[113]. This allowed a significant leap in performance to be achieved, and the individual
contribution of each element in the proposed solution has been quantified by careful
experimentation.

Classification of vegetables and fruits has been treated as the second case study
[34]. As the images in the envisioned domain typically depict one subject (or one
class) of interest, object proposal based on saliency estimation has been employed to
automatically select an optimal cropping of the input image, prior to the classification
itself. For this instance of fine-grained visual classification, transfer learning and synthetic
data augmentation have been applied by adapting different neural architectures to the
problem at hand, in order to define a robust baseline for subsequent improvement. This
preliminary study has then been extended by introducing and evaluating two variants
of the fine-tuning process with the objective of exploiting the hierarchical nature of the
involved classes.
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Chapter 6

Classification in cluttered scenes:
Logos

“Sie stellt sich zur Schau für das Konsumprodukt. Und wird von
Millionen Augen angeguckt”

Kraftwerk - Das Model

A logo is the identifying visual symbol of an entity, may it be an association, a
brand, or a specific product. As such, a successful logo may be seen every day by
millions of people, and a person typically sees thousands of logos and brand-related
images every day [70]. There is therefore great interest in automating logo recognition,
with varying intentions and applications. The brand owner might be interested in
copyright infringement detection [29], as well as automated computation of brand-related
statistics on social media [78]. Consumer organizations, on the other hand, are interested
in monitoring hidden advertisement from TV shows [4], for instance. Other general
applications include intelligent traffic-control systems based on vehicle logos [159], as
well as contextual placement with augmented reality [89].

Logos are designed with the objective of catching the eye and being memorable, often
relying on bright colors and sharp edges. They are typically printed on flat (or slightly
curved) surfaces, effectively constraining the range of visual distortions they might be
subject to when captured by an imaging device. All these characteristics can be exploited
when building a dedicated system for automatic logo recognition, relying for example on
a discriminative color space during the object proposal phase, and developing realistic
forms of synthetic data augmentation.

First, a preliminary investigation of the task is presented: describing existing works
and showing the efficacy of a basic approach to the problem. This analysis contributes

52



6.1 Preliminary investigation

to the motivations for the proposed solution, which is later defined and whose validity is
experimentally shown. Key element in the final solution is the collection and annotation
of an extended dataset for logo recognition.

6.1 Preliminary investigation

6.1.1 Existing works

Logo recognition has been traditionally addressed exploiting keypoint-based descriptors
and detectors, which take full advantage of the characteristic sharp-edges of such category
[12, 110, 107, 143]. Romberg et al. [168] devised a technique to encode and index the
spatial layout of local features present in an image, with the specific intent of performing
logo retrieval. In particular, they developed a quantized representation of logo regions
based on the composition of basic spatial structures and on local characteristics, such
as edges and triangles. Revaud et al. [164] presented a method to rescale the score
resulting from logo detection in a noisy context. This was done, once again for retrieval
purposes, by learning a burstiness model specific to the provided query logo. Romberg
and Lienhart [167] introduced a scalable logo recognition technique based on feature
clustering, where each local feature is aggregated along with their spatial neighborhood
through a Bag of Words approach. Boia et al. [28, 27] proposed a method to localize
and recognize logos through homographic class graphs, and devised a specific solution to
handle color variations by using secondary inverse models.

More recently, deep learning has been introduced in tasks related to logo recognition
[62, 102]. Eggert et al. [62] applied pre-trained Convolutional Neural Networks and
synthetic data augmentation, and experimented with several techniques to solve the
problem of limited training examples. A similar approach was also adopted by Iandola
et al. [102], where different neural architectures were evaluated. Oliveira et al. [149]
included pre-trained neural models into a general recognition pipeline based on quick
regions. As a general observation, transfer learning from existing neural networks has
been often integrated into logo recognition since its first applications, due to the limited
availability of labeled training data.

6.1.2 FlickrLogos-32 dataset

For several years, the de-facto standard dataset for logo recognition has been FlickrLogos-
32 [167, 168, 164]. Made publicly-available for research purposes, this dataset is composed
of 2240 logo images depicting 32 different classes, and 6000 negative (or “background”)
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Fig. 6.1 Sample images from the FlickrLogos-32 dataset. For each class, an example was
manually selected to show the overall range of variability.

images. For each class, the official split consists of 10 training images, 30 validation
images, and 30 test images. Each positive image contains one or more instance of a
single logo class, which is depicted as printed on a flat or cylindrical surface, as shown in
Figure 6.1. The dataset was originally collected and annotated for logo retrieval in real
life applications, and subsequently adopted for logo classification and recognition.

6.1.3 Selective search

Selective search exploits a greedy bottom-up grouping of initial image regions, which
are generated through a graph-based segmentation of the input image [69]. A similarity
measure is first computed between all pairs of neighboring regions. The two most similar
regions are merged, and the similarity between the resulting region and existing ones is
updated. The cycle is repeated until the whole image is an object proposal. For perfor-
mance reasons, it is essential that the similarity measure can be recursively computed as
a function of previously computed values (i.e. avoiding an explicit recomputation step
based on the actual content of the image itself). The whole processing can be performed
under a number of color spaces, taking advantage of different invariance properties. This
characteristic is resumed in Chapter 6, where the color space that provides the most
valuable representation for logo detection is systematically found and exploited.

The similarity among neighbors is computed by analyzing the following characteristics
of each region:
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• Color: A color histogram for each color channel is computed. Neighboring regions
are then compared using histogram intersection as similarity measure.

• Texture: Gaussian derivatives are computed and aggregated into orientation/channel-
specific histograms. The comparison between regions is here also based on histogram
intersection.

• Size: Smaller regions are given a larger incentive for merging. This has the effect
of balancing the grouping, generating object proposals that are well spread across
the whole image.

• Fill: A pair of regions where one encloses the other, is given higher merging
likelihood. Let T be the tightest bounding box surrounding the two regions, this
aspect is captured by measuring the fraction of T that is not covered by the two
individual regions.

The overall similarity is then a sum of the above components. Regions are assigned a
hierarchy level i during this incremental merging process. A region rank is then also
computed by multiplying this hierarchy level by a random amount in [0, 1]. The regions
with lower rank are finally removed from the list of generated object proposals.

6.1.4 Deep-feature classification

This preliminary investigation was based on an idea first proposed by Girshick et al. [82],
which consists in extracting deep-learning-based features from each object proposal using
a neural network that was pretrained on a different task, and performing classification
on said features using a Support Vector Machine (SVM). The pipeline proposed by
Girshick et al. is here extended with query expansion at test time, in order to improve
the recognition of instances subject to potential image distortions not seen at training
time.

Given an input image, that may contain 0, 1 or multiple logo instances in any size
and location, an object proposal phase is first conducted in order to generate a set of
image subwindows that are more likely to tightly contain an object of interest (a logo, in
this case). For this task, the selective search [191] algorithm has been adopted with the
objective of detecting subregions that effectively pop out from the background thanks to
color contrast and well-defined edges. This method is also able to propose regions with a
diverse range of aspect ratios. Due to perspective transformations of planar logos, in
fact, it is not possible to make assumptions on the final appearance of the instances.
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Each object proposal is subsequently warped to a common size, set to 227 × 227
pixels, and fed to a neural model that was pretrained on the ILSVRC 2012 task [173]
with millions of images annotated for classification into 1000 different classes. For the
experiments described in this section, the AlexNet [113] architecture has been exploited:
4096-dimensional features extracted from the activations of the last hidden layer are used
as the input to train and apply a multiclass linear Support Vector Machine. The SVM
had to discriminate between 33 classes (the original 32 logos, plus a reject class).

In order to take into account the high variability in image transformations the logo
instances might be subject to, two strategies have been applied. First, at training time,
offline data augmentation is performed according to [153]. This is necessary due to the
extremely limited amount of data available, as the FlickrLogos-32 dataset was originally
ideated for logo retrieval using SIFT-like features [168]. The following transformations
are used in combination, using two possible values for each one: translation, scale, x-axis
shear and y-axis shear. Note that by combining the two shear transformations, rotation
is virtually introduced in the set of applied transformations, as depicted in Figure 6.2.
This operation effectively multiplies the number of training example by a factor of ∼ 250.
Secondly, query expansion is performed at test time: whenever an object proposal is
selected, three more variations are generated by rotating the region by 90◦, 180◦, and
270◦. Each alternative view is then fed to the SVM for classification, and the object
proposal is assigned the class with a higher confidence score.

6.1.5 Preliminary results

The selective search [191] algorithm used for object proposal can extract the candidate
object regions by processing an input image under different color spaces. An evaluation
of the impact of each color space is here presented, with the intent of establishing the
representation that best exploits the characteristics of logo instances, including the
already-mentioned high contrast and bright colors. To this extent, the Intersection Over
Union (IoU) measure as proposed by Hosang et al. [97] can be used to assess the overall
effectiveness of the object proposal. IoU is computed between the ground truth and the
proposal as a simple ratio between pixel areas. By varying a rejection threshold, then,
the resulting recall is computed in terms of the number of overlapping bounding-boxes.
Note that this measure does not take into account the precision component, as false
positive examples are expected to be handled by a subsequent classification module.
Figure 6.3(a) shows the resulting curves of five possible color spaces, including: HSV, Lab,
rg + Intensity, Hue only, and Intensity only. As described in [97], the most significant
range for evaluation is between 0.70 and 0.80 IoU. From these experiments, the best
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Fig. 6.2 Partial representation of the variability obtained with synthetic data augmen-
tation. Involved transformations include: translation, scale, x-axis shear and y-axis
shear.

performing configuration appears to be HSV, suggesting that an explicit representation
of saturation and value can successfully exploit the intrinsic features of logo design.

Recognition experiments were performed according to the official criteria defined with
the FlickrLogos-32 dataset [168], which is split into three disjoint subsets P1, P2, and
P3 as reported in Table 6.1. The system was trained on set P1, and validated on P2 for
hyperparameters selection with a target precision of 98% for better comparison with the
state of the art [168, 164, 167]. The selected hyperparameters were then used for testing
on P3.

Figure 6.3(b) shows the performance level obtained on both validation set and test
set in terms of precision and recall. Results obtained using query expansion on the test
set are also reported.

Table 6.2 reports a comparison with other approaches. [168] and [167] are based
on the bundling of neighboring SIFT-based visual words into unique signatures. [164]
uses a statistical model for identifying incorrect detections output by keypoint-based
matching algorithms. Results show how, despite reaching reasonable performance levels,
keypoint-based approaches are still better then what was obtained by this preliminary
investigation, based on SVM classification with deep features.
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Fig. 6.3 Preliminary results on the Flickr-Logos dataset. (a) Recall vs. IoU with selective
search under different color spaces. (b) Precision vs. Recall on validation set and test set
(with and without Query Expansion).

Table 6.1 Official partitions of the FlickrLogos-32 dataset.

Partition Description Images Total

P1 (training set) Single logo images 10 per class 320 images

P2 (validation set) Images showing at least one logo 30 per class 3960 imagesNon-logo images 3000

P3 (test set) Images showing at least one logo 30 per class 3960 imagesNon-logo images 3000

Table 6.2 Performance comparison with other approaches.

Method Precision Recall
Deep features (preliminary investigation) 0.91 0.84
Deep features + Query expansion 0.97 0.63
Spatial layout encoding [168] 0.98 0.61
Noisy score rescaling [164] ≥ 0.98 0.73
Feature neighborhood aggregation [167] 0.999 0.832
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6.2 Proposed approach
The preliminary study should have provided a sense of the scale and difficulty of logo
recognition. Despite evidence of the great efficacy of deep learning solutions to clas-
sification [113], a basic deep-feature-based approach was shown to still have room for
improvement. The presented solution was not relying completely on deep learning:
the final classification was in fact performed via support vector machine. The main
reason behind this choice, was a substantial unbalancing between network parameters
(on the order of 60 Millions) and available data (about 1000 labeled positive examples
for training).

It has been shown that balancing more carefully data and parameters can be a
key element for the successful training of a deep neural network [162]. Synthetic data
augmentation as performed in the preliminary investigation was the first step in this
direction, although not sufficient to completely solve the unbalancing problem. For this
reason, a new dataset called Logos32-plus has been collected and annotated, extending
tenfolds the cardinality of the existing standard in the state of the art. The second
step towards a better balancing naturally involves the neural network architecture itself.
To this extent, a shallower model has been designed, and a set of smarter strategies
from literature have been integrated into the training process, including class balancing,
sample weighting, and contrast normalization.

This section describes in more detail the outlined approach, based on an improved
training set, a shallower neural model, and the adoption of smarter training strategies.

6.2.1 Logos-32plus dataset

The Logos-32plus dataset has been created as a direct extension of the original FlickrLogos-
32: it contains the same 32 logo classes, but with an average of 400 examples per class.
Each image contains one or more instances of the same logo class, for a total of 12302
logo instances among 7830 images. The precise cardinality distribution is shown in Table
6.3 and Figure 6.4.

As the original Flickr-Logos32 dataset was collected aiming to a keypoint-based
approach, the set of images it is composed of was implicitly filtered in order to contain
very well-defined instances, with little to no noise or blurring. The main variability was
given instead by perspective distortions, which are well-handled by the aforementioned
techniques. The new Logos-32plus dataset has been created with the explicit intention
of overcoming this limitation, therefore including a wide set of real-life conditions for
distortion. An initial selection of images was collected by automating a Flickr and Google
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Table 6.3 Details comparison of FlickrLogos-32 and Logos-32plus datasets.

FlicrkLogos-32 Logos-32plus
Total images 8240 7830
Images containing logo instances 2240 7830
Train + Validation annotations 1803 12302
Average annotations per class (Train + Validation) 40 400
Total annotations 3405 12302

334

208
226

530

200

565
598

493
513

656 654

524

216

519
545

239
274

142

368

243

494

178

477
514

254

212 197

536

439

352

286
316

H
P

ad
id

as al
di

ap
pl

e

be
ck

s
bm

w

ca
rls

be
rg

ch
im

ay

co
ca

co
la

co
ro

na dh
l

er
di

ng
er

es
so

fe
de

x

fe
rr

ar
i

fo
rd

fo
st

er
s

go
og

le

gu
in

ne
ss

he
in

ek
en

m
ilk

a

nv
id

ia

pa
ul

an
er

pe
ps

i

rit
te

rs
po

rt

sh
el

l

si
ng

ha

st
ar

bu
ck

s

st
el

la
ar

to
is

te
xa

co

ts
in

gt
ao up

s
0

100

200

300

400

500

600

700

FlickrLogos-32 train+val
Logos-32plus

Fig. 6.4 Graphical comparison of the distribution of the 32 logo classes between
FlickrLogos-32 (40 examples per class) and the augmented Logos-32plus dataset.
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(a) (b)

Fig. 6.5 (a) Simple query results. (b) Extended query results (Fedex plane, Fedex truck,
Fedex parcel, ...)
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Fig. 6.6 Structure of shared keywords among different logo classes, used to collect images
for the Logos-32plus dataset. For example, the extended query set for BMW is composed
of: “BMW logo”, “BMW merchandasing”, “BMW events”, “BMW car”.

Images search on the 32 logos classes. However, a basic name search resulted in extremely
low variability in the type of results, as shown in Figure 6.5. An extended query set was
therefore manually compiled, in order to expand the diversity and cardinality of images
by integrating meaningful keywords, for example “Fedex logo” can be extended with
“Fedex plane”, “Fedex truck”, “Fedex parcel” and so on. The dendrogram in Figure 6.6
shows the structure of shared keywords among different logos, since several classes have
common traits. For example, “UPS” and “DHL” reasonably share the extended keyword
set with Fedex, as they all belong to the same brand category (delivery company).
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Near-duplicates removal A refinement phase was then conducted on the gathered
images in order to ensure proper diversification among the new images, as well as to
guarantee that no overlap existed between the presented Logos-32plus dataset and the
original FlickrLogos-32. This objective was achieved in two steps: a fully-automatic
search and a semi-supervised one.

A first quick skimming was performed using the Structured Similarity Measure (SSIM)
[196] to compare each image pair in Logos-32plus, as well as each pair between Logos-
32plus and FlickrLogos-32. All image pairs with SSIM value equal to or greater than 0.9
were automatically removed.

Secondly, the following procedure was applied in order to obtain near-duplicates
removal:

• A neural model was defined according to the criteria described in Section 6.2.2,
and trained from scratch on the current dataset.

• Deep features were extracted from each logo instance of both datasets using the
newly-trained model (activations of the first Fully-Connected layer).

• A 5-Nearest-Neighbors classifier was populated with such deep features, and used
to retrieve the five nearest instances by looking at both the original and the new
dataset.

• The 5 nearest neighbors were visually compared with the corresponding source in
order to manually exclude any possible remaining duplicate.

This careful refinement phase allowed the removal of near-duplicates like the one
depicted in Figure 6.7, where the whole image is overall different, while the specific logo
subregion is significantly similar.

Fig. 6.7 Example of near-duplicates detected by the developed procedure. The two logo
instances (“Esso”) are extremely similar, while the overall appearance of the two images
differs significantly.
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Table 6.4 Architecture of the shallower neural network used for logo classification.

N. Layer type Characteristics
1 Convolution 32 × 5 × 5
2 Max Pooling Stride 2
3 ReLU -
4 Convolutional 32 × 5 × 5
5 ReLU -
6 Avg Pooling Stride 2
7 Convolutional 64 × 5 × 5
8 ReLU -
9 Avg Pooling Stride 2
10 Fully Connected 64
11 ReLU -
12 Fully Connected 33
13 Softmax -

6.2.2 Shallower network

After the extension of labeled training data as described in the previous section, the
second step towards a better balancing of data and parameters is to intervene on the
neural structure itself. The structure adopted here is inspired by what was used by
Krizhevsky et al. [113] on the CIFAR-10 dataset, performing object classification on 10
classes from 32 × 32pixels RGB images. This extremely shallow network, visualized in
Table 6.4, is composed of three Convolution-ReLU-Pooling blocks. Each pooling layer
reduces to half the spatial resolution of the input activation. The final layers are two
Fully-Connected layers, followed by softmax for classification.

This architecture is composed of roughly 1.5×105 parameters, compared to the 6×107

parameters of the previously adopted AlexNet structure [113]. An additional benefit
of employing a network with fewer parameters is the faster computation time, which
gives the possibility of multiplying the experiments in the search of the best training
configuration. Furthermore, with better balancing there is no need for regularization
strategies such as dropout [184] and dropconnect [192], as the risk of overfitting is
significantly lower [162].

6.2.3 Smarter training strategies

Special attention was given to the selection of both positive and negative examples:
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• Training on object proposals: The positive examples used to train each class
include the manually-labeled ground truth, as well as the regions generated by
the object proposal that overlap with the ground truth by a significant amount
(Intersection Over Union ≥ 0.5). The misalignment of these regions with respect
to the corresponding logo instance is here theorized to be biased by both the
object proposal algorithm in general and the type of logo specifically. A similar
misalignment is therefore supposed to be found at test time, hence the advantage
of training on similarly-misaligned examples.

• Background class: In addition to the 32 logo classes, a 33rd reject class is explicitly
introduced in the model. The corresponding background examples are not selected
in a completely random fashion, instead they are sampled from those object
proposals that do not overlap with any logo in the training set. This is once again
supposed to exploit the hypothesized bias also found at test time, thus improving
the discrimination between logo and background.

Various strategies have been applied with the intent of creating a more robust training
process. Each one has been singularly evaluated, in order to determine its effective
impact on the overall recognition process. These strategies include:

• Synthetic data augmentation: Each training location is perturbed by randomly
introducing a shifting misplacement on both the vertical and horizontal axis. This
effect is introduced online by a different amount every time a training example is
loaded into memory, expanding the variations at training time indefinitely. The
joint effect of real and synthetic data augmentation is visually shown in Figure 6.8

• Sample weighting: The contribution of each predicted example on the global loss
is weighted proportionally to the overlap between the object proposal and the
corresponding ground truth: if the located object proposal is highly misaligned
with respect to the ground truth annotation, it can be assumed that the logo is not
well visible. In this case, a less confident prediction can be considered acceptable,
hence the imposed lower impact on the global loss.

• Class balancing: Logo classes of the newly-collected Logos-32plus have different car-
dinalities. Class balancing has been implemented by virtually replicating examples
of classes with lower cardinality, according to two possible strategies:

– Epoch-wise: classes are balanced with respect to the whole training epoch.

– Batch-wise: classes are (also) balanced with respect to each training batch.
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Fig. 6.8 Visualization of the joint contribution of both real data augmentation (obtained
through the collection of the Logos-32plus dataset) and synthetic data augmentation
(obtained with random translation).
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Fig. 6.9 Detailed training procedure developed for logo recognition.

• Contrast normalization: Images are contrast-normalized by subtracting the mean
and dividing by the standard deviation of the whole training set. This was shown
to make neural models more robust with respect to changes in imaging conditions
[155].

Finally, a threshold has been used to determine if a given input is a logo, or not,
based on the confidence of the maximum score given by the neural model. This threshold
has been automatically tuned to maximize the accuracy on FlickrLogos-32 training and
validation sets. The complete pipeline is shown in Figure 6.9

6.3 Results
Given a test image, object proposals based on selective search were first generated. Each
proposal was then subject to contrast normalization, if used at training time, before
being input to the trained neural model. The predicted class confidence scores on all
object proposals from the single input image were pooled by selecting the one with the
highest confidence, excluding the prediction on background class. If an object proposal
captures a non-logo region, in fact, its subsequent classification into “background” class
should not determine the overall presence or absence of a logo in the whole image. The
highest-scoring logo class is instead compared to the learned reject threshold, in order to
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Fig. 6.10 Complete testing procedure applied for logo recognition.

assign a final class to the whole image. The overall test framework is shown in Figure
6.10.

Each modification to the training procedure has been introduced one at a time, in
order to evaluate its individual contribution, and the corresponding value is underlined
in Table 6.5 for better readability. The “Data augmentation” column refers to synthetic
data augmentation: all configurations have in fact always been evaluated with real data
augmentation, derived by extending the FlickrLogos-32 training and validation set with
the newly collected Logos-32plus. Results are shown in Table 6.5 in terms of both F1
and accuracy on the official FlickrLogos-32 test set.

The results presented in Table 6.5 show that, compared to a direct deep learning
application to the logo recognition task (e.g. Training Configuration I, for brevity TC-I ),
the different considered training choices can produce a noticeable increase in performance:

• The first leap in performance was achieved by including the 33rd background
class. The results (TC-II ) show F1 to improve by 31.8% and accuracy by 52.4%,
compared to TC-I.

• A second jump was obtained by including object proposals coming from selective
search as examples of additional training. This is configuration TC-III, and it
improves the F1 measure and accuracy by 11.3% and 12.4% respectively, compared
to TC-II.

• A third leap in terms of performance was obtained by synthetic data augmentation,
i.e. increasing the cardinality of object proposals by perturbing them with random
translations. This configuration (TC-IV ) improves the F1 measure and accuracy
of 11.7% and 20.9% compared to TC-III.

• A smaller improvement in performance was then achieved by including class-
balancing, in order to take into account the different cardinalities. The epoch-
wise balancing offers better performance compared to its batch-wise counterpart
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Table 6.5 Analysis on the contribution of each training choice on global performance
values (Precision, Recall, F1, and Accuracy). Each change in training configuration is
underlined for readability, and the final best configuration is highlighted in boldface.

TC BG
class

Pos.
exam.

Data
augm.

Class
balanc.

Contr.
norm.

Sample
weight Prec. Rec. F1 Acc.

I No GT No No No No 0.370 0.370 0.370 0.096
II Yes GT No No No No 0.713 0.665 0.688 0.620
III Yes GT+OP No No No No 0.816 0.787 0.801 0.744
IV Yes GT+OP Yes No No No 0.987 0.858 0.918 0.953
V Yes GT+OP Yes Epoch No No 0.986 0.865 0.922 0.956
VI Yes GT+OP Yes Batch No No 0.980 0.833 0.901 0.945
VII Yes GT+OP Yes Epoch Yes No 0.989 0.906 0.946 0.958
VIII Yes GT+OP Yes Epoch Yes Yes 0.984 0.875 0.926 0.951
IX Yes GT+OP Yes Batch Yes No 0.984 0.887 0.933 0.955
X Yes GT+OP Yes Batch Yes Yes 0.989 0.866 0.923 0.955

Legend to Table 6.5

TC Identifier for the Training Configuration
BG class Background class (no-logo examples) included in training
Pos exam. Sources for positive training examples

GT Precise ground-truth logo annotations
GT+OP Precise ground-truth and Object-proposal logo annotations

Data Augm. Data Augmentation (translation)
Class balanc. Class balancing to account for different cardinalities

Epoch Classes are balanced in each epoch
Batch Classes are balanced in each batch as well

Contr. norm. Pre-processing of training examples with contrast normalization
Sample weight Weighting examples based on overlap between OP and GT
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(respectively TC-V and TC-VI ). In particular, TC -V improves the F1 and accuracy
by 0.4% and 0.3% compared to TC-IV.

• Contrast normalization brought a further small, but consistent, improvement, with
TC-VII improving the F1 measure by 2.4% and accuracy by 0.2% compared to
TC-V.

• Sample weighting (in both TC-VIII and TC-X), which determines a loss value
proportional to the overlap between object proposal and corresponding ground
truth, appears to negatively impact the overall method performance.

The best configuration (i.e. TC-VII ) trained on the extended training set is highlighted
with boldface in Table 6.5 and compared with the state of the art in Table 6.6. Perfor-
mance values for other methods are taken from the respective papers, hence some of the
measures are missing. From the reported results it is possible to see that the proposed
solution, based on the rebalancing given by extended training set and reduced network
complexity, is able to improve the F1 measure with respect to the best state of the art
method of 3.8%.

As a further comparison, the last row of Table 6.6 presents results obtained using
only FlickrLogos-32 (training and validation set) for training and keeping unchanged all
other training choices. This translates in a drop of 14.7% in F1 measure and 4.8% in
accuracy, providing a concrete measure of the role of real data augmentation, compared
to a purely synthetic one [62].

A final experiment was conducted in order to determine whether the main source of
error comes from the selective search (supposedly not able to reach high enough recall),
or from the neural model itself (providing a wrong classification of correctly detected
logo regions). This was done by including the actual ground truth regions among the
object proposals, bypassing the hypothetical limits of the selective search. The resulting
performance is characterized by only a slight improvement (F1 measure by 0.2% and
accuracy by 0.2%), therefore indicating that the main source of error lies in the neural
model itself.

Figure 6.11 shows some examples of wrongly-classified logos. The candidate regions
were proposed by the selective search algorithm, and are here filtered to display only
those having Intersection over Union (IoU) greater than or equal to 0.5 with respect to
the corresponding ground truth. For each mistaken logo, the nearest neighbor from the
training set is also shown below, in order to provide some visual insights on the main
sources of classification error. It is possible to observe, for example, a noticeable tendency
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Table 6.6 Best training configuration from Table 6.5 compared with other methods in
the state of the art.

Method Training
data Precision Recall F1 Accuracy

BoW SIFT [167] FL32 0.991 0.784 0.875 0.941
Romberg et al. [168] FL32 0.981 0.610 0.752 N/A
Revaud et al. [164] FL32 ≥0.980 0.726 0.834÷0.841 N/A
Romberg et al. [167] FL32 0.999 0.832 0.908 N/A
Bianco et al. [15] FL32 0.909 0.845 0.876 0.884
Bianco et al. + Q.E. [15] FL32 0.971 0.629 0.763 0.904
Eggert et al. [62] FL32 0.996 0.786 0.879 0.846
Oliveira et al. [149] FL32 0.955 0.908 0.931 N/A
DeepLogo [102] FL32 N/A N/A N/A 0.896
This work (TC -VII) FL32, L32+ 0.989 0.906 0.946 0.958
This work (TC -VII) FL32 0.976 0.676 0.799 0.910

for the model to overly rely on color features. This is possibly a consequence of the very
small input size chosen for the neural structure (32×32 pixels).
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Fig. 6.11 Examples of wrongly-labeled logos, sorted by classification confidence (i.e. the
first, top-left, logo is the most confident error made by the neural model). For each
mistaken logo, the nearest neighbor from the training set is shown for comparison, using
the same description adopted for near-duplicates removal.
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Chapter 7

Main-subject classification:
Vegetables and fruits

“Pepperoni and green peppers, Mushrooms, olive, chives. Pepperoni and
green peppers, Mushrooms, olive, chives.”

System of a Down - Chic ’n’ Stu

Changing the visual classification domain often implies facing different challenges.
While logo recognition deals with constrained perspective distortions and classes that
are discriminable by design, other classification problems may present more challenging
characteristics. Specifically, the focus on this chapter is on fine-grained classification
of edible plants, fruits, and mushrooms. This family of problems requires the correct
identification of classes that exhibit high inter-class similarity and at the same time low
intra-class similarity, as shown in Figure 7.1. As such it depends on the ability to spot
very subtle differences that might help in class discrimination.

Chinese Pumpkin Chinese Pumpkin Chinese Pumpkin

(a)

Juicy PeachApple Plum

(b)

Fig. 7.1 Some of the challenges specific to fine-grained visual classification include a)
large intra-class variability and b) small inter-class variability.
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7.1 Datasets and related works

Recognition of vegetable, fruits, and food in general, can enable common-life objects
to acquire greater value through the introduction of smart capabilities [157]. Based on
the recognition of available products, for example, a smart refrigerator would be able to
perform tasks that include:

• Proposing recipes. Through the application of global and user-customizable ingre-
dient networks [187], it is possible to suggest recipes that comply with daily diet
monitoring schedules [49].

• Analyzing conservation status. Texture-based processing [58] and analysis of
features related to cooking states [104] can help tracking the conservation status of
stored goods.

• Suggesting shopping items. By combining recommender systems with methods for
visual object counting [117], it is possible to provide the user with meaningful hints
for items to buy.

All these features can be addressed with, or inspired by, existing literature work. However,
the first step in this direction is a proper recognition of the raw food itself.

To this extent, a very recent dataset is exploited, containing vegetables, fruits, and
other types of raw food. Classes in this dataset are organized in a hierarchical structure,
following standard agricultural taxonomies. The classification task is addressed with
different existing neural architectures, eventually finding and exploiting an architecture
that outperforms the state of the art. Different types of hierarchical training are
investigated and proposed, in order to exploit the taxonomy provided with the dataset
and further improve the classification performance. The recognition pipeline is augmented
with an object proposal based on salient object detection, which is shown to improve the
final recognition performance of selected architectures.

7.1 Datasets and related works
The literature offers several food-related datasets, such as UNIMIB2016 [50], Food-101
[32], UNICT889 [67], although very few focus on fruits and vegetables, specifically Fruits
360 [145] and VegFru [100]. VegFru is a dataset for fine-grained visual categorization
specific to fruits (92 classes) and vegetables (200 classes, including several non-vegetable
“mushroom” classes). Images belonging to each class are also labeled with an additional
super-class following official agricultural and horticultural taxonomies, as depicted in
Figure 7.2, for a total of respectively 10 and 15 super-classes. This hierarchical partitioning
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Berry fruit Citrus fruit Collective fruit Cucurbites Drupe Litchies Nut fruit Persimmons Pome other fruit

22 sub-classes 13 sub-classes 5 sub-classes 6 sub-classes 13 sub-classes 3 sub-classes 11 sub-classes 6 sub-classes 11 sub-classes 2 sub-classes

Dangshan pear Bergamot pear Crown pear Housi pear Sand pear Apple Green apple

253 images 522 images 469 images 513 images 322 images 1068 images 558 images
...

Fruits Vegetables

10 super-classes 15 super-classes

Fig. 7.2 Detail of the hierarchical annotation provided with the VegFru dataset. This
figure shows a subset of the Fruit/Pome sub-class, highlighting the subtle interclass
differences.

is also used to separate different edible parts of the same item, which are potentially
cooked in disparate ways, e.g. “soybean”, “soybean sprout”, and “soybean seed”. This
dataset was selected for the training of a vegetable recognition module, due to its high
cardinality (more than 160000 images), and variety of acquisition conditions.

In [100] authors trained a neural network architecture based on VGG-16[181] (from
Visual Geometry Group) to address both the sub-class and super-class problem of VegFru.
They showed how it is possible to improve performance on the sub-classes, which is
inherently more challenging, by fusing features extracted through the processing of both
problems with a Compact Bilinear Pooling layer (CBP) [76]. In this chapter, other fusion
strategies are proposed and evaluated, exploiting the available hierarchical labeling. The
VegFru dataset is very recent, for this reason no other methods have yet been published
that tackle its specific classification problem. A subset of this dataset is also used in
Chapter 9 as an auxiliary task to latently train a color constancy neural network without
the need for explicit illuminant annotations, which was made possible thanks to the
importance of color in vegetable discrimination.
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7.2 Outline of vegetable and fruit recognition
This section presents the proposed approach to automated recognition of edible fruits
and vegetables. The efforts on exploiting the hierarchical nature of such classes can
however be easily extended to a broader set of food types and classes in general.

7.2.1 Neural baseline architectures

In [100] authors presented a baseline evaluation of several off-the-shelf neural networks on
the VegFru dataset, including AlexNet [113], GoogLeNet[186], and VGG-16[181]. They
report best results on the use of GoogLeNet, followed closely by VGG-16. The analysis
offered in [36] and [20] highlights how GoogLeNet and VGG-16 produce comparable
results on the ImageNet challenge[113], with VGG-16 requiring a much larger set of
parameters (∼125millions vs. ∼10 millions). A promising alternative suggested by the
same study appears to be the ResNet architecture [92]: in particular, ResNet-34 and
ResNet-50 produced a 5% performance leap compared to GoogLeNet, at the expense of
only double the number of parameters (∼20 millions). For this reason, both ResNet-34
and ResNet-50 are evaluated in the following in terms of accuracy on the task of vegetable
and fruit recognition, by fine-tuning and testing such architectures.

Authors of [221] developed a training framework that learns the appropriate neural
architecture directly from observing the training data. They were able to automatically
design (and, subsequently, train) state of the art architectures on a multiplicity of tasks,
as well as prove the generalization capability of the learned architectures on tasks that
were not seen during the search for an optimal neural structure. This study is here
extended by exploiting a network that was automatically designed for object recognition
on CIFAR-10 [112], which will be referred to as NASNet (from Network Architecture
Search).

7.2.2 Hierarchical labeling

The VegFru dataset is supplied with a two-level-hierarchy labeling, as described in Sec-
tion 7.1. Authors of [100] demonstrated the advantage of exploiting top-level annotations
(so-called “super-classes”) to improve the bottom-level predictions (or “sub-classes”),
which was shown to be a more challenging task. This section describes two techniques to
exploit hierarchical labeling through the specialization of fully-connected layers.

The last block of a Convolutional Neural Network (CNN) for classification is typically
characterized by a fully-connected layer, i.e. a linear combination mapping an N-
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dimensional feature vector to the representation of the final problem size. This is also
preceded by other fully-connected blocks, building an internal hierarchy of interpretation
used by the neural network. The main idea is to infuse this implicit representation with
information coming from the explicit multilevel annotation, as depicted in Figure 7.3:

1. The selected neural architecture is trained (or fine-tuned) on the super-classes
problem (lower cardinality).

2. The whole model is further fine-tuned on the sub-classes problem, using one of the
following approaches:

• Appending to the existing final fully-connected layer a new one.

• Replacing the final fully-connected layer.

In both cases, the final neural network will take as input the image, and produce a
prediction vector with the same dimensions as the number of sub-classes.

7.2.3 Saliency-based proposal

Chapter 3 presented the problem of automatically inferring the most salient element of
an image, by exploiting semantic middle-level features without relying on a class-specific
training. Here the concept of salient object detection is effectively tested as an object
proposal step, by automatically cropping the input region around the depicted fruit or
vegetable, before performing the classification step itself. Specifically for the experiments,
state of the art DSS algorithm [99] is here employed.

The generated saliency map is first binarized with an adaptive global threshold [150],
and the tightest bounding box around pixels set to 1 is used as a first approximation
of the autocropping region [7, 52]. A minimum size is set on the proposed bounding
box, which is also forced to have a square aspect ratio. This is done in order to avoid
upsampling and stretching artifacts when feeding the image to a fixed-size-input network
for classification.

7.3 Experiments
In this section the proposed solutions are systematically evaluated under the standard
evaluation criteria posed by authors of the VegFru dataset [100].

The ResNet34, ResNet50, and NASNet architectures have been fine-tuned on the
VegFru training subset, composed of 29200 examples, by applying data augmentation
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Fig. 7.3 The fully-connected (FC) specialization exploits hierarchical labeling to improve
performance on the sub-classes, with respect to directly training on the sub-classes
themselves. (a) The initial FC always maps to the number of super-classes. (b) The
“append” specialization concatenates a new FC layer. (c) The “replace” specialization
substitutes the original layer with a new one.

Table 7.1 Results for baseline architectures on both the super- and sub-class problem.
The proposed solutions, based on ResNet and NASNet, outperform the results presented
in [100].

Neural architecture Super-classes Sub-classes
(25 classes) (292 classes)

[100]
AlexNet 72.87% 66.40%
GoogLeNet 82.52% 79.22%
VGG-16 82.45% 77.12%

This
work

ResNet-34 82.06% 81.14%
ResNet-50 85.33% 79.78%
NASNet 87.41% 84.50%

techniques that include random crop, random rotation, and random horizontal flip.
These models, previously trained on the ImageNet task [113], were here fine-tuned via
Stochastic Gradient Descent (SGD) with momentum, decaying learning rate of an order
of magnitude every 30 epochs starting from 0.01, setting batch size at 4, for a total of
100 epochs. The epoch that produced the best accuracy on the validation set (14600
images) was then selected for evaluation, in order to avoid overfitting both on the training
and final test data. The models were evaluated on the VegFru test set (116931 images)
using mean top-1 accuracy, i.e. accuracy is computed for each class separately, and
subsequently averaged. Results are presented in Table 7.1.

Coherently with the analysis reported in Section 7.2.1, on the sub-class problem
ResNet-34 performed better than all previously investigated baselines [100],while ResNet-
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nectarinegarlic chive plum

bunching onion prunes juicy peach

Fig. 7.4 Often-confused class pairs for the best performing model, based on NASNet.
The mistakes are mainly due to extreme similarities between involved classes.

50 improved performance on the super-class problem. For both tasks, however, the best
results were obtained through the fine-tuning and application of NASNet, respectively
reaching 87.41% accuracy on the super-classes problem, and 84.50% on the sub-classes.
This solution, based on a single neural model, outperformed also the 83.51% accuracy
obtained by authors of [100] on VGG-16, who used Compact Bilinear Pooling [76] to
merge the features of two neural networks independently trained on the super- and
sub-class task. Example mistakes of the NASNet architecture that was fine-tuned to the
task of vegetable and fruit recognition are shown in Figure 7.4.

The second set of experiments aims at assessing how hierarchical label exploitation
impacts the recognition performance on the sub-classes problem. Following Section 7.2.2,
ResNet-34 has been first fine-tuned on the super-class problem, and subsequently applied
fully-connected specialization on the sub-classes problem, by either replacing the last
layer or appending a new one to it. Results reported in Table 7.2 show that the “append”
technique highly degraded the final performance, while “replace” produced an appreciable
improvement. This could be explained by the fact that, by constraining the network
activations to a lower dimensionality compared to the final problem size. This procedure,
in fact, involves a compression of data with a possible loss of information. The promising
“replace” technique was then applied to the ResNet-50 and NASNet models as well. While
the ResNet-50 architecture gained the most from this specialization, NASNet showed
essentially no improvement. This behavior possibly indicates that such a powerful neural
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Table 7.2 Results for hierarchical labeling exploitation on the sub-classes problem.

Neural Specialization Before After
architecture technique specialization specialization
ResNet-34 append 81.14% 74.93% (−6.21%)
ResNet-34 replace 81.14% 82.06% (+0.92%)
ResNet-50 replace 79.78% 84.10% (+4.32%)
NASNet replace 84.50% 84.08% (−0.42%)

Table 7.3 Impact of saliency-driven object proposal on tested neural architectures. Both
ResNet variants exhibit a small, yet consistent, improvement. On the contrary, NASNet
shows degradated performance.

Super-classes
(25 classes)

Sub-classes (292 classes)
Direct training Hierarchical labeling

ResNet-34 82.20% (+0.14%) 81.19% (+0.05%) 82.41% (+0.35%)
ResNet-50 85.91% (+0.58%) 80.12% (+0.34%) 84.73% (+0.63%)
NASNet 86.84% (−0.57%) 82.17% (−2.33%) 80.57% (−3.51%)

model is already able to infer most of the hierarchy-related correlations directly from
data annotated with only the sub-classes labels.

Saliency-driven object proposal has been applied to automatically crop the test set
of VegFru before performing the actual classification. The impact of this preprocessing
step is detailed in Table 7.3: there is a subtle, yet consistent improvement on both
ResNet architectures. At the same time, NASNet appears to loose discriminative power,
coherently with the behavior observed following fully-connected specialization. The
hypothesis is that, for particularly challenging images, the NASNet model had learned to
infer the correct class through an analysis of the whole context (for example class-specific
leaves and foliage). By excluding this information, the model is “brought back” on par
with ResNet-50. In general, it can be stated that the object proposal phase produces
a mixed outcome. Some further insights are provided in Figure 7.5: while saliency
estimation correctly excludes the background lemon in the left-most image, the right one
shows how the saliency model’s implicit bias towards people may inadvertently bring the
focus to the wrong subject.
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(a) (b)

Fig. 7.5 Saliency-driven object proposal for example images in the VegFru dataset. a)
The background “distraction” fruits are correctly excluded. b) The human subject is
inadvertently included in the saliency estimation.
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Attributes extraction
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Chapter 8

Introduction to attributes extraction

Image Object
proposal

Many subjects

One subject

Classification

Learning from 
scratch

Deep features

Fine-tuning

Attributes
extraction

Punctual

Global

Fig. 8.1 Range of possibilities for the attributes extraction phase.

The final step in the envisioned pipeline for image description is the extraction
of numerical attributes from the image itself. This task can benefit from a semantic
interpretation of depicted elements: correctly identifying the image content through the
previous classification step, in fact, can produce useful pieces of information for a more
accurate estimation of image attributes. In particular, the attributes extraction phase
can span a whole range of image properties, whose extrema are shown in Figure 8.1:

• Global attributes. These define the whole scene with one characterization, although
possibly reached through an analysis of the individual depicted subjects. A global
attribute such as the scene illuminant can either be the final goal, as the case with
the envisioned general pipeline, or be the preprocessing step for further analysis.
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• Punctual attributes. Such attributes have a much finer grain, describing with
pixel-precision a given property of the input image.

Intermediate levels of description, such as extraction of region-wise attributes, are also
possible. Attributes can, for example, refer to subregions of the image that were identified
as belonging to particular classes of interest.

Estimation of the scene illuminant has been selected as the representative example for
global attribute extraction [35]. The problem has been addressed through the definition
of an original learning strategy that allows an illuminant estimation module to be trained
with the objective of optimizing a separate task. Specifically, classification of vegetable
classes as seen in Chapter 7 has been exploited as the alternative task to guide the
learning process. The advantage of this solution lies in shifting the need for ground truth
data to a different problem, for which data collection and annotation is possibly less
expensive to perform. The described technique also potentially allows extending the
illuminant estimation to a spatially-varying description of the scene, although this goes
beyond the scope of this thesis.

As a direct example of punctual attribute extraction, estimation of the distance
between the camera and depicted subjects has been investigated [19]. A new alternative
representation of pixel-wise distance has been proposed, based on the size in real life of
depicted subjects. This data representation is device-agnostic, i.e. it does not depend
on any specific camera parameters and settings. As such, it allows for richer models to
be trained from heterogeneous datasets, and eventually applied to estimate pixel-level
absolute distance information from a single image. For the reported experiments, an
architecture similar to the Fully Convolutional Network used in Chapter 3 for salient
object detection has been employed. The size values predicted by the model have been
quantized into discrete levels with non-linear separations, in order to account the relative
effect of misestimating values at long distances. An emerging property common to both
solutions is therefore the transformation of a regression problem into a classification one.
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Chapter 9

Illuminant estimation

“And the sky is filled with light, can you see it? All the black is really
white, if you believe it”

Nine Inch Nails - In This Twilight

Extraction of meaningful attributes from an image may, directly or indirectly, leverage
on classification tasks. A concrete example is estimating the global illuminant, i.e.
defining the chromatic properties of the light illuminating the scene. To this extent,
the current chapter covers a proposed learning strategy for illuminant estimation that
exploits object recognition during the training phase, effectively removing the need for
illuminant ground truth datasets. At test time, the trained model can then operate
without any requirements for specific classes to be present in the image, as proven by
testing on standard datasets for illuminant estimation.

Color constancy is the ability of human beings to recognize the colors of objects
independently of the characteristics of the light source. Computational color constancy
aims to first estimate the illuminant and subsequently use this information to correct
the image, to display how it would appear under a canonical illuminant [71]. The class
of “learned” methods is among the most successful illumination estimation methods
to date [81, 3], and typically relies on a training set of images which are labeled with
the respective scene illuminant. Although the human visual system is often compared
to a machine learning algorithm, during evolution it was never presented with ground
truth illuminants. Instead, it is hypothesized that the ability of color constancy arose
because it helped other crucial tasks, such as recognizing fruits, objects, and animals
independently of the scene illuminant [33].

This observation constitutes the main motivation towards investigating to what extent
it is possible to learn illuminant estimation as a byproduct of an auxiliary task, such as
object recognition. Specifically, recognition of vegetables and fruits will be exploited for
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the experimental setup, since color is considered a discriminative feature for such classes,
as shown in the following.

9.1 Related works
Previous works highlighted the usefulness of object recognition in applications related to
color theory, such as assessment of chromatic adaptation transforms through memory
color matching [182], performing color constancy with the assistance of faces [26] or via
pre-training on generic object recognition before fine-tuning for illuminant estimation
[135]. The solution proposed in this chapter is the first machine learning method for
illuminant estimation which does not require illuminant annotations, at the same time
not relying on specific object presence at inference time.

Other more general approaches to computational color constancy can be divided into
“parametric” and “learned”.

Parametric

Parametric solutions are typically based on handcrafted features which depend on few
manually-tunable parameters, the most effective to date being Akbarinia et al. [3] and
Cheng et al. [43]. Akbarinia et al. [3] adapted physiological mechanisms to a model based
on Gaussian kernels, whose size changes as a function of local contrast variations. Cheng
et al. [43] provided an interpretation of why spatial analysis helps in color constancy, and
consequently proposed a method that selects pixels that are meaningful for illuminant
estimation, using a projection distance in the color distribution.

A complete review of parametric methods for illuminant estimation is available in [81].

Learned

Learning-based solutions recently proved to be particularly effective when trained in a
cross-validation setup: Bianco et al. [23] developed a patch-wise illuminant estimation
neural network and generate a global estimation through consensus. Lou et al. [135]
propose the fine-tuning of a network that was pre-trained for both object recognition,
and illuminant regression based on the predictions of other color constancy methods. Oh
et al. [148] reformulate the problem of illuminant estimation as a classification task by
clustering the target illuminants. All these solutions require an illuminant ground truth,
and are designed to be trained on the same type of images that were seen during the test
phase.
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Fig. 9.1 Schematic representation of the proposed learning strategy for computational
color constancy. The Illuminant Estimation module is trained with the objective of
optimizing the Object Recognition module. At inference time, only the Illuminant
Estimation module is needed.

9.2 Proposed method for illuminant estimation
This section presents the proposed learning approach to estimate the scene illuminant in
the absence of any illumination ground truth data, but with label information for an
auxiliary task. Object recognition is here considered as the auxiliary task, but other
objectives such as object detection or semantic segmentation could be used as well. The
proposed Illuminant Estimation / Object Recognition network (IEOR) is composed of
two parts: an Illuminant Estimation module (IE) and an Object Recognition module
(OR), as shown in Figure 9.1. Following this structure, IE is learning to predict, for any
given image, a color correction that would improve OR.

9.2.1 Object Recognition network

The Object Recognition network performs the auxiliary supervised task described in the
proposed approach, which is used to indirectly train the Illuminant Estimation network.
OR takes an input RGB image, and produces a prediction of class presence. For the
purpose of the experiments described in this chapter, the focus will be on vegetable
recognition [100], a task for which color is important as highlighted in Figure 9.2. Other
problems for which a correct white balancing is expected to improve results might be
recognition of painting styles [25], or assessment of image aesthetics [21].
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In order to obtain the desired separation of the network’s internal logic into IE and
OR modules, with the intermediate representation being the estimated illuminant, it is
necessary to make OR overly-sensitive to color variations. This would then effectively
drive IE to work as a useful preprocessing step, i.e. to learn to perform the necessary
color correction. To fulfill this requirement, the following strategy is adopted:

1. OR is pre-trained alone on the chosen auxiliary task.
No color jittering is applied in this phase.

2. IE is connected, and the whole system is trained end-to-end with color jittering as
described in Section 9.2.2.
During this second phase the gradients flow through OR, but only the weights in
IE are updated.

If the training process is not constrained as explained, it might lead to trivial or mean-
ingless solutions, for example:

1. IE learns to always output a fixed neutral illuminant, while OR internally learns
both color correction and object classification.

2. OR and IE spread the job of estimating illuminant and recognizing the object,
without a clear distinction of the intermediate “estimated illuminant”.

3. IE learns some arbitrary 3-number output, (that would generate a non-intelligible
image), while OR learns to perform object classification from such representation.

As a consequence of the specific requirements on the object recognition module, and of
the analysis conducted in Chapter 7, the current experimental implementation relies on
the AlexNet architecture [113]. The network weights are initialized on the task of object
classification from ImageNet [113], with the final fully-connected layer re-instantiated
in order to match the different cardinality and task. Before feeding the image to the
network, the value 0.5 is subtracted as an approximation of the mean-image subtraction
technique that allows to speed up training and fine-tuning of the neural model.

9.2.2 Illuminant Estimation network

The Illuminant Estimation network takes an input RGB image and predicts the scene
illuminant. For the experiments described heere, the illuminant model has been limited
to a diagonal matrix, i.e. ρe = (ρe

R, ρe
G, ρe

B)T, although alternative combinations are
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possible [22]: 
Rout

Gout

Bout

 =
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R 0 0
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G 0
0 0 1/ρe

B

 ·


Rin

Gin

Bin

 (9.1)

This representation also matches the annotation associated to most datasets for color
constancy, which provide ground truth illuminants in terms of triplets [178, 53, 43].

During the end-to-end training of the whole IEOR network, input data is artificially
augmented by applying a random illuminant extracted from a Gaussian distribution
with mean 1 and standard deviation 0.3. Once training is completed as described in
Section 9.2.1, IE can be used as a standalone network for color correction on any image,
which is not necessarily depicting the classes seen during the training phase.

The IE module is also based on AlexNet, which was shown in the past to perform
well on color constancy [135], and images are preprocessed by subtracting 0.5 as with the
OR module. The color-corrected image obtained by applying the estimated illuminant to
the input image is clipped between 0 and 1. This operation is necessary to avoid feeding
to the pre-trained OR values in a range that was never encountered during training, and
is also recreating what would happen by displaying the color-corrected image.

9.3 Experiments
These experiments are designed to evaluate how the proposed illuminant estimation
network, which does not require any illuminant ground truth, compares to other illuminant
estimation methods on standard datasets. Two possible normalization techniques are
considered (global and channel-wise), and results are compared with state of the art
methods.

9.3.1 Experimental setup

The training phase requires a classification task where color is a discriminative feature, in
order to properly drive the learning process. To this extent, the vegetables subset from
the VegFru dataset [100] fits the desired criteria, as shown in Figure 9.2. It contains
more than 90000 images belonging to 200 vegetable classes. At test time only the IE
module is applied (namely, the branch related to object recognition is not used) and the
proposed solution is evaluated on two widely-adopted benchmarks for color constancy:
the Shi-Gehler [178] and the more recent dataset from National University of Singapore
(NUS) [43]. Shi-Gehler [178] is a linear reprocessing of the original RAW images from
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basiltremelle_fuciformis chantarelle green_radish

basella_rubrahen-of-the-woods pleurotus_nebrodensis carrot

Fig. 9.2 Samples from VegFru dataset, showing the importance of color in vegetable class
discrimination

the Gehler dataset [79]. It contains 568 images of different scenarios with a ColorChecker
in each picture as a support for the ground truth extraction. At test time, the area
corresponding to the ColorChecker is edited out to prevent the illuminant estimation
algorithm from directly using it. Results on the Shi-Gehler datasets are computed with
the ground truth from [23]. NUS from National University of Singapore [43] contains
a total of 1853 images coming from 9 digital cameras of various brands. The type of
content is similar to Shi-Gehler, with both indoor and outdoor scenes, and ground truth
extracted from a ColorChecker. A unique characteristic of this dataset is the presence
of the same scenes taken from different cameras. Results on NUS are reported as the
average performance on each camera.

Evaluation is based on the well-established angular recovery error [81, 43], which
compares the estimated (ρe) and reference (ρr) illuminant triplets regardless of their
magnitude:

errang = arccos
(

ρeT ρr

||ρe|| ||ρr||

)
(9.2)

9.3.2 Input normalization

During training, a dataset annotated for classification is used, as the model learns to
minimize the cross-entropy error on a given classification task. At test time, instead, it is
desirable to evaluate the proposed solution on standard datasets for color constancy, which
are typically provided with only the ground truth illuminant. In order to account for the
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Table 9.1 Performance of different algorithms for illuminant estimation. The proposed
solution (in its global- and channel-normalization variants) can be directly compared
with cross-dataset learned methods. Values reported for parametric solutions [43] and
[72] are selected with the best configuration of test parameters. Learned methods with
in-dataset training are also reported, although a direct comparison cannot be performed.

Method Angular error (Shi-Gehler [178]) Angular error (NUS [43])
Mean Median Std Max Mean Median Std Max

Baselines
Unchanged 13.62° 13.55° 2.85° 27.37° 19.50° 18.82° 1.90° 25.83°
Greyworld 7.35° 6.70° 3.78° 25.84° 4.59° 3.64° 3.57° 22.61°
Regression 5.96° 5.31° 3.47° 19.88° 5.19° 3.90° 4.16° 22.07°

Param.
Akbarinia et al. [3] 3.8 ° 2.4 ° - - - - - -
Cheng et al. [43] 3.52° 2.14° - 28.35° 3.02° 2.12° - 17.24°
Funt et al. [72] 3.2 ° 2.3 ° - 21.7 ° - - - -

Learned
(cross-
dataset)

This work (gl.) 4.84° 4.12° 3.22° 20.80° 4.88° 4.17° 3.11° 18.70°
This work (ch.) 5.48° 4.81° 3.21° 19.88° 4.32° 3.37° 3.56° 22.36°
Joze et al. [108] 6.5 ° 5.1 ° - - - - - -
Gao et al. [75] 5.03° 3.39° - - - - - -
Lou et al. [135] 4.7 ° 3.3 ° 5.3 ° - - - - -

Learned
(in-
dataset)

Chakrabarti [37] 3.59° 2.96° - 21.58° 3.04° 2.40° - 15.38°
Bianco et al. [23] 2.63° 1.98° - 14.77° - - - -
Oh et al. [148] 2.16° 1.47° - - 2.41° 2.15° - -

potential discrepancies between training and test images, several techniques for input
normalization are adopted. Gamma correction is applied whenever a linear dataset is
used at test time, since the employed training classification datasets are already processed
for gamma. The estimated illuminant is then re-corrected before the final evaluation
with the provided ground truth. Then, two alternative techniques were designed and
integrated, in order to ensure the range of image values is stable. These techniques are
based on the generation of a support diagonal illuminant:

1. Global normalization, which brings the overall average of the input image to a fixed
value without changing the relationship between single channels.

2. Channel normalization, that modifies each channel independently, thus affecting
the original illuminant.

The complete processing pipeline is shown in Figure 9.3.
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Fig. 9.3 Complete pre- and post-processing for the proposed strategy for illuminant
estimation, including gamma correction, input normalization, and mean-value subtraction.
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9.3.3 Results

Table 9.1 reports the results of the two variants of the proposed method on Shi-Gehler
and NUS datasets, compared to different baselines and different algorithms from the
state of the art.

Global normalization brings to very similar results on the two datasets, providing a
robust performance assessment of the proposed solution. Channel normalization leads
instead to contrasting conclusions on each dataset, suggesting a more challenging nature
of NUS over Shi-Gehler. As channel normalization destroys the relationship between
channels, in fact, it essentially discards any potentially misleading information about
the original illuminant. In the case of NUS, the proposed model benefits from this
preprocessing, as it is forced to estimate the proper illuminant directly from the image
content.

In order to assess the effective advantage that comes from using a classification-based
loss, the Illuminant Estimation module is also trained for direct regression (third row)
over the color-augmented examples of VegFru, i.e. training is performed without OR.
Performance on both sets shows that the classification-based strategy can lead up to
a 19% improvement in angular error, thus highlighting the relevance of the proposed
approach.

The “Learned (cross-dataset)” block includes data-driven models that are trained
on one dataset and tested on a different one, instead of adopting a more traditional
training-test split of the same dataset. The proposed solution was trained on the VegFru
dataset, and is therefore best compared with methods from this category, which are
either trained on the GrayBall dataset [108, 135] or on SFU-Lab [75]. The IEOR network
described in this chapter outperforms the solutions by Joze et al. [108] and Gao et al.
[75], while producing comparable results to Lou et al. [135]. For completeness, other
state-of-the-art methods are also included, trained on the training-set portion of the
same dataset used for evaluation (“Learned (in-dataset)”), although direct comparison
with these solutions is not applicable. Parametric methods [43] and [72] present different
results with varying parameters and configurations. For such solutions, only the best
configuration is reported, which was directly selected from the test set performance.

Figure 9.4 shows some examples predictions with the corresponding angular error, in
order to provide a visual guide for the interpretation of the reported performance values.
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Fig. 9.4 Example color corrections of the proposed method at different levels of angular
error.

9.3.4 Analysis on the training-set color bias

The illuminant distribution present in the classification training dataset plays an important
role in the proposed method.

IE implicitly learns to replicate the average illuminant of the training set. If this
average is not neutral, the predicted illuminants on the test set will not, in general,
match the provided ground truth. By using an oracle to shift the predictions around
the average ground truth illuminant, it is possible to further reduce the angular error on
Shi-Gehler from 4.84° to 4.60° (5%), and from 4.32° to 4.23° on NUS (2%).

Secondly, a high variability in the illuminant during the initial pre-training of OR may
make it excessively robust to color variations, thus compromising the consequent training
of IE. This condition is particularly hard to avoid: since dataset heterogeneity typically
results in better classification performance [16], dataset curators tend to implicitly or
explicitly encourage a certain degree of illuminant variability. To this extent, a possible
direction for improvement is to include unsupervised white balancing, as a preprocessing
step for the classification-oriented training set itself.
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Chapter 10

Distance estimation

“Even though you’re so close to me, you’re still so distant, and I can’t
bring you back”

Linkin Park - With You

Distance estimation is a topic of particular relevance due to its various applications,
which include autonomous and semi-autonomous driving [197], analysis of video surveil-
lance cameras for traffic safety analysis [13] or information forensics [64], and multimedia
processing for artistic purposes [166]. Further applications can be found specifically for
monocular distance estimation, in fields where the imaging device should be as compact
as possible (e.g. endoscopy and laparoscopy scans [96]), or whenever it is preferable to
introduce depth vision without an expensive hardware upgrade, as with biomedical and
astronomical technologies [85].

Several existing works address this topic by ignoring the perspective geometry of
image formation. As such, they require a re-calibration or even re-training phase for each
specific hardware setup. This chapter presents a universal representation that makes
it possible to jointly use data coming from different sensors, and thus to generate a
single, more powerful, hardware-agnostic model. The case study of street and urban
environments from Chapter 4 is here taken once again into consideration, thus forming a
natural extension of semantic segmentation.
The depth perception of the human visual system exploits different cues:

• Binocular cues combine the signals received from both eyes in order to reconstruct
a 3-dimensional geometry. They are the source of inspiration for stereopsis-based
systems such as the Microsoft Kinect [212].

• Motion cues exploit the time-varying signals received from each eye. The same
technique is also used in depth-from-motion methods [160].
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• Muscular cues integrate information coming from the voluntary or involuntary
movement of eye parts [90, 185].

• Monocular cues use only the retinal signal of a single eye. Related automatic
methods may explicitly rely on specific elements such as texture, shading and
defocus [158, 65], introduce additional cues such as structured light patterns [174],
or implicitly extract all the necessary features from the input image [190, 84, 114].

Binocular and motion cues provide the most reliable source for automatic distance
estimation, as they are based on a rigorous geometric model [101]. Monocular cues are
generally less robust [139] but still present several advantages. For instance, they allow
distance estimation in absolute terms provided that the subject size is known [188], and
their implementation is inherently cheaper than that of binocular cues, as it requires
a single imaging device. Since monocular and binocular methods exploit two different
kinds of image features, distance estimation can then be made more robust by integrating
such complementary and decorrelated methods.

Taking inspiration from the monocular family of visual cues, the work presented in
this chapter is focused on the concept of “familiar size” [94]: during the development
of the human visual system in our first months of life, we get to implicitly learn the
relationship between the apparent size of a known object on our retina, and its actual
distance from us [207]. The same technique is further exploited by hikers and building
surveyors, with the so-called rule of thumb, where the subject’s apparent size is measured
relative to an object at arm distance (e.g. the measurer’s own thumb). In these cases,
knowing the subject size in real life is fundamental to actually perform an estimation
of its distance, hence the term “familiar size”. The necessity for semantic awareness is
fullfilled, in the following, through the use of semantic segmentation networks such as the
model described in Chapter 4 and other related architectures. In this chapter, a unified
representation of distance is proposed, taking inspiration from the familiar size cue.
This modelization is independent of device-specific characteristics, and as such it allows
the integration of information from different sensors to train richer data-driven models,
which take advantage from large and heterogeneous datasets to improve prediction [16].
Models trained with such technique can then be applied to data generated by different
devices. This process could also bring to common representation acquisitions performed
with different sensors on the same scene, in order to combine the different sources of
information and produce a more robust measurement.
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10.1 Background and related works

Fig. 10.1 For all three pictures, the subject size (face) is the same both in real life and in
picture. Knowing the camera parameters is essential in determining different distances
of the face from the camera.

10.1 Background and related works
The depth perception exploited by human vision follows the pinhole model of image
formation, which can be formalized and applied to digital images as follows:

Let F be a person-specific or device-specific parameter (px).
Let real_size be the known subject size1 in real life (m).
Let apparent_size be the measured subject size (px):

distance = real_size

apparent_size
F (10.1)

In the case of digital acquisition devices, parameter F corresponds to the camera focal
length expressed in pixels, which in turn can be computed from the focal length in meters
as:

F = image_size

sensor_size
Fmetric (10.2)

The distance value associated to a specific subject therefore depends on hardware-specific
elements (sensor_size) as well as variable camera configuration (i.e. zooming through
Fmetric). This is visually shown in Figure 10.1.

Several works [95, 60] are based on the perspective geometry of Equation (10.1) to
perform distance-related reasoning. This formulation requires an explicit localization of
each known subject in the image in order to effectively measure their apparent size. Such
approach presents its limitations when dealing with severe occlusions and unconventional

1All sizes refer to linear size and not surface size, so they can be either height or width. The rest of
this chapter will always refer to width measures for all experiments.
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poses. In the case of human subjects, for example, real_size is their (known) height in
meters, and apparent_size is their (unknown) height in pixels. If the person is standing
straight, apparent_size is simply the height of the bounding box resulting from a person
detector. If the subject is in any other pose, instead, it is necessary to follow their body
structure in order to accurately measure their height in pixels.

An alternative solution is to directly predict the distance associated with each
pixel, completely ignoring the image formation model. Such formulation is typically
implemented with Convolutional Neural Networks (CNN), and has the advantage of
addressing different problems with a unique solution. It can, in fact, handle different poses
and cluttered scenes indiscriminately [133]. It is not bound to specific object classes, and
it is able to implicitly handle fine-grained models (e.g. a child’s average height is different
from that of an adult). Several recent works adopt this dense formulation of the problem.
Uhrig et al. [190] presented a multi-objective CNN that simultaneously predicts objects
class, discretized distance, and a novel representation used to separate multiple instances.
Experiments were performed on the CityScapes [56] and KITTI [80] datasets separately.
As highlighted in Equation (10.1), in fact, the same elements can be associated with
different distance values when dealing with different acquisition devices, due to the effect
of focal length F . The KITTI Vision Benchmark [80] encourages the development of
models predicting stereo-pair disparity in place of distance, by providing ground truth
annotations in such format. This formulation, however, is also tied to a specific hardware
setup, as it depends on the baseline distance between the two cameras used. Godard
et al. [84] introduced a learning loss based on predicted disparity that optimizes the
consistency between left-right pairs used in the training phase. They also observed how
training on data from different devices actually deteriorates the performance of their
solution, again due the different camera calibrations. Ladicky et al. [114] reformulated
the problem of distance estimation as predicting the probability of each pixel belonging
to a so-called “canonical depth”. This interpretation reduces the dependency from device-
specific parameters, and was proven effective when training on multiple datasets. Aiming
at a similar goal, the following sections present an alternative representation that is
independent of sensor configuration, showing its advantage in improving the performance
of two neural network-based models.Eigen et al. [63] approached the problem of distance
estimation with a solution based on Conditional Random Fields (CRF), and introduced a
training loss that is only partially scale-invariant, in order to focus on relative depth details
without compromising overall accuracy. Other works also adopted CRF-based approaches
to the problem [119], to induce a local reciprocal influence to the final estimation. Taking
inspiration from this strategy, a Fully Convolutional Neural Network architecture (FCN)
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is here adopted for experimental evaluation of the proposed representation, as it allows
for a dense (pixel-precise) prediction based on a local analysis [127].

10.2 Proposed representation for distance informa-
tion

In order to integrate data coming from two different devices A and B there are two
possible solutions:

1. Convert the training distance information from A and B into real-life (metric) size,
as a consequence of Equation (10.1):

real_size = distance{A,B} ·
apparent_size{A,B}

F{A,B}
(10.3)

(The fact that Equation (10.3) can be applied to either device is denoted by {A, B}).
The predicted size will then be converted back to distance, based on the desired
camera parameters from either A or B.

2. Transform all training data from A according to a reference set of camera parameters
from B, by combining Equation (10.3) with Equation (10.1):

distanceB = distanceA · FB

FA

· apparent_sizeA

apparent_sizeB

(10.4)

The predicted distance will always be based on parameters from B, but it can later
be transformed back to any desired setting with the same formulation.

The two alternatives are tightly related, as Equation (10.4) is a direct extension of
Equation (10.3). The second one is an explicit prediction of the distance information,
inherently depending on camera parameters. The first one is directly related to image
content, and it is totally uncorrelated to any specific sensor configuration. This is the
formulation that will be used in the following, applying the advantages of dense prediction
models to the pinhole camera model. Such approach allows the gathering of training
data from different sources, increasing both cardinality and diversity in the dataset.

A practical example of the proposed representation is depicted in Figure 10.2: each
pixel is described by the size, in real life, of what it portrays. When the subject is further
away, each pixel will span a larger area, thus real_size will be larger. This concept is
straightforward for flat surfaces that are parallel to the acquisition device plane. In all
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Fig. 10.2 Visualization of the proposed size-based representation of distance: each pixel is
associated with the size of what it represents in real life. This is obtained by combining
distance information with the camera parameters. Image credit Courtney Simonds.

other cases, it is generalized to the average size of what is depicted by the pixel itself, or:

average_size =
∫ xi+1

xi

∫ yj+1
yj

real_size dx dy

(xi+1 − xi) · (yj+1 − yj)
(10.5)

where x and y refer to a world coordinate system aligned to the acquisition sensor’s
coordinate system, while xi and yj are used to delimit the frustum behind each pixel.
For legibility, the average size will be also referred to as real_size.

An additional advantage of performing a prediction with pixel-precision is that
Equation (10.1) is no longer dependent on apparent_size, which is reduced to one. The
eventual conversion from real_size to distance is thus simplified to a multiplication by
the camera focal length expressed in pixels (F ). Typically, the methods based on the
pinhole camera model, such as those described in Section 10.1, use the opposite approach
to the same formulation, as they consider the subject real_size to be known, and predict
its apparent_size via object detection.

The problem formulation proposed here is based on the “familiar size” monocular cue
for distance estimation. For this reason, it is necessary to constrain both training and
prediction to those image regions that correspond to a known object class. In particular,
the experiments presented in the following will be initially focused on the “people” class.
This decision is guided by two factors: the availability of training data, as highlighted
in Section 10.3, and the high relevance of human subjects in personal photo collections
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[142]. Despite the particular setup employed here, though, the method can be effortlessly
extended to other object classes, as shown with further experiments.

Prediction of subject size is inherently tied to the semantics of image content. It is,
in fact, fundamental to understand the nature of the portrayed elements, in order to
estimate their size. For this reason, a Fully Convolutional Network (FCN) will be used,
internally representing the semantics of the scene by using layers previously trained on
object recognition [133, 181]. The activation of layer conv5-3 from a VGG-19 net [181]
is processed with two “Conv-ReLU-DropOut” blocks, followed by a “Conv” block. The
result is upsampled using a convolution-transpose layer, summed to the activation of layer
pool4, upsampled again, summed to activation of layer pool3 and upsampled one last time.
When properly trained, this finally produces an input-sized prediction corresponding to
the content size in real life of each pixel (i.e. real_size in Equation (10.1)). A similar
approach was used in Chapter 3 to highlight the salient regions of a picture, exploiting
its semantic content without explicitly defining any specific object class.

Training a FCN aims to minimize the average error between prediction P and ground
truth GT computed at each position i in image coordinates I:

L =
∑

i∈I error (GTi, Pi)
|I|

(10.6)

Here |I| identifies the cardinality of set I. In the experimental setup described later,
error is implemented as a cross entropy loss on discretized levels.

The ground truth contains real_size information, which is typically quite sparse due
to the nature of depth-acquisition devices. This reduces the set of pixels effectively useful
for training. As only human subjects will be taken in consideration, then, the training
data is even sparser, as shown in Figure 10.3.

To take into account this particular condition, a mask pointing only to relevant pixels
is created, and the annotation “holes” are filled using a nearest neighbor approach. This
strategy prevents any artifact during future manipulations of the ground truth data,
such as image resizing. The relevance mask is then introduced in the loss computation
multiplying it by the pixel-wise error, and the result on all relevant pixels M is averaged:

L′ =
∑

i∈M error (GTi, Pi) · maski

|M |
(10.7)

Thanks to this operation, the backpropagation algorithm excludes any mismatched
prediction on non-relevant pixels, updating the gradients only as a function of pixels
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(a) (b) (c)

(d) (e) (f)

Fig. 10.3 Mask generation and ground truth preprocessing. a) The RGB input image.
b) The corresponding ground truth. c) The ground truth after hole-filling. d) The
initial mask from invalid ground truth values. e) The person-specific mask. f) The final
relevance mask.

indicated by the mask. The final architecture is shown in Figure 10.4. More details on
how to produce and process the human-subject masks are given in Section 10.3.

10.3 Datasets transformation to common represen-
tation

Four different datasets were used for the experiments: CityScapes [56], SYNTHIA
[170], KITTI [80], and RGB-D People [183]. Sample images are shown in Figure 10.5.
Each dataset is originally encoded using different conventions and formats, due to the
different sensors involved in their acquisition. Thus each required a specific preprocessing,
described in the following, aimed at obtaining the proposed common representation
real_size. Eventually, dataset-independent processing such as data augmentation was
also performed as described in Section 10.4.1.

The CityScapes dataset [56] (CSC), used for semantic segmentation in Chapter 4,
contains stereo video sequences from European city streets. It contains 5000 high
resolution stereo pairs (2048×1024) divided into 2975 training images, 500 validation
images, and 1525 test images. The attached corresponding disparity maps were computed
using SemiGlobal Matching [93]. Conversion from disparity to real_size was performed
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Fig. 10.4 Schematic view of the Fully Convolutional Network employed for distance
estimation through size prediction. Intermediate activations of a VGG-based processing
[181] are resized and combined in order to implement a multi-resolution analysis. The
final prediction is evaluated only on relevant image positions

with the following simplification on the formulas for disparity-to-distance and distance-
to-size:

real_size = distance

F
=

F baseline
disparity

F
= baseline

disparity
(10.8)

Fine class annotations are provided for the training and validation sets, including the
“person” and “rider” classes, which were used as training masks for the “people”-specific
experiments. Further annotations used in later experiments are “car”, “bike” and
“motorbike”.

The SYNTHIA dataset [170] (SYN) is a collection of 1280×760 synthetic frames
rendered from virtual cities in different weather and lighting conditions. For the purpose
of this work, only the subset called SYNTHIA-RAND-CITYSCAPES was used, which
originally contains 9400 instances, sampling one every fourth image in order to balance
the different training sets. The distance information is stored as 16-bit encoded images,
representing the distance value for each pixel in centimeters. Conversion to metric size in
real life was thus obtained simply dividing by 100 and by the focal length of the virtual
camera. The semantic classes of this dataset are annotated with criteria similar to those
used in CityScapes. In this case, though, the information was retrieved directly from the
scene 3D model instead of relying on manual annotation.
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(a) CityScapes (b) SYNTHIA

(c) KITTI (d) RGB-D People

Fig. 10.5 Sample images from each dataset show the difference in content and format
among the used training data.

The KITTI Vision Benchmark Suite [80] (KIT) provides multi-sensor recordings
acquired in and around the city of Karlsruhe, Germany. The “raw data” section includes
rectified images and LiDAR distance points. The “Campus” subset and sequence 72 of
the “City” subset were used, due to the high presence of human subjects. This results in
a total of 2308 images, with varying resolution under 1392×512 pixels. LiDAR-acquired
3D points were first projected to the image plane, using the provided projection matrix.
This produced an extremely sparse set of distance measurements on image coordinates,
which were dilated using a 3 × 3 diamond-shaped structuring element. Conversion to
real_size was then again obtained dividing the distance by the provided focal length
F , following Equation (10.1). This dataset offers no pixel-precise annotation about
the location of people and other classes of interest. Such information can, however, be
automatically generated with any of the semantic segmentation networks described in
Chapter 4. Specifically, the FCN model described by Long et al. [133] was here used for
architectural continuity, and the corresponding semantic classes of interest were selected
to constrain the training and evaluation phases to relevant pixels only.

The RGB-D People Dataset [183] (RDP) contains 3399 images and disparity
acquisitions from three vertically-mounted Kinect sensors placed in a university hall. For
the experiments involved in this work, only two of the three devices were used, for data
balancing reasons. The resolution of the RGB images is 480×640 pixels. The disparity
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Abbr. Dataset name Subset Total Used
CSC CityScapes Training set 2975 2498
SYN SYNTHIA RAND-CITYSCAPES 9400 2350
KIT KITTI Campus and City-72 2308 2294
RDP RGB-D People Sensors 0 and 1 2266 1937
CSCval CityScapes Validation set 500 441

Table 10.1 Cardinality of the chosen datasets. The last column reports the number of
images effectively used, after sampling and removing images without human subjects

data coming from the Kinects was first converted into metric distance using the following
formula from Spinello et al. [183]:

distance = F · baseline · 8
V max − disparity

(10.9)

V max is the maximum measurable value, and baseline is the distance between Infrared
(IR) projector and IR camera. Radial and tangential distortions were then corrected
for both depth and color data using the respective intrinsic matrices. This was done to
align the two sources of data. The distance points were brought to IR-projector-world
coordinates, moved to RGB-camera-world coordinates, and eventually reprojected to the
image plane. The distance data, now registered to the color data, was finally converted to
size in real life by dividing it by the camera focal length. This dataset does not provide
any pixel-precise segmentation masks, which were therefore generated once again using
the method proposed by Long et al. [133].

The processed datasets were sampled with the general intention of balancing the
different data, and further reduced by excluding images without any subject belonging to
the class of interest. The final cardinalities for the “people” class are shown in Table 10.1.
Thanks to the achieved common representation, these datasets can be effortlessly joined
in various combinations: Section 10.4 shows the effect of training on different subsets of
the collected dataset.

10.4 Experiments
Experiments are structured towards a quantitative evaluation of the proposed represen-
tation. To this end, the adopted neural network was trained on human subjects from
different subsets of the datasets shown in Table 10.1, and tested every time on a fixed
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set: the validation set of CityScapes [56], which is composed of 500 images annotated
with both distance information and pixel-precise semantic classes. The goal here is to
test whether building a larger and more diverse training set, which is made possible
by the proposed representation for unifying distance information, can in fact improve
performance on a given test set. This representation is, however, general-purpose, and as
such it was further tested on additional semantic classes, such as bikes, motorbikes, and
cars, and its benefits evaluated on another recent method for depth estimation [147].

Preliminary tests were also conducted in order to select various hyper-parameters.
All the experiments were consequently run with logarithmic (base 10) quantization of
real_size values in 100 classes between 0 and 0.1. The current experimental setup, in
fact, is essentially transforming a regression problem into a classification problem, as
already proposed by Uhrig et al. [190]. Finally, following a preliminary selection phase,
mini-batches composed of 15 images were adopted, and the learning rate was set to 10−4.

10.4.1 Training preprocessing

During training, online data augmentation was applied coherently with Chapter 3,
including random horizontal flip, random gamma correction between 0.3 and 0.3−1, and
random cropping with varying size. All crops were then rescaled to a fixed size, set to
256×256 pixels, in order to exploit minibatch parallel computation during the network
training. After resizing the crop, the annotation values for real_size were adjusted
accordingly, multiplying them by the ratio between the original crop size and the final
dimensions after resizing. Each training dataset presents a different distribution of
real_size values, and since the resizing operation affects such distribution, it can be used
as a tool to make one dataset more similar to the target one used in the test phase. For
all datasets, preliminary tests with three different cropping size ranges were performed:
64 ÷ 256 to make the objects bigger and therefore move the distributions to lower values,
256 ÷ 256 to keep the distributions unchanged as there will be no resizing involved, or
256 ÷ 640 to make objects smaller and move the distributions to higher values. The final
settings for each dataset are shown in Figure 10.6. Given the high sparsity of relevant
ground truth data, as highlighted in Section 10.2 and Figure 10.3, steps have been taken
to verify that the random crops always include a minimum amount of pixels belonging
to the class of interest (i.e. human subjects in the first set of experiments).
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Fig. 10.6 Distribution of real_size values of the four datasets, as impacted by three
different crop size ranges. Selected ranges are highlighted inside the legend

10.4.2 Evaluation procedure

In order to evaluate the models, the classification prediction was de-quantized using the
central values of the discretization levels applied during preprocessing. Predicted (P ) and
ground truth (GT ) real_size data was then transformed back to distance values through
multiplication by the proper focal length F . The values were finally compared with
the ground truth using Mean Absolute Error (MAE) as well as several error measures
from Eigen et al. [63], including Absolute Relative Difference (ARD), Squared Relative
Difference (SRD), linear and logarithmic Root Mean Square Error (RMSE):

MAE =

√√√√∑i∈M ||Pi · F − GTi · F ||
|M |

(10.10)

ARD =

√√√√∑i∈M
||Pi · F − GTi · F ||/GTi · F

|M |
(10.11)

SRD =

√√√√∑i∈M
||Pi · F − GTi · F ||2/GTi · F

|M |
(10.12)

RMSElin =

√√√√∑i∈M (Pi · F − GTi · F )2

|M |
(10.13)

RMSElog =

√√√√∑i∈M (log(Pi · F ) − log(GTi · F ))2

|M |
(10.14)
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Training datasets Error measures on CityScapes validation set Rank
CSC
[56]

SYN
[170]

KIT
[80]

RDP
[183] MAE ARD SRD RMSElin RMSElog RMSElog

1 ✓ 22.51 0.524 16.07 30.58 0.677 8
2 ✓ 46.14 1.980 210.4 69.17 1.055 10
3 ✓ 15.10 0.458 12.36 23.51 0.473 4
4 ✓ 21.05 0.429 14.45 29.78 0.650 6
5 ✓✓ 22.70 0.521 16.20 30.83 0.690 9
6 ✓ ✓ 22.03 0.643 17.95 29.53 0.658 7
7 ✓ ✓ 8.48 0.177 4.33 16.69 0.255 1
8 ✓ ✓ 9.93 0.182 6.88 19.62 0.270 2
9 ✓ ✓ ✓ 9.19 0.183 4.68 17.64 0.279 3
11 ✓ ✓ ✓ ✓ 20.24 0.666 19.62 27.94 0.590 5

Table 10.2 Error measures on CityScapes validation set (average distance 40.39m) for
the “people” class with different training subsets, collected and transformed according to
the proposed representation. For all considered measures, a lower value is better.

Note that the logarithmic transformation in Equation (10.14) actually removes the
contribution of any coefficient equally applied to annotation and prediction, including the
effect of focal length F . Here ||x|| denotes the absolute value, and |M | the cardinality
of set M . Equations (10.10) to (10.14) were computed only over pixels highlighted by
the relevance mask M , as done with the loss in Equation (10.7). The final errors were
obtained averaging the results from all validation images.

All experiments were run for 10000 iterations, and the best performing iteration on
the validation set according to logarithmic RMSE was eventually selected.

10.4.3 Experimental results

These experiments were designed to assess the applicability and utility of the proposed
representation for distance information. Performance values on the CityScapes validation
set for the “people” class are reported in Table 10.2. Rows 1 to 4 correspond to models
trained singularly on each dataset. The least contribution is given by SYNTHIA, which
ranked last among all evaluated setups. This dataset was chosen for the presence of
human subjects, despite the scarce photorealism of its rendered images. Unexpectedly,
the best single-dataset solution appears to be training on the KITTI dataset, which
performed much better than using the CityScapes training set itself. This is a first
confirmation of the utility of the proposed representation, without which it would have

106



10.4 Experiments

not be possible to overperform the results obtained with the original training data. In
order to verify whether better performance could be obtained simply by using a larger
amount of CityScapes images, row 5 describes a model trained on both the CityScapes
training set and official test set (which is distinct from the validation set used here for
evaluation). The results of this experiment, however, disprove this possibility, ranking at
the 9th position. An alternative explanation is that CityScapes offers plenty of images,
but with low diversity, and thus it is not useful in building a well-generalizing model.

The second batch of experiments, from row 6 to row 8, involves a joint training on
both the CityScapes training set and one of the other datasets. The best result was
given by training jointly on the CityScapes and KITTI datasets, which were brought to
a compatible format exploiting the proposed representation. Other methods, such as the
one proposed by Uhrig et al. [190], were able to obtain good results while training on the
CityScapes training set only. One possible explanation can be found in the multi-task
objective proposed in their work, which guides the learning process in a different way.
In this sense, the proposed approach is an alternative solution when multi-task is not
desired or not available.

Given the promising but sub-optimal results of RGB-D People (rows 4 and 8), row
9 shows the results of training jointly on the three best performing sets: CityScapes,
KITTI, and RGB-D People. This combination, though, did not improve the model
performance, as it ranked at the 3rd place, right after the joint training on KITTI and
RGB-D People. Finally, row 10 describes the effect of training on all available datasets.
The poor performance is again probably due to the influence of dataset SYNTHIA, as
suggested by the results in row 2.

By further training the best performing model (row 7) from 10000 to 45000 iterations,
a final MAE equal to 6.24m was reached, on a dataset with average distance 40.39m.
Figure 10.7 shows the prediction on an example image obtained with such model. The
largest source of error is due to the farthest subject, predicted at 50m instead of 72m,
followed by some inaccuracies in the ground truth around people edges. Other visual
examples are presented in Figure 10.8.

10.4.4 Applicability of the proposed representation to other
methods

The goal of this section is to quantitatively evaluate the benefits of introducing the
proposed device-independent representation into a different model for distance estimation.
Neven et al. [147] presented a unified framework that predicts pixel-level disparity (i.e.
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Fig. 10.7 Example per-pixel estimation on a test image with average distance 14.83m.
The Mean Absolute Error (MAE) between prediction and ground truth is 1.63m. The
visualization and all adopted metrics are limited to people areas, as these first experiments
were focused on this particular category of known subjects. Best viewed in color
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the horizontal shift necessary to find the same pixel across two images from a stereo
rig: a measure correlated to distance information), in a multitask environment that also
includes semantic and instance segmentation. In order to do so, the authors trained
and evaluated their proposed model on the CityScapes dataset, exploiting its rich set of
annotations.

The current experimental setup was first reproduced in the work of [147] by introducing
relevance masks in the loss computation, as described in Section 10.2. This allowed the
constraining of the training and validation process to only pixels belonging to people
areas. This baseline experiment, trained on disparity values, resulted in a RMSElog equal
to 0.923, between reference and predicted depth. As a first modification, their disparity
representation was replaced at training time with the proposed real_size, resulting
in a RMSElog equal to 0.804. The lower error obtained is a first demonstration of the
advantage of switching to a size-based representation.

The second intent is to reproduce the experiment on training set expansion from
Section 10.4.3 into the method from [147]. The proposed representation, in fact, makes
it possible to collect a wider training set by converting different sources of data to a
common representation. In order to verify whether this effectively produces a better
model, the KITTI training subset was once again introduced as additional training
data, as it was shown in Table 10.2 to improve the final estimation performance of the
previously tested model. Since this set is not annotated with instance and semantic
labels, which are required by the multitask nature of [147], at training time the gradient
backpropagation was suppressed from the semantic and instance predictions produced
on the KITTI training examples, while keeping those produced from the CityScapes
training examples. The model trained in this new environment was finally able to reach
an even better RMSElog, equal to 0.715. This result produces yet another indication of
the advantage in exploiting the proposed representation for distance information.

10.4.5 Multi-class evaluation

In order to further assess the robustness and generalization capability of the proposed
representation, the FCN-based neural network was trained and evaluated on other
individual semantic classes, namely cars, bikes, and motorbikes. This was achieved by
exploiting the relevance masks to exclude regions of the image that do not belong to
the chosen subjects. Once again, evaluation was based on the RMSElog obtained on
the CityScapes validation set, by either training on the CityScapes only, or by jointly
exploiting the KITTI training subset.
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Class
Cardinality RMSElog on CSCval % error

reductionTraining images Valid. images Training images
CSC CSC+KIT CSCval CSC CSC+KIT

People 2498 4792 441 0.677 0.255 62.33%
Cars 2832 4928 479 0.833 0.366 56.02%
Bikes 1639 3198 344 0.591 0.323 45.35%
Motorbikes 502 1409 91 0.668 0.577 13.68%
Joint 2965 5273 493 0.781 0.318 59.25%

Table 10.3 RMSElog errors obtained on different object classes, and evaluated on the
validation subset of CityScapes. The last column highlights the percentage error reduction
obtained by training on a wider set of images, which is made possible by the proposed
representation

Results are reported in Table 10.3, along with the percentage error reduction given by
the training set expansion. Some classes appear to benefit more than others: the relative
error reduction is in fact strongly correlated with the number of available images, further
supporting the thesis on the importance of training cardinality. As a final experiment,
the last line of Table 10.3 also reports the results obtained by training and evaluating on
all the analyzed semantic classes, i.e. the relevance mask was generated to jointly include
people, cars, bikes, and motorbikes. The error reduction given by dataset expansion on
this experiment is on par with the trend of all individual classes. This suggests that the
model is able to manage multiple classes at the same time, effectively inferring the correct
real_size value associated with each different semantic class. Some relevant examples
are provided in Figure 10.9
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(a) (b)

Fig. 10.8 Example predictions on the people class. Values are clipped to the reported
range to preserve visual consistency among figures (best viewed in color). a) Average
distance annotation: 16.21m. MAE: 2.17m, ARD: 0.10, SRD: 0.91, RMSElin: 7.63,
RMSElog: 0.24. b) Average distance annotation: 16.53m. MAE: 1.79m, ARD: 0.10, SRD:
1.07, RMSElin: 8.75, RMSElog: 0.20
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(a) (b)

Fig. 10.9 Example predictions on all analyzed semantic classes. Values are clipped to the
reported range to preserve visual consistency among figures (best viewed in color). a)
Average distance annotation: 24.28m. MAE: 3.84m, ARD: 0.09, SRD: 1.89, RMSElin:
18.00, RMSElog: 0.27. b) Average distance annotation: 17.85m. MAE: 3.82m, ARD:
0.13, SRD: 2.31, RMSElin: 25.55, RMSElog: 0.31
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Chapter 11

Conclusions

Image Object
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extraction

Many subjects

One subject

Learning from 
scratch

Deep features

Fine-tuning

Punctual

Global

Vegetables
and fruits

Street scenes

Logos

Fig. 11.1 Highlighted uses cases in the proposed pipeline for image description and
annotation. The applications involve: vegetables and fruits, logos, and streets.

This thesis covered the problem of automatic description and annotation of complex
scenes. The task has been interpreted in terms of a three-step general pipeline, composed
of: object proposal, classification, and attributes extraction. For each step, several
techniques have been studied, developed, and eventually applied to specific domains with
the objective of comparing the proposed solutions against the state of the art. As each
domain presents its own set of challenges, three different directions for application have
been investigated, aiming at a complete coverage of the nuances of the proposed pipeline.

Vegetables and fruit classification can prove to be a useful resource in the development
of internet-of-things-ready appliances. A general purpose salient object estimation
technique has been first developed, with the goal of automatically determining the best
combination strategy of existing solutions for saliency estimation. The proposed method,
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based on the joint optimization of genetic programming and backpropagation, allowed
to improve performance over all the starting solutions. Salient object detection has
then been applied as a preprocessing step for the actual classification of vegetables and
fruits, by implementing an automatic cropping mechanism. The recognition itself has
been performed by fine-tuning existing networks and exploiting the hierarchical nature
of annotated classes. The classification of vegetables has been finally exploited as a
proxy to learn the prediction of the scene illuminant, by means of an original training
strategy that does not require explicit illuminant ground truth. Experimental results on
standard datasets show that the proposed solution can generalize to test images that do
not contain the classes seen during the training phase.

Logo recognition is a category of interest due to its prominent presence in the everyday
lives of people. At the object proposal stage, an algorithm for hierarchical proposal has
been adopted, in view of its proven good compromise between speed and recall. Its
configuration was then tuned in order to exploit the specific features of the addressed
domain: namely, processing the input image in the HSV color space proved to be the most
effective solution, as it allows the subsequent algorithms to take advantage of the bright
colors that typically characterize logos. After a preliminary investigation, classification
of logos was then addressed by paying attention to two aspects: data and parameters.
Regarding data, both real and synthetic data augmentation have been exploited, by
collecting a vast dataset and further extending it with realistic transformations. A careful
analysis led to a quantification of the impact of both elements, eventually confirming
the relevance of the collected dataset. Regarding parameters, an efficient neural model
has been developed and enriched with the adoption of smart training strategies. The
combination of these factors allowed to reach results that are highly competitive with
the state of the art.

Urban street scenes were taken into consideration on grounds of an ever-growing
interest in smart cars. Semantic segmentation of streets consists in assigning a categorical
label to each pixel in a given input image, with the prediction of classes such as pedestrians,
vehicles, and traffic signs. For the envisioned smart-car scenario, high accuracy and
fast response time are both fundamental requirements. An original model has been
therefore proposed and evaluated, with the specific intention of balancing these two
criteria. Secondly, the distance between depicted subjects and the camera has been
considered a relevant attribute for a smart-car scenario. Monocular distance estimation
has been addressed by developing a device-independent representation of pixel-wise
distance information. Such representation allows for richer and heterogeneous datasets
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to be built by gathering training information from different devices and environments, as
proven by careful experimentation.

As a result of this application-driven approach to the problem of image description
and annotation, the introduced generic pipeline has been thoroughly investigated under
different angles. A direct extension of this would be automatically identifying the nature
of the input image in order to select the proper path of analysis in the presented pipeline
(e.g. inferring the presence of a single object through saliency estimation, and consequently
performing classification without prior knowledge on the possible classes). Additional
concepts of description can be taken into consideration, such as image captioning for
textual annotation. Finally, as mentioned, the role of data and its representation has
been a common background theme throughout the whole work. Illuminant estimation,
in particular, has been the strongest reported example of reducing the dependency on
expensive ground truth annotation. A further direction for development might involve
more direct forms of unsupervised or semi-supervised learning.
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