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Introduction

Semiconductors are the main building block for a variety of devices in our life. The
semiconductor industry, in the last decades, has evolved by following the Moore’s law [1].
According to that, the improvements in performances and functionality have been enabled
by a continuos miniaturization process of the building blocks of the devices. This goal
has been achieved basically due to the refinement of the fabrication processes, thanks to
the improvement of patterning and lithographic techniques that nowadays can control the
top-down formation of nanostructures even below 10nm in size [2]. However, this incredible
innovation process is going to reach an end in the next years, as the miniaturization is
getting too close to the atomistic size [3], which hinders the development of smaller devices.
Therefore, alternative ways to evolve the current technologies have to be exploited [4]. In
particular, since the size cannot play any more a major role, the interest of the scientific
and industrial research is for three-dimensional heterostructures, such as FinFETs, gate-all-
around or vertical transistors [5, 6]. The 3D character of these structures allows to introduce
novel properties, which depend for instance on the high surface-to-volume ratio, on the
possibility to induce or relax strain on a micro- or nano-scale, on local fluctuations of alloy
composition or on quantum confinement effects. Nanowires [7] are the most representative
example as, thanks to their peculiar one-dimensional shape, they enable a huge variety
of applications, ranging from electronic, to optoelectronic, to the integration in biological
systems.

Bottom-up approaches are currently being studied for the growth of 3D nanostructures.
Indeed, if compared to top-down techniques, they allow for the development of more regular
surfaces, with a lower defectivity. This becomes of crucial importance when the ratio between
surface and volume is strongly unbalanced toward the former, and for instance it can enable
peculiar transport phenomena, as for the quasi-ballistic phonon transport [8]. However,
this approach makes the growth of 3D nanostructures extremely challenging. Indeed, it is
reasonable to assume that a structure that develops with a high surface-to-volume ratio
is unstable on an energetic point of view, essentially due to the high surface energy cost.
Moreover, the control of the growth direction is no more set by the substrate orientation, as
for planar growth, but may be influenced by several conditions.

In this Thesis, to deal with the complex 3D growth dynamics, we develop a modeling
technique that can reproduce and interpret the vertical growth of nanostructures [9]. This
first involves the exploitation of a peculiar modeling which can tackle both thermodynamic
and kinetic contributions. In the literature, the main approach used to simulate the epitaxial
growth of semiconductors relies on thermodynamic arguments [10, 11]. In particular, the
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evolution of the structures at a nano- and micro-scale is considered to be determined by
the redistribution of adatoms on the surface. This dynamics, often modeled as a surface
diffusion process, is driven by the thermodynamic principle of free energy minimization [12,
13]. The free energy of the system, in a first approximation, is given by the surface energy.
This is generally orientation dependent, and therefore tends to drive the formation of faceted
crystals, which minimize both the surface area exposed, as weighted by the surface energy
density corresponding to each facet of the crystal. This is the most used model to interpret
the growth dynamics of crystals at a nano- and micro-scale and is well represented by the
geometrical theory developed by Wulff [14]. However, as we will explicitly show in this
Thesis, this interpretation of the growth dynamics does not apply to the development of
vertical nanostructures. Indeed, intuitively, the thermodynamic approach tends to favor
the formation of structures with a low surface-to-volume ratio, in order to minimize the
cost of the dangling bonds at the surface. Therefore, a new approach, that we will identify
as kinetic, has to be adopted to model the peculiar growth of 3D nanostructures. In the
literature [15, 16], the kinetic regime has been already studied with respect to the growth of
semiconductor crystals. The advancement that we introduce is the possibility to combine
kinetic and thermodynamic contributions to study an intermediate growth regime, which is
necessary for the simulation of vertical nanomembranes and 3D fin-like structures in general.

The simulation of the vertical growth is not just challenging for the identification of
a proper model, but it requires also a dedicated approach for the numerical solution of
the evolution dynamics. Indeed, when dealing with crystal morphologies which develop
vertically with respect to the substrate surface, an implicit description [10] of the system
geometry has proved to be very effective, with respect to standard explicit approaches where
the surface profile is traced by means of a function. In particular, in this Thesis, we exploit
a phase field (PF) model to simulate the growth on GaAs nanomembranes, based on a finite
element method for the solution of the evolution equations. The phase-field description
consists in a continuous function ϕ, that is used to distinguish between the solid (ϕ = 1)
and the vacuum (ϕ = 0). The surface between them is therefore represented by an interface
region, where ϕ goes smoothly form 1 to 0. The PF model is simulated thanks to the
AMDiS C++ toolbox [17, 18], which includes the description of the function ϕ on a mesh,
that is needed by the FEM approach. A peculiar feature of AMDiS is the possibility to use
an adaptive mesh, instead of a uniform grid. This allows to increase the mesh definition
only where it is needed by the evolution problem, resulting in a computational performance
improvement. Another strong advantage of this phase-field approach is the possibility to
handle real 3D simulations, a features which is highly welcomed when the aim is to simulate
3D nanostructures in a reliable way.

For the development of devices, it is often required to build heterostructures which
combine different semiconductors, for instance for optoelectronic applications where a p-n
junction is required [19]. Furthermore, the heteroepitaxial growth can be exploited also to
transfer some structural material properties, such as the hexagonal lattice structure, from a
material to another [20]. These possibilities are particularly exploited in core/shell nanowires.
These consist in the growth of a nanowire, made of a single material and identified as "core",
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by dedicated growth techniques as the vapor-liquid-solid or the selective area epitaxy [21].
Then, a second growth step is performed by depositing a second type of semiconductor all
around, obtaining by heteroepitaxy a film with a cylindrical symmetry called "shell".

The heteroepitaxial growth, both on planar substrates and on 3D nanostrucutres, can
lead to elastic deformations in the crystal lattice [22]. This occurs due to the different bulk
lattice parameter of the materials involved in the growth. As a result, as it has been widely
studied for planar film growth, the lattice structure is deformed in order to accommodate
the lattice mismatch, or a plastic relaxation is achieved through defects, which are usually
detrimental for the applications. In this Thesis, we focus on the core/shell nanowire system
and we provide a detailed characterization of the strain relaxation mechanisms. In particular,
we study the bending of GaP/InGaP nanowires and we correlate this phenomenon with the
partitioning of the elastic deformation within the nanostructure. Moreover, we investigate
the role of the elastic relaxation in Ge/GeSn core/shell nanowires. In this latter case,
the role of Sn composition in the alloy is fundamental for the opto-electronic applications.
Therefore we study which is the impact of strain relaxation in the incorporation of Sn atoms,
going beyond the equilibrium solubility limit for the GeSn alloy. The elastic relaxation is
studied by a continuum elasticity approach, profiting of numerical solution for the strain
distribution performed by finite element method, which can handle the simulation of the
3D structure, improving the reliability of the elastic analysis

The evolution of nanostructures can be driven also by the combined effect of surface
energy and elastic energy contributions [23, 24]. One of the most studied examples of this is
the heteroepitaxial growth of islands on planar substrates. Since the first analytical model
by Asaro-Tiller-Grinfeld [25, 26] and Srolovitz [27], it is known that when a semiconductor
is deposited on a substrate with a different lattice parameter, the growth dynamics can
deviate from the simple flat geometry leading to the growth of 3D structures, which enable
an enhanced strain relaxation with respect to the flat configuration, still by minimizing
the surface energy cost of the system. For technological applications it is fundamental to
control the spatial distribution and the size-uniformity of the islands, for instance to exploit
them as quantum dots for optoelectonics applications. To this purpose, in the literature
several approaches have been investigated by theory and experiments [28–31]. However, a
comprehensive understanding of the role of the growth conditions in ordering the growth is
still missing.

In this Thesis, we propose a phase-field model which combines the description for the
surface diffusion dynamics and the finite element characterization of the strain field [32] to
study the ordered growth of islands. In particular, we choose the prototypical system where
Ge islands are grown on a Si substrate and we focus on two different ordering techniques:
the growth on a pit-patterned substrate and the vertical stacking of islands. The advantage
of the phase-field model based on finite element method is the possibility to exactly solve
the evolution equations of the system, without the need of higher order approximations
and with the possibility to precisely consider the effect on the elastic relaxation which is
provided by the substrate morphology.

The Thesis is organized as follows. In Chapter 1 we provide a general overview of the
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heteroepitaxial systems and growth techniques that we are going to consider in the following
chapters. In Chapter 2, we present the phase-field model that we have developed, which
includes the kinetic contributions required to simulate the vertical growth of nanostructures
and represents a significative advancement with respect to the existing literature models.
After an initial discussion of the main features of the kinetic growth regime, we apply the
modeling to the study of the growth of GaAs 3D fins, by investigating the material properties
and the growth parameter in close comparison with the experimental evidences. In Chapter
3, we describe the static continuum model which is used to simulate the elastic relaxation
in core/shell nanowires. The first application of this model is presented in Chapter 4 for the
study of the bending of core/shell GaP/InGaP nanowires. Then, in Chapter 5, we focus
on the original characterization of Ge/GeSn nanowires, investigating for the first time in
the literature the possible correlation between strain relaxation and Sn incorporation in
nanowire structures. In Chapter 6 we present our implementation of the phase-field model
for surface diffusion to include also the elastic energy calculations. This enables the study of
the heteroepitaxial growth of islands first on pit-patterned substrates and then in vertically
stacked arrays. Finally, the conclusions of the results obtained in this Thesis are drawn.
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Chapter 1

Semiconductor heteroepitaxy

Semiconductors represent nowadays a class of material with a variety of applications.
First of all, they are the basis of the common electronic devices, but are also fundamental
for solar energy applications and solid state lightning. The most peculiar property of
semiconductor is that, differently from metals, their band structure has an energy gap
between the valence and conduction levels. This gap ranges from fractions of eV of to 5-7
eV, above which the materials are classified as insulators. By exploiting specific techniques,
such as doping, heterointegration and alloying a variety of features can be developed,
enabling a large set of different applications. Nowadays, however, we are reaching the limit
of the Moore’s law [1], which states that the innovation of the electronics is due to the
miniaturization process. Therefore, new technologies have to be developed, enabling a
further improvement of the semiconductor exploitation, profiting for instance of new degrees
of freedom in engineering new devices, as it is for the case of three-dimensional structures.

1.1 Heteroepitaxial growth on planar substrates

Epitaxy refers to the growth of a mono-crystalline film on a mono-crystalline substrate.
Heteroepitaxy is a specific kind of epitaxy, where the material composing the film is different
from the one of the substrate. In particular, the main property that characterizes the
heteroepitaxy is the lattice parameter of the crystal structures involved in the growth.

In a general picture of the system, the profile evolution is due to the motion of the
surface atoms. This can occur in two main conditions: deposition, where the number of
atoms on the film continuously increases, and annealing, in which there is no additional
material supply and the surface atoms, thanks to the high temperature of this process, can
rearrange, lowering the energy of the system. Adatoms on the surface can move in two
separate ways: by exchanging with the surrounding environment or by diffusing on the
surface. In this Thesis, we will focus on this latter mechanisms, presenting different models
for the surface diffusion dynamics.
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Chapter 1: Semiconductor heteroepitaxy

1.1.1 Growth modalities

The different structural properties between the materials involved in the heteroepitax-
ial growth can produce various growth modes. To give an interpretation, based on the
thermodynamics principles, for the different modalities, it is possible to focus on two main
properties: the surface energy densities and the difference between the lattice parameters
(lattice mismatch). The former quantifies the energy cost to create a unit surface, consider-
ing both the orientation and the reconstruction of the surface. The latter determines the
elastic energy cost required to accommodate (by an expansion or a compression) the lattice
parameter of the film to the one of the substrate, in order to achieve a pseudomorphic
growth.

Figure 1.1: Scheme for the growth modalities in an heteroepitaxial system. FW
describes the Franck-van der Merwe modality, with the wetting layer formation, but
with no island. SK shows the Stranki-Krastanow case, where it is possible to observe
both a wetting layer and the islands. VW represents the Volmer-Weber growth, in
which islands grow without any wetting layer. Colors distinguish between the two
different materials.

There are three main growth modes that can be distinguished in heteroepitaxy [33, 34]:
the Frank-van der Merwe (FM) [35], the Stranski-Krastanov (SK) [36] and the Volmer-Weber
(VW) [37].

Frank - van der Merwe

The FM growth is characterized by a 2D layer-by-layer arrangement of atoms above
the substrate surface. This condition is driven by a specific balance between the surface
energies of the system. If γfilm is the surface energy density for the deposited material, γsub
the one for the substrate and γint the one for the film/substrate interface, it is possible to
deduce the energetic condition that favors a FM growth. Indeed if γfilm + γinf < γsub it
means that, in order to minimize the surface energy, the system tends to cover the substrate
surface by a flat layer made by the deposited atoms. This allows to lower the surface energy
density of the system by changing the energy cost to expose a unit surface from the value
of γsub to γfilm + γint . The free surface remains flat, as this is the optimal condition to
minimize the exposed area.

From the elastic point of view, a relatively low lattice mismatch (< 2%) is required.
This means that the elastic energy stored by the system is not high enough to change the
dynamics of the growth, which is essentially driven by the minimization of the surface energy.
Nevertheless the elastic energy stored in the film could lead to the formation of defects, as
for example misfit dislocations at the film/substrate interface, in order to accommodate the
lattice mismatch between the two material. This occurs if the energy required to generate
a defect is compensated by the elastic relaxation provided by the defect. In this case the
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Chapter 1: Semiconductor heteroepitaxy

growth is no more pseudomorphic.

Volmer - Weber

The VW modality is characterized by a 3D growth. The deposited material does not
cover the entire surface of the substrate, but generates from the very beginning some isolated
islands on the surface. This behavior could be explained again in terms of surface energy
densities. Indeed, if γfilm+γint > γsub it is energetically more favorable to keep the substrate
surface uncovered. This justifies why, in the VW mode, the deposited material doesn’t
cover the entire substrate surface, but it rearranges into isolated islands. The shape of these
islands is then driven by the minimization of the surface and interfacial energies.

Moreover, VW growth can be promoted also by an elastic relaxation mechanism. If the
lattice mismatch is relatively high (> 8%), the formation of a flat layer above the substrate
can’t provide an efficient relaxation of the elastic energy. Indeed the in-plane directions,
which are parallel to the substrate plane, would have a compression equal to the lattice
mismatch, while the only relaxation could act tetragonally toward the free surface. On the
contrary, islands efficiently enhance the reduction of the strain energy. This is mainly due
to the additional lateral free surfaces that the 3D island geometry can expose. Additionally,
part of the strain can be transferred from the islands to the substrate, profiting of its
compliance properties.

Stranski - Krastanov

The SK growth could be interpreted as an intermediate regime between the two described
before, as it presents both growth mechanisms: layer-by-layer growth and island formation.
In the initial stages of the growth, deposited material covers the substrate creating a flat
film called wetting-layer. This behavior can be motivated only by a surface energy balance:
if γfilm + γint < γsub the most convenient arrangement for the atoms impinging on the
substrate is to cover its surface. Then, strain effects start to play a non negligible role in the
growth. Indeed, if the lattice mismatch is between 2% and 8% (or in other words among
the previously described regimes) the wetting-layer (WL) configuration becomes unfavored
because the gain obtained from the surface energy balance is overcompensated by the elastic
energy cost for the pseudomorphic film growth. Therefore, once the film reaches a critical
thickness which relies on the properties of the material (lattice misfit, surface energy and
eventually intermixing at the film/substrate interface), the system starts to develop 3D
islands, which enhance the strain relaxation by the lateral free surfaces. However, differently
from the VW, in between islands the substrate is still covered by the wetting-layer. The
stability and the size of islands depend on the balance between the elastic relaxation and
the surface energy, or in other words on the values for the lattice mismatch and the surface
energy of the deposited material. In particular, the larger is the ratio mismatch/surface
energy, the smaller are the islands.
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Chapter 1: Semiconductor heteroepitaxy

Growth kinetics

Beside this simple thermodynamic description of the principal growth modes for het-
eroepitaxy, it is worth to mention the role of kinetics. In particular an important parameter
which describes the growth kinetics is the ratio between diffusivity, which can be controlled
by the temperature, and the deposition rate. Whether this ratio is high, adatoms can
diffuse toward the local minimum of the surface chemical potential. Therefore the growth is
essentially driven by the minimization of the free energy and it leads to the thermodynamic
behavior discussed previously. On the contrary, for high deposition rates the diffusion of
adatoms is slowed down by the incoming of new material, which can enhance the growth
rate of the surface. For instance, in this condition, a SK growth could evolve into a FM one
because adatoms can’t rearrange to form islands, but are quickly incorporated in a flat layer
nearly as in a stick-where-you-hit regime. This causes an increase in the elastic energy, due
to the absence of any effective relaxation mechanisms. However, when a critical thickness is
reached, the system can nucleate defects, as misfit dislocations, which reduce the elastic
strain. Thus the system can proceed in a layer-by-layer growth as the elastic driving force
for islanding is suppressed by the plastic relaxation mechanism.

1.1.2 Growth techniques

The growth techniques that we will consider in this Thesis are based on Chemical Vapor
Deposition (CVD) and on Molecular Beam Epitaxy (MBE) [34]. In the CVD, the substrate
surfaces is exposed to a controlled vapor environment composed by the precursors gases, as
for instance H2 –SiH4 –GeH4 for the growth of SiGe alloys [38]. A chemical reaction at the
surface, favored both by the high temperature of the process and by the kinetic energy of
the gas molecules impinging on the substrate, transfers the atoms to the growing crystal.
The growth is mainly controlled by the pressure of the gases, which sets the deposition
rate, and most importantly by the relative pressure ratio between the different precursors.
The chemical process at the surface can be favored also by the reaction of the different
precursors, which is again controlled by the relative pressures. Typically CVD can achieve
a high deposition rate, in far-from-equilibrium conditions, and it is often used for the
industrial production. A special case of CVD is the metalorganic CVD (MOCVD), which
involves metalorganic gases as precursors. This technique can be used for III-V and II-VI
semiconductors and it is capable of growing InP and GaAs with a high purity [34]. In some
cases, the decomposition of the precursors can be enhanced by a plasma reactor where the
reactive species, as radical or ions, are created directly in the gaseous phase. As a result,
they are more reactive when impinging on the crystal surface. Due to the high kinetic energy
that these particles can acquired from the plasma phase, low-energy plasma enhanced CVD
(PECVD) is usually exploited for experiments [39].

The main difference of MBE [40] is that it is a technique based on a ultra high vacuum
condition (p ' 10−9 Pa). The material is deposited by a collimated flux of atoms, directed
to the surface. This atomic beam is produced by a Knudsen evaporation cell, where the
solid or liquid phases of the material involved in the growth are evaporated by exploiting

12



Chapter 1: Semiconductor heteroepitaxy

a locally high temperature. The uniform deposition over the substrate surface is favored
by the spinning of the sample under the evaporation cell. The peculiarity of this growth
technique is the precise control on the deposition: it is possible to reach very low rates, up to
fractions of monolayer (ML) 10−1− 10−2 ML/s. The deposit of different species on the same
substrate can be obtained by using multiple evaporation cells. The relative composition can
be finely tuned by controlling the deposition flux and time for each cell. For instance, MBE
has enabled the growth of multi-quantum wells with a nearly monolayer thickness of the
different layers involved in the growth.

When an atom reaches the surface, it can diffuse towards the most stable site. This
motion is permitted by the high temperature (T ' 500− 800 ◦C) of the substrate that is
generally used for CVD and MBE growth. This favors the hopping of a surface adatom
from a bonding site to another. The flow of material on the surface has to be considered as
the net motion of atoms, taking an average of the path of every single atom, as in a random
walk description. The diffusion length of an atom is not infinite, therefore it cannot reach
the position with the global energy minimum, but can explore only a limited number of
configurations in the part of surface nearby. Moreover the deposition flux contrasts the
diffusion: if an adatom is covered by a new deposited layer, it becomes a bulk atom, with a
higher number of bonds than a surface atom, and as a consequence its mobility becomes
negligible.

1.1.3 Ge/Si prototypical system for SK growth

The most studied system for heteroepitaxy on planar substrates is based on the growth
of Ge on Si(0 0 1) substrates. An advantage of studying the Ge/Si system is that SiGe
is an ideal alloy, therefore Ge and Si can be mixed in any ratio without any polarity
effect. Moreover the use of a Si substrate is a major advantage in order to integrate the
heteroepitaxial growth with the actual technologies.

Both Si and Ge have the same diamond crystallographic structure, but they have a
different lattice parameter a, in particular aGe = 5.65Å and aSi = 5.43Å [23] and the lattice
mismatch is: aSi−aGe

aGe
= 3.99%.

The effect of this lattice mismatch is a compression of the Ge film grown on Si, because it
has to match exactly the lattice spacing of the Si underneath. This results in a pseudomorphic
tetragonal distortion of the Ge cell, forced to expand in the vertical direction as a response
to the compressive state in the substrate plane.

From ab-initio calculations [41, 42], it has been shown that also the surface energy density
γ of these two materials is different. In particular γGe < γSi, therefore the system prefers to
cover all the Si free surface with a Ge film, lowering the surface energy. Considering both the
lattice mismatch and the different surface energies, it is possible to conclude that the Ge/Si
system follows the SK growth modality [24]. The WL increases up to a critical thickness,
which is of 2− 3 ML for pure Ge over Si. At this point the elastic contribution overcomes
the surface energy one, favoring the formation of 3D islands, as sketched in Fig. 1.2, instead
of continuing the growth of the flat WL [43]. These islands allow for a better relaxation of
the elastic energy stored in the film, since they can expand in more directions than only in
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(a) Bulk crystalline struc-
tures

aSi
(b) Wetting layer

aSi
(c) Island growth

Figure 1.2: Scheme for the Stranski-Krastanow growth in the Ge/Si system. Panel (a)
represents the bulk structures, showing the greater lattice parameter for the Ge. Panel
(b) shows the tetragonal distortion of the wetting layer, that is in a stressed condition.
The system, to release the elastic energy, grows a 3D structure, here represented by a
triangular island.

the vertical one. This process is fully spontaneous, driven by self-assembly, with no external
driving force. The size of these islands is nanometric and depends, as the critical WL
thickness, on the alloy composition deposited over Si. In particular higher Si concentrations
in the film produce bigger islands, up to a hundred of nanometers wide. This can be justified
by considering the lower lattice mismatch [23]. In the following chapters we will neglect all
effects related with composition and focus only on a pure Ge film.

1.1.4 An analytical model for island growth: the ATG instability

The instability of a flat film growing in a SK modality was historically modeled by Asaro
and Tiller [25], Grinfeld [26] and Srolovitz [27]. In particular, they proposed an analytical
description for the evolution of a island instability for a semi-infinite film which is in an
elastically stressed condition. Despite the limitations of this linear theory, it is still used as
a reference for the description of the growth dynamics [44], particularly for the initial stages
of the growth, when there is no interaction between the free surface and the substrate [45].
The theory is based on a cosine-like perturbation of the flat surface, defined as a function of
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the position h(x). The evolution dynamics is assumed to be driven by the minimization of
the free energy of the system, which is made of an elastic and a surface contributions. The
former quantifies the elastic energy stored in the film, which is responsible for the tendency
to grow island. Indeed, the island shape, or in the ATG case a perturbation of the profile
with a high aspect-ratio (AR or height-to-base ratio), introduces more free surfaces in the
system, allowing for an enhanced relaxation of the strain stored in the film. On the contrary,
the surface energy term accounts for the energetic cost of creating new free surfaces, and
therefore tends to flatten the surface profile. The main result of the ATG theory is that
a minimum size for the wavelength of the perturbation is required, in order to make the
growth of island favored by the energy balance of the surface and elastic contributions. This
critical wavelength is defined as λc = 2πγ/Uε where γ is the surface energy density and
Uε = 2E/(1− ν2)ε2

m quantifies the elastic energy density, with E the Young modulus, ν the
Poisson ratio of the film and εm the lattice mismatch. Another useful quantity predicted by
the ATG theory is the wavelength λATG = 3/4λc characterized by the fastest growth rate.
Indeed, this is an useful reference to estimate in a first approximation the size of the islands
observed in a SK growth mode.

1.1.5 Technological applications

Islands grown by heteroepitaxy, thanks to their confinement properties, can be used as
quantum dots for optical applications [46–48]. This requires a specific control on the island
sizes, as it determines the optical wavelength to which the quantum dots are sensitive. An
example of materials suitable for optical applications are the InAs grown over GaAs [23].
If compared to infrared detectors based on two-dimensional InAs barriers, the quantum
dots can detect an optical radiation independently from its direction, thanks to the spacial
symmetry of a dot. Another optical application is for solid state lasers [49], which use
quantum dots to generate a specific wavelength. In this case the heteroepitaxial technique
is useful also to build the resonance cavity [50].

The possibility to create islands buried in a Si film is fundamental for the Dot-FET
transistors [51]. The strain differences, given by the strain field of the Ge buried islands,
increase the carrier mobility, in particular for the e− in the case of n-doped Si, and the
maximum working frequency of the device.

Taking advantage of the magnetic properties of the quantum dots, it is possible to
develop new devices for data storage [24]. Ge islands, embedded in oxides, have become of
primary importance for device applications thanks to their ability to store charges for a
long time, even at room temperature. Moreover the charge carriers in a MOS transistor
can control the conducting channel between source and drain, which is useful in memory
devices [52]. Magnetic quantum dots are also fundamental for electronic devices based on
spin transport.

Particularly for optoelectronic applications, the possibility to control the positioning
and size-uniformity of quantum dots is very important [50, 53], for example in single photon
emitters for optical communications [54, 55]. Indeed, a detector can’t be based on a single
dot, but has to take advantage of many of them at the same time, otherwise the collected
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or emitted signal would be too weak. To have a coherent behavior from all of them, the
quantum dot array must be ordered. The heteroepitaxial growth on patterned substrates is
a viable path to achieve an ordered array of nanostructures by self-assembly.

In general, a pattern consists in creating regions on the surface with specific properties,
that can enhance the nucleation of islands [56]. This can be achieved thanks to nano-
lithography, which enables a control up to the nanometer scale of the substrate geometry.
The shape given to the substrate may consist of pits, with a specific shape and size and a
well controlled spacial ordering [29], or mesa [57] and stripes regularly distributed on the
surface.

1.2 Heteroepitaxy in nanowire structures

Semiconductor nanowires (NW) can be defined as filamentary crystals with a diameter
of the order of few nanometers, and a length from hundred of nanometers to microns [7,
58, 59]. Their historical origin can be assigned to the studies of whisker growth made by a
vapor-liquid-solid technique, presented in a work by R. S. Wagner [60]. Indeed, starting
from this technique, in the early 1990s Hitachi scientists developed the growth of III-V
nanowhiskers [61, 62]. This can be considered as the first example of nanowire growth,
as a good positional and directional control of the structures was achieved and the first
pn heterojunction was obtained by nanowhiskers. In a short period, the research topic on
nanowhiskers and nanorods became of great interest in the scientific community [63]. This is
demonstrated by the exponential growth of the research papers on the nanowire topic, which
has shortly reached thousands of publications per year. Indeed, the nanowire approach
has opened many research fields, which include nanowire electronics, photonics, energy
conversion and storage, up to interfaces for living cells. The unique one-dimensionality
is what makes nanowires so interesting if compared to nanocrystals in general, offering
the possibility to overcome many problems that seem to be unavoidable by the thin film
growth techniques. One of the main examples is the capability, enabled by nanowires,
to integrate optically active semiconductor, such as III-Vs, on Si, which could drive the
development of photonics applications merged with the current electronic technology. The
key issue to achieve this result is to find a solution for the large lattice mismatch between
group IV and III-V materials, which hinders the development of defect free heterostructures
in planar configurations. The optical applications of nanowires were introduced by the
demonstration of semiconductor nanolasers, by exploiting ZnO nanowires [64]. This initial
idea was then extended to other semiconductor materials, ranging from the UV to the
IR frequencies [65]. The possibility to develop a coherent light source with a nanometric
footprint has implications in the integration of photonic circuits, of miniaturized sensors, as
imaging probes with a high spatial resolution and in general for devices with a low power
consumption. Nanowires can be used also for thermoelectrics, as for instance it has been
shown that the thermal conductivity of Si can be reduced from the bulk value of 150 down to
8 W/m K thanks to the strong phonon scattering at the sidewalls of the nanowire structure
[8]. This could have strong implications for the waste heat recovery and for power generation
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applications. Another emerging topic is based on the interfacing of semiconductor nanowires
with living cells. Nanowires can be used as transistors or subwavelength optical guides
and their cross sections, being much smaller than the typical cell size, guarantees minimal
invasiveness [66–68]. For example, applications include the interfacing with DNA, proteins,
delivery of small molecules to stem cells, for a controlled stem cell differentiation or for the
detection, inhibition and stimulation of the propagation of the neuronal signal [69].

Displays technologies and solid-state lighting nowadays profit of the long-durability
and high efficiency of semiconductor light-emitting diodes (LED) [70]. However, there is
a variety of applied research fields that require a further miniaturization of the multicolor
light sources, as it is for the integrated optoelectronic and nanophotonics systems, for high
resolution micro-displays and for high density optical information storage. To this purpose,
nanowire-based LED are a promising solution, starting from the first example of GaAs
pn-junction up to the more recent demonstration as longitudinal and coaxial heterostructures
[71, 72]. Nanowires have also enabled the development of multicolor LED by combining
different n-type materials, as GaN (UV), CdS (green light) and CdSe (near-infrared) on
the same p-type Si substrate, which is the best solution for an efficient integration with the
existing technologies [73]. Still, there is room for developing the nanowire technology by
improving the efficiency, minimizing the nonradiative recombination phenomena, and by
exploiting environmentally friendly materials.

A similar situation applies to the solar cells world, where there is still the need for
inexpensive, but high efficiency photovoltaic devices in order to improve the large scale
energy conversion from solar light. One of the main advantages of nanowires is the possibility
to offer long absorption path lengths combined with short distances for the collection and
transport of charge carries, together with a strong light capture in high density nanowire
arrays [19].

Lithium batteries are used in most of our electronic devices. For portable electronics, it
is crucial to control the energy per volume and per mass that can be stored in the battery,
while for power applications such as for electric vehicles a large energy density is required
for improving the range of electric cars, but at the same time a high power is needed to
maximize the performances. To address these challenges, once again the nanowire geometry
is promising, as it can improve the density of lithium stored in the electrode materials of the
batteries. The main problem arises due to the volume expansion that occurs when inserting
large amounts of lithium in the electrolyte, eventually causing the mechanical degradation
of the device due to strain. This can be efficiently accommodated by the NW geometry [74],
which thanks to the high surface-to-volume ratio provides large active surfaces, accelerating
the charge-discharge times, and enable a high packing density, if compared to bulk materials.

1.2.1 The vapour-liquid-solid technique

The most common technique to grow semiconductor nanowires is the vapor-liquid-solid
(VLS). A liquid phase, usually corresponding to a metal nanodroplet, gathers and decomposed
the precursors which are present in the vapor phase, and makes them precipitating in the
form of a solid nanowire. The metal which is most commonly used to catalyze the growth
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is gold, which has the advantage that it does not oxidize and it is a stable catalyst even
at sizes down to few nanometers. Moreover, it works for many materials, ranging from
group IV, to III-V to oxides. The growth kinetics of this technique has been investigated in
details for a classic Au/Si VLS system profiting of real time observations of the growth via
ultra-high-vacuum transmission electron microscopy (TEM) [75]. In the initial stages, a thin
AuSi liquid shell is observed around the Au particle as soon as the Si precursor is introduced
in the growth chamber. Once the alloying process is complete, the supplied Si results in
the nucleation of a solid phase, due to the precipitation of the supersaturated liquid phase.
The VLS growth tends to proceeds by a layer-by-layer dynamics, with a nucleation process
which occurs at the triple-point junction between the solid, the liquid and the vapor. At the
triple junction the formation of an additional small facet can be observed, dependent upon
the contact angle of the droplet and related to the nucleation process [76]. The direction
along which the nanowire grows is not a fixed property of the material, but it is dependent
on the growth conditions. Indeed, for example, it has been shown that the hydrogen atoms
that bound to the surfaces of the sample can change the growth direction during growth
[77], basically by altering the surface energy balance which drives the stationary shape of
the catalytic droplet. In some specific cases, as for the growth of GaN nanowires, it has
been reported that the growth direction can be selected by changing the substrate, as it
is related to the heteroepitaxial relationship between the GaN crystal and the substrate
surface [78]. The crystal structure of the growing nanowire is another property which
is influenced by the growth conditions [79]. For instance, III-V nanowires often exhibit
a randomly distributed sequence of wurtzite/zinc-blende polytypism. In particular, the
growth of different phases can be controlled by changing the temperature or the diameter
of the nanowire [80], which is set by the size of the droplet. The control of the nanowire
positioning and growth orientation, which are crucial for the application in ordered arrays,
can be achieved by using lithographic techniques, which can drive the positioning of the
droplet which establish where the nanowire growth occurs. Conventionally, VLS is applied
to (111) surfaces for group IV semiconductors, or the (111)B for III-V, which allows for a
growth perpendicular to the substrate surface.

One of the main drawbacks of the gold-catalyzed growth is that when Au atoms are
incorporated in semiconductors, as for Si and Ge, they can create deep level traps and
scattering centers [81]. This issue can be avoided by exploiting self-catalyzing techniques, in
which the material of the droplet is also used to fabricate the semiconductor crystal, as it is
for the Ga assisted growth of GaAs nanowires [21, 82].

1.2.2 Core/shell structure

Core/shell nanowires correspond to the formation of a radial heterostructure on a
nanowire. This is generally achieved by hindering the axial growth, which has produced
the formation of the core structure, and by promoting a nearly 2D epitaxy on the nanowire
side facets, generating the so called shell of the nanowire. In the case of VLS growth, this
result can be achieved by crystallizing or removing the droplet. In the case of Ga-catalyzed
growth, for instance, it is possible to stop the Ga supply while increasing the As one and
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reducing the growth temperature. In the case of Au droplet, it can be crystallized by an
increase of the precursor flow or a reduced temperature or it can be removed, trying to
reduce the possible contamination source represented by Au, by ex-situ etching techniques,
for example with a Iodine solution [83]. Once the catalyst has been removed, the precursor
gases can react all over the surface, promoting the axial growth as well as the radial one,
which thanks to the higher surface can collect also an higher volume of material. The most
natural application of the core/shell structure is to develop an heterojunction, with an high
interface area. This is exploited for instance in the optical applications for solar cells, where
one of the advantages of nanowires is to have a higher surface that can capture the incoming
light [84].

Furthermore, the core/shell configuration has also a structural role, as the substrate
required for the growth of the active layer for the applications is here represented by the core.
With respect to planar substrates, core/shell nanowires can profit of efficient mechanisms for
the strain relaxation, as we will describe in Chapter 5, and they could be compared to the
growth on thin substrates, or more in general on substrates with a high elastic compliance.
Core/shell nanowires can also enable the transfer of the crystal structure from the core to
the shell, applied for instance to grow in the wurtzite (WZ) phase some semiconductors
which would otherwise grow with a cubic crystal strucure [20, 83, 85].

1.3 Selective area epitaxy

Another technique which allows for the growth of nanowires is the selective area epitaxy
(SAE) [86, 87]. The main difference with the VLS method is the absence of a catalyst droplet
on the top of the nanowires during growth. Indeed, the growth dynamics relies only on the
preferential formation of crystal facets. Depending on the growth conditions, different facets
are formed on the surface of the growing crystal and their relative area is related to the
corresponding growth rates. The conditions that lead to the growth of nanowires correspond
to the case of a fast growing facets, e.g. the (1 1 1)B for III-V semiconductors, and slower
growth front perpendicular to the fast one, e.g. 〈1 1 0〉 facets [88]. The parameters window
to achieve this type of growth is often limited in temperature and partial pressure of the
precursors [87]. In particular, a growth temperature higher than the congruent one for III-V
is required to prevent the formation of droplets during growth [89]. Moreover, the choice of
the substrate surface is limited, as the normal to the substrate should coincide with the
growth direction of nanowires.

This growth requires a fundamental ingredient, which is selectivity. Indeed, in principle,
just by tuning the growth conditions one would achieve a growth of the whole substrate
surface, without the mono-dimensionality which is typical of nanowires. Therefore, it is
fundamental to restrict the growth process to some small portions of the substrate surface,
which represent the basis of nanowires. This can be achieved by creating a mask made by
an amorphous film, generally SiO2 or SiNx on the substrate by lithographic techniques. In
particular, the amorphous layer can be deposited by radio-frequency sputtering, plasma-
enhanced chemical vapor deposition, or thermal oxidation. Then some circular openings
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are created in this layer by using electron-beam lithography and wet-chemical etching, so
that the growth of the crystal is allowed only in these regions, but not on the amorphous
surface. The size of the opening can control the width of the structures that grow, and this
technique offers also a control on the positioning of the nanostructures, achieved thanks to
the lithographic patterning of the mask.

The SAE is not limited to the growth of nanowires, but can be applied to achieve a
bottom-up growth of several types of nanostructures. For example, the growth of quantum
dots with a precise control of the position and for different substrates orientation has been
studied for GaN [90], GaAs [91] and SiGe [92], with the aim of developing optoelectronic,
photovoltaic and photo-electrochemical applications. The shape of the openings in the
amorphous layer can be also be extended in one direction, developing lines of finite extension.
This enables the growth of horizontal nanowires, or more generally this leads to the growth
of fin-like structures [93]. This type of nanostructures are studied, for example, for the
possible applications in the FinFET technology [94, 95] or for silicon-integrated photonics [96,
97]. Recently, SAE has been exploited also to growth nanomembranes structures [98–103],
which extend vertically from the substrate forming quasi-two-dimensional structures. This
latter case will be analyzed in details in Chapter 2, with particular attention to the growth
dynamics which leads to such a peculiar growth mode.
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Chapter 2

Modeling the kinetic crystal
growth

The growth of vertical nanostructures is one of the most active topics in materials science.
This is motivated by the need of novel technologies that can go beyond the innovation process
exploited so far by the miniaturization of planar devices. For instance, the possibility to use a
3D nanostructure has enabled the development of Fin-FET technologies, of nanowires-based
applications or of micro-pillars technologies. Among all these areas, the growth of vertical
nanomembranes, characterized by a lower symmetry with respect to nanowires, is the one
that still needs a complete understanding of the growth dynamics. In this Chapter, we
propose a novel modeling approach to tackle the 3D growth of nanostructure, with particular
attention to the peculiar kinetic conditions that lead to a vertical growth.

2.1 Introduction to crystal faceting

The most distinctive feature of a crystal is its faceting, both on a macroscopic scale
and on a nanoscale [104]. In this latter case, since the surface-to-volume ratio is higher,
the faceting can play a crucial role in determining the material properties, and therefore
it is important to control facets in view of possible applications. The understanding of
the crystal faceting has been widely studied in the literature, since the 19th century. The
most remarkable study is the one by G. Wulff in the 1901 [14] where he proposed the well
known geometric construction. It allows to determine the faceting from the definition of
the surface energy density of the crystal, and in particular for the possible orientations of
the surface, as sketched in Fig. 2.1 in 2D. The construction consists in plotting in polar
coordinates the surface energy density γ as a function of the surface orientation n̂. Then,
at each point of this curve, the tangential plane is drawn, which corresponds to a line
perpendicular to n̂ for the 2D construction. The inner envelop of this system of planes
identifies the surface of the crystal. Notice that this construction provides the geometry, but
it is size independent and in principle can be re-scaled to any length. The key assumption,
on which the Wulff construction is based, is the minimization of the surface energy of the
system [105]. Therefore, the crystal morphology obtained following this construction is
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called as equilibrium crystal shape (ECS). The resulting shape can be interpreted as the
optimal balance between the tendency to expose the facets with the minimum energy density
and the total surface area of the crystal. The thermodynamic assumptions that are required
by the definition of the ECS [106, 107] make it a reliable tool to inspect the faceting of finite
crystals in annealing conditions or, more generally, in close-to-equilibrium growth processes,
such as at high temperatures or at slow growth rates. This implies that the material which
is supplied by external sources to the crystal can be incorporated in the position which
guarantees the minimum increase of the total energy of the system. This means that the
evolution pathway is composed only by the minimum energy configurations for the different
volumes of the growing crystal.

However, when considering growth processes, it is more likely to have out-of-equilibrium
conditions, that in principle can alter the crystal faceting with respect to the ECS predicted
by the energy minimization. In these cases, a more reliable modeling of the crystal faceting
can be provided by a different geometrical construction, called kinetic crystal shape (KCS) [12,
108, 109]. This is obtained by explicitly considering the motion of the facets of the crystal,
which is done by assigning a growth velocity v = v(n̂) to each surface plane. This morphology
can be obtained geometrically also by considering the Wulff construction, but using the v(n̂)
in place of γ(n̂), as it is shown in Fig. 2.1.
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γ v
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surface
energy
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Figure 2.1: Schematics of the Wulff construction for the ECS, starting from a γ-plot,
and the KCS, starting from a v-plot. The geometric construction is the same for both
cases and it is sketched for the ECS only. An illustrative growth sequence for the
evolution of a circular seed to the KCS is illustrated by the dashed profiles and it is
obtained by moving points accordingly. (from Ref. [110])

The geometrical constructions considered so far are defined as scale-independent. This
means that, to determine the crystal shape of particles with different volumes, it is sufficient
to scale the geometrical shape to have the prescribed volume. Even if this could apparently
be an advantage of these techniques, making them extremely flexible, as a major drawback
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both ECS and KCS can’t provide any information on the kinetic pathways. In particular, the
ECS just describes the minimum energy configuration, while the KCS provides an evolution
of the growth front, but only under stationary conditions. However, it is more likely the
case that the initial seed for the crystal growth has a different shape if compared to the
stationary one, reached at later stages of the evolution. Therefore, the initial stage when
the relative extension of the facets is changing to adapt to the prescribed stationary shape
cannot be described neither by ECS nor by KCS. A first approximation of this dynamics
can be achieved by tracing the evolution of the surface planes according to the prescribed
velocity v(n̂), as in the so called Borgstrom construction [111], shown by the dashed profiles
in Fig. 2.1(b). Just by geometric arguments, it is found that the slowest growth front tends
to increase their surface area at the expenses of the fastest one, up to closing and expelling
them out of the growing profile, provided that they are not included in the KCS.

In principle, the ECS can be considered as an intrinsic property of the material for
a specific set of growth conditions such as temperature, pressure of the precursors and
surface reconstruction. Therefore, the ECS can be determined just by computing the surface
energy of all the possible facets of the crystal, for instance by ab-initio simulations. On
the contrary, the estimation of the growth velocities required by the KCS construction is
more complex and requires a direct comparison with the experiments. Indeed, the growth
rates of the facets result from the combination of intrinsic properties of the crystal structure
at the surface, related for instance to the incorporation sites, but also from the growth
process, which involves the reactants, the distribution of the species in the surrounding
environment, the chemical reactions at the surface and possible side reactions, such as
etching and passivation, and finally by the sticking coefficient of the surface [104]. This
higher complexity of the parameter space for the KCS construction introduces a variability
between ECS and KCS.

To be more precise, KCS and ECS can be interpreted as the two limiting cases in
growth conditions driven by kinetics or thermodynamics, respectively. The thermodynamic
regime is achieved when the surface diffusion prevails over the external supply of material.
This allows for a full redistribution of material on the surface toward the minimum energy
configuration. Conversely, the kinetic growth regime implies a short-range diffusion length,
possibly limited by the fast material supply that hinders the diffusion. Therefore, the
material cannot rearrange on the surface toward the minimum energy configuration.

In between these two extremes, an intermediate regime is still possible, characterized by
both the diffusion and the incorporation dynamics. This condition was firstly formalized
by J.W. Cahn and J.E. Taylor in Ref. [15], and derived by mathematical assumption in
Ref. [11]. The main feature of this approach is to consider that atoms, when deposited
on the surface, need a finite time before being incorporated into the crystal lattice. In
the meanwhile, they can diffuse on the surface, eventually migrating on different facets.
Since the incorporation is affected by the lattice structure at the surface, often it is an
orientation-dependent property.

In Ref. [112], C. Stöcker and A. Voigt investigated the effect of an isotropic kinetic term
on the faceting, in annealing conditions, of crystal surfaces caused by strongly anisotropic
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surface free energies. Later, Rätz et al. in Ref [113] introduced an anisotropic kinetic term,
dependent on the facet orientations. It is the goal of this Chapter to extend such study to the
case of a growing crystal, showing how faceting can change from ECS to KCS by controlling
the incorporation kinetics. To this purpose, a phase-field (PF) approach [10, 114] is exploited,
as detailed in the Section 2.2. Simulation results are first reported for a few test cases in
Section 2.2.1, showing in a systematic way how the crystal faceting may occur because
of anisotropies in the incorporation dynamics. Then, in Section 2.2.2, the competition
between anisotropic surface energy and/or growth rates and the incorporation dynamics
is investigated. More specifically, we show the possibility to account for intermediate
morphologies that recover the ECS and the KCS as limiting cases. Finally, an application
to morphologies observed in experiments is reported in Section 2.2.3 to validate the method
and illustrate its capabilities.

2.2 Continuum modeling of kinetic growth by phase-field

The kinetic regime for the growth of faceted crystals is here investigated by using the
model presented by Cahn and Taylor in Ref. [15]. The numerical implementation is then
performed by exploiting the phase-field approach, as described in Ref. [113]. In the following,
we will describe the setup of the model, with particular attention to the physical meaning
of the different mathematical operators.

J

v

crystal surface

v

J

incorporation
v

a) b)

Figure 2.2: Schematics of the growth model. (a) The normal velocity v of the surface
profile is due to the local material accumulation by the surface material flow J . (b) The
surface evolution can be limited by the adatom incorporation on the surface. Adatoms
can diffuse on the surface due to gradients in the chemical potential, for instance due
to different adatom concentrations.

Generally, the growth of a crystal is achieved by the net transfer of material from a
surrounding phase, mainly a vapor or a liquid, to the lattice structure of the crystal itself.
This phenomenon is mediated by the crystal surface, which stays in between the two phases.
On the surface, adatoms can diffuse, interact or desorb before the incorporation into the
crystal lattice occurs [115, 116]. In order to provide a description for this process, we have
to focus on the adatom dynamics. As we want to deal with a mesoscopic scale, we choose to
adopt a continuum description of the system. Therefore, we cannot follow the trajectory of
the single adatoms, or more in general of the mobile species, but we can infer just on their
density N . The temporal evolution of the adatom density at each point x of the surface can
be determined by considering a continuity equation. This includes the external material
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supply from the vapor or liquid phase, here identified as a deposition flux F , and a sink of
material that accounts for the incorporation of adatoms into the crystal lattice with a rate
v, which describes the motion of the crystal surface as due to the material incorporation.
With these terms, the continuity equation is

∂N

∂t
= ∇s · [M∇sµ] + F − v. (2.1)

where M is the adatom mobility, µ is the local adatom chemical potential and the
operator ∇s is the gradient along the surface. The diffusion of adatoms on the surface,
according to the Onsager linear law, follows the gradient of the chemical potential on the
surface: J = −M∇sµ. The external material supply, in general, depends on the local
surface orientation, F = F (n̂), as it can be determined by a directional deposition flux, or
it can be related to the solidification properties of each facet in the case of a liquid-to-solid
transformation, or even to the different reactions at the surface of a gaseous precursor. Here,
for the sake of simplicity, the mobility is considered isotropic, and no explicit desorption
dynamics is modeled, considering that its effect is implicitly included in the modeling of the
net material supply.

The second important dynamics that has to be defined in order to have a complete
picture of the growing system is the incorporation process. The attachment/detachment of
adatoms into the lattice is quantified by the velocity v as it implies a motion of the surface
front due to the additional material which is incorporated in the structure, as sketched in
Fig. 2.2(b). In a first approximation [11, 117, 118], the incorporation rate can be considered
as proportional to the difference between the chemical potential of the adatom phase and
the chemical potential µeq on of the crystal phase, at each point on the surface:

v = (µ− µeq)/τ, (2.2)

where τ is a kinetic coefficient setting the timescale of the attachment/detachment process.
By considering a physical interpretation of this equation, the coefficient τ corresponds to
the adatom lifetime before being incorporated. As this process depends on the local
incorporation sites present on the surface, this coefficient τ = τ(n̂) can depend of the surface
orientation. The equilibrium chemical potential is defined as the functional variation of the
free energy G (µeq = δG) with respect to the change in the surface profile, which corresponds
to the material incorporation. In this model, we limit the description to the surface energy,
neglecting for instance elastic contributions to the chemical potential. Therefore, µeq ∼ ∇sξ,
with ξ = ∇(rγ(n̂)) the Cahn-Hoffmann vector (r the magnitude of vector r = rn̂)[119, 120].
If we considered a simplified 2D system, this can be rewritten as µeq ∼ κ(γ + γ′′(θ)), with κ
the profile curvature, γ the surface energy density and θ the local orientation of the surface.

Following Ref. [15], we assume quasi-stationary conditions for the adatom density, which
is equivalent to imposing that ∂N/∂t ≈ 0. Then, the continuity eq. (2.1) can be combined
with the attachment/detachment eq. (2.2) in a coupled system for two equations and two
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unknown variables: v = ∇s · [M∇sµ] + F

µ = µeq + τv
(2.3)

which allows to describe the profile evolution that results from the adatom incorporation
dynamics. As it is evident by looking at the second equation, the chemical potential µ for
the adatom phase includes both the thermodynamic contribution µeq, which accounts for
the crystal structure energetics, and the kinetic term, which is implicitly proportional to the
velocity v. In the thermodynamic regime, characterized by an infinitely fast incorporation
time τ → 0, the chemical potential of the adatom phase becomes equal to the one of the
atoms which are already incorporated in the crystal, µ→ µeq. In this case, the diffusion of
adatoms is driven directly by the surface energy differences. Therefore, the morphology of
the crystal would evolve to the ECS in the case where the material supply is negligible, or
to a KCS when the adatom mobility can be considered as null if compared to the material
supply.

P
B
C

Figure 2.3: Schematics of the geometry representation in the phase-field model. On
the right the explicit system geometry and on the left its representation by means of the
phase-field function ϕ in the domain Ω. Boundary conditions periodic (PBC), Dirichlet
(ΓD) and Neumann (ΓN ) are marked too. The green arrows represent the deposition
flux.

This implicit problem for the chemical potential µ and the profile evolution v cannot be
solved analytically for a generic 3D profile [10, 11, 121]. Therefore, a numerical approach
is required to handle this type of model. In particular, a phase-field approach is ideal to
efficiently deal with the numerical solution of this problem, with the advantage of considering
any morphology, with no specific limitation on the crystal shape and topology. This is
made possible thanks to the implicit description, sketched in Fig. 2.3, of the system by the
the phase-field function ϕ, set equal to 1 within the crystal and 0 outside. The surface
profile is nominally located at the ϕ = 0.5 iso-line in 2D or iso-surface in 3D (as shown in
following plots). This function is initialized in the simulation domain Ω with the function
ϕ(x) = 0.5[1 − tanh(3d(x)/ε)] with d the signed-distance between the point x and the
surface profile and ε a parameter setting the width of the diffused-interface, corresponding
to the surface region. The velocity v, describing the evolution of the crystal surface, is then
expressed as a variation with time of ϕ, so that eq. 2.3 becomes:
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∂ϕ

∂t
= ∇ · [M(ϕ)∇µ] + F |∇ϕ|

g(ϕ) · µ = µeq + ετ(n̂)∂ϕ
∂t

, (2.4)

where g(ϕ) = 30ϕ2(1−ϕ)2 is a stabilizing function [122–124] andM(ϕ) = M0(36/ε)ϕ2(1−ϕ)2

is the mobility function. This is particularly required to limit the evolution to the surface, i.e.
in the diffused-interface, so to reproduce a surface diffusion, neglecting any bulk contribution
to the mass transport.

As demonstrated in Refs. [10] and [125], the equilibrium chemical potential for the
general case of anisotropic γ is:

µeq = −ε∇ · [γ(n̂)∇ϕ] + 1
ε
γ(n̂)B′(ϕ)+

−∇ ·
[(
− ε2 |∇ϕ|

2 + 1
ε
B(ϕ)

)
∇∇ϕγ(n̂)

]
,

(2.5)

where ∇∇ϕ is the gradient defined with respect to the ∇ϕ direction. In order to numerically
handle strong anisotropy conditions, the Willmore regularization [10] is also implemented.
This corresponds to introducing a small corner rounding [126], due to an energy cost for the
curvature at the corners. This is modelled by adding an additional term to µeq in eq. (2.5):

µW = β

[
−∇2κ+ 1

ε2
B′′(ϕ)κ

]
, (2.6)

with κ = −ε∇2ϕ+ (1/ε)B′(ϕ), and β a coefficient to set the strength of the rounding. By
including this regularization, the system of partial differential equations to be solved has
now a sixth order, but still can be solved numerically through the implementation for the
PF approach [127].

In order to set the anisotropic functions F (n̂), γ(n̂) and τ(n̂) in a reliable way, we follow
Refs. [127, 128], and use the generic continuum function:

f(n̂) = f0 +
∑
i

fi(n̂ · m̂i)w ·Θ(n̂ · m̂i) (2.7)

with the baseline value f0 and maxima (or minima if fi < 0) at the assigned orientations
m̂i, with height (depth) set by fi and width w. In the following, we set f0=1 for F (n̂)
and γ(n̂), while it is 0 for τ(n̂). w is chosen to exclude any overlap between the different
peaks: it is set to 50 for F (n̂) and γ(n̂), and to 100 for τ(n̂). Outward-pointing vectors
are only considered thanks to the Heaviside function Θ, thus permitting to treat systems
without inversion symmetry. The choice of τ0 = 0 means that all the facet orientations that
we do not consider have an instantaneous incorporation dynamics, therefore they tend to
incorporate and to grow faster.

The numerical solution of eq. 2.4 is obtained by Finite Element Method (FEM) with
the AMDiS toolbox [17, 18]. The integration scheme for the time evolution is semi-implicit,
and the mesh is adaptive, with a finer refinement in the diffuse-interface where the critical
evolution of the PF function occurs. For the 2D simulations we use ε = 0.05, while for the
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3D we set ε = 0.2. Neumann boundary conditions, corresponding to a zero flux dynamics,
are imposed on the boundaries of the simulation domain Ω.

In the following, we present dimensionless parameters for F , γ, τ and M . This allows to
focus on the relative weight of the different terms of the model. If the experimental time and
size scales have to be matched, a unit measure analysis returns the following scaling of the
simulation parameters: [F0] = [l][t]−1, [γ0] = [e][l]−2, [τ0] = [t][e][l]−4, M0 = [l]6[e]−1[t]−1

with respect to the length [l], time [t] and energy [e] units.

2.2.1 Faceting by orientation dependent incorporation dynamics

The first point that has to be addressed for a full characterization of the kinetic growth
model is the capability of reproducing a crystal faceting by considering an anisotropic
incorporation τ(n̂). All the other parameters, in particular the surface energy γ(n̂) = γ0 and
material supply F (n̂) = F0 are considered as isotropic, thus they should drive the profile
evolution toward a spherical shape, or a circle in 2D.

Figure 2.4: (a) Growth simulation of a {111} faceted shape with the kinetic incor-
poration term. (b) Time evolution of cross-section profiles. Color map for (c) the
incorporation time τ , (d) the chemical potential µ and (e) the equilibrium chemical
potential µeq, corresponding to the surface curvature. τ111 = 20 and M0 = 0.1 . (from
Ref. [110])

With these assumptions, in Fig. 2.4, the growth of an octahedral crystal is studied. The
initial shape is set as a spherical nucleus, to ensure that no faceting is induced due to the
initial state of the system. The incorporation time τ(n̂) is set with maxima along the 〈1 1 1〉
orientations, as it is shown in the color map in panel (c) for the profile corresponding at
t=2. As a consequence of this anisotropy, the adatom chemical potential µ is maximum
at the center of the {1 1 1} facets, where the incorporation is lower and a higher density of
adatoms is collected. On the intermediate regions, the adatom incorporation is faster, being
τ(n̂) lower, therefore the µ is also minimum, corresponding to a lower adatom density. The
distribution of the chemical potential on the surface is made evident in panel (d). Another
difference can be noted between the edges and the vertexes. These are the absolute minima
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of the chemical potential. This allows for the fastest incorporation on these regions, which is
strictly required to keep straight facets, preventing a significant corner rounding. The most
interesting fact, that comes out from the comparison of the color maps, is that the adatom
chemical potential is opposite with respect to the equilibrium one µeq. This is proportional
to the surface curvature, as γ is isotropic, and would drive the evolution toward a global
rounding of the particle. This tendency is still active at the edges, where the kinetic term
becomes lower and hence the evolution by curvature minimization is effective, leading to a
rounding of the edges. As it is made evident by the cross-section profiles in Fig. 2.4(b), the
rounding is more pronounced at the facet vertexes, where the curvature is maximum, while
the edges are sharper, as the wider angle between the adjacent facets already provides a
lowering of the local curvature.

τ

μ
[110] [110]

μeq min

m

J

Figure 2.5: Growth simulation of a faceted shape with competing {110} and {111}
facets, with τ = 20 and 16 respectively. Color maps show the the incorporation time τ ,
the chemical potential µ and the equilibrium chemical potential µeq on the surface. M0
= 0.1 . (from Ref. [110])

The basic mechanisms analyzed so far apply also to the case where different facets, with
different incorporation times, are considered. However, while the polyhedron bounded only
by {1 1 1} facets has a growth dynamics which is equivalent to a KCS construction with
assigned growth velocities for the facets, the existence of different sets of facets turns out to
produce a new growth dynamics. Indeed, the difference in τ makes the facets compete for
the collection of the material which is incoming on the surface. The first example of this
type of growth dynamics is reported in Fig. 2.5, where both {1 1 1} and {1 1 0} planes are
included in the simulation, as they are local maxima in the τ(n̂) function. In particular,
we have chosen that τ111 < τ110, as shown by the color map. As it is expected, in the
initial stages both facets tend to appear on the crystal morphology. Indeed, they correspond
to slower growing front with respect to the intermediate orientations, which grow faster
leading to the vertexes and edges formation. However, since {1 1 0} tend to accumulate more
adatoms than the {1 1 1} due to the higher τ , a net material transfer from {1 1 0} to {1 1 1}
is observed. This results in a lateral expansion of the {1 1 0} due to a faster growth velocity
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of the {1 1 1}. This is shown also in the color map for the chemical potential µ, which is
lower on the {1 1 1}, maximum on the {1 1 0} and minimum on the edges and vertices. As in
the previous case, the equilibrium chemical potential µeq would drive the opposite evolution
toward the rounding of the shape, as it is maximum on the edges and vertices which have
the highest surface curvature. This demonstrates that also in this case the faceting of the
crystal is purely determined by kinetics, and not by the surface energy minimization.

The magnitude of the material exchange between facets depends on the relative difference
in incorporation times, which corresponds to a different tendency to accumulate adatoms on
the surface. This is made evident in Fig. 2.6, where the faceting during growth of a circular
2D profile is studied by considering local maxima of τ in both {1 0} and {1 1} directions.
The crystal evolution is compared for two different ratios of the incorporation times, for
a case where τ10 is just 10% greater than τ11 and another where it is two times larger. In
the former case, both {1 0} and {1 1} facets coexist, returning an octagonal shape with
{1 0} segments extending slightly more than {1 1} ones. In the latter case, the evolution is
different as the growth rate of the {1 1} facets is enhanced by the adatom transfer from the
slow {1 0}, so that this reduces in size up to its disappear, or at least it is not distinguishable
from the rounding of the corners of the resulting {1 0}-bounded shape.

0

20

40

τ

0 90° 360°180° 270°

[10] [01] [10] [01] [10][11] [11] [11] [11]

τ10/τ11=1.1 τ10/τ11=2.0

0.5 0.5

Figure 2.6: Comparison of the shape evolution from circular to faceted shape for
different τ10/τ11 ratios, by using the anisotropy functions shown in the top panel. (from
Ref. [110])

The competitions between facets discussed so far closely resemble the principles of the
KCS. Indeed, the hierarchy of incorporation times roughly corresponds to the hierarchy of
the facet growth rates. However, there is a big difference between the two approaches. At
variance from the KCS construction, the facet velocities are not constant during the growth,
by they are dynamically assigned by the redistribution of material on the surface, and in
particular by the exchange between adjacent facets. This process is enabled by the surface
diffusion, which is mediated by the diffusion coefficient which limits the diffusion length
of adatoms. This property can have an important effect on the faceting dynamics as the
material transfer between facets can be effective only if the length scale of the system is
comparable with the diffusion length.

This is made evident in Fig. 2.7, where the effect of changing the size of the system or
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Figure 2.7: (a-b) Time evolution of the surface contours for two different τ10/τ11
ratios. (c) Plot of the {1 0}/{1 1} area ratio for two sets of τ (blue as in panel (a), red
as in panel (b)) for different diameters D of the initial shape and F0/M0 ratios. (from
Ref. [110])

of reducing the surface mobility is studied for the faceting driven by {1 0} vs. {1 1} facets,
comparing two different ratios between the incorporation times. These are illustrated in
panels (a) and (b), where the time evolution of the same initial circular shape is reported.
As it has been already discussed, the facets with an higher τ , i.e. the {1 0}, tend to prevail
on the faceting of the structure. In particular, in the evolution of panel (a), the material
transfer toward {1 1} is stronger so that they quickly shrink and disappear, and the resulting
shape is a {1 0}-faceted square. On the contrary, in panel (b), the material transfer is slower
due to a smaller difference in the incorporation times. Therefore, {1 1} facets persist for
a longer time. A better understanding of these processes can be achieved by comparing
directly the evolution over time of the ratio between {1 0} and {1 1} surface areas, as shown
in Fig. 2.7(c). In both cases, the trend for the {1 1} shrinkage is exponential, with a lower
velocity for the case of a smaller τ ratio. Indeed, as the facet size decreases, the same volume
of material from the {1 0} is spread over a smaller {1 1} area, resulting in a faster increment
of the growth rate.

Another interesting comparison can be made by considering a particle which is four-times
larger. In this case, with respect to the previous one for the smaller particle, the trend for
the {1 0}/{1 1} ratio grows significantly slower. This can be easily explained by considering
that the diffusion cannot cover any more the whole facet area, or at least it takes a longer
time. Therefore, the competition between facets is less effective as it is more influenced
by the rate of the external material source. This apparently simple property of the model
represents a major difference with respect to the KCS construction, which can predict only
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a self-similar morphology without taking into account the possibly limited material flow on
larger facet areas. A similar behavior is found also in the case of lower mobility, which still
influences the diffusion length for the surface transfer of material. As a consequence, when
the competition between facets is significantly slowed down, the multifaceted morphology
can be considered as metastable, even if the same τ for a smaller particle, or an higher
mobility, would quickly make a facet disappear from the crystal morphology.

2.2.2 Competing regimes driving the crystal faceting

The orientation-dependent incorporation times need a surface diffusion dynamics to
promote the faceting of the crystal. Moreover, by looking at the eq. (2.3), we can note that in
the balance for the chemical potential, the kinetic term has to be larger than the equilibrium
chemical potential µeq. This means that an out-of-equilibrium condition is required to
observe such a growth dynamics. This is made evident by the analysis in Fig. 2.8, where
different material supplies and incorporation times are considered. In particular, in the top
part of the figure (panel (a)), three profiles at different times, but with the same volume,
are reported as obtained by changing the magnitude of the external supply of material. A
large supply corresponds to out-of-equilibrium conditions, as there are more adatoms on
the surface to be incorporated in the crystal. Indeed, in this condition the kinetic term
can determine a faceting of the profile. On the contrary, when the incoming material is
reduced, the growth is closer to equilibrium and a more rounded shape is obtained, lowering
the isotropic surface energy of the system with only a minor influence of the incorporation
dynamics. A similar trend is found when changing the magnitude of the incorporation
time. Indeed, when the incorporation is slower, the redistribution of material is strongly
affected by the incorporation dynamics, thus driving the kinetic faceting. But when the
incorporation becomes faster, the differences in the adatom densities become negligible,
therefore the material flows according to the minimization of the surface energy. More
precisely, the balance between the kinetic and energetic contribution is given by the ratio
µeq/(τv) = (κγ)/(τv). Therefore, it depends on the actual profile due to the local curvature
κ. Indeed, the high curvature regions tend to be rounded by the surface energy minimization,
resulting in a locally smooth profile despite the overall crystal is faceted by kinetics. This
can be observed in the intermediate profile of Fig. 2.8(b), where a square-faceted shape is
obtained, still with a significant rounding at the vertices. The curvature relates to the local
curvature radius as κ = 1/R, meaning that this property is scale dependent. Therefore, when
considering a larger particle, the corner rounding is limited to a smaller region, comparable
with the curvature radius which can balance the kinetic tendency to develop a faceted corner.
For instance, if the profiles of Fig. 2.8 were considered at an much larger scale, they would
present wide faceted areas, with rounded corners limited to a minor region of the crystal.

The competition between thermodynamics, related to the surface energy term, and
kinetics, which accounts for the incorporation dynamics, can be illustrated for the more
realistic case where anisotropic surface energy is modeled. If we consider the case where
the τ maxima coincide with the γ minima, both energy terms concur in the faceting of the
profile, with a time scale which is eventually influenced by the incorporation time. Vice
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Figure 2.8: Comparison of the out-of-equilibrium conditions needed for the kinetic
faceting. (a) profiles obtained for increasing deposition flux, τ11 = 10. (b): profiles for
increasing τ11, F0 = 10. All the profiles have the same volume, and the initial stage is
a circle. M0 = 0.1 . (from Ref. [110])

versa, if the expected facets due to γ or τ differ, a competing dynamics can be obtained,
where the faceting is determined by the relative strength of the two contributions to the
chemical potential µ. To provide an example via PF simulations, we consider a γ = γ(n̂)
with deep minima along 〈1 0〉 directions dominating the ECS, while τ has maxima in the 〈1 1〉
directions, where γ has only shallow minima, as it is shown in Fig. 2.9(a). If the τ/γ ratio
is small enough, the main driving force is the energy minimization, which redistributes the
incoming material according to the surface energy anisotropy. Therefore, the profile tends
to the ECS by exposing the most stable {1 0} facets, despite their fast incorporation rate, as
shown in Fig. 2.9(b). Vice versa, when the τ/γ ratio is increased, the morphology evolution
is driven by kinetic contributions. This reduces the formation of the most stable {1 0} facets
in favor of the slower growing {1 1} ones. As a consequence, a rotated {1 1}-faceted squared
profile is found in the simulation shown in panel (d), even if this requires a higher surface
energy than the corresponding ECS morphology. However, it is important to remember
that, whether the material supply is interrupted and the surface diffusion dynamics occurs
in quasi-equilibrium conditions, the ECS shape is recovered, just with a minor influence of
the anisotropic τ in the kinetic pathway toward surface energy minimization.

So far we have just considered orientation-dependent material properties in the definition
of the chemical potential. Nevertheless, also the material supply can be anisotropic F = F (n̂).
This is true for instance for the KCS modeling, when the faceting is purely determined
by an orientation dependent material supply. The advantage of the kinetic model here
proposed is the capability of tackling this anisotropic supply combined with the material
redistribution dynamics at the surface, as driven by the incorporation times τ . This is
shown in Fig. 2.10, where τ(n̂) and F = F (n̂) are both considered, as sketched in panel (a),
under the assumption of isotropic surface energy for the sake of simplicity. The simplest
configuration is when maxima in τ coincide with minima of F . In this case both these
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Figure 2.9: Competing role of incorporation time and surface energy anisotropy. For
larger τ (center and right) the kinetic faceting dominates over the thermodynamic
one resembling the ECS (left). Corner regularization is used with β = 0.05, while the
anisotropy functions for τ(n̂) and γ(n̂) are plotted in the top panel. (from Ref. [110])

contributions drive the same faceting, as it results in panel (b). On the contrary, when the
two anisotropies are different, the evolution of the crystal is no more simple to predict. In
particular, we set the two anisotropy function as out-of-phase by 45◦. In the most unbalanced
case shown in panel (c), where the material supply is sufficiently anisotropic, the crystal
exposes the facets where the deposition is lower, in a similar way as predicted by the KCS.
This is because the fast deposition hinders the material diffusion on the surface, thus making
the effect of the kinetic redistribution of material negligible. Only a small trace of diffusion
from the {1 1} vertices to the {1 0} facets can be hardly distinguished, but it is still too
weak for altering the shape evolution. However, if the F/M ratio is reduced, it is possible to
enhance the transfer of material on the surface, before it is incorporated into the bulk phase
due to the subsequent deposition. In this condition, a faceting as driven by the incorporation
times can become apparent, as described by Fig. 2.10(d). In the initial evolution stages,
the {1 1} facets, corresponding to τ maxima, are clearly recognizable despite corresponding
to the F maxima, suggesting a kinetic-driven faceting. However, the diffusion length is
particularly limited by the additional material supply. This becomes important when the
particle grows in size, and the diffusion is no more capable of covering the whole surface.
As a result of the reduced material distribution, the anisotropy of the deposition becomes
dominant and switches the faceting for the {1 1}, driven by the incorporation times, to the
{1 0}, promoted by the external supply, as it is evident in the later stages of the evolution.
Still, a small broadening due to the local diffusion is present at the {1 1} corners, which try
to keep the slower incorporating facets. This effect is less apparent when the particle grows
in size, as it is limited to the diffusion length. Therefore, we can conclude that the faceting
due to orientation-dependent incorporation times τ plays a major role for particle sizes as
small as the diffusion length. On the contrary, for larger sizes, the faceting is more likely
determined by the anisotropic material supply, as predicted by the KCS theory.

Finally, it is worth noting that the balance between the different contributions driving
the faceting holds on a local scale, so that the same growing system may behave differently
from one region to the other. This is not unusual if one considers directional deposition [129,
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Figure 2.10: Combination of anisotropic incorporation time and material supply. (a)
Plot of the F (n̂) and τ(n̂) anisotropy functions used. (b) Both anisotropies lead to
the {1 1} square (M0=0.001). (c) The flux anisotropy is rotated by 45◦ (dotted line
in panel (a)) and imposes {1 0} faceting (M0=0.001). (d): the mobility is increased
(M0=0.007), while keeping the opposite anisotropies for flux and kinetics as in (c). (e)
The flux F0 = 5 is directed on one side of the crystal, following the arrow. (from Ref.
[110])

130] or shielding effects [116, 131] with material supplied only on a certain portion of the
crystal and possibly diffusing on other regions. To illustrate this situation, in Figure 2.10(e)
the evolution of an initially circular profile with material supply only from the right-hand
side is considered. This could resemble, for example, the cross section of a nanowire, where
the deposition of the shell is performed selectively on just one side of the sample [132]. As
expected, the growth proceeds asymmetrically, with more material accumulation on the
right side. Kinetic faceting is obtained there as the deposited material is redistributed on the
surface according to the different incorporation times. On the left side, where no material
is deposited, a small amount of material flows by surface diffusion under the influence of
the thermodynamic driving force that tends to favor the formation of a rounded profile
of larger radius, due to the isotropic γ and the additional deposited material. Then, on
the same crystal, a morphology faceted by kinetics and one rounded by the surface energy
minimization can coexist in peculiar growth conditions.

2.2.3 Applications to pillared structures

In the previous section, we have shown that the kinetic faceting requires an out-of-
equilibrium condition, as guaranteed for example by a deposition flux, and does not corre-
spond to the minimum energy configuration. Post-growth, high-temperature processes, such
as the annealing, could drive further changes in the crystal shape, still under the influence of
the incorporation kinetics (see Ref. [112]), but directed toward the ECS. The model discussed
here finds a direct application to several experimental systems where out-of-equilibrium
growth conditions return peculiar faceting different from both the ECS and the KCS. To
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confirm this, here we show an example of a real experimental system where it is relevant
to consider the incorporation dynamics in order to capture the main feature of the growth
process.
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Figure 2.11: (a) Time evolution of a pillar top with competing incorporation times
for the top (001) and the lateral {111} and {110}. (b-c) Comparison of the growth
on a 4-times larger base for two different mobility coefficients ((c) 10 times smaller).
(d) Comparison of the central (110) cross-sectional profiles, shifted arbitrarily in the
vertical direction. The flux F ∗0 = 0.5 is vertical, τ110 = τ111 = 10, τ001 = 1. The scale
bar is 1.5 length units. (from Ref. [110])

In Figure 2.11 we simulate the growth of a faceted crystal by 3D PF simulations. The
initial shape is set as a simple parallelepiped, laterally bounded by {1 1 0} planes and
terminated by a (0 0 1) top facet. This resembles the actual condition of experiments where
the flat substrate is patterned by lithographic techniques before performing the growth.
Incorporation times are assumed to be maximum for the {1 1 0} facets and for {1 1 1} planes,
with τ001 one order of magnitude smaller. This choice is reasonable as a vertical growth
is aimed to be simulated. Accordingly, a vertical deposition flux oriented along the [0 0 1]
direction is taken into account. Figure 2.11(a) reports the growth sequence starting from a
small base structure. Since the early stages, {1 1 1} facets nucleate and tend to grow larger
with respect to the top (0 0 1) surface. This, having a faster incorporation time, tends to
collect material from the surrounding surfaces, and it also receives more deposition flux.
Therefore it tends to grow faster along the vertical direction, shrinking up to producing a
pyramidal tip. This process is not linear in time, similarly to what discussed in Fig. 2.6, as
the volume transferred toward the top increases as the lateral surfaces grow in area. Panel
(b) shows an intermediate growing stage obtained for the same conditions as in panel (a),
but for the initial parallelepiped shape, which is larger than the one in panel (a). Reasonably,
the larger sizes lead to a delay of the closure of the {1 1 1} pyramid, requiring a greater
amount of material to diffuse onto the (001) top. Moreover, the lateral size of this structure
is larger than the diffusion length. As a result, the material transferred from the {1 1 1}
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facets to the borders of the top (0 0 1) cannot spread all over the surface area, as it was
for the case in panel (a). Therefore, it produces an overgrowth close to the edges of the
top facets, producing mounds along the (0 0 1) perimeter. This phenomenon is enhanced
in the condition of lower mobility shown in panel (c), where the diffusion length results
to be even smaller. This is better compared in panel (d), where the profile is traced in
cross-section along the [1 1 0] direction, highlighting as the formation of the mounds is
more pronounced as the diffusion length is reduced with respect to the lateral size of the
structure. These simulations closely compare with the experiments of micro-crystals growth
on pillar-patterned substrates reported in Refs. [116, 133–135] and provide a deeper insight
on the possible mechanisms responsible for the observed temperature dependence of the
crystal morphology, changing from nearly planar at low temperature to pyramidal at higher
temperature. Indeed, the pyramidal shape can be achieved only when the diffusion length
is sufficiently long to cover the whole surface of the crystal, which is the case of an high
temperature growth. The consistency of the simulation with the experimental evidences,
particularly for the correct representation of the overgrowth at the top facet, confirms the
importance of considering the present kinetic approach to reproduce the faceting of crystals
in particular growth conditions, when both the surface diffusion and the incorporation
dynamics play a role.

2.3 Modeling the kinetic growth of vertical nanomembranes

Membranes at the nanoscale are emerging as a new class of nanostructures, applied for
instance to the integration of horizontal III-V nanowires [100]. In order to improve the
development and the application of these novel nanostructures, it is important to assess which
is the growth mechanisms that allows for such an anisotropic growth, leading to the formation
of the membrane. In particular, the correlation between the growth dynamics and the
substrate patterning could provide a strategic tool to target the growth of nanomembranes
(NM). Therefore, in this Section 2.3 we focus on the development of a theoretical model to
study this peculiar growth dynamics, with the aim of highlighting the main features of the
growth process, which could be useful to guide future growth experiments. For the sake of
simplicity, here we focus on an homoepitaxial growth, neglecting any elastic effect on the
growth dynamics. A more comprehensive model tackling both surface diffusion and elastic
contributions, due to the heteroepitaxial growth, will be discussed in Chapter 6.

2.3.1 Introduction to SAE growth of GaAs nanomembranes

Selective area epitaxy (SAE) is a widely used technique to drive the growth of nanos-
tructures that cannot be obtained by direct-deposition onto a bare substrate. Confinement
of the growth within openings defined in the oxide mask, which covers the substrate, by
top-down patterning imposes particular constraints on the growth and development of the
resulting structures, possibly leading to interesting morphologies. GaAs nanowires have
been successfully obtained on (1 1 1)B GaAs and Si substrates by Metal-Organic Chemical
Vapor Deposition (MOCVD) [87, 136, 137], by opening apertures in the oxide layer with
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widths on the order of 100 nm. By extending the slits in the 〈1 1 2〉 direction up to several
microns, vertical nanomembranes (NMs) are obtained, as reported in the literature for both
MOCVD [99, 103] and MBE [98]. These NMs have shown to exhibit exceptional optical
properties, as a consequence of their perfect crystal structure and absence of twinning
defects [138], a feature that prevents also the occurrence of twinning-driven tilting, as in the
case of nanowires [139]. In addition, it was recently demonstrated that these NMs can act
as templates for the growth of horizontally aligned InAs nanowires [100]. The approach is
wafer-scalable, opening the path towards integration of III-V nanowire networks on a chip,
and providing a platform for the realization of advanced concepts in the next generation
computing schemes [140].

A scanning electron microscope (SEM) image of a typical array of GaAs NMs is reported
in Fig. 2.12. The majority of the NMs is defined by {1 1 0} facets with a (1 1 1)B faceted
top. Small {1 1 3} facets are also recognizable at the sides of the top facet. Based on first
principle surface energy calculations [141], the absence of {1 1 1}A facets looks reasonable for
the As-rich growth conditions exploited here (V/III ratio ∼10), while the absence of {1 0 0}
facets contrasts with the expectation from the equilibrium Wulff shape of GaAs, as their
surface energy should be still favorable. Moreover, the prominent tendency toward vertical
growth, yet preserving the narrow cross-section initially enforced by the oxide slit, disagrees
with the thermodynamic criterion of surface energy minimization. As we show here, indeed,
the growth of the NMs is primarily driven by kinetics. In contrast to equilibrium conditions,
the kinetic growth regime is not yet fully understood, as almost nothing is known about the
different incorporation dynamics on the crystal facets, even for common low-index facets.
Still, these differences greatly affect the evolution of the growing crystals, resulting in facet
growth velocities that may vary even by a couple of orders of magnitude.

[112]1 �m 

Figure 2.12: Growth of [1 1 2]-oriented vertical NMs. (a) SEM view of a typical array
of NMs grown by Molecular Beam Epitaxy on (1 1 1)B GaAs substrate (b) Schematics of
the Selective Area Epitaxy procedure. (c) Schematic drawing of a NM shape obtained
with the minimal set of {1 1 0} facets and the (1 1 1)B top facet. (from Ref. [142])

Modeling facet-dependent growth kinetics by exploiting atomistic approaches is extremely
challenging, not only due to the lack of microscopic-scale parameters, but also because of
severe limitations in both spatial and temporal scales. We have, therefore, devised a “reverse-
engineering” strategy, based on continuum modeling, to extract quantitative information
about key parameters, such as the incorporation times for the different crystal facets. First,
we considered new experiments by performing the growth on circular arrays, as obtained
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by rotating the rectangular growth slit around a given center on the (1 1 1)B substrate,
similarly to the work of Ref. [101]. Second, we applied a state-of-the-art continuum growth
model, incorporating the main kinetic contributions, so that the experimentally-observed
morphological changes of the NMs as a function of slit orientation could be compared with
simulation results. All the growth experiments and the measurements have been performed
by the group of Prof. Fontcuberta i Morral at École Polytechnique Fédérale de Lausanne.

2.3.2 Experimental details

The GaAs nanoscale membranes are grown by MBE. The substrate is prepared with a
standard procedure for SAE as in Ref.[98]. First, a layer of 30 nm SiO2 is deposited onto a
2-inch (1 1 1)B GaAs substrate by Plasma-Enhanced Chemical Vapor deposition (PECVD).
The resist, ZEP 5250, is then spin-coated on the SiO2 layer which in turn is exposed to the
electron beam lithography process to define the pattern. The apertures in the oxide are
obtained by dry-etching with a mixture of CH3F/SF6. The final removal of the resist is
carried out by 10 min of oxygen-plasma, followed by acetone and IPA cleaning. Before being
grown, each sample is annealed and degassed at 350 ◦C in ultra-high vacuum conditions.
The growth conditions of the nanoscale membranes have been optimized, resulting with the
following parameters: temperature between 625 and 635 ◦C and V/III equivalent beam flux
ratio of 10, with a gallium growth rate fixed to the nominal value of 1 Å/s which corresponds
to a partial beam equivalent pressure of 2.5×10−7 Torr.

2.3.3 Kinetic model details

The continuum model developed by J.W. Cahn and J.E. Taylor in Ref. [15], and
presented in the Section 2.2, is exploited to study the growth of the GaAs NMs. This
is numerically implemented within the phase-field approach (PF) [10, 113], which is very
effective in simulating complex, three-dimensional structures. The crystal morphology is
traced implicitly by means of the PF function ϕ, with value 1 into the crystal and 0 in the
surrounding vacuum region, as shown in Fig. 2.13(a). The surface profile, as defined in
the following figures, is then identified as the ϕ=0.5 isoline in the diffuse-interface region
(of width ε) where ϕ goes smoothly from 1 to 0. The whole substrate region out of the
oxide slit, corresponding to the bottom boundary of the simulation cell, is assumed to be
covered by oxide as for SAE, thus resulting in a non-wetting contact condition for the GaAs
crystal, according to Young’s law (see Fig. 2.13(b) ). This is implemented by accounting for
the interface energy contribution for the crystal-oxide interface, represented by a boundary
of the simulation domain. In principle, the total energy of the system can be written as
Gtot = GCV + GCS + GCO + GV O, where GCV is the free energy of the crystal-vacuum
interface that we have considered so far, GCS is the energy of the interface between the
growing crystal and the substrate, which in homoepitaxial conditions is equal to zero, GCO
is the energy cost of the interface between the crystal and the oxide surface and GV O is the
energy of the interface between the oxide surface and the surrounding vacuum environment.
According to the Young’s law, following the principle of free energy minimization, the
contact angle θ at the crystal-oxide interface can be expressed as cos(θ) = γV O−γCO

γCV
, where
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γ... represents the energy density for the corresponding interfaces. These assumptions can
be modeled numerically in the PF approach by adding a boundary condition on the oxide
surface [143]. In particular, in the following simulations, we have set θ = 170◦ on the oxide
surface, to hinder the overgrowth of the crystal on the oxide surface. In all other boundaries
of the simulation domain, zero-flux Neumann boundary conditions are applied.
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[1
1
1
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Figure 2.13: PF model used to simulate the growth of NMs. (a) Simulation cell
tracing the NM geometry by the ϕ function, valued 1 in the crystal and 0 in the vacuum.
(b) Schematics of the non-wetting contact angle boundary condition for GaAs on the
oxide region. (c) Enlarged view of the simulation cell cross-section at a NM vertex
showing the adaptively-refined mesh, finer at the diffuse interface in between the crystal
and the vacuum phases. (from Ref. [142])

In principle, the GaAs growth needs both Ga and As to proceed. However, here we
explicitly consider just the dynamics of Ga adatoms on the surface profile. Indeed, although
As is expected to play a role in the growth dynamics [144], we assume that the As supply
from the gaseous phase is not a limiting factor in case of high V/III ratio, as for the
experiments that will be presented here. The kinetic reaction at the surface between As
and Ga is implicitly considered in the effective incorporation rate of Ga into GaAs that we
explicitly quantify in the model.

In order to model the orientation-dependent incorporation kinetics, following Ref. [127]
we introduce the continuum function

τ(n̂) = τ0
∑
i

τi(n̂ · m̂i)w ·Θ(n̂ · m̂i), (2.8)

summing the values of the maxima τi for the m̂i orientations of the crystal facets. In
particular, the ones recognized experimentally in the fin structures, i.e. {1 1 1}, {1 1 0} and
{1 1 3} will be considered. τ0 is a scaling factor and w controls the width of each maximum.
The latter is set equal to 200 in order to control τ(n̂) independently for each m̂i orientation,
while avoiding the overlap of different contributions for orientations in between. Opposite
facets are distinguished thanks to the signed Heaviside function Θ, permitting to assign
different τ values to A- and B-type facets. For all other orientations, i.e. the edges between
the facets, τ(n̂) smoothly falls to 0, thus implying instantaneous incorporation to keep them
out of the growing shape.

The set of simulation parameters is defined in order to obtain a good correspondence
with the experimental observation. In order to provide a proper resolution for the PF
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interface, a value of ε = 25 nm is set, and the mesh is locally refined up to ∼5 nm. Moreover,
since the facet edges are regions of fast incorporation, they can become very sharp and
thus might exceed the mesh resolution. To prevent this numerical issue, a regularization
procedure is implemented by temporary raising τ(n̂) on such critical mesh points. A typical
deposition rate of 0.7 Å/s is set for the (1 1 1)B plane with beam incidence at 45◦, in the
range of our experimental conditions.

Since the dynamics of material redistribution is governed by the relative values of γ,
the kinetic factor τ0, and M0 [112], by assuming γ = 4.5 eV/nm2, as for {1 1 0} facets [141]
(the ones dominating the nanomembrane shapes), we set τ0 and M0 in order to match the
experimental behavior. In order to enforce a growth regime dominated by kinetics, µeq
must be much smaller than the kinetic contribution in µ: this was achieved by setting τ0

= 0.022 (eV·min)/nm4 (a factor kT/Vat with T the temperature and Vat the volume per
atom is included). To define M , we consider that homogeneous material distribution within
each facet is obtained if the adatom diffusion length λ is of the same order of magnitude
of their extension, i.e. ∼ µm. By considering that λ ∼

√
2Mτ , we set a value of M0 =

1.2×108 nm6/(eV·min) (M0 ∼ VatD/kT , with D the diffusion coefficient). Finally, by a
best-morphology-fit procedure, we set τ110/τ111B = 10 and τ113/τ111B = 2, as discussed in
Section 2.3.4, with τ111B = 1.

Modeling of the deposition flux in an MBE growth

The material supply in the PF model is quantified by the operator F (n̂)|∇ϕ| in the
evolution Eq. (2.4). F (n̂) is the nominal deposition rate, which is restricted at the crystal
surface by |∇ϕ|, which is non-zero only within the diffused interface region.

x

F

Figure 2.14: Schematics of the distribution of the flux F which rotates with respect
to the substrate. A conical flux can be modelled to imping on each point of the surface.

The quantity of material that impinges on the crystal surface is determined both by the
properties of the deposition flux and by the orientation of the surface itself [135]. Indeed, in
a typical MBE growth, schetched in Fig. 2.14, the distribution of the flux is not uniform
on each point of the surface. This is mainly because the flux has a well defined angle with
respect to the normal to the substrate. Therefore the projection of the flux on the differently
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oriented surfaces corresponds to an orientation-dependent material supply. In addition to
that, the substrate holder rotates with respect to the growth chamber during the growth, so
that each facet collects the projection of the entire deposition cone which is described by
the flux during a rotation period. Therefore, to compute the material which is deposited on
each point x of the surface, by considering a full sample rotation, the projection of the flux
along the surface normal has to be integrated over all the possible flux orientation:

F (n̂) = F0
2π cos θ

∫
Ω

r̂(ψ, θ) · n̂ dψ (2.9)

with F0 the material flux coming out from the MBE source, θ the inclination of the source
with respect to the substrate normal (which we set at 45◦ according to the experimental
setup) and Ω the domain of integration for the directions r̂(ψ, θ) for the flux, considering
a full rotation of the sample, where ψ is the azimuthal coordinate. It is important to
notice that, depending on the facet inclination α with respect to the substrate surface,
the facet itself may shield part of the incoming flux, during the rotation of the sample.
As a consequence, three different cases can be distinguished. When α < 90◦ − θ the
facets receive material during the whole rotation and F (n̂) = F0 cos(α) by integrating
in Ω = {ψ ∈ [0, 2π]}. On the contrary, if α > 90◦ + θ, then no material impinges on
the facet due to a self-shielding of the flux and F (n̂) = 0. For the intermediate case,
Ω = {ψ ∈ [ψ∗, 2π − ψ∗]} with cosψ∗ = cot(α) cot(θ), so that the solution of the integral is
F (n̂) = F0[cos(α)(1− ψ∗/π) + (1/π) sin(α) tan(θ) sin(ψ∗)].

Flux shielding effects on the NM sidewalls by neighboring structures [131] are not
considered. We also neglect Ga supply from the oxide region. The good correspondence
between the simulated and experimental crystal morphologies (see Section 2.3.4) justifies
these simplifications a posteriori.

2.3.4 Simulation results and comparison with experiments

The vertical growth of GaAs nanomembranes is here investigated by a close comparison
between the experimental data and numerical simulation. At first, an initial analysis of the
experiments is required to figure out which are the main features of this dynamics, trying
to isolate the most peculiar properties of this system. Among these, an initial guess of
the possible growth mechanisms is done, in order to have a first guide for the setup of the
phase-field model. To this purpose, we focus on the better defined system, where NM are
grown in oxide windows extending along the 〈1 1 2〉 direction. The comparison between PF
simulations and the corresponding experimental morphologies, even at different deposition
times, enables to define the model setup and in particular to estimate the kinetic parameters
for the main facets involved in the growth process. Once the model has been successfully
applied to the test case, a variety of morphologies can be analyzed. In particular, the
experimental growth over a particular substrate, which is patterned by several slits aligned
along a circular pattern, provides a wide set of morphologies. The common point is that all
the different fin shapes have been achieved with the same growth conditions. Therefore, this
represents an ideal case that allows to validate the model by comparing several simulation
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result with the SEM data, still with the same set of numerical parameters.

Kinetic growth of 〈1 1 2〉-oriented vertical nanomembranes

The main characteristics of the growth dynamics can be found by analyzing several
stages of the growth. As no technique is available for a precise morphological in-situ analysis
of the vertical NM, the only choice is to compare different samples with the same pattern
and growth condition, but a different deposition time. In this way, a time evolution can be
deduced from the SEM images. To this purpose, the reference case of a NM aligned along
〈1 1 2〉 is analyzed. This is mainly because the highest uniformity among fin in the same
pattern and, in particular, among samples from different growth can be achieved for this
specific orientation.

Figure 2.15: Assessing the facet growth rates in 〈1 1 2〉-oriented vertical NMs. (a)
SEM perspective views of a single NM grown after 30, 45 and 60 min of GaAs deposition.
(b) Lateral profiles drawn for the three stages of panel (a). (c) Schematics of the facet
growth by assigning different velocities v for the {1 1 0} and (1 1 1)B facets forming the
NM. The velocity of the (1 1 1)B, v111B , is deduced to be much larger than the one of
{1 1 0} facets, v110, according to the experimental findings. (from Ref. [142])

The SEM perspective views resulting from this analysis are reported in Fig. 2.15(a)
for 30, 45 and 60 min deposition times. The morphology that develops out of the oxide
window, by considering a side view, seems to grow as a trapezoid which shrinks its top
base while growing in height. This behavior is sketched in panel (b), for the three times
here considered. The first conclusion that we can get from this first simple analysis is that
most of the material that is deposited on the fin is transferred toward the top. Indeed, the
other fin dimensions, i.e. the width and the length, grow much slower than the height. By
looking at the inclination of the facets with respect to the substrate (1 1 1)B surface, and
by considering the main sets of facets for the GaAs crystal, we can deduce that the top
growth front is mainly composed by a (1 1 1)B facet, while the lateral sides are made of
{1 1 0} facets. Two vertical facets are on the main sides, two slanted on the front of the NW
and a single slanted one on the back. By a quantitative measurement of the thickness and
height variation of the fin, the ratio between the growth velocities for the two set of facets
v111B/v110, sketched in panel c, can be even of the order of 50 times. This conclusion was
obtained by measuring the facets width from a SEM top view and by reconstructing the fin
shape with {1 1 0} and (1 1 1)B planes, in order to have the same trapezoidal shape observed
experimentally. Such a strong difference is necessary to determine a vertical growth, which
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otherwise would lead to a more isotropic, i.e. spherical, shape as we will demonstrate in the
following.

The analysis of the geometrical shape of the NM and its time variation highlights the
role of the strongly different growth rates for the two main sets of facets. However, this is
not sufficient to present a complete picture of the growth dynamics. A faster growth front
corresponding to the {1 1 1}B facet is observed also in other cases of GaAs heteroepitaxy [87,
145], especially for the case on nanowires grown by SAE. However, the large difference with
the speed of the other set of {1 1 0} observed in the present system still requires a careful
explanation. The first try to explain the growth dynamics can be done by considering
thermodynamic arguments. This implies to adopt a model based on a close-to-equilibrium
dynamics. The material which is deposited on the GaAs surface is able to diffuse according
to the tendency toward surface energy minimization [127]. The incorporation times for
the diffusing adatoms are considered instantaneous, which means that the adatom phase is
locally in dynamic equilibrium with the crystal surface.
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Figure 2.16: Growth by deposition and surface diffusion with anisotropic surface
energy, but no incorporation kinetics. (a) Equilibrium Wulff shape according to the
surface energy densities. (b) Time evolution for a 1.5 µm long oxide slit for the same
deposition conditions and time scale used in the main text. (c) Longitudinal cross
section evolution. (d) Transversal cross section evolution. (e) Top view of the rounded
crystal structure formed in the latest stage of the simulation in panel (b), with faceting
made more evident by color contrast between the planar facets (blue) and their edge
regions (red). (from Ref. [142])

A GaAs crystal, in ideal annealing conditions with no material gain or loss, would evolve
toward the ECS predicted by the Wulff construction [14]. This guarantees to minimize
the anisotropic surface energy by exposing the different facets of the crystal with an area
which is approximately inversely proportional to the corresponding energy density. The
numerical values for the surface energy density can be obtained from the literature [141, 146]
by considering As rich conditions, as the ones required by the experiments here considered.
We choose to focus only on low-index facets, neglecting the {1 1 3} family for the sake of
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simplicity. The resulting Wulff shape is reported in Fig. 2.16(a), where {1 1 1}B, {1 1 0} and
{1 0 0} facets are clearly visible with a nearly equivalent surface area, while {1 1 1}A appear
to be smaller. The relative size of the facets is in good agreement with what is expected
from the single surface energy densities. Indeed, all the facet families have roughly the same
value, apart from the {1 1 1}A which has an higher energy. However, this suggests that
the surface energy densities cannot explain the formation of the NM vertical shape, mainly
because the area of the different facets is clearly different. Moreover, no {1 0 0} facet is
observed on the NM surface, at least with a sufficiently large area to be identified by SEM.

However, to be more precise, the experiments differ from the Wulff shape description
for two main features. First, in the experiments there is a source of material, which is not
included in the Wulff construction. Moreover, the growth of vertical NM is achieved by
exploiting SAE, where the crystal can grow only within an elongated slit. Therefore, in
principle it is not yet excluded that a thermodynamic model could properly reproduce the
growth. Indeed, it could be that faceting is still driven by the differences in the surface
energy densities, but the vertical growth is promoted by the source of material from the top,
as in MBE, and by the lateral constraint imposed by the SAE in the oxide slit. However,
this hypothesis is rejected by the results of the simulation reported in Fig. 2.16(b-d). In this
case, the model accounts for the anisotropic surface energy, for the MBE distribution of the
deposition flux and for the contact angle condition between the GaAs crystal and the oxide
surface. The inital stage could resemble the one of a NM, where material collects into the
oxide window up to its complete filling. However, as the deposition continues, a rounded
shape is developed in the center of the oxide window. This shape presents also a significant
overgrowth on the oxide, which is energetically balanced by the possibility to reduce the
surface area by tending to a rounded morphology. The crystal shape, during the growth
dynamics, exhibits a faceted geometry determined by the surface energy anisotropy. The
faceting tends to converge to the one predicted by the equilibrium Wulff shape as the shape
becomes more rounded, with a minor trace of the elongation guided by the oxide windows
underneath. This is made more evident by comparing the Wulff shape in Fig. 2.16(a) with
the top view of the latest evolution stage shown in panel (e). Therefore, it is possible to
conclude that a pure thermodynamic growth regime is not sufficient to reproduce the NM
growth dynamics, even if the surface anisotropy and the SAE in the oxide slit are considered.
Indeed, the tendency to minimize the surface free energy leads to the formation of a rounded
shape, collecting the material in the center and excluding the possibility to enable a vertical
growth.

The material deposition in a MBE growth, in principle, could favor a vertical growth,
as the top facets receive more material than the vertical lateral ones. However, it is not
reasonable to explain the strong difference observed in the growth velocities just by the
directionality of the deposition. An additional feature has to be introduced in the modeling
to account for the significant difference in material incorporation which is observed between
facets, with the idea that the growth has to be controlled by kinetic effects. Actually,
literature studies [87] for nanowire growth by MOCVD already suggested that the As
incorporation may be slower on {1 1 0} surfaces, inducing a lore growth rate with respect to
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{1 1 1}B.

To overcome the modeling limitations of the thermodynamic description in reproducing
the fin growth, we have to apply the kinetic contribution of the model, described in detail
in Section 2.2. This enables to study the faceting dynamics as a result of the competition
between deposition, diffusion and incorporation dynamics at the surface. This is achieved
via the PF approach, which is well suited to simulate any morphological evolution, still
considering the localized heteroepitaxy by SAE. Differently from a simple geometrical
construction, as the one sketched in Fig. 2.15(c), in the present model the faceting is not
imposed as an a-priory assignment, i.e. by imposing constant growth velocities to the facet
planes. The faceted shape results spontaneously from the anisotropic properties of the
material. The crucial simulation parameter to be set in this kinetic description is τ , the
adatom lifetime before incorporation in the crystal, which in principle depends on the facet
properties. Since the {1 1 0} and {1 1 1}B facets are the main ones recognized in experiments,
we assume in a first approximation that the τ function has maxima on these two facets,
while for all the other surface orientations it goes smoothly to zero, limiting the assumption
for the adatom lifetime to the main facets. Based on the theory of kinetic crystal shapes,
we expect that the facets with a lower incorporation time tends to grow faster, resulting in
a shrinkage of their area with time. According to the analysis of the SEM data, we have
already recognized that the growth velocity of the {1 1 0} is slower than the one for the
{1 1 1}B . Therefore, we have to set τ110 > τ111B in order to favor the relative growth rate
of the latter. In particular, the value of τ110 = 10τ111B is estimated by means of a best-fit
procedure between the experimental morphologies and the simulation results. For the sake
of simplicity, no surface energy anisotropy is considered in the model, meaning that all
orientations are equivalent for the surface energy density. Indeed, as shown before, the
surface energy minimization does not lead to the proper faceting, which could be achieved
relying only on the tendency to growth facets driven by the kinetic contribution to the
chemical potential.

The first case considered for the PF simulations is the growth of a vertical NM along
〈1 1 2〉-oriented slit. The time evolution sequence is reported in Fig. 2.17(a). The initial
profile is set as an initial parallelepiped that fills the oxide window just below the oxide
edge, before activating the crystal-oxide interaction. The oxide slit is set to be 1.5×0.1 µm2,
mimicking the experimental pattern. The subsequent material supply enables the vertical
growth of the NW which exposes a spontaneous faceting. The morphology is defined by the
whole set of {1 1 0} facets, laying above the substrate surface, and by the (1 1 1)B facet on
the top since the initial stages of the evolution. During the vertical growth, the trapezoidal
shape observed in experiments is recognized in the simulation. The initial wide (1 1 1)B
facet is reduced by the slanted {1 1 0} while growing vertically. Finally, the triangular shape
bounded just by {1 1 0} facets is obtained, in agreement both with the simple geometrical
description and with the experimental observation.

The mechanism responsible for the vertical growth can be better understood by looking
at the adatom chemical potential at the surface, which is reported in Fig. 2.17(b). During
the whole growth process, the absolute minimum of the chemical potential lies on the top
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Figure 2.17: PF simulation results for vertical NMs. (a) Growth sequence of a NM
in a 1.5 µm slit oriented along [11-2]. The deposited material tends to diffuse from
the lateral {1 1 0} facets to the top (1 1 1)B, according to the gradient of the chemical
potential µ, which is represented in the color map in panel (b). The white arrows
sketch the flow of material on the surface. (c) Comparison of the NMs height between
simulation (red line) and experimental data points, retrieved by SEM images, in the
case of a 5 µm slit. The error bar represents the uncertainty in the measurements.
(from Ref. [142])

(1 1 1)B surface. This corresponds to the facet with the fastest incorporation dynamics.
Therefore material tends to flow from the other regions toward the top, as indicated by
the arrows in Fig. 2.17(b), as for a Fick diffusion dynamics driven by a gradient of adatom
density on the surface, which is induced by the different incorporation dynamics. However
the growth speed of each facets does not depend directly on its incorporation time, but
on the material supply provided by the neighbor facets. By assuming that desorption is
negligible at the MBE growth temperature of 625 - 635 ◦C [147], the whole material supplied
to the fin crystal is able to redistribute on the surface. Since its area becomes larger due to
the vertical growth, more material can be collected from the deposition flux. As a result, the
growth rate is not constant with time. In particular, the area of the {1 1 0} facets increases
with respect to the one of the (1 1 1)B ones, therefore a larger volume of material is first
deposited on the {1 1 0} and then transferred to the fin top. This behavior is highlighted
by looking, in Fig. 2.15(c), at the plot over time of the fin height. The trend of the curve
appears to grow exponentially, and the arbitrary time scale of the simulation was tuned to
match the experimental one. This latter was measured by considering three different vertical
NM grown for different times, and the error is related to the uncertainty to determine the
height from the SEM images. The exponential trend, being recognized also in experiments,
confirms the correct modeling of the non-constant growth rates that would be predicted
by looking just at the incorporation times, but neglecting the material repartition between
adjacent facets. Moreover, this comparison allows us to set a realistic timescale for the
simulation, that will be applied with the same scaling for all the following numerical results
of this section 2.3.4.

Once the main parameters have been tuned to properly reproduce the experiments,
simulations can be applied to study the effect of the growth conditions on the evolution
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Figure 2.18: Comparison of the nanomembranes height for different lengths of the
oxide slit. (a) Evolution in time of the NM height. The sudden variation in the slope
observed for the cases of 0.5 and 1 µm corresponds to the disappearance of the top
(1 1 1)B facet. (b) Comparison between the fin height predicted by simulations and
the corresponding range of heights measured experimentally after 30 min deposition
(grey band). (c) Top view of the simulated profiles (at 22 min) for the different labelled
lengths. (from Ref. [142])

dynamics. For instance, here we inspect the growth by changing the length of the oxide slit,
from 0.5 µm to 5 µm, while keeping the same width of 100 nm. The results of this analysis
are reported in Fig. 2.18, where the height of the NM is studied as a function of time in
panel (a), for the different slit lengths, and as a function of the slit length at a fixed time in
panel (b). For this latter evolution stage, the top views of the NM are reported in panel
(c), to show the relative amplitude on the top an side facets. In all cases, the (1 1 1)B facet
shrinks while the {1 1 0} ones tend to close the shape leading to a triangular {1 1 0}-only
faceted morphology. Due to the geometrical inclination of the facets, it is clear that shorter
NM reach quicker the closing stage. The onset of the transition from a trapezoidal to a
triangular shape is highlighted in panel (a) by the sudden change of the curves slopes, for
the 0.5 and 1 µm long slits. Indeed, as soon as the fast-growing (1 1 1)B top disappears,
the deposited material is spread nearly equally on the {1 1 0}, leading to a more isotropic
growth of the facets at a slower growth rate. Apart from the small differences of material
supply due to the MBE flux distribution, the growth is essentially self-similar, with a lateral
expansion which is comparable to the vertical one. This is shown also by the top views
in panel (c), where the largest NM corresponds to the shortest. In particular, for the 0.1
case which is grown on an square mask opening, a 3-fold symmetric pyramidal dot is found,
mainly bounded by the three {1 1 0} facets that correspond to the back and front of the
elongated NMs.

Furthermore, by looking at the different curves in Fig. 2.18(a), it is clear that the vertical
growth follows different exponential curves, depending on the slit length. The longer is the
fin, the slower is the vertical growth. Correspondently, by comparing the different NMs at
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the same deposition stage as in panel (b), it is found that the shortest fins are taller than
the most elongated ones. This behavior is compared to the experiments, reported by the
grey band. These are collected for multiple samples after 30 min of deposition, and the
width of the band corresponds to the variability of the experimental data. The important
result is that both theory and experiments report the same tendency to reduce the height
when growing a longer fin. This can be theoretically explained, in the framework of the
present kinetic model, by considering that the material that flows form the lateral {1 1 0}
toward the top (1 1 1)B has to spread on a smaller surface area of the latter facets for the
case of smaller NM, thus promoting the vertical growth direction.

Three-dimensional fin growth on a circular pattern

A deeper insight into the kinetic mechanisms driving the vertical growth of NW is
provided by dedicated growth experiments, in which the slit orientation is changed with
respect to 〈1 1 2〉 direction that has been considered so far. In particular, this allows us to
test more accurately the validity of the description, and in particular of the generality of the
incorporation times deduced by simulations. To this purpose, a circular pattern was designed
to have a proper control of the angular dependence of the growth dynamics. It consisted of
several slits etched in the oxide layer along a ring pattern, all pointing toward the center
of the circle, with an angular distance of about 1◦. By applying the same growth recipe
as for the 〈1 1 2〉 slit case, 3D faceted fins are observed for the intermediate orientations,
together with the previously analyzed vertical NM, as it is shown in Fig. 2.19(a). By the
closer inspection in panel (b), it is possible to recognize a continuous change of the faceted
morphology, from vertical to slanted NMs. These two limiting cases are shown more in
detail in panels (c) and (d) respectively.

The vertical growth of NMs within 〈1 1 2〉-oriented slits appears with the same features
described in the previous section, with the trapezoidal shape bounded by {1 1 0} surfaces.
A similar behavior is found for the slanted NM obtained for the 〈1 1 0〉 oriented slits. These
crystals in particular are shaped as isosceles trapezoids, still bounded by {1 1 0}, but with
a more defected top. As shown in the zoomed view in panel (d), their sidewalls form an
angle of ∼35◦ with the substrate surface, suggesting that their correspond to {1 1 0} facets
which both can match the inclination angle and can lay within the elongated oxide slit. As
a first conclusion, 〈1 1 2〉 and 〈1 1 0〉 orientations are the only ones on the (1 1 1)B plane
to share the possibility to admit a pair of {1 1 0} facets running along the slit length and
forming the main sidewalls of the GaAs crystal. On the contrary, the closing top for the
〈1 1 0〉 oriented NM is not well defined as for the vertical ones, as it presents an indented
profile composed by {1 1n}-like facets. Still, this morphology is compatible with the main
aspect of the model developed so far, where a fast growth front leads to a directional growth
of the crystal, while keeping the growth velocity of the {1 1 0} facets much lower.

As a consequence of the crystal symmetry, on the (1 1 1)B substrate plane there are six
〈1 1 2〉 slit orientations available. These are alternated by six 〈1 1 0〉 oriented slits, at 30◦

one from the other. However, even if the same fin morphology is found for each of the six
orientations, the actual rotational symmetry of this system is three-fold. Indeed, the fin
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Figure 2.19: Fin growth on a circular pattern obtained by rotating the slit for every
<1◦ after 60 min GaAs deposition. (a) SEM view of the whole patterned area showing
selective growth into all slits. (b) Enlarged view of a 30◦ wide sector of panel (a)
showing the continuous change in the NM morphology from vertical to slanted shapes.
Top views of these two limiting cases are shown in panels (c) and (d) respectively. The
actual inclination of the slanted NMs is made evident in the inset, showing an SEM
image taken from the fin front. (e) SEM top view of a 30◦ sector in between successive
〈1 1 2〉 directions showing the exchange from inner to outer of the 110 back facet of the
fin, colored in yellow. (f) Scheme of the three-fold repetition of vertical and slanted
morphologies along the whole circle. (from Ref. [142])

front and back exchange from the inner of the ring pattern to the outer side when moving
by 30◦ from one 〈1 1 2〉 direction to the next one, as for the [2 1 1] and [1 2 1] orientations.
These switch of the fin orientation is shown in Fig. 2.19(e), where the yellow bands highlight
the back of the fin shape.

This phenomenon occurs gradually through all the intermediate fin orientations. The
process becomes precisely the reverse when a 〈1 1 0〉 direction in between is reached. This
is the case where the front and the back of the fin have the same shape. In a similar way,
the direction to which the slanted NMs are tilted is found to alternate from one side to the
other if comparing adjacent 〈1 1 0〉 directions, as it is for [1 1 0] and [0 1 1]. These symmetry
properties are shown in detail in Fig. 2.19(f), where the fin morphology and orientation are
sketched for all the main twelve slit directions.

The very same PF model used to study the growth of vertical NMs along the 〈1 1 2〉
directions can be straightforwardly applied to simulate the growth on an arbitrarily oriented
slit. To this purpose, it is sufficient to rotate the initial profile in the simulation domain,
which is the reference frame for the crystallographic properties of the system. The result
of the growth simulations on the circular pattern is described in Fig. 2.20. To have the
more accurate representation by simulations of the fin morphologies, we have included
{1 1 3} facets in the model. These can be recognized in experiments mainly on the top of
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Figure 2.20: Fin profiles predicted by growth simulations for different orientations
of a 1.5 µm slit. The rotation angles for the slit range from 0◦ to 30◦, with 5◦ step.
Vertical and slanted NMs are found at 0◦ and 30◦ respectively, while multi-faceted fins
are obtained for intermediate orientations. As evident in the front and back views, the
fin height is maximum for the 0◦-oriented NMs and decreases to a minimum at 15◦ and
slightly increases again while moving toward 30◦. {1 1 0}, {1 1 1}B and {1 1 3} facets
are considered in the simulation. (from Ref. [142])

the vertical NMs, on the sides of the main (1 1 1)B surface. The {1 1 3} facets may also
contribute to the formation of the growth front for the slanted 〈1 1 0〉 NMs, while they could
provide a more complex faceting for the intermediate orientations, which are still to be
properly characterized. The {1 1 3} planes are reported to have a similar surface energy
density [146] as the other low-index facets here considered, therefore it is reasonable to
account for them from an energetic point of view. In principle, also {114} facets could
appear due to their low energy [148] while, on the contrary, {112} facets are unstable [146].
Here however, we focus only on the {1 1 3} assuming that they are representative of similar
{1 1n} facets, as it is not possible to distinguish and identify properly other facet families
from experiments. By applying the principle of best fitting the morphology of experiments,
the adatom incorporation time used in the simulations for the {1 1 3} facets is estimated to
be two times longer than the value for {1 1 1}B (τ113 = 2τ111B). Intuitively, this leads to
an intermediate growth rate if compared to the fastest {1 1 1}B front and the slow {1 1 0}
facets.

When the slit is rotated by 30◦, a progressive transition of the simulated morphologies
is found, in good agreement with the one observed experimentally in Fig. 2.19(b). The
different shapes result by a different balance of the {1 1 0}, {1 1 1}B and {1 1 3} facets, in
some cases resulting in a more vertical shape, in others in a more slanted or rounded one,
according to the closest orientation among the twelve described in Fig. 2.19(f). When
the oxide orientation differs just of a small angle from the [1 1 2] or [0 1 1] directions, the
simulated morphology tends to rotate along the [1 1 1] axis, in order to align to the more
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favorable axis. In particular, a strong asymmetry is evident when considering the largest
misalignment of 15◦ in which the two sides of the fin tend to rotate toward opposite optimal
slit orientations.
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Figure 2.21: Details of the simulated fin morphologies reported in Fig. 2.20 for three
slit orientations: (a) vertical NM at 0◦; (b) slanted NM at 30◦; (c) multi-faceted fin
structure at 15◦, with coexistence of facets from both the 0◦-oriented NM shape (facets
4 and 6) and the 30◦ one (facets 1 and 5). Different vertical cross-sections of the 15◦ fin
are also reported, aligned with respect to the oxide slit, traced by the dotted lines, and
show a large lateral overgrowth reflecting the tendency to realign with the 0◦ and 30◦
NMs. (d) SEM images corresponding to the 15◦ orientation, resembling the simulation
results in panel (c). Steps and irregularities are distinguishable on the fin surfaces.
(from Ref. [142])

The main result of simulations, which adds information to the analysis of the morphologies
already presented in Fig. 2.19, is the possibility to clearly identify the facets that compose
each fin. This analysis is performed in Fig. 2.21 for the main morphologies obtained by the
simulation on the circular pattern. Panel (a) shows the vertical NM grown along the [1 1 2]
orientation. The profile is clearly correspondent to the one analyzed in Fig. 2.17, with the
additional modeling of {1 1 3} facets. These mainly appear side-by-side to the elongated
(1 1 1)B facet, and this result improves further the agreement with experiments. In panel
(b) the slanted NM obtained with a [0 1 1] oxide slit is shown. As already recognized in
the experiments of Fig. 2.19(d), the growth makes more favorable to develop an inclined
shape in order to fit the main {1 1 0} that bound the shape into the oxide slit. Here we can
recognize that the top growth front is made of {1 1 3} facets, in place of the {1 1 1}B. This
is caused by the relative ratio between the incorporation times, which makes the {1 1 1}B
disappearing faster, leaving only the two {1 1 3} facets at longer evolution stages. As a
consequence of that, the slanted NM is also a bit more thick than the vertical one, as the
competing incorporation between {1 1 0} and {1 1 3} is less effective than with (1 1 1)B,
therefore the transfer of material from the sides of the NM to the top growth front is less
pronounced.
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The most complex case is the growth of the crystal out of an oxide window which is
misaligned by 15◦ with respect to a 〈1 1 2〉, or equivalently 〈1 1 0〉. In this case, as it is
reported in Fig. 2.21(c), the growth tendency is to align the facets both toward the 〈1 1 2〉
and 〈1 1 0〉 morphologies, which are shown in the other two panels of the figure. Thus, the
resulting shape contains {1 1 0} facets present both in the vertical NM, such as those labeled
as 4 and 6, and in the slanted one, as for the 1 and 5 labeled facets. As a consequence,
as it is shown in the cross sections in Fig. 2.21(c), the fin tends to growth significantly
on the horizontal direction, overgrowing on the oxide surface well beyond the oxide slit,
which is indicated by the dotted lines. This morphology is in good agreement with the
experimental data. In particular here a magnified view of the corresponding sector of the
circular pattern from 2.21(d) is presented. Both simulations and experiment exhibit an
edge on top of the fin, instead of the flat (1 1 1)B, possibly due to the connection of a
slanted {1 1 0}, as for label 1, and a {1 1 3} facet, labeled as α. In the experiments, some
irregularities are found at the crystal top, probably resulting from growth defects, as it is
particularly evident for the slanted NMs. Moreover, the grey-scale contrast of the SEM
images identifies a striping along the elongated facets. This could suggest a high density
of steps, which facilitate the rotation of the crystal geometry toward the actual {1 1 0}
and {1 1 3} planes. Those atomic scale features cannot be explicitly included in our model,
which is based on a continuum description targeted to capture a mesoscopic scale. However,
their effect is played in the simulations by a small curvature of the facets. For the case of
the largest {1 1 0} in Fig. 2.21(c), an overall rotation of about 3◦ for the surface normal is
found by comparing the two opposite sides of the facet. This results from the constraint
which is imposed by the oxide window. In the initial growth stages, the deposited material
is forced to accommodate accordingly to the slit in an unfavorable direction. Therefore, as
soon as the morphology overcomes the oxide edge, it starts to overgrow on the oxide surface,
balancing the increasing energy cost for the crystal-oxide interface with the capability of
exposing well defined crystal facets.

2.4 Conclusions

In this chapter, we have deeply analyzed the role of orientation-dependent incorporation
kinetics in driving the faceting of a crystal by means of growth simulations. In particular, it
has been shown that the differences in the incorporation times for the different facets can
influence the evolution of the crystal morphology. The competition between kinetics and
other anisotropic properties, such as for the surface energy and for the material supply, has
been studied. This has clarified that an intermediate growth regime has to be considered
between the ECS and the KCS formulations, making the approach here proposed reliable to
model realistic growth cases.

Indeed, the PF model here developed has efficiently captured the main features of the
growth of GaAs homoepitaxial NMs by SAE-MBE. The kinetic origin of such a growth has
been demonstrated, with particular attention to the impact of the slit orientation on the
morphological changes observed for the nanomembranes. The main result of this analysis is
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the possibility to extract fundamental information on the kinetic growth velocities of the
GaAs facets. These, or more appropriately the incorporation times, are responsible of the
morphological evolution of the growing nanostructures. In particular, the determination
of these kinetic parameters was enabled by the analysis of the experiments performed
on the peculiar patterns where the oxide slits were aligned on a circular array, to map
all the possible crystal orientations having a more general picture of the system. The
morphologies observed in experiments were then interpreted thanks to the PF simulations,
allowing both for a precise characterization of the fin faceting and for a quantification of
the growth parameters for GaAs. Despite the unavoidable approximations inherent in the
continuum approach for the description of the crystal, without any possibility of modeling
the fine atomic-scale detail such as steps and step bunching, the approach here proposed
has proved to be reliable in analyzing the physics of the growth process. Importantly, this
is not yet accessible by atomistic methods due to the length scale of the growing structures.
Importantly, the properties deduced by simulations for the set of {1 1 1}B, {1 1 0} and {1 1 3}
facets are well consistent with the morphologies observed experimentally for the different
slit orientations. In particular, the incorporation times here estimated have revealed an
interesting hierarchy in the facet growth rates: {1 1 1}B>{1 1 3}�{1 1 0}. The important
point is that these properties cannot be inferred by looking at the corresponding surface
energies, demonstrating in particular that the apparently reasonable concept for which high
surface energy corresponds to high growth rate lacks of a quantitative confirmation. Indeed,
it does not consider at all the complex dynamics of adatom redistribution and incorporation
on the surface, which results to be crucial to explain the large difference in growth velocities
which is observed in the present experiments. A difference in incorporation times which
does not correlate with any difference in the surface energy densities.
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Elasticity in core/shell nanowires
by finite element method

3.1 Continuum elasticity for semiconductor heteroepitaxy

In semiconductor heteroepitaxy, the lattice structure can exhibit a strain deformation.
This phenomenon is common when the two materials involved in the growth have different
lattice parameters, as it is for the GaP/InGaP and Ge/GeSn cases studied in the following
Chapters 4 and 5. In general, the growing film has to adapt to match the lattice parameter
of the substrate, requiring an elastic deformation of the crystal structure. The same result
can be achieved thanks to a plastic relaxation mediated by defects [149–151], that however
we are not going to include in our models.

The elastic deformation of the crystal can be described by the vector field of the
displacement u [152]. If we consider a point of the system in its initial state, r0, and the
new position r of the same point moved by the elastic forces, the displacement u is defined
as the difference between these two positions:

u = r − r0 (3.1)

In the limit of infinitesimal displacements, all the deformations of the solid can be
described by linear elasticity [152]. In particular the elastic state of the system can be
modeled by using a symmetric strain tensor, which includes all the first spatial derivatives
of the displacement field:

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(3.2)

The indexes i, j correspond to the cartesian directions x, y, z. This notation describes
the relative deformation of the solid, referred to the initial condition. The main advantage
of the strain description is that it allows to deal with scalar quantities, rather than with
a vectorial field. To have a complete picture of the system, we need to define also the
forces that act into the system, so that we can describe the equilibrium state, as it will
be discussed later. In particular, the elastic forces, caused by the reaction of the material
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to the deformation, can be expressed by the stress tensor σ, that has the dimension of a
force per unit area. In the linear approximation provided by the Hooke’s law, σij is directly
proportional to the strain:

σij =
∑
lm

Cijlm εlm (3.3)

where C is the symmetric tensor of the elastic constants.
If the growing film has to be compressed in order to match the lattice parameter of the

substrate, it tends to expand in order to restore its zero-stress condition. This expansion, or
more in general the strain that the system would assume to reach the zero-stress condition,
is defined as the eigenstrain tensor ε∗ [153]. The stress tensor σ can now be defined in a
more complete form for our needs as depending on two strain quantities, the eigenstrain
and the response strain ε, as:

σij =
∑
lm

Cijlm(εlm − ε∗lm) (3.4)

where for ε = ε∗ the stress is null, according to the definition of the eigenstrain. In a
cubic structure, as it is for Ge, Si and GeSn the eigenstrain is diagonal and can be defined
as:

ε∗ =


ε∗ 0 0
0 ε∗ 0
0 0 ε∗

 (3.5)

where ε∗ = afilm−asubstrate

afilm
. For core/shell nanowires the afilm corresponds to the material

of the growing shell, while asubstrate refers to the core, which acts as a substrate for the
growth of the shell layers and is the initial reference for the elastic deformation. In the
case of an hexagonal lattice, we have to distinguish between the a and c lattice parameters.
Therefore the eigenstrain can be written as:

ε∗hex =


ε∗a 0 0
0 ε∗a 0
0 0 ε∗c

 (3.6)

The tensor C, whether the crystal has a cubic symmetry as for Ge/Si systems, can be
expressed using three constants [154]: C11, C12 and C44, which correspond to the stress and
strain components as outlined in table 3.7.

C =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


(3.7)

56



Chapter 3: Elasticity in core/shell nanowires by finite element method

In the case of isotropic elastic properties, the elastic constants are further related by
C11 = C12 + 2C44, so that the Hooke’s law depends on two parameters only, renamed as
λ = C12 and µ = C44, which are the Lamé coefficients. In this case, the relation between
the stress tensor and the strain tensor can be written as:

σij = λ
∑
k

(εkk − ε∗kk) + 2µ (εij − ε∗ij) (3.8)

A useful relation is the conversion between elastic constants, such as Young modulus E
and Poisson ratio ν:

µ = E

2(1 + ν) λ = E · ν
(1 + ν) · (1− 2ν)

E = µ
3λ+ 2µ
λ+ µ

ν = λ

2(λ+ µ)

(3.9)

E is the stress/strain ratio along the same axis, while λ is the ratio of the strain in one
direction to the strain in the transverse direction.

On the contrary, when the crystal structure is hexagonal, as for the wurtzite materials
GaP and InGaP presented in Chapter 4, the tensor C is expressed in terms of:

C =



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66


(3.10)

where C66 = (C11 − C12)/2. To determine the equivalent elastic constants for the
hexagonal structure, whether only the cubic ones are present in the literature, it is possible
to use the Martin’s relations [155].

When dealing with elasticity simulations, it is important to properly set the reference
frame in which the elastic properties are defined. In particular, when we consider the nanowire
structure, the hexagonal matrix is already defined so that the [0 0 0 1] axis naturally coincides
with the z direction [22]. On the contrary, when dealing with cubic crystals and nanowire
along the [1 1 1] direction, a rotation of the elastic constants matrix is required to properly
use these parameters in the simulations. In particular, we have to consider the rotation
matrix R:

R =


1√
2 0 − 1√

2
− 1√

6

√
2
3 − 1√

6
1√
3

1√
3 − 1√

3

 (3.11)

to compute the elastic constants in the proper reference frame as C̃ijkl = RipRjqRksRltCpqst.
By applying this transformation, the C̃ tensor becomes:

57



Chapter 3: Elasticity in core/shell nanowires by finite element method

C̃ =



C̃11 C̃12 C̃13 C̃14 0 0
C̃12 C̃11 C̃13 −C̃14 0 0
C̃13 C̃13 C̃33 0 0 0
C̃14 −C̃14 0 C̃44 0 0
0 0 0 0 C̃44 C̃14

0 0 0 0 C̃14 C̃66


(3.12)

where the elements are defined as:

C̃ = (C11 + C12 + 2C44)/2

C̃ = (C11 + 5C12 − 2C44)/6

C̃ = (C11 + 2C12 − 2C44)/3

C̃ =
√

2(−C11 + C12 + 2C44)/6

C̃ = (C11 + 2C12 + 4C44)/3

C̃ = (C11 − C12 + C44)/3

C̃ = (C11 − C12 + 4C44)/6

An interesting property of the continuum description of the elastic properties is that, for
the hexagonal crystal structure, the C tensor is invariant for any rotation along the NW
axis [0 0 0 1], although the fundamental atomic lattice is not. However, the same property
does not hold for cubic NW along [0 0 1]. In this case the system is invariant only for
rotations along the axis of an angle which is multiple of π/3 or it becomes invariant under
isotropic conditions, when it holds that C̃44 = (C̃11 − C̃12)/2. In the comparison with the
experimental measures by TEM of the strain in NWs, it can be useful to extract from
the strain tensor a specific component referred to a prescribed crystal direction, which is
different from the axis of the reference frame used in the simulations. This result can be
achieved by rotating the strain tensor along the prescribed reference frame by the following
transformation:

ε̃ = R · ε ·RT (3.13)

where R is the rotation matrix, with the proper angular coefficients, and RT is its
transposed. Additionally, when dealing with NWs, it is useful to express the strain in
cylindrical coordinates, namely radial, tangential and axial, which can be obtained from the
cartesian tensor as:
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εR =εxx cos(atan(y/x)) cos(atan(y/x)) + 2εxy sin(atan(y/x)) cos(atan(y/x))

+ εyy sin(atan(y/x)) sin(atan(y/x))

εT =εxx sin(atan(y/x)) sin(atan(y/x))− 2εxy sin(atan(y/x)) cos(atan(y/x))

+ εyy cos(atan(y/x)) cos(atan(y/x))

εA =εzz

3.1.1 Mechanical equilibrium

The deformation of the lattice structure in the nanowire is a process that can be
considered instantaneous with respect to the typical time scale of deposition and growth.
Therefore, when dealing with elasticity in semiconductors, the interest is not for the dynamics
of the elastic relaxation, but for its stationary condition, which represents the actual state of
the NW once it is grown. The mechanical equilibrium, which corresponds to the hypothesis
required to calculate the strain, is defined as the condition where the sum of the elastic
forces is zero:

Ftot =
∫

Ω
f d3r +

∫
∂Ω
σ · n̂ d2r = 0 (3.14)

where f are the forces per volume unit, σ is the elastic force per area unit, Ω is the
whole domain considered and ∂Ω is the free surface. Thanks to the divergence theorem, the
equilibrium condition can be written as:

∫
Ω

(f +∇ · σ) d3r = 0 (3.15)

In the growth of a crystal, it can be assumed that no volume forces are present, so f = 0.
By considering equation 3.15 valid pointwise, the mechanical equilibrium condition can be
rewritten in the following system:


∇ · σ = 0 on Ω

σ · n̂ = 0 on ΓN
u = 0 on ΓD

(3.16)

Dirichlet conditions are set on the bottom boundary ΓD of the nanowire, where it is
assumed that all the displacements are null during the evolution process as there the crystal
is fixed to the substrate. On the contrary the Neumann boundary ΓN represents the interface
between vacuum, or equivalently the surrounding vapor phase, and the crystal, where the
projection of the stress perpendicular to the surface must be equal to 0, since the system is
fully relaxed towards it.

The system in equation 3.16 can be formulated in terms of the displacement field u. In
the case of a semi-infinite isotropic film, with a biaxial stress and uniform composition, the
elastic properties µ and λ don’t change in the film. The eigenstain can be expressed by a
constant tensor ε∗ij = ε∗δij . In this approximation, using the conversion between the stress
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tensor and the displacement field from equations 3.8 and 3.2, the mechanical equilibrium
condition ∇ · σ = 0 can be expressed by the Navier-Cauchy equation:

µ∇2u+ (λ+ µ) ∇ (∇ · u) = 0 (3.17)

3.2 Finite element method

Figure 3.1: Schematics of the explicit mesh for a core/shell nanowire structure.

The Finite Element Method (FEM) is a common and efficient procedure to solve Partial
Differential Equations (PDE). Generally speaking, a PDE problem is composed by an
equation, that includes differential operators, and a suitable number of boundary conditions,
that are necessary to find a unique solution of the problem. The order of the equation is
determined by the highest grade of derivation. Usually the PDE problems can be reduced
to a second order one, separating the main equation in a set of equations with an order
minor or equal to IInd, which can be handled by the FEM solver. The following system
shows a prototypical PDE problem, including differential operators up to second order and
proper boundary conditions:

−∇ · (a∇u) + b∇u+ cu = d on Ω

u = g on ΓD
a∇u · n̂ = e on ΓN

(3.18)

It represents all the possible combinations of Ist and IInd order operators that will be
used in the present work. The FEM relies on two main concepts: the weak formulation of
the PDE and the Galerkin method.

3.2.1 Weak formulation

The first step to solve a PDE problem consists in expressing the equations in the weak
formulation. It is basically an alternative way to write the problem, which introduces
some more general properties that can simplify the numerical procedure. The weak form
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is defined as the scalar product between the PDE and a test function ψ ∈ X, where
X := {ψ ∈ H1(Ω) : ψ = 0 on ∂Ω}. In other terms it consists in the integration, over the
whole domain Ω, of the product between the PDE and a function φ.

(PDE, ψ) =
∫

Ω
PDE · ψ (3.19)

For example, the weak formulation of the PDE, from equation 3.18, results:

−
∫

Ω
∇ · (a∇u) ψ +

∫
Ω
b∇u ψ +

∫
Ω
cu ψ =

∫
Ω
d ψ (3.20)

This new integral equation can be re-arranged, in order to simplify the procedure
for finding a solution. The aim is to reduce the derivation order over the solution u by
integrating per part. More precisely one derivative can be moved to the test function ψ,
using the identity ∇(f∇A ·B) = ∇ · (f∇A)B + f∇A · ∇B:

−
∫

Ω
∇ · (a∇u) ψ =

∫
Ω
a∇u · ∇ψ −

∫
Ω
∇ · (a∇u ψ) =∫

Ω
a∇u · ∇ψ −

∫
∂Ω
a∇u · n̂ ψ

(3.21)

Apparently this seems just an alternative way to write the problem, but it contains a
deeper and extremely useful property: we have to require only that the first derivative of u
is integrable over Ω, while in the original PDE problem it was necessary to guarantee that
u is twice derivable.

By applying this technique a surface integral is found, whose value depends on the
boundary conditions. In the following derivation, it is assumed that e ≡ 0, so the boundary
integral is 0 and can be neglected. Under this condition, a second order PDE gives these
possible weak formulations, for each order of derivation:

2nd (−∇ · (a∇u) , ψ) = (a∇u,∇ψ) ≡ A(u, ψ)

1st (b∇u, ψ) = − (u,∇ · (bψ)) ≡ B(u, ψ) and (∇ · (bu) , ψ) = − (u, b∇ψ)

0th (u, ψ)

(3.22)

3.2.2 Galerkin method

The weak formulation allows to simplify the differential problem, but it still requires
something more to find the solution u. Since most of the second order PDE can’t be solved
analytically, there is the need of a numerical strategy, like the Galerkin method, to find
an approximate solution. The space Ω is partitioned in many subspaces, labeled with h.
The geometry of these subspaces is defined by a set of points in Ω, called nodes, and by
the connection between these points. The idea is to find an approximate solution on each
smaller space h and then, based on these results, to establish the solution for the entire
space, interpolating the single h-solutions. The key point is that the space has to be split
in portions on which it is possible to solve the problem, otherwise this subdivision of Ω is
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useless. For each h-space it is necessary to find a set of basis functions {ψ1 . . . ψn}. Each
function is associated to a node, with the particular property ψj(xi) = δi,j . In this way it is
possible to write the approximate solution for the h-space as a linear combination of ψj :

uh(x) =
n∑
j=1

uj ψj(x)

uh(xi) =
n∑
j=1

uj ψj(xi) = ui since ψj(xi) = δi,j

(3.23)

But also the weak formulation of the PDE can be written on this basis, using A and B
to indicate the different orders of differentiation:A(u, ψi) +B(u, ψi) + (u, ψi) = (d, ψi) ∀i ∈ IΩ

u = g on IΓD

(3.24)


N∑
j=1

(A(ψj , ψi) +B(ψj , ψi) + (ψj , ψi))uj = (d, ψi) ∀i ∈ IΩ

ui = gi ∀i ∈ IΓD

(3.25)

The general problem for u has been reduced to a problem for the coordinates uj and
can be written in matrix form:

M u = d (3.26)

where the matrix M is composed by the following elements:

Mi,j :=


A(ψj , ψi) +B(ψj , ψi) + (ψj , ψi) ∀i ∈ IΩ

1 ∀i ∈ IΓD
, i = j

0 ∀i ∈ IΓD
, i 6= j

(3.27)

and

di :=

(d, ψi) ∀i ∈ IΩ

gi ∀i ∈ IΓD

(3.28)

By solving this linear system it is possible to build the set of local solutions ui at each
node. By interpolating these values on the whole space Ω it is then possible to obtain the
approximate solution of the original PDE.
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Chapter 4

Bending in core/shell GaP/InGaP
wurtzite nanowires

Core/shell nanowires are a promising platform for the development of high-quality
heterostructures made of semiconductors with a large lattice mismatch. Another advantage
that they can provide if compared to the growth on flat substrates is the possibility of
transferring the lattice structure from the core to the shell. In particular, in this Chapter
we present the system of wurtzite GaP/InxGa1–xP core/shell nanowires, studied with the
aim of developing an LED solution for the green light emission. Experiments revealed that
these nanowires exhibit a random bending phenomenon, which has to be avoided for the
applications. Here we provide an analysis of the system, by combining transmission electron
microscopy and energy dispersive X-ray spectroscopy with finite element method static
simulations to get a better understanding of the nanowire bending for this type of core/shell
nanowires. Our final goal is to propose a solution to prevent, or at least to minimize, the
tendency to bend the core/shell structure.

4.1 Introduction

Semiconductor heteroepitaxy is a technique commonly exploited to develop technologies
for micro- and opto-electronics in order to improve the performances of devices. However,
the difference of the lattice parameters between the most common semiconductors limits
the range of usable combinations [156]. Indeed the lattice mismatch often promotes the
nucleation of detrimental defects, such as misfit dislocations [97], that reduce the device
performance. In this context, core/shell nanowires are a system of great interest as they can
be considered as a type of heteroepitaxy on a compliant substrate, especially in the case
of cores with a small diameter [157], and that enables the elastic relaxation of the strain
in the shell in two directions, something which is not possible in planar heterostructures
[158]. These advantages have been predicted to lead to much lower residual strain and
therefore to a higher critical thickness for defect nucleation [83, 159]. Therefore, core-shell
nanowires do represent a great promise in fabricating novel nanostructures beyond the
current technological limits, for example in the fields of solid state lighting [83, 160, 161],
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electronics [162], photovoltaics [163–165] and hydrogen production [166]. Very recently,
nanowires have been also proposed as applications in quantum computing and Majorana
physics [167] when combining a semiconductor core with a superconductive shell.

Despite these promising premises, the lattice mismatch can still lead to unwanted
phenomena even in core/shell nanowires, as it is for the case of surface roughness [168]
and surface quantum dots [169], the formation of compositional inhomogeneities in ternary
compounds, which could affect several properties, for instance the thermal transport [170,
171]. Moreover, even if the plastic relaxation can be prevented in nanowires, a residual
strain is still present and this could lead to morphological changes of the nanostructures.
The case that we are going to analyze here is the bending of nanowires, which generally
hinders their applications in array-based devices. Only very recently the bending behavior
has been proposed as a controllable property [132], opening new possibilities for the design
of novel nanowire-based devices. In the literature [172], the bending has been already
related to one asymmetry in the shell thickness by TEM measures, which are in most cases
a time-consuming techniques and that requires the manipulation of the nanowires out of
the growth array. In that analysys, it has been proposed as very useful the possibility
to develop 3D simulations which can couple with the asymmetry in the shell in order to
gain additional information about the bending behavior. Actually, a study based on finite
element calculations of shell thickness and composition asymmetry for InAsP has been
previously considered [173]. Still, despite a dedicated X-ray diffraction analysis, no detailed
comparison between the numerical results and the experimental measurements has been
performed there, particularly because no experimental access to composition asymmetry
was possible.

Therefore, in the present NW system, a diagnostic tool for quickly estimating the degree
of both asymmetries in nanowires by measuring the bending, for instance based on scanning
electron microscopy, would allow to save time and resources in the optimization of the
growth of these nanostructures. In this Chapter, we study the bending as induced by elastic
strain relaxation in lattice-mismatched wurtzite GaP/InxGa1–xP core-shell nanowires [83,
174]. We rely on dedicated SEM and TEM measurements, performing EDX analysis for
the composition, combined with a theoretical analysis based on realistic three-dimensional
Finite Element Method simulations, which allow to quantitatively relate the bending to the
geometric and to compositional asymmetry. In particular, in Section 4.3.1 we investigate a
representative core-shell NW, accurately mapping its strain condition and comparing the
bending to the experimental data, discussed in Section 4.2. Then, in Section 4.3.3 we extend
the FEM model to a set of WZ GaP/InxGa1–xP samples with varying shell composition and
thickness, with the aim to indicate a predictive procedure to infer the degree of asymmetry
of a core-shell NW, by simply measuring its bending curvature. All the growth experiments
and the measurements have been performed by the group of Prof. Bakkers at Technische
Universiteit Eindhoven. In particular the growth was performed by Luca Gagliano, while
the TEM studies by Marcel A. Verheijen.
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4.2 Experimental

4.2.1 Materials and methods

The template used for the shell growth is made by GaP wurtzite nanowires, grown on a
GaP(111)B substrate by using VLS technique. The growth is catalyzed by a Au droplet,
positioned on the substrate by nanoimprint lithography, with a 2.5 µm pitch. The deposition
is made by Metalorganic Vapour Phase Epitaxy (MOVPE) at 615° C using Trimethylgallium
(TMGa) and Phosphine (PH3) as precursors. To prevent sidewall tapering, HCl is added in
the chamber. The second step of the growth process consist in the removal of the Au catalyst
by a Iodine solution. Then the shell is grown by MOVPE using TMGa, Trimethylindium
(TMIn) and PH3 as precursors. The key point of this growth technique is the capability of
transferring the WZ crystal structure from the core to the shell [20, 83].

4.2.2 SEM, TEM and EDX characterization

1µm 200nm 2µm

(c)(a) (b)

Figure 4.1: SEM images of WZ GaP/InGaP core–shell NWs grown on a zinc-blende
(1 1 1) GaP substrate. (a) An SEM image taken at 30◦ tilt, showing the clear bending of
the nanowires. The nanowires exhibit different degrees of bending: in some cases being
bent in two different directions, forming an S-shape. This suggests asymmetry in the
core–shell structure developing not only radially, but also axially along the nanowire
length. (b) A close-up of a bent WZ GaP/InGaP core–shell NW. (c) A top view SEM
image, showing the different bending directions of the nanowires. The degree of bending
and the orientation are at random. (from Ref. [175])

The first result that can be observed after the NW growth is a clear bending phenomenon.
In Fig 4.1(a,b) we show SEM images of the nanowires after the shell growth. The bending
appears to be at random, with different magnitude for the different nanowires. Some
of them seem even bent in two directions, resulting in an S-shape. The randomness is
confirmed by the top view in panel (c), excluding a systematic effect of the deposition or of a
crystallographic preferred orientation. Here we investigate this phenomenon by considering
that a core/shell NW can be a stressed system due to the lattice mismatch between the core
and the shell materials. The residual strain can make the ideal NW structure a metastable
system, which eventually bends to reduce the elastic energy density. However, SEM images
are not sufficient to have a precise characterization of the bending. Therefore we applied
TEM to the study of the morphology of several WZ GaP/InxGa1–xP NWs, as shown in
Fig. 4.2.
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(a) (b)

(c)

(d) (e)

Figure 4.2: (a) A HAADF image of a WZ GaP/In0.2Ga0.8P (average composition)
core–shell NW. We see that the lower part is sizeably thicker than the upper central part,
but for the very top segment, which is only slightly thinner than the bottom segment.
(b), (c) An EDX colour map of the same nanowire, demonstrating the difference in
thickness and composition between the two sections of the nanowire. In (b) we show
the signals of both Ga (green) and In (red), while in (c) we show only the In signal
to better clarify the link between the In content and local curvature. (d), (e) EDX
linescans of the WZ GaP/In0.2Ga0.8P core–shell NW in (a)–(c). The light blue lines
in the insets indicate where the measurements were taken and the position is finally
projected perpendicularly to the NW axis. (d) is across the region close to the tip of
the NW (total diameter ∼175 nm), where the nanowire is approximately symmetric,
both in thickness and composition. (e) is across the bottom section (total diameter
∼185 nm), and shows a relevant asymmetry, both in shell thickness and composition.
The results of these linescans are summarised in Table 4.1. (from Ref. [175])

In Fig. 4.2 we show the high-angle annular dark-field scanning transmission electron
microscopy (HAADF) image of a representative core/shell nanowire. To perform this
analysis, the nanowires are removed from the growth substrate an placed on a TEM grid, in
the following we will define this condition as ‘free-standing’ because the nanowire is able
to deform freely at both tips. From panel (a) we can recognize a general bending of the
structure. However, by the closer analysis shown in panels (b,c), we recognize that the
structure is not uniform along the nanowire axis. Indeed a thinner and more straight section
is recognized in the top part, highlighted by the green arrow, while a thicker an more bent
section is found in the bottom region, highlighted by the blue arrow. By considering that
the GaP cores were untapered, at least on the length scale here considered, we can deduce
that the thickness changes is due to a change in the shell thickness.

Thickness left
side (nm)

In fraction
left side

Thickness right
side (nm)

In fraction
right side

Top section (exp.) 40 ± 0.5 0.30 ± 0.04 35 ± 5 0.28 ± 0.04
Bottom section (exp.) 10 ± 0.5 0.10 ± 0.04 80 ± 5 0.22 ± 0.04

Top section (sim.) 40 0.20 35 0.25
Bottom section (sim.) 10 0.10 80 0.30

Table 4.1: Structural parameters of the WZ GaP/In0.2Ga0.8P core–shell NW shown
in Fig. 4.2, obtained by TEM analysis. We report the thickness and the composition of
the InxGa1–xP shell on either side of the NW. The resulting asymmetries cause the
bending.
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In order to confirm this hypothesis, we investigate more in detail the NW structure by
performing energy-dispersive X-ray diffraction (EDX) linescans, as shown in Fig. 4.2(d-e),
perpendicularly to the NW axis. The inset of each panel shows where the scan was performed
along the NW. The numerical data for the composition are also reported in table 4.1. The
lower In concentration, and consequently the higher Ga content, has to be attributed to an
artifact of the measurement technique. Indeed, the beam has to penetrate and probe the
entire nanowire, which makes the core to contribute to the measurement. This causes an
underestimation of the In content in the middle of the scan, where the volume of the core
contributes more. Therefore, the linescan is more accurate when probing only, or mostly,
the shell volume, which corresponds to the left and right side of the plot, which is actually
the region of interest in order to explain the observed bending as due to irregularities in the
shell. From these data, we have an additional confirmation that the change in the nanowire
diameter is due to the shell, and not just to a tapering of the core. In the upper section
(panel (d) ) we observe a rather symmetric shell, with a slight increase of the diameter in
the region close to the tip. On the opposite, in the bottom section (panel (e) ) a strong
asymmetry is found in the shell thickness. The convex (right) side is about 80nm thick, while
the concave (left) side has a shell 10 nm thin. From the EDX maps, we can investigate also
the role played by the shell composition. By looking, for instance, at the In concentration,
we find a similar trend as for the shell thickness. The top part has a symmetric composition,
within the experimental uncertainty, while the bottom one is asymmetric. Moreover, we
recognize a gradient of In content across the shell region, possibly due to an increased
incorporation for larger thicknesses, similarly to what is observed for Ge/GeSn core/shell
nanowires.

Based on these experimental results, we can try to qualitatively explain the bending
of the nanowires, in order to proceed with the development of a numerical model to get
also quantitative results. The model is based on the occurrence of a random event, that
could be the formation of a defect, that causes an initial asymmetry of the wire. This
generates an asymmetric balance between the two sides of the shell, that induces a bending
of the structure. As a result, the elastic relaxation of the lattice mismatch is modified, and
becomes more effective in the concave side of the nanowire, where the expansion of the
lattice parameter is favored. This, in turn, promotes both a preferential material diffusion,
and in particular In segregation, towards the concave side, characterized by a lower elastic
energy. This enhances the asymmetry of the system, promoting the bending of the nanowire.
The random event than initially triggers the process can be associated with the formation of
an island on the surface of the WZ GaP core or by some defect caused by the Au catalyst
removal process, eventually including some residual Au nanoparticles. The nanowires where
the bending is more complex, with a change in the bending direction along the axis, can be
modeled by considering the occurrence of multiple initial random events on opposite sides
of the nanowire.
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4.3 Elastic continuum predictions

The bending of a nanowire, in a first approximation, has many similarities with the
case of cantilever bending. Indeed, a nanowire can be simplified as a beam with one end
being fixed boundary, which corresponds to the base attached to the substrate, and the
other end which is free to move. When a force is applied to the cantilever, for instance
to the free tip, the structure reacts by bending, similarly to a spring which is compressed
by an external force. Analytically, the problem of beam bending, here limited to static
conditions with no discussion of the vibrational mode, can be described by two main theories:
the Euler-Bernoulli and the Timoshenko ones [176]. Following the latter formulation, the
deformation of a beam along the z axis, when a force is applied along the x axis, can be
described by the following displacements functions: ux(x, y, z) = w(z), uy(x, y, z) = 0 and
uz(x, y, z) = zψ(x), where ψ is the rotation angle an xy cross-section of the beam. The beam
deformation can then be determined by solving the following system of partial differential
equations:


d2

dx2

(
EI

dψ(x)
dx

)
= F (x)

dw

dx
= ψ − 1

kAG

d

dx

(
EI

ψ(x)
dx

) (4.1)

where L is the total length of the beam, A is the area of the xy cross-section, I is the
area moment of inertia, k is the Timoshenko shear coefficient, E is the elastic modulus and
G the shear one. The external force applied to the system is represented by the function
F(x), that can be restricted to the tip of the cantilever, or to an intermediate point, by
applying a Dirac-delta function. The Euler-Bernoulli formulation can be obtained when
considering negligible the last term of the second equation. This basically holds when
L� 1 and implies that the cross-section is always perpendicular to the central axis of the
beam. When considering a force F applied to the top of the cantilever, the solution for
the displacement function is w(z) = F (L−z)

kAG − Fz
2EI

(
L3 − z2

3

)
+ FL3

3EI , usually reported in the
approximated form as being expressed only by the third term. This analytical model can be
applied when the length of the beam is larger if compared to the maximum displacement at
the tip. This is a result of the first order approximation in eq. (3.2). To go beyond this
limit, a geometrically nonlinear model [177] has to be developed by accounting higher-order
contributions in the definition of the strain energy density [178, 179]. Core/shell nanowires
go well beyond the limits of the analytical models due to the non-uniform thickness and
composition properties of the shell, which change along the NW axis. Moreover, the bending
force is an internal one, as we will discuss, and it is strongly affected by the asymmetry
of the NW. For these reasons, we exploit a FEM model which includes the anisotropic
elastic constants for the materials involved, but for the sake of simplicity relies on the linear
elasticity theory.
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4.3.1 Modeling core/shell nanowire bending

In the hypothesis that the bending of the nanowire is correlated with a different elastic
relaxation on the two sides of the nanowire, we need to develop a numerical model to
assess quantitatively the strain relaxation mechanisms in the structure. In particular, we
study the WZ GaP/InxGa1–xP core-shell structure by FEM simulations using the COMSOL
Multiphysics® software. The size of the nanowire and the length scale where the bending
is observed require to apply a continuum mechanics description [22, 180, 181]. Elastic
deformations in core/shell nanowires arise mainly from the lattice mismatch between the
core and the shell. The bulk lattice parameter of the GaP/InxGa1–xP alloy is computed
according to the linear Vegard’s law [182], by an interpolation between the bulk lattice
parameters of InP [183] and GaP [184] in the wurtzite phase. The same procedure is used to
determine the elastic constants of the shell, which are accounted in the model by considering
the proper anisotropy for the wurtzite phase [185]. The model is developed in 3D, with an
hexagonal base for both the core and the shell. In the following, we will define the length
of the apothem as NW radius. The deformations are then determined numerically by the
FEM by solving the mechanical equilibrium problem. It mainly consists in the minimization
of the elastic energy, profiting of the capability of the crystal structure to expand toward
the free surface. Both tips of the nanowire are modelled as free surfaces by considering the
nanowire as free-standing, that corresponds to the condition used for TEM analysis where
the NW is detached from the growth substrate. Numerically, this is achieved by applying
just a zero displacement for the center of the nanowire and to avoid any pure rotation of
the whole structure, which does not impact in any way with the solution of the mechanical
equilibrium problem, but just with the reference frame.

We now have to model the asymmetries that have been observed in the nanowires to
capture the bending behavior. In Fig. 4.3 we show a sketch of the core/shell NW to describe
the main variables introduced in the bending model. In panel (a) the blue region represents
the inner core, which is surrounded by the red shell. To achieve that type of bending, we
can play on two different parameters. The first asymmetry that we consider is related to
the shell thickness. As shown in panel (b), we model it by applying a shift of the hexagonal
cross section with respect to the core one, so that we have that the left side of the shell
is thicker than the right one. This means that the compressive load stored in the shell is
different for the two sides, and this induces the bending on the right side of the structure,
corresponding to the thinner shell. The second type of asymmetry that can be considered is
related to the composition of the shell, that we will measure as the In concentration, which
is responsible for the lattice mismatch in the system. As shown by the color map in panel
(c), we set a linear gradient for the In composition which is higher on the left side (red) and
lower on the right one (yellow). To quantify this gradient, we fix an average composition for
the shell and then we choose a composition variation in the structure. The two extremes
of the composition gradient are then obtained by adding, or subtracting, the composition
variation to the average value chosen for the nanowire. Again, this induces the bending
toward the right side, where the tendency to expand to reduce the elastic compression is
weaker if compared to the other side of the shell.
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Figure 4.3: A schematic concept drawing illustrating the structure of the studied
nanowires. (a) WZ GaP/InxGa1–xP core/shell NW. Blue: WZ GaP core. Red: WZ
InxGa1–xP shell. The nanowire is bent due to asymmetry in the shell, which can be
of two types: (b) thickness asymmetry, which we model as a displacement (shift) of
the core with respect to the center of the shell, and (c) compositional asymmetry,
where the orange (right) side represents a lower In composition than the red (left) side.
We model the composition as varying linearly between the two sides. Here we define
the composition variation as the difference between the maximum and the average In
composition. (from Ref. [175])

4.3.2 Comparison between simulations and experiments

We now apply the numerical model to an experimental case study. We have chosen,
among all the nanowires studied by TEM, to focus on a representative case (already reported
in Fig. 4.2) with a high bending and a clear measured asymmetry both in composition and
in shell thickness. In this way, we have the opportunity to test the validity of the model
by checking if it is quantitatively reliable in reproducing the bending or if some additional
parameter has to be considered. In the inset of Fig. 4.4a we report a sketch summarizing how
the NW is partitioned: a 2.5 µm long top part with 175nm of thickness, a 5.5 µm long lower
part with 190 nm of thickness. A 2 µm long central section is added to connect the two,
with linearly varying thickness in order to avoid discontinuities in the FEM simulation. The
asymmetric thickness and composition of the shell are set according to the numerical values
measured by EDX and reported in Table 4.1. The additional central section is modeled by
interpolating with continuity the values for the top and bottom sections.

In Fig. 4.4(a), the resulting equilibrium shape for the bent nanowire, as obtained by the
FEM model, is compared to the TEM image for the NW studied. As a first result, we can
conclude that the model if capable of reproducing the bending of the NW. In panel (c) the
hydrostatic strain is shown for three cross sections, representative of the three segments
used to model the NW. The first result is that, overall, the core volume has a tensile strain
(red color), while the shell a compressive one (blue color). This is in agreement with what is
expected when the lattice parameter of the shell is larger than the one of the core, as in this

70



Chapter 4: Bending in core/shell GaP/InGaP wurtzite nanowires

(b)

X (nm)

Y
 (

n
m

)

0 100

 

-1

 

1

 

Y
 (

n
m

)

-

 

100

 

100

0

1

-1

x10-2

a/a0

( )

1 μm 

Figure 4.4: (a) A comparison between FEM simulation (red) and a TEM HAADF
image of the WZ GaP/In0.2Ga0.8P core/shell NW. The inset shows the three segments
used for the FEM simulation. The central segment was used to avoid discontinuities in
the model. (b) Plots of the axial strain in the three segments of the NW to illustrate
the elastic deformation along the length of the nanowire. The colour scale is the same
as in (c). (c) Hydrostatic strain (sum of radial, tangential and axial) plots in the
three segments of the NW. The degree of asymmetry in the shell clearly affects the
asymmetry in strain distribution. In the bottom segment, the left side of the core is
subject to compressive strain, while the right side is almost completely relaxed. Only
elastic relaxation is considered in the simulation. (from Ref. [175])

system. By a deeper analysis of the strain maps, we recognize that the elastic relaxation is
not the same for the different cross sections, as a consequence of the different asymmetries.
In particular, where the asymmetry in composition and shell thickness is more evident,
the strain relaxation is enhanced, as it is evident in the bottom section. In particular, the
most peripheral 20 nm of the shell, close to the free surface on the right of the bottom
section, have a nearly zero-strain condition. Additionally, the asymmetric deformation in
the shell induces, as a consequence, an asymmetry in the strain distribution of the core. The
enhancement in the strain relaxation on one side of the nanowire is a direct consequence of
the bending of the structure, which allows for a larger expansion on the convex side (right).
This can be highlighted by considering the axial component, shown in panel (b), which
represents the deformation along the axis of the nanowire. This deformation is higher where
the residual strain is lower, i.e. on the right side of the nanowire. From these results, we
can then conclude that the description of the bending by means of the elasticity theory is
fully consistent with the behavior observed experimentally.

4.3.3 Comprehensive analysis of nanowire bending

While we have confirmed that the FEM model is able to reproduce the bending of a
nanowire, we still have to prove the applicability of the FEM model as a predictive tool
useful for the experiment analysis. Indeed, to the present development of the model, the only
additional information that we get by simulations is the distribution of the residuals strain,
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but the TEM and EDX analysis cannot be avoided. To that purpose, we investigate more
in detail the relationship between the bending and the shell asymmetries, together with the
core and shell sizes, in order to find a correlation between these variables. Initially, we start
from mapping the NW curvature as a function of the core diameter and the shell thickness,
defined as the average between the two extremes sides of the shell. To limit this analysis
only to these two structural variables, we fix the composition and thickness asymmetries.
In particular, we set an average In concentration equal to 25% with an asymmetry of 5%,
which means that on one side the In concentration is equal to 20% and on the other side is
30%. Similarly, we fix that the core displacement is set equal to 1/4 of the average shell
thickness. These parameters have been chosen because they are, on average, representative
of the set of NW analyzed in details by TEM (here not reported).
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Figure 4.5: (a) The calculated curvature of a WZ GaP/InxGa1–xP core–shell NW as
a function of the average shell thickness and core diameter. The average composition
is x = 0.25, with a composition variation of ±0.05. The core shift is 1/4 of the shell
thickness. The colour bar indicates the NW curvature and is also used for (d), (e). (b)
Distribution of the nanowire curvature (grey area) as a function of the total nanowire
diameter, based on the data from panel (a). The trend not only depends on the total
diameter, but also on the core diameter. The red curves outline the curvature for three
core diameters. (c) A HAADF image of two WZ GaP/InxGa1–xP NWs grown under the
same conditions, clearly showing bending. The curvature is measured by interpolating
the NW geometry with a parabola (blue line) and by computing the second derivative
of this function in the centre of the NW. The red arrows are a guide to the eye to
indicate the bending- induced displacement of the tip. (d), (e) The calculated curvature
of WZ GaP/InxGa1–xP NWs as a function of composition and core shift, with overlaid
experimental data (red rectangles). The numbers are used to identify the NWs, as
reported in Table 4.2. The size of each red rectangle represents the experimental error
on the two axis dimensions. The colour gradient in the rectangle represents the error
on the experimental curvature. Parameters: (d) core 100 nm, shell 50 nm, average x
= 0.25. (e) Core 100 nm, shell 160 nm, average x = 0.60. The comparison between
calculated and experimental data yields very good agreement. (from Ref. [175])

The resulting curvature map is shown in Fig. 4.5(a), where the axis report the core
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diameter and shell thickness and the color scale quantifies the curvature of the nanowire.
The latter is measured as an average curvature by interpolating the shape obtained by the
FEM simulation with a parabola and by evaluating the second derivative halfway along the
nanowire axes (see panel (c) for the same procedure applied on a TEM image). For the
sake of simplicity, the asymmetry is set to be constant along the axis. As a consequence, we
notice that analysis is independent on the length of the nanowire, provided that it is not of
the same order of magnitude of the NW radius.

If we consider a fixed shell thickness, we observe that the curvature decreases as the
core diameter increases. This can be explained by considering that the larger is the core,
the higher is its stiffness, i.e. the resistance to the bending which is induced by the elastic
deformations of the surrounding shell. On the other hand, a similar behavior cannot be
recognized by fixing the core diameter and by changing the shell thickness. Indeed, initially
the increase of the shell thickness tends to enhance the bending of the nanowire, as the
larger volume of the shell can exert a stronger force to bend the core. However, when
the shell grows further, an unexpected decrease of the curvature is observed. This can be
explained by considering that a larger shell both has a stronger bending force, but also
increases the stiffness of the total structure. This means that the rotation of the structure
could in principle improve the relaxation in some regions of the shell, but at the same time
requires and additional shell compression in other regions, making the bending less favored
overall.

The increased stiffness for the larger shell suggests a possible relationship between the
total NW and the bending, with the idea that the larger is the NW and the lower is the
tendency to bend. However, this simple idea cannot be applied straightforwardly as multiple
aspects have to be considered. This is better illustrated in Fig. 4.5(b), where the curvature
values used to plot the map of panel (a) are represented as a function of the total nanowire
diameter. We can correctly find, as suggested before, that the curvature becomes larger
when the NW is thinner, as in this case less elastic energy is required to bend the structure.
However, a spreading of the relation between curvature and NW size is observed for larger
diameters. To understand this latter behavior, we plot three distinct curves, corresponding
to three core diameters. This makes clear that it is not sufficient to know the NW total
diameter to infer on the bending, but also the size of the core is a quantity to be considered.
Indeed, as already discussed in panel (a) for a fixed core diameter, the bending is smaller
when the shell is thinner, then it rises up to a maximum value to finally decrease with
the further thickening of the shell. This is because a larger nanowire requires a larger
elastic energy, or more precisely an asymmetry of the elastic deformations, to bend the
whole structure. This analysis suggests that a possible solution to reduce, up to negligible
curvature value, the bending of ternary core/shell nanowires could be to grow graded shells.
In particular the grading is useful to keep a low lattice mismatch in the initial shell layers,
to reduce the tendency to bend the structure when its stiffness is low, due to the small total
diameter. Then the composition could be increased up to the value required for applications,
because the bending is hindered by the already thick shell. Such a strategy is preferred to
the use of a thick core, which in principle could lead as well to a low curvature. However, the
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lower compliance of a large core reduces the elastic relaxation in the shell, favoring plastic
relaxation mechanisms which introduce defects in the system, as for misfit dislocations.

The final result that we can get from the comparison between the FEM model and the
experimental results is to develop a diagnostic tool to correlate the observed curvature with
the asymmetries in shape and composition of the nanowires. To this goal, we collect the
structural parameters of a set of nanowires by TEM and EDX, as shown in Fig. 4.5(c) for
the curvature and as reported in Table 4.2 for the thickness and composition. These data
are directly compared with a curvature map obtained by the FEM model, as a function of
the core shift and of the composition variation, as shown in Fig. 4.5(d,e). The two panels
differ for the shell thickness, core diameter and average composition that characterize the
two sets of NW that were analyzed. The experimental data are plotted on the map as
colored rectangles. Their lateral size represents the experimental uncertainty on the measure
of the asymmetries, while the color map inside the rectangles quantifies the curvature:
the variation of the color corresponds to the uncertainty on the measure of the curvature.
The main color map in the background corresponds to the values predicted by the FEM
model. From both panel (d) and (e), a good agreement between the simulation results
and the experimental data is achieved, as demonstrated by the correspondence between
the color inside the experimental rectangles and the corresponding FEM background (the
numerical values are reported in Table 4.2). This confirms that the FEM modeling is an
accurate predictive tool to study the degree of shell asymmetry in a core/shell system with
a lattice mismatch between the material of the core and the one of the shell. While the
FEM calculations, in principle, show that a single curvature value could be achieved by
different combination of shell thickness and composition asymmetries, the comparison with
experiments highlights that both mechanisms are equally present. Indeed, the experimental
rectangles are located approximately on the diagonal of panels (d) and (e), indicating that
there is no NW which is bent just due to a shell asymmetry or a compositional one. Actually,
the two mechanisms can be considered as related, since an initial asymmetry in the shell
thickness can be produced by a lower elastic chemical potential on a side of the nanowire,
which is also favoring the migration of the larger In atoms, rather than the Ga ones. In
conclusion, by supposing a fair equipartition in compositional and thickness asymmetries, it
is actually possible to predict the degree of overall asymmetry just on the basis of simple

NW
n.

Composition Shell
thickness
(nm)

Core shift
(nm)

Composition
variation

Measured
curvature (1/µm)

1 27% 32 6 ± 4 4 ± 2% 0.055 ± 0.01
2 24% 47 7 ± 3 3 ± 1% 0.025 ± 0.01
3 26% 42 12 ± 7 6 ± 3% 0.060 ± 0.01
4 58% 170 17 ± 7 4 ± 1% 0.02 ± 0.01
5 61% 155 35 ± 5 7 ± 1% 0.04 ± 0.01

Table 4.2: Experimental data gathered with TEM from the WZ GaP/InGaP core–shell
NWs considered in this study. We also compare the measured curvature with the
curvature predicted by the FEM simulations. These results are visualized in Fig. 4.5(d,e).
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SEM measurements of the NW bending.

4.4 Conclusions

In this Chapter we have quantitatively investigated the origin of bending in WZ
GaP/InxGa1–xP core-shell NWs and we have proposed a predictive tool to estimate the
asymmetry in a core-shell NW structure. Indeed, by measuring the bending in a nanowire,
for example by a simple SEM analysis, we can determine a small range in the asymmetry
in shell thickness and composition. Since we have shown that the NW curvature is due
to such inhomogeneity, this should be avoided in those applications where uniformity is
required. Based on our finite element method analysis, we propose a strategy to limit
the bending which consists in growing a graded buffer shell with a composition ranging
from the one of the core to the one desired for applications, provided that the grading
does not hinder much the devices performances. Indeed, in this way, a gradual elastic
relaxation can be initially provided by the core/shell structure while growing the shell. Then,
once the shell thickness is high enough to limit bending by the increased stiffness of the
nanostructure, the composition in the shell can be increased without making the nanowire
bend much, even in the presence of small asymmetries in the growth process. Moreover, due
to the elastic relaxation in the buffer shell, it could be also possible to limit the nucleation
of misfit dislocations, which makes nanowire a promising solution with respect to planar
geometries to host lattice-mismatched heterostructures. This work has been developed on
WZ GaP/InxGa1–xP core-shell NWs, but, in principle, it can be extended to any kind of
core/shell NW system, provided that the elastic constants of the materials are properly
defined for the finite element calculations, and some experimental TEM data are available
for the initial setup the modeling tool.
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Chapter 5

Elastic strain relaxation in
Ge/GeSn core/shell nanowires

In the previous Chapter 4 we have investigated the bending of nanowires, which is a
structural phenomenon in core/shell NW which is already apparent when they are analyzed
at SEM. In this Chapter, we investigate materials properties which are accessible only by a
TEM analysis, as the alloy composition in the shell of a nanowire and the residual elastic
strain, but which still can affect the performances of the possible technological applications.
In particular, we focus on the Ge/GeSn core/shell nanowire system and by finite element
method static simulations, combined with transmission electron diffraction measurements,
we will estimate the residual misfit strain when a radial Sn gradient in the shell and a Ge
segregation at the nanowire facet edges are present. By exploiting the simulation results, we
will correlate the elastic relaxation of the lattice parameter mismatch with the incorporation
of Sn above the equilibrium solubility and we will provide a detailed explanation of the role
of the nanowire core in the strain relaxation mechanism.

5.1 Introduction

The direct bandgap is a crucial property for optical devices, often achieved by III-V
semiconductors. However, the possibility to have good optical properties with group IV
semiconductors would be welcomed, due to the wide use of Si in the current technological
applications. Among the group IV, GeSn alloys are a promising solution to provide a good
flexibility to independently tune the bandgap, still having a control of the lattice parameter
mismatch [186–188]. The direct growth of GeSn on Si substrates would be an important
advantage to achieve cost-effective and scalable Si photonics, targeted to operate at mid-IR
wavelengths of 2-5 µm [189]. However, there are two main obstacles for this possibility. First,
there is a large lattice parameter difference between Ge and Sn, which leads to a strain up to
15% [190], which results in the formation of a high density of defects [191, 192]. Moreover,
the residual compressive strain in the GeSn alloy can affect the band structure, thus requiring
an increase of the Sn content needed for a indirect-to-direct bandgap transition [187, 191,
193]. Therefore, specific growth strategies have to be developed in order to overcome the
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strain issue, to enable the fabrication of efficient mid-IR optoelectronic devices [190, 194].
The second big challenge in the growth of GeSn alloys comes from the low equilibrium
solubility of Sn in Ge, which is approximately equal to 1% [195]. In particular, the difference
in the surface energy densities, combined with this extremely low solubility, tends to favor
the Sn segregation and precipitation on the surface while growing the GeSn alloy [196–198].
To overcome this latter problem, in the literature [192, 199, 200] several methods have been
proposed, based on out-of-equilibrium growth conditions and aiming at maximizing the
strain relaxation. Indeed, strain is expected to play a role also in the incorporation dynamics,
similarly to what was already reported for AlGaN alloys [201]. For the planar growth on
Ge substrates, the main approaches developed so far are based on the management of the
strain relaxation by plastic relaxation[202] or by increasing the compliance of the substrate
via a Ge buffer layer [187, 191]. For instance, graded GeSn layers were demonstrated to
achieve up to 16% Sn content [203]. The main drawback of these techniques is that plastic
relaxation, involving multiple types of dislocations, is a difficult-to-control mechanism, and
in particular the threading arms which eventually reach the top layers are detrimental for
the applications.

To overcome these limitation, core/shell Ge/GeSn nanowires have been proposed as a
promising solution [204, 205] as they permit a fully elastic relaxation. As we will discuss
in detail in this chapter, this is made possible both by the elastic compliance of the Ge
core and by the effect of free facets at the nanowire sidewalls. Reasonably, the increased
Sn content observed in experiments [204] could be related to an enhancement in strain
relaxation, as a similar effect has been reported for the case of GeSn layers grown on a planar
substrate with a tunable lattice parameter [206]. It is the goal of this Chapter to investigate
this hypothesis, studying in detail the interplay between strain and Sn incorporation with
respect to the growth of the GeSn shell on a pure Ge nanowire, in a core/shell structure. In
Section 5.3 we present an accurate characterization of the residual strain in the core/shell
nanowire structure. This is not a trivial task to be performed experimentally, as the order
of magnitude of the typical strain in these structures (of the order of 10−3) is close to the
accuracy limit of TEM. Moreover, what makes this system complex is the variability of
strain, which depends locally on the non-uniform Sn distribution in the shell, which has
been mapped by Energy-Dispersive X-ray (EDX) measurements. In particular, segregation
along the edges of the shell and a Sn gradient along the NW radius are observed. Our work
provides a theoretical approach capable of quantifying the elastic relaxation on the nanowires.
This analysis is performed by finite element calculations and compared to dedicated TEM
measurements for the strain. This has enables us to find a correlation between the strain
relaxation during growth and the Sn incorporation in the shell. Finally, in section 5.4, a
detailed study of the role of the core in the strain relaxation of the shell is presented by finite
element results. All the growth experiments and the measurements have been performed by
the group of Prof. Bakkers at Technische Universiteit Eindhoven. In particular, the growth
was performed by Simone Assali, while the TEM studies by Marcel A. Verheijen.
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5.2 GeSn growth issues

The growth of GeSn layers on planar substrates is generally affected by the development
of defects. A main source for these is the lattice mismatch between the GeSn alloy and
the substrate. An estimation for this mismatch can be based on the lattice parameters for
bulk Ge and α-Sn. From these, by exploiting the Vegard’s law, the lattice parameter for
the GeSn alloy can be estimated. By considering that for lasing application a composition
at least equal to 13% of Sn is requested, it results that a mismatch of about ∼ 1.9% has
to be accommodated by the system during the heteroepitaxial growth. As for other group
IV semiconductor as Ge and Si, there are two ways to achieve strain release: elasticity and
plasticity. The former, in the low temperature regime required to prevent Sn precipitation,
can’t profit of a Stransky-Krastanov growth mode and is limited to the tetragonal distortion.
In this configuration, the lattice can deform elastically toward the free surface, but it is
constrained to the lattice mismatch strain for the in-plane direction, where no free surface
allows for an elastic relaxation. Therefore, the high residual elastic energy, that is stored in
the GeSn layer during growth, can induce the formation of defects as misfit dislocations,
including edge and threading dislocations, stacking faults and twin boundaries. These
can provide an efficient relaxation of the compressive strain in the epilayer, but the major
drawback is their detrimental effect on optical and electronic properties.

5.2.1 Equilibrium solubility of Sn

Beside the issues that arise from the lattice mismatch, the growth of a GeSn alloy is made
more complex also by the low solubility of α-Sn in Ge. Indeed, in equilibrium conditions,
the solubility of Sn is reported to be 1.1% [195], which is well below the target of about
13% which is required to have a direct band gap. The solubility decreases when considering
SnGeSi alloys, down to a value of 0.1% [207] in a pure Si crystal. For these reasons, an
out-of-equilibrium growth condition is required to obtain the desired Sn concentration. In
particular, it is crucial to avoid phase separation caused by surface segregation or bulk
precipitation. The former is particularly active due to the lower surface energy of Sn. The
two main strategies to suppress this unwanted phenomenon are to grow at low temperature,
to reduce the probability of atom exchange between the bulk and the surface, and to grow at
high deposition rates, freezing rapidly the Sn atom in a bulk state. Indeed, bulk precipitation
is less active during the growth, and could become more relevant in case of post-processing
techniques as the rapid thermal annealing.

5.2.2 Ge/GeSn core shell nanowires: experimental details

Core/shell nanowires can be exploited as an alternative solution for growing heteroepi-
taxial GeSn. The aim of using such a structure is to exploit the larger free surface area.
Indeed, for applications in Mid-IR detector it would increase the active surface capable
of collecting the optic signal. But the main advantage of using nanowires is related to
the growth, where the core template can offer peculiar properties, inaccessible by planar
substrates. In this Chapter, we focus in particular to the elastic relaxation mechanism,
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which is key to achieve a GeSn growth nearly defect free.
The growth was performed by CVD using germane (GeH4), tin chloride (SnCl4), and

hydrogen chloride (HCl) as precursors [204] . The core is made of pure Ge and it is grown
on a Ge (1 1 1) wafer for 2 h at 320 ◦C, reaching a length of ∼ 5µm, exploiting the vapor-
liquid-solid technique catalyzed by a gold droplet. The diameter of the core, which is an
important parameter for this system as it will be discussed later, can be tuned from 50
nm to 100 nm by changing the size of the initial droplet. This technique allows also for
a precise control of the NW positioning in regular arrays. The shell is grown in a second
stage, where the temperature is reduced at about 300 ◦C using a GeH4/SnCl4 precursor
ratio of about 740 ◦C. Additional HCl is used in the growth chamber to control the tapering
of the nanowire and to prevent the overgrowth of the shell in the top part.

5.3 Strain tunability by core/shell nanowires

A first set of information about the growth quality can be deduced by an SEM analysis.
In particular, the growth was optimized by looking at the morphology of the shell surface,
in order to achieve smooth sidewalls, with a low tapering in order to guarantee uniformity
in the NW and to prevent macroscopic Sn segregation in droplets. This first part was
performed by the growers essentially by changing the partial pressures of the precursor and
by changing the temperature. Then, a more detailed analysis involving TEM and FEM
simulations is required to investigate the Sn incorporation and the elastic properties of the
system.
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Figure 5.1: (a) Cross-sectional EDX compositional map of a Ge/Ge0.895Sn0.105
core/shell NW. The core radius is 30 nm and the shell thickness is ∼110 nm. A nominal
shell composition of 10.5 ± 0.5% in Sn is estimated by averaging the EDX signal within
the yellow rectangle reported in the magnified view in panel (b). (c) Variation of the
Sn content along the NW radius “y” showing the progressive increase of the Sn amount
in the shell (dashed tendency line). (from Ref. [208])

The experimental group, that worked on the growth, prepared thin lamellae from the
grown nanowires by FIB to be analyzed by TEM. In particular, by exploiting EDX, a precise
estimation of the Sn distribution in the shell was achieved, demonstrating the validity of
the growth recipe to get a sufficiently high Sn incorporation, well above the equilibrium
value. In particular, as shown in Fig. 5.1(a), a cross-section with an hexagonal shape was
found, with six {1 1 2} facets perpendicular to the substrate. The main feature visible from
this overview is the formation of Sn poor stripes moving from the core to the hexagon
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vertexes, forming a sunburst-like structure. By averaging the Sn concentration over the
yellow rectangle highlighted in panel (b), a composition of 10.5% was achieved in this sample.
However, the more important result of this analysis, that will be particularly useful to
characterize the strain dependent Sn incorporation, is reported in panel (c). A clear gradient
of Sn concentration is found in the shell, moving perpendicularly to the core. Despite the
relatively small variations of composition (from 8% to 10.5%), as we will show by FEM
simulations, this is an important feature to consider for a proper characterization of the
system. In particular, the highest composition is achieved close to the shell surface. In
addition, from the EDX measurements, we can conclude that no local precipitation of Sn
nor clustering are observed [204], probably thanks to a limited diffusion of Sn during growth.
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Figure 5.2: Color maps of the radial, tangential and axial components of the strain
field, as computed by FEM. (a) A uniform 9.6 % Sn composition is set in the shell.
(b) A linear composition gradient from 8% to 10.5% Sn and 5% Sn stripes along the
hexagon vertices are assumed in order to match the experiments. (c) Stress maps for
the case in panel (b). (from Ref. [208])

The first step of our analysis is to study the strain relaxation of this core/shell nanowire
structure. We expect that the 3D substrate, made by the Ge core, allows for a better
relaxation than a planar substrate. It is important to have a precise quantitative estimation
for it, as it affects both the band structure and, more importantly, the tendency to nucleate
defects. To this purpose, we have solved the mechanical equilibrium problem by the FEM,
in the hypothesis of pure elastic deformation as formalized in Chapter 3, as no defect is
observed in the NW analyzed by TEM [204]. The nanowire is modeled as a cylindrical core
surrounded by an hexagonal shell. Core diameter (50 nm) and shell thickness (120 nm) are
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set according to the cross-section in Fig. 5.1. The composition is set in two different ways.
In a simplified model, to have a clear idea of the core/shell relaxation mechanisms, we set a
uniform composition of Sn in the shell equal to 9.6%, which corresponds to the average of
the composition measured by EDX in the whole shell. In addition to this preliminary model,
we have also studied the case with the actual composition gradient (from 8% to 10.5%) in
the shell and with the sunburst structure, made of 5% Sn stripes. To reasonably handle the
strain tensor, we focus on the three main components, radial, tangential and axial, which
are representative of the axial symmetry of the NW. In Fig. 5.2 we report the color maps of
the strain and stress components for the two models here considered. In panel (a) the Sn
composition is uniform in the shell, and as a result also the strain is nearly constant in the
whole shell volume. Variations are visible for the radial and tangential components only in
the region close to the core boundary. As predicted by analytical formulae [151], the axial
and tangential components are compressive, due to the lattice mismatch between GeSn and
Ge, while the radial one results to be tensile, according to the Poisson ratio. Indeed, the
compression in two directions causes a dilatation toward the free surface perpendicular to
the radius. To be more precise, also the axial component can profit of the free surface of
the top of the nanowire, but it is not free to relax as the shell is bounded to the core, and
an expansion of the former requires also the latter to expand. However, since the Ge is in
elastic equilibrium at a smaller lattice parameter than GeSn, the core opposes to the axial
expansion. Finally, the tangential component is mainly limited by the ring geometry of the
shell. For a quantification of the strain, the three components, averaged in the shell volume,
are reported in Table 5.1.

The NW system however is more complex than the simple uniform-composition case,
suggesting that a numerical model is needed and that analytical formulas are not sufficient
to get a quantitative value for the residual strain in the nanowire. Indeed, by looking at the
color maps in Fig. 5.2(b), the strain distribution is not uniform as described by the simple
model. This is particularly true for the axial component, where a color gradient develops
radially, resembling the gradient that was measured for the Sn composition. Additionally,
the sunburst structure introduces in the system strain variations in the regions nearby
the Sn poor stripes. Looking at the numerical values in Table 5.1, the residual strain
for the tangential and axial components is larger for the realistic model, if compared to

Radial Tangential Axial [1 1 1]
uniform composition shell 0.12% -0.06% -0.06%

core 0.39% 0.39% 1.39%
composition gradient + sunburst shell 0.12% -0.19% -0.13%

core 0.38% 0.37% 1.33%

Table 5.1: Average strain values from FEM calculations, for the case including the
Sn composition gradient and sunburst-like stripes as in Fig. 5.1 and the case of a shell
with a uniform composition of 9.6%. The averages are computed in the core volume
and in the surrounding shell volume by considering the central portion of the NW, as
long as 1/4 of the total NW length. The volume of the sunburst-like stripes is excluded
from the averages.
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the uniform-composition one. The role of the sunburst structure, similarly to the core,
is to oppose to the tendency of the shell to expand axially and radially, as shown by the
tensile stress in the sunburst stripes in Fig. 5.2(c), resulting in an additional stiffness of
the core/shell system than what is expected for an ideal system. Differently, along the
tangential direction the shell can profit of a small transfer of the strain to the sunburst
stripes, acting in this case as a compliant feature rather than as a stiffening element and
thus resulting in a uniform stress within the shell. In any case, the important message
from this FEM results is that the residual strain in the NW is rather small. Indeed the
multiple mechanisms for relaxation, involving the expansion toward both the lateral and
the top free surfaces, provide an efficient relaxation, at least if compared to the planar case
of heteroepitaxial growth.
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Figure 5.3: (a) Bright field TEM image of a GeSn NW disposed on the TEM grid for
the strain measurement by external calibration, separating (b) the diffraction pattern of
the Pt nanoparticles alone and (c) the NW diffraction pattern. The circles represent the
diameters and positions of the selected-area electron diffraction apertures. (d) Bright
field TEM image of the GeSn NW on the TEM grid for strain measurement by internal
calibration, superimposing the signals from both the Pt nanoparticle and the NW in the
diffraction pattern (e). The sample is the same as described in Fig. 5.1. (f) Schematic
representation of the directions along which the strain is determined. (from Ref. [208])

To confirm the model, an experimental measure of the strain can be useful. However
this is challenging, as a geometrical phase analysis [209, 210] requires a reference area
within the same field of view, therefore cannot be applied to our 3D system. A possible
alternative is to exploit the electron diffraction (ED) patterns from the TEM measurements
to estimate the lattice spacing, and then deduce the strain. TEM measures were performed
by imaging along the 〈1 1 0〉 zone axis, which enables to evaluate the strain along 〈1 1 1〉
and 〈2 0 0〉 directions. To improve the precision of the measure, reducing systematic errors
inherited by the measuring technique, we have used Pt nanoparticles as a reference. These
where deposited on the supporting holey carbon film where the wires were put for the
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measure, as shown in Fig. 5.3(a). This calibration technique can be used in two different
manners: external and internal. In the former, the poly-crystalline ring patterns from the Pt
nanoparticles are acquired in a dedicated spot, as shown in Fig. 5.3(b). Then the nanowire is
probed (see panel (c) ) and then the signal is corrected by using the Pt signal as a reference.
Differently, in the internal calibration mode, the Pt signal is acquired in the same spot as in
the nanowire (see panel (d-e) ).

The lattice spacings provided by TEM correspond to the [1 1 1] axial direction, to a
〈1 1 1〉 direction tilted of 70◦ with respect to the axis and a 〈2 0 0〉 direction tilted of 54◦

(see panel (f) ). For the first case, the resulting strain is directly comparable with the axial
strain in the simulations. On the contrary, a rotation of the strain tensor is required to
compare with the tilted directions, as formalized in section 3.1.

From each lattice spacing, the lattice parameter can be calculated by using the same
conversion factors as for the cubic cell of Ge. Then, the strain is computed by comparing
with the lattice parameter obtained by the Vegard’s law [211] for the GeSn alloy: ε =
ameasured−aGeSn

aGeSn
. From each electron-diffraction (ED) pattern, we can get a single spacing for

both core and shell, as no double spot can be distinguished in the pattern. Nevertheless, we
assume that the signal corresponds to the shell as its volume is more than 10 times larger
than the one of the core. In any case, we have a single value for the entire shell, while we
expect a different strain between the regions close to the core and the ones close to the free
surfaces. Moreover, the composition is not uniform, as demonstrated by experiments, but
we have to choose a single value (here we use the average composition 9.6% Sn) to calculate
by Vegard’s law aGeSn, which is required for the computation of the strain. By considering
the variability of the results, probably caused by the complexity of the composition and
strain distribution, an error of 0.01 Å on the lattice spacing is estimated, which corresponds
to a variability of about 0.3% in strain.

Table 2 reports the comparison between the TEM strain values and the FEM ones,
elaborated by projecting the strain tensor along the three directions here analyzed: axial
[1 1 1], 〈1 1 1〉 and 〈2 0 0〉. It is notable that both calibration methods have a non-negligible
variability of the data, even if we can conclude that the internal calibration gives results
closer to the FEM predictions. Anyhow, overall we have the indication that the residual
strain in the nanowires is rather low, if compared to preliminary estimations already present
in the literature [204]. Moreover, we have the clear indications that FEM simulations are a
quite essential tool for a quantitative analysis of strain in NW, as the complexity of the
system and the low magnitude of the strain to be measured make difficult to reduce further
the variability of the experimental data.

Besides the characterization of the strain relaxation in core/shell nanowires, the main
aim of using FEM simulations is to study the possible correlation between strain and Sn
incorporation. Indeed, this topic is interesting not only for fundamental research, but
also for the applications, where the control of the Sn incorporation is crucial. As already
identified in the color maps of Fig. 5.2, the strain in the shell is not uniform, especially in
the case of non uniform composition. Indeed, the lattice parameter of the GeSn alloy to
be accommodated by the shell expansion increases while moving from the core to the shell
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Axial [1 1 1] 〈1 1 1〉 〈2 0 0〉
FEM uniform composition -0.6% -0.03% -0.03%

composition gradient + sunburst -0.13% -0.05% -0.07%
TEM NW 1 external calibration -0.5% -0.5% -0.6%

NW 1 internal calibration -0.6% 0.0% -0.3%
NW 2 internal calibration -0.2% 0.5% 0.0%

Table 5.2: Comparison of the strain values obtained by FEM calculations and TEM
measurements. FEM results are reported for both the case of a shell with uniform
composition of 9.6% and the case including composition gradient and sunburst stripes,
as in Table 5.1. The strain tensor is projected along the axial [1 1 1], 〈1 1 1〉 and 〈2 0 0〉
directions to compare with TEM data and averaged on the same shell volume as in
Table 5.1. TEM data are acquired by both external and internal calibration techniques.
In the latter case, measurements from two different NWs from the same sample (labeled
as NW1 and NW2) are reported to show the uncertainty of the strain data, due to the
0.3% inaccuracy in the strain value derived from the electron diffraction patterns

surface. These variations are studied more in detail in Fig. 5.4, where the strain components
are considered along a radius of the NW (’y’). In this case, to target the analysis to the
most relevant case for applications, we have used the composition values for the highest
Sn incorporation (13%) reported in Ref. [204]. Panel (a) reports the simple model with a
uniform Sn composition of 11.7%, a core diameter of 50 nm and a shell thickness of 120 nm.
The most noticeable thing is that, in this case, all the strain components converge to zero
while approaching to the free surface. By looking more in detail, the axial strain is nearly
constant, as it depends mainly on the volume balance between the core and the shell, but
not on the distance from the core. On the contrary, the tangential strain is relaxed better
far from the core. This is mainly due to a geometrical reason: a radial expansion when
the radius is larger corresponds to a larger expansion tangentially, while the inner regions
of the shell are more constrained to the core size, which opposes to the deformation. The
radial tensile expansion can then be interpreted as a direct consequence of the compression
in the tangential direction, due to the Poisson’s ration. The strain distribution changes
significantly when considering the actual Sn distribution observed in the experiments, which
includes both a gradient along the radius from 9% to 13% and the sunburst stripes, with
a 5% Sn composition (see panel (b) ). Radial and tangential components keep a similar
behavior, converging to a lower value when approaching to the free surface. This is due
again to the geometrical limits of the tangential expansion. However, in this case, the strain
does not converge to zero as the Sn composition, and hence the lattice mismatch, increases
close to the surface. But the main impact of the non uniform Sn distribution can be found
on the axial components, which is even tensile in the region close to the core. Indeed, while
for a uniform composition the axial strain is determined by the balance between the core
and the shell, in this case the inner shell (poorer Sn content) acts similarly to the core and
opposes to the expansion of the outer shell. Finally, the role of the sunburst if to increase
the stiffness of the whole structure, opposing as the core to the tendency of the shell to
expand.

To get more deeply in the understanding of the strain role during growth, we have to
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Figure 5.4: Variation of the radial, tangential and axial strain components along
the NW radius “y” (see insets) obtained by FEM calculations in the case of uniform
composition (a) and in the presence of composition gradient and sunburst segregation
(b). The core radius is 25 nm and the shell is ∼ 120 nm thick. In (b) Sn composition
varies linearly from 9% to 13% for a 120nm thick shell, corresponding to an average of
11.7% as used in (a), and 5% Sn sunburst stripes are also taken into account. (from
Ref. [208])

investigate the strain at the NW surface, where the Sn incorporation mechanisms are active.
This has to be repeated for several shell thicknesses, as to reproduce different stages of the
growth process. As in the previous case of Fig. 5.4, we compare the two different models
for the composition: uniform and gradient combined with sunburst structure. To have a
representative value of the compression on the surface, we average the strain on a side facet
in an area as wide as 1/3 of the total facet width. This guarantees to have a sufficient
number of mesh points to average on, limiting the numerical uncertainties that could arise in
the data processing. When the uniform composition is considered, all the strain components
tend to decrease when the shell thickness increases, as shown in Fig. 5.5(a). The residual
strain at the surface reaches a value below 0.2% when the shell is about two time thicker
than the core. This can be generally explained because the larger is the shell volume, the
stronger is the possibility to expand the core, accommodating the GeSn lattice parameter.
This is particularly true for the surface where, as shown in Fig. 5.4(a), the strain reaches
the lowest values. In the more realistic case where both the composition gradient and the
sunburst structure are considered (see panel (b) ), the tendency to reduce the strain when
increasing the shell is maintained, but the strain does not tend to converge to a nearly zero
value. A tendency to stabilize on a constant strain is recognized, despite any further increase
of the shell volume. At a first look, this condition would make the NW an unfavorable
system for GeSn growth. However, we must consider that, beside the constant strain, the
system is accommodating an increasing Sn composition. This behavior is clearly unfavorable
from the point of view of the energetics of the system, as both the Sn incorporation above
the equilibrium solubility and the non-zero residual strain does not represent the minimum
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Figure 5.5: Comparison for the strain at the surface computed for different thicknesses
of the NW shell. The strain values are averaged in the central 1/3 portion of the NW
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composition varies linearly from 9% to 13% for a 120nm thick shell, corresponding to
an average of 11.7% as used in (a), and 5% Sn sunburst stripes are also taken into
account. (from Ref. [208])

energy configuration. Therefore, the growth of GeSn nanowires must have a kinetic origin.
The growth process is performed in excess of Sn, which pushes the incorporation of Sn in
the alloy. Moreover, the low temperature and the relatively fast deposition rate allow for an
out-of-equilibrium growth. However, the fact that the Sn incorporation is still limited may
suggest that an additional limiting factor should be considered. The variability of the Sn
incorporation during growth, under the same growth conditions, may suggest a dependence
with strain. The tendency to incorporate more Sn, as pushed by the growth conditions, has
to be balanced by the capability of the structure to accommodate the lattice parameter
keeping a low residual strain. In other words, to incorporate more Sn, the nanowire has to
grow larger. The quantity of Sn that is incorporated should keep the strain below a certain
threshold, above which the tendency of the system would be to segregate Sn on the surface,
reducing the strain in the surface layers. Following this model for the growth dynamics, the
strain threshold mechanism can be recovered in the FEM model by looking at the tendency
of the strain at the surface to stabilize (around the 0.4% value) when the shell grows thicker
and incorporates a growing concentration of Sn. It has to be noticed that, in our case, the
analysis is valid for a {1 1 2} surface, as this is the only one exposed by the nanowire shell
analyzed experimentally.

5.4 Core diameter and strain relaxation

An additional structural variable provided by the core/shell system is the diameter of
the Ge core. Here we want to investigate whether this introduces and additional degree of
freedom in the optimization of the epitaxial growth of GeSn layers. As a comparison, in

87



Chapter 5: Elastic strain relaxation in Ge/GeSn core/shell nanowires

planar growth a similar role is played by the exploitation of virtual substrates to tune the
lattice parameter of the substrate on which GeSn is grown [192].

From experiments performed by S. Assali at Technische Universiteit Eindhoven, it is
found that smaller cores lead to the growth of a thicker GeSn shell. In addition, the surface
of the shell presents better defined {1 1 2} facets, if compared to the larger cores where a
multi-faceted shell is obtained. To understand why the incorporation of material is different
between the two cores, in the hypothesis of a strain mediated Sn incorporation, here we
compare the strain relaxation for the two systems.

Sn rich gradient

Sn poor gradient

Ge core

100 nm

Figure 5.6: Schematics of the morphology modeled by FEM when changing the core
diameter. A linear composition gradient from 8 % up to 13 % Sn for a 60 nm shell (6
% to 10 % Sn in the stripes along the hexagon vertices) is assumed in order to match
the experimental data. The cylindrical core is of pure Ge.

A quantitative determination of the strain distribution in cross-sectional TEM samples
of Ge/GeSn core/shell NWs using electron diffraction is challenging, especially for the case
of thick cores, and therefore thick nanowires (>100 nm). Therefore, we apply the FEM
method to estimate the elastic strain in core/shell nanowires to study the role of the core
diameter. The core is modeled as a cylinder, as no clear faceting is observed neither for
small nor for larger core. Moreover, by introducing a faceted core with sharp edges, the
risk is to introduce a numerical divergence of the elastic field to the presence of perfectly
sharp edges, which are not realistic of the actual system. The shell is bounded by six {1 1 2}
facets, plus six {1 1 0} smaller ones. Indeed, in the system with a larger core diameter, a
more irregular shell growth us found and a dodecagonal shell can be observed. A second
difference with the system considered in the previous Section 5.3 is represented by the
composition distribution in the shell. In addition to the {1 1 2} composition gradient, a
Sn gradient is measured along {1 1 0} especially for larger cores. To have a representative
model of the system, we include both gradients in the simulations, as shown in Fig. 5.6,
with the same composition increase with shell thickness for the different core diameters, not
to introduce too many different parameters between these system. In particular, along the
〈1 1 2〉 stripes the Sn content varies from 8% to 13% for a 60 nm shell, while along 〈1 1 0〉
the corresponding gradient is from 6% to 10%.

Despite the additional composition gradient introduced in this model, with respect to
the one studied in the previous section, the strain relaxation in the nanowire has the same
characteristic features as analyzed before. Along the radial direction, the shell can expand
freely toward the free surface. On the contrary, along the tangential direction, the shell is
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Figure 5.7: Color map of the tangential (a) and axial (b) FEM strain components for
a 110 nm core diameter and a 60 nm thick shell. Axial strain for a 20/60 nm Ge/GeSn
core/shell NW heterostructure, highlighting a tensile strain in the inner part of the
shell. The composition is set as described in Fig. 5.7.

bounded by a ring symmetry around the core, therefore it remains compressed as shown by
the color map in Fig. 5.7. As an additional phenomenon, which however has a minor effect
on the strain relaxation, the tangential strain is partitioned between the Sn rich and Sn poor
stripes. Along the NW [1 1 1] axis, on one side it can expand toward the top free surface,
but on the other side it is tied to the length of the Ge core. Moreover, the tendency of the
shell to elongate is twofold. Indeed, the Sn poor regions in the shell tend to expand less
than the Sn rich ones, reducing the overall tendency of the shell to stretch the core. Still, a
tensile deformation of the core is present, as it can be seen by the color map in Fig. 5.7.
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Figure 5.8: (a) In-plane strain (average of tangential and axial components) at the
surface of the shell as a function of the shell thickness, for different core diameters. (b)
Axial strain averaged in the core volumes for different core diameters. The composition
is set as described in Fig. 5.8.

To investigate the possible role of strain in controlling the growth rate of the GeSn
shell, it is possible to investigate the properties at the surface by FEM for different shell
thicknesses, mimicking the sequential stages of the growth. In Fig. 5.8(a) the strain on
the surface are reported as a function of the shell thickness. Different curves represent
different core diameters. The strain has been computed by averaging the tangential and
axial components, which resemble an in-plane strain on the surface. This is a measure of the
compression of the unit cell, which could drive the segregation of Sn atoms on the surface,
limiting the incorporation of material and, as a consequence, the shell growth rate. By this
analysis, a large increase in the compressive strain from -0.2 % to -0.8 % is observed by
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changing the Ge core diameter from 20 nm to 110 nm, which corresponds to the actual
experimental range. This maximum variation is observed for a shell thickness of about
20 nm. Indeed, larger shells have an increasing strength to stretch the core, due to the
increased GeSn volume.

An interesting feature regarding the axial strain relaxation in the regions close to the
core can be highlighted by comparing the strain analysis for different core diameters. The
inner part of the shell, having a lower Sn composition, may have even a tensile strain. This
is because it is acting like the core as a compliant substrate for the outer shell, which has
a larger volume and a stronger tendency to expand, having a higher Sn content. This is
particularly evident in the color map in Fig. 5.7 for the NW with the smaller core (20 nm),
which can be easily deformed by the surrounding shell. The axial deformation of the core is
quantified in the plot of Fig. 5.8(b). It is evident that the residual strain is always tensile,
and it magnitude is higher when the core is smaller, and therefore can be easily deformed by
the surrounding shell. The same analysis for the radial and tangential components, which
for the core volume have the same average value being the deformation nearly hydrostatic
in the plane perpendicular to the NW axis, gives a similar trend, but on a lower strain scale,
ranging from 0.05 % to 0.45 %.

5.5 Conclusions

In this Chapter we have analyzed by realistic 3D FEM calculations the residual elastic
strain and the Sn incorporation in core/shell Ge/GeSn NW. This analysis has been compared
to TEM results for the residual strain, still close to the accuracy limit. The simulations have
revealed in particular the impact of the sunburst segregation and of the Sn incorporation
gradient on the elastic properties, inducing a stiffening of the shell with respect to the case
of uniform composition. More importantly, a strain threshold allowing for an incremental
Sn incorporation has been identified for the {1 1 2} NW facets by comparing the strain
relaxation at the surface during growth and the resulting Sn distribution in the shell as
measured by EDX. This corresponds to a mechanism of compositional pulling which is
similar to the one identified for other systems, as AlGaN [201]. A correlation between
strain relaxation, corresponding to the lattice parameter at the growing front, and the
Sn incorporation has been proposed also in other recent literature works [206, 212]. An
advantage of the analysis made on NW, where no dislocations are observed [204], is the
possibility to quantify the residual strain as the result of a pure elastic relaxation, which is
not possible in planar films growth where the plastic relaxation by misfit dislocations in
unavoidable. For the NW system, we have also characterized the role of the core diameter,
suggesting that the smaller Ge cores are more promising for an efficient strain relaxation in
the GeSn shell, offering a possible strategy to improve the Sn incorporation in core/shell
nanowires.
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Chapter 6

Heteroepitaxial growth of islands
on patterned substrates

In the Chapters 2 and 3 we have proposed an innovative modeling technique to simulate
the growth of NM and a continuum elasticity approach to study the strain relaxation in
core/shell NW. Here we combine these two aspects, surface diffusion and elasticity, by
investigating the heteroepitaxial growth of islands on pit-patterned substrates by phase-field
simulations. A system that has been widely studied in the literature, but which still requires
the development of a modeling technique which can precisely capture all the aspects of this
type of growth. Here in particular, we study the dynamics which results from material
deposition and redistribution via surface diffusion, according to the tendency toward free-
energy minimization. We apply a continuum model, based on the concepts proposed by
the so called Asaro-Tiller-Grinfeld theory. In particular, we consider the balance between
surface energy, misfit strain and wetting energy. The numerical solutions are obtained by
finite element method, which permits to precisely account for the effect of the actual pit
morphology on the strain relaxation. The mechanisms leading to islanding into the pit
are discussed with respect to the growth conditions and pattern properties. Finally, as an
additional result, the model is applied to study the case of island stacking.

6.1 Introduction

The growth of islands in semiconductor heteroepitaxy has been a research topic deeply
investigated since decades [23, 213–215]. The first general understanding of the growth
dynamics from a theoretical point of view was initially achieved by Asaro-Tiller-Grinfeld and
Srolovitz with the well known ATG analytic theory [25–27]. By assuming that nucleation
barriers do not play a major role [216], the ATG theory models how a strained film becomes
unstable with respect to a profile perturbation, leading to the formation of a periodic array
of islands. This process is explained by considering the competition between the surface
energy cost, which favors the flattening of the surface, and the elastic relaxation of the strain,
which induces the growth of islands. The growth dynamics occurs in quasi-equilibrium
conditions, therefore it is reasonable to assume that it is driven by the minimization of the
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free energy of the system. In the following years, several works were published with the
aim to improve the simple ATG description by capturing multiple features observed in the
experiments [114]. In particular, the modellization of the wetting energy was introduced
[217–220], then surface energy anisotropy [220, 221], the mechanism of compositional mixing
in alloy [222–225] and even plastic effects [226].

The technological interest to control the positioning and size of the growing islands has
driven the scientific research toward the study of patterned substrates. One of the main
approaches, that we are going to analyze in this chapter, consists in patterning the substrate
with an ordered array of pits. Nowadays, this can be achieved thanks to reactive ion etching
and to lithographic techniques [30, 227, 228], which enable an accurate control of the pattern
properties, both in terms of pit positioning and of control of their size and morphology.
Indeed, it has been demonstrated by experiments [229–233] that, under suitable growth
conditions, a perfectly ordered array of islands can be grown. However, the challenging
aspect of this procedure is that the growth parameter window that allows for such an ordered
growth is limited and complex to be found. Indeed, growth temperature and deposition flux
as well as pit size, shape and periodicity, all affect the localization and uniformity of the
grown islands.

In the literature, some theoretical studies [29, 234] show that the growth temperature
and the deposition flux as well as pit size, shape and periodicity, all affect the localization
and uniformity of the grown islands. From one hand, the tendency of filling the pits is
expected due to capillarity. On the other hand, the strain relaxation is particularly favored
for the island that grows inside the pit [235]. And this, in analogy with the ATG theory,
tends to drive the growth, opposing to a flat filling of the pit. An exact numerical modeling
of this latter contribution is computationally quite demanding. Therefore, typically, only
approximated approaches have been presented in the literature, particularly limiting the
description to selected pit shapes with low aspect ratios [31, 236, 237].

In this Chapter, a general model based on a phase-field approach is developed in order
to study the island growth on patterned substrates [113, 238, 239]. The main advantage of
the present model with respect to the literature is the possibility to implicitly track both
the film surface and the substrate interface. Within this description, a partial differential
equations system is formulated to describe the growth dynamics of the system. This is solved
numerically by exploiting finite element method, which allows us to deal with arbitrary
substrate morphologies, including the ones used in experiments, still profiting of an exact
solutions of the elastic relaxation, without the need of higher order approximations. For
the sake of simplicity, here we focus on a pure elastic description with no plastic relaxation,
even though phase-field models have been developed also to account for the presence of
defects [240, 241].

Once the model is properly defined, growth simulations are performed to precisely
identify the mechanisms driving the ordered growth of islands, with particular attentions
to the parameters that mostly affect this dynamics. Here we have chosen to focus on
the prototypical system where Ge islands are grown on a Si(0 0 1) substrate, within the
approximation of isotropic surface energy and elastic properties, and neglecting intermixing
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effects. However most of the conclusions can be extended to a wide range of Stranski-
Krastanov systems, such as III-V compounds [215, 242], just by changing the material
properties used in the model. Importantly, the results presented here are not limited to
simulate the annealing of a film deposited on the substrate, but the growth dynamics is
studied during the deposition of the material forming the growing layer.

This Chapter is organized with the definition of the phase-field model which couples
surface diffusion and elasticity in Section 6.2. The role of the wetting energy term in
determining a critical thickness for island formation is presented in Section 6.2.1. Then
the growth of a single island in a pit is characterized by the detailed analysis of the free
energy contributions in Section 6.3.1. Once the main growth dynamics has been assessed,
further elements can be studied, as the impact of the growth conditions in Section 6.3.2, of
the pattern geometry in Section 6.3.3 and of the elastic properties of the materials which
compose the substrate and the growing film in Section 6.3.4. Then the model is used to
perform full 3D simulations as described in Section 6.3.5. Finally a different type of ordering
is presented in Section 6.4 as due to the vertical stacking of multiple layers with islands.

6.2 Phase-field model for island growth

To simulate the growth process, a phase-field model is exploited, combined with a finite
element method to solve numerically the diffusion equations. The model has been developed
starting from the one proposed by Rätz et al. in Ref. [113] and it has been improved to
include the description of the substrate morphology. This approach is similar to the one
presented in Ref. [221, 243, 244]. A phase-field model basically consists in an implicit
description of the system morphology via an order parameter called phase-field function. In
a general approach, this function varies with continuity within the domain considered for
the simulation and, based on its numerical values, identifies the different topological regions
of the system. In our case, we need to distinguish between three phases: the substrate,
the film and the vacuum. The latter has to be accounted for, as the simulation domain is
wider than the solid itself. This represents a main numerical advantage of this approach,
because the simulation domain can be set a priori and does not evolve during the simulation,
as it happens in the case of an explicit modeling, where the simulation domain directly
corresponds to the free surface of the system. As illustrated in Fig. 6.1, two phase-field
functions ϕ and c are used to distinguish between the different regions, instead of using a
single function with multiple values. ϕ is set to vary smoothly from 1 in the solid to 0 in
the vacuum. The surface of the solid corresponds to the diffuse interface where 1 > ϕ > 0
and it is represented by the ϕ = 0.5 isoline, which in the following figures will be directly
used to show the surface profile. Similarly, the substrate is represented by the value 1 of
the c parameter, which is equal to 0 elsewhere. The substrate-film interface is reported as
the c = 0.5 isoline. Since the SiGe system follows the SK growth mode, there is no need to
consider also the substrate-vacuum interface. Indeed, the Si substrate is always covered by
the Ge wetting layer. The mathematical definition of the phase-field function, used for both
ϕ and c, is given by 1/2 [1− tanh (3d(r)/ε)] (see Fig. 6.1(a) ), with ε the amplitude of the
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interface region and d(r) the signed-distance of a generic point r from the actual profile.

(a)

(b)

1

0

0.5

Figure 6.1: System representation by the PF approach. (a) Plot of the phase-field
functions ϕ and c and of the surface mobility M(ϕ, c) (scaled to unity) with respect
to the signed-distance d(r) from the surface and substrate profiles. Shaded regions
correspond to the diffuse interfaces. (b) Definition of the substrate-film-vacuum regions
by the ϕ and c fields within the simulation cell. (from Ref. [245])

The growth process can be reproduced by considering two main phenomena: material
deposition and surface diffusion. Bulk diffusion, which in principle is active, is assumed here
to be negligible due to high activation barriers that make this process at least two orders
of magnitude slower than the surface one. For this reason, we consider that the substrate,
which is always in the solid bulk region due to the existence of the Ge wetting layer, does not
evolve in time (t). This introduces a fixed constraint on the phase-field function c (∂c/∂t=0)
that allows to simplify the description of the dynamics by considering only the phase-field
function ϕ. This assumption is particularly true when considering a Si substrate due to its
rather low mobility if compared to the Ge one [246]. More precisely, both experimental
and theoretical analysis [223, 247] showed that intermixing effects may involve also the first
monolayers of the substrate when dealing with the initial few-monolayers-thin wetting layer.
However, for the sake of simplicity, we do not include this complex dynamics [248] in the
present model.

In the assumption of quasi-equilibrium conditions, the net flow of material on the surface
is driven by the free-energy minimization. This is equivalent to consider a material transport
in the direction of the local gradient of the chemical potential µ [249, 250]. Differently from
the kinetic regime influenced by the adatom incorporation dynamics, here we are in quasi-
equilibrium condition where µ = µeq and the incorporation time is assumed instantaneous.
The material transfer is quantified by the consequent variation of the surface profile. In
our PF framework, the temporal evolution of the surface corresponds to the temporal
variation of the ϕ function. This dynamics is mathematically represented by the degenerate
Cahn-Hilliard equation for surface-diffusion, in which we have included an additional term
F (ϕ), accounting for the external material supply:

∂ϕ

∂t
= ∇ · [M(ϕ, c) ∇µ] + F (ϕ). (6.1)

In this approach, the mobility coefficient consists in the function: M(ϕ, c) = D(36/ε)(1−
c)ϕ2(1 − ϕ)2. Its value is non-zero only in the region close to the film surface, as shown
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in Fig. 6.1(a). The numerical parameter D is an effective diffusion coefficient, which sets
the time scale of the process. The diffusion equation (6.1), with this particular formulation
of the mobility, ensures to determine a conservative dynamics [123] with no loss or gain of
material, except for the source term of the deposition.

The external material supply is modeled as a vertical and uniform deposition flux
f = −f ẑ, mimicking the conditions of molecular beam epitaxy, is assumed:

F (ϕ) = −(1 + R) f · ∇ϕ = −(1 + R) f ∂ϕ
∂z
, (6.2)

where f is the nominal deposition flux and R ∈ [−1, 1] is a random number, introduced
to simulate local beam fluctuations. This is required in the initial stages of the growth to
trigger the profile instability by setting the gradients of the chemical potential on the surface.
Here the distribution of the flux is expected not to be crucial for the growth dynamics as we
deal with structures characterized by a low AR if compared to the vertical growth studied
in the previous chapters.

The chemical potential is defined as the functional variation of the total free energy G as
µ = δG/δϕ and corresponds to the energy gain/loss with respect to the addition or removal
of an atom in a specific position of the profile. The free energy can be written in the form
of a Ginzburg-Landau functional [10]:

G[ϕ] =
∫

Ω
γ

(
ε

2 |∇ϕ|
2dr + 1

ε
B(ϕ)

)
dr +

∫
Ω
ρ[ϕ, c,u]dr, (6.3)

where B(ϕ) = 18ϕ2(1− ϕ)2 is a double-well potential.

The first term in the equation quantifies the surface energy on the system. This is
determined by the product of the surface energy density and of the area of the surface profile.
The second term of the equation corresponds to the elastic contribution to the chemical
potential. This is determined by the elastic energy density ρ[ϕ, c,u], which is given by the
surface and substrate morphology, via ϕ and c, and by the displacement field u. The latter
describes the local deformation of the crystal lattice u = u(r) due to the film-substrate
misfit strain εfsm = (as − af)/af, with as and af the lattice parameters of the substrate and
film respectively. For the Ge on Si system, εfsm= -0.0399. By considering isotropic elasticity
and introducing the elastic strain tensor ε, so that εij = 1

2 (∂ui/∂xj + ∂uj/∂xi) + εmδij , ρ
is given by

ρ = µ
∑
i,j

ε2
ij + λ

2 [Tr(ε)]2 . (6.4)

The material properties have to be defined on the whole simulation domain Ω as all the
other variables of the system. To this purpose, the misfit εm and the Lamé coefficients µ,
λ are interpolated with the function h(ϕ) = ϕ3(6ϕ2 − 15ϕ+ 10) from their values for the
solid phase to 0 in the vacuum phase. Moreover, an additional modulation to distinguish
between the properties of the substrate (at zero-misfit and with elastic constants µs, λs)
and the ones of the film (εfsm, µf, λf) is introduced by means of c:

95



Chapter 6: Heteroepitaxial growth of islands on patterned substrates

εm = (1− c)εfsm · h(ϕ),

µ = [cµs + (1− c)µf] · h(ϕ) + µv, (6.5)

λ = [cλs + (1− c)λf] · h(ϕ),

where µv is a small number ∼10−6 GPa, introduced for numerical reasons only [113]
as perfectly zero elastic constants could cause numerically-divergent displacements. This
apparently complex description of the elastic properties via the phase-field functions has the
main advantage of enabling the simulation of whatever complex substrate or film geometry,
still accounting properly for the different properties of the two materials. This feature is here
exploited by considering the proper difference between the Si and Ge elastic properties: µSi

= 52 GPa, λSi = 60 GPa while µGe = 41 GPa, λGe = 44 GPa. This model could be therefore
efficiently applied also to other heteroepitaxial systems with compliant substrates where
the evolution of the profile is strongly affected by the difference in the elastic properties
between the film and the substrate [251].

The main unknown variable, that has to be determined in order to quantify the elastic
contribution to the system free energy, is the displacement field u. The most precise
description would require to couple the surface diffusion dynamics in eq. (6.1) with the
deformation dynamics. However, since the time scale for the elastic relaxation can be
considered instantaneous with respect to the diffusion timescale, we can limit our study to
a mechanical equilibrium problem to be coupled with the profile evolution dynamic. The
problem of mechanical equilibrium of an elastic medium is well defined in the literature, as
also discussed for core/shell NW in Chapter 3. The fundamentals consist in considering
the equilibrium between all the elastic forces within the solid, that in differential form can
be written as ∇ · σ = 0, with the stress tensor σ given by σij = 2µεij + δijλTr(ε). This
relation is based on the linear Hooks law, in the hypothesis of small deformations. The
partial differential equation for the displacement film reads:

∇ ·
[
µ
(
∇u+ (∇u)T

)]
+∇ (λ∇ · u) = ∇ [(2µ + 3λ) εm] . (6.6)

The numerical solution of the mechanical equilibrium for the Ge on Si system that we
are going to consider is reported in Fig. 6.2. The boundary conditions are set on the borders
of the simulation domain being periodic in all direction, but for the bottom of the cell
(ΓD), where the Si lattice is assumed to be not deformed and u = 0 which allows to fix the
reference frame for the numerical solution. For the definition of the boundary conditions,
we are already profiting of a peculiar advantage given by the PF model. Indeed, if the
solid profile were defined explicitly, Neumann boundary conditions σ · n̂ = 0 should be
applied at the free surfaces (ΓN ), to reproduce the zero-stress condition at the boundary
with the vacuum region. In the PF model, this result is achieved automatically thanks to the
interpolation of the elastic properties in the vacuum regions, which are treated as a medium
with null elastic constants which do not exert any force on the solid surface. On the left side
of Fig. 6.2(b), the solution of the strain component εxx is shown on the overall simulation
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domain for a 2D slice cut through the island center. On the right side, the vacuum region,
which has just a numerical value, but it is meaningless from a physical point of view, is
clipped away and only the solid region within the ϕ = 0.5 isoline is reported. One numerical
detail to be noticed is that, within the diffuse interface, the strain values are affected by the
modulation of the misfit strain εm due to the h(ϕ) function, highlighted in the figure. This
is consistent with the diffuse description of the surface and it is demonstrated to converge
to the expected value in the sharp-interface limit [32], which corresponds to ε → 0. To
facilitate the readability of the physics, in the 3D views of the system, the profile is shown as
cut at the ϕ = 0.9 isoline, ∼ ε/2 below the actual surface, in order to exclude the interface
region affected by the numerical modulation, representing the physical strain expected at
the surface.
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Figure 6.2: Strain field calculation by PF. (a) Color map of the strain component
εxx for a 3D Ge island on a pit patterned Si substrate. Half of the simulation cell
is reported to show the strain distribution within the film and the substrate in cross
section. The surface is cut at ϕ = 0.9 in order to exclude the strain modulation due to
the h(ϕ) function. (b) Cross-section through the island center showing the full map
of the strain field including the vacuum region (left) and the corresponding cut below
the surface profile at ϕ = 0.5 (right). The modulation of the misfit strain εm at the
film-vacuum interface is highlighted. The mesh used in the FEM calculation (for half
of the profile) is reported in the inset, showing the local refinement at the interfaces
traced by both ϕ and c. (from Ref. [245])

To determine the complete evolution, at each time-step of the simulation, the strain
field at elastic equilibrium is calculated by solving eq. (6.6) and plugged into eq. (6.1) by
the definition of the local chemical potential µ:
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g(ϕ)µ = γ

[
−ε∇2ϕ+ 1

ε

∂

∂ϕ
B(ϕ)

]
+ ∂

∂ϕ
ρ(ϕ, c,u), (6.7)

where the stabilizing function g(ϕ) = 30ϕ2(1 − ϕ)2 has been introduced to improve
the numerical stability of the solution, guaranteeing the convergence of this model to the
corresponding sharp-interface limit for ε→ 0 [113, 122].

6.2.1 Wetting energy and critical thickness

An important feature of the SK growth mode is the formation of a wetting layer, generally
few MLs thick, above the substrate surface. Islanding occurs as a second stage of the growth
above the WL, with the important property that the substrate is always covered by the
material of the growing film, as we have already assumed in the model definition. This
behavior can be motivated by considering the surface energies of the materials involved in
the process, and in particular the top material has to have a lower surface energy density
than the one of the substrate below. This is particularly true for the SiGe [252] system where
γGe ≈ 6.0 eV/nm2 < γSi ≈ 8.7 eV/nm2. Additionally, the interfacial energy is negligible and
does not drive in any way the reduction of the Si-Ge interface, which would oppose to the
full coverage of the WL. Ab-initio calculations [242, 253] revealed an additional interesting
property of the SiGe system, for which the surface energy density of the growing film is not
constant, but varies with the film thickness h. This behavior can be well fitted [217–220] by
an exponential decay going from the surface energy density of the substrate γs at 0 ML to
the one of the film γf in the limit of thick films:

γ(h) = γf + (γs − γf) exp (−h/δ). (6.8)

A decay length δ ∼ ML is chosen to return the bulk value γf when the film thickness
exceeds 3-5 MLs, where this dependency with thickness becomes negligible.

The use of the wetting term has two consequences in the modeling of island growth.
First, it determines a critical film thickness hc below which the film is definitely stable
even if it is strained. This is because each initial perturbation of the surface profile is
flattened by the increased surface energy. In a linear approximation, for biaxial strain,
it is possible to estimate [220, 254] hc ≈ −δ ln

[
(U2

ε δ
2)/(4γf(γs − γf))

]
, where Uε = ε2

m ·
2µf(2µf + 3λf)2/ [(µf + λf)(2µf + λf)]. The second result is that the increase of the surface
energy density when, for any reason during the profile dynamics, the surface gets closer to
the substrate provides a regularization of the profile instability. Indeed the higher energy
reduces the tendency to dig toward the substrate. This tendency is generally recognized
in the standard nonlinear ATG as a cusp singularity [255]. Thanks to the wetting energy
modeling, the corresponding numerical divergence is avoided, achieving the possibility to
simulate islands on top of the WL on a long-time scale, which includes the slow coarsening
between neighboring islands [220].

These properties, due to the use of the wetting energy, are demonstrated in Fig. 6.3,
where the evolution of a flat film is simulated during deposition. A value of δ = 0.27 nm is
considered in all the simulations here reported, leading to a critical thickness of hc ≈ 1.2 nm.
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Figure 6.3: 2D simulation of island growth on a flat substrate during deposition (f/D
= 8×10−4). Time is represented by the deposited material hd. (a) Evolution sequence
for the film profile. (b) Maximum peak-to-valley amplitude of the film. (c) Minimum
film thickness, corresponding to the WL height hWL. (from Ref. [245])

This slightly overestimates the value of the WL typically observed in the experiments
(3-5MLs [256]). However, we have to accept this small discrepancy as by considering a lower
δ we would have to tackle even thinner WLs, and this would require a more refined mesh that
increases the computational cost. When the thickness h of the growing film is lower than the
predicted hc, the initial flat profile remains stable, despite the random perturbations that
are induced by the deposition flux. This is highlighted in panel (b), where the maximum
amplitude of the profile does not grow with time. Once the thickness becomes larger than
hc, the profile perturbations become unstable and the one with the fastest growth rate starts
to become apparent, as predicted by the ATG model. This phenomenon occurs dynamically
during the continuum deposition of material. Therefore a delay [223, 257] is required before
the islands can actually become apparent, after the critical thickness is overcome. This
delay is more relevant as the deposition flux is increased and, in the extreme case, can be
responsible of the suppression of islanding due to the occurrence of plastic relaxation, before
island formation can have a relevant effect on the elastic relaxation of the film. On the other
hand, as shown in Fig. 6.3(c), an abrupt thinning of the WL is found when islands become
apparent, and in particular when the growth rate of the perturbation becomes larger than
the one of deposition. Indeed, at this stage, islands grow larger in volume and tend to dig
trenches in the WL layer, reducing its volume. This process, as mentioned before, is stopped
thanks to the wetting potential as soon as the WL thickness is smaller than the critical value
hc. By considering the parameters used for the simulation, we can quantify hWL ≈ 3 MLs,
which is in agreement with the experimental observation for Ge/Si. In the late evolution
stages shown in Fig. 6.3(a), islands continue to grow on top of the WL, collecting material
only from the deposition flux, until the coarsening dynamics [220] is triggered. This consists
in the material transfer from smaller islands to larger ones, which guarantees a better strain
relaxation, as it is expected for Ostwald ripening processes.
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6.2.2 Computational details

The model described so far has been implemented numerically by exploiting the FEM
toolbox AMDiS [17, 18], optimized for the phase-field approach. The main advantage of
FEM is to provide an exact numerical solution for both the mechanical equilibrium problem
and the diffusion dynamics. As shown in the inset of Fig. 6.2(b), the geometry of the system
is defined by an adaptive mesh, which is finer at the free surface and at the film-substrate
interface. These are the regions in the simulation domain where the material properties
vary most and where the evolution dynamics occurs. In the other regions, and especially
in the vacuum one, a coarser mesh is used to reduce the overall computational cost. The
length scale considered in the simulation is the one of nm. To provide a sufficiently thin
interface with a good mesh refinement (al least 8 points in the diffuse interface are required
for an optimal convergence of the FEM solution), the widths ε of the free surface and of the
film-substrate interface are set equal to 0.5 nm and 0.2 nm, respectively. The time scale of
this process is totally determined by the numerical values associated to D as τ = D−1. The
physical value of D can be estimated as D = hlVaD0(kT )−1 exp (−Eb/(kT )), with hl the
ML thickness, Va the volume per atom, D0 the material diffusion coefficient, Eb the energy
barrier for site hopping, k the Boltzmann constant and T the temperature. More precisely, in
the Ge on Si system here reported, hl = 0.146 nm, Va = 0.02 nm3, D0 = 8.5 ·108 nm2/s [258],
Eb = 1.1 eV [259] and the typical growth temperature T = 650◦C are assumed. With this
set of parameters, τ ≈ 0.03 s, which means that the time of the deposition or annealing
processes shown by the simulation results are on a reasonable time scale of minutes, which
well corresponds to the one of MBE experiments. Most importantly, when considering a
diffusion dynamics combined with a deposition process, the key parameter to consider is
the relative time scale between deposition and diffusion, namely the f/D ratio. The time
integration scheme used here is a semi-implicit one, with a time-linearization of the term
B′(ϕ) (see Ref. [10] for details). This allows us to consider relatively long time step, if
compared to a fully explicit scheme, and we have exploited a dynamic adaptation of τ with
values ranging between 10−1 - 10−2, depending on the speed of the profile evolution.

6.3 Results and discussion

In this Section, we describe and discuss the result given by the PF simulations applied
to the growth of heteroepitaxial Ge islands on pit-patterned Si substrates. In particular, the
role of the deposition flux compared to the surface mobility, which respect to the pit sizes
and pattern morphology will be analyzed. Moreover the geometrical and elastic properties
of the pit are studied with respect to the ordering of islands. Finally, full 3D simulations
are reported as a confirmation of the previous 2D results.

6.3.1 Island growth into the pit

The starting point is the understanding of the dynamical process which leads to the
growth of an island inside the pit. This is the optimal condition of perfect ordering. Once
this simple case is understood, the more complex scenario of islands growth both inside and
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outsite the pit will be investigated. To this initial goal, 2D simulation are considered, in
order to have both a simple picture of the system and to have a relatively low computational
cost. The 2D plane is assumed to be an xz section of the 3D morphology (where z is the
vertical direction), which corresponds to a biaxially strained film. The third y direction
is considered infinitely extended, in order to avoid any contribution of material transfer
from that direction. The pits are modeled as a V-shape, using here a 1:6 aspect ratio (AR),
which is defined as the height-to-base ratio. This size has been chosen by considering the
typical experimental conditions that favor the growth of islands inside pits [29].
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Figure 6.4: Simulation of island growth into a pit. (a) Evolution sequence during
deposition (f/D = 4 × 10−4). The first profile, corresponding to the initial condition
for the simulation, is set as a conformal 0.5 nm thick film. The color map for the elastic
energy density ρ is shown. λATG is shown for comparison. (b) Comparison of the strain
map of the εxx component between the island grown into the pit and an equivalent one,
with the same base and height, formed on a flat substrate. Only a portion of the 80 nm
wide cell is reported. Figures are in 1:1 ratio. (from Ref. [245])

In Fig. 6.4(a) the time evolution of the island growth is shown. The initial film profile
is set on a 30 nm wide pit, which is approximately two times wider than the instability
wavelength λATG ≈ 15 nm expected from the ATG model. This condition was chosen to
be on the safe side and to guarantee that, at least on a flat substrate, the island growth is
achievable. The pit is surrounded by a 50 nm flat region, corresponding to the pit-pattern
period, since boundary conditions are set on the two sides of the simulation domain. The
initial Ge film is 0.5 nm thick, in order to be below the critical thickness hc and to be able to
assume a conformal shape with respect to the pit one, still without any island growth. The
Ge deposition is considered at a constant vertical rate f/D = 4 × 10−4. This induces the
growth of the island, as indicated by the three representative stages reported in Fig. 6.4(a),
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identified by the different volume of deposited material quantified as hd = f × t.

In the first stage of the growth, the main driving force is capillarity, which favors the flow
of the deposited material inside the pit. This in motivated by the reduction of the exposed
surface energy, minimizing the free energy of the system. However, it has be considered
that there are two main contributions to the free energy. First the wetting-energy term
opposes to the thinning of the WL, which is caused by the material transfer toward the
pit. This is to avoid the increase in γ according to eq. (6.8). The second contribution is due
to the elastic energy density of the system. However, as confirmed by looking at the color
map in the figure, the elastic energy is rather uniform, which means that it does not induce
any significant gradient for the chemical potential on the surface. The only variation of the
elastic relaxation can be found in the bottom of the pit.

As far as the deposition continues, more strained material is fitted inside the pit. When
the elastic energy stored in this volume becomes large enough, it induces significant variations
of the surface chemical potential and leads to the growth of an islands, which is here shown
for the hd = 1.3 nm growth stage. In this configuration, the additional surface energy cost
given by the increased surface area is overcompensated by the enhanced strain relaxation
which is promoted by the island morphology, with respect to the flat configuration. It is
interesting to notice that the onset for islanding is anticipated to a lower hd than the one
expected for the growth on a planar substrate. This is important to guarantee that the
surrounding WL regions, in a flat configuration, remain below the critical thickness hc,
suppressing any tendency to form islands.

The size of the island is almost comparable to the typical wavelength predicted by the
ATG theory for a flat film, which confirms that the explanation of the island growth due to
the balance between elastic relaxation and surface area is reasonable. The innovative result
from the well known theory is that this wavelength is not maintained by the island, which
tends to grow not only the amplitude, as predicted by ATG, but also to increase the base
size while climbing on the pit sidewalls. This is again to optimize the balance between the
total surface area, which would increase in the case of a fixed base width, and the elastic
relaxation in the island. The improved strain release for bigger island volumes is confirmed
by the color maps for the elastic energy density. The strain release mechanisms can be
made more clear by looking at the strain maps, which give an information on the direction
of the lattice deformations. In particular, in Fig. 6.4b, the strain εxx component is reported,
which is the more representative of the in-plane compression of the system. The first clear
information from these images is that the compression within the island is lower if compared
to the surrounding WL, especially for the top region of the island. An higher compression is
recognized at the borders of the island, where highly compressive lobes are found. A direct
comparison with the corresponding case grown on a flat substrate is reported in the bottom
of panel (b), where an island with the same AR is grown by a separate simulation. For a
more direct comparison, the growth of an isolated island is triggered on the flat substrate,
which keeps the surrounding WL flat as no random perturbation is initiated there. Again,
the main result is that the pit induces a better strain relaxation overall. In particular the
island top is almost fully relaxed, and this relaxation extends on a large volume toward
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the bottom of the pit. As it was analyzed in the literature with static FEM analysis [235],
this strain stabilization is due to the inverted-pyramidal volume below the island base,
which can profit of the strain transfer toward the sidewalls of the pit structure, profiting of
its compliance [260]. This strain relaxation mechanisms is active also in our simulations,
as proved by the compressive lobes that result within the Si volume close the to the pit
sidewalls.
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Figure 6.5: Plot of the energy contributions for the evolution in Fig. 6.4 (solid line),
compared to a conformal growth (dashed line). (a) Surface energy Gγ , corresponding
to the first integral in eq. (6.3) computed on the whole surface. (b) Elastic energy
density ρ, averaged over the film volume. (c) Total free energy G including both film
and substrate. (d) Difference in G between the two growth regimes here compared. I:
quasi-conformal growth II: pit filling III: islanding. (from Ref. [245])

A deeper insight on the growth dynamics can be achieved by monitoring the energetics
of the growing film. These data are reported in Fig. 6.5 by comparing two cases: the growth
of the island inside the pit (by solid lines) and the reference case of conformal growth on
the pit (dashed lines), where material redistribution is not allowed. This condition could be
achieved, for instance, at low growth temperature [261] or high deposition rate. We analyze
the two main contributions to the free energy, surface and elastic, together with the total
free energy. In particular, panel (a) shows the surface energy Gγ . This quantity is obtained
by integrating along the whole surface profile the first term of eq. (6.3). Panel (b) reports
the elastic energy contribution, which is quantified by averaging the elastic energy density
〈ρ〉 over the stressed film volume, which is the active part for the island growth. Panel
(c) draws the behavior of the total free energy G of the system. The increase of the total
energy during the growth process apparently seems in contradiction with the statement
that material redistribution is driven by the tendency to minimize the free energy. The
complexity in our system arises from the continuous deposition of additional material on
the surface. This causes an increase of the stressed material in the system and leads to an
overall increase of the energy, but just due to the flux and not due to an anomalous surface
diffusion dynamics. The energetic advantage of growing the island is made more clear in
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the direct comparison with the reference case shown in panel (d), where the difference in
free energy between the two cases, ∆G = Gisland −Gconformal, is reported. Three separate
stages can be distinguished in this plot. As already shown in Fig. 6.5(a), the first part of
the evolution (I) is characterized mainly by a decrease in the surface energy. This can be
ascribed both to an initial thickening of the WL, which implies an exponential decay in
γ according to eq. (6.8). The growth front evolves conformal to the substrate, except for
the small rounding of the sharp tips set in the initial profile. Therefore the only energy
variation that occurs is related to the variation of the wetting potential. The tendency to
make the WL thicker contrasts the driving force toward pit filling. However, the energy
gain due to the wetting potential decays exponentially as more material is deposited on
the WL. Therefore, at subsequent stages, the material flow from the WL toward the pit
is enabled. This dynamics allows the system to reduce the surface energy with respect to
the reference case of conformal growth (II). The additional material that flows inside the
pit produces a flattening of its bottom (see hd = 0.9 nm in Fig. 6.4(a) ), reducing the area
exposed by the film surface. As a first conclusion, stages (I) and (II) are dominated by the
surface energy contributions, while elasticity does not play a major role in determining the
evolution dynamics. Still, the strain relaxation starts to be affected by the morphology of
the film, producing a non uniform elastic energy density.

At variance from a tetragonally distorted flat film, which has a constant value ρt for the
elastic energy density (equal to 1.38 eV/nm3 for the case of Ge on Si) independent of the
film thickness, the presence of the corner regions at the rims and at the bottom of a pit
induces a non uniform strain field in the film, eventually providing a better strain release.
As already observed in Fig. 6.4(b), this is also due to the strain partitioning between the
film and the substrate. The limit of elastic energy corresponding to the flat film case is
recovered for an infinitely thick conformal film on the pit geometry as illustrated in Fig. 6.5b.
Indeed, when the volume of the film becomes larger, the relaxation mechanisms at its corner
become negligible in the overall count of the elastic energy. However, the pit filling during
the stage (II) of the growth enables an alternative path for the strain relaxation, mainly
due to the inverted pyramid. Therefore, at some point, 〈ρ〉 is observed to decrease again,
despite the continuous deposition of material. The effect of strain relaxation becomes the
main driving force at stage (III), when the island grows into the pit. In this case, the cost
for the increased surface is largely compensated by the enhanced strain relaxation within
the island. As made evident in panel (d), a significant lowering in G is then obtained with
respect to the conformal growth. This represents a proof that the growth of an island into
the pit is a better pathway for the free-energy minimization.

6.3.2 The role of the growth conditions

Once the growth dynamics of a single island into the pit has been characterized, the
model can be applied to study the role played by the growth parameters. Indeed, it is known
from experiments that the perfectly ordered growth considered so far can be obtained only
for a well defined range of growth condition [29]. In general, despite the pit seems to be the
most favorable region to grow an islands, different processes can occur during the deposition,
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leading to the formation of islands even outside the pit. This study is of practical interest,
as the capability to control the formation and positioning of islands is crucial for application
in uniform arrays.
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Figure 6.6: Role of the deposition-to-diffusion ratio f/D in the growth. The initial
condition (dotted lines) is a conformal film, 0.5 nm thick, with the same pit geometry
of Fig. 6.4. Profiles are plotted after 2.3 nm deposited. Notice that, for the case f/D
= 6 × 10−4, the WL is thicker at the borders of the cell. (from Ref. [245])

According to our growth model (see eq. (6.1)), the key parameter which controls the time
scale of the growth dynamics is the ratio f/D between the deposition flux and the surface
mobility. This can be controlled both by acting on the material sources or by changing the
temperature of the substrate, which has a direct effect on the mobility of adatoms. The
two properties, deposition and diffusion, are strictly correlated, motivating the importance
of their ratio rather than of their separate relative values. Indeed the diffusion length is
determined both by the diffusion coefficient of the species involved in the transport, but also
by the rate of the deposition, which determines how long an adatom can diffuse before it is
buried by the subsequent deposited layer. The effect of changing the f/D ratio is illustrated
in Fig. 6.6 by using the same pattern of Fig. 6.4 and depositing in 2.3 nm in total on the
surface.

The lowest f/D ratio corresponds to the higher diffusion length for the deposited
material, which can flow all over the surface. In particular, the tendency is to move toward
the bottom of the pit because, as described in the previous section, it reduces the surface
energy of the system. As a final result, a single island is grown inside the pit. By increasing
the f/D three times (f/D = 6 × 10−4), the localized growth is still achieved, but with a
higher accumulation of material on the surrounding WL, far from the pit region. This is
evidenced by the small slope of the film profile that can be observed in the second panel of
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Fig. 6.6. The non-flat slope is a suggestion that the diffusion of material toward the pit is
partially limited by the increased deposition. This becomes more significant in the third
case, at f/D = 8 × 10−4. The higher capability of the system to keep more material on
the WL enables the formation of an island outside the pit, in the same time while the one
inside the pit grows. By further increasing the f/D ratio at f/D = 1.2 × 10−3, a second
island can be formed on the flat region of the substrate. In the final case analyzed here, a
third island is observed outside the pit, leaving no flat regions for the film profile.

The extreme condition, with the highest f/D here considered, represents a case where
the role of the pit in the growth of islands is nearly negligible. Indeed, the growth of the
WL thickness above the critical value enables the growth of islands everywhere on the
substrate. This behavior is similar to the one predicted by the ATG theory for the case of
flat substrates. The only effect played by the pit is to introduce a non uniform elastic energy
density in the growing film, due to the morphology of the pit. In particular the minimum of
the chemical potential is localized in the center of the cell thanks to the additional relaxation
of the pit, guaranteeing at least a lateral ordering of the island array. However this effect is
not sufficient to drain all the deposited material to fill the pit. A detail that can be noticed
is that the base of the islands is in good agreement with the ideal λATG, while the island
into the pit grows larger because it follows the sidewalls.
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Figure 6.7: Role of the flux for larger pits obtained by doubling the base and the
depth of those in Fig. 6.6. The initial condition (dotted lines) is a conformal film 0.5 nm
thick. Profiles are plotted after 2.3 nm deposited. (from Ref. [245])

Since we have just shown that the diffusion length can play a major role in the growth
dynamics, it is important to investigate the effect of the pit size on the growth of islands.
For the first simulations, e.g. the one reported in Fig. 6.6, the pit width has been chosen to
accommodate only one island. However, it not necessary to assume such a limitation in size
to ensure a single-island growth. This is shown in the first panel of Fig. 6.7 where for a pit
two times larger, i.e. ≈ 4λATG, a single island is grown. However this result may change if
using a different f/D ratio to perform the growth. Indeed, while for the f/D = 2 × 10−4

ratio the dynamics drives the formation of a single island with a flat surrounding WL, for a
ratio increased to f/D = 6 × 10−4 a perturbation of the film profile becomes unstable also
outside the pit, leading to the growth of multiple islands. notice that, for the smaller pit
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analyzed so far, this f/D ratio was sufficient to guarantee that only one island could develop.
By a further increase of the flux up to a f/D = 2 × 10−3 ratio, the formation of multiple
islands on the pit sidewalls is observed [262]. This phenomenon occurs because the upper
part of the sidewalls if far enough from the bottom of the pit. Therefore those regions are
able to accumulate material, growing above the WL critical thickness. Still, those islands
on the sidewalls are smaller than the others, because their growth has to compete with
the tendency to move material toward the larger and more efficiently relaxed island in the
center of the pit. An interesting feature of the system, related with the pit size, is that the
islands start to be apparent approximately with the same volume, more specifically with
the same base width for the different pit configurations presented so far. As a consequence,
if the pit aperture is too small, no island develops before the pit is completely filled. Then
the growth is still observed above the pit region profiting of the relaxation promoted by the
underlying inverted pyramid.

The trends analyzed in Fig. 6.6 and Fig. 6.7 give the possibility to identify the width of
the capture zone determined by the island into the pit. This area tends to reduce for higher
f/D ratios, due to the lower capability of adatoms to diffuse before being buried by the
deposition process. If the distance between two adjacent pits exceeds this length, at least
by the size of the minimum base required for the island growth, material can accumulate on
the WL outside the pit, overcome the critical thickness and then form an island.

From the analysis performed so far, we can conclude that the surface profile strongly
depends on the deposition flux. This suggests that the morphologies obtained during the
growth are metastable states, that eventually differ from the equilibrium configuration. An
important advantage of performing dynamic simulations is the possibility to follow the
kinetic path, which is not accessible by a pure static analysis of the energetic of the system.
Indeed the actual state achieved experimentally may be in an out-of equilibrium condition,
far from the absolute minimum energy configuration. Nevertheless, it is always useful to
investigate also the equilibrium condition toward which the system tends. This task is
performed by the simulations in Fig. 6.8, where the annealing of the system is considered
by suppressing the external source of material and keeping active only the surface diffusion.
An important remark is that the equilibrium condition achieved by this approach does
not necessarily match the absolute minimum energy. Indeed by simulations we can only
consider the evolution pathways accessible via surface diffusion. In panel (a) we start to
analyze the same profile obtained for f/D = 1.2 ×10−3 in Fig. 6.6. It is characterized by
the growth of multiple islands both inside and outside the pit and it is imposed as the
initial stage of the present simulation. The time sequence clearly shows that the material
which composes the two islands on the flat WL is transferred toward the central island
inside the pit. This process ends when the film outside becomes flat and no transfer is
allowed any more due to the wetting potential, which opposes to a further thinning of the
WL. Therefore we have verified that the islands outside the pit are just in a metastable
state, which may appear during the growth process, but which does not correspond to
the equilibrium configuration. This particular metastable state can be achieved not only
through deposition, but also by an annealing simulation. The initial profile in Fig. 6.8(b,c)
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Figure 6.8: Annealing simulations from different initial geometries. (a) Evolution
of the profile obtained for f/D = 1.2 × 10−3 in Fig. 6.6. (b,c) Evolution of a 2.3 nm
thick conformal film (corresponding to the deposited material in panel (a) ) for (b) a
30 nm wide pit as in Fig. 6.6 and (c) a 60 nm wide pit as in Fig. 6.7. Notice that the
resulting islands in panels (a) and (b) are identical, while the one in panel (c) is larger
due to the additional volume available in the cell. (from Ref. [245])

is set as a Ge conformal layer above the Si pit surface, for both 30 nm and 60 nm wide pits
respectively. The thickness is set equal to hd = 2.3 nm to match the same deposited volume
that is considered in panel (a), still guaranteeing to be above the critical thickness. In both
those cases, an instability develops over the whole surface (shown at t = 500 τ). This induces
the formation of islands both inside the pit, on the flat substrate outside and even on the
pit sidewalls in correspondence with the largest pit width. This behavior resembles the one
observed at high f/D in Figs. 6.6 and 6.7, and here we show that it is a temporary state.
Indeed, by extending further the annealing time, the coarsening dynamics becomes relevant,
exchanging material between islands in favor of the one inside the pit, which has the best
strain relaxation among all. At longer evolution stage, just that island remains, providing
the same equilibrium profile for all the three annealing simulations here considered, despite
the different initial conditions and the intermediate evolution configurations.

6.3.3 Pattern geometry

The island growth into pits is driven both by capillarity and strain relaxation. This
latter profits of the transfer of part of the strain into the substrate region. To achieve that,
the key property is the compliance of the substrate, in terms of material elastic properties
and geometry of the pits. The recent experimental techniques [29, 228, 231] allow one
to finely control the pit shape, so that the role of different geometries can be considered
experimentally. Here we want to investigate by simulations which is the impact of the
substrate properties on the evolution of the growing film.

The evolution of islands growing into V-shaped pits with three different slopes is analyzed
in Fig. 6.9. To focus only on the role of the pit itself, neglecting temporarily what happens
outside on the flat substrate, we have set the simulation cell as wide as the pit. As already
addressed in Section 6.3.1, at the onset of island growth, the typical base size ∼ λATG is
observed for the three different cases here considered, suggesting a minor impact of the pit
morphology on the initial island growth. However, it is immediately clear that the volume
required to fill the pit, at least up to the level needed to have a base size ∼ λATG, is not the
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Figure 6.9: Simulations of island growth into pits of different sidewalls inclination: 12◦,
25◦ and 50◦. A low f/D = 1 × 10−4 is set. (a) Comparison of the profiles obtained at
the same deposition time (vertical alignment is arbitrarily set). (b) Temporal evolution
of the island AR. The curve for the case of an isolated island on a flat WL is shown by
a dotted line (shifted at the onset of island growth for the shallowest pit). (c) Strain
maps for the εxx component of islands at the same AR of 0.1. Only the central portion
of the simulation cell (60 nm wide) is shown (in 1:1 ratio). (from Ref. [245])

same. Indeed, the stepper pit requires more material, and therefore a longer time, before
the island starts to growth. As a consequence, a delay in the island formation occurs due
to the different substrate morphology. This is made clear in the direct comparison of the
surface profiles, at the same evolution time which also means same deposited volume, in
Fig. 6.9(a), where the smallest island corresponds to the steepest sidewall configuration.

The delay in the island growth caused by the different sidewall inclination is highlight
also in the analysis reported in Fig. 6.9(b), where the variation of the island AR is reported
as a function of the material deposited. In addition to the three pit shapes, a reference case
of the growth of a single island on a flat substrate is reported. Since the initial condition
is clearly different between the pit and the flat substrate cases, the curve for the flat case
has been shifted along the hd to match the onset for the island formation of the shallowest
pit, to allow for a closer comparison of the different behaviors. In this analysis we want to
focus more on the equilibrium stages that are achieved by the islands during the deposition
process. To this purpose, we have used a low f/D = 1 × 10−4 ratio, guaranteeing that each
evolution stage is as close as possible to the equilibrium configuration for that particular
deposited volume. As evident from the plot in panel (b), in addition to the effect on the
onset of the instability, the sidewall inclination affects also the tendency to grow higher
in AR. In particular, it is found that the steeper is the pit, the slower is the tendency
to raise the AR. The reason for that is clarified by comparing the shape of an island of
about the same AR, but different volume, for the three pits, as shown in Fig. 6.9(c). When
the steepest pit is considered, the island appears more rounded. On the contrary, for the
shallowest pit, the island is more cusp-like, similarly to what is expected for the growth on
a flat substrate [263, 264]. This behavior reflects also the stronger tendency to fill the pit
for steeper geometries. Indeed, the link between the WL and the island along the sidewalls
requires an high curvature region, which tends to favor a more rounded shape which permits
to reduce as much as possible this high curvature. In addition to that, as also discussed in
Ref. [235], the steeper inclination of the sidewalls provides an enhanced relaxation within
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the inverted-pyramid region. This produces a significant lowering of the strain at the surface
of the islands, reducing the tendency driven by the chemical potential to increase the AR.
The higher curvature at the link between the island and the sidewalls as well as the better
strain relaxation make the AR of the steepest case grow slowly, as observed in Fig. 6.9(b).

When this trend is compared with experimental data for different pit shapes [29], it is
found that the predictions of the model match the results for relatively shallow morphologies,
in particular when the sidewalls angle is . 30◦. Indeed a more complex variety of behaviors
occurs when steeper geometries are considered. For example, in some cases it has even
been shown that islands tend to form on the rims of the pit while no islanding if found
in the bottom [29, 232, 235]. Additionally, experiments [231] have also shown that small
pit obtained by focused ion beam could drive the ordering of islands only in between the
pits. Even if recent theoretical studies [31, 265], based on approaches similar to the one
exploited here, have been proposed to investigate this behavior, the study and reproduction
of these peculiar trends is beyond the capabilities of the present model. Indeed, there
are many additional physical features that should be considered for a complete picture of
the system. One example is surface energy anisotropy, with particular attention to the
strain-stabilized {105} facets [252]. These appears in the very initial stages of the growth
and could promote the spontaneous growth of pyramids also on the flat region outside
the pit. Moreover, the contribution of anisotropic elastic properties should be accounted,
especially when considering steeper sidewalls as well as the intermixing dynamics, nucleation
conditions [266] or even barriers [230], slowing down the transfer of material from the rims
to the bottom of the pit. Further complexities may arise from a non uniform deposition
when considering high AR morphologies, which could trigger the formation of islands on
elevated regions [267].

From this short discussion, it is therefore clear how peculiar details of the system could
lead to a variety of evolution dynamics, even for the case of a pit with a simple pyramidal
shape. Additional complexity would be added to the system by changing the pattern
geometry. For instance, in Ref. [57] it was shown that islands can grow on the top convex
regions of large stripes and mesas, probably due to the existence of a peculiar local minimum
of the chemical potential. Nonetheless, even in those experiments, it is confirmed that
the concave foot of those structure represents the most favorable region to grow islands,
particularly in conditions closer to equilibrium where the capillarity effect plays a major
role in the distribution of material on the surface.

6.3.4 Material properties

In addition to the morphology of the pit, also the material properties may have an impact
on the dynamics of capillarity and island growth. So far we have focused on the deposition
of pure Ge on Si(001), but the present analysis could also be applied to other systems. The
first variable that we investigate is the composition of the growing film. Indeed, the SiGe
is an ideal alloy as Si and Ge are miscible for any composition, and therefore it is rather
simple to tune the lattice mismatch between the film and the substrate just by changing
the deposition ratio between Ge and Si. Moreover, particularly when depositing Ge on Si at
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Figure 6.10: Effects of different elastic properties. (a) Evolution sequence for a
simulation performed with the same pattern and growth conditions of Fig. 6.4 but for
the deposition of a 50-50 SiGe alloy. (b) Comparison of island growth into the pit for
(left) a soft substrate, with µs = 20 GPa, λs = 23 GPa, and (right) a stiff one, with
µs = 236 GPa, λs = 277 GPa (values are obtained by an arbitrary scaling of the Si
Young modulus). Misfit and surface properties are the same of Ge/Si. The dashed lines
represent the corresponding surface profiles for the case with Si substrate. The strain
component εxx is shown by the color map. Simulations are performed on a 60 nm wide
pit, as large as the simulation cell. Only the central region is reported (in 1:1 ratio).
f/D = 1 × 10−4. (from Ref. [245])

high temperature, the intermixing dynamics becomes unavoidable, and a significant fraction
of Si is present in the growing layer [247], even if no Si is deposited during the growth. The
actual intermixing dynamics is not part of the present treatment, and the implementation
of a coupled model combining elasticity, surface diffusion and intermixing would require a
big additional development effort [223–225]. Nevertheless, here we can study the evolution
of an alloyed film on a pit-patterned substrate. This result can be achieved just by tuning
the elastic and surface properties. In particular, for an ideal alloy as SiGe, the misfit εfsm
and surface energy γf can be determined by the linear Vegard’s law, which interpolates
between the bulk values for Si and Ge according to the local concentration. According to
the analytical ATG theory, we expect that the major effect of this change in the simulation
could be an increase of the island base, as λATG ∼ γ/ε2

m. This means that a larger volume
of strained SiGe is collected into the pit for capillarity reasons before an island start to
grow. Even in this case, the pit still represents a preferential nucleation site, due to the
better elastic relaxation. This is true also for a pit which is smaller than the base of the
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island as in the case illustrated in Fig. 6.10(a). Since the deposited alloy has a composition
of 50% Ge, its λATG ≈ 60 nm which is larger than the 30 nm wide pit. The first two stages
report a pure capillarity dynamics, with no island growth despite the volume deposited is
the same that in the pure Ge case of Fig. 6.4 allowed for an island formation. Once the
pit is completely filled, the material continues to accumulate due to the deposition, but
it preferentially flows on top of the pit, where still the strain relaxation is favored. When
the critical thickness is overcome, islands are triggered all over the surface. The one in the
center of the simulation cell is however more relaxed thanks to the inverted pyramid below,
therefore it quickly makes the others disappear due to Ostwald ripening.

On the other hand, also the material of the substrate can have an impact on the growth
process. Recent studies [251, 268] have identified that porous silicon or silicon membranes
can act as compliant substrates, favoring the strain relaxation of the growing film. This
behavior could become more effective for other heteroepitaxial systems where the difference
in elastic properties between the film and the substrate is stronger. For the growth on planar
substrate, a theory for the ATG instability has been developed in the literature [258]. In
particular, it is known that stiffer substrates tend to stabilize the flat surface by increasing
the critical thickness and, as a consequence, the wavelength λATG.

The compliant role of the substrate can become more complex when a pit patterned
substrate is considered. Thanks to our model which accounts for both the elastic properties
of the substrate and of the deposited material, in Fig. 6.10(b) we propose the comparison
of the growth of an island on two different pits, with the same morphology, but opposite
compliant behavior. In particular, the one on the left is made softer than Si, while the one
on the right is stiffer, and this is achieved just by changing the substrate elastic constants.
In the initial stages, the pit filling dynamics is clearly enhanced in the case of the soft
substrate. This is sufficient to grow an island into the pit bottom, which starts to grow
following the sidewalls. On the contrary, in the stiff case the WL tends to grow thicker,
allowing less material to flow toward the bottom of the pit. As a result, the island formation
is delayed at later stages. This first observation is in good agreement with the prediction on
a flat substrate [258]. However, the following evolution follows a different trend. Indeed, the
island on the soft substrate has a more pronounced tendency to increase its base following
the sidewalls. While the one on the stiff substrate tends to increase the AR, in favor of
increasing the base width. This is particularly evident in the last stage reported in the
figure, hd = 3.0 nm, where the different height can be easily compared. This behavior can
be motivated by the different strain relaxation, which can be recognized by the color map
for the εxx component. The compliant substrate is able to accommodate a large part of
the misfit strain of the growing film, lowering its elastic energy density. As a result, the
island can achieve a good elastic relaxation without increasing much the AR. In this way,
the surface curvature can remain relatively low thanks to the more rounded shape. On
the opposite, the stiff substrate does not allow any strain relaxation against the sidewalls.
Therefore, the elastic energy stored in the island can be relaxed just by further increase of
the height, despite this requires to increase also the curvature of the profile.
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6.3.5 3D simulation results

In the previous sections we have provided a detailed 2D analysis of the different contri-
butions that may play a role in the ordering of heteroepitaxial islands on a pit patterned
substrate. However, to provide a more realistic description of the evolution process, a full
3D model is needed. This enables to properly account for the three directions and improves
the quantification of the energy of the system, both for the surface and elastic contribution,
but has also an impact on the dynamics of material transfer. Moreover, the pit morphology
is often not symmetric by rotation, for instance in the case of an inverted 3D pyramid.
Therefore, in principle, the shape cannot be precisely described just by a 2D section. The
arrangement of the pits on the substrate is another quantity that strictly requires a 3D
description of the system. For instance, in a simple squared array of pits, as it is typically
used in experiments, the flow of material from the WL toward the pit is expected to be
different along the directions of the nearest neighbors with respect to the directions of the
second-nearest neighbors, since the latter involve a larger flat regions between the pits.

One of the most useful advantages of using an implicit PF description is that the model
can be straightforwardly applied to real 3D simulation just by extending the PF functions
ϕ and c in the third dimension. The FEM toolbox AMDiS that we have exploited for
the numerical implementation is developed to handle both 2 and 3 dimensions, so that no
change was required on the numerical side. The main drawback of applying 3D simulations
is related to the increased computational cost. To cope with that, a slightly lower resolution
has been adopted by using larger interface widths for the free-surface (0.7 nm) and the
film-substrate interface (0.4 nm). The pit morphology is an inverted-pyramid, which is
representative of experiments and it is the closest to the V-shape used for 2D simulation, in
order to permit a direct comparison with the previous simulation results. The AR of the pit
has been fixed at 1:6, as in the most of the 2D cases considered so far.

The results of a 3D simulation are reported in Fig. 6.11(a,b) for the most respresentative
stages of the island growth dynamics. The overall behavior seems to be fully consistent
with the conclusions obtained by the 2D simulations, in particular the ones retrieved from
Fig. 6.4. Initially the deposited material flows preferentially toward the bottom of the pit.
There, when a sufficiently large volume is collected, an island starts growing. If we compare
2D and 3D simulations, we recognize that quantitatively they differ for the surface energy,
particularly due to the different curvature value, and for the elastic strain relaxation, as
the third direction is properly accounted for the calculation of the deformations within the
island structure. Similarly to the 2D predictions, the localization of a single island inside the
pit is basically related to its capture zone, which quantifies the volume of material that can
be collected from the flat WL nearby. This depends on the f/D, as an high value allows for
the accumulation of material outside, and when the critical thickness is reached, islanding
can occur also there. At variance from the 2D description, this capture zone is expected to
depend quadratically on the distance from the pit center. Therefore, as a result, the net
material flowing into the 3D pit is larger if compared to a 2D infinite V-groove.

The 3D morphology of the pit, as well as the pit arrangement on the substrate, influences
the actual island evolution. This is made clear by looking at the contour lines for selected
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Figure 6.11: 3D simulation of island growth on a pit-patterned substrate. A 30 nm
wide pit, with the shape of an inverted-pyramid of AR 1:6 and periodicity of 80 nm,
is considered. (a) Perspective views of representative evolution stages, reporting the
in-plane strain field ε|| = (εxx + εyy)/2 by color map (a portion of the simulation
cell is shown, stretched by a factor 1.5 along z). Profiles are clipped at ϕ = 0.9. (b)
Cross-section profiles along the x direction through the pit center for the four stages
shown in panel (a). (c) Elevation contour lines, in top view, for different stages of
the evolution. Reported values correspond to the profile height z with respect to the
substrate level on the flat regions. Blue and red colors are used for lines where z is
decreasing or increasing respectively, moving toward the center. (from Ref. [245])

profile heights at different deposition stages which are reported in Fig. 6.11(c). Both the pit
filling dynamics and the subsequent island growth reflect the squared symmetry of the pit.
Indeed, the edges of the inverted-pyramid act as V-grooves. As predicted by the 2D model,
these tend to collect material due to capillarity. Form the top-view, an apparent rotation of
the pit morphology is then recognized. This phenomenon is enhanced by increasing the pit
size or its AR, but it is limited to the initial stages dominated by capillarity. When the
island starts to grow, it imposes its cusp-like geometry, mostly symmetric, independently
on the initial squared symmetry of the pit. Indeed, the symmetric shape is expected to
maximize the strain relaxation, minimizing at the same time the surface energy of the
system when isotropic surface and elastic properties are considered.

6.4 Island stacking

The flexibility of the PF approach allows us to extend the modeling to other heteroepi-
taxial systems where the ordering of islands is considered of primary importance. In the
literature, there are two main approaches to this purpose: pit patterning, as analyzed in the
previous section, and island vertical ordering.

We focus here on the experimental results presented in Ref. [38], where it is observed
that the stacking of SiGe nanodots for several layers follows a body-centered tetragonal
stacking. The interesting aspect analyzed in that work, is that once dots are grown, the Si
deposited on top as a capping layer is not perfectly flat. Indeed, by analyzing the surface
via AFM, it was found that the free Si surface is composed by valleys in between the buried
islands and bumps aligned vertical with the buried dots. Therefore, when the new SiGe
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layer is deposited, we can infer that it resembles the growth on a Si substrate patterned
with shallow pits. This could justify the preferential island positioning in the valleys of
the Si surface [269], and not in vertical alignment with the buries dots. However, it can’t
be neglected that the elastic contribution would lead to the opposite behavior, since the
aligned stacking would profit more of the elastic relaxation promoted by the buried SiGe
layer [270, 271].

A better understanding of the competition between capillarity and localized elastic
relaxation can be provided by simulation. The PF model can be straightforwardly extended
to this system. The only variation with respect to the formulation used for the pit-patterned
system is related to the definition of c. In this case, in the substrate region we have to
account both for the Si layers and the SiGe grown ones, including the buried island profiles.
Simulations are performed in 2D, to maximize the numerical resolution in order to have
a precise quantification of the chemical potential contributions even in the case of small
slope morphologies. The deposited material is made of SiGe alloy, at a 30% Ge content,
which has a mismatch ∼ −1.3% with respect to the pure Si, which composes the original
flat substrate and the subsequent capping layers. The deposition of material, performed
by CVD, is assumed to be isotropic and to impinge along the normal of each point of the
surface. The f/D = 1 × 10−4 is sufficiently small to ensure that material can flow toward
the local minimum of the chemical potential, suppressing the random island formation that
would naturally occur at higher deposition rates.

RMS = 0.43 nm RMS = 0.04 nm0-0.01
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hd = 2 nm
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Figure 6.12: Phase-field simulations of island stacking. Growth of SiGe nanodots
with 30% Ge content on a 25 nm thick Si cap layer, which is covering the first layer
of buried SiGe nanodots. Three stages are shown for different amounts of deposited
material (hd). In panel (a), the surface root-mean-square roughness (RMS) of the Si
capping layer is set to 0.43 nm. In the intermediate stage, the strain in the film is lower
in the valley regions. This leads to an anti-aligned ordering of islands. In panel (b), the
surface roughness of the Si capping is reduced by ten times. In the intermediate stage,
the strain in the film is lower upon the buried islands. This finally leads to a vertically
aligned stacking. The color map represents the in-plane strain component (εxx). (from
Ref. [38])

The initial state of the simulation has to be chosen with particular attention, as small
differences in the slope of the surface roughness could lead to different final behaviors. To
save on simulation time, we focus on the alignment of a single SiGe layer on top of the
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existing first layer of islands, already capped with Si. We reasonably assume that the growth
of the following SiGe layers will follow the same dynamics of this first stacking module.
The system is prepared by setting a cosine-like morphology for the buried layer. This is
reasonable since the first growth occurs on a flat substrate, in the typical conditions of an
ATG growth. The roughness (1 nm), periodicity (150 nm), and Ge composition (30%) are
set to match the data measured experimentally for this system [38]. But the most important
parameters are the one of the Si capping layer, in particular the average roughness (0.43
nm) and the thickness of Si (25 nm). This system is reported on the left side on Fig. 6.12,
where it can be noticed that, during the deposition of the first SiGe layers, the free surface
morphology matches the one of the Si capping layer. Indeed, at this stage the wetting energy
term dominates the growth, favoring the thickening of the WL rather than a redistribution
of material. When its effect becomes lower, thanks to the increased thickness of the WL,
a capillarity dynamics is activated. The SiGe tends to flow toward the valleys present on
the surface in order to make it flat, reducing the surface curvature. In these valley regions,
similarly to what happens in a pit, the elastic relaxation of the film is enhanced thanks to the
partial partitioning of the strain from the SiGe to the Si capping layer, through the sidewalls
of these small pits. As a consequence, the chemical potential on the surface becomes lower
in these regions. Since the surface energy contribution is constant on the surface as soon as
the flat profile is reached, additional material accumulation is driven on top of the valleys,
leading to the growth of an island. The final structure presents the opposite of a vertical
alignment, which corresponds to the condition observed experimental. It is worth to notice
that this alternated alignment occurs even if the initial strain distribution on the surface,
induced by the buried layer, would favor a vertical stacking [270, 271]

The possibility to prevent a vertically aligned stacking seems related to the existence
of the surface roughness. To confirm this hypothesis, we apply our model to try to assess
the role of the surface roughness by reducing its magnitude. Indeed, the case where the
slope of the valleys on the Si layer is increased would give the same evolution predicted
for the pit patterned substrate, since it would mean that the impact of capillarity on the
energy balance is increased. On the right column of Fig. 6.12 the surface roughness is
decreased by one order of magnitude with respect to the case on the left. This means that
the surface energy reduction provided by the filling of the valleys is lower than before, since
the free surface profile is already closer to the flat case. In this case, the elastic relaxation
on the top layer which is provided by the buried islands can play a major role. Indeed,
at later deposition stages, a material accumulation outside of the valleys is observed, as
driven by the lower elastic chemical potential on top of the buried dots. This promotes
the formation of islands, which then collect most of the deposited material, preventing
any island formation on the alternated positions. An additional result of the comparison
between the two stacking systems, is that the vertically aligned islands result to be the most
relaxed ones, thanks to the enhanced deformation induced by the buried ones. This is an
additional indication that it is crucial to be able to follow the full growth pathway to asses
the final alignment of the system, while a pure static analysis of the final elastic relaxation
does not provide a complete picture of the system.
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The surface roughness could in principle be reduced via two main ways. First, a longer
anneling time for the Si capping layer, or alternativeley an higher deposition temperature,
tends to flattend the top Si surface. Indeed, the elastic deformation induced by the buried
SiGe islands would not favor the accumulation of tensile Si above, while capillarity is even
more effective than for SiGe due to the higher surface energy density of Si. The alternative
way to achieve the same result is to deposit Si for a longer time, producing a thicker capping
layer. This elongates the time that the surface has to flatten the profile, producing a more
flat capping layer as observed in experiments [38].

The role played by the surface roughness in determining a vertical anti-alignment was
recently discussed also when considering the ordering of Ge quantum dots in an amorphous
matrix [272]. Moreover, we have to point out that Liu et al. [273] reported that anti-
alignment could arise also without surface roughness, due to a peculiar distribution of the
strain field at the surface, as also drawn by Latini et al. for III/V systems [274]. While not
ruling out the importance of such results under specific growth conditions, here we have
demonstrated that, for the present system and growth parameters, a decisive role is played
by surface roughness, while no anti-aligned ordering was found for a perfectly flat capping
layer.

6.5 Conclusions

In this Chapter, we have exploited a phase-field approach to simulate the growth of
islands on a pit-patterned substrate. Despite the system has been already widely studied
in the literature by experiments, here we have provided a novel numerical approach that
can couple an accurate calculation by finite element method of the strain relaxation to the
surface diffusion dynamics, still solved exactly by finite element.

The model has enabled the study of the role of growth parameters on the ordered growth
of island. In particular, it has been shown that in close-to-equilibrium conditions, when no
kinetic incorporation effect plays a role, the localization of an island inside the pit is the
most favorable configuration for the energetics of the system. This has been explained in
terms of capillarity, which drives the filling of the pit, and by the enhanced strain relaxation
of the island in the pit. The results predicted by the simulations qualitatively capture the
main trends observed in the experiment. The model can then be proposed as a predictive
tool for the heteroepitaxial growth of islands on patterned substrates, particularly for the
possibility to perform real 3D simulations, that improve the accuracy of the numerical
results both for the material transport dynamics and for the elastic relaxation calculation.

One of the main advantages of the phase-field approach is that the present model is not
limited to pit morphologies. Indeed, thanks to the high flexibility provided by the implicit
description of the film surface and of the substrate geometry, it is possible to handle any
arbitrary pattern geometry. Our approach could be, for instance, applied to the study of
other heteroepitaxial systems, based on curved substrates such as stripes or mesas [57],
pillared structures [267], membranes [251]. As an example, here we have presented the
application of island stacking, where the substrate is patterned in a sense that the growing
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film is affected by the presence of buried layers underneath. In particularly, the model proved
the capability of capturing both the localizing effect provide by strain and the capillarity
driving force. The results of simulations have provided a theoretical explanation of the
results observed experimentally in Ref. [38].

Finally, the flexibility of the finite element method can open future developments,
including additional realistic effects such as elastic and surface anisotropy [127, 221] or
intermixing [248, 275] within the same numerical approach.
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Conclusions

In this Thesis, we have presented three theoretical approaches that, by considering a
continuum description, can be exploited for the study of the epitaxial growth of semiconduc-
tors. The models have been applied to study four main experimental systems, with the aim
of both reproducing the experimental observation and inferring about the main material
properties which control the growth. This analysis has been particularly oriented toward
the study of vertical nanostructures, which are of active scientific and technological interest
for the development of new electronic and optoelectronic applications.

The growth of GaAs nanomembranes by selective area epitaxy has revealed a peculiar
tendency of the system, in particular growth conditions, to grow vertically. A simple
geometrical analysis of the experimental evidences, as acquired by SEM, revealed that
the growth velocity of the top (1 1 1)B facet was more than one order of magnitude faster
than the one for the lateral {1 1 0}. The standard thermodynamic approach for the faceted
growth of nanostructures, driven by the minimization of the surface energy, has been applied
with the aim of reproducing the growth of the nanomembranes. By this analysis we have
demonstrated that standard thermodynamic arguments are not sufficient to justify such a
peculiar vertical growth. Therefore, following the approach proposed by Cahn and Taylor
[15], a kinetic growth model has been formulated. This has been implemented by the
phase-field description of the system, which has allowed to reproduce the complex 3D
morphologies observed in the experiments. The development of the simulation code has
required a strong effort also on the numerical implementation, which has been performed
with the fundamental collaboration of the group of Prof. Axel Voigt, director of the
Institute of Scientific Computing at the Technische Universität Dresden. The model has
been initially characterized with respect to the general faceting dynamics of semiconductor
nanostructures. This has revealed an intermediate growth regime in between the well
known Wulff’s thermodynamic construction and the kinetic crystal shape. In particular, the
novelty of the kinetic model here proposed is the capability of considering both material
redistribution on the surface among the different crystal facets and material incorporation
from the mobile adatom phase on the surface to the bulk crystal structure. Once the model
has been fully characterized, it has been applied to simulate the selective area growth of
GaAs 3D fins in homoepitaxial conditions [142].

As a first result, the model was able to capture the strong tendency of the crystal to grow
vertically, along the [1 1 1]B direction, out of the 〈1 1 2〉-elongated oxide window. This proved
that the kinetic dynamics of adatom incorporation is a fundamental element for the vertical
growth of GaAs. Moreover, the model allowed us to characterize the growth in height of the
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nanomembranes with respect to the length of the oxide windows, showing that a sudden
change in the growth velocity is found when the (1 1 1)B growth front disappears from the
crystal shape. The analysis of the system has then been extended to any oxide window
orientation by performing dedicated experiments on a circular array. The phase-field model
has been successfully applied also to the characterization of the complex fin morphologies
that arise for the intermediate fin orientations, allowing for a better identification of the
growing facets. Most importantly, the analysis of the morphological evolution of the GaAs
crystal, in good agreement with the experiments, has allowed us to estimate the incorporation
times of the {1 1 0} and {1 1 3} facets, which resulted to be respectively 10 and 2 times longer
than the one for the (1 1 1)B fast growth front. This result represents a major advantage
of the continuum approach used here, which has enabled the study of a property of the
GaAs system which is still unaccessible by ab-initio atomistic calculations. Moreover, the
simulation analysis has proven that a thermodynamic description based on the orientation-
dependent surface energy densities is not sufficient to justify the vertical growth of GaAs
nanomembranes.

Among all the vertical nanostructures, nanowires are the most studied nowadays in
the literature. Since in this case the growth dynamics has been already widely character-
ized, particularly for the VLS growth techniques, in this Thesis we have focused on the
characterization of the elastic properties of core/shell nanowires. These structures enable
the heteroepitaxial growth on a substrate, which is represented by the core, which has
remarkable compliance properties, similarly to the case of thin planar substrates. We have
adopted a continuum elasticity approach, based on finite element method, which allows
to simulate the whole 3D structure of the nanowire, despite the nearly one-dimensional
geometry and the length which is of the order of microns. This theoretical activity has been
performed in close comparison with the experimental results, achieved by the Advanced
Nanomaterials & Devices group of Prof. Erik P.A.M. Bakkers, at the Technische Universiteit
Eindhoven.

The first nanowire system that we have studied is the core/shell GaP/InGaP [175].
These nanowires are grown with the aim of obtaining a wurtzite InGaP alloy that can exhibit
a direct band gap for applications as green light emitter. However, in the experiments, it
was found that the nanowires tend to bend in random directions, a behavior which has
to be avoided for the applications in ordered arrays. By finite element calculations, we
have characterized the strain relaxation in the nanostructure, originated by the lattice
parameter difference between the core and the shell. In particular, it has been shown as
the composition and thickness asymmetries that are found in the shell by TEM and EDX
analysis can be responsible of the bending. The curvature predicted by simulations proved
to be in good agreement with the one measured from the TEM images. This allowed us to
apply the finite element model as a predictive tool for the curvature of these nanowires, as
a function of composition and shell thickness asymmetries.

The second core/shell system presented in this Thesis is made of Ge/GeSn nanowires
[208]. Also in this case the interest is to grow a GeSn layer with a sufficiently high Sn content
to achieve a direct band gap for the development of IR detectors. From the experimental
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TEM analysis, it was found that the Sn composition in the shell is not uniform, but follows
a gradient which increases with the shell thickness. By exploiting the finite element method,
we have provided a detailed picture of the strain relaxation in the core/shell structure. This
theoretical analysis is particularly useful in this system as the non-uniform composition
and in general the low values of the residual strain make the experimental measurement of
the lattice deformation extremely challenging. Moreover, the simulations has allowed to
study the evolution of the strain at the surface for different shell thicknesses, mimicking
the condition that occurs during the shell growth. This has identified a link between the
strain relaxation and the Sn incorporation, showing a possible threshold for the strain at
the surface which enables further Sn incorporation. Then, the role of the core in the strain
relaxation mechanisms has been investigated, to provide a suggestion to experimentalist to
design the optimal Ge core to maximize the Sn content in the GeSn alloy.

Finally, the phase-field model has been extended to the most complex case which includes
both the surface diffusion dynamics and the continuum elasticity characterization. This is
particularly challenging for the model implementation as the elastic contributions to the
surface diffusion generally lead to unstable dynamics, which are complex to be handled
numerically. This model has been applied to the study of the prototypical heteroepitaxial
system where Ge islands are obtained by self-assembly on a Si substrate. In particular, we
have focused on one the most relevant cases for applications which is the ordered growth on
pit-patterned substrates [245]. The model here proposed allowed to properly account for
the surface energy contributions driving the initial pit filling dynamics, due to capillarity.
The coupling with the elastic calculations for the strain relaxation has correctly modeled
the growth of an island inside the pit. The advantage provided by numerical simulations
is the possibility to investigate the role of the growth parameters and of the geometry
of the pattern in localizing the growth of a single island into the pit. The result of this
analysis is that the optimal ordering is achieved in quasi-equilibrium conditions, which are
favored for instance by a low deposition flux, or a high growth temperature, in agreement
with the experimental observations already discussed in the literature. The flexibility of
the phase-field approach has then allowed us to study the stacking of island, providing a
theoretical explanation, related to the surface roughness of the intermediate Si capping
layers, for the ordering observed experimentally [38].

The model which presents the most promising future perspective is the one devoted to
the simulations of the vertical growth of GaAs fins. Indeed, this novel approach can be
extended to other heteroepitaxial growths of vertical structures, a topic which is particularly
active nowadays, by combining the kinetic description with the elasticity contributions to
the growth. For instance, the growth of GaAs nanomembranes on Ge or Si substrates is of
great interest for the integration of these nanostructures in the current Si technology, and
the phase-field model here proposed could be useful to estimate the effect of strain in the
morphological evolution of the nanostructures. The kinetic approach could be also extended
to simulate the 3D growth of nano- and micro-pillars, correlating the crystal shape both
with the incorporation time of the semiconductors involved in the growth process and with
the growth parameters, such as the rate of material supply and the growth temperature. For

121



a more complete description of the growth of vertical structures in close-packed arrays, flux
shielding effects should be included in the model [131]. Finally, for a more comprehensive
description of the vertical growth processes, the modeling of a liquid phase should be
developed, together with the description of the solid and vapor phases, to reproduce the
VLS growth dynamics. An extensive application of the kinetic modeling would require an
improvement of the ab-initio characterization of the incorporation times. This would finally
enabled a complete multi-scale approach for the simulation of the growth of nanostructures,
which would extend the actual continuum approaches which rely mainly on ab-initio results
for the surface energy of the growing crystals.
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Acronyms

• ECS equilibrium crystal shape
• KCS kinetic crystal shape
• PF phase-field
• SEM scanning electron microscope
• SAE selective area epitaxy
• NW nanowire
• NM nanomembrane
• LED light-emitting diodes
• TEM transmission electron microscopy
• EDX energy-dispersive X-ray diffraction
• VLS vapor-liquid-solid
• ATG Asaro-Tiller-Grinfeld
• MBE molecular beam epitaxy
• CVD chemical vapor deposition
• PECVD plasma enhanced chemical vapor deposition
• FEM finite element method
• ML monolayer
• RMS root mean square
• FIB focused ion beam
• ED electron diffraction
• HAADF high-angle annular dark-field scanning transmission electron microscopy
• WZ wurtzite
• SK Stranski-Krastanov
• AR aspect ratio
• WL wetting layer
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