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ABSTRACT 

Neural oscillations are considered to be the building blocks of cognitive functioning, and 

in the last decades neuroscientists have developed fundamental theories on their role in 

brain dynamics. Recently, a growing body of evidences has shown that ongoing 

oscillatory activity can account for a considerable amount of variability in behavioral 

performance and in neurophysiological response. In the domain of visual perception, a 

crucial role is played by neural oscillations within alpha frequency range. Alpha activity 

is believed to exert an inhibitory function on stimulus processing and to reflect cortical 

excitability, both when it fluctuates spontaneously as well as when it is modulated, by 

top-down or bottom-up mechanisms. It has been recently suggested that alpha rhythm 

may not be considered as a unitary phenomenon; however, still little is known about the 

neural mechanisms associated with alpha activity as measured by non-invasive 

recordings. Furthermore, up to now most of the studies on the effects of ongoing alpha 

activity on visual perception focused on a special class of stimuli, i.e., with a near-

threshold intensity, and much less is known about what happens in the response beyond 

sensory threshold.  

In the present work, we aimed at addressing these issues by studying the effects of 

ongoing alpha oscillations on perceptual and neurophysiological outcome in the visual 

domain. The first goal was to replicate recent findings on the effects of spontaneous 

fluctuations of pre-stimulus alpha power and phase on a visual detection task, by using 

near-threshold stimuli. In addition to the original study, the use of 

magnetoencephalography allowed us to reconstruct brain sources of pre-stimulus and 

evoked activity. In a second study, we aimed at modulating ongoing alpha activity by 

using a sensory deprivation paradigm, and tested the effects of such modulation by means 
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of a wide range of stimulation intensities. The use of transcranial magnetic stimulation 

(TMS) with concurrent electroencephalography allowed to directly assess the 

neurophysiological and perceptual response to TMS, by means of TMS-evoked potentials 

and phosphene perception. Finally, in a third study we developed a formal model of the 

effects of ongoing alpha activity on visual perception, with the aim of disentangling 

possible neural mechanisms which cannot be discerned non-invasively. The model is 

based on cross-frequency interactions between alpha functional inhibition and gamma 

activity of sensory neurons and highlights the advantages of presenting a wide range of 

stimulus intensities in the study of the effects of pre-stimulus oscillatory activity, using a 

psychophysical approach.  

Taken together, our results are consistent with current literature about the inhibitory 

function played by ongoing alpha activity on visual perception. Indeed, both perceptual 

and neurophysiological response to an external stimulus were affected by pre-stimulus 

alpha activity, when it fluctuated spontaneously as well as when it was modulated by a 

sensory deprivation paradigm. Moreover, the present findings support the hypothesis that 

alpha oscillations subtend distinct mechanisms, and highlighted that new insights may 

arise from applying a psychophysical approach to the study of ongoing activity on 

perception.  

By using different methodological approaches, the present work provides novel advances 

in the field of non-invasive investigation of ongoing oscillations on behavior, specifically 

on alpha inhibition of visual perception.  
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1. INTRODUCTION 

1.1 Ongoing brain activity impacts behavior 

The brain is never at rest: it is always involved in a metabolically demanding, 

endogenously driven neural activity (Raichle, 2011). Neuroscientists have been interested 

not only in the study of spontaneous activity per se, which led to the fruitful field of 

research on resting state dynamics (Cabral, Kringelbach, and Deco, 2014), but also in the 

impact of ongoing activity on behavior.  

Furthermore, the brain’s response does not depend entirely on external input: indeed, the 

repeated presentation of the same stimulus gives rise to highly variable response, in terms 

of behavioral performance as well as at the neural level (Vogels, Spileers, and Orban, 

1989), a phenomenon that interestingly has been observed also in anesthetized animals 

(Tomko and Crapper, 1974). The traditional approach to neural evoked responses 

assumes that the actual response to an external stimulus is superimposed to some 

unrelated noise, which is believed to explain the observed variability. Ongoing activity is 

therefore obscured by averaging over trials or by normalization to pre-stimulus baseline, 

with the aim of improving signal-to-noise ratio (Picton, 2000). More recently, however, 

a consistent amount of evidence from several methodological perspectives has shown that 

ongoing neural activity contributes to the way the brain responds to sensory stimuli 

(Arieli, Sterkin, Grinvald, and Aertsen, 1996; Hesselmann, Kell, Eger, and Kleinschmidt, 

2008; Kayser, McNair, and Kayser, 2016; Martin, Barnes, and Stevens, 2012; Schölvinck, 

Friston, and Rees, 2012; Weisz et al., 2014).  

Since ongoing activity has been shown to account for a considerable portion of response 

variability, it cannot be deemed just as noise. Rather, it is a crucial aspect for signal 
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processing, and the study of its functional meaning represents an intriguing thread in 

neuroscience (Britz and Michel 2011; Sadaghiani and Kleinschmidt 2013; Ruhnau, 

Hauswald, and Weisz, 2014). 

1.2 Neural oscillations in the study of brain dynamics 

For a long time, from lesion studies to the spreading of modern neuroimaging techniques 

(e.g., functional magnetic resonance – fMRI, above all), cognitive neuroscience has been 

greatly interested in localization and segregation of brain functions, highlighting the 

importance of space dimension at the expense of time (Cohen, 2011). However, the 

limitations of stationarity assumption (i.e., considering brain activity to be constant in a 

given time-window) became increasingly clear, and time has regained increasing 

scientific consideration compared to space in neurocognitive research (Cohen, 2011). In 

this context, the high temporal resolution of electrophysiological recordings (e.g., 

magneto/electro-encephalography – M/EEG – for non-invasive investigation in humans) 

proved to be extremely valuable in the study of time-frequency patterns, especially in the 

study of the effects of ongoing activity on perception.  

1.2.1 The role of alpha band  

Alpha-band (8-13 Hz) oscillatory activity is dominant in the human brain: it represents 

the strongest electrophysiological signal measured non-invasively and it can be observed 

transversely across cognitive domains (Berger, 1929; Klimesch, 2012). The original 

interpretation of alpha rhythm as reflecting cortical “idling” (Pfurtscheller, Stancák, and 

Neuper, 1996) is not accepted anymore, because a large number of studies convincingly 

demonstrated its active role in task implementation, especially in top-down control 

processes (e.g., spatial attention; Banerjee, Snyder, Molholm, and Foxe, 2011). One of 
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the most widespread interpretation considers alpha activity as playing an inhibitory role 

in cortical areas not involved in the task: the larger the EEG alpha power, the stronger the 

inhibition (Klimesch, Sauseng, and Hanslmayr, 2007; Jensen and Mazaheri, 2010; but see 

Palva and Palva 2007). Moreover, inhibition appears to be cyclic, depending on the phase 

of alpha oscillations (referred to as “pulsed inhibition”; Mathewson et al., 2009).  

1.2.2 Alpha-gamma cross-frequency interactions 

At the neurophysiological level, the effects of top-down alpha inhibition are commonly 

described in terms of changes in neural excitability, which in turn affect signal processing 

(Klimesch, Sauseng, and Hanslmayr, 2007). In this context, a clear evidence has been 

reported by Haegens and colleagues (2011), who showed a decrease of firing rate during 

periods of high alpha power in monkeys. On the same line, recent hypotheses emphasize 

the involvement of cross-frequency interactions between alpha activity and gamma power 

(>30 Hz), the latter as a measure of neural processing (Fries, Nikolić, and Singer, 2007). 

It is worth noting that alpha and gamma are not the only frequency bands involved in 

cross-frequency interactions. In turn, alpha power appears to interact with slower 

rhythms, for example with delta and theta activity, in neurophysiological recordings as 

well as in behavioral time courses (Helfrich, Huang, Wilson, and Knight, 2017; Song et 

al., 2014).  

Alpha-gamma interactions have been observed not only during stimulus processing but 

also during rest and in the pre-stimulus window. It has been suggested that at least two 

cross-frequency mechanisms characterize alpha-gamma relationship: gamma power not 

only is inversely correlated with alpha power, namely amplitude-amplitude coupling 

(AAC), but it also appears to be nested within the phase of alpha, i.e., phase-amplitude 

coupling (PAC; Spaak, de Lange, and Jensen, 2014). Intriguingly, PAC and AAC appear 
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to be linked, with stronger alpha power increasing PAC (Osipova, Hermes and Jensen, 

2008).  

1.2.3 Fundamental theories on neural oscillations 

In the last decades, neuroscientists have developed fundamental theories on the role of 

neural oscillations in brain dynamics, which have been supported by a number of 

experimental findings: among the others, Communication Through Coherence (Fries, 

2005) and Gating By Inhibition (Jensen and Mazaheri, 2010).  

Communication Through Coherence (CTC) 

According to CTC theory, neural oscillations play a crucial role in establishing 

communication among brain areas. The main concept of CTC theory states that neural 

communication, i.e., effective connectivity, is subserved by neural synchronization in the 

gamma rhythms, especially for bottom-up processes (Fries, 2005; Fries, 2015; Fries, 

Nikolić, and Singer, 2007). Synchronization occurs when excitability fluctuations of 

neural groups are coherent: for example, neural communication between two brain 

regions is enabled when they show the same oscillatory frequency (i.e., gamma band) 

with a constant phase difference over time. Within the CTC framework, synchronization 

ensures that temporal windows for input and output are concurrently open, thus enabling 

communication among neurons (Figure 1.1).  
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Figure 1.1 Schematic representation of the CTC framework (adapted from Bonnefond, Kastner, 

and Jensen, 2017). I, II and III represent three neural assemblies oscillating in the gamma band. 

Gamma synchronization between I and III ensures information flow from one neural assembly to 

the other, while communication between II and III is prevented by gamma desynchronization (II 

and III are shown in antiphase).  

Gating By Inhibition (GBI) 

The GBI framework (Jensen and Mazaheri, 2010) focused on the need of inhibiting task-

irrelevant brain areas for optimal functioning, more than on how task-relevant ones are 

engaged. The main hypothesis is that, during task execution, neural pathways which are 

irrelevant for that specific task have to be functionally blocked, and this mechanism is 

provided by means of alpha power (Figure 1.2-A). Specifically, GBI predicts a positive 

correlation between task performance and alpha activity in brain areas which are 

irrelevant for such task. In the meantime, active processing in task-relevant areas is 

provided by oscillatory activity in the gamma band, in the presence of low alpha power 

(i.e., AAC). A central aspect for the GBI framework is that alpha activity is phasic, and 

thus gives rise to a pulsed inhibition: task-irrelevant brain regions are not continuously 

inhibited, but there are short time-windows in which gamma activity is present allowing 

neural processing (i.e., PAC). This concept is referred to as “duty-cycle”: the stronger the 
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alpha power the shorter the window of gamma bursts; thus, gamma activity occurs mainly 

during low alpha power and at the trough of alpha oscillations (Figure 1.2-B).  

 

Figure 1.2 Concepts related to the GBI framework. A) Schematic representation of the GBI 

framework, adapted from Bonnefond, Kastner, and Jensen (2017). Communication between I and 

III is ensured by low alpha power in the two assemblies and by an increase alpha power in II, 

which blocks neural processing of a task-unrelated area. B) Concept of “duty cycle”: the stronger 

the alpha power the shorter the time window of gamma bursts; gamma activity occurs when alpha 

power is low and at the through of alpha oscillations. Adapted from Osipova et al. (2008) and 

Jensen and Mazaheri (2010). 

CTC and GBI: A unified framework 

A recent proposal (Bonnefond, Kastner, and Jensen, 2017) aimed at unifying GBI (Jensen 

and Mazaheri, 2010) with CTC (Fries, 2005; Fries, 2015). According with the unified 

framework, two mechanisms act in a complementary way to ensure (and to block) the 

information flow, i.e. synchronization between regions and local power (Figure 1.3). 

Synchronization enables the interareal communication, and it has been suggested to occur 

in lower-frequencies (e.g., alpha band). Furthermore, the power of such low-frequency 

oscillations shapes the length of excitability windows within each cycle (Figure 1.2-B), 

thus determining the amount of information which can be transferred by means of feed-

forward gamma oscillations.  
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Figure 1.3 Schematic representation of the integration between CTC and GBI, adapted from 

Bonnefond, Kastner, and Jensen (2017). Communication between I and III is ensured by low 

alpha power and synchronization in the alpha band, which enables feed-forward gamma activity 

to flow from one region to the other one to ensure information transfer. High alpha power in II, 

together with phase asynchrony between II and III, blocks inter-areal communication.  

1.3 M/EEG ongoing alpha activity affects visual perception 

A growing body of evidence has shown that a considerable portion of the variability in 

visual tasks can be accounted by ongoing M/EEG alpha oscillations. The effects of pre-

stimulus alpha activity on visual perception are commonly assessed by presenting stimuli 

at the individual sensory threshold intensity (i.e., the so-called “near-threshold stimuli”, 

by definition detected in half of the trials; for a review see Ruhnau, Hauswald, and Weisz, 

2014). In this context, single-trial analysis is crucial, since it allows to assess variance 

within-subjects, thus providing a richer data description (Pernet, Sajda, and Rousselet, 

2011). 

1.3.1 Effects of spontaneous trial-by-trial fluctuations 

Visual perception has been shown to be influenced by spontaneous fluctuations in M/EEG 

alpha activity; specifically, parameters of both ongoing power and phase have been shown 

to have an effect on perceptual performance.  
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The effect of spontaneous variations in M/EEG power is well established: typically, trials 

with low levels of EEG alpha power preceding the stimulus (also known as anticipatory 

event-related desynchronization; Klimesch, Sauseng, and Hanslmayr, 2007) have higher 

probability of detection and/or discrimination, both between and within subjects (Figure 

1.4-A; Busch and VanRullen, 2010; Hanslmayr et al., 2007; van Dijk, Schoeffelen, 

Oostenveld, and Jensen, 2008). Ongoing oscillatory activity can be described not only in 

terms of power, but also of phase: visual detection rate differs between opposite phases 

of 7-10 Hz oscillations (Figure 1.4-B; Busch, Dubois, and VanRullen, 2009; Busch and 

VanRullen, 2010; Mathewson et al., 2009).  

 

Figure 1.4. Effects of pre-stimulus alpha oscillations on visual detection. A) Alpha power: lower 

alpha power preceding the stimulus leads to a higher proportion of hits (grand average of the 

spectra calculated in 1 s before target onset in occipital MEG channels; adapted from van Dijk, 

Schoeffelen, Oostenveld, and Jensen, 2008). B) Alpha phase: opposite phases of alpha at target 

onset for detected and undetected targets (grand average ERP at EEG channel Pz; adapted from 

Mathewson et al., 2009).  

Consistently with the literature on near-threshold stimuli, pre-stimulus M/EEG alpha 

power and phase are relevant factors also in predicting phosphene perception, a stand-

alone phenomenon within the visual domain in which flashes of light are elicited by the 

stimulation of the visual cortex by means of transcranial magnetic stimulation (TMS; 

Dugué, Marque, and VanRullen, 2011; Romei et al., 2008). The study of phosphene 
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perception represents a valuable measure in research on spontaneous activity, as it allows 

to directly link ongoing oscillations with excitability of the visual cortex.  

1.3.2 On the causal role of alpha oscillations 

By definition, the effects of spontaneous oscillatory activity are investigated by means of 

correlations, based on post-hoc trial sorting (Romei et al., 2008; Mathewson et al., 2009; 

Dugué, Marque, and VanRullen, 2011). Nonetheless, studies which aimed to modulate 

alpha rhythm proved evidence of a causal role of pre-stimulus alpha oscillations on 

perception. 

A traditional way to modulate alpha activity is by means of spatial attention: it has been 

shown that alpha power is lower for the attended compared to the unattended visual 

hemifield (Worden, Foxe, Wang, and Simpson, 2000; Sauseng et al., 2005). More 

recently, alpha oscillations have been modulated by entrainment mechanisms, which 

induce the phase alignment of brain’s oscillatory activity to an external rhythmic 

stimulation. Entrainment may be achieved by directly stimulating the cortex with non-

invasive brain stimulation techniques (Thut et al., 2017; Romei, Thut and Silvanto, 2016), 

such as TMS (Thut et al., 2011) or transcranial alternated current stimulation (Helfrich, 

Hermann, Engel, and Schneider, 2016), or by sensory stimulation (e.g., visual or auditory 

rhythmic stimuli; Spaak, de Lange, and Jensen, 2014; Henry and Obleser, 2012). 

Entrainment of endogenous alpha rhythm results in enhanced EEG power and phase-

locking, and, in turn, the entrained EEG alpha rhythm modulates perception: short trains 

of rhythmic TMS at alpha frequency delivered on occipital or parietal areas affect visual 

detection in a lateralized way, consistently with correlative studies (Romei, Gross, and 

Thut, 2010). In order to specifically investigate the causal role of phase, the delay between 

the entraining stimulation and the presentation of the target stimulus has been varied, 
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revealing a cyclic modulation of visual perception (Landau and Fries, 2012; Mathewson 

et al., 2012; Spaak, de Lange, and Jensen, 2014). Additionally, the role of alpha phase 

has been investigated by means of phase reset induced by cross-modal stimuli (Romei, 

Gross, and Thut, 2012): phosphene perception was influenced by the time interval 

occurring between an auditory stimulus and the subsequent TMS pulse, giving rise to a 

periodic pattern cycling at 10 Hz phase-locked to the sound. 

To summarize, the dominance of the alpha rhythm in the human brain is widely accepted 

and its functional role in behavior has been deeply investigated since the early stages of 

EEG studies. Current literature on near-threshold stimuli and phosphene perception 

provides compelling evidence that pre-stimulus EEG oscillations in the alpha-band play 

a causal role in modulating visual perception, and, at the neurophysiological level, 

important progresses have been made in addressing the role of alpha in cross-frequency 

interactions, as shown both by experimental evidence (Helfrich, Hermann, Engel, and 

Schneider, 2016; Osipova, Hermes, and Jensen, 2008; Song et al., 2014; Spaak et al., 

2012) and theoretical frameworks (Bonnefond, Kastner, and Jensen, 2017; Jensen and 

Mazaheri, 2010; Schalk, 2015).  

1.4 Open issue: does alpha rhythm subtend distinct mechanisms? 

Whether alpha activity represents a unitary phenomenon is still a matter of debate. Indeed, 

the general relation between M/EEG features and micro-level mechanisms is likely to be 

few to some, rather than one to one: the same M/EEG oscillatory feature may subtend 

several functions, as well as being generated by distinct mechanisms (Cohen, 2017). For 

example, distinct neural mechanisms give rise to M/EEG power, but in non-invasive 

recordings their relative contribution cannot be discerned. Simultaneous EEG and 
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invasive local field potentials recordings have shown that EEG power can be explained 

by a linear combination of amplitude and synchronization, and that the two mechanisms 

may act independently from each other (Musall et al., 2014). Interestingly, this effect has 

been observed both in stimulus-present and stimulus-absent conditions and especially in 

the gamma band (Musall et al., 2014). 

Regarding the alpha band, evidence that it may not be a unitary phenomenon arise when 

considering specific aspects of the oscillation. For example, it has been suggested that 

different functions may be subtended by different frequencies, with 10 Hz enabling 

functional deactivation in unattended visual scenes and 7 Hz involved in periodic visual 

sampling when attention is focused (Zoefel and VanRullen 2017). Moreover, alpha 

activity appears to be generated by distinct networks: cingulo-opercular for tonic 

alertness, frontoparietal for phasic adaptive control and dorsal parieto-frontal for selective 

attention (Sadaghiani and Kleinschmidt, 2016). The understanding of the neural 

mechanisms that regulate cross-frequency interactions with the gamma band may be 

helpful in addressing this open issue about alpha (Cohen, 2017; Hyafil, Giraud, Fontolan, 

and Gutkin, 2015; Sadaghiani and Kleinschmidt, 2016; Spaak et al., 2012).  

1.4.1 Alpha power versus alpha phase 

As described in previous sections, cortical excitability is related both to M/EEG alpha 

power and phase, and up to now it is still unclear whether or not they belong to the same 

mechanism and/or how they may be related (Hanslmayr, Gross, Klimesch, and Shapiro, 

2011; Zoefel and VanRullen 2017). Indeed, the effects of alpha power and phase do not 

always coexist or interact (Benwell et al., 2017a; Benwell et al., 2017b), suggesting they 

may be associated with different mechanisms.  
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Beyond the clear discrepancy in time course, M/EEG power and phase show differences 

both in the topography of the effects (posterior for power, Hanslmayr et al., 2007; fronto-

central for phase, Busch, Dubois, and VanRullen 2009) and in the frequency band which 

mostly affects the perceptual outcome, which appear to be lower for phase (~7Hz; Busch, 

Dubois, and VanRullen, 2009; Busch and VanRullen, 2010; Zoefel and VanRullen, 2017; 

Figure 1.5). It has been suggested that alpha power may be related to the subject’s tonic 

state of attention and arousal, while alpha phase may be involved in actual coding of 

visual processing (Busch, Dubois, and VanRullen, 2009).  

 

Figure 1.5 Effects of pre-stimulus alpha activity on visual perception. A) Power difference 

between perceivers and non-perceivers in a visual perception task. Time-frequency plot as 

recorded from channel Oz, and topographical activation averaging over frequencies and time 

points as indicated by the rectangle; adapted from Hanslmayr et al., 2007. B) Phase difference 

between hits and misses in a visual detection task. Time-frequency plot of Phase Bifurcation Index 

(Ф) averaged across channels; adapted from Busch, Dubois, and VanRullen, 2009.  

Conversely, Hanslmayr and colleagues (2011) argued that EEG alpha power and phase 

reflect the same mechanism and share a common origin: they both indicate fluctuations 

between externally and internally oriented brain states and are generated by thalamo-

cortical loops. Indeed, according to this perspective, it appears unclear the reason why 

cortical excitability would be related to two mathematically independent measures (i.e., 
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power and phase). A recent account, namely the Function through Biased Oscillations 

(FBO; Schalk, 2015) addressed this issue suggesting a more parsimonious view about the 

role of neural oscillations in general, comprising the alpha band. FBO suggests that 

cortical excitability is better reflected by instantaneous voltage amplitude of oscillations, 

which provides a more complete interpretation of the power and phase effects described 

in literature (Figure 1.6). According to this framework, the effects of oscillatory power 

and phase are by-products of biased oscillations, resulting in the phase of an oscillation 

being relevant at high power levels only. A recent study provides experimental evidence 

supporting the FBO hypothesis (Schalk, Marple, Knight, and Coon, 2017). Importantly, 

the FBO account allowed to reconcile time-locked findings, such as ERPs and pre-

stimulus slow task-related activity (e.g., readiness potential or contingent negative 

variation) with observations from time-frequency analyses. Moreover, the FBO 

framework may explain the interaction observed between the two measures of oscillatory 

activity, namely an effect of alpha phase on performance in trials with high alpha power 

only (Cohen and Van Gaal, 2013; Mathewson et al., 2009).  

 

Figure 1.6 Schematic representation of the FBO framework, adapted from Shalk et al., 2017. 

Color gradient indicate the relationship to cortical excitability, with dark corresponding to high 

cortical excitability and light to low cortical excitability. Excitation is high when instantaneous 

amplitude is low.  
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Finally, some authors argued that the effect of pre-stimulus EEG alpha phase is even 

stronger than the one of power, accounting for 16% of performance variability in a visual 

detection task, compared to 12% observed for EEG power (Busch, Dubois, and 

VanRullen, 2009). However, while a few studies in literature observed the effect of pre-

stimulus M/EEG alpha phase (Busch, Dubois, and VanRullen, 2009; Mathewson et al., 

2009), others reported null results (Benwell et al., 2017a; Benwell et al., 2017b). Future 

research is needed to rule out the influence of technical limitations and experimental 

factors, such as stimulus duration, in order to establish the effective contribution of 

M/EEG phase in the pre-stimulus window. 

1.4.2 Sensitivity versus response criterion 

Another issue that has been recently raised concerns the effects of alpha activity on 

perceptual performance. For a long time, the effects of ongoing alpha oscillations on 

visual perception (i.e., low pre-stimulus power as well as the trough of alpha waves 

leading to a higher probability of stimulus detection) have been interpreted as mediated 

by changes in perceptual acuity (Ergenoglu et al., 2004; Romei et al., 2008a). However, 

an increase in hit rate (i.e., the proportion of detected targets) does not necessarily 

corresponds to an improved sensory sensitivity; it may also reflect a stronger tendency to 

report the presence of a stimulus even when it is absent, i.e., a change in the response 

criterion towards a more liberal one. Therefore, by considering the hit rate only it is not 

possible to evaluate the sensitivity of the sensory system. The signal detection theory 

(Green and Swets, 1966) takes into account all possible responses to the stimulus-present 

and the stimulus-absent trials (false alarms and correct rejections in addition to hits and 

misses), allowing to disentangle the relative contribution of sensitivity and response 

criterion.  
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Recently, several works claimed that the better performance associated to lower pre-

stimulus alpha power is not due to an improved perceptual acuity, but rather to a more 

liberal criterion (Iemi, Chaumon, Crouzet, and Busch, 2017; Limbach and Corballis, 

2016). Furthermore, a recent finding suggested that the nature of this biased response is 

perceptual and not decisional in nature (Iemi and Busch, 2018).  

Future studies are needed in order to establish whether the effects of ongoing alpha 

oscillations on visual perception are always due to a change in response criterion, for 

example if this mechanism could explain also the effects of alpha phase or of alpha power 

when it is externally modulated besides when it fluctuates spontaneously.  

1.5 Beyond near-threshold stimuli 

Most of the studies reported so far investigated the effects of ongoing oscillations on 

visual perception by means of near-threshold stimuli, in order to maximize variability in 

the response. Nonetheless, when measuring perceptual abilities, experimental conditions 

may be compared by means of the psychometric function fitting, a data modelling 

technique in which an observer’s performance in a detection or discrimination perceptual 

task is related to the physical quantity of a stimulus, e.g., its intensity (Wichmann and 

Hill, 2001). The psychometric function has the advantage of providing a large amount of 

information about performance, since several measures beyond the sensory threshold can 

be derived from it. To this respect, near-threshold stimuli used in most of the studies 

published in the field of pre-stimulus activity are just a special case obtained from the 

psychometric curve. Therefore, restricting the range of stimulus intensity around sensory 

threshold may represent a limitation in the study of underlying functional mechanisms. 
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1.5.1 The psychometric function 

The psychometric function typically shows a sigmoid shape and is defined by four 

parameters. The choice of a two-parameter (α and β) sigmoid function (e.g., logistic, 

Weibull, cumulative Gaussian) determines the shape of the curve, defining its position 

along the abscissa and its steepness. Along the y axis, the function’s boundaries are 

expressed by two additional parameters, namely γ and λ, which specify the lower and the 

upper asymptote, respectively. In a detection task, the lower bound of the function is 

usually set to 0, and it describes to the base rate of performance in the absence of a 

stimulus. The upper bound is determined by the so called “lapse rate”, expressed by λ, 

which can be defined as the probability of responding incorrectly regardless of stimulus 

intensity. Like γ, also λ is often set to 0, resulting in an upper asymptote approaching 1 

(i.e., performance of 100% at high stimulus levels). However, it is worth noting that not 

considering the lapse rate may bias the slope and threshold estimation (Wichmann and 

Hill, 2001).  

The most common measure derived from the psychometric function is the sensory 

threshold, i.e., the stimulus intensity needed to perform with an accuracy of 50%. A 

change in threshold results from a shift of the psychometric function and indicates a 

variation in the global performance level (Figure 1.7-A). Another parameter used to 

evaluate variations in performance is given by the slope, which indicates the increase rate 

in performance as a function of stimulus intensity, with a steeper slope indicating a 

reduced variability around threshold (Parker and Newsome, 1998; Figure 1.7-B). Finally, 

a further modification of the psychometric function concerns the upper asymptote, 

indicating that experimental manipulations mainly affect performance in response to high 
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intensity stimuli, possibly due to an altered lapse rate (Wichmann and Hill, 2001; Figure 

1.7-C). 

 

Figure 1.7 Selective modifications of the psychometric function. Hypothetical performance in a 

visual detection task as a function of stimulus intensity. Different experimental conditions may 

selectively affect the psychometric function, by altering: A) the threshold (i.e., by determining a 

shift of the curve), B) the slope, or C) the upper asymptote.  

One of the benefits of fitting the psychometric function to psychophysical data relies in 

making hypotheses on functional mechanisms underlying cognitive or perceptual 

processes, which are associated with specific changes in the psychometric curve. For 

example, contrast and response gain are two mechanisms studied in the visual domain, 

which act at the input and at the output level of the system, respectively. The contrast gain 

mechanism is represented by a shift of the psychometric function and, consequently, by 

a change in sensory threshold and sensitivity; the response gain is associated with a 

modification in the upper bound. As an example, in the framework of visual perception, 

it has been shown that while the effects of sustained attention are consistent with a 

contrast gain model (i.e., reduction of threshold), transient attention can be better 

explained as a mixture of contrast gain and response gain mechanisms (threshold 

reduction and increase of the upper asymptote; Ling and Carrasco, 2006). Likewise, both 

visual attention and adaptation affect contrast sensitivity, but their effects are due to 
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different non-interacting mechanisms, with attention affecting the upper asymptote and 

adaptation determining a shift of the psychometric function (Pestilli, Viera, and Carrasco, 

2007). 

1.5.2 A psychophysical approach to the study of pre-stimulus oscillations 

We suggest that valuable insights about the involvement of different mechanisms 

associated with ongoing alpha activity may arise from a psychophysical approach, i.e., 

by using a wide range of stimulus intensities and fitting the psychometric function. To 

our knowledge, two studies have addressed this issue so far, and in both cases changes in 

the psychometric function have been related with pre-stimulus alpha power. Chaumon 

and Busch (2014) reported evidence in favour of a response gain mechanism (i.e., a 

reduction of the upper asymptote in trials with high alpha power), while Benwell and 

others, (2017a) showed that pre-stimulus alpha power predicts visuospatial bias, but not 

discrimination sensitivity. It is worth noting that in the study by Benwell and co-workers, 

the proportion of correct responses is not represented as a function of stimulus intensity, 

but of visuospatial bias instead; therefore, the two studies are not comparable on the 

psychometric curve’s parameters.  

1.6 The present work 

In this project we aimed at further investigate the effects of ongoing alpha activity in the 

visual domain, by studying its effects on both perceptual and neurophysiological outcome 

by means of different methodological approaches.  

In the next sections, we present three main studies.  
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1) Study 1: Spontaneous fluctuations. Effects of MEG pre-stimulus activity on visual 

detection and event-related fields. Our first aim was to replicate a previous work 

on the effects of spontaneous pre-stimulus alpha activity on a near-threshold 

visual detection task. While the original study was run by using EEG, in the 

present one MEG recording allowed us to investigate the role of pre-stimulus 

alpha power and phase, as well as the evoked response, not only at the sensor level 

but also by reconstructing brain sources.  

2) Study 2: Modulation of pre-stimulus oscillations. Effects of a dark adaptation 

paradigm on phosphene perception and TMS-evoked potentials. Here we aimed 

at experimentally modulating pre-stimulus oscillatory activity, by means of a dark 

adaptation paradigm. The effects of the experimental modulation were evaluated 

through a TMS-EEG protocol, by assessing phosphene perception and TMS-

evoked potentials and gaining insights from the full psychometric function 

estimation. 

3) Study 3: Neural mechanisms. A formal model for the effects of ongoing M/EEG 

oscillations on visual perception. Finally, we developed a formal model with the 

aim of addressing the demanding issue of how pre-stimulus oscillations contribute 

to visual perception, in terms of neural mechanisms. Starting from the 

psychometric function observed at the behavioral level, the model allows to make 

predictions on specific cross-frequency mechanisms which may be associated 

with the effects of pre-stimulus alpha oscillations.  
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1.6.1 Technique of Study 1: MEG 

Among neuroimaging techniques, MEG is considered an extremely powerful tool to non-

invasively investigate brain functioning, characterized by a unique combination of high 

temporal and spatial resolution (Baillet, 2017; Paetau and Mohamed, 2013; Pizzella et al., 

2014; Proudfoot, Woolrich, Nobre, and Turner, 2014; Stefan, Nakasato, and 

Papanicolaou, 2012). MEG signal is obtained by recording the magnetic fields produced 

by electrical currents of neurons’ post-synaptic potentials, and thus represents a direct 

measure of neural activity. MEG presents several advantages compared to other 

techniques, such as EEG and fMRI, in which the high resolution in one dimension (i.e., 

temporal in EEG, spatial in fMRI) comes at the expense of the other one (i.e., spatial in 

EEG, temporal in fMRI). By enabling a sampling rate of thousands per second, MEG 

allows a fine measurement of neural oscillations, which are believed to play a 

fundamental role in brain functioning, as highlighted in previous sections (Proudfoot, 

Woolrich, Nobre, and Turner, 2014). Moreover, the magnetic fields produced by neural 

assemblies and recorded by MEG sensors do not suffer from distortion when passing 

through the layers of head tissues, allowing a more precise source localization of neural 

activity, especially for superficial sources (since the magnetic field decreases rapidly with 

distance). Importantly, MEG contributed to overcome the idea of segregated brain areas 

towards the study of the whole brain as a network, revealing real-time interactions among 

distant regions (Baillet, 2017). Taken together, the characteristics of MEG make it a 

unique and promising technique in the study of brain dynamics. 
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1.6.2 Technique of Study 2: TMS-EEG 

The combination of TMS with simultaneous EEG (TMS-EEG) is a highly promising tool 

in the study of brain functional dynamics (Ilmoniemi and Kičić, 2010; Kitajo, Hanakawa, 

Ilmoniemi, and Miniussi, 2015). Indeed, TMS allows to establish causal relationships 

between brain areas and cognitive functions by inducing neural depolarization in the 

cortex beneath the area of stimulation (Barker, Freeston, Jalinous, and Jarratt, 1987; 

Barker, Jalinous, and Freeston, 1985), while EEG enables the direct recording of neural 

activity with an excellent temporal resolution (Berger, 1929; Sejnowski, Churchland, and 

Movshon, 2014). Therefore, TMS-EEG represents a unique opportunity to non-invasively 

measure the instantaneous cortical response to a focal perturbation with a high temporal 

and spatial resolution, providing information on the brain’s excitability and connectivity 

(Bortoletto, Veniero, Thut, and Miniussi, 2015; Ferreri and Rossini, 2013).  

EEG response to TMS may be investigated by means of TEPs, an equivalent of event-

related potentials in EEG (Chung, Rogasch, Hoy, and Fitzgerald, 2015). TEPs represent 

a reliable measure of cortical excitability: they change depending on site, intensity and 

angle of TMS stimulation (i.e., they are sensitive), while they have been shown to be 

stable over time (i.e., they are reproducible; Casarotto et al., 2010, Lioumis, 2009). So 

far, most of the research focused on motor areas (for a review see Ferreri and Rossini, 

2013), and only a few studies recorded TEPs by stimulating the visual cortex (Bagattini, 

Mazzi, and Savazzi, 2015; Herring, Thut, Jensen, and Bergmann, 2015; Rosanova et al., 

2009; Taylor, Walsh, and Eimer, 2010).  
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2. Study 1: SPONTANEOUS FLUCTUATIONS 

Effects of MEG pre-stimulus activity on visual detection 

and event-related fields 

2.1 Background and aim 

Current literature provides compelling evidence that spontaneous fluctuations in ongoing 

oscillatory activity, as measured by magneto/electrophysiological (M/EEG) recordings, 

contribute to the way the brain responds to an incoming stimulus (Section 1.3; Ai and 

Ro, 2014; Arieli, Sterkin, Grinvald, and Aertsen, 1996; Baumgarten, Schnitzler, and 

Lange, 2016; Haegens et al., 2011; Iemi and Busch, 2018; Iemi, Chaumon, Crouzet, and 

Busch, 2017; Kayser, McNair, and Kayser, 2016; Leske et al., 2015; Limbach and 

Corballis, 2016; Linkenkaer-Hansen, 2004; Mazaheri, Nieuwenhuis, Van Dijk, and 

Jensen, 2009; Samaha, Iemi, and Postle, 2017; Schubert, Haufe, Blankenburg, Villringer, 

and Curio, 2008; van Dijk, Schoffelen, Oostenveld, and Jensen, 2008).  

A large number of studies focused on the effects of ongoing oscillations on perception, 

and especially on detection tasks, by presenting so-called “near-threshold” stimuli. In a 

near-threshold stimulus, for each participant the intensity is set at the individual sensory 

threshold, such that, when it is repeatedly presented, it can be detected in half of the trials. 

In the visual domain, findings converged in showing that hits (i.e., target-detected trials) 

and misses (i.e., target-undetected trials) differ not only in the neurophysiological 

response evoked by the stimulus, but also in ongoing activity in the alpha band, with 

stronger power in the time-window preceding misses compared to hits (Busch, Dubois, 

and VanRullen, 2009; Iemi and Busch, 2018; Iemi, Chaumon, Crouzet, and Busch, 2017; 
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Lange et al., 2014; Mathewson et al., 2009; van Dijk, Schoeffelen, Oostenveld, and 

Jensen, 2008).  

In this field, the study by Busch and colleagues (Busch, Dubois, and VanRullen, 2009) is 

particularly interesting. Indeed, not only they replicated previous findings on the role of 

the power of spontaneous pre-stimulus fluctuations in EEG alpha band, but they also 

showed for the first time that the phase of ongoing alpha oscillations accounts for a 

considerable portion of variability in performance as well. It is worth noting that the study 

by Mathewson et al., 2009 on pre-stimulus alpha phase was published in the same year 

with similar results.  

The effect of ongoing alpha power has been further confirmed in following studies (Busch 

and VanRullen, 2010; Iemi, Chaumon, Crouzet, and Busch, 2017; Limbach and Corballis, 

2016; Samaha, Iemi, and Postle, 2017). Differently, the effect of pre-stimulus alpha phase 

appears to be not well established yet, with variable results in terms of frequency 

(Mathewson et al., 2009; Busch and VanRullen 2010) and recent studies reporting null 

results (Benwell et al., 2017a; Benwell et al., 2017b). Moreover, up to now still little is 

known about cortical sources of the effects of pre-stimulus activity on perception (Busch, 

Dubois, and VanRullen, 2009; Iemi, Chaumon, Crouzet, and Busch, 2017).  

Here, we aimed at replicating findings by Busch and colleagues (2009) on the effects of 

spontaneous fluctuations in alpha rhythm on visual perception. Specifically, we 

investigated the effects of pre-stimulus alpha power and phase on behavioral outcome 

and neurophysiological response (i.e., event-related fields, ERFs) in a near-threshold 

visual detection task. In the present study, the use of MEG may allow not only to 

corroborate previous findings, but also to extend the investigation of the effects of pre-

stimulus alpha power and phase at the source level.  
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2.2 Materials and methods 

2.2.1 Participants 

Twenty young healthy volunteers took part in the study after giving written informed 

consent (12 females, mean age ± SD: 26 ± 4 years, all right handed). All participants had 

normal or corrected-to-normal vision and no history of neurological disorders. The study 

was conducted in accordance of the declaration of Helsinki and approved by the local 

ethics committee of University of Trento.  

2.2.2 Experimental procedure 

Participants were comfortably seated in a dimly lit, sound attenuated and magnetically 

shielded room. The visual detection task was comparable to the one described in Busch, 

Dubois and VanRullen (2009), shown in Figure 2.1. A fixation cross was always present 

in the center of the screen, while two lateral markers on its right side (7° of visual angle) 

indicated the location in which the target could appear. Participants were asked to 

maintain the fixation, while covertly attending the lateral site indicated by the markers. 

After a variable interval between 1 and 2 s, the target was presented in 80% of the trials. 

The target was a small dot (7’ of visual angle) briefly presented (8.3 ms) at individual 

luminance threshold. A question mark appeared 1.5 s after target presentation, and 

participants were asked to report by a button press whether they detected the target or not. 

A new trial began after the response, or after 2 s if no response was recorded. Participants 

performed 6 blocks of 150 trials each (due to technical reasons, two participants only 

completed 4 blocks of the experiment). The experiment was created in MATLAB 2012b 

(The MathWorks, Natick, MA, USA) and Psychophysics Toolbox 3 (Brainard, 1997). 

Visual stimuli were presented on a translucent screen placed 1.5 m from participants, by 
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means of a DLP projector at a refresh rate of 120 Hz (PROPixx, VPixx Technologies Inc., 

Saint-Bruno, QC, Canada). A photo diode was used to set the trigger for stimulus onset.  

 

Figure 2.1 Trial structure of visual detection task in Study 1. While keeping the fixation on the 

central cross, participants were asked to detect a small dot that could briefly appear in 80% of the 

trials between two markers on the right side of the screen.  

2.2.3 MEG recording 

Whole-head MEG was continuously recorded with a sampling rate of 1 kHz 

(Neuromag306 system; Elekta, Stockholm, Sweden), placed in a magnetically shielded 

room. MEG data was recorded by 306 sensors (one magnetometer and two orthogonal 

planar gradiometers for each of 102 positions). A Polhemus Fastrack digitizer (Polhemus, 

VT, USA) was used to acquire for each participants the location of a set of landmarks: 

nasion and left/right periauricular points, five head position indicator (HPI) coils to track 

the position of the participants’ head during the experiment, and more than 200 headshape 

samples, needed for offline head modelling.  
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2.3 Analysis: behavioral outcome 

Detection performance was evaluated in terms of hit rate (i.e., correct detections on the 

total of presented targets) and false alarm rate (i.e., false alarms on the total number target-

absent trials).  

2.4 Analyses: MEG data 

At sensor level as well as in source space, we aimed at comparing hits and misses in 

ERFs, pre-stimulus power and pre-stimulus phase. MEG data analysis was performed in 

MATLAB 2016b (The MathWorks, Natick, MA, USA) and Fieldtrip toolbox 

(Oostenveld, Fries, Maris, and Schoffelen, 2011).  

2.4.1 Preprocessing 

Sensor level 

The MEG signal was high-pass filtered at 1 Hz and a notch filter at 50 Hz and 100 Hz 

was applied to avoid line noise. Data was downsampled at 256 Hz and epoched from 2 s 

before and 2 s after stimulus onset. The data was visually inspected to identify trials 

containing noise, eye movements and muscular artefacts, as well as noisy channels. On 

average (mean ± SD), 10 ± 2 % of the trials was discarded and 4 ± 2 channels were 

subsequently interpolated. Data from planar gradient pairs were combined using vector 

addition, but the reported analyses focused on magnetometers only. Target-absent trials 

were excluded, and the number of trials for hits and misses was equalized by randomly 

selecting a subset of trials from the condition with more trials.   
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Source-projection 

To project sensor data obtained from preprocessing into source space, for each participant 

we first performed the coregistration between anatomical and MEG data, by using the 

individual MRI (or a standard MRI for 5 out of 20 participants who did not have the 

individual scan) and the landmarks recorded prior to acquisition, in order to align the two 

imaging modalities. A single shell head model (Nolte, 2003) was used to represent the 

geometrical and electro-magnetic properties of the head. Subsequently, we construct the 

source model by using a spatial grid of 899 points with a resolution of 15 mm in Montreal 

Neurological Institute (MNI) space, which was warped into individual head model. In 

this way, the data from each subject was mapped onto a common space. Finally, we 

calculated the forward model and applied a Linearly Constrained Minimum Variance 

(LCMV) beamformer filter (Van Veen, van Drongelen, Yuchtman, and Suzuki, 1997) to 

single-trial data, using a covariance window from -0.3 s to -0.1 s with respect to stimulus 

onset.   

Time-frequency 

We performed a single-trial time-frequency analysis by applying a Hanning taper with a 

time window of a frequency-dependent length (5 cycles per frequency), sliding in steps 

of 10 ms. In sensor level the time-frequency analysis was performed for frequencies from 

1 to 50 Hz, while at source level it was restricted to the pre-stimulus window and to a 

frequency range from 1 to 30 Hz, due to higher computational demands. Power was given 

by the squared absolute value of the Fourier estimates. 
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2.4.2 Statistical analysis 

If not otherwise specified, MEG data for hits and misses were compared by performing 

non-parametric cluster-based permutation tests for dependent samples (two-tailed t 

statistics; Maris and Oostenveld, 2007). This procedure allows to control for the multiple 

comparisons problem (type I error), arising when performing statistical tests at multiple 

time, frequency and sensors. First, it identifies significant spatio-temporal-spectral 

adjacent clusters, summing t values within each cluster to reveal a cluster level test 

statistic. Then, it performs random permutations by exchanging the data between hits and 

misses, within participants. After each permutation run, the maximum cluster level 

statistic was recorded to obtain a reference distribution of cluster-level statistics 

(approximated with Monte Carlo procedure of 1000 permutations). Finally, cluster-level 

p-values were estimated as the proportion of values in the reference distribution 

exceeding the cluster-statistics obtained in the real data. The level of significance was set 

at p < 0.05. 

2.4.3 ERFs 

At sensor level as well in source space, we computed ERFs by low-pass filtering the 

signal at 20 Hz and averaging over trials for hits and misses. Statistical testing was 

performed over all channels and time points from 0.2 s before to 0.8 s after stimulus onset.  

2.4.4 Pre-stimulus power 

Since we were interested in the effect of pre-stimulus alpha power (Busch, Dubois, and 

VanRullen, 2009; Hanslmayr et al., 2007; Iemi, Chaumon, Crouzet, and Busch, 2017; 

Zoefel and VanRullen, 2017), we performed the statistical analysis by averaging over 

frequencies in the alpha band (8-13 Hz). Pre-stimulus power in hits and misses was then 
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compared across spatial and temporal dimensions in 1 s before stimulus onset at sensor 

level, and in 0.5 s before stimulus onset in source space.  

2.4.5 Pre-stimulus phase 

To analyse the contribution of pre-stimulus phase on trial outcome, we computed the 

inter-trial coherence (ITC; Lachaux, Rodriguez, Martinerie, and Varela, 1999), i.e., phase 

coherence across trials, for hits (ITChits), misses (ITCmisses) and comprising hits and misses 

together (ITCall), as follows. First, to control for difference in amplitude among trials and 

extract only the information about phase, the length of the complex vectors resulting from 

Hanning tapering and Fourier transform was normalized to 1 in all trials. Then, ITC was 

calculated as the length if the resultant complex Fourier vectors across trials along a unit 

circle. The range of ITC values is between 0 and 1, with 0 representing random phase 

angle distribution and 1 perfect phase-locking across trials. Among several existing 

measures to compare the phase opposition between trial groups, we applied the Phase 

Opposition Sum (POS), which has been shown to be more reliable compared to other 

measures (e.g., Phase Biphurcation Index, the one used in the original study; VanRullen, 

2016), defined in (2.1).  

(2.1) 

POS = ITChits + ITCmisses – 2*ITCall 

POS values are positive only when both hits and misses are phase locked and have 

opposite phase angles; in all other cases (i.e., only one condition presents high ITC, both 

conditions present low ITC, or both conditions present high ITC but with similar phase 

angles), POS values are close to 0 (Figure 2.2).  
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Figure 2.2. Schematic illustration of the Phase Opposition Sum (POS) on hypothetical data from 

two experimental conditions (Condition 1 and Condition 2), in different situations. Circles 

indicate possible phase angles between 0 and 2π; circles on the left represent the two conditions 

separately, while right circles show the global phase distribution. Each line represents one trial 

(red: Condition 1; blue: Condition 2; black: all conditions together); the angle represents the phase 

at a certain time and frequency of interest after amplitude normalization (i.e., each trial has equal 

length) and the arrows represent the ITC. A) Two conditions are phase-locked at opposite phase 

angles: ITC1 and ITC2 are both high, while ITCall is low; this is the only case in which POS 

assumes positive values. B) Only one condition is phase-locked: ITC1 is high, ITC2 is low, and 

ITCall is moderate, leading POS close to zero. C) Both conditions are phase-locked to the same 

angle: not only ITC1 and ITC2, but also ITCall is high, therefore POS is close to zero. D) The phase 

of both conditions is randomly distributed, resulting in a POS close to zero. Adapted from Busch 

et al. (2009).  

Statistical analysis of POS between hits and misses was performed by random 

permutations, applying a similar procedure to the one reported by Busch and colleagues 

(2009). For each subject, single trial data for hits and misses were merged together and 

new subsets for “pseudo-hits” and “pseudo-misses” were created by randomly selecting 

trials from the merged pool, and POS relative to the two subsets was computed. 

Importantly, the same trials were considered in the computation of the real and the 

shuffled data. This procedure was repeated 500 times, giving rise to a shuffled POS 
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distribution under the null hypothesis for each subject. In a second step, we randomly 

selected one permutation out of the 500 POS, and computed the grand-average among 

subjects. The second step was performed 10000 times. Finally, we computed as a p value 

the proportion of shuffled POS grand-averages that exceeded the observed POS grand 

average. The false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995) was 

applied to the obtained p values in order to correct for multiple comparisons.  

Since the effect of pre-stimulus phase on visual perception is still debated (Benwell et al., 

2017a; Benwell et al., 2017b), and it is not clear whether it involves frequencies beyond 

the alpha band (Busch, Dubois, and VanRullen, 2009; Mathewson et al., 2009), we 

decided to not confine the analysis on the alpha frequency range. However, because of 

the high computational demands of phase calculation, we reduced the number of 

comparisons by averaging over 4 magnetometers of interest in fronto-central position 

(similarly to the procedure described in Busch, Dubois, and VanRullen, 2009; Figure 

2.5). In source space, we restricted the statistical analysis of POS on a time-frequency-

range of interest, based on the effects observed at sensor level, i.e., from -0.25 s to -0.1 s 

and within 10-12 Hz. This procedure allowed us to obtain a p value for each point in 

source space.  

2.5 Results 

2.5.1 Behavioral outcome 

As expected, on average participants detected half of the targets (hit rate, mean ± SE: 

46.91% ± 1.19), while false alarm rate was very low (mean ± SE: 2.74% ± 0.69). 
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2.5.2 ERFs 

The hits versus misses comparison revealed larger responses for hits compared to misses, 

both on sensors and in source space. 

Sensor level 

In the ERFs at sensor level we observed two significant clusters, a first positive one from 

0.29 s to 0.52 s and a later negative one from 0.47 s to 0.67 s. The difference between hits 

and misses was strongest in right central sensors for both time windows, as shown in 

Figure 2.3. 

 

Figure 2.3 ERFs in sensor space. ERFs for hits (blue) and misses (red; SE in shaded error bars), 

averaged over sensors which showed a significant difference between hits and misses in at least 

one of the two clusters. Dashed lines indicate time-range of significant clusters: one positive 

(yellow) peaking at 0.34 s and one negative (blue) peaking at 0.54 s, whose t values are shown in 

topographical maps (range in colorbar).  
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Source level 

Statistical testing on ERFs in source space revealed three positive and three negative 

significant clusters; for each cluster we identified the location of the maximum t value in 

the cortex (Figure 2.4). Within the first 40 ms, we observed a positive cluster from 0.13 

s to 0.33 s (p = 0.002) and a negative cluster from 0.14 s to 0.38 s (p = 0.006). The first 

positive cluster peaked in left Brodmann Area (BA) 19 (BA19; visual cortex, MNI 

coordinates: -21 -65 -10; t = 2.55), while maximum t value for the first negative cluster (t 

= -2.97) was located in right BA11, in the orbital gyrus (MNI coordinates: 10 40 -20). 

The second positive cluster (p = 0.002) ranged from 0.23 s to 0.47 s, whereas the second 

negative cluster (p = 0.002) occurred between 0.24 to 0.7 s. The second positive cluster 

showed the highest t-value (t = 2.66) in the left BA32, in the anterior cingulate cortex 

(MNI coordinates: -5 25 25), whereas the negative one peaked in the right BA20, in the 

inferior temporal gyrus (t = -0.53; MNI coordinates: 40 -12 -34). Finally, starting from 

0.42 s we observed a positive cluster lasting up to 0.69 s (p = 0.002) and a negative cluster 

until 0.67 s (p = 0.002). The last positive cluster peaked in the left BA11, in orbitofrontal 

area (t = 3.62, MNI coordinates: 10 27 -14), while the negative one in left BA32, in 

anterior cingulate cortex (t = -2.55, MNI coordinates: -5 26 31). 
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Figure 2.4 ERFs in source space. A) ERFs for hits (blue) and misses (red; SE in shaded error 

bars), averaged over points in source space which showed a significant difference between hits 

and misses; dashed lines indicate time-windows for significant clusters: I) clusters from 0.13 s to 

0.38 s; II) clusters from 0.23 s to 0.7 s; III) clusters from 0.42 s to 0.69 s. B) From left to right: 

axial, coronal and sagittal MRI sections in neurological convention, showing t values for each 

significant cluster in ERFs from 0.2 s before to 0.8 s after stimulus onset (range in colorbar). The 

red dot indicates maximum t value in the cortex. 
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2.5.3 Pre-stimulus power 

We observed a significant effect of pre-stimulus alpha power in source space, but no 

significant clusters emerged from the analysis on sensors.  

Sensor level 

Although at a descriptive level we observed higher power levels preceding misses 

compared to hits (Figure 2.5), on sensors no significant effects emerged from the cluster-

based permutation test over channels and time-points in the alpha band. 

 

Figure 2.5 Pre-stimulus alpha power at sensor level. Left: time-frequency plot of spectral power 

averaged across all sensors; the rectangle highlights alpha frequency range (i.e., 8-13 Hz). Right: 

topographical map of the difference between hits and misses in the alpha band, averaged over 

time in 1 s before stimulus onset). Power range as shown in colorbars.  

Source level 

In source space, the cluster-based permutation test on pre-stimulus power in the alpha 

band revealed one significant negative cluster in the pre-stimulus window (p = 0.042), 

peaking between -0.45 s and -0.3 s. The strongest effect (t = -3.51) was located in left 

BA19, in the visual cortex (MNI coordinates: -49 -65 10).  
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Figure 2.6 Pre-stimulus alpha power in source space. From left to right: axial, coronal and sagittal 

MRI sections in neurological convention, showing t values of the negative significant cluster in 

pre-stimulus power (range in colorbar). The red dot indicates highest t value in the cortex.  

2.5.4 Pre-stimulus phase 

Sensor level 

The analysis on POS between hits and misses revealed a significant pre-stimulus effect 

at 11 Hz, from -0.2 s to -0.16 s in the pre-stimulus window (range of p values: from p = 

0.019 to p = 0.03; Figure 2.7).  

 

Figure 2.7 POS effect at sensor level. A) Time-frequency plot of POS values averaged across 4 

sensors (as indicated by asterisks in the topographical map), and topographical activation 

averaged over frequencies and time-points as indicated by the rectangle. B) Uncorrected p values 

from statistical analysis on POS; areas within red boundaries indicate time-frequency points with 

significant POS satisfying an FDR of 5%. Range in colorbars. 
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Source level 

Statistical analysis revealed 96 points in source space showing significant p values, after 

FDR correction for multiple comparisons (Benjamini and Hochberg, 1995). Significant p 

values mainly involved frontal areas, and the largest significant area was located in the 

left dorso-lateral pre-frontal cortex (Figure 2.8). In Table 2.1 we described other brain 

regions which showed significant p values.  

 

Figure 2.8 POS effect in source space. Points in source space showing significant p values in the 

cortex after FDR correction from statistical analysis on POS; range in colorbar. 

Hemisphere  Brain region Brodmann Area MNI coordinates 

Left Dorso-lateral pre-
frontal cortex 

9 -19 47 33 

Right Anterior pre-frontal 
cortex 

10 12 60 11 

Left Orbito-frontal cortex 11 -19 -11 -21 

Right Primary visual cortex 17 12 -67 11 

Left Inferior frontal gyrus 44 -51 11 11  

 
Table 2.1 POS effect in source space. Main areas showing significant p values in the cortex after 

FDR correction from statistical analysis on POS.  
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2.6 Discussion 

In the present study we aimed at replicating previous evidence (Busch, Dubois, and 

VanRullen, 2009) on the role of spontaneous pre-stimulus alpha activity on behavioral 

and neurophysiological outcome in a visual detection task, and at providing novel 

advances by exploring such effects also at the source level, by using MEG.  

Our results were consistent with most findings from Busch and colleagues (2009). As 

expected, we observed a detection performance around 50%, indicating that the 

luminance threshold of visual stimuli was successfully set at individual sensory threshold. 

Furthermore, the neurophysiological response to stimuli (i.e., ERFs) was larger for hits 

compared to misses, both at the sensor level and in source space. The analyses on pre-

stimulus window revealed a significant effect of alpha power in source space, with 

stronger power preceding misses compared to hits. Finally, we observed a significant 

effect of pre-stimulus alpha phase both on sensors and at source level, showing that pre-

stimulus activity before hits and misses was phase-locked and pointing in different phase 

angles.  

Results on ERFs are consistent with findings from Busch and colleagues (2009): while 

the neurophysiological outcome to undetected stimuli was virtually absent, detected 

stimuli gave rise to a clear evoked response compared to baseline. In sensor-level analysis 

we observed two significant clusters peaking around 0.4 s and 0.55 s, while analysis in 

source space revealed also a difference between hits and misses at earlier latencies. 

Specifically, the left visual cortex was involved in the earliest response. Since visual 

stimuli were always presented in the right hemifield, this result suggests that the 

difference between hits and misses in ERFs reflects sensory processing. Moreover, we 

observed a subsequent effect located in the inferior temporal gyrus. This brain region is 
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historically known to be crucial for the ventral stream of the visual pathway (Mishkin, 

Ungerleider, & Macko, 1983) and it has recently been found to be involved in conscious 

perception (Bisenius, Trapp, Neumann, & Schroeter, 2015). Finally, beside the effects in 

occipital and temporal cortex, we detected also frontal sources which were present along 

the time course of the ERFs. Frontal activations in response to hits may be involved in 

higher level functions, such as top-down modulation of visual processing (Gazzaley et 

al., 2015; Zanto, Rubens, Thangavel, & Gazzaley, 2011). Taken together, results from 

ERFs analysis in source space suggests that visual detection may not be considered a local 

phenomenon restricted to sensory regions (i.e., the visual cortex), but it is likely to involve 

connections with high-order associative cortices. 

The analysis on pre-stimulus alpha power revealed a significant effect in source space. 

Consistently with the original paper and findings in literature (Busch, Dubois, and 

VanRullen, 2009; Iemi, Chaumon, Crouzet, and Busch, 2017; Limbach and Corballis, 

2016; Samaha, Iemi, and Postle, 2017), we observed significantly stronger pre-stimulus 

alpha power preceding misses compared to hits. This result supports the interpretation of 

ongoing alpha power as playing an inhibitory role and reflecting cortical excitability 

(Klimesch, Sauseng, and Hanslmayr, 2007). The effect of alpha power in the pre-stimulus 

window was strongest between -0.45 s and -0.3 s before stimulus presentation in the left 

visual cortex. Interestingly, this result is consistent with EEG studies reporting the effect 

of alpha power in posterior electrodes and referring to pre-stimulus alpha power in terms 

of “occipital alpha” (Hanslmayr et al., 2007; Lange, Oostenveld, & Fries, 2013; Zoefel & 

VanRullen, 2017). Nonetheless, our data on sensors did not replicate the present result. It 

is worth noting that in the original work the number of comparisons over the spatial-

spectral-temporal dimensions was significantly reduced by performing statistical tests on 

one selected channel only (i.e., Fz). Crucially, Fz was selected because it showed the 
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strongest difference between hits and misses. Since the effect of pre-stimulus alpha power 

on visual perception has been replicated in several studies (for a review see Ruhnau et al., 

2014), we speculate that our non-significant result may arise from the characteristics of 

the detection task we used. Indeed, visual stimuli were always presented in the same 

hemifield (i.e., on the right). Therefore, spatial attention was not expected to fluctuate 

between the two hemifields, thus reducing the variability of alpha power fluctuations.  

The effect of alpha phase that we observed in the present data in the pre-stimulus window 

is comparable with the one described by Busch and colleagues (2009) in terms of latency. 

Indeed, we both found a significant phase opposition between hits and misses around 200 

ms before stimulus presentation. However, our results are slightly different from the 

original ones in terms of frequency. Indeed, while Busch et al., (2009) reported an effect 

peaking around 7 Hz, the one we observed here was around 11 Hz. Since the peak of 

alpha frequency is known to vary among participants (Başar, 2012; Haegens et al., 2014), 

the higher frequency in the phase effect observed here compared to the one by Busch and 

colleagues (2009) may be due to the fact that on average the two groups of participants 

may differ in the individual alpha frequency. Our result is comparable to the one described 

by Mathewson et al. (2009), who reported an effect of pre-stimulus phase at 10 Hz. The 

analysis in source space confirmed a significant effect of pre-stimulus phase in the alpha 

band, and revealed that the effect mainly involved frontal areas. This result is consistent 

with EEG studies describing a more frontal topography for the effects of alpha phase 

compared to alpha power, suggesting that the power and phase in the alpha frequency 

range may impact visual perception through distinct mechanisms (Busch, Dubois and 

VanRullen, 2009; Busch and VanRullen, 2010; Zoefel and VanRullen, 2017).  
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2.6.1 Limitations 

The study we described here shares a few limitations with the original work (Busch, 

Dubois, and VanRullen, 2009). First, the use of near-threshold stimuli prevented a deeper 

investigation on the mechanisms involved in alpha-driven modulation of visual 

perception (Chaumon and Busch, 2014; Section 1.5). Moreover, the number of target-

absent trials presented did not enable the calculation of a bias-free measure of 

performance (e.g., d prime), thus preventing to distinguish whether the effects of ongoing 

oscillations were due to fluctuations of sensitivity or of response criterion (the latter 

recently associated with spontaneous fluctuations of pre-stimulus alpha power; Iemi and 

Busch, 2018; Iemi, Chaumon, Crouzet, and Busch, 2017; Limbach and Corballis, 2016; 

Samaha, Iemi, and Postle, 2017; Section 1.4.2).  

2.6.2 Conclusions and future directions 

To conclude, in the present study we successfully replicated several findings described in 

Busch and colleagues (2009) and provided novel advances in the field by describing the 

effects of ongoing oscillations in source space.  

First, our findings showed that both pre-stimulus power and phase in the alpha band have 

an effect on visual detection of near-threshold stimuli. Moreover, the effects of ongoing 

oscillations as well as the neurophysiological response appear to involve feed-forward 

and/or feed-back mechanisms, rather than being mainly considered local phenomena 

restricted to sensory regions. Finally, the different source localization for pre-stimulus 

alpha power and phase is consistent with recent hypotheses suggesting that they subtend 

independent mechanisms (Section 1.4.1; Zoefel and VanRullen, 2017) and in general 
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with the hypothesis that alpha activity may not be considered a unitary phenomenon 

(Sadaghiani and Kleinschmidt, 2016).  

Given the high computational demands especially for phase statistical testing, together 

with the variability in the measures that can be used to evaluate phase opposition between 

experimental conditions, future research is needed in order to establish whether the 

variability in reporting the effect of pre-stimulus alpha phase is due to technical 

limitations, to experimental factors or to physiological reasons.  
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3. Study 2: MODULATION OF PRE-STIMULUS 

OSCILLATIONS 

Effects of a dark adaptation paradigm on phosphene 

perception and TMS-evoked potentials 

3.1 Background and aim 

Ongoing magneto/encephalographic (M/EEG) alpha power represents a measure of 

cortical excitability, with a decrease reflecting a state of enhanced excitability, and a 

stronger activity indicating higher inhibition (Jensen and Mazaheri, 2010; Klimesch, 

Sauseng, and Hanslmayr, 2007). Perceptual outcome and neurophysiological evoked 

response appear to be influenced not only by rapid pre-stimulus fluctuations in alpha 

activity (Busch, Dubois, and VanRullen, 2009; Busch and VanRullen, 2010; Hanslmayr 

et al., 2007; Iemi and Busch, 2018; Lange et al., 2014; Mathewson et al., 2009; van Dijk, 

Schoeffelen, Oostenveld, and Jensen, 2008), but also by the excitability state of the cortex 

during longer periods of time, for example as revealed by alpha power measured during 

resting state recordings (Romei, Rihs, Brodbeck, and Thut, 2008).   

Cortical excitability can be non-invasively and transiently modulated through several 

procedures, such as adaptation paradigms (Silvanto, Muggleton, and Walsh, 2008), 

repetitive transcranial magnetic stimulation (TMS; Boroojerdi, Prager, Muellbacher, and 

Cohen, 2000b; Rossini et al., 2015), transcranial electrical stimulation (Huang et al., 

2017) and learning protocols (Bortoletto, Pellicciari, Rodella, and Miniussi, 2015; 

Muellbacher et al., 2001).  
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Current literature suggests that changes in cortical excitability may be obtained also by 

light deprivation paradigms (Boroojerdi et al., 2000a; Boroojerdi, Battaglia, Muellbacher, 

and Cohen, 2001; Fierro et al., 2005). In healthy volunteers, the duration of sensory 

deprivation appears to be crucial in determining the direction of the modulatory effects: 

while relatively short-lasting (min/hours) dark adaptation (DA) protocols suggest an 

increase in visual cortex excitability (Boroojerdi et al., 2000a; Boroojerdi, Battaglia, 

Muellbacher, and Cohen, 2001; Fierro et al., 2005), longer periods of DA have been 

associated to excitability decrease (Pitskel et al., 2007), consistently with what observed 

in blind patients compared to controls (Gothe et al., 2002).  

Here we exploited a short-lasting DA paradigm to study how different cortical excitability 

states affect perceptual and neurophysiological response, by means of an experimental 

protocol combining TMS and EEG (TMS-EEG). According to the literature, we expected 

higher cortical excitability after DA, reflected by lower pre-stimulus alpha power. In 

order to establish the causal role of visual cortex in determining the effects of DA, we 

directly stimulated the area with TMS. When delivered over the visual cortex, TMS may 

elicit phosphenes, illusory flashes of light which have been related to visual cortex 

excitability (Merabet, Theoret, and Pascual-Leone, 2003). In the present study, the 

concurrent EEG recording allowed not only to assess the effects of cortical modulation 

on perceptual outcome, i.e., TMS-induced phosphenes, but also to simultaneously 

investigate the neurophysiological response by means of TMS-evoked potentials (TEPs). 

The wide range of TMS intensities we used enabled us to assess phosphene perception 

beyond sensory threshold and to describe the relationship between stimulation intensity 

and evoked response, up to now unknown within the visual cortex. 
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3.2 Materials and methods 

3.2.1 Participants  

Fifteen young healthy participants took part in the study after giving written informed 

consent. Consistently with previous literature (Romei et al., 2008; Taylor, Walsh, and 

Eimer, 2010, 2010), phosphene perception could be induced in ten participants (66%) 

without extensive training. Two further participants did not show a reliable phosphene 

report at baseline (see procedure below), leaving 8 participants (5 females, 6 right-handed, 

mean age ± SD: 23 ± 3 years) taking part in the main experiment. All participants had no 

contraindication for TMS application (Rossi et al., 2009), they all had normal or 

corrected-to-normal vision and no history of neurological disorders. The study was run 

in accordance of the declaration of Helsinki, the TMS safety guidelines (Rossi et al., 

2009) and was approved by the local ethics committee of the IRCCS Centro San Giovanni 

di Dio Fatebenefratelli, in Brescia.  

3.2.2 Experimental procedure 

Participants were comfortably seated in a sound-attenuated room. At the beginning of the 

experiment, the optimal stimulation hotspot was defined as the posterior scalp location 

over the left hemisphere where TMS could reliably induce stable phosphene perception 

in the right visual field. A training block was run to familiarize participants with the task 

and to further assess their reliability in phosphene perception.  

After the training block, participants underwent 30 minutes of dark and light adaptation, 

in counterbalanced order (Figure 3.1-A). In DA condition participants were blindfolded. 

To ensure similar conditions during both adaptation periods and across participants (e.g., 

to avoid drowsiness or mind-wandering in the absence of a task), participants were asked 
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to verbally answer the Temperament and Character Inventory (Cloninger, 1994; Fossati 

et al., 2007), whose items were read aloud by the experimenter. Data from the inventory 

were not stored or analysed. Phosphene perception was assessed at the end of each 

adaptation periods (see following section for details). 

3.2.3 Phosphene perception assessment  

During the assessment of phosphene perception, participants were blindfolded and were 

asked to fixate an imaginary point in front of them. Each trial started with an acoustic 

stimulus, followed by a TMS pulse after a variable interval between 1 and 2 seconds. One 

second following the TMS pulse, a second acoustic stimulus indicated participants to 

report whether they perceived a phosphene or not, by pressing one of two buttons on a 

conventional computer keyboard (Figure 3.1-B). 

Phosphene perception was assessed with the Method of Constant Stimuli (MOCS; 

Kammer, Beck, Erb, and Grodd, 2001; Mazzi, Savazzi, Abrahamyan, and Ruzzoli, 2017), 

by applying single TMS pulses over the left visual cortex at 11 different intensities (from 

46% to 76% of the maximal stimulator output - MSO, in steps of 3%). Each intensity was 

applied 20 times in a randomized order, for a total of 220 trials and 30 minutes of duration 

for each adaptation period (Figure 3.1-A). The stimulation was delivered by means of a 

figure-of-eight coil connected to a bi-phasic Magstim Rapid Stimulator (Magstim 

Company, Whitland, Dyfed, UK). The coil position was monitored throughout the 

experiment by means of a stereotaxic neuronavigation system (SofTaxic, Electro Medical 

Systems, Bologna, Italy). 
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Figure 3.1 Experimental procedure of Study 2. A) Experimental session. B) Trial structure.  

3.3 Analyses 

3.3.1 TMS-EEG preprocessing 

TMS-EEG data processing was performed using BrainVision Analyzer 2 (Brain Products 

GmbH, Munich, Germany). The EEG signal was re-referenced offline to the average of 

the two mastoids and high-pass filtered at 2 Hz (Butterworth zero phase filter; 12 db/oct). 

TMS-induced artifact was removed by interpolating the signal from 2 ms before to 10 ms 

after the pulse. Independent component analysis (ICA) was applied to identify and 

remove components reflecting eye movements and residual TMS-related artifacts (ICA 

algorithm: infomax). After visual inspection, signal from corrupted electrodes (no more 

than 3 in any subject) was interpolated. Line noise was removed (50 Hz notch filter) and 

the signal low-pass filtered at 40 Hz (Butterworth zero phase filter; 12 db/oct). TMS-EEG 

data was segmented into epochs ranging from 1 s before to 1 s after the TMS pulse and 

baseline corrected for the 100 ms preceding the TMS pulse. Epochs were visually 

inspected and rejected if the signal amplitude was higher than ±70 μV in any channel, and 
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if eye movements and/or muscle artifacts were detected (less than 28% of the epochs were 

rejected). 

3.3.2 Pre-stimulus activity: alpha power 

With the aim of assessing the modulation of cortical excitability induced by the DA 

paradigm, we performed time-frequency analysis on single trial data. We applied a 

Hanning taper for frequencies from 2 to 45 Hz, with a time window of a frequency-

dependent length (3 cycle per time window), sliding in steps of 25 ms. Given our specific 

hypotheses, we lowered the number of comparisons by averaging power-spectral 

densities over a time window, frequency range and group of channels of interest. Based 

on the literature on the effects of pre-stimulus alpha power (Busch, Dubois, and 

VanRullen, 2009; Busch and VanRullen, 2010; Hanslmayr et al., 2007), we selected a 

time period of 400 ms, ranging from -0.6 s to -0.2 s preceding the TMS pulse. In 

particular, we avoided the time window just before the TMS pulse, which may be 

contaminated by the post-stimulus data, especially in low frequencies (Iemi and Busch, 

2018). Moreover, based on power spectrum and topographical maps obtained from grand 

average collapsing both adaptation conditions, we averaged over alpha range between 10 

and 12 Hz (Figure 3.2-A), and on a subset of parieto-occipital electrodes, according with 

to the literature (Hanslmayr et al., 2007).  

Since pre-stimulus alpha power is known to be lateralized, reflecting top-down 

mechanisms of spatial attention (i.e., higher power level in the hemisphere ipsilateral to 

the attended visual hemifield), we expected not only a modulation of pre-stimulus power 

by means of DA, but also a difference in alpha power between the left and right 

hemisphere. Therefore, we averaged over two sets of electrodes, one on the left (PO3, P3, 

PO7, O1) and one on the right (PO4, P4, PO8, O2) hemisphere (Figure 3.2-B).  



57 

 

 

Figure 3.2. Spectral power collapsing DA and LA. A) Time-frequency plot on parieto-occipital 

electrodes, as shown in upper-right inset by filled black dots in electrode layout. The red rectangle 

indicates the time-frequency interval averaged in subsequent analyses. B) Topography of the 

averaged activation in the time-frequency of interest (10-12 Hz; from -0.6 to -0.2 s); filled black 

dots were subsequently averaged for left (L) and right (R) hemisphere. Amplitude range for both 

A) and B) is shown in colorbar (µV2). 

3.3.3 Behavioral outcome: phosphene report 

For each condition (DA and LA) and participant, phosphene perception was analysed by 

fitting a Weibull function (lapse rate at 4%) to phosphene report as a function of TMS 

intensity, by using the maximum likelihood procedure implemented in Palamedes toolbox 

(Prins and Kingdom, 2009) in MATLAB (The MathWorks). Then, from the individual 

psychometric function we extracted the threshold (i.e., the TMS intensity at which 

participants reported phosphenes in 50% of the trials) and the slope (i.e., a parameter 

indicating the steepness of the function).   

3.3.4 Neurophysiological outcome: TEPs  

The grand-average of all trials, regardless of TMS intensities and condition, was used to 

identify TEP main components (Figure 3.3). Only components below 100 ms were 

considered, since TEPs at later latencies may be contaminated by auditory and 
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somatosensory processing (Herring, Thut, Jensen, and Bergmann, 2015; Nikouline, 

Ruohonen, and Ilmoniemi, 1999). From the grand-average across TMS intensities, we 

identified five main components within the first 60 ms peaking over the parieto-occipital 

electrodes (group-averaged peak latency indicated in brackets): P25 (23 ms), N35 (34 

ms), P40 (43 ms), N50 (52 ms), and P60 (66 ms).  

 

Figure 3.3 Grand-average after DA across all TMS intensities (data after LA are comparable). 

Signal from parieto-occipital electrodes pooling in thick-colored line. Topographical maps of 

main components (amplitude range as shown in colorbar). 

Additionally, epochs were averaged separately for each TMS intensity, in order to 

characterize the relationship between TMS intensity and TEP amplitude and to explore 

possible interactions between experimental conditions (DA and LA). TEP amplitude was 

measured by pooling the signal recorded from 8 electrodes (POz, PO3, PO7, PO9, Oz, 
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O1, Iz, I1) covering the area of stimulation, over a fixed time-window of 5 ms around the 

peak of each component. 

Dark adaptation versus light adaptation 

First, we aimed at testing the effects of adaptation conditions on TEP amplitude and its 

interaction with TMS intensity. Specifically, we were interested in evaluating whether 

the effects of adaptation could be seen below threshold, at threshold and above threshold. 

Therefore, we averaged TEPs based on three groups of intensities: low (46-52%), medium 

(58-64%) and high (70-76%). Low and high intensities were below and above group level 

phosphene threshold, respectively (low: 46-52% MSO; high: 70-76% MSO; averaged 

threshold ± SE: 62.98 ± 1.54% MSO). 

TEP amplitude as a function of TMS intensity 

To investigate whether our results could be affected by adaptation-related changes in the 

relationship between TEP amplitude and TMS intensity, we ran a trend analysis for each 

adaptation condition and component, including all TMS intensities.  

Beside expecting TEP amplitude to increase as a function of TMS intensity (Komssi, 

Kähkönen, and Ilmoniemi, 2004; Kähkönen, Komssi, Wilenius, and Ilmoniemi, 2005), 

we did not have any a-priori hypotheses about the parametric function which would best 

describe this positive relationship (e.g., linear, quadratic, etc.). For this reason, we 

performed a two-steps trend analysis. In the first step, the amplitude of TEP components 

from all participants was submitted to a non-parametric smoothing spline analysis, a data-

driven procedure that facilitates the detection of the type of relationship between variables 

without any a-priori assumption (Ramsay and Silverman, 2005; Pellicciari et al., 2016; 

R, version 3.3.1 - R Core Team, 2016; Figure 3.4-A). The degree of smoothing in the 
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spline analysis is defined by the span parameter (span range: 0-1, the higher the value, 

the smoother the fitted curve). The span value was selected using the Akaike Information 

Criterion (AIC) method, which allows models comparison on the basis of their maximum-

likelihood fit to the data, taking into account model complexity (Burnham and Anderson, 

2002; Burnham and Anderson, 2004). In the second step of the trend analysis, aimed at 

identifying the best parametric function from step one, we fitted a set of parametric 

functions of increasing complexity (i.e., increasing number of parameters: linear, 

logarithmic, exponential, quadratic, cubic) to the spline results (Figure 3.4-B). For 

components in which TEP amplitude was negative, data was linearly transformed to 

positive values in order to apply the exponential fitting. The coefficient of determination 

R2 was used to evaluate the goodness of fit of each function to the spline results. In this 

step, we always selected the function with a lower number of parameters that fitted the 

spline results. A function with a higher number of parameters was selected only if R2 

increased by 10%. This second step allows making predictions about TEP amplitude 

beyond the range of tested TMS intensities (i.e., 46-76% of MSO).  

 

Figure 3.4 Two-steps trend analysis: example on P25. A) Step1: non-parametric smoothing 

spline analysis on single-subject data, after LA (red) and DA (black). B) Step2: parametric 

fitting on spline values; comparison among a set of functions for DA.  
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3.3.5 Statistical analysis 

The level of statistical significance was set at p < 0.05. For parametric comparisons, the 

Kolmogorov-Smirnov test confirmed the normality of the distributions, and Tukey honest 

significant difference was applied in order to correct for multiple comparisons whenever 

appropriate. Statistical testing was performed using Statistica for Windows (version 10, 

StatSoft). 

Pre-stimulus activity: alpha power 

Pre-stimulus alpha power after DA and LA was compared by means of a repeated-

measures analysis of variance (rm-ANOVA), with Condition (DA, LA) and Hemisphere 

(left, right) as factors. 

Behavioral outcome: phosphene report 

In order to investigate the effect of adaptation conditions on phosphene perception, we 

ran a two-tailed Student’s paired t test on the phosphene threshold and slope separately.  

Neurophysiological outcome: TEPs 

To compare the effects of the adaptation conditions and TMS intensity on TEP amplitude 

a separate rm-ANOVA was performed for each component with Condition (DA, LA) and 

Intensity (low, medium, high) as factors.     

3.4 Results 

Unless otherwise specified, mean ± SE is reported. 
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3.4.1 Pre-stimulus activity: alpha power 

Pre-stimulus alpha power was modulated by Condition and Hemisphere, as shown by a 

significant interaction in the 2 by 2 rm-ANOVA (F (1, 7) = 6.296, p = 0.040). Post-hoc 

comparisons revealed a significant difference between DA and LA, with pre-stimulus 

alpha power after DA being significantly lower than after LA, both on the left (DA: 51.51 

µV2 ± 17.04; LA: 56.05 µV2 ± 20.33; t = 0.88; p = 0.029) and on the right pooling (DA: 

50.74 µV2 ± 15.83; LA: 59.6 µV2 ± 19.98; t = 1.50; p < 0.001). Furthermore, we observed 

a trend for significance in the difference between left and right pooling after LA (t = 1.29; 

p = 0.084; Figure 3.5).  

 

Figure 3.5 Spectral power in pre-stimulus time-frequency range of interest. A) Topographic map 

of power activation after DA and LA, showing a bilateral parieto-occipital activation. B) The 

topographic map of power difference between LA and DA shows a lateralized effect, greater in 

the right electrode pooling. Amplitude range shown in colorbars. C) Bar plot showing the 

interaction between Condition and Hemisphere; statistical significance as revealed by post-hoc 

comparisons (†: p = 0.084; **: p < 0.05; ***: p < 0.001; SE in error bars).   
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3.4.2 Behavioral outcome: phosphene report 

DA affected the slope of the psychometric function, which was significantly higher after 

DA compared to LA (DA: 11.56 ± 1.74; LA: 9.35 ± 1.64; t = 2.61; p = 0.035; Figure 3.6-

A-B). This result indicates a greater visual sensory reliability (i.e., the steeper the 

function, the lower the variability around threshold; Parker and Newsome 1998). The 

estimated threshold for phosphene perception did not change between conditions (DA: 

62.77 ± 2.24% MSO; LA: 63.20 ± 2.25% MSO; t = 0.44; p = 0.675), suggesting that DA 

did not modulate visual cortex sensitivity (Figure 3.6). 

 

Figure 3.6 Phosphene perception. A) Weibull function fitted to subjective report of perceived 

phosphenes averaged across subjects as a function of TMS intensity, after LA (red) and DA 

(black). B) The slope of the psychometric function after DA is significantly higher than after LA 

(p=0.035). C) No significant difference in phosphene threshold between DA and LA.  

3.4.3 Neurophysiological outcome: TEPs 

Dark adaptation vs. light adaptation 

We observed a main effect of Intensity for N35 and P40 (N35: F (2, 14) = 13.77, p < 0.001, 

𝜂𝑝
2  = 0.66; P40: F (2, 14) = 7.48, p = 0.006, 𝜂𝑝

2  = 0.52), showing an increase in peak 

amplitude as a function of TMS intensity. A trend towards significance in the same 
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direction was present also for the other components (P25: F (2, 14) = 3.57, p = 0.056, 𝜂𝑝
2 = 

0.34; N50: F (2, 14) = 3.51, p = 0.058; P60: F (2, 14) = 3.52, p = 0.058, 𝜂𝑝
2  = 0.33). 

Furthermore, the rm-ANOVA revealed a significant interaction between Condition and 

Intensity for P60 only (F (2, 14) = 6.19, p = 0.012, 𝜂𝑝
2  = 0.47). Post-hoc comparisons 

showed a significant difference between DA and LA at high intensities (t = 2.25; p = 

0.030), with the P60 amplitude after DA being significantly lower compared to LA (DA 

= 5.12 ± 1.08 µV; LA = 8.65 ± 1.67 µV; Figure 3.7).  

Figure 3.7 Interaction between Intensity (low, medium and high) and Condition (LA – red, DA 

– black). In high intensities, P60 after DA is significantly lower compared to LA (p = 0.030). 

TEP amplitude as a function of TMS intensity 

As expected, the relationship between TEP amplitude and TMS intensity was positive 

(Figure 3.8). The first step of the trend analysis (non-parametric spline analysis), 

performed to identify the degree of smoothing (AIC method), showed a consistent span 

value across TEP components (span: 0.86 ± 0.01). Following the span calculation, we 

identified the best parametric fitting. The goodness of fit we observed in the selected 

function was higher than 97% for all the components (R2 range: 97-100%). Figure 3.8 

shows the best model fitting as a function of TMS intensity after DA and LA. Importantly, 

for each component, the selected parametric function was consistent between adaptation 
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conditions. The relationship between TEP amplitude and TMS intensity was linear only 

for N35 (DA and LA: R2 = 0.98). We observed a quadratic trend with the parabola opening 

downwards (i.e., negative a parameter) for P25 (DA: R2 = 0.97, LA: R2 = 0.98), and an 

exponential trend for P40 (DA: R2 = 0.98, LA: R2 = 1). Finally, both N50 (DA and LA: 

R2 = 0.98) and P60 (DA and LA: R2 = 0.99) best fitted to a quadratic function with the 

parabola opening upwards (i.e., positive a parameter). Corroborating findings from the 

rm-ANOVA (i.e., a significant interaction between Intensity and Condition for P60), 

confidence intervals calculated for spline values showed that the only case in which DA 

and LA do not overlap was represented by the amplitude of P60 at highest TMS intensities 

(Figure 3.8).  

 

Figure 3.8 Best model fitting (continuous line) to spline results (dashed line), for each component 

separately (dots: original TEPs amplitude averaged across subjects), after LA (red) and DA 

(black). Abscissa: TMS intensity (% MSO); ordinate: TEP amplitude (µV).  
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3.5 Discussion 

In the present study we aimed at experimentally modulating cortical excitability by means 

of short-term DA, in a TMS-EEG paradigm. Consistently with what expected, we 

observed lower pre-stimulus alpha power after DA compared to LA. Moreover, we found 

a modulation of the behavioral response to TMS, i.e., a steeper slope of the psychometric 

function describing phosphene report as a function of TMS intensity, associated with a 

lower TEP amplitude of a component peaking at 60 ms after the TMS pulse, for high 

TMS intensities only. The interaction between adaptation condition and TMS intensity 

could not be explained by an effect of DA on the positive relationship between TEP 

amplitude and TMS intensity, which was linear for N35, quadratic for P25, N50, P60 and 

exponential for P40, consistently in the two adaptation conditions. 

The time-frequency analysis on pre-stimulus alpha oscillations showed higher power 

levels after DA compared to LA not only in the left sensors, corresponding to the 

hemisphere we stimulated with TMS, but also in the contralateral one. This result suggests 

that DA has a general effect on cortical excitability in parieto-occipital activation of alpha 

power, although the effect of adaptation condition was stronger in the right electrode 

pooling compared to the left one. The trend towards significance in the difference 

between the left and the right pooling, with the power recorded by left sensor being lower 

than the right ones, is consistent with findings on spatial attention (Worden, Foxe, Wang, 

and Simpson, 2000; Sauseng et al., 2005). Indeed, in the present paradigm, TMS pulses 

were always delivered on the left hemisphere; therefore, participants were likely to attend 

the contralateral visual hemifield, where phosphenes could appear. This finding is also 

consistent with the Gating by Inhibition framework, which underlines the need of 
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inhibiting task-irrelevant areas (in this case, the right hemisphere) to ensure task execution 

(Jensen and Mazaheri, 2010).  

Phosphene perception assessment revealed that DA significantly affected perceptual 

outcome, as shown by a steeper slope of the psychometric function describing phosphene 

report as a function of TMS intensity. In phosphene report, the slope of the psychometric 

function provides information about the increment rate of perceived phosphenes as a 

function of TMS intensity. A steeper slope, as found here after DA, suggests an 

improvement in visual sensory reliability: the variability around the threshold is reduced, 

and participants are more likely to report the presence of a phosphene for TMS intensities 

above the threshold, and, conversely, less likely to report phosphenes below threshold 

(Parker and Newsome, 1998). Our result is consistent with a previous finding about the 

effects of DA on phosphene perception, in which the positive relation between perceived 

phosphenes and TMS intensity appeared to be steeper after 180 min of DA compared to 

before light deprivation (Boroojerdi et al., 2000a). However, the authors could not 

statistically test this effect, because the slope parameter can be obtained only by applying 

a function fitting to phosphene report as a function of TMS intensity, which has not been 

performed in the work by Boroojerdi and colleagues (2000a).  

Previous works on DA also described a significant reduction of phosphene threshold after 

DA (Boroojerdi et al., 2000a; Fierro et al., 2005), which we did not observe here. 

Nonetheless, the above-mentioned studies (Boroojerdi et al., 2000a; Fierro et al., 2005) 

tested longer periods of DA (i.e., a minimum of 45 min), suggesting that 30 min of DA, 

as used in the present work, may be insufficient to induce a reduction of phosphene 

threshold. Moreover, it should be noted that the present study differs from the previous 

ones (Boroojerdi et al., 2000a; Fierro et al., 2005) in the way of estimating phosphene 
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threshold. While in those studies (Boroojerdi et al., 2000a; Fierro et al., 2005) it was 

defined as the minimum intensity able to elicit a phosphene in 3 out of 5 trials, here 

phosphene threshold was calculated more systematically, by using the MOCS, a reliable 

procedure commonly used in psychophysics (Kammer, Beck, Erb, and Grodd, 2001; 

Mazzi, Savazzi, Abrahamyan, and Ruzzoli, 2017).  

Finally, we looked at the neurophysiological response. TEP components we observed are 

comparable to previous findings within the visual cortex in terms of polarity and latency 

(Herring, Thut, Jensen, and Bergmann, 2015; Taylor, Walsh, and Eimer, 2010; Bagattini, 

Mazzi, and Savazzi, 2015). To the best of our knowledge, only one study so far has 

described visual TEPs within the first 50 ms (Herring, Thut, Jensen, and Bergmann, 

2015), whereas in other two studies (Bagattini, Mazzi, and Savazzi, 2015; Taylor, Walsh, 

and Eimer, 2010) the signal in the first tens of milliseconds has been interpolated in order 

to remove the TMS artifact. Early components reported by Herring and colleagues are 

consistent with our findings (P20-P25, N40-N35, respectively); however, the authors did 

not observe P40 and N50. We argue that this apparent contrast between the present study 

and the one by Herring and colleagues (2015) can be accounted by a difference in TMS 

intensity. Indeed, Herring and colleagues (2015) applied TMS intensity below phosphene 

threshold (i.e., 80%). Consistently, also in our data the P40-N50 complex is absent for 

low intensities (which on average are below phosphene threshold): emerging at medium 

TMS intensities, it becomes clear at high intensities. 

After DA, TEPs showed a lower amplitude of P60. This component has been associated 

with inhibitory processes: a recent study within the motor cortex reported an increase of 

P60 amplitude in a condition of low cortical excitability (Casula et al., 2014), induced by 

means of low-frequency rTMS. The finding by Casula et al., 2014 suggests the 
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involvement of inhibitory mechanisms underlying P60, likely modulated by slow 

GABAB-(gamma-aminobutyric acid)-mediated inhibitory post-synaptic potentials 

(Rogasch, Daskalakis, and Fitzgerald, 2013). Therefore, the opposite pattern we observed 

(i.e., lower P60 after DA compared to LA), is consistent with what expected in a condition 

of higher cortical excitability.  

It is worth noting that P60 was lower after DA for high TMS intensities only. Similarly, 

a recent TMS-EEG study on the motor cortex has shown that the effects of two different 

antiepileptic drugs known to alter cortical excitability as assessed by TEP amplitude (i.e., 

lamotrigine and levetiracetam), cannot be disentangled by applying TMS at motor 

threshold, but only at higher intensities (Premoli et al., 2017). Taken together, the present 

result as well as existing literature on TEPs highlight that supra-threshold TMS intensities 

might be needed in order to detect modulations in cortical excitability, although TEPs are 

clearly present also at subthreshold intensities (Kähkönen, Komssi, Wilenius, and 

Ilmoniemi, 2005; Komssi, Kähkönen, and Ilmoniemi, 2004). Importantly, the present 

findings are consistent with the hypothesis that neural excitability at baseline interacts 

with TMS intensity in producing not only behavioral (Silvanto, Bona, and Cattaneo, 

2017; Silvanto, Bona, Marelli, and Cattaneo, 2018) but also neurophysiological effects of 

TMS (i.e., TEPs). Nonetheless, future studies are needed to understand the origin of P60 

(Rogasch, Daskalakis, and Fitzgerald, 2013) and its relationship with TMS intensity, 

especially in the visual cortex.  

Evoked response to TMS vary across TMS intensities, and can therefore be considered 

as an indicator of the brain activation state (Casarotto et al., 2010; Kähkönen, Komssi, 

Wilenius, and Ilmoniemi, 2005; Komssi, Kähkönen, and Ilmoniemi, 2004; Rosanova et 

al., 2009). Previous studies on the prefrontal and motor cortices (Kähkönen, Komssi, 
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Wilenius, and Ilmoniemi, 2005; Komssi, Kähkönen, and Ilmoniemi, 2004) revealed that 

clear TEPs can be elicited also by TMS intensities below motor threshold (i.e., 60%), 

suggesting that TMS-EEG may be sensitive also to sub-threshold perturbations. However, 

the relationship between TMS intensity and TEP amplitude appears to differ among brain 

areas: while a non-linear dependence emerged for the motor cortex (Komssi, Kähkönen, 

and Ilmoniemi, 2004), within the prefrontal cortex a linear regression was observed 

(Kähkönen, Komssi, Wilenius, and Ilmoniemi, 2005). However, the limited number of 

TMS intensities applied in the above mentioned studies (Kähkönen, Komssi, Wilenius, 

and Ilmoniemi, 2005; Komssi, Kähkönen, and Ilmoniemi, 2004) prevented to 

systematically investigate the relationship between TEPs and TMS intensity. Here we 

extended previous findings not only by exploring TEP amplitude as a function of TMS 

intensity within the visual cortex, but also by describing this relationship by means of a 

parametric function fitting, by means of a wide range of TMS intensities. Among TEP 

components, P25 appeared to be the only one in which the parametric fitting (i.e., 

quadratic function with the parabola opening downwards) did not predict a further 

increment in peak amplitude at higher intensities beyond the range we tested.  

3.5.1 Limitations 

The present study provides novel advance in the field of cortical excitability modulation 

by means of short-lasting light deprivation, although it presents a few limitations. First, 

from the 15 participants involved in the study, we could analyze data from 8 only, thus 

confining the generalization we can draw from the data. Second, the limited number of 

trials for each TMS intensity prevent us to perform more detailed analyses on single-

intensity TEPs (e.g., analysis on latency). Finally, as described in detail in the introduction 

as well as in the previous study (Study 1), spontaneous power fluctuations are likely to 
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occur in the pre-stimulus window, thus adding variability to the study of “tonic” effects 

such as the one we were interested in here. An alternative measure that could be used to 

investigate more stable changes in cortical excitability may be resting state measurements 

before and after the adaptation conditions.  

3.5.2 Conclusions and future directions 

The present findings showed that DA was effective in modulating cortical excitability, as 

shown by pre-stimulus oscillatory pattern in the alpha band, TMS-induced phosphene 

perception and TEPs. Importantly, this study highlighted that a wide range of stimulus 

intensities is informative both at behavioral and neurophysiological level (Section 1.5). 

Indeed, this approach allowed the psychometric function parametrization, which unveiled 

a modulation in phosphene perception as a consequence of DA (i.e., higher slope), even 

in the absence of a change in phosphene threshold. At the neurophysiological level, the 

application of several stimulation intensities allowed to identify an interaction between 

DA and TMS intensity, with DA inducing a lower P60 at high intensities TEPs only. 

Moreover, this method revealed that one TEP complex (P40-N50) was absent at low TMS 

intensities, allowing to reconcile our findings with an apparent inconsistency in the 

literature (Herring, Thut, Jensen, and Bergmann, 2015). Finally, using multiple TMS 

intensities enabled the identification of a specific trend of each TEP component as a 

function of TMS intensity, extending previous reports (Kähkönen, Komssi, Wilenius, and 

Ilmoniemi, 2005; Komssi, Kähkönen, and Ilmoniemi, 2004).  
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4. Study 3: NEURAL MECHANISMS 

A formal model for the effects of ongoing M/EEG 

oscillations on visual perception 

4.1 Background and aim 

Neurons’ response does not depend entirely on external input: the repeated presentation 

of the same stimulus gives rise to a highly variable response (Arieli, Sterkin, Grinvald 

and Aertsen, 1996; Vogels, Spileers, and Orban, 1989), a phenomenon that interestingly 

has been observed also in anesthetized animals (Tomko and Crapper, 1974). Crucially, 

such variability can be accounted by ongoing brain activity, as revealed with several 

methodological approaches (Arieli et al., 1996; Hesselmann, Kell, and Kleinschmidt, 

2008; Hesselmann, Kell, Eger, and Kleinschmidt, 2008; Kayser, McNair, and Kayser, 

2016; Martin, Barnes, and Stevens, 2012; Sadaghiani and Kleinschmidt, 2013; 

Schölvinck, Friston, and Rees, 2012; Weisz et al., 2014). In this context, time-frequency 

patterns of oscillatory activity play a crucial role in affecting both behavioral and neural 

response (Ai and Ro, 2014; Baumgarten, Schnitzler, and Lange, 2016; Haegens et al., 

2011; Leske et al., 2015; Linkenkaer-Hansen, 2004; Mazaheri, Nieuwenhuis, vanDijk, 

and Jensen, 2009; Schubert et al., 2008; Van Dijk, Schoeffelen, Oostenveld, and Jensen, 

2008). Ongoing oscillations within the alpha band (frequency range: 8-13 Hz) are 

especially relevant in accounting for response variability in the domain of visual 

perception (Busch, Dubois, and VanRullen, 2009; Iemi and Busch, 2018; Iemi, Chaumon, 

Crouzet, and Busch, 2017; Lange et al., 2014; Mathewson et al., 2009; Van Dijk, 

Schoeffelen, Oostenveld, and Jensen, 2008).  
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In the last decades neuroscientists have developed fundamental theories on the role of 

neural oscillations in brain dynamics (e.g., Communication Through Coherence, Fries 

2005; Inhibition Timing Hypothesis, Klimesch, Sauseng, and Hanslmayr, 2007; Gating 

By Inhibition, Jensen and Mazaheri 2010). Nonetheless, current advancements in the 

study of neural oscillation still leave crucial issues underexplored. Indeed, the neural 

mechanisms involved in ongoing oscillations as measured by 

magneto/electroencephalographic (M/EEG) recordings are far from being established 

(Cohen, 2017; Musall et al., 2014); likewise, the effects of micro-level mechanisms on 

behavior are largely unknown.  

In the present work, we propose a model based on a psychophysical approach, namely 

the Oscillation Response Probability (ORP) hypothesis, that presents possible 

mechanisms subtending the effects of pre-stimulus M/EEG oscillations in the alpha band 

on visual perception (Lange et al., 2014; Ruhnau, Hauswald, and Weisz, 2014; 

Sadaghiani and Kleinschmidt, 2016; Zoefel and VanRullen, 2017). The aim of the ORP 

model is twofold: first, it suggests hypotheses on possible neural mechanisms involved 

in ongoing oscillations; second, it allows to disentangle distinct functional mechanisms 

associated with the same M/EEG feature, i.e., alpha activity.  

The ORP hypothesis is based on the following key-points: 1) alpha oscillations affect 

visual perception; 2) alpha activity plays an inhibitory role; 3) alpha inhibition occurs 

through alpha-gamma cross-frequency interactions; 4) alpha-modulated gamma power 

fluctuations affects the probability of sensory neurons to respond to an incoming stimulus; 

5) response probability is selectively modulated by distinct neural mechanisms.  

A central concept of the ORP model is the estimation of the response probability of visual 

sensory neurons, that we linked with the psychometric function observed at the behavioral 
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level when facing a wide range of stimulus intensities. In this framework, the 

psychometric function estimation could represent an extremely powerful tool, because it 

provides suggestions on the selective involvement of different neural mechanisms, which 

cannot be discerned non-invasively. We therefore suggest that the ORP model may be 

helpful in making hypotheses on the neural mechanisms involved in alpha-driven 

modulation of sensory processing, starting from selective modification of the 

psychometric function.  

4.2 The Oscillation Response Probability (ORP) hypothesis 

4.2.1 Alpha oscillations affect visual perception 

Oscillatory activity within alpha band is the strongest electrophysiological signal that can 

be measured by non-invasive recordings, and it raised interest since the earliest EEG 

studies (Berger, 1929; Klimesch, 2012). In the pre-stimulus window, both M/EEG power 

and phase have been shown to have an effect on perceptual performance in the visual 

domain. A number of studies reported the effect of pre-stimulus power, with lower levels 

leading to a higher probability to perceive a near-threshold stimulus or a TMS-induced 

phosphene (Busch and VanRullen, 2010; Hanslmayr et al., 2007; van Dijk, Schoeffelen, 

Oostenveld, and Jensen, 2008). Moreover, detected and undetected trials are preceded by 

opposite phases of oscillations within the alpha range (Busch, Dubois, and VanRullen, 

2009; Busch and VanRullen, 2010; Mathewson et al., 2009). Importantly, findings from 

recent works which aimed at modulating alpha activity were consistent with correlative 

studies, proving evidence for a causal role of pre-stimulus alpha rhythm on visual 

perception  (Landau and Fries, 2012; Romei, Gross, and Thut, 2010; Spaak, de Lange, 

and Jensen, 2014).  
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4.2.2 Alpha activity plays an inhibitory role 

The direction of the effects of alpha activity described above has led the most widespread 

interpretation to consider alpha activity as playing an inhibitory role: the larger the EEG 

alpha power, the stronger the inhibition (i.e., the lower the cortical excitability; Klimesch, 

Sauseng, and Hanslmayr, 2007; but see Palva and Palva 2007; Jensen and Mazaheri 

2010). Moreover, inhibition appears to be cyclic, depending on the phase of alpha 

oscillations (referred to as “pulsed inhibition”; Mathewson et al., 2009).  

A possible way to account for the inhibitory function played by both power and phase in 

the alpha band is to think of alpha oscillations in terms of biased/asymmetric oscillations 

(Hyafil, Giraud, Fontolan, and Gutkin, 2015; Jensen and Mazaheri, 2010; Schalk, 2015). 

According to this view, alpha oscillations are not zero-mean, but the mean amplitude 

within an alpha cycle varies with the amplitude of oscillatory power, as shown in Figure 

4.1-A. Therefore, the instantaneous voltage level may represent a more direct measure of 

cortical excitability, compared to power and phase, as suggested by the Function Through 

Biased Oscillations framework (Schalk, 2015; Schalk, Marple, Knight, and Coon, 2017). 

Moreover, given their inhibitory function, alpha asymmetric oscillations may be 

described as negative: higher amplitudes of alpha activity (in absolute value) correspond 

to a more negative instantaneous voltage level, which leads to higher inhibition (Hyafil, 

Giraud, Fontolan, and Gutkin, 2015; Figure 4.1-B). Hence, high cortical excitability is 

reflected by both the through of a high-amplitude alpha oscillations, as well as by low-

amplitude alpha fluctuations. 
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Figure 4.1 Negative and asymmetric alpha oscillations. A) An increase in alpha amplitude is 

accompanied by a general decrease in the mean voltage level (blue trace: time-varying 

instantaneous voltage; red trace: mean voltage level); adapted from Schalk, 2015. B) Alpha band 

oscillations (green trace) modulate spiking activity (bottom); pulsed inhibition of neural spiking 

is stronger when the amplitude of alpha oscillations is higher; adapted from Hyafil, Giraud, 

Fontolan, and Gutkin, 2015.  

A major framework in the context of alpha inhibition is represented by Gating By 

Inhibition (GBI; Jensen and Mazaheri 2010), which originally focused more on alpha 

functional inhibition of cortical areas not involved in task execution, than on the 

mechanisms that engage task-relevant areas. Nonetheless, alpha activity appears to play 

a relevant role also at the local level, as highlighted in a recent version of GBI framework 

(Bonnefond, Kastner, and Jensen, 2017). Consistently with an asymmetry in alpha 

oscillations, the GBI account introduced the concept of “duty cycle”: when alpha power 

is high, the time window for sensory processing for a given input is shorter compared to 

lower level of alpha. This hypothesis is consistent with evidence showing the effects alpha 

phase only when alpha power is high (Cohen and Van Gaal, 2013; Mathewson et al., 

2009). 
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4.2.3 Functional inhibition through alpha-gamma cross-frequency interactions  

Existing evidence (Spaak et al., 2012) and current theories on alpha inhibition 

(Bonnefond, Kastner, and Jensen, 2017; Jensen and Mazaheri, 2010) suggest that alpha 

activity modulates gamma oscillations of sensory neurons by means of cross-frequency 

interactions. Intriguingly, alpha-gamma interactions have been observed during rest and 

in the pre-stimulus window beside during stimulus processing (Bahramisharif et al., 2013; 

Osipova, Hermes, and Jensen, 2008; but see Ray and Maunsell 2015; Spaak et al., 2012), 

at the local level as well as in communication among brain areas (Bonnefond, Kastner, 

and Jensen, 2017).  

The relationship between alpha and gamma oscillations is regulated not only by 

amplitude-amplitude coupling (AAC), i.e., alpha power increase associated with gamma 

decrease, but also by phase-amplitude coupling (PAC) interactions, i.e., gamma power 

nested within the phase of alpha (Spaak et al., 2012). Specifically, PAC and AAC appear 

to be linked, with stronger alpha power increasing PAC (Osipova, Hermes, and Jensen, 

2008). This mechanism could be explained by the asymmetry in alpha oscillations, such 

that an increase in alpha amplitude is accompanied by a general decrease in alpha level 

(Hyafil, Giraud, Fontolan, and Gutkin, 2015; Figure 4.1-A).  

The ORP framework fits in this perspective and describes fluctuations in gamma power 

nested within a sinusoidal alpha cycle, as defined in (4.1) and shown in Figure 4.2.  

(4.1) 

0 ≤ 𝑡 < 2π, 𝐺𝐹 = 𝐺 sin (𝑡)  

𝐺𝐹 = gamma power fluctuation 

G = gamma power 

t = time interval 
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Figure 4.2 Alpha-gamma cross-frequency interactions. Schematic representation of amplitude-

amplitude coupling (AAC) and phase-amplitude coupling (PAC) within an alpha cycle, during 

low (left) and high (right) alpha functional inhibition. During low alpha power (left), alpha-

gamma interaction is regulated by negative AAC, i.e., gamma power decreases as a function of 

alpha amplitude; during high alpha power (right), gamma power is determined by both AAC and 

PAC (gray line in right inset indicates the alpha-gamma relationship in high alpha power). Left 

and right insets adapted from Hyafil, Giraud, Fontolan, and Gutkin, 2015.   

4.2.4 Alpha-modulated gamma power affects response probability of sensory 

neurons 

Based on alpha-gamma AAC and PAC mechanisms (i.e., gamma power inversely related 

with alpha power and nested within alpha phase), the ORP model estimates the response 

probability of sensory neurons, oscillating in gamma, when facing a range of stimulus 

intensities presented at a random phase within an alpha cycle.  

The ORP model takes into account the concept of duty cycle described by Jensen and 

Mazaheri (2010), which is consistent with the idea of a threshold for gamma power to 

enable sensory processing. We expressed the response probability as the portion of the 

alpha cycle in which a given input may elicit a response (Figure 4.3-A). For example, a 
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low-intensity input may determine a response only when presented around the through of 

alpha cycle (i.e., peak of gamma power), both in a situation of low or high alpha power. 

Nonetheless, the probability (or, in other words, the proportion of the cycle) of inducing 

a response is shorter for the condition of high alpha power compared to low alpha power. 

On the other hand, while a high-intensity input presented during low alpha power may 

always induce a response, it might not be the case during high alpha power (Figure 4.3-

A). Therefore, when considering a single alpha cycle, response probability depends on 

input intensity, the phase and the amplitude of gamma power fluctuation, as defined in 

(4.2).  

(4.2) 

 0 < 𝐺 < 𝑇 

𝑇 − 𝐺 < 𝐼 < 𝑇 + 𝐺, 𝑃RP =
π +  2arcsin  

(𝐼 − 𝑇)
𝐺

2π
 

𝐼 ≤ 𝑇 − 𝐺, 𝑃RP = 0  

𝐼 ≥ 𝑇 + 𝐺, 𝑃RP = 1 

T = threshold for gamma power 

I = input 

 𝑃RP = population response probability 

Figure 4.3-B shows the response probability as a function of input intensity. Below a 

critical intensity (a), which is the same independently of alpha inhibition, an incoming 

input may not induce a response (response probability = 0), while for higher intensities, 

neural response depends on the phase of gamma power fluctuation, giving rise to a 

response probability between 0 and 1. Finally, input intensities beyond a given value (i.e., 

(b) for low alpha inhibition; (c) for high alpha inhibition), may induce a response 

independently of alpha phase (response probability = 1).  
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Figure 4.3 Response probability as a function of input intensity in low (light color) and high (dark 

color) alpha inhibition. A) Response probability (double-headed arrows) to a low- (blue) and a 

high- (green) intensity input in two conditions, i.e., of low alpha inhibition (high gamma power, 

low PAC; left) and high alpha inhibition (low gamma power, high PAC; right). During low alpha 

inhibition, the high-intensity input determines a response independently of when it is presented 

along the sine wave, while the low-intensity stimulus only when occurring within a limited portion 

of the alpha cycle (i.e., around the peak of gamma power). During high alpha inhibition, the 

portion alpha cycle in which the low-intensity input gives rise to neural response is shorter 

compared to low alpha inhibition (concept of duty cycle); moreover, even the high intensity input 

does not always give rise to neural response. Dashed lines: averaged gamma power within an 

alpha cycle. B) Response probability as a function of input intensity for low and high alpha 

inhibition, as defined in (4.2). The minimum input intensity able to elicit neural response (a) is 

the same for both low and high alpha power, due to the asymmetry in alpha oscillations, while 

the minimum input intensity which determines a response independently of the phase is smaller 

for the low (b) compared to the high (c) alpha power. Input range between (a) and (b) or between 

(a) and (c) indicate intensities which induce a response depending on phase (probability between 

0 and 1). Response probability for the low-intensity input shown in A) is higher during low alpha 

inhibition (f) than during low alpha inhibition (g); response probability for the high-intensity input 

is equal to 1 for low alpha inhibition (d), while is lower for high alpha inhibition (e).   

When considering populations of neurons, we can assume a degree of variability in the 

strength of cross-frequency interactions within a neural assembly, e.g., PAC may be 

stronger for some neurons compared to others (Figure 4.4-A). Considering PAC strength 

to be normally distributed among neurons, the global response probability can be 
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expressed as the weighted average of single response probabilities (4.3). As shown in 

Figure 4.4-B, the global response probability reveals a sigmoid trend, resembling the 

psychometric function observed at the behavioral level.  

(4.3)  

𝐺RP =
∑ 𝑃RP 𝑖

𝑛
𝑖=1  𝑤𝑖

∑ 𝑤𝑖
𝑛
𝑖=1  

 

𝐺RP= response probability of the neural population 

𝑤 = weight, number of neurons of a given PAC strength 

 

Figure 4.4 Response probability of sensory neurons involved in cross-frequency interactions. 

Color gradient indicates PAC strength. A) Normally distributed PAC strength among neural 

assemblies. B) Continuous traces: single response probability; dashed line: global response 

probability.  

If we approximate the behavioral response probability so that it is proportional to one at 

the neural level, and the intensity of the stimulus presented to the input to neurons, 

quantified in terms of depolarizing current, we can consider the response probability 

function obtained from (4) as the psychometric function observed behaviorally in visual 

perception. The psychometric function fitting may be defined as a data modelling 

technique in which an observer’s performance in a detection or discrimination perceptual 

task is related to the physical quantity of a stimulus, e.g., its intensity (Wichmann and 
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Hill, 2001). To this respect, near-threshold stimuli used in most of the studies published 

in the field of pre-stimulus activity represent a special case obtained from the 

psychometric curve. One of the benefits of fitting the psychometric function to 

psychophysical data relies in making hypotheses on functional mechanisms underlying 

cognitive or perceptual processes, which are associated with specific changes in the 

psychometric curve. 

4.2.5 Response probability is selectively modulated by distinct mechanisms 

Although compelling evidence about the inhibitory role of alpha activity on visual 

perception and cross-frequency interactions with the gamma band, still little is known 

about the neural mechanisms associated with ongoing alpha activity, and whether it 

represents a unitary phenomenon is still a matter of debate (Cohen, 2017; Hyafil, Giraud, 

Fontolan, and Gutkin, 2015; Sadaghiani and Kleinschmidt, 2016; Spaak et al., 2012). 

Indeed, the general relation between M/EEG features and micro-level mechanisms is 

likely to be few to some rather than one to one: the same M/EEG oscillatory feature (e.g., 

alpha activity) may be generated by distinct mechanisms as well as may subtend several 

functions (Cohen, 2017). However, non-invasive M/EEG recordings do not allow to 

disentangle between them.  

According to the ORP hypothesis, gamma power fluctuations associated with alpha 

activity, as observed by M/EEG, may be generated both by changes in amplitude and in 

synchronization. This hypothesis is supported by evidence from simultaneous invasive 

local field potentials and non-invasive EEG recordings, showing that synchronization is 

linearly combined to amplitude changes in local field potentials to give rise to EEG 

gamma power (Musall et al., 2014). Here, we modelled the effect of changes in local 

amplitude and in synchronization on the response probability of the visual system, when 
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a wide range of stimulus intensities is presented. According to the ORP model, changes 

in local amplitude and synchronization have distinct effect on the psychometric function, 

i.e., a modification of sensory threshold and of the upper asymptote, respectively. Such 

modifications are commonly referred to as contrast- and response-gain mechanisms, and 

both of them have been described in the literature on the effects of attention and 

adaptation on visual perception and neural response (Cameron, Tai, and Carrasco, 2002; 

Carrasco, Ling, and Read, 2004; Ling and Carrasco, 2006; McAdams and Maunsell, 

1999; Pestilli, Viera, and Carrasco, 2007; Reynolds, Pasternak, and Desimone, 2000). 

(1) Amplitude. A change in the amplitude of gamma power fluctuation affects the 

response probability of single group of neurons within a neural assembly (4.2), and, 

consequently, the global response probability, by altering the threshold of the sigmoid 

function (Figure 4.5). Such effect is mainly represented by a shift of the function. A 

change in sensory threshold (i.e., sensory sensitivity), commonly described in terms of 

contrast gain mechanism, is believed to act at the input level of the system and it is 

considered the main functional process underneath sustained covert attention and 

adaptation (Cameron et al., 2002; Carrasco et al., 2004; Ling and Carrasco, 2006; Pestilli, 

Viera, and Carrasco, 2007; Reynolds, Pasternak, and Desimone, 2000). 

(2) Synchronization. According to the ORP model, gamma synchronization is expressed 

as a scalar coefficient in a range between 0 and 1. Modulations in synchronization lead to 

a distinct influence on the global response probability function: acting at the output level 

of the system, synchronization leaves response probability of single group of neurons 

unaffected, thus altering the upper asymptote of the global response probability (4.4; 

Figure 4.5). A modification in the upper bound of the psychometric function, or response 

gain mechanism, mainly affects performance in response to high intensity stimuli, 
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possibly due to an altered lapse rate (Wichmann and Hill, 2001), and it has been related 

to transient attention (Ling and Carrasco, 2006).  

(4.4)  

0 < 𝑆 <  1, 𝐺RP =
∑ 𝐺𝑅𝑃 𝑖

𝑛
𝑖=1  𝑤𝑖 𝑆

𝑛 ∑ 𝑤𝑖
𝑛
𝑖=1  

  

S = scalar, degree of synchronization 
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Figure 4.5 ORP predictions on the response probability function. Central panel: response 

probability of single neural assemblies (colored thin lines) and global response probability (black 

thick line) in a condition of low alpha inhibition. The effect of an increase in alpha power on the 

response probability depends on the mechanism involved: if associated modifications in gamma 

power are due to amplitude changes, the ORP model predicts a change in the sensory threshold 

mainly explained by a shift of the function (upper panel); while if gamma power changes are 

associated with a modulation of gamma synchronization, the response probability function is 

expected to show a decrease of the upper asymptote (lower panel). Dashed line: global response 

probability function during high alpha inhibition.  
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To sum up, according to the ORP framework, the approach of the psychometric function 

estimation may be extremely valuable in non-invasive M/EEG studies on the effects of 

pre-stimulus activity on visual perception, because it may reveal the existence of different 

mechanisms associated with the same M/EEG feature (e.g., alpha activity). To our 

knowledge, so far only two studies have applied this method to the study of the effects of 

pre-stimulus alpha activity on perception, and in both cases changes in the psychometric 

function have been related with ongoing alpha power. In a first study by Chaumon and 

Busch (2014), spontaneous fluctuations in pre-stimulus alpha power has been interpreted 

as reflecting a response gain mechanism: higher pre-stimulus alpha power was associated 

with a decrease in the upper asymptote. In the second work investigating the effects 

ongoing alpha activity on the psychometric function (Benwell et al., 2017a), it has been 

shown that pre-stimulus alpha power predicts visuospatial bias, but not discrimination 

sensitivity. It is worth noting that in this study (Benwell et al., 2017a) the proportion of 

correct responses is not represented as a function of stimulus intensity, but of visuospatial 

bias instead; therefore, the two studies (Benwell et al., 2017a; Chaumon and Busch, 2014) 

are not comparable on the psychometric curve’s parameters, and the ORP model cannot 

be applied the work by Benwell and colleagues (2017).  

Furthermore, the ORP model allows to make suggestions on possible neural mechanisms 

that may be associated with selective modifications of the psychometric function. For 

example, according to the ORP model, findings from Chaumon and Busch 2014 could be 

interpreted as subtending a modulation in synchronization of gamma sensory neurons. 
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4.3 Sensitivity or criterion? 

Recent works have shown that the effect of fluctuations in pre-stimulus alpha power do 

not affect sensory sensitivity (Section 1.4.2; Benwell et al., 2017b; Iemi, Chaumon, 

Crouzet, and Busch, 2017; Lange, Oostenveld, & Fries, 2013; Limbach and Corballis, 

2016; Samaha, Iemi, and Postle, 2017). Rather, lower levels of alpha power preceding 

stimulus presentation appear to affect response criterion toward a more liberal one, i.e., a 

general tendency of reporting to have seen a stimulus, resulting in an increase not only in 

hit rate but also in false alarms (Iemi, Chaumon, Crouzet, and Busch, 2017; Limbach and 

Corballis, 2016). Furthermore, a recent finding suggest that the nature of this biased 

response is perceptual and not decisional in nature (Iemi and Busch 2018). Similar 

conclusions were drawn by Chaumon and Busch (2015), who showed that variations in 

ongoing alpha power could better explained as reflecting a response gain mechanism 

rather than contrast gain. Finally, on the same line, recent studies reported that pre-

stimulus alpha power impacts discrimination confidence (Samaha, Iemi, and Postle, 

2017) and conscious awareness (Benwell et al., 2017b), but not perceptual acuity.  

At the present stage, the ORP model does not consider false alarms, and therefore it has 

to be applied to performance measures not affected by criterion bias. Nonetheless, the 

ORP model provides information about the level at which alpha exerts its modulatory 

effects, i.e., at the input (i.e., amplitude) or at the output (i.e., synchronization) of the 

sensory system. In this framework, a response gain-like mechanism, as the one described 

by Chaumon and Busch (2014) is interpreted as depending on synchronization of sensory 

neurons and not on the presence of noise or subsequent decisional processes.   
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4.4 Conclusions and future directions 

By means of a psychophysical approach based on the psychometric function estimation, 

the ORP proposal may allow to test for distinct mechanisms associated with the same 

M/EEG feature, i.e., ongoing alpha activity, and to make hypotheses on the selective 

involvement of different mechanisms involved in cross-frequency interactions.  

The ORP hypothesis is to be intended as a great simplification of the relationship between 

neural mechanisms and behavior, and future research combining simultaneous invasive 

and non-invasive recordings, as well as the development of computational models, are 

needed in order to test the ORP model. Moreover, future developments of this model may 

take into account other factors that can mediate the relationship between neural and 

behavioral response, such as: coding mechanisms for response strength, a variable 

preference for the stimulus for different neural assemblies, global mechanisms related to 

signal propagation, the presence of neural and, finally, decisional processes.   

Nonetheless, in M/EEG studies the application of the ORP model in the present form may 

shed light on the open question of whether ongoing alpha rhythm represents a unitary 

phenomenon, for example to explore whether the same mechanisms are involved in 

spontaneous fluctuations of alpha activity and when it is modulated (e.g., by means of 

spatial attention). Indeed, while spontaneous variations in alpha power have been 

associated to a change in the upper asymptote of the psychometric function, interpreted 

as reflecting a response gain mechanism, spatial attention has been associated to a change 

in threshold, suggesting an enhanced sensitivity of the visual system (Reynolds, 

Pasternak, and Desimone, 2000; Cameron et al., 2002). Considering that visuo-spatial 

attention is related to a decrease in alpha power contralateral to the attended hemifield, it 

may be hypothesized that when alpha power is modulated by attention, it could reflect a 
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contrast gain mechanism. However, to our knowledge, the relationship among attention, 

ongoing alpha oscillations and changes in the psychometric function has not been directly 

addressed so far. To establish the relationship between ongoing oscillations and visual 

perception in different experimental conditions is a critical matter for future research, and 

we argue that valuable insights may arise from combining the psychophysical approach 

of studies on visual attention and research on the effects of pre-stimulus oscillatory 

pattern.  

While arising from the existing literature in the field of alpha oscillations on visual 

perception, the ORP model not only could be extended to other perceptual domains, but 

also it may encourage a fruitful discussion about the relationship between neural activity 

and behavior, bringing together efforts from several methodological and theoretical 

perspectives. 
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5. GENERAL DISCUSSION 

A growing number of studies have shown that ongoing brain activity influences both 

behavioral and neurophysiological response to an incoming stimulus (Arieli, Sterkin, 

Grinvald, and Aertsen, 1996; Hesselmann, Kell, Eger, and Kleinschmidt, 2008; Kayser, 

McNair, and Kayser, 2016; Martin, Barnes, and Stevens, 2012; Schölvinck, Friston, and 

Rees, 2012; Weisz et al., 2014). In this field of research, a crucial role is played by the 

neural oscillatory activity, and the high temporal resolution of 

magneto/electrophysiological (M/EEG) recordings proved to be extremely valuable in the 

study of time-frequency patterns in the pre-stimulus time-window (Hanslmayr et al., 

2007; Lange et al., 2013; Mathewson et al., 2009; Romei et al., 2008).  

In our studies presented in detail in previous sections, we aimed at non-invasively 

investigating distinct mechanisms regarding the role of pre-stimulus alpha activity on 

visual perception and neurophysiological outcome. From a methodological point of view, 

we have shown how different approaches may be valuable to address distinct questions 

in the study of the effects of ongoing alpha oscillations. While MEG enabled the 

investigation of brain sources of ongoing oscillatory activity, the concurrent use of 

transcranial magnetic stimulation and EEG (TMS-EEG) approach allowed to investigate 

the causal involvement cortical excitability. Moreover, a modelling approach proved to 

be helpful in making hypotheses that may drive experimental research. Importantly, the 

present work highlights that a psychophysical method may be transversally applied 

together with several techniques to shed light on the mechanisms involved in the impact 

of ongoing brain activity on perception.  
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In Study 1 we used MEG to investigate the effects of spontaneous fluctuations in ongoing 

alpha activity on visual detection and to explore the brain sources of such effects. Our 

results showed that both pre-stimulus alpha power and phase affected perceptual 

performance and neurophysiological response to near-threshold stimuli. Consistently 

with current literature, detected targets gave rise to a larger neurophysiological response 

compared to undetected ones (Busch, Dubois, and VanRullen, 2009). Moreover, we 

observed stronger alpha power preceding misses compared to hits, although the effect did 

not reach statistical significance at sensor level when correcting for multiple comparisons, 

possibly due to characteristics of the detection task. Finally, analyses in source space 

revealed the involvement not only of visual cortex but also of temporal and frontal areas, 

both in the evoked response and in the pre-stimulus activity, suggesting that even a simple 

task such as visual detection cannot be considered a local phenomenon restricted to 

sensory areas. Specifically, while the effect of pre-stimulus alpha power appeared to be 

located in the left visual cortex, the effect of phase involved frontal areas. Such difference 

in source localization of the two parameters of ongoing alpha activity is consistent with 

topographical activations described in EEG studies and with the hypothesis that ongoing 

alpha power and phase may rely on distinct mechanisms (Busch & Van Rullen, 2010; 

Zoefel & VanRullen, 2017). 

In Study 2, we focused on the modulation ongoing alpha activity, by means of a sensory 

deprivation paradigm. Our findings showed that ongoing alpha activity can be effectively 

modulated by short-lasting dark adaptation (DA): as expected, we observed lower levels 

of pre-stimulus alpha power after DA compared to light adaptation. Moreover, we 

described how modulated-alpha power was associated to changes in phosphene 

perception as well as TMS-evoked potentials (TEPs). Importantly, Study 2 highlighted 

the importance of applying a psychophysical approach by using a wide range of 
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stimulation intensities beyond sensory threshold. Indeed, assessment of phosphene 

perception through the psychometric function revealed a modulation which did not 

involve phosphene threshold, i.e., a steeper slope after DA, suggesting an improved 

sensory reliability. Furthermore, this approach allowed to unveil an interaction between 

stimulation intensity and the effects of experimental manipulation on TEPs, as well as the 

relationship between TMS intensity and TEP amplitude. 

Finally, in Study 3 we exploited the psychophysical approach of the psychometric 

function estimation to explore distinct neural mechanisms associated with of ongoing 

alpha activity by describing a formal model, namely the Oscillations Response 

Probability (ORP) hypothesis. Based on cross-frequency alpha-gamma interactions 

(Spaak, de Lange, and Jensen, 2014), the ORP model suggests that fluctuations in ongoing 

alpha rhythm may subtend different neural mechanisms which cannot be disentangled 

from non-invasive recordings, specifically amplitude and synchronization in the gamma 

power (Musall et al., 2014). Crucially, according to the ORP model, these mechanisms 

lead to distinct modification of the psychometric function, i.e., a change in sensory 

threshold due to a shift of the function and a modification of the upper asymptote. 

Therefore, we suggest that selective modifications of the psychometric function may 

provide insights on distinct neural mechanisms, making the ORP model helpful in non-

invasive studies.  

Taken together, the present findings suggest that the effects of alpha activity on visual 

perception are subtended by a neural network involving also associative cortical regions, 

rather than being a local phenomenon restricted to sensory areas. This aspect clearly 

emerged from Study 1, which showed the involvement of different brain sources both in 

the prestimulus activity and in the evoked response. Moreover, also the modulation TEPs 
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in Study 2 is consistent with this interpretation. Indeed, alpha power modulation by DA 

was associated with a change in a relatively later component (i.e., P60), which is more 

likely to emerge from information exchange with other regions, rather than reflecting the 

excitability of visual cortex. Finally, also Study 3 is consistent with this view: while 

gamma power was clearly modelled within the sensory areas, we did not make specific 

predictions on the origin of alpha activity.  

Findings from Study 1, especially the different brain sources for alpha power and phase, 

may suggest distinct mechanisms for alpha power and phase, whereas in Study 3 the two 

parameters are integrated. We argue that the two interpretations are not mutually 

exclusive. Indeed, in Study 1 the experimental paradigm we used was not optimal to 

investigate a possible local effect of alpha phase in the visual cortex. The presentation of 

visual stimuli in the right hemifield only was likely to induce lower alpha power in 

sensory regions involved in stimulus processing. During low alpha power, not only an 

effect of phase may technically be hard to detect, but also it may not be physiologically 

relevant (Schalk, 2015). Therefore, from Study 1 we could not exclude that the phase of 

alpha oscillations may also be relevant in posterior sensory regions, as defined in Study 

3 and consistently with recent frameworks (Schalk, 2015).  

Crucially, the use of near-threshold stimuli in Study 1 prevented to investigate whether 

alpha power and phase have a distinct effect on performance and therefore whether the 

mechanisms they subtend are independent. Indeed, although alpha power and phase 

appear to be generated in different brain regions, they could be integrated in a single 

functional mechanism. To this respect, we argue that a psychophysical approach could be 

extremely powerful in providing further information on the effects of ongoing oscillations 

and in disentangling the contribution of distinct mechanisms, as shown by Study 2 and 3. 
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Indeed, the psychophysical approach in Study 2 not only enabled the assessment of a 

modulation of perceptual performance also in the absence of a change in phosphene 

threshold, but importantly it allowed to detect the modulation of DA on TEPs, which was 

detected in response to high TMS intensities only. Finally, Study 3 highlighted that 

selective modulations of the psychometric function may suggest the involvement of 

distinct neural mechanisms associated with ongoing alpha activity.  

To conclude, our findings have shown that ongoing alpha activity plays a crucial role in 

determining perceptual and neurophysiological response to an external stimulus, both 

when ongoing oscillatory activity fluctuates spontaneously and when it is experimentally 

modulated. Importantly, our results support the idea that alpha rhythm may not be 

considered a unitary phenomenon, but that distinct processes may explain the effects of 

pre-stimulus alpha power and phase, as well as the distinct neural mechanisms may be 

associated with alpha power. In future studies, a psychophysical approach to the study of 

ongoing oscillations may provide further insights on this issue. 
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