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1.1 Mass spectrometry: an introduction 

Recently, translational medicine has become one of the most important areas of 

biomedicine aiming at reducing distance between basic research and clinical practice. To 

this purpose, analytical chemistry methods are often applied to pathological or clinical 

specimens and in this thesis, among a series of possible approaches, mass spectrometry 

has been used to investigate the progression of clear cell renal cell carcinoma. These two 

pages represent a very brief introduction to the basic of mass spectrometry, useful for a 

better understanding of the following chapters.  

Mass spectrometry (MS) is an analytical technique born in 1886 when Eugene Goldstein 

discovered that positive ions are able to move in an electric field with a low pressure 

applied and described the possibility to separate charged species using a magnetic field 

[1]. Mass spectrometry underwent a consistent evolution over years but the basic 

mechanisms of separating molecules according to their mass-to-charge ratio (m/z) after 

their ionization remain the same.  

The samples are at first ionized, with a process that takes places in an ion source and 

then separated according to their m/z ratio.  

Among the large number of different ionisation techniques available, Electrospray 

Ionisation (ESI) and Matrix-Assisted Laser Desorption/Ionisation (MALDI) are the 

two mentioned in this dissertation. ElectroSpray Ionisation (ESI) is a soft ionisation 

method that takes advantage of an electric field to produce multi-charged ions [2–4]. 

ESI can be performed in infusion mode wherein samples are directly introduced in the 

mass spectrometer or in combination with liquid chromatography (LC). Matrix-

Assisted Laser Desorption/Ionisation (MALDI) is a pulsed ionization process. 

During the sample preparation for a MALDI experiment, a high concentrated solution 

of matrix is either mixed, spotted or sprayed on the specimen. Matrices are small 

aromatic compounds (usually with phenolic and carboxylic groups) with a strong molar 

absorption at the laser wavelength. As the solvent evaporates, the matrix co-crystallises 
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and extract the analyte molecules. Matrix-analyte crystals are irradiated with a pulsed UV 

laser (e.g. Nitrogen, Nd:YAG), a process that leads to the desorption and ionization of 

the analytes [5]. 

In the analyser, magnetic or electric fields are generated under vacuum and these fields 

influence the ions spatial trajectories, velocity and direction allowing ions separation. 

The mass analysers separate the ions according to their mass-to-charge ratio and can be 

utilised alone or in tandem to take the advantage of the better properties of each. 

Detailed description of all the analyser is present in the review by Himmelsbach [6]. 

Finally, the detector records the number of ions at each m/z value. 

The output of a mass spectrometric analysis is a mass spectrum that is used to visualise 

the molecular content of the sample. The X-axis represents the mass-to-charge ratio and 

the Y-axis the signal intensity of each single ion.  
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ABSTRACT 

Introduction: Renal cell carcinoma (RCC) is the most fatal of the common urologic 

cancers, with approximately 35% of patients dying within 5 years following diagnosis. 

Therefore, there is a need for non-invasive markers that are capable of detecting and 

determining the severity of small renal masses at an early stage in order to tailor 

treatment and follow-up. Proteomic studies have proved to be very useful in the study 

of tumors.  

Areas covered: In this review, we will detail the current knowledge obtained by the 

different proteomic approaches, focusing on MS-based strategies, used to investigate 

RCC biology in order to identify diagnostic, prognostic and predictive biomarkers on 

tissue, cultured cells and biological fluids. 

Expert commentary: Currently, no reliable biomarkers or targets for RCC have been 

translated into the clinical setting. Moreover, despite the efforts of proteomics and other 

-omics disciplines, only a small number of them have been observed as shared targets 

between the different analytical platforms and biological specimens. The difficulty to 

define a specific molecular pattern for RCC and its subtypes highlights a peculiar profile 

and a heterogeneity that must be taken into account in future studies. 

KEYWORDS 

Renal cell carcinoma; tissue; biological fluids; biomarkers; proteomics; mass 

spectrometry imaging; peptidome; proteome; kidney; cancer 
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1. Introduction 

 

1.1 Clinical aspects 

Renal cell carcinoma (RCC) represents 2–3% of all cancers [1] and is the most fatal of 

the common urologic cancers, with approximately 35% of patients dying from the 

disease within 5 years following diagnosis [2]. The incidence of RCC worldwide has 

been appreciably increasing by approximately 2% per year over the last few decades 

[3,4]. Most renal masses, particularly small tumors, are now discovered incidentally 

during imaging that was prompted by nonspecific or unrelated symptoms [5] and their 

detection has increased to more than 50%. Symptoms associated with RCC can be the 

result of local tumor growth, hemorrhage, paraneoplastic syndromes, or metastatic 

diseases. The choices of treatment vary depending on staging and grading of the tumor, 

and the general performance status of the patients. Alternatives are surgical treatment 

(radical or partial nephrectomies), ablative therapies (cryoablation, radiofrequency 

ablation), chemotherapy, immunotherapy, and targeted therapies. 

 

1.2 RCC histopathology 

RCC arises from the tubular structure of the kidney and comprises many histological 

variants, characterized by different genetic and morphological features, each with 

distinct clinical behavior and responses to therapy [1]. The clear cell variant (ccRCC) 

represents the most prevalent of these variants, accounting for approximately 70–80% 

of all kidney cancers, while the papillary (10%), chromophobe (5%), medullary, and 

collecting duct (<1%) subtypes are rarer [6,7]. The etiology of this cancer can be 

associated with environmental risk factors such as smoking, obesity, and hypertension. 

However, the majority of the cases are related to genetic abnormalities, the most 

frequent of which involves the von Hippel–Lindau (VHL) tumor suppressor pathway 
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in ccRCC [8]. Recently, the identification of molecular mechanisms involved in RCC 

tumorigenesis led to the development of new therapeutic strategies based on molecular-

targeted agents, e.g. those directed against the VHL pathway, such as the vascular 

endothelial growth factor, the platelet-derived growth factor, and the mammalian target 

of rapamycin (mTOR) [4,9].  

From a diagnostic point of view, the differentiation among the various histotypes of 

renal cancer can be challenging on a pure morphological level, requiring the employment 

of further ancillary tools. For this reason, many immunohistochemical markers have 

been employed in the routine assessment of renal masses, creating immunoprofiles able 

to differentiate them [10,11]. The main targets are represented by structural molecules 

(such as cytokeratins, vimentin, e-cadherin, and claudins 7/8), transcription factors 

(tumor protein 63, CD117, Mast/stem cells growth factor receptor), metabolic pathway 

related proteins (parvalbumin, a-methylacyl coenzyme A racemase, carbonic anhydrase 

9) [12], and other molecules with disparate functions (CD82, tetraspannin 27, S110A1, 

protein S100-A1, thrombomodulin, transcription factor E3, Neprilysin) [13,14]. 

Recently, many other markers that could be employed in clinical routine have been 

proposed, but further studies are needed in order to assess their real role in the 

differential diagnosis of these lesions.  

In this review, we summarize the key literature published within the last 5 years, dealing 

with diagnostic, prognostic, and predictive biomarkers for RCC in different specimens 

(tissue, cell lines, urine, blood, and extracellular vesicles [EVs]). One of the most widely 

used proteomic approach is based on the combination of liquid chromatography to 

tandem mass spectrometry (LC–MS). This approach allows both the identification and 

the quantification of proteins to be obtained (Figure 1). In this respect, DIGE 

technology can also reliably quantify protein expression in a comparative way, even if it 

is limited in the separation of highly hydrophobic proteins. A number of other 

technologies have also been used for proteomic analyses (including antibody-based 



 
9 

 

methods) of renal cancer. Due to the extensive use of MS-based proteomic approaches, 

we will mainly focus our attention on the outcomes deriving from these platforms. 

 

2. RCC tissue proteomics 

 

The major benefits deriving from the use of tumor tissue in proteomics are related to 

the fact that the concentration of neoplasm proteins, including candidate biomarkers, is 

much more abundant in tumor tissue than in other specimens, and to the stronger 

specificity of the link between the differentially expressed proteins and the disease. On 

the other hand, several limitations are related to the nature of these kind of samples and 

its availability. Unfortunately, the studies are often retrospective, based on a small 

sample size with a rather short follow-up, and their applicability could be impaired by 

the heterogeneity of the tissue and the variability associated with the assay used for 

Figure 1. Typical bottom-up proteomic approach toward biomarker discovery using biological 
fluids. Proteins/peptides are extracted, and proteins are tryptic digested. Then, endogenous 
peptides or tryptic peptides are separated by LC and their identity and quantitative expression is 
ensured by MS/MS. 
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protein detection. In particular, the reproducibility of MS-based results is a critical aspect 

that must be considered in this context, and that can significantly affect the clinical 

applicability of the biomarkers. In terms of experimental variability, protein 

identifications with a False Discovery Rate (FDR) below 1% have been commonly 

accepted, whilst for quantitative purposes, an associated variability between 10% and 

30% has generally been observed for label-free approaches [15]. On the other hand, the 

definition of reproducibility across laboratories is very challenging due to the specificity 

and the heterogeneity of the biological specimens, together with the standardization of 

sample collection, processing, and analysis. These can also be the reasons behind the 

lack of concordance among different studies. However, many studies focused on tissue 

proteomics strongly contributed to the depiction of the molecular landscape of RCC, 

both in terms of biomarker discovery, biological insight, and spatial localization of 

molecular changes (Table 1).  

 

2.1. Fresh-frozen tissues 

The majority of investigations to discover biomarkers with a diagnostic role have been 

carried out on fresh-frozen (FF) tissue, comparing neoplastic tissue with the adjacent 

normal kidney (ANK). Various proteomic-based strategies have been employed for the 

proteomic profiling of RCC, mostly complementary to each other.  

Gel-based technologies using conventional two-dimensional polyacrylamide gel 

electrophoresis (2DE) have been used to clarify the dysregulation of metabolic pathways 

and to highlight candidate biomarkers. One of the first attempts to obtain a 

comprehensive protein expression map for ccRCC was made by Seliger’s group [16], 

performing a systematic comparison of protein expression profiles obtained by 

2DE/MALDI-TOF. Using an analogous strategy, Sun et al. demonstrated that many 

proteins related to metabolism and cellular signaling were downregulated [17]. On the 

other hand, hypoxia-inducible domain family member 1A (HIF1A), together with 



 
11 

 

proteins involved in the detoxification of reactive oxygen species (ROS), was found to 

be upregulated. Using a gel-based approach, Giribaldi et al. identified significant 

differences in RCC tissue when compared with healthy tissue [19]. The overexpressed 

proteins included molecules related to glucose metabolism, carrier proteins, a member 

of the small heat shock protein family, and the calcium-binding protein reticulocalbin-

1, whereas the downregulated counterparts appeared to be more related to metabolism 

or signal transduction, stress proteins, and ion-binding proteins. In 2012, Raimondo et 

al. reported that annexin-A2 (ANXA2), cyclophilin A (PPIA), fatty-acid-binding protein 

(FABP7), and galectin-1 (LEG1) were upregulated in comparison to ANK, through 

2DDIGE/ MS. These proteins are all strongly involved in carcinogenesis and malignant 

behavior, as suggested by both the clinical and experimental data present in literature 

[25]. Very recently, Lu et al. used a comprehensive bioinformatics analysis combined 

with 2DE profiling in order to identify protein networks, involved in the onset or 

progression of ccRCC, that represent possible therapeutic targets [20]. These results 

show that since abnormal energy metabolism, together with the deregulation of the 

metabolic pathways, is a characteristic trait of RCC, metabolic control analysis could be 

particularly crucial in the management of kidney cancer.  

Similarly, several gel-free approaches have been used with FF tissue, highlighting 

interesting dysregulations in the context of structural, immune system regulation, and 

signalling proteins. A few years ago, Siu et al. evaluated the protein expression in kidney 

cancer tissue versus ANK using the isobaric tags for relative and absolute quantitation 

(iTRAQ) labelling technique. It allows the simultaneous quantitation of up to four 

samples by LC–MS/MS [21]. 
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An in-silico elaboration of the results using different tools and databases, including 

Serial Analysis of Gene Expression, UniGene EST ProfileViewer, Cancer Genome 

Anatomy Project, and Gene Ontology consortium analysis, was performed. They 

confirmed the role of some proteins already known to be involved in tumorigenesis, i.e. 

metabolism-related thymidine phosphorylase, of proteins implicated in proliferation and 

differentiation processes such as major vault protein, adipose differentiation-related 

protein (PLIN2), platelet-derived endothelial cell growth factor, and alpha-crystallin B 

chain (CRYAB). In 2013, Masui et al., with iTRAQ labeling and LC–MS/MS analysis, 

identified a dysregulated protein expression of profilin-1 (PROF1), 14-3-3 ζ/δ, and 

LEG1 in metastatic RCC [22].  

A quantitative proteomic approach was used on FF tissue samples from primary RCC 

lesions and ANK using the filter aided sample preparation (FASP) method coupled with 

labelfree LC–MS/MS [28]. Among 596 proteins, PLIN2 and coronin 1A were further 

validated by immunohistochemistry (IHC) as the most interesting targets. Recently, 

Neely et al. performed label-free proteomics in 84 matched normal and ccRCC tissue 

samples to characterize the molecular phenotype of this neoplasm in terms of protein 

abundance and changes in biological pathways that are correlated to the presence of the 

tumor and its progression [30]. The proteome profiling was conducted both on pooled 

and individual samples in order to maximize the capacity to identify the molecular 

alterations without losing the information linked to the variability of ccRCC patients 

(stage/metastasis). In addition, they compared their outcome with a previously 

published transcriptomic data set from the same sample cohort. Using protein 

abundance data from all four stages, HIF1A and estrogen-related receptor α and γ were 

predicted to be activated whereas WNT1-inducible signaling pathway protein 2, 

hepatocyte nuclear factor 3-α, and mitogen-activated protein kinase 1 were predicted to 

be inhibited, confirming that many shared metabolic features among ccRCC stages were 

mostly related to the Warburg effect. Moreover, they also reported a relevant increase 
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of a small number of proteins in stage IV, such as cofilin-1, PROF1, nicotinamide N-

methyltransferase (NNMT), and aldolase A (ALDOA), pinpointing late stage tumor 

diversity along with intratumor heterogeneity as one of the most defining traits of 

ccRCC. The authors also suggested that tumor aggressiveness and treatment could be 

likely affected by the VHL/HIF1A/ HIF2A axis, since these proteins correlated with 

the most relevant differences observed between tumor stages.  

One key issue related to tumor biomarker research is the translation of proteomic 

methods and findings to applicable clinical assays, and the simultaneous analysis of 

tissue and peripheral fluid specimens should be beneficial when attempting to improve 

this aspect. Regarding RCC, Johann et al. combined the analysis of tissue and plasma 

samples with 2D-LC– MS, identifying four tumor-residing proteins in the blood of a 

patient newly diagnosed with RCC (cadherin-5, cadherin-11, DEAD-box protein-23, 

and pyruvate kinase) [24]. In the same year, Kim et al. starting from the hypothesis that 

shedding of tumor cell membrane proteins could easily release biomarkers into patient 

plasma, investigated RCC tissue and their membrane- enriched fractions by 

2DE/MALDI [18]. They detected a potential diagnostic biomarker panel for RCC, also 

using samples from benign kidney masses and non-ccRCC tumors. In particular, 

NNMT was also highlighted by IHC and WB to be the most commonly upregulated 

protein for all types of RCC, even in the plasma of patients. 

 

2.2. Mitochondrial components involvement 

Particular attention needs to be paid to the role played by the dysregulation of the 

mitochondrial components and their tumorigenesis potential that is probably related to 

the increased oxidative-induced damage to cells. Notably, the Warburg effect seems to 

enable cancer cells to avoid excess ROS generation from mitochondrial respiration, 

providing a survival advantage for metastasis [49]. Zhao et al. used a nano-LC–MS/MS 

and label-free quantitative approach to identify two mitochondrial proteins, acetyl-CoA 
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acetyltransferase 1, and manganese superoxide dismutase, that were RCC related [29]. 

White et al. performed quantitative proteomic analysis by iTRAQ labeling and LC–

MS/MS on a large cohort of approximately 200 patients, confirming the upregulation 

of mitochondrial metabolism proteins in RCCs, such as alpha-enolase (ENOA), L-

lactate dehydrogenase A chain (LDHA), heat shock protein beta-1 (HSPB1/Hsp27), 

and the mitochondrial 10 kDa heat shock protein (CH10). The increase in LDHA and 

the activation of the pyruvate kinase pathways is likely to highlight an active anaerobic 

glycolysis, following the hypoxic conditions that are known to be an integral component 

of the functional signatures of RCC. Furthermore, Hsp27 levels were also elevated in 

urine and serum, with serum Hsp27 levels correlating with grade 3–4 [23]. 

 

2.3. Other technical approaches 

Interestingly, Guo et al. described a new method capable of converting small amounts 

of tissue (similar in dimensions to a biopsy) into a digital file representing the MS-

measurable proteome, combining pressure cycling technology and sequential window 

acquisition of all theoretical fragment ion spectra (SWATH)-MS [31]. They could detect 

and quantify several proteins able to differentiate distinct histomorphological kidney 

cancer subtypes. Another interesting approach was applied by Wang et al. to investigate 

the interactome of Y-box-binding protein 1 (YBOX1), a protein involved in 

tumorigenesis by co-immunoprecipitation and MS, to find candidate- binding partners 

[32]. Expression of YBOX1 was enhanced in the RCC tissues, and its nuclear expression 

was associated with histological T stage and metastasis. At the same time, the RCC levels 

of Complement component 1 Q subcomponent-binding protein, one of the proteins 

interacting with YBOX1, were significantly lower than in ANK tissue, and negatively 

correlated with the nuclear localization of YBOX1 in RCC tissue. 
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2.4. Subcellular fractions 

Since cell surface proteins, exposed toward extracellular space, are ideal candidates to 

be used as biomarkers and therapeutic targets, the study of the alterations occurring in 

the plasma membrane is particularly intriguing [18]. Raimondo et al. investigated the 

proteomic profile of membrane microdomains (MD), plasma membrane 

supramolecular structures involved in cell signaling, transport, and neoplastic 

transformation, obtained by density gradient centrifugation from cancer and ANK 

tissue [33]. It has been shown that the global composition of MD is profoundly altered 

in RCC, highlighting some potential targets that can play a crucial role in ccRCC 

transformation. In particular, the levels of some proteins involved in signaling and 

adhesion, typical MD-associated processes, such as G proteins, flotillins, tubulins, 

annexins, and caveolins, were increased. Moreover, they optimized an enzymatic 

digestion protocol specific for RCC MD samples, based on FASP coupled to 

delipidation that enabled the identification of a larger panel of differential proteins [34]. 

 

2.5. Prognostic markers in tissues 

Another interesting research field is related to the discovery of reliable prognostic 

markers that are able to predict the course of the disease through the analysis of one or 

more analytes. Junker et al. investigated the correlation of the protein expression with 

tumor stage (pT1, pT2, and pT3) by 2D-DIGE followed by MALDI-TOF [39]. In 

particular, they noticed that PCA could clearly separate not only control samples from 

tumor samples but also a pT1 cluster from a pT2/pT3 cluster. Ho et al. showed that 

CRYAB is overexpressed in ccRCC tissue, and the overall survival of patients was 

significantly correlated with its expression in the tumor [40]. Using a 2DE/MS 

approach, Hosoya et al. revealed a significant association between N-myc downstream-

regulated gene-1 protein (NDRG1) and a good prognosis. They showed that NDRG1 

is an independent factor of progression-free survival and its in vitro gene suppression 
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enhanced proliferation and invasion of RCC cells [41]. Using iTRAQ labeling and 

MALDI–MS, Lebdai et al. identified 928 proteins. Among them, 346 proteins had an 

altered expression in tumor tissue. In particular, the transforming growth factor β-

induced protein (BGH3/TGFBI) showed a significant association with the stage, size, 

and grade, and a metabolic shift via pentose phosphate pathway in aggressive tumors 

has been confirmed [42]. 

 

2.6. Non-ccRCC variants 

As already mentioned, ccRCC represents the most frequent histotype of kidney cancer 

and, for this reason, is the most commonly investigated type of kidney tumor. However, 

some authors also tried to identify new candidate biomarkers in less frequent RCC 

variants. One of the early studies was carried out by Valera et al. using a 2DE/MS 

approach in order to outline differences in protein levels among different subtypes of 

RCCs, including papillary lesions, chromophobe tumors, and renal oncocytomas [35]. 

They observed a positive correlation for triosephosphate isomerase and Hsp27 and the 

clinic-pathologic features of the patients (sex, age, histology, grade, and stage of the 

tumor). In an interesting study by Mariño-Enríquez et al., genetics and proteomics data 

were combined. They described a case of the medullary variant of RCC carrying a 

particular translocation, t(2;10)(p23;q22), involving the oncogene ALK tyrosine kinase 

receptor (ALK) [37]. The employment of MS facilitated the identification of a novel 

ALK oncoprotein in which the cytoskeletal protein vinculin was fused to the ALK 

kinase domain. In 2015, Arai et al. studied the molecular pathways involved in CpG-

island methylator phenotype-positive ccRCC by a multiomic approach that also 

included 2-Dimensional Image Converted Analysis of Liquid Chromatography mass 

spectrometry analysis (2DICAL) analysis and the determination of proteins specific for 

the disease [36]. 
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2.7. FFPE tissue 

In addition to FF tissue, formalin-fixed paraffin-embedded (FFPE) tissue also 

represents a valuable sample source for investigations, even for the newest proteomic 

approaches [50]. The first attempt employing this form of specimen in the study of RCC 

was the work of Perroud et al. that correlated tumor grading to putative biomarkers [43]. 

All the differential proteins had in common their role in cellular metabolism and the 

regulation of cell proliferation: they were likely to be strongly correlated with the 

glycolytic and amino acid synthetic pathways, as well as with acute phase and xenobiotic 

metabolism signaling. Some efforts were dedicated to the comparison of the FFPE 

tissue specimens with non-chemically modified FF samples, even specifically for RCC, 

in order to evaluate the consistency of biological data and the feasibility of the 

approaches. Sprung et al. compared the reproducibility of quantitation for peptides 

deriving from FFPE and FF ccRCC tissue samples by MSbased multiple reaction 

monitoring (MRM) [44]. Interestingly, coefficients of variation for measurements in 

FFPE and FF tissue were very closed (range 18−20%). Craven et al. systematically 

investigated the effect that the storage time of FFPE tissue blocks in pathology archives 

had on the quality of data obtained by label-free MS [45]. Normal kidney and ccRCC 

tissue routinely collected up to 10 years prior to their analysis were profiled using LC–

MS/MS. Results indicated the absence of significant effects deriving from the age of the 

block, thus reinforcing the use of this specimens for biomarker discovery studies. 

Recently, Weißer et al. verified that dimethyl labelling is applicable and sufficiently 

accurate for the quantitative proteomic analysis of FFPE RCC tissue specimens, without 

interference from the formalin fixation process [46]. 

 

2.8. Mass spectrometry imaging 

Mass spectrometry imaging (MSI) is a new analytical technique used for biomarker 

discovery directly on tissue, due to its ability to correlate traditional morphological data 
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with molecular information obtained by this proteomic approach [51,52]. This method 

generally employs the use of a MALDITOF and FF or FFPE tissue (Figure 2) [50]. In 

MALDI–MSI, a mass spectrum is acquired at discrete coordinates throughout the entire 

tissue section. The spatial distribution of the biomolecules present in a specimen can be 

visualized and a molecular image of the tissue can be recomposed based on the acquired 

mass spectra.  

 

 

Figure 2. MALDI-TOF tissue imaging flow-chart. Thin tissue sections are cut and covered with 
matrix, after appropriate washing steps. Then, the entire tissue section is analysed by MALDI-TOF. 
Signals present in the spectra are then used to generate the molecular image of the tissue, which 
shows their spatial distribution. This molecular image obtained by MSI can be overlapped with the 
image obtained staining the tissue i.e. with Eosin and Hematoxylin (H & E). 
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The possibility to identify new biomarkers directly on renal tissue by MSI has also led 

some authors to investigate this approach in RCC. A pioneering study was performed 

in 2010 by Oppenheimer et al. in order to characterize the histological tumor margins 

of ccRCC tissue using MSI [26]. They showed that histologically, normal tissue adjacent 

to the tumor contains several molecular characteristics of the cancer tissue, 

representative of an abnormal microenvironment, which could guide the intervention 

on patients. This finding was further deepened by classical MS of the FF tissue 

specimens, showing that proteins of the mitochondrial electron transport system are an 

example of such altered distributions. Caprioli’s group also used MSI to define the 

molecular signature of RCC tissue [47]. The integration of protein and lipid molecular 

signatures was obtained by Jones et al. [27]. Based on MSI, they detected a cluster of 

108 proteins that had potential disease-specific expression patterns. Fifty-six of these 

proteins were identified after protein extraction by MS/MS. Lipid profiling results 

obtained by MALDI-FT-ICR (Fourier transform ion cyclotron resonance) were 

integrated with protein expression profile data. A group of 26 proteins and 39 lipid 

species able to distinguish either tumor from non-tumor tissue, or recurrent disease 

progressors from nonrecurrent disease patient tissues, was obtained. A similar attempt 

was later performed by comparing MSI results with clinicopathological data [48]. 

Significant differences were observed between papillary and ccRCC. Within the 

subgroup of ccRCC, 2 groups of 7 signals were noticed to have a statistically significant 

association with the tumor stage, Fuhrman grade, and 10 signals to the presence of 

lymph node metastases. Moreover, one signal was significantly linked to shortened 

patient survival. Finally, in the study of Na et al., surgical tissue sections of papillary 

RCC were analyzed using MALDI–MSI [38]. Statistical analysis revealed several 

distinctive cancer-specific m/z-species between normal and diseased tissues. Among 

these m/z-species, two particular proteins, S10AB and ferritin light chain, which are 
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specific for papillary RCC cancer regions, were successfully identified using LC–MS/ 

MS following protein extraction from independent RCC samples. 

 

3. Proteome studies in RCC in vitro cultures 

 

Because of their easy use, cell cultures, both primary and established lines, are 

particularly useful for pathophysiology studies, biomarker discovery, and therapeutic 

investigations.  

Proteomic analysis of RCC cell lines was shown to improve the understanding of the 

cancer biology. In particular, an important field of research is represented by the VHL-

driven and undriven cancers, aimed at finding useful markers to be possibly transferred 

into clinical practice. Since 2006, several authors adopted different proteomic strategies 

in order to unravel this issue, ranging from classical 2DE/MALDI-TOF analysis of the 

cell proteomes [53,54] to LC–MS/MS of membrane protein-enriched fractions 

following stable isotopic labeling [55]. In the last 5 years, innovative and sophisticated 

approaches were applied and almost all were directed toward posttranslational 

modifications and systems biology. Combining cell surface capturing technology and 

SILAC-based quantification, Boysen et al. identified a pool of surface N-glycoproteins 

altered by VHL expression. Among these, metalloproteinase CD10 was shown to be a 

potential therapeutic target given that its inhibition decreased the invasiveness of ccRCC 

cells [56]. Moreover, Nagaprashantha et al. studied the effect of incrementing HIF2A, 

comparing Caki- 2 VHL-wt human and 768-O VHL-mut RCC cell lines by a labelfree 

LC–MS/MS approach [57]. They found differential expression of proteins involved in 

cancer cell energetics and oxidative stress in VHL mutant cells. Two recent papers 

focused on the correlation between hypoxia and VHL gene mutations. Leisz et al. 

compared three VHL-RCC cell lines (786-O, RCC4, and RCC10) and their VHL 

transfectants, under normoxia and hypoxia, in order to identify the concordant and 
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different genes/proteins expressed in these conditions. Using a combined approach of 

cDNA microarray and 2DE/MALDI-TOF analysis, the study not only showed 

similarities but also differences in the VHL loss- and hypoxicinduced pathways, mainly 

in cellular metabolism. Interestingly, an upregulation of ALDOA was observed in both 

the conditions, representing a potential target independent of the VHL status or 

oxygenation [58]. Malec et al. dealt with the same topic, comparing the signatures 

relative to VHL loss and/or hypoxia by a proteome and phospho-proteome analysis of 

isogenic 786O RCC (±VHL). They identified and quantified around 2000 proteins and 

a similar amount of phospho-proteome. The differential analysis confirmed the fact that 

some pathways are altered by both VHL and hypoxia, whilst others are not, generating 

a specific signature for each of these conditions. Notably, intracellular carbonic 

anhydrase 2 was under-expressed after both VHL loss and hypoxia; the authors 

correlated this finding with the NFkB signaling pathway, which is likely to respond to 

the pCO2 fluctuations in the microenvironment of cancer cells [59].  

It has to be underlined that some differential proteins identified using cell lines were 

also confirmed by tissue proteomics, thus strengthening their key role in RCC. Among 

these, some play a crucial role in immune system regulation, such as those found by 

Dihazi et al. [60]. They showed that 20 different RCC cell lines had very similar protein 

profiles when employing a comprehensive proteomic platform (SELDI-TOF, 

2DE/MALDI-TOF): LEG1 was identified as a potential RCC marker in the membrane 

fractions, as further confirmed by other authors [25]. Comparing a ccRCC cell line 

(RLC-310) and a normal one (HK-2), Yang et al. identified 31 differentially expressed 

proteins by 2DE/MALDI-TOF [61]. Among them, the most significant was PPIA. Its 

overexpression was confirmed using real-time PCR and WB analysis in ccRCC cell lines 

and tissue. Interestingly, IHC revealed that the overexpression of PPIA was associated 

with poor differentiation and decreased survival [61]. The same group updated these 

results using 2D-LC fractionation and LC–ESI-MS/MS, identifying 13, new, 
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differentially expressed proteins [62]. Among them, growth factor angiomotin (Amot) 

was very promising. In fact, its overexpression in ccRCC was confirmed by WB through 

the comparison with ANK tissue. Moreover, quantitative real-time PCR of Amot 

mRNA in 127 ccRCC tissue samples underlined its association with poor differentiation, 

venous invasion, and decreased survival, supporting that Amot may be considered as a 

novel prognostic factor of ccRCC. Notably, Tanaka et al., investigated the protein 

expression profiles of four SN12C human RCC cell clones with different metastatic 

potential by 2DE/LC–MS over a narrow pH range (pH 4.0–7.0) [63]. They showed a 

high expression of glyoxalase-1, a protein involved in detoxification, in clones with a 

high metastatic potential and a low expression in those with low metastatic potential. 

The research of potential biomarkers was not only accomplished in cell lysates or 

subcellular fractions, but also by employing nonconventional strategies. In fact, 

Minamida et al. researched potential biomarkers in the secretome of the 769P RCC cell 

line in order to identify proteins that were not yet associated with RCC. The analysis 

was performed by 1DE and LC–MS/MS and lead to the discovery of PROF1, a 

structural protein involved in cytoskeletal dynamics, membrane trafficking, and nuclear 

transport. PROF1 overexpression was confirmed by WB, RT-PCR, and IHC of RCC 

tissues [64]. Another intriguing study was focused on endothelial tumor associated 

markers in order to characterize the angiogenesis process in RCC. Mesri et al. set up a 

method based on flow cytometry to isolate endothelial cells from RCC and ANK tissues 

of patients. By label-free LC–MS/MS, they detected enriched cell surface proteins to be 

investigated as potential endothelial targets for therapy [65]. In summary, all these 

studies were aimed at understanding the pathogenic mechanism of RCC and identifying 

novel prognostic and predictive markers, implicating the discovery of target cancer-

specific pathways for this highly chemo-resistant tumor.  

Moreover, cell cultures are the ideal model to evaluate the effect of drugs on potential 

targets. A series of proteomic studies were undertaken to reveal the protein expression 
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changes occurring in different cisplatin-resistant RCC cell lines. Vasko et al., through 

2DE/MALDI-TOF, found that oxidative stress proteins were differentially regulated 

[66]. More recently, this result was confirmed in a paper highlighting the role of protein 

deglycase DJ-1, an oxidative stress scavenger, in RCC resistance to cisplatin-induced 

apoptosis [67]. In addition, proteomic analysis by reverse phase protein array confirmed 

the central role of AMP-activated protein kinase activation and mTOR pathway 

inhibition in RCC sensitivity/resistance to 8-chloroadenosine [68]. Another study based 

on proteome profiler arrays and WB analysis was performed in order to clarify the 

mechanism of betulin induction of caspase mediated apoptotis cell death in a multidrug-

resistant human renal carcinoma cell line. Such treatment was shown to increase the 

expression of apoptosis-related proteins, including Poly ADP ribose polymerase 

(PARP) and Bcl-2 family members. Moreover, betulin might sensitize RCC cells to other 

anticancer drugs, since the combination of betulin with etoposide decreased the 

expression of multidrug-resistance protein 1, a known cause of RCC chemoresistance 

[69]. Fan et al. carried out an interesting investigation dealing with the erythropoietin 

(EPO) signaling pathway and RCC progression: they evaluated the EPO effect on two 

cell lines (±VHL) by LC–LTQ–Orbitrap–MS [70]. This negative EPO effect was 

correlated with the overexpression of the proliferating cell nuclear antigen-associated 

factor (KIAA0101/PAF15). On the contrary, the low expression of KIAA0101 seems 

to be associated with a better prognosis and a higher 5-year survival in RCC patients. 

Another promising therapeutic strategy for RCC is immunotherapy. Seliger et al. used a 

ligandomic profiling approach to study the proteins that bind to the HLA class I 

antigens in MZ2733RC cell lines, in order to find targets able to elicit an immune 

response against RCC [71]. This approach led to the identification of approximately 50 

HLA class I peptide ligands present on the cell surface of RCC cells. In particular, the 

authors showed that T cells directed against a specific HLA ligand, derived from 

sulfiredoxin-1, recognize and lyse RCC ligand-presenting target cells, thus providing 
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clues relevant for the development of T-cell-based immunotherapy. Moreover, Ranieri’s 

group recently established and cloned an immunogenic cell line (Elthem) derived from 

the tissue of a patient affected by a nonaggressive and nonmetastatic ccRCC. This cell 

line was shown to be suitable for immune-stimulation. After extensive characterization 

by genomic and proteomic approaches, they found an enrichment of many cancer-

related biological processes and pathways, such as oxidative phosphorylation and 

glycolysis. The authors state that novel tumor-associated antigens are currently in the 

process of being identified and that this will enable the evaluation of new 

immunotherapeutic strategies [72].  

Recently, phospho-proteomic studies demonstrated their great potential to provide 

novel therapeutic strategies in RCC. Chen et al. showed that 17-β estradiol-induced 

growth inhibition in RCC ACHN cells via the upregulation of the phosphorylation level 

of the autophagy activation effector sequestosome 1 (SQSTM1) [73]. In a more 

comprehensive study, Haake et al. performed tyrosine phosphorylation profiling in 10 

RCC cell lines, as well as in 15 clear cell and 15 papillary RCC human tissues specimens. 

Using this innovative approach, the authors identified activated signaling pathways as 

therapeutic targets and screened different tyrosine kinase inhibitors, highlighting the 

focal adhesion kinase as a potential target in RCC cells and tumors. Moreover, the 

comparison between clear cell and papillary RCC tissue led to a specific pathway for the 

papillary subtype, driven by the phosphorylation of the receptor tyrosine kinase 

epithelial discoidin domain-containing receptor 1 (DDR1) [74], to be discovered. 

Interestingly, this work pointed out that RCC cell lines do not always represent the 

biology of the tumor from which they were obtained. In fact, the authors showed that 

~25% of all tyrosine phosphorylated proteins were exclusive to the cell lines, while 

several other proteins were detected only in the tumors. One of the reasons that could 

explain this difference is that the cell lines were grown on plastic without collagen, an 

essential ligand required to activate/phosphorylate DDR1, which is in fact identified 
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exclusively in the human tumor tissue. Therefore, studies on cell lines require the 

validation of their results in patient tissue, as performed in almost all the papers cited 

above. Regarding the therapeutic strategies, in vivo experiments are essential but are yet 

to be achieved until now. 

 

4. RCC biomarker discovery in peripheral fluids 

 

Biological fluids offer the enormous opportunity to obtain a distinctive fingerprint 

specific of the diseased condition through non, or very lowly, invasive methods. 

Unfortunately, this information is often technically difficult to be mined because the 

disease-related proteins are often present in very low concentrations, are frequently 

labile, and are hidden by high-abundance proteins such as albumin or immunoglobulin. 

The discovery of these molecular alterations requires powerful and very sensitive 

methods, which embrace the latest advance proteomic techniques, including appropriate 

clean-up systems as well as effective and reproducible enrichment of the detectable low-

abundance proteins (e.g. hydrogel nanoparticle [75]), that can be coupled with MS. Here, 

we report the results of various studies, targeted to both the peptidome and the 

proteome, in blood and urine of RCC patients. This information is summarized in Table 

2.  

 

4.1. Serum/Plasma proteome 

Blood is considered as the most valuable specimen for biomarker discovery since it is 

easily accessible and carries most of the tissue-derived molecules in the organism. 

Serum, in particular, was widely used for detecting renal cancer markers, despite the 

dynamic range of protein concentration being about nine orders of magnitude and could 

hide the alterations generated by the pathological process [94]. These molecules belong 
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to different classes of proteins and play different roles [95]. For example, some of them 

are involved in the inflammatory processes, or in apoptotic mechanisms, and/or even 

in RCC hypoxic response [95–97].  

Very recently, several studies have been reported for the early detection of ccRCC in 

serum. Zhang et al. observed 16 up- and 14 downregulated serum proteins in the early 

stage, applying iTRAQ labeling, and LC–MS/MS analysis [96]. Among them, HSC71, a 

member of the heat shock protein 70 family, was selected as the most dysregulated 

protein and its overexpression was validated by WB and ELISA, also in comparison 

with other urological diseases. Using a similar approach, Zhang et al. identified 27 

differentially expressed proteins in early-stage RCC, when compared with patients with 

benign kidney lesions, other urological tumors or noncancer patients, and with the 

normal controls [97]. Most of them can be connected to the dysregulated immune 

response of ccRCC, confirming one of the peculiar features of this neoplasm [80]. 

Interestingly, 11 of these proteins were cross-validated in RCC tissue against The Cancer 

Genome Atlas database (https://tcga-data.nci.nih.gov/tcga/), since they matched with 

similarly up or downregulated genes, in both the specimen types. In particular, two 

members of the small Ca2+-binding protein S100 family, S10A8 and S10A9, were 

confirmed to be potential biomarkers for the detection of RCC or even promising 

targets for therapeutic intervention, through in-depth bioinformatics analysis and IHC 

[82].  

Plasma is also often used as a valuable source of candidate cancer biomarkers, instead 

of serum [98]. Johann et al. reported a method that combined tumor/plasma proteome 

analysis using 2D/LC–MS from a single patient newly diagnosed with a nonmetastatic 

RCC, as already discussed in the tissue proteomics section [24]. A year later, Yokomizo 

et al. observed an increased expression of Fibronectin-1 (FINC) in the plasma of ccRCC 

patients, especially in the early stage [81]. A validation in a hundred-scale cohort (77 

RCC patients, 130 healthy individuals, 20 prostate cancer patients) was performed using 
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the Amplified Luminescent Proximity Homogeneous Assay (AlphaLISA). Results were 

likely to suggest a clinical relevance of monitoring the level of plasma FINC for the 

diagnosis of RCC patients. Another study, based on ELISA, showed the potential utility 

of a further three circulating plasma markers for RCC prognosis (C-reactive protein, 

osteopontin, and carboninc anhydrase 9), for improving the existing clinicopathological 

prognostic models, that are based on the stage alone [99]. Recently, Gbormittah et al. 

showed that the posttranslational modifications, such as glycosylation, can also be used 

to detect RCC in plasma samples [76]. Specifically, they searched for possible ccRCC 

biomarkers in the plasma of patients before and after curative nephrectomy for localized 

tumors, using a comparative study of the proteome, glycoproteome, and N-glycome. 

Through a multidimensional fractionation approach (12P-M-LAC) and LC−MS/MS, 

they selected a panel of 13 glycoproteins, whose glycan structure was supposed to be 

changed in diseased samples [77]. Later, using CID (collision-induced dissociation) 

tandem MS, the same group better characterized the N-linked glycan sites of 

immunoaffinity-purified clusterin, one of the proteins included in the previous panel. 

In particular, a significant increase in the levels of two specific clusterin glycoforms was 

observed, as further confirmed by Aleuria aurantia lectin blots [79]. 

 

4.2. Urine proteome 

Although the discovery of proteins usable as renal cancer markers in urine is extremely 

desirable, unfortunately, for RCC, the number of possible candidates in urine seems to 

be less than 10 [100]. This can be noted as a general shortcoming of biomarker research 

in this fluid [97] and is likely to be strictly related both to different technical aspects (e.g. 

the lack of reproducibility, the complexity of the urine, and the difficulty to capture the 

changes masked from the high abundant proteins) and to biological and clinical issues 

(e.g. the influence of confounding factors, such as age- or lesion related kidney damage, 

and/or the effect of the proteolytic degradation processes).  
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The study of the RCC urinary proteome has been attempted by employing a variety of 

different approaches that range from the traditional proteomic analysis tools, such as 

2DE, followed by MALDI–MS or LC–MS/MS, different types of immunoassays, to 

the most recent qualitative and quantitative LC–MS/MS strategies. These works were 

already comprehensively discussed in a recent review, thus they will not be further 

described here [101]. The emerging technologies have advanced continuously and are 

now trying to maximize urinary proteome coverage in ever-decreasing sample amounts 

and to reduce the variability. Thus, the main challenge in this field is likely to rely on the 

cooperation among clinicians, analytical chemists, and bioinformaticians [78]. 

Standardization of the analysis, sample collection, metadata elaboration, and the 

application of effective quality control (targeted proteomics, antibody-based validation, 

etc.) could improve the reproducibility and the reliability of the results, allowing studies 

with much wider sample sizes [79]. 

 

4.3. Serum and urine peptidome 

Biomarkers are often low molecular weight proteins secreted into the bloodstream by 

mutated apoptotic or necrotic cells deriving from disease-affected tissues [94]. Indeed, 

rather than simply being protein degradation products, endogenous peptides could also 

reflect the state of a cell and its relationship to its surrounding environment. Generally, 

they are not synthesized as such but rather are the results of specific or nonspecific 

proteolytic cleavage by endogenous peptidases, which in turn are differentially regulated 

in the context of many physiological and pathologic phenomena [98]. Thus, the 

alteration observed at peptidome level is often not reflected at proteome level, as well 

as vice versa. However, the comprehensive study of peptides and small proteins 

(<20kDa), known as ‘peptidomics,’ represents an attractive alternative technological 

approach, allowing assumptions on stage/progression, severity, and prognosis of a wide 

variety of pathologies, including the one evaluated in this review. For the RCC 
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peptidome, MALDI combined with pre-fractionation using functionalized materials 

(e.g. magnetic beads [MB] [100], or surface enhanced laser desorption ionization 

[SELDI]) or other clean-up systems, as well as high performance separation such as LC, 

or CE, have all been coupled to MS for this particular line of investigation.  

Only a small number of studies based on MALDI profiling have been reported thus far, 

three performed on serum and the others on urine (Table 2). Concerning serum 

evaluation, Liu et al. first proposed the use of MB combined with MALDI-TOF in order 

to search for a diagnostic model of renal cancer [101]. The comparison of weak cation 

exchange-magnetic beads (WCX-MB) protein profiles obtained from the serum of 62 

RCC patients and 37 patients with benign lesions pinpointed a discriminant cluster of 

four signals with specificity and sensitivity above 80%. However, none of the signals 

was identified. One year later, Gianazza et al. applied MALDI-TOF analysis to RPC18-

MB purified serum of a large cohort of ccRCC, non-ccRCC patients, and controls [102]. 

They were able to differentiate malignant tumors (n = 102) from benign renal masses 

and healthy subjects (n = 104) using a cluster of five signals with a high diagnostic 

performance both in the training and in the test phase. Furthermore, the power of the 

MALDI-profiling approach was confirmed by label-free LC–MS/MS quantification, 

showing no statistical difference between the peptide ratios obtained by MALDI with 

those obtained from ESI. Some of the signals included in the cluster were identified, 

among which serum deprivation response protein and ZYX (Zyxin) were found to be 

downregulated, while serglycin and tymosin β-4-like protein were over-concentrated in 

patients. More recently, using WCX-MB, Yang et al. investigated the serum peptidome 

of ccRCC patients (n = 58) and healthy donors (n = 64), comparing matched pre and 

postoperative ccRCC patients (n = 40) [84]. Three candidate peaks, whose 

concentration increased in preoperative patients and tended to return to the level of 

healthy control values after surgery, were recognized as fragments of RNA-binding 

protein-6, tubulin-beta-chain, and zinc finger protein-3.  
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The application of MALDI profiling via functionalized MB on urine samples, for the 

study of RCC, was first reported by Bosso et al. [85]. Their pilot study confirmed the 

feasibility of this approach, finding a cluster of three ions able to distinguish RCC 

patients (n = 29) from healthy subjects (n = 29) with high values of diagnostic efficacy, 

especially for patients in the first stage. One of these signals was identified as a fragment 

of uromodulin (UROM), which is specifically decreased in RCC urine, suggesting the 

implication of specific endoproteases, probably secreted by tumor cells, in determining 

the different RCC urinary peptidome profiles. Later, Chinello et al. utilized the same 

analytical workflow to study a larger patient dataset that comprised not only ccRCC 

patients and healthy donors but also patients affected by benign kidney lesions or 

nonccRCC kidney malignancies [86]. They proposed a classifier that differentiates 

malignant tumors (n = 137) from benign renal masses and controls (n = 153) with a 

sensitivity of 76% and a specificity of 87%, and a second cluster of 12 signals for the 

discrimination of ccRCC (n = 118) from controls (n = 137) (84% sensitivity and 91% 

specificity). The identity of several of these signals was assessed by LC–MS/MS. Only 

a few of them were assigned to highly abundant proteins such as UROM and fibrinogen 

α chain, while the majority were derived from proteins strongly correlated with tumor 

development and progression, suggesting an effective reduction of the dynamic range 

by the activated surface. One year later, the same group, exploring the C8RP-MB 

MALDI urinary profiles, showed several peptides whose urinary abundance varied 

according to tumor size, stage, and grade, thus serving as potential indicators of RCC 

progression [90].  

A variation of the MALDI technology is SELDI, in which the sample is crystallized on 

a surface that can be selected based on its chemical structure and/or class of protein 

binding. Despite initial enthusiasm and several promising studies, this technique 

revealed evident limitations, which drastically reduced its use. However, several studies 

focusing on RCC, using SELDI profiling, were performed. The two most recent papers 
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were conducted on urine [91] and on serum [92]. In both, the WCX protein chip systems 

were used for identifying differentially expressed proteins/ peptides between the RCC 

group and controls. In the study of Alves et al., urine samples from ccRCC (n = 53) and 

Papillary RCC (n = 8) were compared with 29 samples of healthy control urines [91]. 

Twenty-two peaks were found to be statistically down-represented in the patient group, 

even if no data regarding the diagnostic performance were provided. Recently, Nuerrula 

et al. analyzed the serum of 89 patients with ccRCC (before and after surgery) and 100 

controls including healthy volunteers and patients without RCC by SELDI-TOF MS 

[92]. They observed a significant difference in the expression levels of five protein 

signals related to the preoperative group and controls, and a statistically significant 

alteration of postoperative expression levels for each single follow-up compared to the 

preoperative ones. The discriminant molecules enabled a high performance in predicting 

ccRCC to be obtained (sensitivity of 89% and specificity of 91%).  

Alterations in the peptidome associated with RCC was also studied by coupling the 

efficient separation of CE with the selective detection of MS. Using this technique, 

Frantzi et al. built a diagnostic model for RCC detection based on naturally occurring 

urinary peptides in very large cohorts of RCC patients and controls (healthy and not 

healthy) [89]. Of the 86 signals included in the classifier, 40 were assigned to specific 

sequences, 70% of which belonged to fragments of collagen chains. The identity of 

these fragments seems to poorly overlap with those found with MALDI profiling [92], 

but this is not completely unexpected given the fact that the peptidomic data were 

provided following different pre-fractionation steps and different chromatographic 

separation. Finally, LC–MS/MS could also be used to obtain a peptidomic profile from 

biological fluids [83]. In a recent study of Huang et al., this strategy was used to explore 

the peptidome alterations specific for RCC patient serum [93]. These authors, through 

a supervised holistic-variate orthogonal partial least-squares-discriminant analysis, were 

able to find significant differences in serum levels between the group of patients (n = 
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30) and healthy controls (n = 30), with 100% sensitivity and 93.3% specificity for RCC 

detection and excellent predictive power by the receiver-operating characteristic curve. 

In conclusion, as already shown [103], for both blood and urine specimens, available 

data are not currently translated into routine clinical application, despite the enormous 

advancements that have been made to the analytical methodologies, leading to 

improvements in specificity, dynamic range, and reproducibility. The reason for this 

delay is mainly the same as for other solid tumors. In fact, when screening and validation 

of candidate biomarkers is performed, cases and controls of similar sample size are 

usually compared, and the low prevalence of disease is often ignored. Moreover, it is 

suggested that multiple, rather than single biomarkers, should be more commonly relied 

upon, but the link between the markers and the underlying molecular events is not often 

reconstructed. In addition, the heterogeneity of disease tissue and histological 

differences inside the specimen are hardly taken into account, and tissue is generally 

homogenized for protein extraction. Finally, the issue of pre-analytical variability is also 

associated with the biomarker discovery pipeline and has to be addressed. 

 

4.4. Extracellular vesicles 

In the last decade, proteomic research on urinary EVs has emerged as a new frontier in 

the landscape of urine-biomarker discovery. The term EV comprises many different 

forms of secreted vesicles that are classified into two general types depending on the 

site of cellular production and the mode of vesicular secretion. The first includes EVs 

directly shed from the plasma membrane, and the second contains those originating 

from the inward budding of intercellular endosomes and are defined as exosomes [87]. 

Studies addressing the role of EVs in RCC have been mainly published in the last 3–4 

years. They were generally performed by adopting RCC cell culture models, in order to 

analyze the effects of EV released in the culture medium on other cells, pointing out the 

role of some specific proteins, rather than performing protein identification and 
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quantification. Most of these studies revealed that the proteomic cargo of exosomes 

released by RCC cells is able to induce effects in three main different settings. The first 

is exerted on the cancer cells themselves, by cross-delivery: for example, it has been 

reported that RCCreleased EV determine increased levels of two important cancer-

related proteins, such as chemokine receptor type 4 and matrix metalloproteinase-9 

(MMP9), in other RCC cells, following EV internalization [104]. The second would act 

on alterations of the cancer microenvironment, both of endothelial cells, where EV 

seem to drive the expression of angiogenetic features [105], and of the immune system 

effectors, suggesting that they may be partly responsible for the well-known immune 

escape features of RCC in vivo [106,107]. A third line of research tackled the issue of the 

influence of human renal cancer stem cells. In fact, they were shown to secrete large 

amounts of EV that can transfer several molecules (proteins, lipids, and nucleic acids) 

and induce epigenetic changes in target cells, such as tumor-surrounding mesenchymal 

stromal cells [108]. 

Among EV, studying the proteome of the urinary exosomes (UE) seems to be of 

particular interest, because they are believed to provide a full molecular representation 

of the entire urinary system, reflecting the state of renal epithelial cells from which they 

are actively released. Accordingly, these nanovesicles (30–100 nm) could well represent 

alterations to the molecular composition of RCC cells. In fact, a comparative lipidomic 

analysis of UE performed by a hyphenated microLC– Q-TOF-MS platform highlighted 

a differential lipid composition in exosomes prepared from RCC patient urine, 

compared with controls, providing initial evidence of a relationship between lipid 

composition of UE and RCC disease [109]. Raimondo et al. performed the only 

proteomic profiling investigation of RCC UE to date and reported that the protein 

profile of RCC UE was quite different from that of controls [110]. In fact, approximately 

50% of the proteins identified by 1DE and LC–MS/MS were not shared between RCC 

and control UE. In particular, the RCC UE differential content of some proteins, such 
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as MMP-9, Podocalyxin, and CAH9, was validated by immunoblotting and was 

suggested to represent a basis for the setup of a multimarker strategy in UE for RCC 

detection.  

 

5. Expert commentary 

 

Indications for taking a ‘watch and wait’ approach in small renal kidney cancers are 

expanding constantly and it would be strongly desirable to have a biological marker that 

could evaluate the aggressiveness of the tumor in order to decide whether or not to treat 

patients. The American Urological Association guidelines state that there is a strong 

need for markers which can predict aggressiveness of small renal masses in order to 

tailor treatment and follow-up of the affected patients [88]. The finding of proteomic 

markers in blood or urine might have a crucial impact, as it would mean having a non 

invasive test that could guide clinical decisions. Furthermore, if the proteomic markers 

could be related to tumor staging, they may also guide the choice between performing 

radical and nephron sparing surgery. It should allow the oncological risk of a 

conservative surgery to be evaluated prior to performing it, rather than the current 

approach that only relies on using the final pathologybased report postsurgery.  

The research for RCC biomarkers using proteomics could greatly benefit from the 

recognition of common targets, revealed by experiments conducted through different 

platforms and starting from different kinds of samples. The recent availability of very 

sophisticated and integrated proteomic analytic approaches should ease this discovery, 

as well as the possible sharing of samples and/or databases coming from different 

cohorts. However, until now, this information has been rather limited. We compared 

the differential proteins reported by four publications to highlight the difficulties faced 

in identifying biomarkers of renal cancer [23,28,29,33] (Figure 3).  
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A lack of concordance between studies was noted, with a maximum of 2 upregulated 

and 18 downregulated proteins in common between two studies. Obviously, this 

comparison is not to be considered as conclusive, but we believe that it is sufficiently 

representative of the actual situation. We believe that this lack of concordance between 

studies may derive from differences in the type of specimen (frozen, FFPE, 

microdissected/heterogeneous tissue), the pre-fractionation used to remove high-

abundance proteins, or the enrichment used for low abundance ones.  

On the other hand, even if we consider differential protein species reported in studies 

performed on different starting samples, only a small number of proteins is reported in 

more than a single paper. Taking into account that we only reviewed papers from the 

last 5–6 years, we found a recurrence of the family of HSP27 and CAH9, some isoforms 

of the glycolytic enzymes (LDHA, ENOA), ceruloplasmin, and some members of the 

fatty-acid-binding proteins. These possible ‘shared RCC targets’ were also identified in 

older papers and were found to be associated with RCC not only by proteomic studies 

but also by IHC, or as dysregulated transcript, or after gene microarray surveys. 

However, the relatively few biomarkers identified by proteomics are not specific for 

 Figure 3. Venn diagram showing the number of shared protein species among four studies 
[23,25,28,29] reporting the differential proteomes of fresh frozen samples of RCC compared to 
ANK. A) common up-regulated proteins B) common down-regulated proteins. Uniprot IDs of 
the proteins that are present in at least two datasets are visualized. 
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RCC. Possible explanations for this biomarker bottleneck are (a) tissue heterogeneity 

and a lack of microdissection to enrich tumor cell populations prior to proteomic 

analysis, (b) lack of enrichment strategies to identify low abundance proteins, (c) the 

difficulty in measuring posttranslationally modified proteins, and (d) the possibility that 

different tumor types share similar high-abundant protein profiles.  

It is common belief that, in general, the omics sciences failed to succeed in finding 

reliable markers for cancers, but in the case of RCC, a possible, more specific reason 

could be found in very recent observations [111]. The authors tried to integrate the 

TCGA transcriptomic data, available in public repositories, with the metabolomic data 

coming from their experiments, and demonstrated a peculiar discordance between the 

transcriptome and metabolome, depicting ccRCC as an outlier [112]. Strikingly, in 

ccRCC compared with ANK, genes and proteins driving metabolic pathways typically 

displayed a downregulation, while related metabolites were overexpressed. This pattern 

was peculiar for RCC and not evident in other tumor types, underlining a specificity for 

RCC, which will have to be taken into account in future studies. 

 

6. Five-year view 

 

In the past, investigations in RCC were mainly focused on biomarker discovery for 

diagnostic purposes. Nowadays, these studies are moving toward the search for 

indicators of disease progression that are of use to the ‘watch and wait’ clinical approach. 

However, another aspect that will be more deeply investigated in the coming years will 

regard markers for tailored RCC therapies. Moreover, MS data could be used to identify 

biomarker(s) that are predictors of response to these targeted agents. For example, 

analysis of RCC tumor tissue after treatment with erlotinib and bevacizumab revealed 

an association between poor treatment response and low AMPK expression, while it 

has been shown that Vorinostat enhances the activity of temsirolimus in RCC through 
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the suppression of survivin levels (reviewed in [113]). However, the global impact of 

mTOR inhibitors on RCC metabolism is currently unknown. In this respect, proteomics 

will play an important role due to its ability to provide an overview of the proteomic 

alterations that are of use in a panel of markers, taking advantage of recently optimized 

protocols. In fact, a recent paper showed that LC–MS analysis enabled more than 3800 

proteins to be detected in FF tissue, and 3300 in FFPE, from a small amount of material 

obtained by human colon mucosal biopsy (sections of 1–2 mm3) and simultaneously 

quantified them in a label-free manner with a very high consistency grade (about 90%) 

between FF and FFPE specimens [114]. Moreover, several PTMs could be also detected 

using ProteinPilot software that included more than 300 modifications. Furthermore, 

the quantification of their levels could also be done with high accuracy by MRM. 

 In addition, system biology is now going into the ‘adult age’ and the integration of the 

results derived from different ‘omics’ approaches has become more realistic, providing 

the opportunity to exploit the relationships between the different domains of biology. 

In particular, cancer proteogenomics is an emerging field of research that aims at the 

identification and quantification of protein sequence changes that are associated with 

the cancer-specific variations encountered in the genome. For example, it was recently 

reported that proteomic, and in particular phospho-proteomic analysis, of breast cancer 

samples could elucidate the functional consequences of cancer- associated somatic 

mutations and thus identify ‘druggable’ kinases as therapeutic targets beyond HER2 

[115]. Unraveling the connection between cancer-related genomic variations and their 

effect on phenotypes and clinical behavior would be particularly useful in the case of 

RCC: in fact, the classification of the different RCC types, already based on strong 

genomic data, can further take advantage from proteomics, allowing better prediction 

of their natural history and progression. Moreover, these alterations could represent a 

target for new therapeutic interventions. These studies will benefit from the rapid 

development of MS instruments with new features such as ion mobility, which allows 
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molecules with same molecular mass but different conformational shape to be 

identified, or native-MS that enables protein–protein interactions to be investigated. 

Arguably, the possibility to perform proteomic investigations directly on tissue, thus 

conserving information about the spatial localization of the proteins within the 

specimen through MSI technology, represents an even more stimulating approach. In 

this respect, performing MSI analysis with a spatial resolution at the single cell level or 

the direct combination of the optical image of the tissue and its molecular analysis is 

now possible. 

 

Key issues 

● The most widely used proteomic approach is based on the coupling of liquid-

chromatography to mass spectrometry. Bottom-up is now the most commonly used 

strategy based on enzymatic digestion that allows the identification of differentially 

expressed proteins to be obtained, while it is suboptimal for PTMs studies. This 

methodology is now integrated with the top-down approach in which intact proteins 

are analysed, along with their primary structures and PTMs.  

● The identification of pathways involved in the genesis and progression of RCC will 

lead to the development of new therapeutic strategies based on molecular targets, such 

as those of the von Hippel-Lindau (VHL) pathway, including vascular endothelial 

growth factor (VEGF), platelet-derived growth factor (PDGF), and mammalian target 

of rapamycin (mTOR). 

● The majority of investigations have been carried out in order to discover biomarkers 

with a diagnostic role. However, the emerging field of interesting research is related to 

the discovery of reliable prognostic and predictive markers that are able to predict the 

course of the disease and the response to specific drug treatments through the analysis 

of a panel of proteins. 



 
43 

 

● In addition to fresh frozen tissue, formalin fixed paraffin embedded (FFPE) 

specimens can also be used for proteomic investigations. Cell lines, biological fluids, and 

extracellular vesicles are also good specimens for diagnostic and prognostic biomarkers 

discovery, in particular urine and exosomes. 

● Urinary exosomes, a particular type of extracellular vesicles, are widely investigated 

not only as possible source of markers but also for their ability to deliver crucial signals 

from cell to cell, such as the promotion of growth, proliferation, and inhibition of 

apoptosis. They can influence not only the cancer cells themselves but also the tumor 

microenvironment and thus contribute to renal cancer development and progression. 

● Various promising marker studies targeted to both the peptidome and proteome, in 

blood and in urine, have been reported. For both specimens, available data is not 

currently translated into routine clinical application. Largescale studies are needed to 

validate these molecules as cancer biomarkers. 

● Urine could represent a very easily-accessible specimen for finding RCC related 

signatures both at the peptidome and proteome level. Indeed, the protein content is 

quite stable and carries direct information coming from not only from the kidneys and 

the urogenital tract, but also from the blood stream.  
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1. Matrix-assisted laser desorption ionisation - mass 

spectrometry imaging (MALDI-MSI) in a nutshell 

 

MALDI-MSI applied to thin mammalian tissue sections was formally introduced in 

1997 and its use has increased exponentially in recent years [8]. The technique relies on 

the use of a MALDI matrix, which consists of small organic molecules that are designed 

to absorb the energy of a pulsed laser beam. These molecules commonly possess a 

suitable chromophore, usually in the form of an aromatic core, and it is this property of 

the matrix that facilitates the absorption of the UV laser energy. When this matrix is 

applied to the surface of a sample, it promotes the formation of a ubiquitous layer of 

co-crystals, which incorporates both matrix and analyte molecules in its network. When 

the laser beam is applied to the surface of the sample, the absorbed energy leads to rapid 

desorption of both the matrix and analyte crystals and subsequent “soft” ionisation [3]. 

Typical MALDI-MSI analysis is most commonly performed on tissue sections that have 

been sectioned and mounted onto electrically conductive glass slides, such as those 

coated with indium tin oxide (ITO) [9]. For protein, lipid, xenobiotics and metabolite 

imaging, the analysis is most commonly performed using fresh-frozen (FF) tissue 

[10,11]. Regarding the imaging of drugs and products of drug metabolism, MALDI-MSI 

has been readily used within the pharmaceutical community for the purpose of drug 

discovery and development [12]. The monitoring of the spatial distribution of drugs and 

their metabolites in order to evaluate a drug’s absorption properties, as well as the 

characterisation of a drug’s delivery and penetration in a target organ, represent some 

examples of how MALDI-MSI tools have been successfully applied in this field [13,14]. 

In addition to qualitative MALDI-MSI approaches, the ability to obtain absolute 

quantitative information by MALDI-MSI for drug analysis, by applying internal 

standards, has recently been further investigated [15,16]. In the case of protein imaging, 

formalin-fixed paraffin-embedded (FFPE) tissue is now also readily employed [17]. 
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FFPE tissue accounts for a large percentage of the patient samples collected and stored 

in medical centres [18] and thus represents a potential gold mine of information for 

histopathological studies involving MALDI-MSI. It also facilitates multi-centric studies 

using tissue specimens from numerous tissue banks [19,20]. However, the sample 

preparation for protein imaging of FFPE tissue is more complex and requires an antigen 

retrieval step followed by tryptic digestion prior to MALDI-MSI analysis. Metabolite 

imaging has also been conducted on FFPE tissue [21]; however, it has been less 

extensively investigated with respect to proteins. Finally, a number of groups have 

focused on the analysis of N-glycans in tissue [22,23], demonstrating that it is possible 

to monitor the distribution of both N-glycans and proteins within the same tissue 

section [23]. The potential to monitor N-glycans, one of the most common post-

translational modifications, may significantly advance MALDI-MSI investigations in 

gastric cancer given their fundamental role in many cellular processes and their 

establishment as clinical biomarkers [23]. A general overview of the MALDI-MSI 

sample preparation and analysis workflow is given in Figure 1. 

Figure 1 Illustration of the workflow for the matrix-assisted laser desorption/ionisation-mass 
spectrometry imaging (MALDI-MSI) analysis. 
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Sample Preparation 

Particular attention to detail must be paid during the collection of FF tissue, as 

negligence during the sample collection can lead to degradation and delocalisation of 

the analytes of interest. The method most commonly employed during collection is 

snap-freezing using liquid nitrogen; however, this procedure can damage tissue 

morphology if it cools at different rates. This can be overcome to some degree by lightly 

wrapping the tissue in aluminium in order for it to cool at a more uniform rate [24]. 

Alternatively, Goodwin et al. recommend the use of ethanol or isopropanol solutions at 

temperatures of ≤-70°C [25]. Once snap-frozen, FF tissue sections can be maintained 

at -80 °C for up to a year without evidence of degradation [3,24,26]. Prior to matrix 

application, tissue washes are also performed in order to remove any molecules that may 

interfere with the ionisation of the target analytes, including any compounds used during 

the sectioning procedure. Standard protocols for protein MS-imaging recommend 

washing the tissue sequentially in increasing concentrations of ethanol, whilst, for 

example in tissue with a high lipidomic content, washing this tissue with chloroform or 

xylene can improve protein detection [24,25,27]. Conversely, different washing 

protocols should be used if the intended analytes are not proteins, e.g., ethanol (70%) 

with the addition of ammonium acetate (NH4Ac) is recommended for the desalting of 

tissue prior to lipidomic analysis [28].  

Regarding FFPE tissue, metabolite MS-imaging requires tissue immersion in xylene, or 

a similar organic solvent, in order to remove any paraffin [21]. Protein MS-imaging, 

however, requires a more complex procedure [4,29,30]. Following paraffin removal, 

tissue rehydration is then performed prior to antigen retrieval. The antigen retrieval step 

is generally performed at 97°C whilst immersed in a buffer solution that most commonly 

contains either Tris-HCl or citric acid [31–33], and is required in order to break the 

methylene bridges that have formed between amino acids during the fixation process. 

Whilst enzymatic digestion is conventionally performed in solution for proteomic 
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investigations, here the spatial integrity of the proteins is required, and thus the 

procedure is performed in situ. However, the hydrophobic nature of certain proteins 

renders them proteolytically resistant to digestion and ultimately limits the peptide yield 

when performed in this manner. The addition of detergents to the trypsin solution can 

improve solubilisation by unfolding the proteins, increasing the number of possible 

enzymatic cleavage sites. A number of detergents have been shown to be compatible 

with MALDI-MSI analysis, such as N-Octanoyl-N-methylglucamin (MEGA-8) and 

RapiGest SF (Waters Corporation, Manchester, UK) [34,35], and significantly improved 

peptide yield as well as signal intensity, facilitating a greater number of peptide 

identifications whilst using a bottom-up approach. Alternatively, enzymatic digestion 

can be performed using N-glycosidase F (PNGase F) in order to visualise the 

distribution of N-glycans that are associated with different pathological states of tissue 

[23].  

Matrix deposition plays a crucial role in MALDI-MSI experiments and can limit the true 

spatial resolution that can be achieved. The general aim of the co-crystallisation process 

is to maximise analyte extraction whilst at the same time limiting the degree of lateral 

diffusion, which is equally important to the choice of matrix [9]. Wet matrix deposition 

methods, involving the use of automated spotters [36] and, in particular, sprayers [37], 

are particularly efficient for the extraction of proteins and peptides and commonly lead 

to the formation of crystals of between 10 and 50 µm in diameter. On the other hand, 

solvent-free matrix deposition involving sublimation has surged in popularity for the 

analysis of lipids and metabolites due to its ability to deposit a uniform coating of fine 

matrix crystals that are only a few microns in diameter [38]. Therefore, sublimation 

represents a highly cost-effective approach to matrix deposition that is both 

reproducible and compatible with high spatial resolution MALDI-MSI [9]. In contrast 

to sublimation methods that deposit dry matrix onto the surface of the tissue section, 

microscope glass slides can also be pre-coated with a MALDI matrix prior to tissue 
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mounting [39]. This has also been shown to be a high-throughput approach that can be 

effective for the analysis of both proteins [39] and low molecular weight compounds, 

such as lipids and metabolites [40]. 

Depending on the target analyte of choice, a number of different matrices can be used. 

For example, DHB (2,5-Dihydroxybenzoic acid), sinapinic acid (SA; 3,5-dimethoxy-4-

hydroxycinnamic acid) and α-CHCA (α -cyano-4-hydroxycinnamic acid) are the most 

common matrices of choice for the extraction of low molecular weight proteins, 

peptides, and lipids (1–20 kDa) [41]. However, the addition of hexafluoroisopropanol 

(1,1,1,3,3,3-hexaluoro-2-propanol) and 2,2,2-trifluoroethanol to the matrix solution 

[42], along with the use of detectors designed for the detection of higher molecular 

weight analytes, has been shown to enhance the potential to detect higher molecular 

weight proteins whilst using SA (up to 110 kDa) [43]. Alternatively, ferulic acid (3-(4-

hydroxy-3-methoxy-phenyl)-prop-2-enoic acid) may also be used for the extraction of 

high molecular weight proteins (up to 140 kDa) [44]. Additionally, ionic matrices such 

as CHCA/aniline (CHCA/ANI) and CHCA/N,N-dimethylaniline (CHCA/DANI) 

have been employed to obtain a more ubiquitous matrix layer and enhance the detection 

of protein signals [45]. For metabolite imaging, 9-aminoacridine (9AA) is often 

employed and the mass spectrometer is set in negative-ion mode [46]. In view of the 

rapid evolution in mass spectrometric instrumentation, the search for novel matrices 

and matrix deposition protocols has also come to the fore. For example, Garate et al. 

demonstrated the use of MBT (2-mercaptobenzothiazole) and DAN (2,5-

diaminonapthalene) as MALDI matrices that produced very small crystals and were not 

a limiting factor during the acquisition of MALDI-MS images with pixel sizes as low as 

5 µm [47]. 
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Instrumental Advancements 

MALDI mass spectrometry instrumentation has rapidly evolved in recent years, offering 

ever more mass resolution and increased sensitivity. In fact, state-of-the-art MALDI-

MS instrumentation enables the generation of individual spectra with intensities 

measured at 25,000–50,000 m/z-bins for ToF MS and even greater than 1,000,000 m/z-

bins for Fourier-transform ion cyclotron resonance (FTICR) MS measurements [48]. 

These advancements have enabled more comprehensive analysis and the better 

resolution of species with similar m/z values. In fact, modern MALDI-FTICR-MS 

instrumentation, as well as MALDI linear ion trap (Orbitrap), can enable the 

unequivocal identification of certain analytes (particularly for small molecular weight 

compounds such as lipids, drugs and metabolites) based on their accurate mass alone 

[49,50].  

Furthermore, the addition of a separate dimension, the drift time, to quadrupole-ToF 

and ion mobility instrumentation can overcome the inability of MALDI-ToF 

instruments to differentiate isobaric ions, enabling the detection of a higher number of 

peaks [51]. Notwithstanding this rapid evolution, several technical issues related to 

MALDI-MSI still need to be improved, such as spatial resolution and sensitivity. 

However, next-generation instruments are beginning to address these limiting factors 

[52], not only improving spatial resolution and sensitivity, but also increasing the spectral 

acquisition rate as well as minimising pixel-to-pixel variability, facilitating higher quality 

and more robust analysis. Continuing in this vein, MALDI-MSI will be able to not only 

analyse single cells, but also potentially delve deeper and analyse at a subcellular level, 

enabling the intra-cellular proteome to be investigated. Furthermore, it will also be 

possible to routinely generate three-dimensional MALDI-MS images in order to obtain 

a snapshot of the pathological state of an entire organ by combining MALDI-MS images 

of consecutive tissue sections and reconstructing a three-dimensional representation 

using the appropriate (and currently available) software [53–55]. 
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Statistical Analysis and Data Elaboration 

MALDI-MSI records the presence and relative abundance of a great variety of 

molecules on tissue, allowing the localisation and spatial distribution of such molecules 

to be visualised. For each pixel of the digitalised tissue image, a mass spectrum is 

acquired, generating a so-called “data cube” (Figure 2A), a tensor in which the two 

spatial dimensions (x and y axes) of the digitalised tissue section are combined with a 

third dimension consisting of the mass-to-charge ratio (m/z) of the molecules present 

within the tissue section. Depending on the spatial resolution and the number of data 

points (sampling rate) per spectrum, a MALDI-MSI dataset can be of several gigabytes, 

even terabytes. Therefore, efficient statistical methods for data mining must be 

employed in order to extract information from the spectral data [56].  

Before proceeding with the statistical analysis, however, a series of pre-processing steps 

are required in order to remove the analytical variability connected with the chemical 

impurities present in the samples and the electronic nature of the mass spectrometric 

instrumentation [57,58]. These steps adequately prepare the MS data for statistical 

analysis and enhance the biological information present within the data (Figure 2B) [59]. 

Smoothing, performed by employing algorithms such as the Savitzky–Golay filter and 

the moving average window, aims at discarding the fluctuations in the spectrum mainly 

due to the electronic nature of the mass spectrometer: this process enhances and eases 

the peak detection phase, since false positive peaks corresponding to electrical noise are 

discarded. Baseline subtraction, performed by algorithms such as TopHat, iterative 

convolution and convex hull, ensures that the spectra all lie on the x-axis and all the 

peak intensities are estimated from the x-axis itself. Normalisation multiplies the 

intensity of the data points of the spectra by a scaling factor in order to bring the 

intensity scale (merely related with the analogue-digital conversion of the signal) within 

the same range and therefore make analyses more reproducible [60]: the total ion count 

(TIC) method divides the spectrum intensities by the sum of all the intensity values for 
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that spectrum; the root mean square (RMS) method divides the spectrum intensities by 

the square root of the sum of the intensity values for that spectrum squared; the median 

method divides the spectrum intensities by the median intensity of that spectrum. 

Finally, peak picking extracts the information regarding the peaks present within the 

mass spectrum, in the form of m/z and intensity pair values. After peak maxima have 

been aligned to each other in order to account for fluctuations in the peak values among 

the spectra of the dataset related with the peak picking process, the data can be 

submitted to statistical analysis. Mostly, machine learning algorithms are employed for 

statistical analysis of the data cube, and, depending on the data provided and on the aim 

of the data mining process, unsupervised or supervised approaches are carried out 

(Figure 2C,D) [61].  

 

Figure 2. A schematic overview of the MSI data elaboration workflow. (A) Data cube; (B) the 
series of spectra pre-processing steps; (C) unsupervised and (D) supervised statistical analysis 
performed on a spectra dataset. MSI, mass spectrometry imaging; PCA, principal component 
analysis; HCA, hierarchical clustering analysis; SVM, support vector machine. 
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Unsupervised learning takes unlabelled data as input, i.e., data in which the outcome is 

not known; by the exploitation of the intrinsic information present in the data, clustering 

operations are performed in order to highlight hidden structures and/or patterns within 

the data and are achieved by estimating the similarities among data observations [62]. 

However, these approaches can also be used in a partially supervised manner, in such a 

way that the outcome of each observation is preserved during the unsupervised analysis 

but not taken into account by the algorithm, which performs its operations blind. 

Examples of the unsupervised methods for statistical analysis that have been applied in 

the case of MALDI-MSI gastric cancer datasets are hierarchical clustering analysis 

(HCA), principal component analysis (PCA) and t-distributed stochastic neighbour 

embedding (t-SNE). Hierarchical clustering analysis (HCA) estimates the pairwise 

distance among data observations and generates a dendrogram, in which the 

observations are grouped under the same nodes based on their similarity to each other 

[62]. In mass spectrometry imaging, data observations correspond to individual spectra 

and pixels are associated with spectra; therefore, pixels corresponding to spectra under 

the same node can be coloured in the same way, generating an unsupervised 

segmentation tissue image, which can highlight areas of interest on a molecular basis 

without a priori knowledge regarding the presence of such areas in the tissue section 

[63]. Therefore, the MSI approach has the potential to aid the diagnostic process by 

bringing areas of tissue to the attention of the pathologist and highlighting the molecular 

alterations, even if they do not correlate with cyto-morphological features. 

Principal component analysis (PCA) is a mathematical technique that aims at reducing 

data dimensionality whilst preserving the information present within the data [64]. PCA 

provides an overview of the entire spectral dataset by generating new variables (called 

principal components, PC) from the linear combination of the spectral features (i.e., 

peaks): since the PCs are generated orthogonally to one another, no redundancy among 

the new variables is present and PCs are sorted according to the amount of variance 
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that is retained from the original dataset. This is done in such a way that an overview of 

almost all the information present within the data can be obtained by looking at the first 

principal components. The output of a PCA consists of a score chart and a loadings 

plot: the former places data observations in a 2D or 3D graph according to the score of 

the PCs, allowing the degree of similarity among the spectra to be evaluated according 

to their distribution/clustering in the chart; the latter, by resembling the distribution of 

the former, allows us to evaluate which feature contributes more significantly in driving 

the distribution/clustering of data observations in the score chart. By combining the 

two plots, not only is it possible to determine whether the data is capable of 

discriminating among different classes, but also putative signals of interest can be 

highlighted for further investigation. t-SNE is a non-linear dimensionality reduction 

technique that aims at reducing the number of dimensions to two or three in such a way 

that a 2D or 3D visualisation is easily computed [65]: each n-dimensional data point is 

mapped to a two- or three-dimensional point in such a way that similar observations 

correspond to close points in the mapped space. While PCA generates new variables by 

computing a linear combination of features, t-SNE retains all the features as they are in 

order to perform the computations. In the case of spectral datasets, t-SNE can be 

applied by employing either all the individual peaks or only the spectral data points.  

On the other hand, supervised learning aims at employing algorithms, referred to as 

classifiers, which learn from labelled data, i.e., data in which the outcome is known, in 

order to exploit known features (which correspond to peaks in the mass spectrometry 

imaging dataset) to make predictions about new, unknown data, resembling the 

classification problem [66]. The first phase, the training phase, allows classifiers to build 

the mathematical formula by taking labelled data as input and discriminate among the 

provided categories via different techniques: for example, support vector machines 

(SVMs) fit a hyperplane, with the additional aid of kernel functions, to maximise the 

distance between the closest data observations belonging to different classes [67]; 
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random forests (RF) build a decision tree in which thresholds of feature values 

determine whether the observation belongs to a class or to another [68]. The following 

phase is the validation phase, in which the performances of the classifiers are evaluated 

by the predictions made in a partition of the same training set (cross validation) or in an 

externally labelled dataset (external validation). The discrepancy between the predicted 

class and the actual class yields the performance parameters of the model, such as 

sensitivity (TPR), specificity (TNR), positive predictive value (PPV) and negative 

predictive value (NPV). Finally, the classifier can be employed for making predictions 

regarding new data, which can also be weighed according to the performance parameters 

evaluated in the previous phases. In MSI, an on-tissue classification can be obtained, by 

generating a MS segmentation image resembling the classification by colouring pixels 

according to the predicted class. 
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 SCOPE OF THE THESIS 
 

 

 

The body of work enclosed in this thesis present the application of complementary mass 

spectrometric techniques to different human specimens in order to increase our 

understanding of the molecular aspects of clear cell Renal Cell Carcinoma, that could 

be useful for its diagnosis and prognosis. 

Chapter two: proteomics investigations using plasma and urine samples to evaluate 

which biofluid better mirrors the alterations triggered by the disease 

Chapter three: analysis of formalin fixed paraffin embedded tissues in order to obtain 

proteomic signatures of the four ccRCC grade and information about the main 

biological processes involved in grade progression. 

Chapter four: can proteomic signatures of different grade be also detected in urine? 

Study the effects of the grade and stage of the tumour on the urinary proteome. 
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ABSTRACT Liquid biopsies, as blood and urine, could offer an invaluable, easily 

accessible source of biomarkers, and evidences for elucidating the pathological 

processes. Only few studies integrated the proteomes driven by more than one biofluid. 

Furthermore, it is not clear which biofluid better mirrors the alterations triggered by 

disease. Venous infiltrating RCC (Renal Cell Carcinoma) could represent an 

advantageous model for exploring this aspect. Herein, we investigate how blood and 

urine “proteomically” reflect the changes occurring during RCC infiltration into renal 

vein (RV) by label-free nLC-ESI-MS/MS. We found 574 and 58 differentially expressed 

proteins (DEPs) in response to vascular involvement. To the augment of vascular 

involvement, the abundance of only three proteins in urine (UROM,RALA,CNDP1) 

and two in plasma APOA1,K2C1) diminished while increased for twenty-six urinary 

proteins. 80 proteins were found both in urine and plasma, among which twenty-eight 

were DEPs. A huge overlap between the two biofluids was highlighted, as expected, 

being urine the filtrate of blood. However, this consistency decreases when RV-

occlusion occurs suggesting alternative protein releases, and a loss of kidney 

architecture. Moreover, several proteomic and functional signatures were biofluid-

specific. In conclusion, the complementarity between the specimens allowed to achieve 

a deeper level of molecular complexity of the RCC venous infiltration. 
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Significance: Although plasma and urine are strongly interconnected, only few 

proteomic studies investigated the complementarity of these fluids as bio-sources of 

information. Moreover, none of them was focused to their analysis and comparison in 

the context of vascular infiltration of renal cancer. Herein, new insights were gained 

regarding the impact into urinary and plasma proteome of the changes triggered by the 

ccRCC invasion into vascular system and renal vein. Furthermore, the integration of the 

information driven by the two liquid biopsies permits to unravel biological processes 

otherwise lost.  

 

Keywords: Renal cell carcinoma, Proteomics, Mass spectrometry, Urine, Plasma, Renal 

vein invasion. 
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1. Introduction 

Tumour-derived proteins carried out by biofluids, as blood and urine, could offer an 

invaluable and non-invasive source of biomarkers, as well as a font of information 

regarding the numerous pathological processes related to malignant lesions (primary and 

metastases) and their evolution. 

Since blood transports most of the tissue-derived molecules in the organism, connecting 

all the important organs and collecting the related changes, for decades it has been 

gained the consensus of the researchers as an optimal biological sample for biomarker 

discovery. This biofluids is very rich of disease related proteins even if they are 

technically difficult to be mined, due to the about nine orders of magnitude dynamic 

range that could hide the more specific alterations generated by the pathological 

processes [1]. 

A less complex medium, such as urine, is an appreciable alternative for screening disease 

markers, more easy to be collected in large quantities and frequently. Urinary specimen 

carries a variety of set of soluble proteins and peptides that are primarily derived from 

kidney, bladder and prostate as well as filtrated by systemic circulation [2]. Given that 

urinary protein content is likely to reflect normal kidney physiology as well as systemic 

physiology. Therefore, alterations of the urinary proteome could be used as an indicator 

of disease not only for urogenital tract and kidneys but potentially also for other organs 

[3]. 

In comparison to plasma, urine can be collected over a period of time ensuring an easier 

monitoring of time-dependent changes of biomarker abundance, and resulted quite 

stable in terms of peptidome/ proteome composition since proteolytic degradation may 

be complete prior to collection [4]. Moreover, urine, differently from blood, is not under 

the strict regulation of homeostatic mechanisms [5]. In fact, blood could likely represent 

a worthy place to find alterations associated to disease, especially for the earliest and 

most sensitive biomarkers. Indeed some of these changes are contrasted and do not stay 
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in blood enough to be detected in time. Thus blood biomarkers are often 

uncompensated alterations that persist at a rather later stage of a relatively pathological 

stable condition (i.e. some long half-life proteins or antibody-based biomarkers) [6]. 

Thus urine, collecting all wastes from the body, can collect a larger number of variations, 

both huge and severe. Consequently, their concentration is amplified making more 

visible biomarkers otherwise not detectable in blood [7].  

Despite the specific drawbacks, blood and urine indeed could be considered as liquid 

biopsies easily accessible and able to provide the proteomic landscape of the micro- and 

macro- changes triggered by a neoplasm. Moreover, the integration of the information 

driven by both biofluids can not only enrich this molecular scenario but also provide 

some evidences regarding the handling of tumour-derived proteins. Only a few 

proteomic studies, mainly investigating secreted biomarkers, have so far focused both 

on blood and urine [8,9]. In this context, an interesting approach was proposed by Jia L 

[10], who suggested an integrated strategy to explore kidney function in itemized 

proteomic language. In this perspective, blood, kidney and urine are investigated in the 

same context, as a system, instead of isolated specimens. Consequently, the related 

comparison of the input and output sub-proteome permits to speculate whether a 

particular protein is blocked, or allowed to be secreted/shed from the kidney. Thus, a 

similar workflow may outline a picture of the function and state of the organ in 

physiological conditions, and possibly, also when a modification occurs during a 

disease/neoplasm progression. 

Beside the above mentioned studies, biomarker discovery is generally performed using 

serum/plasma or alternatively urine. However, which biological fluid better reflects the 

pathological changes caused by the disease within the cells, e.g. of the kidney, is not very 

clear. 

One of the most distinctive features of renal cell carcinoma (RCC) is its predilection to 

extend into the venous system including renal vein, inferior vena cava and right atrium. 
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Indeed, the incidence of involvement of the renal vein (RV) and/or inferior vena cava 

(IVC) has been reported to range between 4 and 15% [11]. 

Even if the prognostic significance of venous involvement and tumour thrombus level 

still remain controversial, it has been observed that RCCs with venous tumour thrombus 

(VTT) are more aggressive and associated with poor prognosis [12,13], and the risk of 

cancer-specific mortality increases in VTT patients with perinephric fat invasion [14]. 

Moreover, VTT could represent a potential middle ground between the phenotype of 

primary and metastatic RCC, and it was demonstrated that it has a specific molecular 

trait different from the locally invading tumour and more representative of its extension 

[15]. For these peculiar characteristics, venous infiltrating RCC could represent a model 

for investigating the biological information secreted or shed by cancer cell into biofluids 

when tumour migrates, adapts and begins to spread into circulating system. 

Therefore, we investigate by nLC-ESI MS/MS approach how blood and urine mirror 

the alterations of the proteome during RCC invasion into the renal vein (RV): moving 

from the tumour infiltration into the circulating system across the vessel wall of this 

vein until its complete obstruction.  

 

2. Materials & methods  

 

2.1. Reagents  

Trifluoroacetic acid, ammonium bicarbonate, porcine trypsin, DTT (dithiothreitol), 

IAA (Iodoacetamide), Urea, Ammonium Bicarbonate (ABC), HPLC grade water, 

acetonitrile, acetone were purchased from Sigma-Aldrich (Sigma-Aldrich Chemie 

GmbH, Buchs, Switzerland). HPLC-grade water is used for all solutions for MS analysis. 

Amicon Ultra Centrifugal Filters Ultracel 4 ml 30,000 MW, and Amicon Ultra0.5 mL 

30 kDa were from Millipore.  
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2.2. Sample collection  

Urine and plasma samples were collected from patients affected by Renal Cell 

Carcinoma (RCC) the day before surgery at San Gerardo Hospital (Monza, Italy). All 

subjects had signed an informed consent prior to sample donation and analyses were 

carried out in agreement with the Declaration of Helsinki. Study protocols and 

procedures were approved by the local ethic committee (Comitato Etico Azienda 

Ospedaliera San Gerardo, Monza, Italy). Second morning midstream urine was collected 

in sterile urine tubes (Anicrin s.r.l., Italy). After centrifugation at 3000 rpm for 10 min, 

samples were kept at −80 °C [16]. Plasma samples were collected in Vacutainer® K3E 

containing EDTA (Becton Dickinson Italia S.p.A.), centrifuged at 3700 rpm for 10 min 

and then stocked at −80 °C.  

 

2.3. Trypsin digestion by FASP workflow  

The enzymatic digestion protocol was based on Filter Aided Sample Preparation (FASP) 

technique [17]. Before sample processing for LC-MS analysis, equal volumes of plasma 

samples were pooled according to three different levels of renal vein infiltration (A = 

vascular infiltration; B = RV infiltration; C = RV thrombosis). Each pool was derived 

from three different patients. Plasma samples were pooled using same volume before 

concentration and digestion. Urine samples, instead, due to the inaccuracy of the 

determination of protein concentration probably for the presence of interfering 

compounds, were pooled only after trypsinization obtaining equally represented sample 

in the pools. 3 ml of each plasma pool and urine sample was concentrated using 30 kDa 

MWCO centrifugal filter unit more than ten-fold. A buffer exchange with water was 

applied. Protein concentration was determined using bicinchoninic acid assay (Pierce -

Thermo Fisher Scientific). 

In particular, a volume corresponding to 200 μg of proteins for each sample was used 

both for urine and plasma specimens and mixed with an equal volume of denaturing 
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buffer (0.1 M DTT, 4% SDS in Tris HCl 0.1 M pH 7.6). The solutions were then 

incubated at 95° C for 5 min. After disulphide bond reduction, samples were transferred 

into the ultrafiltration units (Amicon Ultra-0.5 ml 30 kDa, Millipore), made up to 0.5 ml 

with 8 M urea in 100 mM Tris-HCl, pH 8.5 (UA pH 8.5 solution), and centrifuged at 

14000 g for 15 min. FASP digestion was performed as already described [17,18]. Briefly, 

the centrifugation was repeated after adding UA pH 8.5 solution to the filter unit. For 

the alkylation, 200 μl of a 0.05 M iodoacetamide IAA (Sigma Aldrich) in UA pH 8.5 

were added and incubated for 20 min at dark. Filter units were centrifuged at 14,000g 

for 10 min, and submitted to four washes, two of which adding 100 μl of UA pH 7.9 

solution each, and the remaining two using 100 μl of 50 mM Ammonium Bicarbonate 

(ABC) for each wash (14,000g for 15 min). Protein digestion was performed overnight 

at 37 °C adding 2 μg of trypsin. Filtered tryptic peptides were collected in a new tube, 

and the filters were washed with 50 μl of 50 mM ABC and 0.5 M NaCl. Tryptic peptides 

were quantified by NanoDrop assay (Thermo Scientific, Sunnyvale, CA) after 

acidification with TFA.  

 

2.4 nLC-ESI MS/MS label-free quantification 

Digested samples were desalted and concentrated using Ziptip™ μC8 pipette tips. 

About 1 μg of peptide mixtures were injected into UHPLC system (Ultimate™ 3000 

RSLCnano, Thermo Scientific, Sunnyvale, CA) coupled online with Impact HD™ 

UHR-QqToF (Bruker Daltonics, Germany). Each sample was analysed at least three 

times to minimize technical variability. Samples were loaded onto a pre-column 

(Dionex, Acclaim PepMap 100 C18, cartridge, 300 μm) followed by a 50 cm nano-

column (Dionex, ID 0.075 mm, Acclaim PepMap100, C18). The separation was 

performed at 40 °C and at a flow rate of 300 nL/min using multistep 4 h gradients of 

acetonitrile as already reported [19]. The column was on-line interfaced to a 

nanoBoosterCaptiveSpray™ ESI source (Bruker Daltonics). Data-dependent-
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acquisition mode was applied based on CID fragmentation assisted by N2 as collision 

gas. Mass accuracy was improved using a specific lock mass (1221.9906 m/z) and a 

calibration segment (10 mM sodium formate cluster solution) before the beginning of 

the gradient for each single run. Acquisition parameters was set as already described 

[20]. 

Data elaboration were performed through DataAnalysis™ v.4.1 Sp4 (Bruker Daltonics, 

Germany) and protein identification was achieved using an in-house Mascot search 

engine (version: 2.4.1), through Mascot Daemon tool. Human swissprot database 

(accessed Feb 2017, 553,655 sequences; 198,177,566 residues) was used. Searching 

parameters were set as following: Trypsin as enzyme; carbamidomethyl as fixed 

modifications; 20 ppm as precursor mass tolerances and 0.05 Da for the product ions. 

Automatic decoy database search was applied for FDR calculation and a built-in 

Percolator algorithm for rescores peptide-spectrum matches. Only proteins with at least 

one unique and significant (p-value < 0.05) peptide were considered identified. 

Progenesis QI for proteomics (Non-linear Dynamics, Newcastle, England) was used as 

label-free quantification platform as already reported [18]. Briefly, raw data were 

imported and the ion intensity maps of all runs (9 for each biofluid) used for the 

alignment process to compensate for between-run variation in the LC separation 

technique. For granting the maximal overlay across the data, only alignment scores 

above 60% were accepted. Peak peaking was performed using the default sensitivity and 

a peak width of 0.2 min. The survey scan data is used for the quantification of peptide 

ions without MS/MS data. Data is then normalized to all proteins. Protein identification 

was achieved using an in-house Mascot search engine as described above. Protein 

abundance was calculated using the sum of all unique peptide normalized ion 

abundances for that protein on each run. The peptide abundance was based on the sum 

of the intensities within the isotope boundaries. Fold changes were calculated selecting 

only non conflicting peptides (unique) in order to provide a more confidently 
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unambiguous read-out of protein abundance, preventing the overlapping of trends 

derived from different proteins, that shared the same peptides. Statistical tools were 

used to evaluate the quantitative differences between groups. To indicate the statistical 

significance of them in group expression data, Anova test was applied (p-value < 0.05). 

For the power analysis and the estimation of sample size, a threshold of 80% was 

chosen. Moreover, to afford the multiple testing problem, the FDR adjusted p-values, 

named q-value, is also provided (q-value < 0.05).  

 

2.5. Bioinformatics analysis  

The PANTHER (protein analysis through evolutionary relationship) Classification 

System [21] version 12.0 (released 2017-07-10) (http:// pantherdb.org) was utilized for 

gene ontology (GO) analysis. In particular, PANTHER Statistical overrepresentation 

test with GO-Slim Biological Process annotation data was applied; GO terms with p ≤ 

0.05 after Bonferroni correction were deemed significant. 

Differentially expressed proteins (DEPs) were subjected to Core Expression Analysis 

and investigated for network interrelation by Ingenuity Pathway Analysis (IPA; Qiagen 

Bioinformatics). IPA scans the set of input proteins to identify networks by using 

Ingenuity Knowledge Base for interactions between identified “Focus Genes.” The 

UniProt/ Swiss-Prot Accession was used as identifier in the dataset. In this study, the 

DEPs between Renal Vein invasion (B) and Vascular endothelium infiltration (A), as 

well as between Renal Vein Thrombosis (C) and Renal Vein invasion (B), along with 

hypothetical interacting genes stored in the knowledge base in IPA software, were used 

to generate a set of networks with a maximum network size of 70 genes/proteins. The 

ratio values in the datasets were converted to fold change values, where the negative 

inverse (−1/x) was taken for values between 0 and 1. Networks were displayed 

graphically as genes/gene products (“nodes”) and the biological relationships between 

the nodes (“edges”). All edges are from canonical information stored in the Ingenuity 
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Pathways Knowledge Base. Networks of these genes were generated based on their 

connectivity and a score ranked each. This score indicates the likelihood of the focus 

molecules in a network from Ingenuity's knowledge base being found together due to 

random chance. It is based on the hypergeometric distribution, calculated with the right-

tailed Fisher's Exact Test, and corresponds to the negative log of this p-value. A score 

of Ratio (Expression Fold Change) = 1.5 and p-value (Anova) = 0.05 were set as cutoffs 

for identifying networks. Furthermore, we used IPA in order to identify the top 

deregulated molecules and the top canonical pathways in which they participate. In 

addition, IPA was used to reveal the top molecular and cellular functions, as well as the 

top upstream regulators, top diseases and biological functions of the DEPs. 

  

3. Results  

 

3.1. Experimental design  

A cohort of nine patients affected by clear cell RCC with vascular infiltration was studied 

through a quantitative proteomic approach based on nLC-ESI-MS/MS. All of the 

patients were subjected to surgical nephrectomy and the diagnosis was confirmed by the 

histological examination. Patients were classified in agreement with the 2009 TNM 

(tumour-node-metastasis) system classification [22] and to their clinical characteristics 

(Supplemental Table 1). 

Assessment of vascular infiltration was achieved by CT-scan (Computed Assisted 

Tomography) following morphological description after surgery. Based on these 

examinations, the dataset was divided into 3 groups according to the level of RCC 

extension into renal vein: -(A) patients with the evidence of vascular invasion in renal 

site (not otherwise distributed); -(B) patients with the evidence of vascular invasion in 
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renal site and renal vein invasion; -(C) patients with evidence of renal vein thrombosis. 

The experimental design was illustrated in Fig. 1.  

 

3.2. Biofluid proteome variation in response to RCC extension 

into renal vein  

3.2.1. Urinary proteome changes  

A label-free proteomic approach was applied to urine sample pools in order to identify 

and quantify urinary proteins whose abundance is significantly different depending on 

RCC infiltration level into renal vein. 

From 1207 identified proteins (Supplemental Table 2), 574 proteins were observed as 

differentially expressed in at least one of the three conditions, using the following filters: 

at least 2 unique peptides; fold change ≥ 1.5; anova test p-value ≤ 0.05; power ≥ 0.8; q-

values ≤ 0.05 (Supplemental Table 3). The number of proteins identified in each of the 

runs was reported in Supplemental Fig. 1. The proteins were then grouped according to 

their fold changes calculated comparing the three studied conditions. In particular 

among all possible combinations, four groups (i-with an ascending concentration trend; 

ii- with a descending concentration trend; iii-an increase of concentration from 

condition A to B and then a decrease from B to C; iv-a decrease of concentration from 

condition A to B and then a increase from B to C) were considered to better provide 

information of the tumour invasion (Fig. 2A). 

Among these differentially expressed proteins, only three of them (uromodulin, Ras-

related protein Ral-A, Beta-Ala-His dipeptidase), diminished proportionally to RCC 

infiltration while twenty-six proteins seems to be positively influenced by the increase 

of renal vein involvement (Fig. 2A). The remaining 318 proteins showed a positive (268) 

or negative (51) variations of their fold changes at the beginning of the invasion inside 

the lumen of the vein.  
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3.2.2. Plasma proteome changes  

Plasma samples pools were also investigated by label-free LC-ESIMS/MS relative 

quantitation in order to highlight differentially expressed proteins in response to RCC 

vascular infiltration, similarly to previously described approach on urine. 

156 different proteins were identified (Supplemental Table 4) and, among them, 58 

DEPs were found filtering based on following criteria: at least 2 unique peptides; fold 

change ≥ 1.5; Anova test pvalue ≤ 0.05; power ≥ 0.8; q-values ≤ 0.05 (Supplemental 

Table 5). The number of proteins identified in each of the runs was reported in 

Supplemental Fig. 1. 

Twenty-eight proteins were present in the fourth group according to their fold changes 

calculated comparing the three studied conditions as above described for urine (Fig. 

2B). None of them showed an increase of their abundance consistently to the augment 

of RCC infiltration and only two, including Apolipoprotein A-1 and an isoform 

Fig. 1. Experimental design and workflow. 
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belonging to keratin family (type II cytoskeletal 1), appeared to be inversely correlated 

to renal vein invasion (Fig. 2B).  

3.2.3. Comparison between urine and plasma proteome alterations 

Urinary protein content derived from patients affected by ccRCC at different vascular 

infiltration levels was compared with related plasma proteome belonged to the same 

cohort of patients.  

Eighty proteins identified with at least 2 unique peptides were found to be shared 

between urine and plasma datasets, equivalent to about 75% of all plasmatic proteins 

and about 11% of urinary proteins detected in the sample pools (Fig. 3).  

 

 

 

Fig. 2. Protein expression trend correlated to RCC extension into RV (RV = Renal Vein, 

A = ccRCC patients that show vascular infiltration, B = ccRCC patients that show tumour 

infiltration into renal vein; C = ccRCC patients that show renal vein thrombosis) in urine (panel A) 
and in plasma (panel B). 
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Fig. 3. A- Number of proteins isoforms identified and quantified in urine and plasma samples 
through nLC-ESI MS/MS. Data were elaborated through Progenesis platform and a Venn Diagram 
between urine and plasma outcomes is shown both for identified proteins and for differentially 

regulated proteins (Ratio ≥ 1.5). B- DEPs in common between urine and plasma samples. C- 
Proteome expression consistency between urine and plasma samples regarding shared DEPs. 
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Among the common protein IDs, 28 shown a significant variation of their expression 

(fold change ≥ 1.5), comparing the three conditions (A = vascular infiltration; B = RV 

infiltration; C = RV thrombosis) (Fig. 3A). In this subset, two proteins, Complement 

C1s subcomponent and Immunoglobulin heavy constant alpha 2, were shown to be 

varied in urine only in the comparison of RCC renal vein obstruction (C) respect than 

the initial RCC vascular invasion (A) (Ratio ≥ 1.5 or ≤ 0.67). The remaining 26 

differentially modulated during RV infiltration and RV thrombosis phase were listed in 

Fig. 3B. A high level of concordance of ranging from 58% to 81% has been observed 

comparing the expression trend (up- or down-regulation) of proteins between urine and 

plasma (Fig. 3C). This coherence is remarkably higher (81%) considering only changes 

belonging to RV invasion (B/A). 

From a functional point of view, proteins present in this panel are involved mainly in 

immune-system process and defense (Lactotransferrin, Haptoglobin, Annexin A1 

Myeloperoxidase, Leukocyte elastase inhibitor, Plastin-2, Annexin A3, Lysozyme C, 

Annexin A2, Neutrophil defensin 1, Protein S100-A11, Neutrophil elastase, 

Immunoglobulin lambda-like polypeptide 1, Complement component C1q receptor, 

CD166 antigen). Some of them are likely to be associated also to protein binding 

(Annexin A1, Annexin A3, Annexin A2, Protein S100-A11), and to pentose phosphate 

pathway (Transaldolase and 6-phosphogluconate dehydrogenase, decarboxylating).  

 

3.3. Functional and network analysis  

3.3.1. Biological processes modulated by RCC vascular invasion in urine 

and plasma protein  

A meta-analysis based on functional annotation tools was performed in order to 

highlight which biological process or pathways altered depending on the free RCC 

extension into renal vein (RV), are reflected by the two biofluids.  
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For this purpose, only proteins with significant changes in their abundance (574 IDs in 

urine and 58 IDs in plasma as shown in Fig. 2A) were included. Moreover, to better 

isolate the changes related to RV invasion, plasma and urine proteomes were grouped 

into four datasets for each biofluid, taking into account the three possible levels of 

infiltration based on the experimental design (Fig. 1). In particular, the lists of DEPs 

were divided considering only those proteins that resulted consistently down- or up-

regulated in RV invasion (condition B respect than condition A), and in RV thrombosis 

(condition C respect than condition B), as displayed in Supplemental Fig. 2. 

Initially, these eight lists were separately submitted to a statistical overrepresentation test 

on PANTHER gene analysis tool for pinpointing the most significant biological 

processes enriched during RV infiltration and thrombosis and for evaluating the degree 

of coherence between urine and plasma proteome from a functional point of view (Fig. 

4). The biological processes in particular were grouped into macro-categories, according 

to GO-term classification, with the aim of better detecting typical functional traits 

characterizing tumour vascular invasion steps, and if these traits were represented 

similarly in urine and plasma. 

As displayed in Fig. 4, most of the bioprocesses varied in urine overlapped with those 

found altered in plasma. Among these shared categories, no inconsistent pattern was 

shown.  

 

3.3.2. Ingenuity pathway analysis of the liquid biopsies proteomes  

IPA software was used to deeply explore functions and pathways that resulted 

differently modulated in the biofluids in response to RCC infiltration into the renal vein 

(Supplemental Fig. 3-6). Similarly to the previous analysis by Panther search, a 

comparison between urine and plasma DEPs was carried on considering both the 

changes occurred in patients with RV invasion and in those whose RV was obstructed. 

As shown in Supplemental Fig. 3 and Supplemental Fig. 4, several functional features 
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were shared between patients showing evidence of RCC infiltration in RV, 

independently from the presence of RV thrombus. However, it has to be noticed that 

some GO-terms, including networks and molecular functions, appear to be more 

specific of the level of vein invasion. On the other hand, there was a remarkable overlap 

in the comparison of the information gathered in urine versus the one received from 

plasma (Supplemental Fig. 5 and Supplemental Fig. 6). This level of overlapping is very 

high in the case of the physiological system development and functions section, while it 

tends to disappear for top networks and top upstream regulators. Moreover, in terms 

of pathways consideration, and disease and biofunctions, the concordance between the 

two liquid biopsies was slightly higher for RV invasion patients in respect to RV 

thrombosis subjects. On the other hand, the concordance increased in RV thrombosis 

samples in the case of molecular and cellular functions.  

 

4. Discussion 

 

The kidney, urine and plasma proteomes are not isolated compartments, rather, they are 

closely related and could be considered an interconnected system: kidney filtered plasma 

proteins and waste products into urine via excretory system, and furthermore renal cells 

may secrete proteins directly into blood or release them into the urine. Many large scale 

shotgun analyses have investigated the proteome of these specimens, but only few of 

them have compared the information gathered from these sources, especially for the 

biofluids [23]. The human proteome atlas for kidney, urine and plasma described by 

Farrah et al. has been built assembling proteins identified using different sources (e.g. 

glomerulus, urinary exosomes, urine from healthy subjects, etc.) and different analytical 

approach. These databases result certainly useful because they provide a reliable storage 

of proteins of different origin.  
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However, they do not compare the proteome from different specimens belonging to 

the same subject, do not provide information about the relative changes of these 

proteins in different conditions and do not clarify which pathways or network are more 

represented comparing blood and urine. Moreover, the proteome data used for 

comparing the specimens were often obtained by different databases and by diverse 

analytical methods. 

One of the first work concerning the integration of more than one specimen was 

provided by RF Andersen and co-workers [24]. The authors through a nano-LC-

MS/MS quantitative approach based on iTRAQ labelling identified DEPs in urine and 

plasma during childhood idiopathic nephrotic syndrome (NS) compared with remission. 

About 149 proteins were found to be present in both the biofluids, although none of 

these shared proteins were observed as significantly altered following NS remission. Li 

et al. investigated urinary and plasmatic proteome by LC-MS/MS to determine the best 

source for a more sensitive detection of protein markers characterizing the effects of 

two anticoagulants (heparin or argatroban) in six SD rats before and after treatments 

[7]. Recently, Welton et al. applying a semi-quantitative aptamer-based protein array, 

identified about 1000 proteins, of which almost 400 were present at comparable 

quantities in plasma in respect to urinary vesicles [8]. Concerning the study of kidney, 

data integration between different biofluids was concerned more with the study of 

physiology of this organ [25] than being finalized to enrich the molecular scenario of a 

specific disease, as renal cancer. 

Herein, for the first time we applied a shotgun label-free LC MS/MS approach to 

compare the proteomes between urine and plasma that derives from the same ccRCC 

patient cohort with different levels of tumour infiltration into the renal vein, from the 

vascular invasion without the involvement of the RV to the complete occlusion of this 

vessel. Plasma and urine were collected selecting three subjects for each the three 

conditions in a wide cohort of RCC patients using a stringent criterion of inclusion. The 
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appropriateness and the risk of the biological averaging assumption in sample pooling 

must be seriously take into account during the choice of the proteomic workflow, 

especially for investigations involving class discovery and class prediction in the context 

of diagnostics and prognostics analysis [26]. Due to the low number of subjects showing 

the desired defined tumour characteristics, and to the nature of the study far from being 

diagnostic- or prognosticoriented, samples were pooled based on the condition and the 

specimen of origin. For each sample pool at least three technical replicates were analysed 

and statistical thresholds were considered as described in methods section. Moreover, 

plasma was preferred to serum and collected avoiding unnecessary manipulation (e.g. 

depletion), in order to make the biofluid comparison more reliable and reduce 

exogenous modifications. 

Overall, 1207 and 156 proteins were identified in urine and in plasma, respectively; while 

574 urinary and 58 plasma protein IDs were observed as differentially expressed in at 

least one of the three conditions. The discrepancy of identification power ~10-fold 

higher in urine could be ascribe to the higher protein dynamic range in blood compared 

to urine. A lot of approaches have been applied to overcome this issue, including 

depletion of high abundant proteins (such as albumin or IgG), often coupled with 

different strategies of off-line peptide fractionation [27,28]. However, to limit the 

variability of the results that could be introduced by removing the most abundant 

proteins, and also to keep the quantitation more reliable, we decided to analyse the two 

biofluids using the same protocol. The message that urine reflect more information 

remains valid despite the low identification power for plasma. 

A panel of 26 urinary proteins were found to be directly correlated with the extension 

of RCC into RV, showing an increase in their abundance levels, parallel with those 

related to the infiltration level. This trend was not observed in plasma, probably due to 

the limited protein number. The panel of positive markers in urine is largely composed 

by proteins implicated in biological process that seem strongly related to the tumour 
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invasion, inflammatory process, and energetic metabolism, as described in results 

paragraph 3.2.3. Only three proteins (uromodulin, Ras-related protein Ral-A, Beta-Ala-

His dipeptidase) in urine and two in plasma (Apolipoprotein A-1and a keratin type II 

cytoskeletal 1) are negatively influenced by the increase of infiltrative process. 

Interestingly, Ral-A GTPase was reported to be associated with advanced kidney cancer, 

being involved into malignancy invasion processes, through a signal pathway induced 

by proinflammatory cytokine prostaglandin E2 (PGE2) [29]. Similarly, Apolipoprotein 

A-1 (APOA1) is shown to be correlated with RCC prognosis in agreement with the 

findings of a recent investigation that demonstrated in a retrospectively study of 786 

patients with RCC that a low APOA1 serum level has been associated to a worse overall 

survival and to shortened disease-free survival [30]. Moreover, activity of Beta-Ala-His 

dipeptidase encoded by CNDP1 gene has been observed to be correlated with a 

potential long term protection of complications linked to reactive metabolites 

accumulating, e.g. in diabetes and chronic renal failure [31]. 

The comparison of protein content identified in the two biofluids highlighted a huge 

overlap between plasma and urine, being about three-quarters of all plasmatic proteins 

included in urine dataset and about half of DEPs found in plasma (Fig. 3A). This could 

be expected since urine is mainly the result of blood filtration encompassing the most 

abundant and less represented proteins. However, this overlap allowed us to gain a new 

insight from a different perspective about the pathological processes connected to the 

RCC vascular invasion. 

The list of biofluid-shared DEPs, included a high percentage of immunoglobulin (about 

30%), components and factors of complement cascade, modulators of acute-phase 

response and defense involved in complement activation, innate immune-system, 

platelet degranulation and scavenging of heme from plasma (Supplemental Table 6). 

Overall, they are consistently regulated if we compared plasma and urine, and some of 

them appear to be significantly related to the infiltration grade of RCC (Fig. 3B). 
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However, if we perform this comparison considering the different steps of the extension 

of RCC, the percentage of variability appear different. In fact, more advanced is the 

stage of vascular invasion, more discrepancies between blood and urine are present (Fig. 

3C). A possible explanation for this behaviour could be found considering the 3D-

development of the tumour mass. In fact, urinary proteome alterations could be 

influenced by the extent of RCC not only into vascular system but also into the organ 

itself, which can lose its architecture. If kidney structure and function is damaged, it can 

be supposed that non-regulated protein deliveries to renal basin can be present. If we 

consider the urinary albumin level, generally associated with functional status of the 

glomerular filtration barrier, no statistically significant proteomic variation is detectable 

comparing the three groups. However, the histological exams displayed a very advanced 

tumour progression in the three patients showing RV thrombosis. Therefore, an 

impairment of kidney functionality cannot be excluded in the surrounding tumour area. 

Alterations associated with disease generally require an entire set of effectors to be 

completed. By now, modern proteomic approaches despite conspicuous advancements 

can provide only a partial list of them. A comprehensive study of regulatory networks 

and pathways could compensate these lacks and effectively increase the understanding 

of the intricate system of functions that are turned on or off during disease process. 

This contribute is more evident if we apply an integrated strategy. Therefore, DEPs 

datasets found in urine and plasma were subjected to a functional classification and 

outcomes were visualized filtering both RV infiltration steps and biofluid type. Firstly, 

it can be noticed that the biological processes shared between urine and plasma showed 

a high grade of concordance in terms of positive or negative regulation (Supplemental 

Fig. 7). No inconsistency was revealed between urine and plasma supporting the 

hypothesis that urine is a good mirror of what is happening in blood. Moreover, it is 

likely that both urine and blood carry a specific ‘biofluid functional signature’. Several 

processes were enriched mainly (e.g. glucose and RNA metabolism, catabolic process, 
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adhesion), or exclusively in urine (such as transcription related processes). Others are 

likely more represented in plasma (e.g. B-cell mediated immunity or blood coagulation). 

Furthermore, if we integrate the information carried by the two biofluids, also a 

functional signatures associated to biological processes could be mined. To better 

visualize them, the enriched biological processes were categorized into macro-groups 

using PANTHER gene-ontology (Fig. 4). Results suggest specific trends characterised 

by processes that are on or off depending on the infiltration phase. Proteins related to 

catabolic processes, proteolysis and cell to cell adhesion were up-represented both in 

RV infiltration and RV thrombosis, while energetic metabolic processes including 

glycolysis and regulation of transcription appeared on during RV invasion and down-

represented when RV is occluded. On the other hand, in patients with the evidence of 

RCC thrombosis, immunity system related proteins, including those involved in the 

complement activation, and defense mechanisms, endocytosis and cell recognition were 

found significantly increased and proteins implicated in blood circulation decreased. 

These data were also confirmed by the functional annotation classification provided by 

Ingenuity Pathway analysis (Supplemental Fig. 3- 6). Despite a certain overlap between 

urine and plasma, only the combination of the two datasets permits to highlight specific 

traits of renal cancer vascular invasion. On one side, the analysis underlined as already 

suggested that ccRCC is basically a metabolic disorder, since malignant cells handle a 

number of biological pathways to achieve their aggressive phenotype and spread into 

circulating system [32]. On the other side, particularly for these infiltrative forms, ccRCC 

is likely to behave as an immunological disease, involving immune cell trafficking, 

humoral immune response and positive and negative acute response. 

In conclusion, the comparison between the functional classification of urine and plasma 

proteome confirms the complementary of the information delivered by these biofluids 

and shed light to those processes and pathways that are likely to be switched on or off 

during malignancy spreading into renal vein. On the other hand, it suggests that the loss 
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of kidney architecture during advanced stages of tumour growth could have a detectable 

repercussion to biofluids proteome. Therefore the integration of information between 

urine and plasma changes at a proteomic level may provide a more complete landscape 

of such a dynamic system as growing cancer cells are, also from a functional point of 

view. Supplementary data to this article can be found online at https:// 

doi.org/10.1016/j.jprot.2018.04.029.  
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ABSTRACT Renal Cell Carcinoma (RCC) is the most frequent form of kidney cancer 

and approximately 80% of cases are defined as clear cell RCC (ccRCC). Among the 

histopathological factors, tumour grade represents one of the most important 

parameters to evaluate ccRCC progression. Nonetheless, the molecular processes 

associated with the grading classification haven't been deeply investigated thus far. 

Therefore, the aim of this study was to uncover protein alterations associated with 

different ccRCC grade lesions. Formalin-fixed paraffin-embedded samples from ccRCC 

patients were analysed by histology-guided MALDI-MSI and shotgun proteomics in 

order to study the biological processes implicated in ccRCC. MALDI-MSI data 

highlighted signals able to discriminate among different grades (AUC > 0.8). The ion at 

m/z 1428.92 was identified as Vimentin and was overexpressed in grade 4 lesions, 

whereas ions at m/z 944.71, m/z 1032.78 and m/z 1325,99 were identified as histones 

H2A, H3, and H4, respectively. nLC-ESI-MS/MS analysis provided a further list of 

proteins and their abundances, showing a difference in protein content among the four 

grades. Moreover, the obtained molecular profiles showed a correspondence with the 

different Cancer-Specific Survival rate at 10 years post-surgery, as reported in literature.  
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Significance: Despite the generally accepted role of tumour grade in ccRCC diagnosis, 

the proteomic processes associated with the different tumour grades has not been 

extensively studied and doing so may provide insights into the development of the 

disease. In the current study, data obtained using MALDI-MSI was integrated with that 

obtained using nLC-ESI-MS/MS to highlight the proteomic alterations underlying the 

different ccRCC grades. The combined approach identified vimentin and three histones 

(H2A, H3 and H4) that were able to discriminate among the four grades whilst the nLC-

ESI-MS/MS analysis alone provided a further list of proteins with an altered abundance. 

Furthermore, there was a good correlation between the molecular profiles generated for 

each grade and the different Cancer-Specific Survival rate at 10 years post-surgery. Such 

findings could be a valuable starting point for further studies aimed at clarifying the 

molecular events that occur during the development of ccRCC.  

 

Keywords: Clear cell Renal Cell Carcinoma; Tumour grade; Mass spectrometry; 

Proteomics; ISUP grading system; MALDI-Imaging. 
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1. Introduction 

  

Renal Cell Carcinoma (RCC) is the most frequent form of kidney cancer [1,2] and is 

comprised of three main subtypes: clear cell, papillary and chromophobe [3]. 

Approximately 80% of cases are defined as clear cell RCC (ccRCC) lesions and are 

further stratified by employing a combination of anatomical and histological parameters, 

which are also used as prognostic factors [4]. The tumour-node-metastasis (TNM) 

system is used to evaluate the stage of the disease by considering the dimension and 

position of the tumour (T), involvement of lymph nodes (N), and presence of metastasis 

(M) [5,6]. In addition to the anatomical features gathered in the TNM classification 

system, histological factors (tumour grade (G), sarcomatoid/rhabdoid differentiation, 

microvascular invasion,) influence the prognosis of clear cell Renal Cell Carcinoma. 

Among the histological parameters, tumour grade is one of the most important 

prognostic feature. For clear cell and papillary RCC, grade is now assessed according to 

the size and shape of the nucleoli: nucleolar prominence defines grades from 1 to 3, 

while extreme nuclear pleomorphism or sarcomatoid and/or rhabdoid differentiation 

determine a tumour as grade 4 [6–8]. Despite the generally accepted role of tumour 

grade in ccRCC prognosis, the molecular processes and protein alterations associated 

with each grade have not been extensively studied thus far. Most of the studies currently 

present in literature used the diagnostic classification that is based on the highest grade 

value observed in the tissue sections. However, considering the high heterogeneity of 

the tumour mass already demonstrated [9], their results could be affected by the most 

abundant grade, that could be different from that diagnosed.  

Recent advancements in high-throughput technologies makes proteomics analyses 

applicable to a variety of samples (cell cultures, biofluids, tissues etc.) and most of them 

can be potentially used to profile renal tissue. Single cell populations or purified 

glomeruli are the samples of choice for investigating kidney filtration [10]. However, 
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those approaches may have limited application when looking at tumour lesions: cells in 

culture represent a single grade of cancer and thus they do not well represent the 

characteristic complexity of a tissue. Moreover, when proteins are extracted directly 

from a tissue, the information about altered abundance depending on the grade [11,12] 

could be lost due to tissue homogenisation. For these reasons, MALDI-MSI is the gold 

standard technique for the investigation of the inherent heterogeneity of tumour lesions, 

by preserving tissue integrity and protein alterations in-situ.  

The aim of this work was to investigate the molecular traits of different ccRCC grades 

and the features that could drive grading progression, working on regions as 

homogeneous as possible. For this purpose, Formalin-Fixed Paraffin-Embedded 

(FFPE) tissue samples were analysed by complementary mass spectrometric techniques: 

Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging (MALDI-

MSI) and nano Liquid Chromatography coupled with ElectroSpray Ionisation tandem 

Mass Spectrometry (nLC-ESI-MS/MS). MALDI-MSI allows the spatial distribution of 

proteins to be visualised within the tissue, therefore enabling the investigation of areas 

of tissue that are homogeneous for the grade and preventing artefacts that could occur 

due to the extraction of proteins from the entire tissue section. Conversely, nLC-ESI-

MS/MS is employed for its greater capability to identify and quantify proteins and, thus, 

the combination of the two techniques enables information related with protein identity 

and quantity to be correlated with spatial localisation. 

 

2. Material and methods  

 

2.1. Materials  

RapiGest SF surfactant was purchased from Waters Corporation (Waters, Milford, 

Massachusetts, USA). ZipTips were purchased from EMD Millipore (Billerica, 
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Massachusetts, USA), Indium Tin Oxide (ITO)- glass slides from Bruker Daltonics, 

Germany, Trypsin from porcine pancreas (Proteomics Grade, BioReagent, 

Dimethylated) and all the other reagents and solvents from Sigma-Aldrich (Chemie 

Gmbh, SBuchs, Switzerland).  

 

2.2. Samples and sectioning  

Samples from patients with a proven diagnosis of clear cell Renal Cell Carcinoma, 

collected between January 2011 and June 2016, were provided by San Gerardo Hospital 

(Monza, Italy) and included in the study. Diagnosis of the selected patients was 

performed after careful histopathological evaluation including grading (2009 ISUP 

classification system), sarcomatoid features, vascular invasion, tumour necrosis, and 

invasion of the collecting system and perirenal fat. The routine histological staining 

procedures were performed, including immunofluorescence and electron microscopy, 

with all these techniques required for the diagnosis. All the specimens included in the 

study were approved by the local ethic committee (Comitato Etico Azienda Ospedaliera 

San Gerardo, Monza, Italy), and analyses were carried out in agreement with the 

Declaration of Helsinki. After nephrectomy, the tissue was fixed according to standard 

routine methods, with a timing of 24 to 48 h for surgical specimens. Human ccRCC 

tissue samples were collected after nephrectomy from thirteen patients (Table 1) and 

FFPE tissue blocks were prepared using an automatic Tissue Processing Centre (TPC 

15 Duo/Trio, Medite, MeBurgdorf, German). From each FFPE block, two types of 

samples were prepared: tissue sections for MALDI-MSI experiments and FFPE 

punches for nLC-ESI-MS/MS analysis. Tissue sections, with a thickness of 5 μm, were 

cut and mounted onto conductive ITO glass slides for MALDI-MSI analysis. Moreover, 

three biological replicates for each grade where used for nLC-ESI-MS/MS analysis. 

Each sample was made by three punches with a size of 1×1.5mm (~300,000 

cells/sample), taken from the same tissue block.(G1=patients M,N,P; G2=patients 
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G,I,O; G3=patients E,F,I; G4=patients C,E,H; Table 1). FFPE tissue sections and 

punches were stored at room temperature until the day of the analysis.  

 

 

2.3. MALDI-MSI sample preparation and analysis  

Paraffin removal, tissue rehydration and antigen retrieval were performed as previously 

described [13]. Briefly, tissue sections were washed with xylene, ethanol and water prior 

to antigen retrieval incubation. For protein digestion, uniform layers of trypsin were 

deposited using an iMatrix Spray automated spraying system (Tardo Gmbh, Subingen, 

Switzerland) with an optimised method, and tissues were then incubated overnight at 

45 °C in a humid environment. After enzymatic digestion, the α-cyano-4-

hydroxycinnamic acid matrix solution (10 mg/mL in 50,50 acetonitrile:water w/0.4% 

trifluoroacetic acid) was sprayed on the tissues using the iMatrixSpray. MALDI-MSI 

Sample Patient

Age                

(at diagnosis) 

[year]

Gender

Greatest 

tumour 

dimension 

[cm]

pT Stage Grade

A 1 57 F 2.5 pT1a 1 G2

B 2 59 M 10 pT3a 4 G4

C,D 3 81 F 16.5 pT3a 3 G4

E 4 64 F 8 pT3a 3 G3

F 5 71 M 3.2 pT1a 1 G3

G 6 78 M 3.5 pT1a 1 G3

H 7 48 M 5,0 pT3a 4 G4

I 8 45 M 5.4 pT3a 4 G3

L 9 64 M 5 pT3a 3 G2

M 10 78 F 3 pT1a 1 G1

N 11 74 M 2.5 pT1a 1 G2

O 12 55 F 3.2 pT1a 1 G2

P 13 53 F 2.2 pT1a 1 G1

Table 1. Clinical-pathological characteristic of the patients included in this study. 
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analysis was performed using an UltrafleXtreme MALDI-TOF/TOF (Bruker 

Daltonics, Germany) equipped with a Smartbeam II laser operating at 2 kHz frequency. 

FlexControl software v3.4 was used to setup instrument parameters. External 

calibration of the instrument was performed with a mixture of standard peptides 

(PepMix I, Bruker Daltonics, Germany). The analyses were acquired in reflectron 

positive mode in the m/z range of 700 to 3500, with a laser diameter of 50 μm and a 

raster setting of 150 μm. Subsequently, MALDI-MS/MS analysis was performed only 

for signals of interest. In order to obtain the optimal mass value to be selected for 

dissociation during on-tissue MALDI-MS/MS, representative MALDI mass spectra 

were acquired in reflectron positive mode in the mass range of m/z 750 to 3500 using 

the random walk parameter of the sample carrier. A single precursor ion was selected 

by using the smallest precursor ion selector (PCIS) window possible and dissociated 

using laser-induced dissociation (LID) and LIFT™ technology, with the laser energy 

being set within a range of 40–70%. This process was performed until an MS/MS 

spectrum was obtained from the accumulation of ~700,000 laser shots. The resultant 

MALDI-MS/MS spectrum was submitted to Mascot 2.4.1 search engine 

(MatrixScience, London, UK) for protein identification. Then, the MALDI matrix was 

completely removed by washing the ITO glass with increasing concentrations of ethanol 

(90%, 95% and 100%) and the slide was dried before Hematoxylin and Eosin (H&E) 

staining. Tissue sections were then scanned at high resolution and converted to digital 

format using ScanScope CS Digital Scanner (Aperio, Park Center Dr., Vista, CA, USA) 

on which the pathologist annotated specific Regions Of Interest (ROIs) on the 

histological image. ROIs were selected by pathologist from regions that principally 

contained cells of the assigned grade (Fig. 1). However, the presence of small clusters 

of cell attributable to a different grade could not be completely excluded. A direct 

overlap of molecular and stained image was performed to integrate proteomic and 

morphologic data. ROIs were marked and grouped as follows: G1=8, G2=10, G3=16, 
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G4=10, normal cortex=8 and normal medulla=4 and were used to obtain the molecular 

profiles specific for each tumour grade. All the regions presenting a mixture of cells at 

different grades were excluded from the following analysis.  

 

 

Fig. 1. Tissue samples from ccRCC patients. Hematoxylin and Eosin (H&E) stained image and 

annotations (grade 1: blue; grade 2: green; grade 3: yellow; grade 4: red; normal medulla: grey; 

normal cortex: black) performed by the pathologist on the tissue sections previously analysed by 

MALDI-mass spectrometry imaging. 
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2.3.1. MALDI-MSI data analysis  

MALDI-MSI data were processed as previously described [14]. Briefly, ROIs from 

multiple FlexImaging 3.0 (Bruker Daltonics, Germany) analyses were imported into a 

single SCiLS lab 2014b file (http://scils.de/; Bremen, Germany), allowing the data from 

multiple acquisitions to be visualised simultaneously. Before statistical analyses, 

preprocessing steps were performed: baseline removal (iterative convolution) and 

normalization (Total ion current, TIC), peak picking (orthogonal matching pursuit 

algorithm), peak alignment (to align the detected ions with peak maxima), and spatial 

denoising. Principal Component Analysis (PCA) was also performed to reduce the high 

complexity of the data and visualize their variability. Finally, Receiver Operating 

Characteristic (ROC) analysis was performed, with an Area under the curve (AUC)>0.8 

being required, as an additional criterion to the p < 0.05 calculated with Wilcoxon rank-

sum test, for a peak to be considered as statistically significant. For MALDI-MS/MS 

spectra, baseline subtraction and smoothing were performed using FlexAnalysis 3.4 

(Bruker Daltonics, Germany). MS/MS spectra were searched against the Swiss-Prot 

database (accessed July 2017; 555,100 sequences; 198,754,198 residues) with the Mascot 

2.4.1 search engine. Mass tolerances were set at 100 ppm for MS and 1 Da for MS/MS. 

No enzymes or fixed post-translational modifications were set in the search parameters.  

 

2.3.2. nLC-ESI-MS/MS sample preparation and analysis  

Proteins were extracted from tissue punches for their identification and quantitation by 

nLC-ESI-MS/MS. Paraffin removal was performed by three consecutive washes in 

xylene (3 min each) followed by centrifugation (14,000 rpm, 5 min). Subsequently, 

consecutive washes in 100%, 90% and 70% of ethanol, for 4 min each, followed by 

centrifugation (14,000 rpm, 5 min) were performed. Then, antigen retrieval was carried 

out in a 10mM citric acid solution (pH=6) at 97 °C for 45 min. In order to enhance 

protein solubilisation and digestion, 100 μL of 0.1% RapiGest SF surfactant were added 
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to each sample. Reduction with 10mM DL-DiThioThreitol and alkylation with 15mM 

IodoAcetAmide were performed prior to enzymatic digestion done by adding 4 μg of 

trypsin to each specimen and by incubating samples over-night at 37 °C. The enzymatic 

reaction was blocked by acidification. Finally, desalting and concentration of the 

samples were performed using μ-C18 ZiptipTM pipette tips, following the standard 

protocol provided by Millipore. An aliquot of 7 μL containing 1 μg of proteins was then 

injected into a Dionex UltiMate 3000 rapid separation (RS) LC nano system (Thermo 

Scientific, Germany), coupled online to an Impact HD™ Ultra High Resolution-

QqTOF (Bruker Daltonics, Germany). HPLC analyses were performed as follows: pre-

column for calibrants (Dionex, Acclaim PepMap 100 C18, nanoviper, 75 μm i.d. × 2 

cm, 3 μm), desalting pre-column (Dionex, Acclaim PepMap 100 C18, cartridge, 300 μm 

i.d. × 5 mm, 5 μm), analytical column: 50 cm nanocolumn (Dionex, ID 75 μm, Acclaim 

PepMap100, C18, 2 μm), mobile phase for loading pump: 98:2 H2O:ACN w/ 0,1% 

TFA, loading pump isocratic flow rate: 10 μL/min. The separation was performed at 

40 °C and at a flow rate of 300 nL/min, using multistep 4 h gradients from 4 to 66% B 

in 204 min (mobile phase A for nano pump being H2O w/ 0,1% Formic Acid and 

mobile phase B 80:20 ACN:H2O w/ 0.08% FA). The runtime was set to 240 min. The 

analytical column was on-line interfaced to a nanoBoosterCaptiveSpray™ ESI source 

(Bruker Daltonics, Germany), working in enhanced modality. Collision-Induced 

Dissociation, assisted by N2, was used to generate MS/MS spectra. Mass accuracy was 

improved using a specific lock mass (1221.9906 m/z) and a 15 min calibration segment 

(10mM sodium formate cluster solution). The instrument worked in Data-Dependent-

Acquisition mode, automatically alternating a complete MS scan to the acquisition of 

MS/MS spectra. Other parameters were set in order to optimise the analysis: capillary 

voltage and current (2000–2100 V and 2050–2200 nA, respectively), peak to peak 

voltages for Funnel 1 (RF=400 Vpp), Funnel 2 (RF=600 Vpp), Hexapole (RF=400 

Vpp) and Quadrupole ion energy (5 eV).  
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2.3.3. LC-MS/MS data analysis 

Compass DataAnalysis v4.1 software was used to calibrate, deconvolute, and convert 

the acquired raw data prior to protein identification and quantification. Label-free 

protein quantitation was achieved by Progenesis QI for proteomics (Nonlinear 

Dynamics, Newcastle, UK). Automatic and manual run alignment were performed to 

reach a score≥50%; peak picking was achieved with a default sensitivity, a minimum 

peak width of 0.2 min and maximum charge of 8, then the first 15 min of analysis 

(elution of the calibrant) were discarded for the following steps. Normalization to all 

proteins and protein quantification using only non-conflicting peptides were also set. In 

addition, anova p.value≤0.05, q value≤0.05 power analysis≥0.8 and fold change≥2 were 

also used as statistical filters. Protein identification was obtained with Mascot 2.4.1 

search engine with the following search parameters: Swissprot database (accessed July 

2017; 555,100 sequences; 198,754,198 residues); fixed modification: cysteine 

carbamidomethylation; no variable modification; maximum number of missed 

cleavages: 1; MS mass tolerance: 20 ppm; MS/MS tolerance: 0.05 Da; peptide filter: 

FDR≤1 using percolator algorithm. Proteins of interest were analysed for molecular 

functions and biological processes with Panther tools [15].  

 

3. Results  

 

Samples deriving from thirteen patients with a proven diagnosis of clear cell Renal Cell 

Carcinoma were analysed using histology-guided MALDI-MSI and nLC-ESI-MS/MS 

in order to investigate differences in terms of protein localisation and abundance among 

the different tumour grades.  
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3.1.1. MALDI-MSI analysis of FFPE tissue sections 

Initially, the capability of MALDI-MSI to enlighten different proteomic profiles arising 

from pathological and control specimens was investigated by performing unsupervised 

PCA on the entire dataset (Fig. 2). Spectra deriving from the areas of healthy tissues are 

clustered together and are well separated from those obtained from neoplastic areas, as 

expected (Fig. 2A). By dividing the healthy tissue into normal cortex and normal 

medulla, it was also possible to highlight that the region of overlap between spectra of 

tumour and normal tissues belonged mainly to those spectra derived from ROIs of 

normal cortex (Fig. 2B).  

 

To detect the possible molecular profiles characteristic for each tumour grade, we 

focused our attention only on the spectra from ROIs G1, G2, G3 and G4. PCA did not 

show a consistent separation among spectra of different grades (Fig. 3A and B). Indeed, 

only G1 and G4 spectra were separated from each other (Fig. 3A), whereas those from 

cortex (light green), and tumour regions (pink). G2 and G3 showed a more scattered 

and overlapped distribution (Fig. 3B). Furthermore, the average spectra of the four 

Fig. 2. Principal component analysis (PCA) score chart displaying the distribution of spectra form 
healthy and cancer tissue. A) Three-dimensional PCA score chart of spectra deriving from healthy 
tissue (blue) and cancer tissue (pink). B) Two-dimensional PCA of the spectra deriving from 
normal medulla (dark green), normal cortex (light green), and tumour regions (pink). 
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grades show a different profile (Fig. 4). In particular, there was little spectrum-to- 

spectrum variability observed among those obtained from the ROIs corresponding with 

G1 and G4 whilst a considerable amount of variability was observed in the mass spectra 

obtained from G2 and G3 (Figs. 3A and 4, single ROI spectrum). Therefore, more in-

depth statistical analysis focused on the differently expressed signals between the two 

most homogeneous classes, G1 and G4, was performed. A pairwise ROC approach was 

employed in order to detect those peaks that could differentiate these two groups. Six 

signals showed a discriminatory capability, with an AUC≥0.8 and a p-value≤0.05. Three 

of these signals (m/z 944.71; m/z 1032.78; m/z 1325.99) were of higher intensity in G1 

compared to G4, whereas the other three (m/z 872.63; m/ z 914.64 and m/z 1428.92) 

showed an opposite trend. A multi-ROC approach was used in order to explore the 

possibility of combining multiple signals to increase the discriminatory power between 

G1 and G4. The combination of signals with the same intensity trend within the two 

classes showed an AUC value of 0.93 and 0.92, respectively.  

 

Fig. 3. Principal component analysis (PCA) score chart displaying the distribution of spectra from 
cancer tissue. Three-dimensional PCA score chart showing the distribution of spectra from ROIs 
at different grade: grade 1 (blue), grade 2 (green) (A), grade 3 (yellow), grade 4 (red) (B). 



 
125 

 

 

Fig. 4. Average profiles in the 700–2200 m/z mass range. Mean spectrum of the four grade (left) 
and average profiles of three representative single ROIs for each grade (right). 

https://www.sciencedirect.com/topics/chemistry/mass-to-charge-ratio


 
126 

 

Considering the strong discriminatory power of all these m/z values, we also evaluated 

their expression in G2 and G3. Four of these six signals showed a good correlation, 

calculated using the Spearman's rho, within the grades (from G1 to G4). Three of these 

signals (m/z 944.71; m/z 1032.78; m/z 1325.99) had a correlation value of −0.6, −0.5 

and−0.5, respectively, and a p-value lower than 0.001 whilst m/z 872.63 had a lower 

correlation value and higher p-value (correlation value=+0.4; p-value=0.02). On the 

contrary, m/z 914.64 and m/z 1428.92 did not show any correlation among the four 

grades. Some of the aforementioned signals were identified by on tissue MALDI-

MS/MS. The ion at m/z 1428.92 was identified as a unique fragment of Vimentin 

(peptide sequence: SLYASSPGGVYATR) with a Mascot score of 50, whilst the ion at 

m/z 944.71 was identified as a fragment of Histone H2A (peptide AGLQFPVGR), with 

a Mascot score of 49. Finally, the signal at m/z 1325.99 was identified as a fragment of 

Histone H4 (unique peptide DNIQGITKPAIR) with a Mascot score of 76. 

 

3.1.2. nLC-ESI-MS/MS analysis of FFPE tissue punches  

In order to perform more extensive investigation regarding protein expression, tissue 

punches from three different patients for each grade were analysed in triplicate by nLC-

ESI-MS/MS. Approximately 1000 proteins per patient were identified (ranging from 

600 to 1300), with a total number of proteins identified per each grade of approximately 

1700 (Table 2). In particular, 954 of the identified proteins were common to the four 

classes, whilst>200 proteins were specifically expressed by the different grades (data not 

shown). Protein abundance in the four grades was calculated by a label-free approach. 

More than 6000 peptides, with a score higher than 13, were used to evaluate the protein 

yield. Relative quantitation, using no conflicting peptides, was used to compare each 

single protein across runs and 1483 proteins were quantified. 
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 per injection per sample per grade

inj1 = 650

inj 2 = 661

inj 3 = 748

inj 1 = 549

inj 2 = 432

inj 3 = 313

inj 1 = 988

inj 2 = 881

inj 3 = 911

inj 1 = 729

inj 2 = 697

inj 3 = 735

inj 1 = 920

inj 2 = 985

inj 3 = 847

inj 1 = 793

inj 2 = 623

inj 3 = 734

inj 1 = 541

inj 2 = 729

inj 3 = 751

inj 1 = 964

inj 2 = 790

inj 3 = 667

inj 1 = 810

inj 2 = 723

inj 3 = 993

inj 1 = 582

inj 2 = 516

inj 3 = 473

inj 1 = 867

inj 2 = 869

inj 3 = 824

inj 1 = 630

inj 2 = 705

inj 3 = 607

G4

C 819

E 1233 1654

H 1009

G3

E 1049

F 1205 1774

I 1211

G2

G 1039

I 1300 1779

O 1131

Grade Sample
Total number of proteins identified 

G1

M 991

N 713 1657

P 1310

Table 2. Number of proteins identified per injection, per sample and total number of proteins 

identified for each grade group (FDR ≤ 1 using percolator algorithm). 
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The expression of the tryptic peptide signals at m/z 1428.92 and m/z 1325.99, identified 

by MALDI-MS/MS as tryptic fragments of Vimentin and H4, respectively, was also 

confirmed by the nLC-ESI-MS/MS analysis. However, the signal at m/z 944.71, 

identified by MALDI-MS/MS as Histone H2A, could not be unambiguously assigned 

through the nLC-ESI-MS/MS approach. In fact, this signal could be attributed to three 

different histone species (H2A1B, H2A1D, H2AV). The signal at m/z 914.64, that was 

not identified by on-tissue MALDI-MS/MS, could be assigned to three different 

proteins containing a tryptic fragment with a mass of approximately 913.5 Da: Vimentin 

(VIME), Prohibitin (PHB) and Elongation factor 1-alpha 1 (EF1A1). Similarly, the 

signal at 1032.78 m/z was identified by nLC-ESI-MS/MS as a tryptic fragment of 

Histone H31T, corresponding to the peptide YRPGTVALR (m/z 344.87, triply-

charged). This signal had an intensity that was similar to the one observed in the 

MALDI-MSI data. Finally, the signal at m/z 872.63 was identified as tryptic peptide 

(TAQAAAALR) uniquely assigned to Galactokinase protein (GALK1), which was 

over-expressed in G4 and under-expressed in G1 samples.  

Afterwards, the 1483 quantified proteins were filtered (p-value≤ 0.05, q.value≤0.05, 

max fold change≥2 and power≥0.8) in order to select only those that had a statistically 

significant alteration among the four grades. A group of 393 species was obtained and 

only the 226 proteins quantified with at least two unique peptides were considered for 

the subsequent evaluation (Supplementary Tables 1 and 2). As the tumour stage of the 

patient cohort was not homogeneous, we decided to exclude any possible confounding 

factors deriving from tumour position or dimension. For this purpose, protein 

expression was estimated among the different stages (stage 1 vs stages 3–4: none of the 

studied cases presented with a stage 2 tumour). Fifty-four proteins (Supplementary 

Tables 3 and 4) were observed to be significantly varied between stage 1 and stages 3–

4. In particular, 43 of these proteins were also present in the list of 226 proteins with a 

statistically significant alteration among grades and were thus excluded, given that their 



 
129 

 

variation was not associable solely to the grade (Supplementary Fig. 1). Finally, the 183 

proteins that varied only in the grade comparison were retained for the PCA analysis 

(Fig. 5). The biological replicates for the four grades were clustered together and 

separated on the basis of the grade. In particular, G4 samples were well separated 

(Principal Component 1) from the others. Given the strongly evident difference 

between G4 and the lower grades, and to better highlight possible proteomic differences 

among the lowest grades, the data was re-elaborated excluding G4 specimens from the 

comparison. For this purpose, the 183 proteins, that were shown to be altered in the 

comparison between G1 to G4, were again filtered in order to highlight only those 

whose expression altered among G1, G2 and G3 (Supplementary Table 5). The PCA 

score chart (Supplementary Fig. 2) highlighted the presence of well-separated clusters 

corresponding to the three different grade classes, with higher distances between G1–2 

and G3. 

 

 

Fig. 5. Principal component analysis (PCA) score chart displaying the distribution of the twelve 
samples. Each coloured point represents a sample (three analytical replicates for each sample, and 
three biological replicates -same colour- for each grade) allocated based on the score of the Principal 

Components. The overlaid loadings chart shows the proteins that influence the distribution. 
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The biological and molecular functions of the remaining 70 proteins, with an expression 

varied among G1, G2 and G3, were investigated using PANTHER tools. Metabolic 

processes (37.8%, GO:0008152) and cellular processes (23.7%, GO:0009987) were 

identified as the two most represented biological processes (Fig. 6). When delving 

deeper into these two groups of processes, cell communication (GO:0007154) and 

primary metabolic (GO:0044238) processes were shown to be those most represented. 

Moreover, the molecular functions of these proteins (Panther- Molecular function) were 

investigated and a considerable part of them was represented by proteins involved in 

catalytic activity (59.6%, GO:0003824) and binding (28.8%, GO:0005488).  

 

 

Those processes were also further investigated by performing the overrepresentation 

test, comparing our dataset with a reference dataset (Homo sapiens). In particular, fatty 

acid and lipid metabolic process, along with protein folding, tricarboxylic acid cycle and 

oxidoreductase activity resulted in being overrepresented in our dataset. (Supplementary 

Fig. 3). Furthermore, four proteins (Nephronectin, Isochorismatase domain-containing 

protein 2, Acyl-coenzyme A synthetase ACSM2A mitochondrial, Sideroflexin-1), 

showed a consistent differential expression among all the three comparisons (G1 vs G2, 

G1 vs G3 and G2 vs G3 - Supplementary Table 5).  

 

Fig. 6. Results of PANTHER database analysis. Pie charts of the 70 proteins statistically altered 
among G1, G2 and G3 samples categorized by GO classifications based on their (A) molecular 
function, and (B) biological process. 
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4. Discussion  

 

Despite the importance of tumour grade in ccRCC prognosis, no studies that investigate 

the molecular processes or protein alterations associated with each grade, taking into 

consideration the possible presence of cells ascribed to different grades within the same 

tissue section, have been reported so far [12,16]. The role of tumour grade as an 

important prognostic factor has also been demonstrated for other types of diseases, 

such as breast cancer [17] and prostatic adenocarcinoma [18]. On this basis, we 

investigated whether morphological differences, as used by the pathologist to define the 

tumour grade, reflect possible molecular alterations. We focused on the study of protein 

alterations detectable directly on tissue at different grades, by combining data obtained 

from two complementary mass spectrometric techniques. Initially, MALDI-MSI was 

used to overcome a limitation deriving from the diagnostic classification of the grade: 

the highest grade is assessed to the lesion even if it is present only in a minor area of the 

tumour. Failing that, the most abundant grade could potentially influence the results 

more than the diagnosed (highest) one. MALDI-MSI enabled average spectra of tumour 

areas, normal cortex, and normal medulla to be obtained. The PCA clustered the spectra 

belonging to these tissue areas in distinct groups. The small region of overlap of spectra 

observed in the PCA score chart was assigned partially to tumour areas and normal 

cortex, and this may be due to the fact that ccRCC tumours originate from the cortex 

and therefore may inherit part of its molecular traits. Alternatively, it may also be a result 

of heterogeneous tumour areas in which some non-tumoral cells are still present (Fig. 

2). With the aim to investigate the molecular traits of the different ccRCC grades, a more 

in-depth study was performed by looking specifically at the differences among areas of 

a homogeneous tumour grade (ROIs) selected by the pathologist. Unsupervised PCA 

allows an entire imaging dataset to be represented and the output highlighted that G1 

and G4 spectra were very well separated (Fig. 3A–B). This was expected based upon 
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their morphological and clinical features: ROIs of G1 are definitively composed only by 

cells attributable to G1, since only few cells of higher grade would be sufficient for a 

different classification to be assigned. In a similar vein, a ccRCC lesion is classified as 

G4 when cells already display characteristics that are evidently different from the initial 

stages of tumour development. Conversely, spectra derived from G2 and G3 regions 

displayed a more disperse distribution. The neat clustering of the MSI spectra obtained 

from G1 and G4 ROIs, along with the more scattered distribution of those from ROIs 

G2 and G3, may suggest that G1 and G4 represent the two extreme and well defined 

conditions, whereas G2 and 3 lesions can be better described as transitional steps in 

tumour progression. As also highlighted by Fig. 3A, G2 and G3 lesions seem to be 

characterised by proteomic profiles that are very heterogeneous but also intermediate 

between G1 and G4, with the proteomic profiles reflecting an ongoing process in cell 

dedifferentiation and tumour progression. Therefore, further investigations were at first 

performed comparing only the two extreme grades (G1 and G4). 

The identity of the six signals that statistically varied between G1 and G4 was evaluated 

in order to correlate them with the pathology. Signals at m/z 944.71 and m/z 1325.99, 

of a higher intensity in G1, were identified as tryptic fragments of Histone H2A and 

Histone H4, respectively. As already known, Histones are implicated in cancer 

progression because of their role in the remodelling of chromatin structure and in gene 

accessibility [19], as well as in multiple other biological process and in countless 

metabolic pathways [20,21]. In addition, other research teams have found proteolytic 

fragments of this group of proteins overexpressed in adenocarcinoma [22] and 

pancreatic tumour [23]. Furthermore, the signal at m/z 1428.92 was identified as a 

tryptic fragment of Vimentin. This protein is usually expressed in clear cell and papillary 

RCC (87–100%) and approximately 50% of carcinomatous cells are Vimentin-positive 

in high-grade ccRCC [24]. Additionally, Vimentin is also included in the panel of 

antibodies used in RCC diagnosis [25]. In our study, Vimentin was also detected in 
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tumour areas, with a higher expression in G4 compared to G1 lesions. Although 

Vimentin has been detected in the later stages of many cancers, and it presence often 

correlates with malignancy, the role of this protein remains unclear [26,27]. Allegedly, 

Vimentin is involved in cell adhesion and migration as well as in the epithelial-

mesenchymal transition of cancer cells [28–30]. Moreover, differences in the levels of 

Vimentin detected among different conditions could also be due to the presence of a 

tumour-specific exoprotease that cause an altered proteolytic process [31] and specific 

protocols to study the degradome are now under development [32]. Even though six 

signals were detected with a significantly different intensity between G1 and G4, it was 

not possible to find a panel of signals specific for each grade, most probably because of 

analytical limitations and biological heterogeneity. However, four of these six ions show 

also a good correlation among the four grades, allowing a clear separation between the 

extreme conditions and suggesting a possible process of grading progression among all 

the four grade classes.  

To increase the number of proteins identified, we then proceeded to investigate the 

molecular profiles and factors that guide the grading progression using nLC-ESI-

MS/MS as a complementary technique. The number of proteins identified per run, per 

patient and per grade were comparable (Table 2). Initially, we verified whether the six 

signals highlighted by the statistical analysis performed on MALDI-MSI data are 

consistent with those obtained with nLC-ESI-MS/MS. Despite the different type of 

ionisation process involved with these two approaches, the intensity of the ions 

identified by on-tissue MALDI-MS/MS showed a coherent trend with those observed 

by nLC-ESI-MS/MS. For the three signals that were not previously identified by 

MALDI-MS/MS, possible identifications were hypothesised based on results obtained 

by nLC-ESIMS/ MS and trends were verified. The signal at m/z 1032.78, of higher 

intensity in G1, was assigned to a tryptic peptide of Histone H31T and showed a similar 

trend. Likewise, the signal at m/z 872.63 was found to be a unique tryptic peptide of 
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Galactokinase (GALK1). GALK1 has recently been demonstrated to be a possible 

novel target for treating hepatocellular carcinoma, since its silencing inhibits the growth 

of HepG2 cells in culture [33]. 

We then proceeded to highlight the possible molecular differences among the four grade 

classes. First, differentially expressed proteins between stage 1 and stages 3–4 were 

excluded to avoid the inclusion of possible confounding factors related with the 

localisation and the dimension of the tumour, as well as with the presence of metastasis. 

Thus, proteins that only varied due to their association with different grades were used 

for performing the PCA analysis (Fig. 5). The three analytical replicates were extremely 

close to each other as well as the three biological replicates, indicating high similarity 

within samples of the same grade (analytical and biological CV was 16.3% (range 12.6–

21.3) and 9.8% (range 8.2–11.2), respectively). Different grades generated independent 

clusters, in particular G4 specimens were considerably separated from lower grade 

samples. This distance well reflects the morphological classification, where G4 lesions 

are classified based on peculiar characteristics such as cell pleomorphism and presence 

of sarcomatoid or rhabdoid differentiation. Therefore, we investigated the possible 

molecular features that drive grading progression from G1 to G3. 

Results highlighted that there are limited molecular differences between G1 and G2, 

while more pronounced differences characterised G3 specimens (Supplementary Fig. 

1). These findings highlighted that the molecular profiles of different grades reflect the 

different survival rate of the four grades reported in literature [7]. In fact, G1 and G2 

lesions, that have similar proteomic profiles, display an almost equal Cancer-Specific 

Survival (CSS) rate at 10 years post-surgery; 89% and 84%, respectively. G3 lesions, with 

different molecular profile from G1 and G2, have an intermediate CSS value, 46%, while 

a drastically reduced CSS rate is present for G4 patients (15%) which also show a very 

different protein profile from the others three grades. However, only four proteins 

showed a consistently different expression in the comparisons between G1 and G2, G2 
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and G3, and G1 and G3: Nephronectin (NPNT_HUMAN), Isochorismatase domain-

containing protein 2 (ISOC2_ HUMAN), Acyl-coenzyme A synthetase ACSM2A 

mitochondrial (ACS2A_HUMAN), and Sideroflexin-1 (SFXN1_HUMAN) 

(Supplementary Table 5). NPNT was originally identified as a factor involved in tissue 

morphogenesis, playing a crucial role in the early stages of kidney development [34]. 

Our results show that NPNT has a decreasing concentration following grading 

progression and is in agreement with those reported by Kuphal et al. [35]. In fact, these 

authors, by using functional assays with stable NPNT transfection in cell lines, revealed 

that its expression increased cell adhesion and decreased cell migration and invasion. 

Moreover, they demonstrated that a loss of Nephronectin promotes neoplastic 

progression in malignant melanoma. On the contrary, we noticed that Isochorismatase 

domain-containing protein 2 shows an increasing concentration that follows the grade 

trend. ISOC2 is a functional, ubiquitously expressed, protein whose catalytic function is 

still to be clarified. ISOC2 seems to bind and co-localise with p16INK4a, a tumour 

suppressor that plays an important role in proliferation and tumorigenesis. ISOC2, if 

over-expressed, is able to inhibit p16INK4a in a dose-dependent manner, suggesting 

that ISOC2 may play an important role during tumour development [36]. ISOC2 was 

also reported to interact with SAHA, a histone deacetylase inhibitor [37]. We also 

noticed that Acyl-coenzyme A synthetase mitochondrial protein shows a concentration 

that increases with grade progression. ACSM2A is a mitochondrial medium-chain acyl-

CoA synthetase [38] and expression levels of this gene in the kidney may be correlated 

with renal function, but the biological roles of ACSM2A have not yet been characterised 

in any species [39]. To the best of our knowledge, there are no studies describing the 

involvement of ACSM2A in cancer progression or development. Sideroflexin-1 has an 

atypical trend from G1 to G4. Our results showed a low expression in G2 and an over-

expression in G3 samples. SFXN1 might be involved in the transport of a component 

required for iron utilisation, but no correlation between this protein and the possible 
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development of a neoplasm is currently known. However, another protein of the same 

family, sideroflexin-3, has been identified as a possible autoantigen in oral cancer that 

can be exploited for the early detection and follow-up of such patients [40]. Very 

recently, specific markers of immune cells that could be used to immune characterise 

the tumour were reported [41]. However, none of the reported markers for immune 

cells has been detected in our samples. 

 

5. Conclusions  

 

In conclusion, this study represents the first attempt to describe the proteomic profile 

of different ccRCC tumour grades using well defined, histology-guided, regions of tissue 

and analysis with two complementary MS-based proteomic approaches. MALDI-MS 

imaging permits a histology-guided proteomic study through the direct correlation 

between histological and molecular features and this approach highlighted several 

signals with an intensity trend associated with the different tumour grades, laying the 

groundwork for a more in-depth investigation of grading progression. Employing nLC-

ESI-MS/MS, we were able to obtain a list of proteins whose expression altered among 

grades and this could represent a valuable starting point for more indepth pathway 

analysis, aimed at clarifying the molecular events occurring during the transition from 

G1 to G4, to be performed. Notwithstanding this promise, these findings need to be 

validated in a larger cohort of patients in order to strengthen the power of the statistical 

analysis.  

 

Supplementary data to this article can be found online at https:// 
doi.org/10.1016/j.jprot.2018.04.028.  
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ABSTRACT In this study, we investigated the urinary proteome by a label-free 

proteomics approach in order to obtain a deeper insight into the molecular alterations 

associated with the presence of clear cell Renal Cell Carcinoma (ccRCC) lesions at 

different stages. Nowadays, the possibility to implement a liquid biopsy in the 

investigation of tumour progression is of particular interest. For this reason, we 

evaluated the human urinary proteome of ccRCC patients at different grades and stages 

in order to verify if those alterations, previously detected on tissue, could also be 

detected in urine. In terms of protein identity, the information obtained from the urine 

overlaps greatly with those provided by the tissue. However, from a quantitative point 

of view, alterations in the urinary proteome better reflect the dimension and position of 

the lesion than its morphological characteristics. 

KEYWORDS Clear cell renal cell carcinoma, nLC-ESI-MS/MS, tumour grade, 

proteomics, urine. 
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1. Introduction 

 

Renal cell carcinoma (RCC) comprise a heterogeneous group of tumours with the most 

frequent (70-80%) and aggressive morpho-type being clear cell RCC (ccRCC) [1]. 

ccRCC is a malignancy of particular interest for clinical proteomic approaches because 

of its associated inter- and intra- tumour heterogeneity [2], high recurrence and 

progression rates, and lack of effective non-invasive diagnostic and prognostic tools [3]. 

The lesions are classified according to the recommendation of the WHO classification 

[4]: the stage is assigned following the TNM classification system that combines 

anatomical factors, such as (T) the tumour size and its location (venous invasion, renal 

capsular invasion or adrenal involvement), (N) lymph node and (M) distant metastasis 

involvement. The grade is assessed with the nuclear grading system, proposed at the 

International Society of Urological Pathology (ISUP) conference of 2013 and accepted 

by the World Health Organisation (WHO) in 2016, that replaced the previously used 

Fuhrman grading system [5]. 

Thus far, the molecular mechanism underpinning tumour development and progression 

remains unclear and molecular markers that can provide a more in-depth understanding 

of the biological process involved in this progression will be beneficial for disease 

management. In this context, proteomics has been extensively used [6,7] and biofluids 

have been samples of choice due to them being easily, and noninvasively, obtainable. 

Despite limitations related to a high degree of daily variation and sensitivity to 

physiological changes or external factors, the new concept of a liquid biopsy has been 

extensively investigated as a valid alternative to the classical solid biopsies in biomarker 

discovery [8,9]. In the last decades, different proteomics approaches based on mass 

spectrometry have been used to investigate the urinary peptidome/proteome for the 

purpose of biomarker discovery and, in particular, studying tumours that involve urinary 

system organs [10–12]. However, excluding some exceptions [13–15], most of the 
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biomarker studies in bodyfluids focused on the differences between patients with 

ccRCC and healthy controls. Therefore, in this work we investigated the proteome of 

ccRCC patients with different lesion severity in order to obtain a deeper insight into the 

molecular alterations associated not only with the presence but also with the progression 

of ccRCC that correspond with the grade classification, as previously investigated on 

tissue [16] as well as tumour size and stage. The results obtained by a label free-mass-

spectrometry based method allowed the detection of a set of secreted proteins 

associated with different ccRCC lesions and potentially with the aggressiveness and the 

progression of the disease. 

 

2. Experimental section 

 

Patients selection 

44 patients from San Gerardo hospital (Monza, Italy) were recruited between 2011 and 

2016 and all subject had signed an informed consent. Local ethical committee (Comitato 

Etico Azienda Ospedaliera San Gerardo, Monza, Italy) approved the protocols and 

procedures. The diagnosis was performed after careful histopathological evaluation 

including tumour size and position (pT), grading (ISUP classification system), 

sarcomatoid features, vascular invasion, tumour necrosis, presence of distant metastasis 

and involvement of lymph nodes (stage). 

 

Sample collection and preparation 

The second urine of the morning, before total or partial nephrectomy, were collected 

into sterile urine tube. The samples were then centrifuged at 2400 rpm, 10 min at 4°C 

and stored at -80° C until the day of the analysis. 6 mL of the stored supernatant were 

concentrated by centrifugation on 3 kDa cut-off filter (Amicon Ultra-4mL 3kDa, 
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Millipore) for 10 minutes at room temperature (RT). Protein concentration was 

determined with the BCA (Microplate BCA ™ protein Assay Kit, Thermo Scientific) 

and 200 μg of urine protein samples were treated following the FASP protocol, as 

already described [17]. Briefly, the proteins were first reduced by incubation with 50mM 

DL-Dithiothreitol (Sigma Aldrich, Switzerland) and then alkylated for 30 minutes with 

Iodoacetamide 100mM (Sigma Aldrich, Switzerland). The digestion was performed on 

30kDa filters overnight adding trypsin from porcine pancreas (Proteomics Grade, 

BioReagent, Dimethylated) in a ratio 1:100 to the initial protein concentration. After 

repeated washing of the filter, the eluted peptides were collected and acidified. Peptide 

solution was desalted and concentrated using μ-C18 ZiptipTM pipette tips (Millipore 

Corp, Bedford, MA) following the standard protocol provided by Millipore. Purified 

samples were resuspended in 98 H2O: 2 ACN: 0.1% TFA and analysed by nUHPLC-

MS/MS. 

 

nUHPLC-MS/MS analysis 

LC-ESI-MSMS analysis was performed using Dionex UltiMate3000 rapid separation 

(RS) LC nano system (Thermo Scientific, Sunnyvale, CA) coupled with an UHR-nESI-

qTOF (Impact HDTM, Bruker Daltonics Germany equipped with a Captivespray 

nanoBooster). 1.4 μg were loaded onto a μ-precolumn (Dionex, Acclaim PepMac100 

C18, cartridge, 300μm i.d. x 5 mm, 5 μm) and then separated by an analytical C18 

column (Dionex, 75μm ID, Acclaim PepMac100, C18, 2 μm). A multistep gradient with 

phase A (0.1 FA) and phase B (0.1 FA/80%ACN) from 4% to 66% was run for 240 

minutes. Eluted peptides were analysed in data-dependent acquisition mode and the 

MS/MS data were acquired by targeting precursors (300-2000m/z range) with a charge 

state between +2 and +5 and with at least 1575 counts (fixed cycle time of 5 seconds) 

for fragmentation, obtained by collision induced dissociation. MS scan were recorded 

in centroid as well as MS/MS data. Raw MS and MS/MS data were corrected using both 
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an internal calibration (lock mass 1221.9906 m/z) and a calibration segment (15 min. 

before each run), converted and deconvoluted to XML file using DataAnalysis software 

(Bruker Daltonics, Germany). 

 

Data processing 

Protein identification was obtained with PEAKS Studio 8.5 (Bioinformatics Solutions 

Inc., Waterloo, Ontario, Canada [18]). Trypsin was set as the enzyme used for the 

digestion, with one as a maximum acceptable missed cleavage, carbamidomethylation 

as fixed modification, 20 ppm and 0.05 Da as mass tolerance for MS and MS/MS 

tolerance, respectively. Swiss-prot (accessed July 2017; 555.100 sequences; 198.754.198 

residues) was used as database. A maximum false discovery rate (FDR) for peptide 

spectral match was set to 1%, retention time window of 2 minutes was established for 

features matching between runs, and a minimum of one sequence-unique peptides was 

required for identification. Proteins abundance was calculated using the three most 

abundant unique peptides, normalised against the total ion current and only the proteins 

detected with at least two unique peptides and in at least 50% of the samples were used 

for protein quantification. Files containing the information regarding protein abundance 

in the form of statistical matrices (samples as rows and proteins as columns) were 

exported from PEAKS Studio 8.5 and imported into an in-house developed software. 

For each protein, the statistical evaluation was performed as follows, in order to retrieve 

a list of differentially expressed proteins. First, the statistical observations (patients) were 

grouped according to the levels of a chosen outcome attribute (e.g. the grade) than 

proteins were considered of different abundance when the p-value yielded by the Mann-

Whitney test was less than 0.05. 

Functional analysis was carried out for protein of interest: KEGG pathway term 

clustering using ClueGO v2.5, Clupedia v1.5 and the Cytoscape network analysis 
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framework was performed. The default parameters were used with an overall statistical 

significance value set to p-value < 0.05.  

 

3. Results 

 

Conventional histopathological evaluation of tumours, such as stage and grade of the 

lesions, has prognostic significance. However, the molecular mechanisms involved in 

tumour development and progression are not well understood. Therefore, the 

possibility to obtain information about molecular changes associated with tumour 

lesions has been investigated using easily-accessible urine samples. 

 

Clinical data and study design/ identification and quantification 

proteins in ccRCC 

Urine samples were collected from 44 patients (26 males, 18 females; median age at 

diagnosis 66 and 69 respectively, and mean tumour mass of 5.54 ± 3.33 cm) with a 

proven diagnosis of ccRCC (Table 1). Patients were classified accordingly with 2009 

TNM classification [19]. In particular, a specific focus was given both to grade values 

(low grade (LG) = G1 and G2; high Grade (HG) = G3 and G4), pT (pT 1 and pT3) 

and stage (stage1 and stage3-4) in order to evaluate proteomic signatures of different 

lesion, as already demonstrated on tissue, using liquid biopsies. 
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Low grade (LG) = G1 and G2 

High grade (HG) = G3 and G4 

 

Qualitative evaluation and network analysis: relevant pathways 

of ccRCC  

Following the FASP protocol, samples were analysed by nUHPLC-MS/MS and a total 

of 21640 peptides sequences, corresponding to 1609 proteins were identified using 

PEAKS STUDIO 8.5 with FDR Peptide-Spectrum Matches of 1% and at least one 

unique peptide (Supplementary Table 1). Those proteins identified in urine were 

compared with those identified on tissue (previously published data [16]) and more than 

500 proteins were observed to be present in both of the specimens. Moreover, pathways 

represented by the common proteins were investigated using the KEGG database. The 

pathways that were associated with the presence of ccRCC lesions are shown and listed 

in Figure 1(A-B), and most of them were observed to be related to cancer and/or kidney 

damage [20–22]. 

 Group

Number  

of 

patient

Gender     

[male-female]

Age                

(at diagnosis) 

[mean]

Greatest 

tumour 

dimension 

[cm]

pT1, Stage 1 19 11 - 7 68 3.5

pT3, Stage 3-4 25 12 - 13 67 7.09

Low grade (LG) 24  12- 12 66 4.34

High grade (HG) 20 14 - 6 69 6.99

Stage 1 - low grade (A) 15 7 - 8 65 3.44

Stage 3-4 - low grade (B) 9 5 - 4 67 5.8

Stage 1 - high grade (C) 4 4 - 0 71 3.75

Stage 3-4 - high grade (D) 16 10 - 6 67 7.8

Table 1 Clinicopathological characteristics of patients included in the analysis 
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GO-Term
% Associated 

Genes
Nr. Genes Associated Genes Found

Cholesterol metabolism 20.00 10.00 [APOA1, APOA4, APOB, APOC3, APOE, APOH, LRP1, LRP2, VDAC1, VDAC2]

Citrate cycle (TCA cycle) 23.33 7.00 [ACO1, ACO2, IDH1, IDH2, MDH1, MDH2, PCK1]

Complement and coagulation 

cascades
43.04 34.00

[A2M, C1QA, C1QB, C1QC, C2, C3, C4B, C4BPA, C5, C6, C8A, C8B, C9, CD59, 

CFB, CFH, CLU, F2, F9, FGA, FGB, FGG, ITGAM, ITGB2, KLKB1, KNG1, PLG, 

SERPINA1, SERPINC1, SERPIND1, SERPINF2, SERPING1, VTN, VWF]

Cysteine and methionine 

metabolism
24.44 11.00

[AHCY, AHCYL1, BHMT, GOT1, GOT2, GSS, LDHA, LDHB, MAT2A, MDH1, 

MDH2]

ECM-receptor interaction 30.49 25.00

[AGRN, CD44, CD47, COL1A2, COL4A1, COL4A2, COL4A3, COL4A6, COL6A1, 

COL6A3, DAG1, FN1, HSPG2, ITGB1, LAMA1, LAMA4, LAMA5, LAMB1, LAMB2, 

LAMC1, THBS1, TNC, TNXB, VTN, VWF]

Focal adhesion 14.57 29.00

[ACTN1, ACTN4, CDC42, COL1A2, COL4A1, COL4A2, COL4A3, COL4A6, 

COL6A1, COL6A3, FLNA, FLNC, FN1, ITGB1, LAMA1, LAMA4, LAMA5, LAMB1, 

LAMB2, LAMC1, MYL12A, RHOA, THBS1, TLN1, TNC, TNXB, VCL, VTN, VWF]

Fructose and mannose metabolism 27.27 9.00 [AKR1B1, ALDOA, ALDOB, ALDOC, FBP1, HK3, KHK, TKFC, TPI1]

Glutathione metabolism 21.43 12.00
[ANPEP, G6PD, GGT1, GPX3, GSR, GSS, GSTA2, GSTM3, GSTP1, IDH1, IDH2, 

LAP3]

Glycolysis / Gluconeogenesis 33.82 23.00

[ADH5, AKR1A1, ALDH7A1, ALDH9A1, ALDOA, ALDOB, ALDOC, ENO1, ENO2, 

FBP1, GALM, GAPDH, GPI, HK3, LDHA, LDHB, PCK1, PGAM1, PGK1, PGM1, 

PKLR, PKM, TPI1]

Glyoxylate and dicarboxylate 

metabolism
30.00 9.00 [ACAT1, ACO1, ACO2, CAT, GRHPR, MDH1, MDH2, SHMT1, SHMT2]

Leukocyte transendothelial 

migration
15.18 17.00

[ACTN1, ACTN4, CDC42, EZR, GNAI2, GNAI3, ICAM1, ITGAM, ITGB1, ITGB2, 

MMP9, MSN, MYL12A, PECAM1, RHOA, VCAM1, VCL]

Pentose phosphate pathway 33.33 10.00 [ALDOA, ALDOB, ALDOC, FBP1, G6PD, GPI, H6PD, PGLS, PGM1, TKT]

Phagosome 12.50 19.00

[ATP6V1A, ATP6V1B2, ATP6V1E1, C3, CALR, CANX, CORO1A, CTSL, 

DYNC1H1, ITGAM, ITGB1, ITGB2, LAMP1, MPO, RAB5C, RAB7A, THBS1, 

TUBB, TUBB4B]

PI3K-Akt signaling pathway 9.32 33.00

[COL1A2, COL4A1, COL4A2, COL4A3, COL4A6, COL6A1, COL6A3, FN1, GNB1, 

GNB2, GNG12, HSP90AA1, HSP90AB1, HSP90B1, ITGB1, LAMA1, LAMA4, 

LAMA5, LAMB1, LAMB2, LAMC1, PCK1, THBS1, TNC, TNXB, VTN, VWF, 

YWHAB, YWHAE, YWHAG, YWHAH, YWHAQ, YWHAZ]

Pyruvate metabolism 30.77 12.00
[ACAT1, ALDH7A1, ALDH9A1, GRHPR, HAGH, LDHA, LDHB, MDH1, MDH2, 

PCK1, PKLR, PKM]

Regulation of actin cytoskeleton 11.74 25.00

[ACTN1, ACTN4, ARPC2, ARPC3, ARPC4, CDC42, CFL1, EZR, F2, FN1, GNG12, 

GSN, IQGAP1, ITGAM, ITGB1, ITGB2, MSN, MYH9, MYL12A, PFN1, PFN2, RDX, 

RHOA, SCIN, VCL]

A 
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B 

Fig. 1 Top Pathways involved in ccRCC. A: annotations of proteins and pathways shared by urine and 

tissue of ccRCC patients. B: Networking showing the main pathways and their significance (light to 

dark red, p value < 0.05). 
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Urinary secreted proteins varied according to different grades 

and stages 

We further investigated the correlation between urinary protein excretion and tumour 

classification (Stage and Grade), with a specific attention on the possibility to also detect 

morphological changes in the lesion, already investigated on tissue samples, also in urine. 

To enhance confidence in the protein quantification, the abundances of proteins 

detected in at least half of the 44 urine samples and quantified with at least two unique 

peptides were exported from PEAKS Studio 8.5. Statistical analysis was performed with 

a Mann-Whitney test (p-value ≤0.05, max fold change ≥1.5). Due to the high biological 

variability, no further statistical correction has been performed. Initially, the influence 

of the grade on the urinary proteome was evaluated. Patients with different tumour 

grades were split into two groups, HG (G3-G4) and LG (G1-G2) tumours, and 39 

proteins were identified as differentially expressed. 10 were down and 29 upregulated in 

HG compared to the LG group (Supplementary Table 2). Moreover, in order to 

highlight alterations of the urinary proteome related to different stages, we also 

evaluated the differences between stage 1 and stage 3-4 classes. We were able to detect 

79 proteins with a statistically significant variation in their abundances: 16 proteins were 

downregulated, while 63 were upregulated in stage 3-4 versus stage 1 patients 

(Supplementary Table 3). Urinary proteins altered according to the stage (stage 1 versus 

stage3-4) and grade (LG versus HG) were compared and (Figure 2A) the 15 proteins 

commonly altered also showed the same pattern: 4 were overexpressed both in LG and 

in low stage samples, conversely 11 were overexpressed in HG and stage 3-4 lesions 

(Figure 2B). Therefore, we hypothesise that the co-presence of the two features (Stage 

and Grade) could have determined the intersection highlighted in Figure 2. 
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In order to better understand which of these clinical parameters is responsible for the 

urinary protein alterations, we proceeded by sub-classifying our cohort of patients 

considering each feature a time. At first, we compared patients with low grade and stage 

1 lesions with those with low grade and stage 3-4 lesions (group A and B respectively) 

and, then, patients with stage 1 and stage 3-4 lesions at high grade (group C and D). We 

identified 6 proteins upregulated in stage 3 compared to stage 1, when excluding the 

grade as a confounding factor (Table 2). 

Subsequently, we investigated how the expression of urinary proteins reflected tumour 

grade. Firstly, we compared patients with lesions at different Grade (low grade -group 

A- and high grade - group C) and stage 1 tumours and, consecutively, group B and D 

of patients with stage 3-4 lesions and low and high grade, respectively (Table 3). This 

comparison showed no proteins correlating specifically with the grade, independently 

from the stage. 

 

Fig.2. A: Venn diagram of the urinary proteins 
altered according to the stage (Stage1 vs Stage3-4, 
blue) and grade (G1-2 versus G3-4, yellow). B: List 
of 15 proteins commonly altered in grade and stage 
comparison and their expression. 

A 

PGD HG Stage 3
LAMC1 HG Stage 3

LPA HG Stage 3
GDF15 HG Stage 3

IGKV3-20 HG Stage 3
GGCT HG Stage 3

MMRN2 HG Stage 3
ACVR1B HG Stage 3
IGLV1-40 HG Stage 3

AMY1A-B-C LG Stage 1-2 
GCHFR HG Stage 3
THBS4 LG Stage 1-2 
IGF2R HG Stage 3
S100P LG Stage 1-2 
UMOD LG Stage 1-2 

Up-regulated in:
Stage and Grade
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Stage 1 vs Stage 3-4 

Grade independent

Stage 1 vs Stage 3       

High Grade (C vs D)

ACE2 IGFBP6 APOA1 ACTN4

ACVR1B IGHG3 GDF15 AMY1A-B-C

ACY1 IGLV1-51 IGLV1-40 B2M

ADGRF5 L1CAM PTPRG C11orf54

APOA4 LAMC1 RBP4 CFHR1

ARSA LGMN STOM CHIT1

ATP1A1 LYZ DAG1

CAPZB MADCAM1 ENO1

CD7 MRC2 F2

CDH11 PATJ GDI2

CFH PGD GOLM1

CLEC7A PLAUR GPC3

CLN5 PLXDC2 GSS

COL3A1 POTEF HRG

COLEC12 PPIA HSPG2

CTSL PRG2 LAIR1

ENG RETN LGALS3

FLG ROR1 NEGR1

GC S100P PCDHGC3

GGCT SERPINA1 PROM2

GOT1 SFN PRTN3

GPC1 SORL1 SECTM1

GPC4 TF SELL

GSTO1 SOD1

Stage 1 vs Stage 3-4     

Low Grade (A vs B)

Table 2. Differently expressed proteins (Gene-name) in stage comparisons 
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4. Preliminary conclusions 

 

Data obtained in this study are still under evaluation for their biological and clinical 

implication in ccRCC. However, on the basis of the preliminary findings, I can 

summarise the conclusions made thus far: 

• Those proteins detected in both ccRCC urine and tissue samples are mainly 

involved in metabolic pathways and in the activation of immune response. 

Information provided by urine and tissue have a considerable overlap. 

Low Grade vs High Grade 

Stage independent

Low Grade vs High Grade 

Stage 3-4 (B vs D)

ACVR1B GSS ADGRF5

ADH5 IGLV3-19 GOLM1

ALB LGALS3 GPC1

B4GALT1 LYPD3 HSPA5

CD58 MACF1 LAIR1

CFHR1 MUC5AC MASP2

CLEC7A PCDHGC3 MMRN2

COL5A3 PROM2 PATJ

COTL1 SERPINA1 PRG2

CP STOM SFN

CTSH TF

EPHA1 THBS4

EPHB3 TYRO3

FCER2 XPNPEP2

FTL ZNF469

Low Grade vs High 

Grade Stage 1 (A vs C)

Table 3. Differently expressed proteins (Gene-name) in grade comparisons 
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• Six proteins whose relative abundance varied in patients with tumours of 

different size/stage, independently from the grade, were detected. However, no 

protein alterations could be associated solely to the grade of the lesion. 

• These results lead us to believe that the urinary proteome of ccRCC patients is 

influenced primarily by the dimension and position and only partially by the grade 

of the tumour. To obtain information about the cell morphology of the lesion, 

tissues still remain the sample of choice. 

• To further validate these results a larger samples cohort of patients will be 

enrolled. The numerosity of the samples will be estimated based on the variability 

of the signals and the needed statistical power.  
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1. Summary 

 

This final section will briefly discuss the data obtained, with a particular focus on the 

future prospective of this line of work. Clear cell renal cell carcinoma represents the 

most frequent form of kidney cancer. Given that total, or partial, nephrectomy remains 

the gold standard for the routine treatment, there is a strong need for the detection of 

prognostic biomarkers that can be translated into less invasive tools or treatments. In 

this context, various proteomic techniques have been used to determine the molecular 

changes related to disease progression and early pathological modifications [1,2].  

Bottom-up proteomics, a mass spectrometric (MS)-based approach for the 

characterisation of peptides obtained from an in-solution protein digestion, has been 

used to investigate protein identity and abundance in both biofluids and tissue samples. 

Shotgun proteomics provides indirect information of proteins through the analysis of 

proteolytic digested (tryptic) peptides. The peptide mixture is then fractionated and 

subjected to nLC-MS/MS analysis and protein identity is achieved by comparing the 

obtained MS/MS spectra with those generated theoretically by in silico digestion of a 

protein database [3]. 

Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging is a modern 

proteomic technology that is capable of detecting several different classes of analytes 

directly in situ. In this study, the spatial distribution of tryptic peptides has been used to 

build a molecular image of the tissue that has then been correlated with pathological 

alterations that are evident via routine histology (tumour lesion at different grades). 

Therefore, MALDI-MSI was employed due to this capability to detect new, specific, 

signatures of ccRCC directly on tissue. 

The work presented here represents an extensive study focused on ccRCC. We initially 

started with a more technical approach by investigating the different information that 

could be obtained from two different biofluids (urine and plasma). We then investigated 
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the proteomic profile directly on tissue in order to better understand the molecular 

changes associated with grade progression. Following in this vein, we also proceeded 

with a more in-depth study of the urinary proteome, extending the sample cohort and 

focusing our attention on the correlation between protein expression and clinical 

features. The positive results obtained with these proteomic approaches facilitated the 

detection of a number of protein signals that could differentiate among various ccRCC 

stages and grades in both urine and tissue, and such signals could potentially represent 

future targets to be investigated as diagnostic or prognostic markers of the most 

common morphotypes of renal cancer. 

 

2. Conclusions 

 

2.1 Proteomics of liquid biopsies: depicting RCC infiltration into the renal vein 

by MS analysis of urine and plasma  

The results presented in this work highlight the importance of integrating information 

from different samples. Not only this, the data highlighted that, even though the 

information delivered by the two bodily fluids are partially complementary, the urine 

seems to provide more information regarding how the tumour affects the kidney 

architecture. 

This study laid the groundwork for a more in-depth study of the urinary proteome, 

through the analysis of a larger patient cohort, in order to better investigate the 

pathological processes and the proteomic changes associated with the progression of 

ccRCC. 

 

 

2.2 Histology-guided proteomic analysis to investigate the molecular profiles of 

clear cell Renal Cell Carcinoma grades 
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This study shows a promising application of MALDI-MSI coupled with nLC-ESI-

MS/MS in the discovery of the proteins or pathway alterations for the assessment of 

ccRCC progression. Furthermore, it highlights the potential to correlate in situ tissue 

findings with those obtained from tissue homogenates using complimentary mass 

spectrometric techniques. 

MALDI-MSI was able to generate molecular signatures of different grades, with six 

particular signals (m/z 944.71; m/z 1032.78; m/z 1325.99; m/z 872.63; m/ z 914.64 

and m/z 1428.92), three of them identified as Vimentin, Histone H2A,Histone H4, 

being differently expressed in areas of G1 lesions with respect to G4. The data obtained 

by MALDI-MSI was integrated with that obtained from quali-qantitavive analysis using 

nLC-ESI-MS/MS. Differences in protein content among the four grades appeared to 

correlate with Cancer Specific Survival rate at 10 years post-surgery, with grade 4 

presenting peculiar molecular features, that were highly distinct with respect to the lower 

grades, thus reflecting the morphological classification. Moreover, four proteins 

presented a different expression in the comparisons among the three lower grades. 

These signals, along with the metabolic pathways that were shown to be altered, could 

potentially represent a starting point in a study aimed at clarifying the molecular events 

associated with the development of ccRCC. 

 

2.3 Effects of clear cell Renal Cell Carcinoma stage and grade on urinary 

proteomic profiles 

Notwithstanding limitations related to the direct translation of our findings into a tool 

useful for the clinics, the potential to understand how kidney alterations are reflected by 

urinary protein expression opens up numerous doors for a large number of clinically-

relevant studies. Given that bodyfluids can be obtained with non-invasive techniques, 

the possibility to implement a “liquid biopsy” in clinical routine is a particularly hot topic 

and the potential to analyse these samples means that much larger sample cohorts can 
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be obtained. We demonstrate the possibility to detect in urine alterations determined by 

the stage of the lesion, however, to study morphological alterations within the tumour 

cells, tissue samples still remain essential. 

 

3. Future perspectives 

 

The potential of MALDI-MSI to detect disease biomarkers directly in situ is undoubted 

[4] and the study of renal cancer, using this modern proteomic technology, may 

eventually herald an era where these findings are pioneering for a clinical relevant 

discovery. This would be a result not only of the ability to correlate proteomic findings 

with morphological alterations, but also as a result of the capability to detect other 

molecular alterations that occur before any visible morphological alterations can be 

noted by the pathologist [5]. 

Further work related to the study of ccRCC tissue is planned, with the final aim being 

to better understand the biological alterations associated with ccRCC grade progression. 

In doing so, it is hoped that potential therapeutic targets, to be used as a valid alternative 

to nephrectomy, can be identified. Aiming at better clarifying proteomic signatures 

specific for each grade, along with the possibility to clarify the biological processes 

involved, the foundations for future studies has been laid. 

The list of proteins found to be altered in the four grades has been further evaluated in 

order to explore the molecular pathways involved in cancer progression, from grade 1 

to grade 4. Gene ontology (GO) and pathway analysis term clustering were performed 

using ClueGO v2.5 and CluePedia version 1.5 on Cytoscape v3.6. Visualisation and 

pathway statistical interpretation was carried out in PathVisio v3.2. The results obtained 

are now under evaluation, but preliminary results suggest that many metabolic pathways 

are involved in clear cell renal cell carcinoma progression, such as 

glycolysis/gluconeogenesis, Kreb’s cycle, glycogen metabolism, etc. Most of those 
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pathways resulted to be upregulated in the first three grade, whereas, when the disease 

progresses to grade 4, become downregulated. A preliminary hypothesis is that in the 

progression to the highest grade, all cellular processes are decreasing, and cells became 

unable to produce energy and remove the excess of ketone bodies as normal cells do. 

Moreover, considering that glycosylation is one of the most common protein 

modifications and, based on their recognition, contribute to protein folding, cell growth, 

interaction, differentiation and cancer, thus the study of their expression in different 

grades might be of particular interest. Since glycan changes have been shown to be a 

phenotypic reflection of the disease state, they can also offer a broad range of potential 

markers or treatment targets [6–10].  

Therefore, during a six-month internship at LUMC, starting from the study published 

by Holst S. et al [11], a protocol for the direct analysis of N-glycans on tissue has been 

optimised in order to increase the detection of N-glycans and to apply this protocol 

using both a MALDI-TOF and a MALDI-FTICR instrument. This protocol will then 

be used to analyse N-glycan expression on a new, larger, cohort of 25 FFPE tissue 

sections from patients with ccRCC and their relative abundance will be evaluated among 

the different grades. However, it should also be stressed that the technical approach 

optimised and learnt here is relevant for application in many other studies and thus 

offers an additional molecular dimension in our search to better understand the patho-

physiology of different diseases.  

Taking the advantage of the possibility to use a high mass resolution instrument (9.4 T 

MALDI-FTICR), tryptic peptide analysis of a consecutive tissue section has also been 

performed. The data analysis has not been performed yet, but we believe that the 

increased chemical sensitivity offered by the MALDI-FTICR may also bring an 

additional level of information at the protein level to better characterise ccRCC grades. 

By combining the additional work proposed here, it is hoped that we can further enforce 

the potential role of MALDI-MSI in clinical research, from both a technical and 
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application standpoint. Furthermore, by taking advantage of these new possibilities 

related to higher spatial resolution and high mass accuracy, we hope that this can lead 

to the direct translation of these findings into diagnostic, or prognostic, tools that can 

improve the clinical management of ccRCC patients. 
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Be yourself; everyone else is already taken (unattributed) 


