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routinely scrutinized in the early stages of model-building and are often the central topic of studies

in economics and finance. Notwithstanding the availability of several robust estimators, most

scholars in economics rely on method-of-moments estimation that is known to be very sensitive

to outliers. We carry out an extensive Monte Carlo analysis to compare the bias and root mean

squared error of twelve different estimators of skewness and kurtosis. We consider nine statistical

distributions that approximate the range of data generating processes of many macroeconomic

and financial time series. Both in independently and identically distributed samples and in data

generating processes featuring serial correlation L-moments and trimmed L-moments estimators are

particularly resistant to outliers and deliver the lowest root mean squared error. The application

to 128 macroeconomic and financial time series sourced from a large, monthly frequency, database

(i.e. the FRED-MD of McCracken and Ng, 2016) confirms the findings of the simulation study.
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1 Introduction

The assumption of normality is central in many theoretical models and empirical applications

in macroeconomics and finance (see e.g. Cecchetti et al., 1990; DeLong and Summers, 1986;

Scott and Horvath, 1980). Normality tests, sample skewness and kurtosis of time series

are routinely used as diagnostic tools for econometric model-building and to investigate

substantive questions in economics and finance. Bontemps and Meddahi (2005) and Kilian

and Demiroglu (2000) provide several examples where normality testing is of interest to

investigate key issues in economics and finance. While robust estimators and tests do exist,

most scholars in economics rely on the method-of-moments to estimate the skewness and

kurtosis of data and on the Jarque-Bera test as a diagnostic check. It is well known that

measures of skewness and kurtosis based on sample moments are highly sensitive to outliers

and even a single large observation can tear them apart (see e.g. Bonato, 2011; Kim and

White, 2004; Brys et al., 2004; Thomas, 2009).

We rely on a Monte Carlo exercise to assess the bias and root mean squared error

(RMSE) of twelve estimators of skewness and kurtosis. These include method-of-moments

estimators, as well as more robust measures based on quantiles, L-moments and trimmed L-

moments (TL-moments). While the statistical literature on robust estimation is widespread,

L-moments are relatively new in time series econometrics.1 Much like conventional moments,

L-moments can be used to characterize the location, scale and shape of a probability dis-

tribution (Hosking, 1990). We show that, both in independently and identically distributed

(iid) samples and in data generating processes featuring serial correlation, L-moments and

trimmed L-moments (TL-moments) estimators are particularly resistant to outliers, feature

a very small bias and deliver the lowest RMSE. The empirical application, that involves 128

macroeconomic and financial time series sourced from a large, monthly frequency, database

(i.e. the FRED-MD; see McCracken and Ng, 2016, for details), confirms that L- and TL-

moments estimators are particularly resistant to outliers.

Five studies are closely related to this paper. Kim and White (2004) and Bonato (2011)

1An exception is Darolles et al. (2009) who constructed measures of fund performance based on L-moments
to overcome the drawbacks of more traditional performance metrics such as the Sharpe ratio.
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deal with the estimation of skewness and kurtosis in the presence of outlying observations.

Although these authors do consider robust measures of skewness and kurtosis, they do not

analyze L-, nor TL-moments. Karvanen (2006) proposed estimating quantile mixtures via

L-moments and presented an empirical analysis involving stock market returns, however

the study did not explicitly focus on the comparative performance of skewness and kurto-

sis estimators. Thomas (2009) assessed the small sample behavior of measures symmetry

based on quantiles, L-moments, and TL-moments with a Monte Carlo analysis, but did not

consider measures of kurtosis. Harri and Coble (2011) introduced Normality tests based on

L-moments, but focused exclusively on iid samples.

This paper makes three main contributions to this strand of the literature. First, by

considering Monte Carlo designs with serially dependent observations, we introduce L- and

TL-moments in the time series econometrics literature. Second, we present an extensive

set of results based Monte Carlo designs with sample size and outlying observations aimed

at mimicking the dataset typically analyzed in macroeconomics and finance. Third, we

present a detailed empirical application involving a prominent large, monthly, dataset of

macroeconomic and financial time series.

The rest of the paper is organized as follows. Section 2 reviews different estimators of

skewness and kurtosis. Sections 3 and 4 present the Monte Carlo and empirical analysis,

respectively. Section 5 concludes. An Appendix with additional methodological details and

results completes the paper.

2 Measures of skewness & kurtosis

2.1 Notation

Let {Xt}Tt=1 be a series with mean µ and r-th central moment µr = E(X − µ)r. We define

the variance of Xt as µ2 = σ2 and its standard deviation as σ. Moreover, Qα = F−1(α) is

the quantile function, while, X1:T ≤ X2:T ≤ . . . ≤ Xn:T are the order statistics2 of a random

sample of size T drawn from the distribution of Xt.

2The k-th order statistics of a sample of size T is equal to its k-th smallest value. For the sample
{5, 3, 9, 1}, we have: X1:4 = 1, X2:4 = 3, X3:4 = 5, X4:4 = 9.
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Measures of skewness and kurtosis are denoted as SKj and KR′j. We focus on excess

kurtosis (KRj), defined as the difference between the j-th measure of kurtosis
(
KR′j

)
and

the corresponding reference value for the Normal distribution. These reference values are

shown in the first column of Table 1(b). Details on the estimation procedures, as well as

further methodological issues are discussed in Section A and B of the Appendix.

2.2 Conventional measures of skewness & kurtosis

The two most widely used measures of skewness and kurtosis are based on standardized

moments. The moment-based skewness is defined as:

SK1 =
µ3

σ3
(1)

for the Normal distribution SK1 = 0. Symmetric distributions have zero skewness, while for

asymmetric distributions with longer left (right) tail skewness SK1 is negative (positive).3

The kurtosis of a distribution measures its tail behavior, that is its propensity to generate

observations far away from the center of its support (Westfall, 2014). Sample kurtosis is

conventionally based on method-of-moments estimation of:

KR′1 =
µ4

σ4
(2)

for the Normal distribution KR′1 = 3, therefore the excess kurtosis of a distribution is defined

as KR1 = KR′1 − 3. A distribution is thus said to have “fat-tails” if KR1 > 3.

It is well known that both SK1 and KR1 have a very low breakdown value, in fact a

single outlier can severely affect them, leading to extremely large values (Kim and White,

2004; Hubert and Debruyne, 2009). Another pitfall of these measures is that they cannot be

defined for distributions that do not posses finite moments up to the fourth order. A case in

3Zero skewness however is only necessary, but not sufficient for the symmetry of a distribution (von
Hippel, 2010). A case in point is the discrete Student’s t distribution (Ord, 1968). In the case of the
Normal mixture distribution (Meijer, 2000) showed that a mixture of two Normal distributions with µ1 =
−2, σ1 = 1, µ2 = 1, σ2 =

√
2 and probability of drawing from the first distribution equal to 1/3 has zero

central moment but is asymmetric, that is: E(Xt − µ) 6= −E(Xt − µ). A third example of an asymmetric
distribution with zero skewness is reported by Bai and Ng (2001, p. 230).
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point is Stable distribution family, often used to describe financial time series (Bonato, 2011;

Mittnik and Rachev, 1993; Loretan and Phillips, 1994). Method-of-moments estimation of

SK1 and KR1 is discussed in Section B.1 of the Appendix.

2.3 Robust measures of skewness

Given the drawbacks of SK1 and KR1, both Kim and White (2004) and Bonato (2011) have

highlighted the advantages of alternative measures of skewness and kurtosis in financial

applications.4

Several robust estimators of skewness rely on quantiles and are encompassed by the

measure proposed by Hinkley (1975):

SK(α) =
Q1−α +Qα − 2Q0.5

Q1−α −Qα

for 0 ≤ α ≤ 0.5 (3)

The quartile skewness due to Bowley (1920) is obtained setting α = 0.25:

SK2 =
Q0.75 +Q0.25 − 2Q0.50

Q0.75 −Q0.25

=
(Q0.75 −Q0.50)− (Q0.50 −Q0.25)

Q0.75 −Q0.25

(4)

where −1 ≤ SK2 ≤ 1. The denominator in Equation (4) is the interquartile range and it

re-scales the numerator so that SK2 = 1 (SK2 = −1) in the case of extreme right (left)

skewness. For symmetric distributions (Q0.75 −Q0.50) = (Q0.50 −Q0.25) and hence SK2 = 0.

One drawback of the Hinkley’s measure of skewness is its dependence on the level of α.

To overcome this limitation Groeneveld and Meeden (1984) proposed to integrate out α:

SK3 =

∫ 0.5

0
[Q1−α +Qα − 2Q0.5]dα∫ 0.5

0
[Q1−α −Qα]dα

=
µ−Q0.5

E (|Xt −Q0.5|)
(5)

notice that also in this case −1 ≤ SK3 ≤ 1 and SK3 = 0 for symmetric distributions.

The denominator of Equation (5) is the mean absolute deviation (MAD); substituting

4There is a voluminous literature on robust statistics and on tests of symmetry. See e.g. Brys et al.
(2003, 2004) and references therein.
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the MAD with the standard deviation, we get the Pearson coefficient of skewness:

SK4 =
µ−Q0.5

σ
(6)

Notice that, unlike SK2 and SK3, SK4 is not bounded in the unit interval.

Of the four measures of skewness introduced so far only SK2 can be applied to any

distribution, independently of whether its moments exist. In fact, SK1, SK3 and SK4

require the existence of moments up to order three, one and two, respectively.

2.4 Robust measures of kurtosis

Moors (1988) proposed to interpret kurtosis of Xt as dispersion around µ± σ:

KR′2 =

(
Q3/8 −Q1/8

)
+
(
Q7/8 −Q5/8

)
Q6/8 −Q2/8

(7)

KR′2 relies on “octiles”, that is Qi/8 = F−1(i/8) for i = 1, . . . , 7. The two terms in the

numerator are large (small) if relatively little (much) probability mass is concentrated around

Q2/8 and Q6/8, corresponding with large (small) dispersion in the neighborhoods of µ ± σ.

Table 1(b) shows that for the standard Normal distribution KR′2 = 1.233, therefore the

centered measure is: KR2 = KR′2 − 1.233.

Hogg (1972, 1974) introduced a measure of kurtosis based on averages of lower and upper

quantiles, defined as Lα = (1/α)
∫ α

0
Q(u)du and Uα = (1/α)

∫ 1

1−αQ(u)du, respectively. In

practice, we rely on:

KR′3 =
U0.05 − L0.05

U0.50 − L0.50

(8)

for the standard Normal distribution KR′2 = 2.585, therefore: KR3 = KR′3 − 2.585.

A third measure of kurtosis is due to Crow and Siddiqui (1967):

KR′4 =
Q0.975 +Q0.025

Q0.75 −Q0.25

(9)

as shown in Table 1(b) for the standard Normal distribution KR′4 = 2.906 and hence KR4 =

KR′4 − 2.906.
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Since KR′2 and KR′4 depend only on quantiles, they are defined for any distribution,

independently on whether they have finite moments or not.

2.5 Robust measures based on L- and trimmed L-moments

Hosking (1990) proposed to describe the shape of distributions relying on linear functions of

expectations of order statistics called “L-moments”, where the “L” emphasizes the linearity

of these functions. Being linear functions of the data L-moments are more robust to outliers

than conventional moments that raise the difference from the mean to the third or fourth

power. Moreover, since L-moments exist for any random variable with finite mean, they

uniquely characterize a class of distributions that is wider than the set of distributions for

which conventional moments can be applied. In fact, a distribution with finite mean is

uniquely characterized by its L-moments, even when conventional moments do not exist.

The first four L-moments of a random variable are:5

λ1 = E (X1:1) =

∫ 1

0

Q(u)du (10)

λ2 =
1

2
E (X2:2 −X1:2) =

∫ 1

0

Q(u)(2u− 1)du (11)

λ3 =
1

3
E (X3:3 − 2X2:3 +X1:3) =

∫ 1

0

Q(u)(6u2 − 6u+ 1)du (12)

λ4 =
1

4
E (X4:4 − 3X3:4 + 3X2:4 +X1:4) =

∫ 1

0

Q(u)(20u3 − 30u2 + 12u− 1)du (13)

while λ1 and λ2 can be regarded as measures location and scale, population L-skewness and

L-kurtosis are defined as ratios of L-moments:

SK5 =
λ3

λ2

(14)

KR′5 =
λ4

λ2

(15)

for a standard Normal variate KR′5 = 0.123, hence the excess L-kurtosis is KR5 = KR′5 −

5Notice that the notation relies on the so-called “conceptual sample”, that is different from the sample
used for inference (see e.g. Elamir and Seheult, 2003, p. 300). For instance, the population mean is defined in
terms of a conceptual sample of size one, therefore µ ≡ E(X) = E(X1:1). Similarly, the population variance
is defined in terms of conceptual sample of size two. More generally, the r-th moment is defined in terms of
a conceptual sample of size r.
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0.123. Hosking (1992) showed that L-skewness and L-kurtosis identify deviations from Nor-

mality better than conventional moment-based measures. L-moment ratios are bounded:

|λr/λ2| < 1 for r ≥ 3. The boundedness of SK5 and KR′5 makes their interpretation easier

than conventional skewness and kurtosis that can take arbitrarily large values.

Elamir and Seheult (2003) generalized L-moments to distributions that do not posses

finite mean: a case in point are Cauchy random variables. Since this approach relies on

trimmed samples, they are more robust to outliers than L-moments. Trimmed L-moments

(TL-moments), denoted as λ
(s,k)
r , are linear functions of expectations of order statistics that

exclude the s smallest and/or the k largest order statistics of the sample. In the empirical

analysis we set s = k = 1, therefore we eliminate the largest and smallest observations in

the sample. The TL-skewness and TL-kurtosis are:

SK6 =
λ

(1,1)
3

λ
(1,1)
2

(16)

KR′6 =
λ

(1,1)
4

λ
(1,1)
2

(17)

one drawback of trimming is that, contrarily to SK5 and KR′5, SK6 and KR′6 are not

bounded in the (−1, 1) interval. Using results in Hosking (2007) we can show that |SK6| ≤

1.11 and |KR′6| ≤ 1.25. For a standard Normal variate KR′6 = 0.062, hence the excess

TL-kurtosis is KR6 = KR′6 − 0.062. Thomas (2009) studied tests of symmetry based on

SK2, SK3, SK5 and SK6 and showed that TL-skewness yields the most reliable confidence

intervals and tests. Further details, as well as a discussion of the estimation of L- and

TL-moments are presented in Section C of the Appendix.

3 Simulations

In this section we present simulation results for six alternative distributions both for iid

samples and for serially correlated data generating processes. Next, we discuss four additional

Monte Carlo designs used to assess the robustness different measures of skewness and kurtosis

to outliers. While the design based on iid samples might look simplistic, it used mimic the

situation in which regression residuals are analyzed. Nevertheless, we stress that the focus of
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the paper is on unconditional skewness and kurtosis, therefore we do not directly analyze the

effects of filtering the series with a model. See Bai and Ng (2005) and Kilian and Demiroglu

(2000) for details on this issue. In Section 3.3 we assess the impact of serial correlation on

the set of estimators considered in this paper.

3.1 Monte Carlo design

We design our Monte Carlo experiments following Kim and White (2004) and Bonato (2011).

We generate 1000 random samples of size T = 50, 250, 500, 1000, 2500, 5000 for each design

of the simulation analysis. Samples of these dimensions are chosen to mimic the size of

time series used in macroeconometrics or financial econometrics. For instance, a sample

of size T = 50 is representative of applications that rely on yearly macroeconomic data,

while T = 5000 is typical when dealing with daily or weekly financial returns. In Section

3.2 we focus on three symmetric and three asymmetric distributions. The three symmetric

distributions are: the standard Normal and the Student’s t distribution with 10 and 5 degrees

of freedom. The asymmetric ones are: the Log-Normal distribution with parameters µ = 1

and σ = 0.4, the unit Exponential distribution and the χ2 distribution with 3 degrees of

freedom.

3.1.1 Outliers

The sample distributions of macroeconomic and financial time series are often asymmetric

and heavy-tailed. We thus consider three additional simulation designs aimed at capturing

the impact of outliers on the properties of skewness and excess kurtosis estimators.

In a first set of experiments we contaminate draws from a standard Normal distribution

with a single outlier. Specifically, we use two designs in which we contaminate the Normal

distribution with a single, extremely low, value. Following Kim and White (2004), these

outliers are calibrated on the empirical distribution of daily log-returns on the S&P500

index to mimic the stock market crashes of 1987 and 2008. Details in Appendix A.1.
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Table 1: Values of skewness and excess kurtosis for various distributions

(a) Skewness measures (SKi)

N(0,1) t10 t5 Log N Exp(1) χ2
(3) N-mix

SK1 0.000 0.000 0.000 1.322 2.000 1.633 -2.271

SK2 0.000 0.000 0.000 0.134 0.262 0.203 0.000

SK3 0.000 0.000 0.000 0.247 0.443 0.356 -0.009

SK4 0.000 0.000 0.000 0.185 0.307 0.259 -0.007

SK5 0.000 0.000 0.000 0.194 0.333 0.272 -0.013

SK6 0.000 0.000 0.000 0.121 0.222 0.176 -0.001

(b) Excess kurtosis measures (KRi)

N(0,1)

KR′j KRj t10 t5 Log N Exp(1) χ2
(3) N-mix

KR1 3.000 0.000 1.000 6.000 3.260 6.000 4.000 52.575

KR2 1.233 0.000 0.044 0.094 0.044 0.073 0.042 0.001

KR3 2.585 0.000 0.200 0.460 0.187 0.279 0.168 0.088

KR4 2.906 0.000 0.278 0.632 0.268 0.429 0.248 0.009

KR5 0.123 0.000 0.032 0.071 0.030 0.044 0.027 0.014

KR6 0.062 0.000 0.013 0.029 0.013 0.021 0.012 0.000

Notes: distributions are denoted as follows: “N(0,1)” = standard Normal, “tν” = Student’s t with ν degrees of freedom (dof),
“Log N” = Log Normal(1,0.4), “Exp(1)” = Exponential, χ2

(ν)
= χ2 with 3 dof, “N-mix” = Normal mixture. In panel (b) the

column headed KR′j reports the value of the kurtosis for the standard Normal distribution, while the remaining columns show
the kurtosis measure for a given distribution minus the corresponding theoretical value for the standard Normal distribution.

Lastly, we rely on a Normal mixture distribution with parameters calibrated using the

empirical distribution of daily log-returns on the S&P500 index. This approach also follows

that of Kim and White (2004, p. 68) and leads to a mixture of the following two distributions:

N(0, 1) and N(−7, 10) with the first occurring with probability p = .9988. Notice that the

second regime captures stock market crashes. As shown in Table 1 the theoretical values of

the conventional skewness and excess kurtosis of this distribution are -2.27 and 52.58.

3.1.2 Evaluation of estimators

We evaluate estimators of skewness and excess kurtosis in terms of bias and root mean

squared error. The bias is defined as Bj = E
(
θj − θ(0)

j

)
where θ

(0)
j represents the true

value of the j-th measure of skewness or excess kurtosis as reported in Table 1. The Monte

Carlo estimates of the bias are: B̂j =
¯̂
θj − θ(0)

j where
¯̂
θj = M−1

∑M
m=1 θ̂j,m and θ̂j,m is the

sample estimate obtained in the m-th simulation. We stress that the magnitude of the bias

of different estimators of skewness and kurtosis cannot be directly compared, because some

of them are constrained to lie in a finite interval (e.g. L-skewness and kurtosis), while others
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can take on any real value (e.g. standard measures of skewness and kurtosis). Nevertheless,

providing an estimate of the bias and assessing whether and how quickly vanishes as the

sample size grows provides useful information to evaluate different estimators.

Given the previous warning, we also assess the root mean squared error (RMSE), defined

as: RMSEj =
√
E (θj − θ0)2. To ease the comparison, we rely on RMSE ratios. These

are defined as: rRMSEj = RMSEj/RMSE1, where RMSE1 identifies the RMSE of the

conventional moment-based skewness or excess kurtosis. Therefore, a RMSE ratio lower than

one signals that the j-th estimator is more tightly clustered around its population value than

the conventional measures (SK1 or KR1).

3.2 Results for iid samples

In this section we evaluate the performance of measures of skewness and excess kurtosis

for iid random samples generated from the the standard Normal, Student’s t, Log-Normal,

Exponential and χ2.

Table 2 shows that independently of the distribution or sample size, the RMSE of the

conventional measure of skewness, SK1, is always the highest. The bias of SK1 increases as

we move away from the Normal distribution, especially is small samples and for asymmetric

distributions. This fact is clearly visible in Figure 1 where, for each data generating process

and sample size, we summarize the sampling distribution SK1 with a boxplot.6

For the Log-Normal, Exponential and χ2 distributions there is a substantial downward

bias, that is still visible even in samples of 250 observations. Numbers in Figure 1 represent

observations that are greater than Q0.75 + IQR or lower than Q0.25 + IQR, where IQR is

the interquartile range. These numbers show that the dispersion of SK1 increases when we

move from the Normal to the Student’s t distribution and also when considering asymmetric

distributions.

As for the robust measures, Table 2 conveys two main messages. First the bias of SK2-

SK6 is in most cases negligible; second, the TL-moment skewness, SK6, is always associated

with the lowest RMSE.

6Boxplots with the sampling distributions of all estimators are shown in Appendix 5.
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Table 2: Bias and RMSE ratio of skewness estimators

T 50 250 500 1000 2500 5000

(a) N(0,1)

SK1 0.003 (1.000) 0.007 (1.000) 0.002 (1.000) 0.001 (1.000) 0.001 (1.000) 0.000 (1.000)

SK2 -0.009 (0.575) 0.000 (0.505) 0.001 (0.583) -0.001 (0.518) -0.001 (0.564) 0.001 (0.569)

SK3 -0.002 (0.403) -0.000 (0.366) 0.002 (0.402) -0.000 (0.364) -0.000 (0.394) 0.001 (0.392)

SK4 -0.001 (0.321) -0.000 (0.292) 0.001 (0.321) -0.000 (0.290) -0.000 (0.314) 0.001 (0.313)

SK5 0.001 (0.197) 0.001 (0.179) 0.001 (0.181) 0.000 (0.174) 0.000 (0.176) 0.000 (0.174)

SK6 -0.001 (0.179) -0.000 (0.157) 0.000 (0.165) -0.000 (0.150) 0.000 (0.157) 0.000 (0.157)

(b) t10

SK1 -0.007 (1.000) -0.007 (1.000) -0.001 (1.000) -0.008 (1.000) 0.001 (1.000) -0.000 (1.000)

SK2 0.000 (0.394) 0.003 (0.315) -0.003 (0.283) -0.001 (0.270) -0.001 (0.285) -0.001 (0.282)

SK3 -0.001 (0.271) 0.001 (0.219) -0.003 (0.198) -0.002 (0.196) -0.000 (0.201) -0.001 (0.196)

SK4 -0.001 (0.211) 0.001 (0.169) -0.002 (0.154) -0.001 (0.151) -0.000 (0.156) -0.000 (0.152)

SK5 -0.000 (0.153) -0.001 (0.116) -0.000 (0.106) -0.001 (0.108) -0.000 (0.108) -0.000 (0.103)

SK6 0.000 (0.116) 0.000 (0.095) -0.001 (0.083) -0.001 (0.086) -0.000 (0.088) -0.000 (0.083)

(c) t5

SK1 0.012 (1.000) 0.004 (1.000) 0.000 (1.000) -0.012 (1.000) -0.013 (1.000) -0.023 (1.000)

SK2 0.009 (0.235) -0.005 (0.097) -0.003 (0.090) 0.002 (0.086) 0.001 (0.075) 0.000 (0.039)

SK3 0.005 (0.171) -0.004 (0.072) -0.002 (0.065) -0.000 (0.064) -0.000 (0.054) 0.000 (0.029)

SK4 0.003 (0.128) -0.003 (0.053) -0.002 (0.047) -0.000 (0.047) -0.000 (0.039) 0.000 (0.021)

SK5 0.001 (0.115) -0.001 (0.051) -0.001 (0.044) -0.001 (0.043) -0.001 (0.037) 0.000 (0.019)

SK6 0.001 (0.075) -0.001 (0.031) -0.001 (0.029) 0.000 (0.028) -0.000 (0.024) 0.000 (0.013)

(d) Log-N(1,0.4)

SK1 -0.235 (1.000) -0.072 (1.000) -0.046 (1.000) -0.025 (1.000) -0.009 (1.000) -0.006 (1.000)

SK2 -0.012 (0.310) -0.003 (0.238) -0.004 (0.221) -0.002 (0.196) 0.000 (0.185) -0.001 (0.179)

SK3 -0.007 (0.214) -0.004 (0.160) -0.003 (0.150) -0.002 (0.137) -0.000 (0.124) -0.000 (0.122)

SK4 -0.006 (0.156) -0.003 (0.116) -0.002 (0.108) -0.001 (0.098) -0.000 (0.089) -0.000 (0.088)

SK5 -0.001 (0.118) -0.001 (0.084) -0.001 (0.079) -0.001 (0.073) -0.000 (0.064) 0.000 (0.066)

SK6 -0.019 (0.102) -0.003 (0.072) -0.001 (0.067) -0.001 (0.060) -0.000 (0.054) -0.000 (0.055)

(e) Exp(1)

SK1 -0.369 (1.000) -0.079 (1.000) -0.063 (1.000) -0.026 (1.000) -0.002 (1.000) -0.007 (1.000)

SK2 -0.011 (0.256) -0.004 (0.191) -0.003 (0.188) 0.001 (0.165) -0.000 (0.155) -0.000 (0.161)

SK3 -0.013 (0.176) -0.004 (0.126) -0.003 (0.127) 0.001 (0.111) -0.001 (0.106) -0.000 (0.111)

SK4 -0.005 (0.117) -0.002 (0.082) -0.001 (0.081) 0.001 (0.072) -0.000 (0.067) -0.000 (0.072)

SK5 -0.005 (0.098) -0.000 (0.068) -0.001 (0.067) 0.000 (0.058) -0.000 (0.057) -0.000 (0.061)

SK6 -0.031 (0.094) -0.003 (0.060) -0.002 (0.060) -0.000 (0.051) -0.000 (0.049) -0.000 (0.052)

(f ) χ2
(3)

SK1 -0.291 (1.000) -0.060 (1.000) -0.040 (1.000) -0.023 (1.000) -0.001 (1.000) -0.007 (1.000)

SK2 -0.019 (0.299) -0.006 (0.260) -0.003 (0.222) 0.001 (0.228) 0.001 (0.209) -0.001 (0.200)

SK3 -0.018 (0.207) -0.004 (0.171) -0.003 (0.150) 0.000 (0.155) 0.001 (0.141) -0.001 (0.137)

SK4 -0.012 (0.145) -0.003 (0.118) -0.002 (0.102) 0.000 (0.106) 0.000 (0.095) -0.000 (0.094)

SK5 -0.007 (0.111) -0.001 (0.087) -0.002 (0.077) -0.000 (0.079) 0.000 (0.071) -0.000 (0.069)

SK6 -0.026 (0.104) -0.004 (0.081) -0.002 (0.067) -0.000 (0.068) 0.000 (0.062) -0.000 (0.061)

Notes: for each sample size T and distribution the table shows the bias (Bj) and the Root Mean Squared Error (RMSE) ratio
of the estimator (in brackets). RMSE ratios are defined as: rRMSEj = RMSEj/RMSE1, where RMSE1 identifies the RMSE
of the method-of-moments estimator. Therefore, a rRMSEj lower than one signals that the j-th estimator is more tightly
clustered around its population value than the conventional measure. Estimates of Bj and RMSEj are based on 1000 Monte
Carlo simulations. See Section 3 for details.
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Table 3: Bias and RMSE ratio of excess kurtosis estimators

T 50 250 500 1000 2500 5000

(a) N(0,1)

KR1 -0.119 (1.000) -0.032 (1.000) -0.019 (1.000) -0.002 (1.000) -0.000 (1.000) -0.002 (1.000)

KR2 0.019 (0.425) 0.006 (0.382) 0.001 (0.388) 0.002 (0.353) 0.000 (0.377) 0.000 (0.368)

KR3 -0.074 (0.407) -0.017 (0.368) -0.009 (0.365) -0.003 (0.343) -0.007 (0.363) -0.009 (0.378)

KR4 0.035 (0.990) -0.014 (0.825) 0.002 (0.830) 0.013 (0.786) 0.001 (0.813) 0.003 (0.795)

KR5 0.000 (0.075) -0.001 (0.064) -0.000 (0.063) 0.000 (0.059) 0.000 (0.061) 0.000 (0.061)

KR6 -0.148 (0.251) -0.010 (0.062) -0.003 (0.056) -0.001 (0.048) -0.000 (0.052) 0.000 (0.050)

(b) t10

KR1 -0.534 (1.000) -0.101 (1.000) -0.057 (1.000) -0.027 (1.000) -0.025 (1.000) 0.007 (1.000)

KR2 0.036 (0.227) 0.005 (0.105) 0.003 (0.090) 0.002 (0.100) 0.000 (0.095) 0.001 (0.082)

KR3 -0.102 (0.249) -0.017 (0.119) -0.010 (0.102) -0.010 (0.114) -0.016 (0.120) -0.022 (0.110)

KR4 0.110 (0.617) -0.013 (0.258) 0.006 (0.220) 0.005 (0.245) 0.003 (0.241) 0.002 (0.199)

KR5 -0.001 (0.042) -0.000 (0.019) -0.000 (0.016) 0.000 (0.018) 0.000 (0.018) 0.000 (0.015)

KR6 -0.155 (0.126) -0.012 (0.018) -0.003 (0.013) -0.001 (0.014) -0.000 (0.013) 0.000 (0.011)

(c) t5

KR1 -4.436 (1.000) -2.249 (1.000) -1.944 (1.000) -1.892 (1.000) -1.536 (1.000) -0.614 (1.000)

KR2 0.034 (0.058) 0.009 (0.015) -0.000 (0.013) 0.003 (0.011) 0.000 (0.008) -0.001 (0.002)

KR3 -0.133 (0.077) -0.019 (0.023) -0.011 (0.020) -0.018 (0.016) -0.040 (0.015) -0.056 (0.005)

KR4 0.247 (0.213) -0.003 (0.044) 0.009 (0.039) 0.005 (0.032) -0.000 (0.024) 0.001 (0.006)

KR5 -0.003 (0.012) 0.000 (0.003) 0.000 (0.003) 0.000 (0.002) -0.000 (0.002) -0.000 (0.000)

KR6 -0.164 (0.033) -0.013 (0.003) -0.004 (0.002) -0.001 (0.002) -0.000 (0.001) -0.000 (0.000)

(d) Log-N(1,0.4)

KR1 -1.614 (1.000) -0.583 (1.000) -0.388 (1.000) -0.202 (1.000) -0.057 (1.000) -0.062 (1.000)

KR2 0.031 (0.093) 0.013 (0.053) 0.004 (0.042) 0.002 (0.033) -0.001 (0.027) 0.000 (0.029)

KR3 -0.088 (0.110) -0.013 (0.064) -0.011 (0.054) -0.012 (0.041) -0.016 (0.038) -0.020 (0.040)

KR4 -0.241 (0.212) -0.067 (0.131) -0.027 (0.108) -0.007 (0.087) -0.008 (0.073) -0.001 (0.073)

KR5 0.001 (0.019) 0.000 (0.010) -0.000 (0.008) -0.000 (0.007) -0.000 (0.006) -0.000 (0.006)

KR6 -0.155 (0.051) -0.011 (0.008) -0.003 (0.006) -0.001 (0.005) -0.000 (0.004) -0.000 (0.004)

(e) Exp(1)

KR1 -2.889 (1.000) -0.756 (1.000) -0.603 (1.000) -0.264 (1.000) -0.012 (1.000) -0.067 (1.000)

KR2 0.024 (0.069) 0.008 (0.037) 0.005 (0.032) 0.000 (0.027) -0.000 (0.025) 0.001 (0.026)

KR3 -0.114 (0.094) -0.012 (0.050) -0.013 (0.043) -0.010 (0.036) -0.015 (0.035) -0.021 (0.040)

KR4 -0.418 (0.184) -0.098 (0.105) -0.041 (0.094) -0.008 (0.075) -0.006 (0.075) 0.003 (0.078)

KR5 -0.003 (0.015) 0.000 (0.008) -0.000 (0.007) 0.000 (0.005) 0.000 (0.005) 0.000 (0.005)

KR6 -0.160 (0.036) -0.012 (0.006) -0.003 (0.005) -0.001 (0.004) -0.000 (0.004) 0.000 (0.004)

(f ) χ2
(3)

KR1 -1.917 (1.000) -0.531 (1.000) -0.299 (1.000) -0.213 (1.000) -0.003 (1.000) -0.048 (1.000)

KR2 0.044 (0.091) 0.001 (0.057) -0.002 (0.047) 0.000 (0.045) 0.002 (0.036) 0.001 (0.030)

KR3 -0.108 (0.109) -0.008 (0.070) -0.015 (0.058) -0.010 (0.057) -0.012 (0.046) -0.018 (0.043)

KR4 -0.328 (0.207) -0.093 (0.147) -0.058 (0.119) -0.008 (0.119) -0.008 (0.096) -0.002 (0.081)

KR5 -0.002 (0.018) 0.001 (0.011) -0.001 (0.009) -0.000 (0.009) 0.000 (0.007) -0.000 (0.006)

KR6 -0.153 (0.046) -0.011 (0.009) -0.004 (0.007) -0.001 (0.006) -0.000 (0.005) -0.000 (0.004)

Notes: see notes to 2.
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Figure 1: Sample distribution of SK1
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Notes: for each distribution and sample size (reported on the x-axis) the figure represents the sampling distribution of the
estimator with a boxplot. The line in the middle of the box is the median, the size of the box is proportional to the interquartile
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Figure 2: Sample distribution of KR1
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However, while trimming reduces the RMSE, it also leads to a bias in the case of samples

of size 50 drawn from asymmetric distributions. As it can been seen, this does not happen

for L-skewness, SK5. To sum up, measures based on L- or TL-moments represent the best

choice both in terms of bias and RMSE ratio.

Table 3 and Figure 2 highlight that the conventional measure of excess kurtosis KR1 is

severely biased, especially in small samples. For the Student’s t5 distribution the downward

bias can be visually assessed in Figure 2, even in a sample of 5000 observations. Moreover,

as in the case of the method of moments skewness measure, KR1 is always associated with

the highest RMSE. In samples of size up to 250 the best options in terms of bias are KR2

and KR5: in both cases the bias vanishes as we move from 50 to 250 observations. On the

contrary, when the underlying distribution is asymmetric, the remaining measures remain

downward biased even in samples of 250 observations. However, when considering also the

RMSE, the kurtosis estimator based on L-moments, KR5, is the best option. Much like in

the case of skewness, trimming leads to a deterioration of the performance of the estimator

based on L-moments; in fact, irrespective of the distribution, KR6 displays a severe bias in

samples of size 50.
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3.3 Serial correlation

Up to now we have analysed iid samples, but macroeconomic and financial time series are

typically serially correlated and often highly persistent. For this reason, we now briefly

assess the effects of serial correlation on the measures of skewness and excess kurtosis under

investigation. We do so by focusing on two Autoregressive (AR) models of order one with

different error distributions and degrees of persistence.7 For the sake of brevity, we present

only three distributions: the standard Normal, Student’s t5 and the Log-Normal distribution.

In Tables 4 and 5 we consider an AR(1) model with autoregressive parameter equal to 0.9.

Results for an AR(1) model with autoregressive parameter 0.5 appears in Appendix D.

Moving from the iid simulation design to the AR(1) data generating process, we see

that the bias of all skewness and excess kurtosis measures increases in absolute terms. As

for skewness, TL-moments outperform other estimators for what concerns the RMSE ratio.

This result carries over, at least in part to excess kurtosis. As the sample size increase, for

non-Normal distributions, the bias of KR6 tends to vanish more quickly than that of its

competitors.

All in all, also in the presence of serial correlation the bias of skewness and kurtosis

measures based L- or TL-moments vanishes very quickly as the sample size grow. Moreover,

these estimators are often associated with the lowest RMSE errors. Table D1 and D2 of

the Appendix present results for AR(1) models with autoregressive parameter equal to 0.5.

These Tables confirm the findings of this Section, therefore the main results are not affected

by the degree of persistence of the AR(1) model. The degree of persistence is positively

associated with the size of the bias, but does not alter the ranking of estimators.

7We simulate two zero mean AR(1) processes with autoregressive parameter ρ = 0.5 and ρ = 0.9. If
we measure persistence in terms of “speed of mean reversion”, we can rely on the half-life to quantify the
number of periods needed for the effects of a unit shock to halve. For an AR(1) model, the half-life is:
HL = log(0.5)/ log (|ρ|). Then, we get HL = 1 when ρ = 0.5 and HL = 6.6 when ρ = 0.9.
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Table 4: Bias and RMSE ratio of skewness estimators - AR(1) model (ρ = 0.9)

T 50 250 500 1000 2500 5000

(a) N(0,1)

SK1 0.017 (1.000) -0.008 (1.000) -0.009 (1.000) -0.002 (1.000) 0.002 (1.000) 0.002 (1.000)

SK2 0.005 (0.522) 0.001 (0.363) 0.002 (0.336) -0.000 (0.310) 0.001 (0.294) 0.001 (0.311)

SK3 0.006 (0.451) 0.000 (0.335) 0.000 (0.303) -0.001 (0.283) 0.001 (0.278) 0.001 (0.280)

SK4 0.005 (0.362) 0.000 (0.267) 0.000 (0.242) -0.001 (0.226) 0.001 (0.222) 0.001 (0.223)

SK5 0.005 (0.236) -0.001 (0.194) -0.001 (0.183) -0.001 (0.177) 0.000 (0.173) 0.001 (0.170)

SK6 0.005 (0.225) -0.001 (0.159) 0.001 (0.145) -0.001 (0.137) 0.000 (0.135) 0.000 (0.132)

(c) t5

SK1 0.002 (1.000) -0.006 (1.000) 0.000 (1.000) 0.006 (1.000) -0.003 (1.000) 0.003 (1.000)

SK2 -0.011 (0.468) 0.002 (0.310) -0.001 (0.270) -0.002 (0.220) 0.002 (0.188) 0.001 (0.182)

SK3 -0.003 (0.406) 0.001 (0.280) -0.001 (0.248) -0.000 (0.203) 0.001 (0.176) 0.001 (0.173)

SK4 -0.003 (0.325) 0.001 (0.220) -0.000 (0.195) -0.000 (0.159) 0.001 (0.138) 0.001 (0.136)

SK5 -0.000 (0.220) -0.001 (0.171) -0.000 (0.157) 0.000 (0.132) -0.000 (0.116) 0.000 (0.117)

SK6 -0.002 (0.194) -0.000 (0.134) -0.000 (0.122) -0.000 (0.099) 0.000 (0.086) 0.000 (0.084)

(d) Log-N(1,0.4)

SK1 -1.112 (1.000) -0.976 (1.000) -0.940 (1.000) -0.940 (1.000) -0.925 (1.000) -0.921 (1.000)

SK2 -0.104 (0.209) -0.095 (0.146) -0.086 (0.121) -0.090 (0.110) -0.090 (0.104) -0.091 (0.102)

SK3 -0.189 (0.226) -0.170 (0.194) -0.162 (0.183) -0.166 (0.181) -0.166 (0.181) -0.166 (0.181)

SK4 -0.139 (0.174) -0.124 (0.145) -0.117 (0.134) -0.120 (0.132) -0.120 (0.132) -0.121 (0.132)

SK5 -0.147 (0.150) -0.132 (0.141) -0.128 (0.139) -0.131 (0.140) -0.130 (0.141) -0.130 (0.141)

SK6 -0.089 (0.110) -0.082 (0.094) -0.079 (0.089) -0.082 (0.089) -0.081 (0.089) -0.081 (0.089)

Notes: see notes to 2.
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Table 5: Bias and RMSE ratio of excess kurtosis estimators - AR(1) model (ρ = 0.9)

T 50 250 500 1000 2500 5000

(a) N(0,1)

KR1 -0.461 (1.000) -0.167 (1.000) -0.117 (1.000) -0.054 (1.000) -0.018 (1.000) -0.007 (1.000)

KR2 0.003 (0.456) -0.006 (0.311) 0.004 (0.274) 0.001 (0.261) 0.000 (0.214) 0.002 (0.245)

KR3 -0.258 (0.513) -0.072 (0.412) -0.046 (0.389) -0.020 (0.376) -0.012 (0.336) -0.010 (0.351)

KR4 -0.252 (0.945) -0.049 (0.804) -0.015 (0.756) 0.002 (0.726) -0.001 (0.614) -0.001 (0.660)

KR5 -0.033 (0.093) -0.010 (0.071) -0.006 (0.066) -0.003 (0.063) -0.001 (0.055) -0.000 (0.058)

KR6 -0.153 (0.212) -0.012 (0.055) -0.004 (0.046) -0.001 (0.044) -0.000 (0.037) 0.000 (0.041)

(c) t5

KR1 -6.335 (1.000) -5.923 (1.000) -5.744 (1.000) -5.620 (1.000) -5.528 (1.000) -5.496 (1.000)

KR2 -0.072 (0.060) -0.074 (0.032) -0.073 (0.024) -0.071 (0.020) -0.074 (0.016) -0.076 (0.015)

KR3 -0.688 (0.119) -0.466 (0.087) -0.417 (0.078) -0.395 (0.073) -0.389 (0.071) -0.383 (0.070)

KR4 -0.810 (0.176) -0.562 (0.126) -0.523 (0.110) -0.515 (0.101) -0.520 (0.097) -0.513 (0.095)

KR5 -0.099 (0.019) -0.070 (0.013) -0.063 (0.012) -0.060 (0.011) -0.058 (0.011) -0.057 (0.010)

KR6 -0.180 (0.029) -0.036 (0.008) -0.027 (0.006) -0.024 (0.005) -0.024 (0.005) -0.024 (0.004)

(d) Log-N(1,0.4)

KR1 -3.670 (1.000) -3.234 (1.000) -3.085 (1.000) -3.034 (1.000) -2.958 (1.000) -2.939 (1.000)

KR2 -0.042 (0.086) -0.039 (0.048) -0.030 (0.037) -0.034 (0.028) -0.037 (0.020) -0.038 (0.018)

KR3 -0.432 (0.138) -0.238 (0.096) -0.195 (0.079) -0.180 (0.070) -0.168 (0.062) -0.169 (0.060)

KR4 -0.555 (0.222) -0.302 (0.158) -0.240 (0.123) -0.233 (0.105) -0.228 (0.090) -0.230 (0.086)

KR5 -0.060 (0.023) -0.036 (0.015) -0.030 (0.013) -0.028 (0.011) -0.026 (0.010) -0.025 (0.009)

KR6 -0.164 (0.045) -0.023 (0.010) -0.014 (0.007) -0.012 (0.006) -0.011 (0.005) -0.011 (0.004)

Notes: see notes to 2.
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3.4 Robustness to outliers

Joint inspection of Figures 3 and 5 highlights that the effects of outlying observations on the

sampling distributions of conventional skewness and kurtosis measures depends heavily on

the data generating process used in the simulations.

3.4.1 Normal mixture distribution

Figure 3 shows that the dispersion of SK1 increases with the size of the sample. This happens

because the mixture distribution assigns a very low probability to the “market crash regime”,

that therefore materializes more often in larger samples. Independently of the sample size,

Table 6 shows that SK1 is upward biased with the size of the bias monotonically decreasing

as T increases. On the contrary, the robust measures of skewness are largely unaffected

by the presence of very large negative observations generated in the second regime of the

mixture. TL-skewness is always associated with the lowest RMSE ratio. See Figure 4.

Figure 5 shows that KR1 is severely downward biased even in samples of size 5000.

The Normal mixture data generating process proves challenging also for KR3 that always

displays a negative bias. On the contrary, KR2, KR4 and KR5 are centered around their

true values. TL-kurtosis, KR6, is severely biased in samples of size 50, but then quickly

converges to its true value. See Figure 6. Table 7 illustrates that either KR5 or KR6 yield

the lowest RMSE ratio. Their bias also quickly vanishes as the sample size grows.

3.4.2 Contaminated Normal distribution

Table 6(c,d) shows that for sample of 50 observations contaminating the standard Normal

draws with a single outlier has noticeable effects on all measures, except SK2 and SK6.

While SK1 remains downward biased even in samples of size T = 5000, SK3, SK4 and

SK5 converge to their true values as T grows. In this case, TL-skewness represents the best

option in terms RMSE.

The effects of a single outlier on the conventional measure of kurtosis KR1 are notewor-

thy: KR1 becomes completely unreliable, even for T = 5000. See Figure 5. As expected,

a comparison of Table 7(c) and 7(d) illustrates that this detrimental impact is positively
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Table 6: Bias and RMSE ratio of skewness estimators – outliers

T 50 250 500 1000 2500 5000

(a) Normal mixture

SK1 2.147 (1.00) 1.532 (1.00) 1.402 (1.00) 0.816 (1.00) 0.447 (1.00) 0.199 (1.00)

SK2 -0.002 (0.077) -0.001 (0.032) -0.003 (0.021) -0.003 (0.016) 0.001 (0.012) 0.001 (0.011)

SK3 0.004 (0.057) -0.001 (0.025) 0.000 (0.016) -0.001 (0.013) 0.001 (0.010) 0.001 (0.008)

SK4 0.005 (0.043) 0.001 (0.019) 0.001 (0.012) -0.000 (0.009) 0.001 (0.007) 0.001 (0.006)

SK5 0.003 (0.036) -0.001 (0.018) 0.002 (0.011) 0.000 (0.009) 0.000 (0.007) 0.000 (0.006)

SK6 -0.001 (0.025) -0.001 (0.010) -0.000 (0.006) 0.000 (0.005) 0.000 (0.004) 0.000 (0.003)

(b) N(0,1) with 1987 Outlier

SK1 -6.319 (1.00) -11.722 (1.00) -13.200 (1.00) -12.654 (1.00) -9.246 (1.00) -5.984 (1.00)

SK2 -0.018 (0.029) -0.002 (0.007) -0.000 (0.005) -0.001 (0.003) -0.001 (0.003) 0.001 (0.003)

SK3 -0.449 (0.073) -0.143 (0.013) -0.076 (0.007) -0.040 (0.004) -0.017 (0.003) -0.008 (0.003)

SK4 -0.135 (0.022) -0.056 (0.005) -0.035 (0.003) -0.023 (0.002) -0.011 (0.002) -0.005 (0.002)

SK5 -0.522 (0.083) -0.188 (0.016) -0.104 (0.008) -0.055 (0.004) -0.023 (0.003) -0.011 (0.002)

SK6 -0.009 (0.009) -0.003 (0.002) -0.001 (0.001) -0.001 (0.001) -0.000 (0.001) 0.000 (0.001)

(c) N(0,1) with 2008 Outlier

SK1 -4.422 (1.00) -4.008 (1.00) -2.862 (1.00) -1.733 (1.00) -0.798 (1.00) -0.415 (1.00)

SK2 -0.019 (0.041) -0.002 (0.020) -0.000 (0.022) -0.001 (0.024) -0.001 (0.033) 0.001 (0.046)

SK3 -0.227 (0.056) -0.056 (0.019) -0.027 (0.018) -0.015 (0.019) -0.006 (0.024) -0.002 (0.032)

SK4 -0.112 (0.027) -0.037 (0.013) -0.019 (0.012) -0.011 (0.014) -0.005 (0.019) -0.002 (0.025)

SK5 -0.277 (0.063) -0.074 (0.019) -0.038 (0.015) -0.020 (0.014) -0.008 (0.014) -0.004 (0.017)

SK6 -0.009 (0.013) -0.003 (0.006) -0.001 (0.006) -0.001 (0.007) -0.000 (0.009) 0.000 (0.013)

Notes: see notes to Table 2.

associated with the size of the outlier. With the exception of KR2, all robust measures are

biased when T = 50. TL-kurtosis is once again the best option both in terms of speed with

which the bias vanishes asymptotically and RMSE. See also Figure 6.
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Figure 3: Sample distribution of SK1
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Figure 4: Sample distribution of SK6
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Table 7: Bias and RMSE ratio of excess kurtosis estimators – outliers

T 50 250 500 1000 2500 5000

(a) Normal mixture

KR1 -51.774 (1.00) -43.619 (1.00) -37.998 (1.00) -26.370 (1.00) -15.624 (1.00) -7.918 (1.00)

KR2 0.026 (0.005) 0.007 (0.002) 0.000 (0.002) 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)

KR3 -0.088 (0.008) -0.013 (0.005) -0.016 (0.003) -0.036 (0.002) -0.087 (0.002) -0.128 (0.003)

KR4 0.326 (0.039) -0.008 (0.005) 0.014 (0.003) -0.002 (0.002) 0.003 (0.002) 0.003 (0.001)

KR5 -0.003 (0.001) -0.001 (0.001) -0.001 (0.000) -0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

KR6 -0.148 (0.003) -0.010 (0.000) -0.003 (0.000) -0.001 (0.000) 0.000 (0.000) 0.000 (0.000)

(b) N(0,1) with 1987 Outlier

KR1 40.32 (1.00) 165.59 (1.00) 245.97 (1.00) 293.92 (1.00) 262.98 (1.00) 185.50 (1.00)

KR2 0.042 (0.007) 0.010 (0.001) 0.003 (0.000) 0.003 (0.000) 0.001 (0.000) 0.000 (0.000)

KR3 3.186 (0.080) 1.057 (0.006) 0.496 (0.002) 0.134 (0.000) -0.100 (0.000) -0.146 (0.001)

KR4 23.36 (0.597) 0.028 (0.002) 0.023 (0.001) 0.023 (0.000) 0.005 (0.000) 0.005 (0.000)

KR5 0.453 (0.011) 0.163 (0.001) 0.091 (0.000) 0.048 (0.000) 0.020 (0.000) 0.010 (0.000)

KR6 -0.145 (0.004) -0.009 (0.000) -0.002 (0.000) -0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

(c) N(0,1) with 2008 Outlier

KR1 24.977 (1.00) 39.550 (1.00) 31.900 (1.00) 20.611 (1.00) 9.964 (1.00) 5.231 (1.00)

KR2 0.038 (0.010) 0.009 (0.003) 0.003 (0.002) 0.002 (0.003) 0.000 (0.004) 0.000 (0.005)

KR3 1.492 (0.059) 0.381 (0.010) 0.175 (0.006) 0.051 (0.003) -0.033 (0.005) -0.051 (0.011)

KR4 7.772 (0.313) 0.028 (0.006) 0.023 (0.005) 0.022 (0.006) 0.004 (0.008) 0.005 (0.010)

KR5 0.236 (0.009) 0.062 (0.002) 0.033 (0.001) 0.017 (0.001) 0.007 (0.001) 0.004 (0.001)

KR6 -0.146 (0.006) -0.009 (0.000) -0.002 (0.000) -0.000 (0.000) 0.000 (0.000) 0.000 (0.001)

Notes: see notes to Table 2.
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Figure 5: Sample distribution of KR1
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Figure 6: Sample distribution of KR6
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4 Empirical application: the FRED-MD

In this section we estimate the skewness and excess kurtosis of 128 US macroeconomic and

financial time series in the FRED-MD (see McCracken and Ng, 2016, for details). This is a

large, monthly frequency, dataset that focuses on the US economy and is updated in real-

time through the FRED database. We rely on data for the period April 1959 - December

2018. Because of differences in data availability, the sample size ranges from 320 to 717

and is on average equal to 709. Transformations aimed at making the series stationary are

applied when necessary.8

To gauge the maximum moment that exists for each series in the FRED-MD, we have

estimated their maximal moment exponents (MME) relying (Hill, 1975). The MME is

defined as αδ = supq E|xt|q <∞ and can be estimated as follows (Hall, 1982):

α̂δ =

[(
1

m− 1

m−1∑
i=1

logXi:T

)
− logXm:T

]−1

with δ =
m

T
m > 0 (18)

we set δ = 0.1, so that we focus on the upper 10% of the empirical distribution of the

series in the FRED-MD.9

Earlier empirical analyses showed that estimates of the MME for exchange rates and

stock returns often lie between 2 and 4 (Chen et al., 2000; De Lima, 1997; Mittnik and

Rachev, 1993; Loretan and Phillips, 1994); therefore, while the second moment seems to

be finite, the third and fourth moments often are not. Our results are largely in line with

these findings. In fact, Table 8 highlight that some of the series in the FRED-MD do not

possess all moments required to compute conventional or even robust measures of skewness

and kurtosis. The conventional skewness measure, that requires existence of moments up to

order three, can be computed for 104 series out of 128. For the conventional kurtosis this

number drops to 46, meaning that only about 36% of the series possess moments up to the

fourth or higher. Therefore, these estimates suggest that there are 24 series (19% of the

8We apply the transformations suggested by McCracken and Ng (2016), but contrarily to them we do not
remove outliers. In fact, we want to asses their impact of skewness and kurtosis. See the online Appendix
to McCracken and Ng (2016) for details.

9It is well known that the Hill estimator is biased in small samples and is very sensitive to the choice of
δ (see e.g. Kearns and Pagan, 1997; Huisman et al., 2001). For these reasons, we present some robustness
checks in Section D.4 of the Appendix.
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total) that do not have finite third moment. Lastly, the estimated MME of the series in the

FRED-MD exceeds 8 only in 15 out of 128 cases (11.7% of the total).

All in all, there is evidence that at least some of the monthly US macroeconomic time

series in the FRED–MD database might not posses all moments that are necessary to conduct

normality tests. For instance the Jarque-Bera procedure requires existence of the eight

moment, while a test of symmetry based on SK1 requires existence of the sixth moment

(Bai and Ng, 2001). Problems associated with moment condition failure also arise when

testing for nonlinearity (see e.g. Chen et al., 2000; De Lima, 1997).

For each estimator, Figure 7 presents a scatterplot that compares the skewness estimated

on the whole sample and after deleting the largest observation in absolute value. Each point

in Figure 7 refers to the estimate of the skewness for a different series in the FRED-MD. We

can see that SK2 and SK6 display the lowest dispersion and a high degree of correlation, thus

suggesting that they are the most robust measures. The same exercise for excess kurtosis

is presented in Figure 8. The correlation between the estimated kurtosis for the whole

sample and the “leave-one-out” estimate is highest for KR6, that also displays the lowest

dispersion. Moreover, Figures 7 and 8 highlight that the conventional measures of skewness

and excess kurtosis display the highest dispersion, thus confirming their low resistance to

outlying observations.

4.1 Selected series

Following McCracken and Ng (2016) the 128 series in the FRED-MD can be assigned to eight

groups: “Output & Income” (16 series), “Labor Market” (31 series), “Housing” (10 series),

“Consumption, Orders & Inventories” (10 series), “Money & Credit” (14 series), “Interest

& Exchange Rates” (22 series), “Prices” (20 series), “Stock Market” (5 series). We select

one representative series in each group and in Table 8 we report the estimate of its MME,

SK1, SK5, KR1 and KR5. Column 3 shows that, with exception of Housing Starts, none of

the series has finite fourth moment. Notice that the lowest MME, 1.58, is associated with

the Fed Fund rate that also displays the largest excess kurtosis as measured both by KR1

and KR5. Comparing columns 6 and 7, we can see that KR1 is particularly sensitive to
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Figure 7: Robustness of skewness measures for the FRED-MD
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Notes: the figure shows the estimated skewness for each series in the FRED-MD (circles) with (x-axis) and without (y-axis)
the largest observation (in absolute value). The dashed line is the 45◦ line. Each figure also shows the Kemdall’s τ correlation
coefficient and the root mean absolute error (RMAE).

outliers. For instance, KR1 for log-returns on the S&P500 index is 4 if computed on the

whole sample, while it halves when omitting the largest observation is absolute value. This

sensitivity to outliers is also a feature of SK1. On the contrary, SK5 and KR5 remain largely

unaffected when one outlying observation is deleted.
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Figure 8: Robustness of excess kurtosis measures for the FRED-MD
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(y-axis) the largest observation (in absolute value). The dashed line is the 45◦ line. See notes to 7.

Table 8: Robustness of skewness and kurtosis for selected macroeconomic series in the FRED-
MD.

Series Trans. α̂10% SK1 SK1(−1) KR1 KR1(−1) SK5 SK5(−1) KR5 KR5(−1)

IP ∆ log xt 2.898 -0.344 -0.940 7.319 4.555 -0.051 -0.068 0.102 0.091

Un. Rate ∆xt 2.153 0.512 0.373 1.786 1.177 0.064 0.055 0.070 0.064

House log xt 94.533 -1.012 -1.021 1.185 1.192 -0.176 -0.178 0.063 0.062

Real PCE ∆ log xt 3.075 -0.205 -0.006 2.875 2.078 -0.011 -0.001 0.088 0.081

M2 ∆2 log xt 2.353 -0.864 -0.424 8.805 6.446 -0.043 -0.028 0.145 0.135

Fed Funds ∆xt 1.588 -2.340 0.884 47.247 17.065 -0.043 -0.001 0.323 0.302

CPI ∆2 log xt 2.165 0.015 -0.402 4.843 2.814 -0.014 -0.028 0.104 0.095

S&P 500 ∆ log xt 3.263 -1.031 -0.713 4.184 2.095 -0.108 -0.096 0.081 0.072

Notes: column 1 reads as follows: IP = Industrial Production; Un. Rate = Unemployment Rate; House = Housing Starts;
Real PCE = Real personal consumption expenditures; M2 = M2 Money Stock; Fed Funds = Effective Federal Funds Rate; CPI
= CPI All Items; S&P500 = S&P 500 Index. Column 2 shows the transformation applied to make the series stationary (see
McCracken and Ng, 2016); column 3 reports point estimates of maximal moment exponent; columns 4-11 show skewness and
excess kurtosis measures computed on the whole sample (SKi, KRi) or leaving out the largest observation (in absolute value)
of the series (SKi,(−1),KRi,(−1)).
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5 Conclusions

In this paper we have assessed the relative merits of different estimators of skewness and

excess kurtosis. Our Monte Carlo analysis highlights that standard estimators based on the

method-of-moments are outperformed by more robust and easily implementable alternatives.

This result is not confined to data generating processes contaminated with outlying obser-

vations, but carries over to non-Gaussian samples and even to normally distributed random

variables featuring serial correlation and persistence.

In the empirical application to the FRED-MD we provide further evidence that method-

of-moments estimators of skewness and kurtosis are unreliable for macroeconomic time series.

Moreover, we also show that several time series do not possess enough finite moments to per-

form standard test of Normality, symmetry or nonlinearity (Ramsey and Rothman, 1996).

Since these tests are often used not only for model-building purposes, but also to investi-

gate substantive questions in economics and finance (Bontemps and Meddahi, 2005; Kilian

and Demiroglu, 2000) our results have far reaching implications for empirical analyses of

macroeconomic and financial time series. These are not limited to estimation of skewness

and kurtosis, but possibly extend to testing normality and symmetry (Bai and Ng, 2001).

On a more positive note, we show that robust estimators are available and perform much

better – both in term of bias reduction and precision – than standard measures of skewness

and kurtosis. In particular, our main contribution is to introduce L- and TL-moments in

the time series econometrics literature illustrating that these estimators outperform those

based on the method-of-moments, as well as alternative robust estimators based on quantiles.

Moreover, L- and TL-moments can be used to characterize a very large class of statistical

distributions because they are less demanding in terms the moments. This opens the doors

for their use in macroeconomic and financial applications, where there is often an issue of

moment failure (Chen et al., 2000; De Lima, 1997; Mittnik and Rachev, 1993; Loretan and

Phillips, 1994). Two potential applications of L-moments, that we leave for future investi-

gation, are tests of normality and symmetry in the time series domain and the estimation of

realized volatility.
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Appendix to “Robust measures of skewness

and kurtosis for financial and macroeconomic

time series”

A Monte Carlo design: further details

A.1 Standard Normal distributions contaminated with a single

outlier

To produce the two Monte Carlo designs in which we contaminate the standard Normal

distribution with a single outlier, we follow Kim and White (2004) and rely on the sam-

ple distribution of daily log-returns on the S&P500 index. We downloaded adjusted close

prices from Yahoo! Finance. We consider two sample periods: 04/01/1982-06/05/1999 and

29/06/2001-30/11/2018. In both cases the size of the sample is 4384. For each period,

we identify the minimum return that corresponds to -22.90% in 19/10/1987 (first sample)

and to -9.47% in 15/10/2008 (second sample). Outliers are injected in the simulated dis-

tributions at time τi for i = 1, 2, that corresponds to the location of the outlier in the

sample divided by the total number of observations. This approach leads to τ1 = 0.30 and

τ2 = 0.48. The size of outliers, mi for i = 1, 2 is determined as: mi = xbτiT c/Q0.25. This

yields: m1 = −22.90/ − 0.45 = 50.89 and m2 = −9.47/ − 0.49 = 19.33. The last step is as

follows: in each of the two experiment, we simulate of a sample of size T from the standard

Normal distribution, we calculate Q0.25 and then we replace xbτiT c with the outlier mi×Q0.25.
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B Estimation of sample skewness & kurtosis

B.1 Conventional skewness and kurtosis

Given a sample of size T , {x}Tt=1, SK1 and KR1 are estimated as follows:

ŜK1 =
1

T

T∑
t=1

(
xt − µ̂
σ̂

)3

K̂R1 =
1

T

T∑
t=1

(
xt − µ̂
σ̂

)4

− 3

(1)

where µ̂ = T−1
∑T

t=1 xt and σ̂ =
√
T−1

∑T
t=1 (xt − µ̂)2.

C L-moments & TL moments: further details

C.1 Estimation of L-moment

L-moments can be generally defined as:

λr =
1

r

r−1∑
j=0

(−1)j
(
r − 1

j

)
E (Xr−j:r) for r = 1, 2, . . . (2)

The expectation of an order statistics, E (Xj:r), can be written as (David and Nagaraja,

2017):

E (Xj:r) =
r!

(j − 1)!(r − j)!

∫ inf

−inf
xF j−1(x) [1− F (x)]r−j f(x)dx

=
r!

(j − 1)!(r − j)!

∫ 1

0

uj−1 [1− u]r−j Q(u)du (3)

Substituting (3) in (2) and rearranging, we get:

λr =

∫ 1

0

P ∗r−1(u)Q(u)du (4)

where P ∗r (u) =
∑r

j=0 p
∗
r,ju

j and p∗r,j = (−1)r−j
(
r
j

)(
r+j
j

)
. Notice that P ∗r (u) is the r-th shifted

Legendre polynomial, related to the Legendre polynomial by P ∗r (u) = Pr(2u− 1).

2



L-moments can be estimated by sample L-moments. These are defined as:

`r =
r−1∑
j=0

p∗r−1,jbj (5)

where:

bj =
1

n

n∑
i=1

(i− 1)(i− 2) . . . (i− j)
(n− 1)(n− 2) . . . (n− j)

xi:n (6)

C.2 TL-moments: existence, bounds and estimation

The general definition of TL-moment is as follows:

λ(s,k)
r =

1

r

r−1∑
j=0

(−1)j
(
r − 1

j

)
E (Xr+s−j:r+s+k) (7)

Hosking (2007) provided a sufficient condition for the existence of TL-moments that are

showed to exist wheneverE
{[

max (−Xt, 0)1 /(s+ 1)
]}

<∞ and E
{[

max (Xt, 0)1 /(k + 1)
]}

<

∞.

In the empirical analysis we set s = k = 1, therefore the first four TL-moments can be

written as:10

λ
(1,1)
1 = E (X2 : 3) = 6

∫ 1

0

Q(u)u (1− u) du (8)

λ
(1,1)
2 =

1

2
E (X3:4 −X2:4) = 6

∫ 1

0

Q(u)u (1− u) (2u− 1)du (9)

λ
(1,1)
3 =

1

3
E (X4:5 − 2X3:5 +X2:5) =

20

3

∫ 1

0

Q(u)u (1− u) (5u2 − 5u+ 1)du (10)

λ
(1,1)
4 =

1

4
E (X5:6 − 3X4:6 + 3X3:6 +X2:6) = . . .

=
15

2

∫ 1

0

Q(u)u (1− u) (14u3 − 21u2 + 9u− 1)du (11)

λ
(1,1)
1 and λ

(1,1)
2 are thus robust measures of location and scale. With s = k = 1 the condition

for the existence of TL-moments is E (|Xt|0.5) < ∞. For example, since the mean of the

Cauchy distribution the cannot be defined, its L-moments cannot be defined either. However,

10In this case, with k = s = 1, the r-th TL-moment is defined in terms of a conceptual sample of size
equal to r + s+ k = r + 2.
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since E(|Xt|0.5) = 1.41 its TL-moment, λ
(1,1)
r , does exist.11

Bounds on TL moment ratios. Hosking (2007) showed that for the generic TL-moment ratio

τ
(s,k)
r ≡ λ

(r,s)
r /λ

(r,s)
2 ∀r ≥ 3 a bound can be defined as follows:

∣∣τ (s,k)
r

∣∣ ≤ 2(m+ 1)!(r + s+ k)!

r(m+ r − 1)!(2 + s+ k)!
where m = min(s, k) (12)

for s = k = 0 we get |τr| ≤ r!/r(r − 1)! that simplifies to |τr| < 1 ∀r ≥ 3. For s = k = 1

the bound on TL-moment ratios is:
∣∣∣τ (1,1)
r

∣∣∣ ≤ (1/6)(r + 2)!/(r × r!). Therefore, we get:∣∣∣τ (1,1)
3

∣∣∣ = |SK6| ≤ 1.11 and
∣∣∣τ (1,1)

4

∣∣∣ = |KR′6| ≤ 1.25.

Sample TL moments. TL-moments can be consistently and unbiasedly estimated as:

`(s,k)
r =

1

r
(

n
t+s+k

) n−k∑
j=s+1

r−1∑
i=0

(−1)i
(
r − 1

i

)(
j − 1

r + s− i− 1

)(
n− j
k + i

)
xj (13)

11We used Matlab’s numerical integration routine “integral” to solve E(|Xt|0.5) =
∫∞
−∞ |Xt|0.5f(Xt)dXt

assuming that Xt has a standard Cauchy distribution with pdf f(Xt) = 1/
[
π
(
1 +X2

t

)]
.
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D Additional tables & figures

D.1 Additional figures – iid samples
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Figure A1: Sample distribution of SK2
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Notes: See notes to Figure 1.

Figure A2: Sample distribution of SK3
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Notes: See notes to Figure 1.
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Figure A3: Sample distribution of SK4
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Notes: See notes to Figure 1.

Figure A4: Sample distribution of SK5
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Notes: See notes to Figure 1.
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Figure A5: Sample distribution of SK6
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Figure A6: Sample distribution of KR2
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Figure A7: Sample distribution of KR3
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Figure A8: Sample distribution of KR4
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Notes: See notes to Figure 1.

Figure A9: Sample distribution of KR5
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Figure A10: Sample distribution of KR6
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D.2 Additional figures – outliers
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Figure A11: Sample distribution of SK2
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Figure A12: Sample distribution of SK3
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Notes: See notes to Figure 1.
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Figure A13: Sample distribution of SK4
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Figure A14: Sample distribution of SK5
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Notes: See notes to Figure 1.
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Figure A15: Sample distribution of KR2
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Notes: See notes to Figure 1.

Figure A16: Sample distribution of KR3
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Notes: See notes to Figure 1.
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Figure A17: Sample distribution of KR4
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Figure A18: Sample distribution of KR5
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D.3 Additional tables – Serial Correlation

Table D1: Bias and RMSE ratio of skewness estimators - AR(1) model (ρ = 0.5)

T 50 250 500 1000 2500 5000

(a) N(0,1)

SK1 0.010 (1.000) 0.001 (1.000) 0.004 (1.000) 0.003 (1.000) 0.001 (1.000) -0.000 (1.000)

SK2 0.003 (0.580) 0.002 (0.505) -0.001 (0.501) -0.002 (0.490) -0.000 (0.513) 0.000 (0.539)

SK3 0.004 (0.420) 0.000 (0.374) -0.000 (0.372) -0.001 (0.348) 0.000 (0.369) -0.000 (0.381)

SK4 0.003 (0.336) 0.000 (0.299) -0.000 (0.297) -0.001 (0.278) 0.000 (0.295) -0.000 (0.304)

SK5 0.002 (0.204) 0.000 (0.183) 0.000 (0.179) 0.000 (0.172) 0.000 (0.175) -0.000 (0.175)

SK6 0.002 (0.191) 0.000 (0.159) -0.000 (0.155) -0.000 (0.147) 0.000 (0.152) 0.000 (0.155)

(c) t5

SK1 0.007 (1.000) 0.002 (1.000) -0.007 (1.000) 0.019 (1.000) -0.009 (1.000) -0.000 (1.000)

SK2 -0.017 (0.290) 0.005 (0.155) -0.000 (0.129) 0.001 (0.094) 0.001 (0.074) -0.001 (0.081)

SK3 -0.011 (0.224) 0.003 (0.121) -0.002 (0.105) 0.002 (0.077) -0.000 (0.059) -0.000 (0.065)

SK4 -0.009 (0.170) 0.002 (0.092) -0.001 (0.079) 0.001 (0.058) -0.000 (0.045) -0.000 (0.049)

SK5 -0.001 (0.139) 0.001 (0.080) -0.001 (0.072) 0.001 (0.051) -0.001 (0.041) 0.000 (0.044)

SK6 -0.003 (0.094) 0.001 (0.055) -0.001 (0.046) 0.001 (0.033) -0.000 (0.026) -0.000 (0.029)

(d) Log-N(1,0.4)

SK1 -0.568 (1.000) -0.385 (1.000) -0.371 (1.000) -0.357 (1.000) -0.349 (1.000) -0.343 (1.000)

SK2 -0.041 (0.257) -0.034 (0.182) -0.039 (0.159) -0.037 (0.141) -0.037 (0.124) -0.036 (0.116)

SK3 -0.073 (0.211) -0.063 (0.181) -0.066 (0.175) -0.065 (0.182) -0.065 (0.184) -0.064 (0.186)

SK4 -0.052 (0.158) -0.044 (0.130) -0.046 (0.124) -0.045 (0.128) -0.045 (0.128) -0.045 (0.129)

SK5 -0.056 (0.128) -0.049 (0.121) -0.050 (0.125) -0.050 (0.133) -0.050 (0.137) -0.050 (0.142)

SK6 -0.045 (0.106) -0.033 (0.087) -0.033 (0.085) -0.033 (0.089) -0.032 (0.090) -0.032 (0.092)

Notes: see notes to Table 2.
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Table D2: Bias and RMSE ratio of excess kurtosis estimators - AR(1) model (ρ = 0.5)

T 50 250 500 1000 2500 5000

(a) N(0,1)

KR1 -0.194 (1.000) -0.030 (1.000) -0.020 (1.000) -0.010 (1.000) -0.004 (1.000) -0.002 (1.000)

KR2 0.013 (0.438) 0.006 (0.378) -0.004 (0.359) -0.003 (0.337) 0.001 (0.349) 0.001 (0.348)

KR3 -0.097 (0.431) -0.015 (0.381) -0.009 (0.359) -0.006 (0.357) -0.007 (0.350) -0.009 (0.370)

KR4 -0.010 (0.967) -0.007 (0.848) 0.002 (0.783) 0.000 (0.759) 0.002 (0.738) 0.001 (0.754)

KR5 -0.004 (0.078) 0.000 (0.066) -0.001 (0.062) -0.000 (0.060) 0.000 (0.058) 0.000 (0.058)

KR6 -0.149 (0.259) -0.010 (0.062) -0.003 (0.053) -0.001 (0.048) 0.000 (0.047) 0.000 (0.047)

(c) t5

KR1 -5.189 (1.000) -4.155 (1.000) -3.756 (1.000) -3.300 (1.000) -3.064 (1.000) -3.075 (1.000)

KR2 -0.017 (0.051) -0.031 (0.025) -0.030 (0.020) -0.033 (0.012) -0.036 (0.009) -0.035 (0.011)

KR3 -0.317 (0.084) -0.177 (0.048) -0.160 (0.045) -0.167 (0.033) -0.180 (0.033) -0.192 (0.048)

KR4 -0.180 (0.165) -0.230 (0.081) -0.210 (0.070) -0.228 (0.051) -0.230 (0.044) -0.230 (0.060)

KR5 -0.034 (0.012) -0.025 (0.007) -0.023 (0.007) -0.023 (0.005) -0.023 (0.004) -0.022 (0.006)

KR6 -0.171 (0.031) -0.023 (0.006) -0.014 (0.004) -0.011 (0.003) -0.011 (0.002) -0.010 (0.003)

(d) Log-N(1,0.4)

KR1 -2.559 (1.000) -1.641 (1.000) -1.525 (1.000) -1.435 (1.000) -1.370 (1.000) -1.317 (1.000)

KR2 -0.001 (0.090) -0.012 (0.050) -0.017 (0.039) -0.012 (0.033) -0.014 (0.024) -0.013 (0.020)

KR3 -0.181 (0.113) -0.070 (0.069) -0.064 (0.058) -0.064 (0.054) -0.067 (0.051) -0.070 (0.053)

KR4 -0.308 (0.207) -0.150 (0.137) -0.110 (0.111) -0.089 (0.095) -0.088 (0.080) -0.081 (0.071)

KR5 -0.015 (0.018) -0.009 (0.011) -0.009 (0.009) -0.009 (0.008) -0.009 (0.007) -0.008 (0.007)

KR6 -0.158 (0.054) -0.015 (0.010) -0.008 (0.006) -0.005 (0.005) -0.004 (0.004) -0.004 (0.004)

Notes: see notes to Table 2.
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D.4 Additional tables & figures – FRED-MD

i

Table D3: Point estimates of maximal moment exponents

α̂δ

δ min median max

5.0% 1.17 3.24 302.07

7.5% 1.26 2.91 233.98

10.0% 0.84 2.73 313.45

Notes: the table shows the minimum, maximum and median value of the estimates of the maximal moment exponents (α̂δ) for
the series in the FRED-MD. The value of δ displayed in the first column of the table indicate the percentage of observations
used to estimate α̂δ. Therefore α̂10% indicates that we rely on the upper 10% of the empirical distribution of the series.
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Figure A19: Robustness of point estimates of maximal moment exponents
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Notes: the figures report estimates of maximal moment exponents for series in the FRED-MD with different δ.

Figure A20: Series in the FRED-MD with highest and lowest maximal moment exponent
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