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1. Introduction

Numerical simulations assuming and enforcing axisymmaiteyparticularly useful to study
at higher resolution and smaller computational costs tlestmphysical scenarios whose
evolution is expected to possess and preserve such a syynfr the other side, the
numerical solution of systems of equations expressed irdaoates adapted to the symmetry
has often posed serious difficulties, because of the coatgisingularity present on the
symmetry axis. Thécartoon” method, proposed by Alcubieret al. [1], allows to exploit
the advantages of reduced computational resource regemtsmwhile adopting Cartesian
coordinates, which are non-singular.

The “cartoon” method proves particularly useful in the numerical evolutof smooth
functions, like the metric quantities of the Einstein edquat. However, because of the
interpolations necessary to impose the axisymmetric ¢mmdi on a Cartesian grid, the
“cartoon” approach is not considered to be accurate enough to deskéatshocks which
generically develop when matter is present. As a conse@,ayeneral-relativistic codes
employing the‘cartoon” method have adopted cylindrical coordinates for the eimiubf
the matter (and magnetic field) variables [2, 3, 4, 5, 6]. Ak tcited works adopt the
same formulation for the hydrodynamical equations in ajiical coordinates. In the present
article, we propose a slightly different formulation, whieas proven to reduce the numerical
errors, especially in the vicinity of the symmetry axis.

More specifically, we have written théhi sky2D code, which solves the general-relativistic
hydrodynamics equations in a flux-conservative form and/limdrical coordinates. This of
course brings in /r singular terms, which must be dealt with appropriately. Ha above-
referenced works, the flux operator is expanded and théerms, not containing derivatives,
are moved to the right hand side of the equation (the sourn® tso that the left hand side
assumes a form identical to the one of the three-dimensi@i) Cartesian formulation.
We call this thestandard formulation An other possibility is not to split the flux operator
and to redefine the conserved variables, via a multiplioakip . We call this thenew
formulation The new equations are solved with the same methods as inaftes@@n case.
From a mathematical point of view, one would not expect déffiees between the two ways
of writing the differential operator, but, of course, a difnce is present at the numerical
level. Our tests show that the new formulation yields reswith a global truncation error
which is one or more orders of magnitude smaller than thosdtefnative and commonly
used formulations.

Here we perform a series of tests to ascertain the conveegbabaviour of the two
formulations. We then show that the new formulation produesults which are generally
more accurate, with a truncation error which can be sevedalrs of magnitude smaller.

The paper in organized as follows. In Section 2 we remind #semtials of thécartoon”
approach for the evolution of the geometrical variablesilevin Section 3 we review the
flux-conservative formulation of relativistic hydrodynes We write down the relativistic
flux-conservative hydrodynamics equations for axisymimétrmulations and we illustrate
the two possible ways to write the singular term. In Sectiprwé present several tests
that compare the two formulations. We begin with the coresom of rest mass and
angular momentum in the Cowling approximation and in fpiksetime evolution. Then the
eigenfrequencies of uniformly rotating neutron-star ms@ee compared with the results of
a perturbative code. The last test examines the differdretegeen the two formulations with
respect to an analytic solution of an extreme shock casehwhimics the reflection of a cold
and very fast gas at the symmetry axis.

We have used a spacelike signatgre +, +, +), with Greek indices running from 0 to 3,
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Latin indices from 1 to 3 and the standard convention for thereation over repeated indices.
Unless explicitly stated, all the quantities are expressede system of dimensionless units
inwhiche =G = Mg = 1.

2. Evolution of the Einstein equations

The logical and algorithmic structures of tiiei sky2D code presented here follow closely
the ones of theCATIE [7] andwhisky codes [8], which solve the same set of equations in
3D and using Cartesian coordinates. In what follows we pl@ainly a brief overview of the
set of equations for the evolution of the fields (within tikartoon” prescription [1]) and for
the evolution of the fluid variables, referring the inteessteader to refs. [7, 9, 10] for a more
detailed discussion. As for the other codes mentioned alads@wh i sky2D is based on the
Cactus Computational Toolkit [11].

More specifically, we evolve a conformal-traceless+ 1" formulation of the Einstein
equations [12, 13, 14], in which the spacetime is decompasted3D spacelike slices,
described by a metrig;;, its embedding in the full spacetime, specified by the esitin
curvaturek;;, and the gauge functions (lapse) and3’ (shift), which specify a coordinate
frame (see [15] for a general description of the 1 split). The particular system which we
evolve transforms the standard ADM variables as followse Bimetricy;; is conformally
transformed via

1
® = 2 In det v, Fij = ey, 1)

and the conformal facto® evolved as an independent variable, whergass subject to
the constrainidety;; = 1. The extrinsic curvature is subjected to the same conformal
transformation and its trade K;; is evolved as an independent variable. That is, in place
of K;; we evolve:

- ~ 1
K =tr Ki; = gV Kij, Aij = e (K — 37 K), (2)
with tr /Lj = 0. Finally, new evolution variables
[ =398, (3)
are introduced, defined in terms of the Christoffel symbékhe conformal 3-metric.
The Einstein equations specify a well known set of evoluéiqnations for the listed variables
and are given by

(0 — L) Fij = —20 Ay, 4)
( ) ¢ = —zak, (5)
(0 = Lg) Aij = e **[=DiDja + a(Ryj — 875;)]"" + a(K Ay — 24, A%;), (6)
(0, — Lg) K = —D'D;ja + {Aijfiij - %KQ + 47 (P ppn + S)} : 7
" = 47%9,0, 8" + %:ﬂajakﬂk + BI9,T —T90;B" + gfiajﬂj

—24Y9;a 4 2a (fijkfv'k +6A79;® — gaiﬂ'ajf( - &raiﬂ'sj) : (8)

whereR;; is the three-dimensional Ricci tensdr; is the covariant derivative associated with
the three metriey;;, “TF” indicates the trace-free part of tensor objects ang,, S; and.S;;
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are the matter source terms defined as

Pabm = nan,@Ta,B ’

S = —YiangT, 9)
Sii = Yiav8T,
wheren, = (—«,0,0,0) and 7% is the stress-energy tensor for a perfect fluid (see

Section 3).
Four elliptic constraint equations, which are usually nefd to as Hamiltonian and
momentum constraints,

H=R® 4+ K* - K;;K —167p,,,, =0, (10)

M =D;(K' —y9K) —815' =0, (11)
should be satisfied within each spacelike slice. Hef& = R,;~ is the Ricci scalar on a
3D timeslice. Additional constraints are given by

det ';/ij = 1, tr /Lj = O, fw = ;ka.l]k ) (12)
with the last two equations of (12) being enforced algelaibic The remaining constraint
in (12) and the constraintg and M? are not actively enforced and can be used as monitors
of the accuracy of our numerical solution.
We specify the gauges in terms of the standard ADM lapse ifmmcty, and shift vector,
5% [16]. We evolve the lapse according to thie+ log” slicing condition [17]:

o — B'0;a = —20(K — Ky), (13)

where K is the initial value of the trace of the extrinsic curvaturedaequals zero for
the maximally sliced initial data we consider here. The cades a hyperboli€-driver
condition [18]

Bt — BB = gaBi, (14)
O B' — p19;B" = o,T" — p19;T" — nB", (15)

wheren is a parameter which acts as a damping coefficient (see discus ref. [19]).

Two routes are possible when solving numerically the Einstguations in axisymmetric
spacetimes. One route consists in using coordinates thhdiethe symmetry and enforce its
preservation already at a mathematical level, such asdijdial coordinates. This advantage
is counterbalanced by the fact that such coordinates a@lysingular somewheres(g.,on
the axis for cylindrical coordinates) and that regulaitmatonditions are therefore necessary
(see [20, 21] and references therein for a recent discussion

The second route consists, instead, in using Cartesiardic@abdes and in exploiting the
fact that these coincide with the cylindrical ones in onenplanamely the(z, z) plane
(for concreteness we will assume hereafter that the Cartemnd the cylindricak-axes
coincide). The chief advantages of this approach, whichuslly referred to as tHeartoon”
method [1], are the absence of the need of regularizatioditons and the easiness of
implementation, through a simple dimensional reducti@mfifully 3D codes in Cartesian
coordinates. However, these advantages are counterbdléycat least two disadvantages.
The first one is that the method still essentially requiresute of a 3D domain covered with
Cartesian coordinates, although one of the three dimessiamely they-direction, has a
very small extent. The second one is that, in order to comihgtespatial derivatives in the
y-direction appearing in the Einstein equations, a numbdnigti-order interpolations onto
thex-axis are necessary (see discussion below) and these camaima significant portion
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of the time spent for each evolution to the new timelevel. riacfice, the spatial derivatives
in they-direction are computed exploiting the fact that all quidediare constant on cylinders
and thus the value of a variable at a generic positiofi, y, z) off the (z, z) plane can be
computed from the corresponding valliéz, 0, z) on the(z, z) plane, where

i=(z+y)"?, Z=z. (16)

Clearly, since the solution of the evolution equations impated only on thé€z, z) plane,
interpolations (with truncation errors smaller than thiathe finite-difference operators) are
needed at all the positiorig, y = 0, 2).

Overall the “cartoon” method represents the choice for many codes and it has been
implemented with success in many applicatiang,,[1, 2, 3, 4, 22, 23, 5, 6] to cite a few.

3. Evolution of therelativistic hydrodynamics equations

An important feature of multidimensional non-vacuum nuicedrrelativity codes that solve
the coupled Einstein—hydrodynamics equations in Cariesi@rdinates is the adoption of a
conservativeformulation of the hydrodynamics equations [24, 25]. Intsacformulation,
the set of conservation equations for the stress-energpté&it” and for the matter current
densityJ#, that is

V,Jh =0, a7)

vV, T" =0, (18)
is written in a hyperbolic, first-order “flux-conservativigrm of the type [26]

orq+ 0,9 (q) = s(q), (19)

wheref(?) (q) ands(q) are the flux vectors and source terms, respectively [27]e Nwit the
right-hand side (the source terms) depends only on the enetriits first derivatives and on
the stress-energy tensor. Furthermore, while the syst8jrighot strictly hyperbolic, strong
hyperbolicity is recovered in a flat spacetime, whefg) = 0.

As shown by [25], in order to write the system (17)—(18) in them of system (19), the
primitive hydrodynamical variables.€. the rest-mass densipy the pressur@ measured in
the rest-frame of the fluid, the fluid 3-velocity measured by a local zero-angular momentum
observer, the specific internal enekggnd the Lorentz factdl”) are mapped to the so called
conservedariablesq = (D, S, 7) via the relations

D = \/ypW,
St = \[yphW?' (20)
T Eﬁ(phWQ—p) - D,

whereh = 1 + ¢ + p/p is the specific enthalpy arid = (1 — ;viv’)~1/2.

The advantage of a flux-conservative formulation is thatots to use high-resolution shock-
capturing (HRSC) schemes, which are based on Riemann saladrwhich are essential for
a correct representation of shocks. This is particularlyanant in astrophysical simulations,
where large shocks are expected. In this approach, allblasg are represented on the
numerical grid by cell-integral averages. The functionhertreconstructedwithin each
cell, usually through piecewise polynomials, in a way thasgrves the conservation of the
variablesy. This gives two values at each cell boundary, which are tised as initial data for
the (approximate) Riemann problem, whose solution givedltix through the cell boundary.
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As in the whisky code, the evolution equations are here integrated in tinieguthe
method of line [28], which reduces the partial differengglations (19) to a set of ordinary
differential equations that can be evolved using standandarical methods, such as Runge-
Kutta or the iterative Cranck-Nicolson schemes [29, 30].rtlk@ermore, theWwhisky2D
code implements several reconstruction methods, suchta\Mariation-Diminishing (TVD)
methods, Essentially-Non-Oscillatory (ENO) methods [3t[d the Piecewise-Parabolic-
Method (PPM) [32]. Also, a variety of approximate Riemanivers can be used, starting
from the Harten-Lax-van Leer-Einfeldt (HLLE) solver [33)ver to the Roe solver [34] and
the Marquina flux formula [35] (see [8, 9] for a more detailéstdssion).

The ability of properly evolving large gradients moving alativistic speeds represents one
of the main motivations that make this formulation the chkofor all of the present 3D
numerical-relativity codes solving the relativistic hgdiynamics equations on Eulerian grids
(see refs. [36, 37, 38] for some of the most recent examplésefin[39] for an alternative
Lagrangian method). However, when considered within theyaxmetric approach used
here, the use of a flux-conservative formulation in Cartes@ordinates may suffer from a
potentially very serious disadvantage. In fact, the imd&afions required by thecartoon”
method may be highly inaccurate when discontinuities in fthiel variables appear. To
confront this problem, Shibata [2] has made the useful sstggreof writing the relativistic
hydrodynamics equations in cylindrical coordinates, eh#¢eping the solution of the Einstein
equations in Cartesian coordinates. This approach hastheus advantage that it does not
require interpolation and that it exploits, at the mathecahtievel, the symmetries of the
system, thus guaranteeing a better conservation of masarapudar momentum. However,
the use of cylindrical coordinates for the evolution of thedlvariables also comes with an
undesirable property: the coordinates are degenerate aythmetry axis and the equations
are no longer free of singularities. As we will comment in fledowing Section, this
drawback can be compensated through a suitable formulafitre equations and a proper
setup of the numerical grid.

3.1. A new formulation of the hydrodynamics equations

As mentioned in the previous Section, following ref. [3], werite the relativistic
hydrodynamics equations (17)—(18) in a first-order formpgace and time using cylindrical
coordinateqr, ¢, z). However, as an important difference from the approach sstgg in
ref. [3], we do not introduce source terms that contain cmate singularities. Rather, we
re-define the conserved quantities in such a way to removsitigellar terms, which are the
largest source of truncation error, also when evaluatefidar the axis.

We illustrate our approach by using as a representative jgbegtime continuity equation. This
is the simplest of the five hydrodynamical equations bualyecontains all the basic elements
necessary to illustrate the new formulation. We start bygitie definitions for the conserved
variables (20) to write eq. (17) generically as

O (VAPW) + 0; [\/ApW (avi — Bi)] =0, (21)
which in cylindrical coordinates takes the form

O(NFW) + 0, [ VAW (v = )] + 0. [VApW (av” = 57)] =0, (22)

where /7 is the determinant of the 3-metric in cylindrical coordiemtind where we have
enforced the condition of axisymmettly, = 0. Because ang-constant plane in cylindrical
coordinates can be mapped into the z) plane in Cartesian coordinates, we consider
equation (22) as expressed in Cartesian coordinates anidtexsto they = 0 plane,i.e.,

O¢(xD) + 0y [xD (aw”™ — %) + 0 [xD (aw® — %)) = 0, (23)
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where we have exploited the fact that for any vector of coneptsmA® on this plane

AT = A® A®? = AY andy = 2%+, with v being the determinant of the 3-metric in

Cartesian coordinates. Equation (23) represents the tppet@f the formulation proposed

here, which we will refer to hereafter as theew” formulation to contrast it with the

formulation adopted so fae.qg.,in ref. [3], for the solution of the relativistic hydrodynacs

equations in axisymmetry and in Cartesian coordinates. ofifg but important, difference

with respect to théstandard” formulation is that in the latter the derivative in thedirection

is written out explicitly and becomes part of the source tefq), i.e.,

D (aw® — %)
. .

0i(D) + 95 [D (av® — )] + 0, [D (aw® — §7)] = — (24)

Even though the right-hand-side of eq. (24) is never evatiatz = 0 (because no grid
points are located at = 0), both the numerator and the denominator of the right-hsidd-of

eg. (24) are very small far ~ 0, so that small round-off errors in the evaluation of the tigh
hand-side can increase the overall truncation error. &tiferently, the right-hand-side of
eg. (24) becomes stiff far ~ 0 and this opens the door to the problems encountered in the
numerical solution of hyperbolic equations with stiff soaiterms [40].

What was done for the continuity equation (23) can be ext@na¢he other hydrodynamics
equations which, for the conservation of momentum inathendz-directions, take the form

1
oy

{at (£54) + O [ (Sa (av® — B%) + ay/7p6%)] +
9. [ (S (av” — 57) + aﬁpazn} _
[TOO (%5l5maA71m - aaAa) + T30y + TO04B" + %TlmaA%m] , (25)

with A = z, z. Similarly, the evolution of the conserved angular momentiy, = x5, is
expressed as

1 xr X z z
axﬁ{at (szy) + Oy [IQSy (a® — B%)] + 0. [IQSy (a® = p )}} =0, (26)
while the equation of the energy conservation is given by
1 x T x zZ _ 3z z —
{0 ol a0 = ) ) 0 " = )+ )] =

T (BB K;j — B'oia) + T (—9;a + 287 Ky;) + TYK; . (27)
The changes made to the formulation are rather simple buteawill show in Section 4,
these can produce significant improvements on the overaliracy of the simulations with a
truncation error at least one order of magnitude smallealfaf the tests considered. Because
of its simplicity, the changes in the new formulation of thguations can be implemented
straightforwardly in codes written using the standard folation.
Finally, we note that both eq. (24) and eq. (23) are writtea flux-conservative form in the
sense that the source term does not contain first-orderabpiatiivatives of the conserved
variables. More precisely, eq. (23) is written in a flux-cemvative form, while eq. (24) is
written in a “flux-balanced” form, as it is typical for flux-oservative equations written in
curvilinear coordinates [26]. The same is true also for &§5—(27) and for the corresponding
equations presented in ref. [3], which are incorrectlysifeed as non flux-conservative.
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Table 1. Equilibrium properties of the initial stellar models. Théfetent columns refer
respectively to: the ratio of the polar to equatorial cooati radiir, /7., the central rest-mass
densityp., the gravitational masa/, the rest masa/y, the circumferential equatorial radius
Re, the angular velocity2, the maximum angular velocity for a star of the same rest mass
Q. , the ratio.J/M? where.J is the angular momentum, the ratio of rotational kineticrgpe

to gravitational binding energ¥’/|W|. All models have been computed with a polytropic
EOS with K = 100 andI" = 2.

/e pe M M, R ) Ok J/MZ T/[W|
(x107%)  (Ms) (Mo) (x10-2)

A 100 128 1400 1506 9586 0.000 3.987 0.000 0.000

B| 067 1.28 1651 1.786 12.042 0253 3.108 0.594 0.081

3.2. Equation of state

In whatever coordinate system they are written, the systelnydrodynamics equations can
be closed only after specifying an additional equation,dbfgation of state (EOS), which
relates the pressure to the rest-mass density and to thgyethensity. The code has been
written to use any EOS, but all the tests so far have beennpeebusing either an (isentropic)
polytropic EOS

p=Kp", (28)
o p
e—p—i——r_l7 (29)
or an “ideal-fluid” EOS
p=(@T-1)pe. (30)

Here, e is the energy density in the rest frame of the fluld,the polytropic constant (not

to be confused with the trace of the extrinsic curvature eeffiearlier) and” the adiabatic
exponent. In the case of the polytropic EOS (48)= 1 + 1/N, whereN is the polytropic
index and the evolution equation ferdoes not need to be solved. In the case of the ideal-
fluid EOS (30), on the other hand, non-isentropic changesataplace in the fluid and the
evolution equation for needs to be solved. Note that the polytropic EOS (28) isiiepitt

and thus does not allow for the formation of physical shoaksyhich entropy (and internal
energy) can be increased locally (shock heating).

4. Numerical tests

In order to test the stability properties of the new formiglatand compare its accuracy with
that of the formulation first presented in [3] and then usehrg others, in [4, 6, 41, 42], we
have implemented both of them in Whisky2D. After this papaswublished we were made
aware via a private communication [43] that the numericaraach followed in [23] is in
practice very similar to our new formulation, although thesion in cylindrical coordinates
of the equations discussed in [23] is not in a flux-consevedtrm; information about such
numerical implementation was not given in [23] and therefioot available to us at the time
this work was written.

The initial data, in particular, has been produced as swiutif the Einstein equations for
axisymmetric and stationary stellar configurations [44jng the EOS (28) with’ = 2 and
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polytropic constani’ = 100, in order to produce stellar models that are, at least quikty,
representative of what is expected from observations afraestars. Our attention has been
restricted to two illustrative models representing a ntatiog star and a rapidly rotating star
having equatorial and polar (coordinate) radii in a rafjigr. = 0.67. The relevant properties
of these stellar models are reported in Table 1.

All the numerical results presented hereafter have beeairdut with the following fiducial
numerical set-up: the reconstruction of the values at thumbaries of the computational cells
is made using the PPM method [32], while the HLLE algorithnused as an approximate
Riemann solver [33]. The lapse function is evolved with the+ log” slicing condition
given by eq. (13), while the shift is evolved using a versidnthe hyperbolicI-driver
condition (14) in which the advection terms for the variab$é, B andI" are set to zero.
The time evolution is made with a method-of-line approad @nd a third-order Runge-
Kutta integration scheme (our CFL factor is usually chosetwieen0.3 and0.5). A third-
order Lagrangian interpolation is adopted to implement¢haetoon” method. For the matter
variables we use “Dirichlet’boundary conditionse(, the solution at the outer boundary is
always kept to be the initial one), while for the field variebive adopt outgoing Sommerfeld
boundary conditions.

We typically present results at four different resolutiohs= 0.4M, h/2, h/4, 3h/16 and
h/8, which correspond to abo@, 50, 100, 133 and 200 points across the stellar radius,
respectively. The computational domain extend8td/ both in thex andz directions, and
a reflection symmetry is applied across the equatar@l ¢ = 0) plane. Finally, we remark
that in contrast with the interesting analysis of [45], welldonot find signs of numerical
instabilities when using the above numerical prescrigifom either of the two formulations
considered.

4.1. Oscillating Neutron stars: fixed spacetime

The first set of tests we discuss has been carried out by dimytelativistic polytropic stars
in equilibrium and in a fixed spacetimeg. in the Cowling approximation). In this case the
Einstein equations are not evolved and the truncation ériorgeneral smaller because it is
produced uniquely from the evolution of the hydrodynamupsations.

Although the stars are in equilibrium, oscillations arggered by the first-order truncation
error at the center and the surface of the star (our hydradig@ evolution schemes are
only first order at local extrema). Both the amplitude of tiseillations and the rate of the
secular change in their amplitude converge to zero at nesadgnd order with increasing
grid resolution [46, 47]. The genuine dynamics producedhgyttuncation error can then be
studied either when the spacetime is held fixegl (in the Cowling approximation) or when
the spacetime is evolved through the solution of the Einstgjuations. This is shown in
Fig. 1, which reports the evolution of the central rest-n@esssity for rapidly rotating stars
(model B in Table 1) evolved within the Cowling approximaticl' he left panel refers to the
standard formulation, while the right one to the new forrtiola Note that in both cases the
amplitude of the oscillations decreases at roughly seceddravith increasing resolution,
while keeping the same phase. This is a clear signaturehbatdcillations corresponds to
proper eigenmodes of the simulated star. However, therdiifi= of the secular evolution
between the standard formulation and the new one is rath@arkable. The latter, in fact, is
much more accurate and the well-known secular increasesinghtral density is essentially
absent in the new formulation.

Quantities that are particularly useful to assess the acgwf the two formulations are the
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Figure 1. Evolution of the central rest-mass density for rapidly tio@ stars (model B in
Table 1) evolved within the Cowling approximation. The Ipéinel refers to the use of the
standard formulation, while the right one to the new forrtiata Note the different scales
in the two panels and note that in both cases the amplitudeeodscillations decreases with
increasing resolution, while keeping the same phase.

rest mass and the angular momentum which we compute as [48]

My =2m / VoW drdz, (31)
Vi

J, = 2w e];j/v <%/~lf€ + 27 S + %IJK;c — ﬁxjﬁf;”fllm) eSrdrdz, (32)
whereV, is the coordinate volume occupied by the star &d coordinate volume of the
computational domain.

Figure 2 shows the dependence on the inverse of the resobftibe error in the conservation
of the rest mass for a nonrotating model as computed in theli@wapproximation (left
panel) or in a fully dynamical simulation (right panel). &nthe evolution of the rest mass
shows, in addition to a secular evolution, small oscillaici.e., of ~ 3 x 10~° for the
highest resolution and of 3 x 106 for the lowest resolution) the calculation of the rest
mass at a given time can be somewhat ambiguous. To tacklgihidem and to avoid
the measurement to be spoiled by the oscillations, we parfotinear fit of the evolution
of My, normalized to the initial valué/y(t = 0), between the initial value and a time
t = 25ms (corresponding to abow0 oscillations) and we take as the time derivative of
the mass the coefficient of the linear fit(\/, /My (t = 0))/d¢. Fig. 2, in particular, reports
in a logarithmic scalel(M,/My(t = 0))/dt as a function of the inverse of the resolution
h. Indicated with squares are the numerical values obtaintdtihae standard formulation of
the hydrodynamics equations, while triangles are usednew one. Also indicated with a
long-short-dashed line is the slope for a second-orderergewnce rate.

Note that although we use a third-order method for the racactson (namely, PPM), we do
not expect third-order convergence. This is also due toatigliat the reconstruction schemes
are only first-order accurate at local extrerme.(at the centre and at the surface of the star),
thus increasing the overall truncation error. Similarrasties were obtained also using the
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Figure 3. Time derivative of average of the angular momentum norredlip the initial value
d(J/J(t = 0))/dt (cf., Fig. 2) for a rapidly rotating star (model B of Table 1). lcgied with
squares are the numerical values obtained with the stafolandlation of the hydrodynamics
equations, while triangles are used for the new one; a dsltathline is the slope for a second-
order convergence rate.

Whisky code in 3D Cartesian coordinates [8, 9].
Clearly both the new and the standard methods provide a ogewee rate which is close to
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two. However, and this is the most important result of thigkydhe new method yields
a truncation error which is several orders of magnitude Em#han the old one. More
specifically, in the case of the rest mass, the conservasionare accurate of about four
orders of magnitude. We believe that this is essentially tduie rewriting of the source
terms in the flux-conservative formulation which in the nesnfiulation does not have any
coordinate-singular term.é. o< 1/x).

Note also that, because the new formulation is intrinsjaalbre accurate, it also suffers more
easily from the contamination of errors which are not disetlated to the finite-difference
operators. [The one made in the calculation of the integ82l) (s a relevant example but it
is not the only one]. This may be the reason why, in generdbve¢r resolutions the new
formulation has convergence rate which is not exactly twe @ppears over-convergent (see
right panel of Fig. 2). However, as the resolution is incegband the finite-difference errors
become the dominant ones, a clearer trend in the convergatecis recovered.

Another way of measuring the accuracy of the two formulatisnvia the comparison of the
evolution of the angular momentum. While this quantity imserved to machine precision
in the case of a nonrotating star, this does not happen fatimgtstars and the error can be
of a few percent in the case of very low resolution and of a vapydly rotating star. This is
shown in Fig. 3 for the stellar model B of Table 1 and it reparta logarithmic scale the time
derivative of the average of the angular momentunormalized to the initial valud (¢ = 0).

In analogy with Fig. 2, in order to remove the small-scaleltzimons we first perform a linear
fit of the evolution ofJ between the initial value and a time= 25 ms and take the coefficient
of the fit as the time derivative of the angular momentdfa/.J (¢t = 0))/dt. Indicated with
squares are the numerical values obtained with the stafmlandlation of the hydrodynamics
equations, while triangles are used for the new one; a dsitathline shows the slope for a
second-order convergence rate.

Itis simple to recognize from Fig. 3 that also for the angul@mentum conservation the new
formulation yields a truncation error which is two or morelers of magnitude smaller, with
a clear second-order convergence being recovered at saffichigh resolution.
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Figure 4. The same as in Fig. 1 but for a full-spacetime evolution. Eiepanel refers to
the standard formulation, while the right one to the new faation. Note the different scale
between the two panels.
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4.2. Oscillating Neutron stars: dynamical spacetime

Also the second set of tests we discuss is based on the @robitirelativistic polytropic
stars in equilibrium, but now the evolution is performed idyamamical spacetime, thus with
the coupling of Einstein and hydrodynamics equations. Ttiecition error in this case is
given by the truncation error coming from the solution oftbtie field equations and the
hydrodynamics equations. The results of our calculatioasammarized in Figs. 4-6, which
represent the equivalents of Figs. 1-3 for full-spacetir@utions. Because the results are
self-explanatory and qualitatively similar to the onesdissed for the evolutions with fixed
spacetimes, we will comment on them only briefly.

0.1 g T T I 0.01 g T T I
E A new 3 E E
i _g-- standard ] r & ntewd d B
001 B ____ 2nd-order % 0.001 & —B-- standar E
E ~ - E E —__ Rnd-order 3
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5 § ] g 107 g E
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107% & E E E
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1/h (Mg") 1/h (Mg")

Figure 5. The same as in Fig. 2, but for full-spacetime evolutions. [Efitepanel refers to a
nonrotating star (model A in Table 1), while the right pareatrapidly rotating star (model B
in Table 1).

In particular, Figs. 5-6 highlight that while the overaluication error in dynamical
spacetimes is essentially unchanged for the standard fatiow, it has increased in the case
of the new formulation. This is particularly evident at véow resolutions, where the new
formulation seems to be hyper-convergent. However, deggituncation error which is larger
than the one for fixed spacetimes, the figures also indicaietle new formulation does
represent a considerable improvement over the standardruhéhat its truncation error is
at least two orders of magnitude smaller. Most importaritig, conservation properties of
the numerical scheme have greatly improved and the sequegdse in the rest mass, is
also considerably suppressed. This is clearly shown in &igvhere the secular increase
is suppressed almost quadratically with resolution. Maezisely, for both approaches the
growth rate of the central rest-mass density for the comsaution is~ 12 times larger than
the corresponding one for the high resolution. Howevehattghest resolution, the growth
rate for the standard formulation-s 10 times larger than the one of the new formulation.

4.3. Calculation of the eigenfrequencies

As mentioned in the previous Section, although in equiliborj the simulated stars undergo
oscillations which are triggered by the nonzero truncagar. It is possible to consider
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Figure 6. The same as Fig. 3 but for a rapidly rotating star evolved igrathical spacetime.

these oscillations not as a numerical nuisance, on the amynir is possible to exploit
them to perform a check on the consistency of a full nonlin@aslution with a small
perturbation (the truncation error) with the predictiorfsperturbation theory [46, 47].
Furthermore, when used in conjunction with highly accuiaides, these oscillations can
provide important information on the stellar oscillatiamishin regimes, such as those of very
rapid or differential rotation, which are not yet accessiah perturbative calculations [49].

In this Section we use such oscillations, and in particilarffitndamental = 0 quasi-radial
F-mode, to compare the accuracy of the two formulations ag#ie perturbative predictions.
This is summarized in Fig. 7 which reports the power sped&abkity (in arbitrary units) of the
maximum rest-mass density evolutiari.(Figs. 1 and 3) in the new and standard formulation
(solid and dashed lines, respectively). The simulatioaselative to a nonrotating star (model
A in Table 1) with the left panel referring to an evolution wia fixed spacetime, while
the right one to an evolution with a dynamical spacetime. 3pecific spectra shown are
calculated from the simulations at the highest resolutioth @over an interval 025 ms. It

is quite apparent that the two formulations yield spectractvlare extremely similar, with
a prominentF-mode at abou®.7 kHz and 1.4 kHz for the fixed and dynamical spacetime
evolutions, respectively. The spectra also show the eggepiasi-radial overtones at roughly
multiple integers of thé’-mode, the first of which has a comparable power in the case of
Cowling evolution, while it is reduced of abob#% in the full spacetime evolution. Indeed,
the spectra in the two formulations are so similar that iteésessary to concentrate on the
features of the&'-mode to appreciate the small differences. These are shotineiinsets of
the two panels which report, besides a magnification of tleetsp near thé’-mode, also the
perturbative estimaté;,.,, as calculated with the perturbative code described ir{$6f.

To provide a more quantitative assessment of the accurabywhiich the two formulations
reproduce the perturbative result we have computed thefeaiency of thé’-mode, which
we indicate ad,.m, by performing a Lorentzian fit to the power spectrum with adaw of
0.2 kHz. We remark that it is essential to make use of a Lorentziaation for the fit as this
reflects the expected functional behaviour and increageadburacy of the fit significantly.
Shown in Fig. 8 is the absolute value of the relative diffeeebetween the numerical and
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perturbative eigenfrequencies of tRiemode,|1 — Fi,um/ Fpert| fOr the two formulations (solid
lines for the new one and dashed lines for the standard ore.differences are computed
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for different resolutions with, = 0.4M, h/2 andh/4 and refer to the nonrotating mode
A of Table 1 when evolved in a fixed spacetime (left panel) and dynamical one (right
panel). Indicated with a dot-dashed line is the slope forcaisé-order convergence rate. This
helps to see that both formulations yield an almost secaddr@onvergent measure of the
eigenfrequencies of the-mode, with the new formulation having a truncation erroiickih
is always smaller than the one coming from the standard ftation. Given the importance
of an accurate measurement of the eigenfrequencies to #tedgode properties of compact
stars, we believe that Figs. 7 and 8 provide an additionalemde of the advantages of the
new formulation.

Finally, we note that a behaviour similar to the one showrign 7 8 has been found also for
rotating stars although in this case the comparison is plessnly for evolutions within the
Cowling approximation since we lack a precise perturbagstimate of the eigenfrequency
for model B of Table 1 for a dynamical spacetime.

4.4. Cylindrical Shock Reflection

One of the most important properties of HRSC schemes is tagiability of handling the
formation of discontinuities, such as shocks, which arerofiresent and play an important
role in many astrophysical scenarios. Tests involving Eedormation are usually quite
demanding and codes that are not flux-conservative can hts@ sumerical instabilities
or difficulties in converging to the exact solution of the Iplem. Since both the new and
the standard formulation solve the relativistic hydrodyinas equations as written in a flux-
conservative form, they are both expected to be able to cyreesolve the formation of
shocks, although each with its own truncation error. In thléofving test we consider one
of such discontinuous flows and show that the new formulgtimvides a higher accuracy
with respect to the standard one, stressing once again thartiamce of the definition of the
conserved variables.
More specifically, we consider a one-dimensional test, fireposed by [51], describing the
reflection of a shock wave in cylindrical coordinates. Thigahdata consist of a pressureless
gas with uniform density, = 1.0, radial velocityv§ = 0.999898, corresponding to an initial
Lorentz factod?, = 70.0 and an internal energy which is taken to be small and prapuati
to the initial Lorentz factorn,e., e = 10~°(W}). During the evolution an ideal-fluid EOS (30)
is used with a fixed adiabatic indéx = 4/3. The symmetry condition at = 0 produces
a compression and generates an outgoing shock in the radiefidn. The analytic solution
for the values of pressure, density, gas and shock velséitie given in [51]. From them one
can determine the position, of the shock front at any time
(L= )Wolu)

s Wo+1 ’
This can then be used to compare the accuracy of the two fations.
In the left panel of Fig. 9 we show the value of the radial congrg of the velocity, as
a function ofz at a timef = 0.002262 ms and for a resolution oh /M. = 6.25 x 10~°.
The solid line represent the analytic solution, the shadhed line the numerical solution
computed with the new formulation and the long-dashed Ime dne obtained with the
standard formulation. As it is evident from the inset, thaipon of the shock is very well
captured by both formulations, but the new one is closerdcettact one at this time.
To compare with the exact prediction given by expression), (88 compute the numerical
position of the shock as the middle of the region where theevalf the velocity moves
from the pre-shock value; to the post-shock one; (in practice, we fit a straight line

(33)
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Figure 9. Left panel: Comparison of the velocity profiles for the two formulatioinsthe
solution of the axisymmetric shock-tube test with a resofubf h = 6.25 x 10~° Mg, The
solid line shows the exact position after a time= 0.002262 ms, while the short-dashed
and the long-dashed lines represent the solutions withdteamd the standard formulations,
respectively. Right panel: Comparison of the error in the determination of the positién
the shock in the two formulations. Note the first-order cogeace rate as expected for
discontinuous flows.

between the last point of the constant post-shock state fandirst point of the constant
pre-shock state and evaluate the position at which thistiomdas valueg(v; + v;)/2.).
The right panel of Fig. 9, shows the relative ertor (2 )num/ (g )anal in the position of
the shock at timé = 0.002622ms and for five different resolutionsh = 0.01 M, h/8,
h/40, h/80 andh/160. Indicated with a dashed line is the error computed whenguia
standard formulation, while indicated with a solid line ieterror coming from the new
formulation. Note that both formulations show a first-ordenvergence, as expected for
HRSC schemes in the presence of a discontinuous flow, buly #sef other tests, also in this
case the new formulation has a smaller truncation errornfl@i behaviour is shown also by
other quantities in this test but these are not reported here

It is useful to note that the difference between the two fdations in this test is smaller than
in the previous ones, being of a factor of a few only and notroeos of magnitude. We
believe this is due in great part to the fact that, in contvait what happens for stars, the
solution in the most troublesome part of the numerical donia. nearz ~ 0, z ~ 0) is not
characterized by particularly large values of the fieldsfahe fluid variables. In support of
this conjecture is the evidence that at earlier times, whershock is closer to the axis, both
the absolute errors and the difference between the two flatioos are larger.

5. Conclusion

A number of astrophysical scenarios can be very conveniesitidied numerically by
assuming they possess and preserve a rotation symmetiydaaalaxis. Such an assumption
reduces the number of spatial dimensions to be considexkthas the computational costs.
This, in turn, allows for a more sophisticated treatmenthaf physical and astrophysical
processes taking place and, as a result, for more realistidagions.



Improved formulation of the relativistic hydrodynamicseip 2D Cartesian coords. 18

We have presented a new numerical code developed to solvariesian coordinates the
full set of general relativistic hydrodynamics equationsai dynamical spacetime and in
axisymmetry. More specifically, the new code solves the tEinsequations by using the
“cartoon” method, while HRSC schemes are used to solve the hydrodgnesmiations
written in a conservative form. An important feature of thade is the use of a novel
formulation of the equations of relativistic hydrodynamin cylindrical coordinates. More
specifically, by exploiting a suitable definition of the cenged variables, we removed
from the source of the flux-conservative equations thosmgethat presented coordinate
singularities at the axis and that are usually retained e dtandard formulation of the
equations. Despite their simplicity, the changes madedasténdard formulation can produce
significant improvements on the overall accuracy of the &tmns with a truncation error
which is often several orders of magnitude smaller.

In order to assess the validity of the new formulation and gara its accuracy with that of
the formulation which is most commonly used in Cartesianrdimates, we have performed
several tests involving the evolution of oscillating spbalr and rotating stars, as well as
shock-tube tests. In all cases considered we have shownhinaiodes implementing the
two formulations yield the expected convergence rate kaa #iat the new formulation is
always more accurate, often considerably more accurate ttte standard one.

In view of its simplicity, the new formulation of the equat® can be implemented
straightforwardly in codes written using the standard fallation and we recommend its use
for all situations in which an axisymmetric problem need&éoinvestigated in full general
relativity and in Cartesian coordinates.
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6. Appendix A

In what follows we recall the essential features of‘tertoon” method for the solution of the
field equations in Cartesian coordinates. Consider thexéfi@ computational domain to have
extentd) < z, z < dypar and—Ay < y < Ay, whered,,, ... refers to the location of the outer
boundary. Reflection symmetry with respect to the 0-plane can additionally be assumed.
The Einstein equations are then solved only onithe 0-plane with the derivatives in thg
direction being computed with second-order centred seasing the points at Ay, 0, Ay.
Taking into account axisymmetry, the rotation in they) plane is defined as

. cos(¢) —sin(¢p) 0
R(¢); = | sin(¢) cos(¢) 0 |, (34)
0 0 1

whereR(¢)~! = R(—¢) and the rotation angle is defined@s- tan—! (+Ay//22 + (Ay)?).
As commented in the main text, the values of all the quastitie the+Ay planes are
computed via rotations of the corresponding values onythe 0-planes. More specifically,
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the components of an arbitrary vector fiélfd on the +Ay planes are computed viag@
rotation as

T, =T cos(¢) — T\ sin(¢) , (35)
T, = TV sin(¢) + T\* cos(¢), (36)
T.=T", (37)

where Ti(o) denote the corresponding components(gtz? 4+ (Ay)2,0,z), which are
computed via a Lagrangian interpolation from the neighigppoints on the:-axis. Similarly,
the components of an arbitrary tensor figld tensor will be computed as

Toe = T9 cos?(¢) — T(0 sin(2¢) —i—T(O sin?(¢), (38)
Tyy = iTég) sin(2¢) — ngg) cos(2¢) + T 0) sin(2¢) , (39)
T,y = T sin®(¢) — T sin(2¢) + Tyg> cos?(¢) (40)
Tyo = T cos(¢) — 0) sin(¢) , (41)
T,. = TV sin(¢) + T(O) cos(9), (42)
T..=TY. (43)
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