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Abstract

Riccardo CORRADIN

Contributions to modelling via Bayesian nonparametric mixtures

Bayesian nonparametric mixtures are flexible models for density estimation and clustering,
nowadays a standard tool in the toolbox of applied statisticians. The first proposal of such
models was the Dirichlet process (DP) (Ferguson, 1973) mixture of Gaussian kernels by Lo
(1984), contribution which paved the way to the definition of a wide variety of nonparamet-
ric mixture models. In recent years, increasing interest has been dedicated to the definition
of mixture models based on nonparametric mixing measures that go beyond the DP. Among
these measures, the Pitman-Yor process (PY) (Perman et al., 1992; Pitman, 1995) and, more in
general, the class of Gibbs-type priors (see e.g. De Blasi et al., 2015) stand out for conveniently
combining mathematical tractability, interpretability and modelling flexibility.
In this thesis we investigate three aspects of nonparametric mixture models, which, in turn,
concern their modelling, computational and distributional properties. First, we study the ef-
fect of affine transformations of the data on posterior inference based on DP mixture models.
Second, we propose a new efficient Markov chain Monte Carlo algorithm, named Importance
Conditional Sampler (ICS), for sampling from the posterior distribution of PY mixture models
and we show that, unlike state-of-the art competing algorithms, the efficiency of the proposed
sampler is robust to the value of the parameters of the PY. Finally, we study some prior dis-
tributional properties of Gibbs-type priors and devise a simple strategy for the elicitation of
the parameters of the prior process in Gibbs-type mixture models, based on available prior
information on the size of the clusters underlying the data.
The thesis is organized as follows. The first chapter proposes a coincise review of the area of
Bayesian nonparametric statistics, with focus on tools and models that will be considered in the
following chapters. We first introduce the notions of exchangeability, exchangeable partitions
and discrete random probability measures. We then focus on the DP and the PY case, main
ingredients of second and third chapter, respectively. Finally, we briefly discuss the rationale
behind the definition of more general classes of discrete nonparametric priors.
In the second chapter we propose a thorough study on the effect of invertible affine transforma-
tions of the data on the posterior distribution of DP mixture models, with particular attention to
DP mixtures of Gaussian kernels (DPM-G). First, we provide an explicit result relating model
parameters and transformations of the data. Second, we formalize the notion of asymptotic
robustness of a model under affine transformations of the data and prove an asymptotic re-
sult which, by relying on the asymptotic consistency of DPM-G models, show that, under mild
assumptions on the data-generating distribution, DPM-G are asymptotically robust.
The third chapter presents the ICS, a novel conditional sampling scheme for PY mixture mod-
els, based on a useful representation of the posterior distribution of a PY (Pitman, 1996) and
on an importance sampling idea, similar in spirit to the augmentation step of the celebrated
Algorithm 8 of Neal (2000). The proposed method conveniently combines the best features of
state-of-the-art conditional and marginal methods for PY mixture models. Importantly, and
unlike its most popular conditional competitors, the numerical efficiency of the ICS is robust to
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the specification of the parameters of the PY. The steps for implementing the ICS are described
in detail and its performance is compared with popular competing algorithms. Finally, the ICS
is used as a building block for devising a new efficient algorithm for the class of GM-dependent
DP mixture models (Lijoi et al., 2014a; Lijoi et al., 2014b), for partially exchangeable data.
In the fourth chapter we study some distributional properties of Gibbs-type priors. The main
result focuses on an exchangeable sample from a Gibbs-type prior and provides a conveniently
simple description of the distribution of the size of the cluster where the (m + 1)th observation
is assigned to, given an unobserved sample of size m. The study of such distribution provides
the tools for a simple, yet useful, strategy for prior elicitation of the parameters of a Gibbs-type
prior, in the context of Gibbs-type mixture models.
The results in the last three chapters are supported by exhaustive simulation studies and illus-
trated by analysing astronomical datasets.
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Chapter 1

A concise introduction to Bayesian
nonparametric statistics

He who loves practice without theory
is like the sailor who boards ship
without a rudder and compass and
never knows where he may cast.

Leonardo Da Vinci, Inventor, scientist,
mathematician, astronomer, physicist,

engineer, writer, etc.

1.1 Exchangeability and de Finetti’s representation theorem

Let X(∞) be an infinite sequence of observations, defined on some probability space (Ω,F , P).
Let Xi, for i ≥ 1, be the i-th element of the sequence, taking values on a measurable space
(X, X ), with X Polish space and X its Borel σ-field. The sequence X(∞) is said exchangeable
if, for any n ≥ 1 and any permutation σ of {1, . . . , n}, we have that (X1, . . . , Xn) coincides
in distribution with (Xσ(1), . . . , Xσ(n)). Exchangeability is a probabilistic statement concerning
homogeneity among the observations. It implies that, for every n ≥ 1, the order in which the
observations of a sample X(n) = (X1, . . . , Xn) are collected is irrelevant.
A fundamental result on exchangeability, known as de Finetti’s representation theorem, was proved
by de Finetti (1937). Let X(∞) = X×X× . . . and MX be the space of probability measures on
(X, X ).

Theorem 1 (de Finetti, 1937). The sequence X(∞) is exchangeable if and only if there exists a probabil-
ity measure Q on MX such that, for any n ≥ 1, and A = A1 × A2 × · · · × An ×X(∞), with Ai ∈ X ,
one has

P
[

X(∞) ∈ A
]
=
∫

MX

n

∏
i=1

p(Ai)Q(dp).

Theorem 1 states that an infinite sequence is exchangeable if and only if it is possible to repre-
sent it as a mixture of independent and identical distributed random variables. The measure
Q is named de Finetti measure and plays the role of prior distribution in Bayesian statistics.
De Finetti’s result thus provides a neat justification for the use of prior distributions, which
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are not only convenient but are implied by the assumption of exchangeability of the obser-
vations. As a result, Theorem 1, sets solid theoretical grounds to Bayesian reasoning. Based
on de Finetti’s representation theorem, the exchangeability assumption can be represented in
hierarchical form as

Xi| p̃
iid∼ p̃ i ≥ 1

p̃ ∼ Q, (1.1)

where p̃ is a random probability measure and its distribution Q is a probability measure over
the space MX. The support of Q identifies two main classes of model and, more in general, two
areas of research in Bayesian statistics. Specifically,

• if the distribution Q has finite dimensional support, then Model 1.1 is called parametric;

• if the distribution Q has infinite dimensional support, then Model 1.1 is called nonpara-
metric.

Nonparametric models represent the main focus of this manuscript.

1.2 Exchangeable partitions and EPPF

In this section we introduce the concepts of partition, random partition and exchangeable ran-
dom partition. Early studies in this area were motivated by population genetics applications
(see, for example, Kingman, 1978). For more details on these topics, one can refer to Pitman
(2006).
Let Nn = {1, . . . , n}, we say that ψn = {A1, . . . , Ak} is a partition of Nn if the sets {A1, . . . , Ak}
are nonempty and such that Nn = ∪i Ai and Ai ∩ Aj = ∅ for all i 6= j. Let B be the space of all
partitions of Nn and B its discrete σ-field.

Definition 1. A random partition is any measurable function Ψn : (Ω,F , P)→ (B, B).

The definition of Ψn induces a probability measure on the space of partitions B.
Given a partition ψn = {A1, . . . , Ak} of Nn, the sequence of cardinalities of the blocks of ψn,
that is cn = (n1, . . . , nk), with ni = |Ai|, is named composition of n. A random partition Ψn
induces a random composition Cn. Note that the space of all compositions of n is the simplex

4k
n =

{
(n1, . . . , nk) ∈Nk :

k

∑
j=1

nj = n, nj > 0

}
.

Let σ be a permutation of Nn and σ(A) = {σ(i) : i ∈ A} (for example, see Figure 1.1).

Definition 2 (Exchangeable partition). We say that a random partition Ψn is exchangeable if, given
any permutation σ : Nn → Nn, the distribution of Ψn is invariant with respect to σ, i.e. for any
partition {A1, . . . , Ak} of Nn and for any permutation σ, the following holds

P[Ψn = {A1, . . . , An}] = P[Ψn = {σ(A1), . . . , σ(Ak)}].

Equivalently, we say that a random partition Ψn is exchangeable if there exists a symmetric function
p(n)k : Cn → [0, 1] such that, for every partition {A1, . . . , Ak} of Nn

P[Ψn = {A1, . . . , Ak}] = p(n)k (|A1|, . . . , |Ak|) = p(n)k (n1, . . . , nk),

The function p(n)k is named exchangeable partition probability function (EPPF) of Ψn.
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The notion of EPPF was first studied by Pitman (1995). According to the previous definition,
when a random partition is exchangeable, the probability associated to a particular realization
depends only on the number of blocks and their size.

[
{1}
{2}

]
[{3}]

[{4}]

N4 [
{1}
{4}

]
[{2}]

[{3}]

N4
σ

P({1, 2}, {3}, {4}) = p(4)3 (2, 1, 1) = P({1, 4}, {2}, {3})

A1 =

A2 =

A3 =

= σ(A1)

= σ(A2)

= σ(A3)

FIGURE 1.1: An example of the effect of a permutation σ on an exchangeable
partition of N4.

An EPPF satisfies the following properties:

i) p(1)1 = 1;

ii) for any (n1, . . . , nk) ∈ 4k
n, with n ≥ 1 and 1 ≤ k ≤ n,

p(n)k (n1, . . . nk) = p(n)k (nσ(1), . . . , nσ(k)),

where σ(·) is a permutation of (1, . . . , k);

iii) for any (n1, . . . , nk) ∈ 4k
n, with n ≥ 1 and 1 ≤ k ≤ n, the following addition rule holds

p(n)k (n1, . . . , nk) =

k

∑
j=1

p(n+1)
k (n1, . . . , nj + 1, . . . , nk) + p(n+1)

k+1 (n1, . . . , nk, 1). (1.2)

1.3 Partial exchangeability

When homogeneity among the observations is not realistic, the assumption of exchangeability
might be too strong. In many applications, some notion of homogeneity can be reasonably
assumed within subsets of the sample but not across the whole set of observations. When this
is the case, one may resort to the weaker notion of partial exchangeability. Let X(∞)

1 , . . . , X(∞)
L be

L infinite sequences of X-valued random elements, defined on (Ω,F , P), where, for every l =
1, . . . , L, X(∞)

l := {X1,l , X2,l , . . .}. The sequence (X1, . . . XL)
(∞) is termed partially exchangeable if,

for any n1, . . . , nL ≥ 1 and any permutation σl of {1, . . . , nl}, with l = 1, . . . , L, we have that

(X1,1, . . . , Xn1,1, X1,2, . . . , Xn2,2, . . . , X1,L, . . . , XnL,L)

coincides in distribution with

(Xσ1(1),1, . . . , Xσ1(n1),1, Xσ2(1),2, . . . , Xσ2(n2),2, . . . , XσL(1),L, . . . , XσL(nL),L).
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Given two or more sequences of observations, partial exchangeability is thus a probabilistic
statement on the homogeneity of the observations within, but not across, groups.
The de Finetti representation theorem, presented in Theorem 1, can be extended to the partial
exchangeability case. Let X∞ = X×X× . . . and MX the space of probability measures on
(X, X ).

Theorem 2 (de Finetti, 1938). The sequence (X1, . . . , XL)
(∞) is partially exchangeable if and only if

there exists a probability measure Q on the L-fold product space ML
X, such that, for any nl ≥ 1, and

A•,l = A1,l × A2,l × · · · × Anl ,l ×X(∞), with Ail ,l ∈ X and l = 1, . . . , L, one has

P
[

X(∞)
1 ∈ A•,1, . . . , X(∞)

L ∈ A•,L
]

=
∫

ML
X

L

∏
l=1

nl

∏
i=1

pl(Ail ,l)Q(dp1, . . . , dpL).

Also in the partially exchangeable case we have an equivalent hierarchical representation,
given by

(Xi1,1, . . . , XiL,L) | p̃1, . . . , p̃L
iid∼ p̃1,× · · · × p̃L, 1 ≤ il ,≤ nl , ∀l = 1, . . . , L

p̃1, . . . , p̃L ∼ Q

where p̃1, . . . , p̃L are random probability measures and Q is a probability measure over the
l-fold product space ML

X.

1.4 Distributions on the space of probability measures

A discrete random probability measure (RPM) on (X, X ) can be defined as

p̃ =
∞

∑
j=1

WjδX̃j
, (1.3)

where {X̃j}j≥1 is a sequence of random atoms, i.i.d. from a diffuse probability distribution P0
on (X, X ), and {WX̃1

, WX̃2
, . . . } is a sequence of random variables taking values in the infinite

dimensional unit simplex

4 = 4∞
1 =

{
w = (w1, w2, . . . ) : ∀j ∈N, wj ≥ 0,

∞

∑
j=1

wj = 1

}
.

In this manuscript we will focus on homogeneous discrete RPMs, that is RPMs for which the dis-
tribution of the atoms {X̃j}j≥1 is independent of the distribution of the random jumps {Wj}j≥1.
A random probability measure defined as in Equation 1.3, induces a probability distribution
on the space (MX, MX). In the next section we introduce a convenient constructive defini-
tion of the weights {Wj}j≥1, named stick-breaking construction, that leads to the definition of a
flexible class of discrete random probability measures. For more details on this or alternative
definitions of discrete RPMs, one can refer, e.g., to Ghosal and Van Der Vaart (2017).
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1.4.1 Definition through Stick-Breaking

The stick-breaking construction for defining the random weights {Wj}j≥1 in (1.3) was first in-
troduced, for the Dirichlet process (see Section 1.5), by Sethuraman (1994), and later extended
so to define a much more general class of processes. To this end, a crucial contribution was
provided by Ishwaran and James (2001).

1

1−V1V1

(1−V1)(1−V2)V1 (1−V1)V2

...

FIGURE 1.2: Graphical representation of the stick-breaking procedure.

The stick-breaking definition of the the weights {Wj}j≥1 in (1.3) is nicely described by the fol-
lowing metaphor. A stick of unit length is broken, at a random point, into two bits, namely
V1 and 1 − V1. The weight W1 is set equal to V1, while the remaining part of length 1 − V1
is further split into two parts, of length V2(1− V1) and (1− V2)(1− V1). The former is used
to define W2, the latter will be broken again so to the difne W3 and so on (see Figure 1.2). In
general, if {Vj}j≥1 is a sequence of random variables such that 0 ≤ Vi ≤ 1, then, for any j ≥ 1
we can define the stick weight Wj as

Wj = Vj

j−1

∏
l=1

(1−Vl)

The following Lemma formalizes necessary and sufficient conditions that the sequence of ran-
dom weights {Vj}j≥1 must satisfy for the resulting sequence {Wj}j≥1 to lie in4 almost surely.

Lemma 1 (Ishwaran and James, 2001). The sequence {Wj}j≥1, defined by means the sequence {Vj}j≥1,
lies in4 almost surely if and only if

E

[
j

∏
l=1

(1−Vl)

]
−−→
j→∞

0.

When the random variables in the sequence {Vj}j≥1 are independent, then the previous condition is
equivalent to

∞

∑
l=1

log E[1−Vl ] = −∞.

Moreover when {Vj}j≥1 are i.i.d. random variables, it is sufficient that Pr(V1 > 0) > 0.

If the sequence {Vj}j≥1 satisfies the conditions of Lemma 1, then corresponding sequence of
weights {Wj}j≥1 can be used to define a homogeneous discrete RPM on (X, X ) as

p̃ =
∞

∑
i=1

WjδX̃j
, Wj = Vj

j−1

∏
l=1

(1−Vl),

where {X̃j}j≥1 is a sequence of random atoms taking values on X, and independent of {Vj}j≥1.
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In the seminal paper of Sethuraman (1994), the author considered the case Vj ∼ B(1, α(X)),
with α(·) is a measure over (X, X ) and B(·, ·) is the Beta distribution. Several extensions were
proposed after his work (see, e.g., Ishwaran and James, 2001; Dunson and Park, 2008; Favaro
et al., 2012a; Favaro et al., 2014; Favaro et al., 2016).

1.4.2 Predictive distribution

Let X(n) = (X1, . . . , Xn) be an exchangeable sample from p̃. Let p̃ ∼ Q, with Q de Finetti mea-
sure in (1.1) and Q(· | X(n)) its posterior distribution. The distribution of the next observation,
Xn+1, conditionally to the observed sample X1, . . . , Xn, is named predictive distribution and it
can be defined by the posterior expectation of p̃, as

P[Xn+1 ∈ dt | X(n)] =
∫

MX

p̃(dt)Q(dp̃ | X(n)), (1.4)

where MX is the space of the probability measures with support X. Due to the discreteness of p̃,
with positive probability there will be ties in X(n), thus inducing a partition of the sample. The
predictive distribution in Equation 1.4 can then be represented in terms of EPPF of the possible
partitions of X(n+1), given the partition observed for X(n). Let X∗1 , . . . , X∗k be the unique values
in X(n). The predictive distribution can be written as

P[Xn+1 ∈ dt|X(n)] ∝ p(n+1)
k+1 (n1, . . . , nk, 1)P0(dt) +

k

∑
j=1

p(n+1)
k (n1, . . . , nj + 1, . . . , nk)δX∗j (dt),

(1.5)

where we recall that P0 is a diffuse probability distribution on (X, X ). An EPPF satisfies the
addition rule in (1.2), then it is possible to normalize Equation 1.5, so to get the exact predictive
distribution as

P[Xn+1 ∈ dt|X(n)] =

p(n+1)
k+1 (n1, . . . , nk, 1)

p(n)k (n1, . . . , nk)
P0(dt) +

k

∑
j=1

p(n+1)
k (n1, . . . , nj + 1, . . . , nk)

p(n)k (n1, . . . , nk)
δX∗j (dt). (1.6)

Blackwell and MacQueen (1973) first studied the predictive distribution for the Dirichlet pro-
cess, introduced in the same year by Ferguson (1973). The authors proposed an intuitive inter-
pretation in terms of Pólya urns.

1.5 Dirichlet process

While the nonparametric framework was already laid out in the 30’s by Bruno de Finetti, it
was only with the introduction of the Dirichlet process (DP) in the 70’s, that the nonparametric
approach could actually be implemented. The DP was introduced in the seminal paper of
Ferguson (1973), and, due to its remarkable mathematical tractability, it still represents the
default choice in many applications of Bayesian nonparametric models.
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Definition 3 (Ferguson, 1973). A random measure p̃ on (X, X ) is said to be a Dirichlet Process with
base measure λ, DP(λ), if for every finite measurable partition A1, . . . , Ak of X we have

( p̃(A1), . . . , p̃(Ak)) ∼ Dir(λ(A1), . . . , λ(Ak)).

The process is equivalently parametrized by the total mass (also named prior precision or pre-
cision parameter) ϑ = λ(X) and P0 = λ/λ(X), the probability measure obtained by the nor-
malization of λ (called center measure or base measure). We refer to the (ϑ, P0) parametrization
and denote it by DP(ϑ, P0).

Definition through stick-breaking

The stick-breaking definition for the DP was introduced in the literature by Sethuraman (1994).
In order to introduce it, we first define the one parameter GEM 1 distribution, as follows.

Definition 4. Let V1, V2, . . . iid∼ Beta(1, ϑ), with ϑ ∈ R+, and define the weights W1 = V1, and for
any j ≥ 1, Wj = Vj ∏

j−1
k=1(1−Wk). The sequence {Wj}j≥1 is said to follow a one-parameter GEM

distribution, denoted by {Wj}j≥1 ∼ GEM(ϑ).

Note that for the sequence {Wj}j≥1 the conditions of Lemma 1 hold. Let {Wj}j≥1 ∼ GEM(ϑ),

X̃1, X̃2, . . . iid∼ P0, and assume that the sequences {Wj}j≥1 and {X̃j}j≥1 are independent. Then,

p̃ =
∞

∑
j=1

WjδX̃j
,

is distributed as a DP with precision parameter ϑ and base measure P0, that is p̃ ∼ DP(ϑ, P0).

Predictive distribution

Blackwell and MacQueen (1973) first studied the predictive structure of the DP. Here we derive
the same, by starting from the general representation (1.6), given in terms of the EPPF. The
EPPF for a DP with precision parameter ϑ, is defined as follows

p(n)k (n1, . . . , nk) =
ϑk

(ϑ)n

k

∏
j=1

(nj − 1)!,

where (a)k := a(a + 1) · · · (a + k− 1) is the rising factorial. Then, following Equation 1.6, we
have that, given X(n), the conditional probability for Xn+1 to take a new value, is given by

p(n+1)
k+1 (n1, . . . , nk, 1)

p(n)k (n1, . . . , nk)
=

ϑk

(ϑ)n+1

k+1

∏
j=1

(nj − 1)!

ϑk

(ϑ)n

k

∏
j=1

(nj − 1)!

=
ϑ

ϑ + n
,

while the conditional probability that Xn+1 coincides with X∗j , value appeared nj times in X(n),
is given by

1The GEM distribution is named after the studies of Griffiths, Engen and McClosky.
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p(n+1)
k (n1, . . . , nj + 1, . . . , nk)

p(n)k (n1, . . . , nk)
=

ϑk

(ϑ)n+1
nj

k

∏
j=1

(nj − 1)!

ϑk

(ϑ)n

k

∏
j=1

(nj − 1)!

=
nj

ϑ + n
.

We can then write the predictive distribution for the DP as

P[Xn+1 ∈ dt|X1, . . . , Xn] =
ϑ

ϑ + n
P0(dt) +

k

∑
j=1

nj

ϑ + n
δX∗j (dt).

1.5.1 Other properties

In this section we summarise some fundamental properties of the DP, as they will be useful in
the rest of the manuscript.

Gamma CRM normalization

Let γ be a gamma completely random measure (CRM, see Appendix A for details), defined
on (X, X ) and with Lévy intensity ν(ds, dx) = exp{−s}/sds ϑP0(dx). The process γ has
independent increments, that is, if A1, . . . Ak are measurable disjoint subsets of X, then the

random variables γ(Aj)’s are independent gammas, that is γ(Aj)
ind∼ G(ϑP0(Aj), 1), with j =

1, . . . , k. An alternative definition for the Dirichlet process is obtained by normalizing γ, thus
defining a RPM on (X, X ) as

p̃(·) = γ(·)
γ(X)

.

The definition of DP as the normalization of a gamma process was already given in Ferguson
(1973). The connection between DP and gamma process is convenient as many known proper-
ties of the gamma process can be exploited to study the DP.

Expectation and Variance of the DP

In the next result we can derive the first two moments of the DP. For more details on the topic
see, for example, Ghosal and Van Der Vaart (2017).

Proposition 1. Let p̃ ∼ PD(ϑ, P0), defined onX, and A ∈ X . Then

E[ p̃(A)] = P0(A)

Var[ p̃(A)] =
P0(A)P0(Ac)

ϑ + 1

Proof. By Definition 3, we have that ( p̃(A1), . . . , p̃(Ak)) ∼ Dir(ϑP0(A1), . . . , ϑP0(Ak)), for any
measurable partition A1, . . . , AK of X. This implies that p̃(A) is a Beta random variable, specif-
ically p̃(A) ∼ B(ϑP0(A), ϑP0(Ac)). It easily follows that

E[ p̃(A)] =
ϑP0(A)

ϑP0(A) + ϑP0(Ac)
= P0(A)
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and

Var[ p̃(A)] =
(ϑP0(A))(ϑP0(Ac))

(ϑP0(A) + ϑP0(Ac))2(ϑP0(A) + ϑP0(Ac) + 1)
=

P0(A)P0(Ac)

ϑ + 1

The base measure P0, expected value of the DP, can then be interpreted as the prior guess in a
Bayesian model. The last proposition also shows that, for any measurable A, the precision of
p̃(A) is a linear function of ϑ, thus motivating the name precision parameter.

Conjugacy

A peculiar property of the DP is its conjugacy (Ferguson, 1973). See also James et al. (2006).

Theorem 3 (Ferguson, 1973). Let p̃ ∼ DP(ϑ, P0) and X1, . . . , Xn sampled independently from p̃.
Then p̃|X1, . . . , Xn is a Dirichlet process characterized by total mass ϑ + n and base measure

Pn =
ϑ

ϑ + n
P0 +

ϑ

ϑ + n

k

∑
j=1

nj

n
δX∗j ,

where X∗1 , . . . , X∗k are the unique values of X1, . . . , Xn, and n1, . . . , nk the corresponding frequencies.

The previous result implies that, for any set A ∈ X , the posterior mean of p̃(A), given
X1, . . . , Xn, is given by

E[ p̃(A)|X1, . . . , Xn] =
ϑ

ϑ + n
P0(A) +

ϑ

ϑ + n

k

∑
j=1

nj

n
δX∗j (A),

a linear combination of the prior guess P0 and the empirical distribution, both evaluated at A.
Moreover, the variance goes to zero when the sample size n grows, indeed

Var[ p̃(A)|X1, . . . , Xn] =
E[ p̃(A)|X1, . . . , Xn]E[ p̃(Ac)|X1, . . . , Xn]

ϑ + n + 1

≤ 1
4(ϑ + n + 1)

= o(1).

Marginal distribution

In the paper of Ferguson (1973) the author characterized the marginal distribution of a single
value X | p̃ ∼ p̃, where p̃ is a DP, which give a simple strategy to sample a new atom X from p̃.

Proposition 2 (Ferguson, 1973). Let p̃ ∼ DP(ϑ, P0) and X| p̃ ∼ p̃. Then the marginal distribution
of X corresponds to the base measure, X ∼ P0.

The previous results is immediate by, given a set A ∈ X ,

p̃(A) = E[ p̃(A)| p̃] = E[ p̃(A)] = P0(A).

As important consequence of the previous Proposition, we can sample a value from the marginal
distribution of a generic X by sampling a value from the base measure.
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Self-similarity

Another remarkable property of the DP is its self-similarity. The intuition is that the restriction
of the DP to a subset of his support is still a DP, and, in addition, it is independent of the same
process outside the restricted support.
Let B ⊆ X a measurable set and p̃|B denote the restriction of the random probability measure
p̃ to B, that is p̃|B(·) = p̃(· ∩ B).

Theorem 4. Let p̃ ∼ DP(ϑ, P0), B ⊆ X and Bc = X \ B be measurable sets. Then p̃(B), p̃(Bc),
p̃|B and p̃|Bc are mutually independent. Moreover, p̃|B and p̃|Bc are still Dirichlet processes, with mass
ϑP0(B) and ϑP0(Bc), respectively, and base measure P0|B and P0|Bc , respectively.

The proof exploits the representation of the DP as the normalization of a gamma process, and
well-known properties of gamma random variables. For more details, one can refer to Ghosal
and Van Der Vaart (2017).

Dirichlet random means

Let p̃ be a DP parametrized by the measure λ, that is p̃ ∼ DP(λ). Let h be a real-valued
measurable function defined on X such that∫

X
log(1 + |h(t)|)λ(dt) < ∞. (1.7)

Let λh = λ ◦ h−1. Lijoi and Prünster (2009) showed that it is possible to characterize the random
mean of h, with respect to a Dirichlet process distribution, as follows.

Proposition 3. Let p̃ ∼ DP(λ) and h be a real-valued measurable function, for which (1.7) holds. Then∫
X

h(t) p̃(dt) d
=
∫

X
tp̃h(dt),

where p̃h ∼ DP(λh).

1.6 Pitman-Yor process

The Pitman-Yor (PY) process2 is probably the most popular generalization of the DP process.
This extension was first introduced by Perman et al. (1992), and later investigated by Pitman
and Yor (1997) and Pitman (1995), among others. For an exhaustive presentation from a proba-
bilistic perspective see Pitman (2006).
The distribution of a PY is characterized by a discount parameter σ ∈ [0, 1), a strength param-
eter ϑ > −σ, and a diffuse base measure P0.
We introduce the PY process by generalizing the stick-breaking definition of the DP. To this
end, we extend the definition of the GEM distribution (see Definition 4), to the two-parameter
case.

Definition 5. Let σ ∈ [0, 1), ϑ > −σ and V1, V2, . . . be independent random variables such that for

all j = 1, 2, . . . , Vj
ind∼ Beta(1 − σ, ϑ + jσ). Define the weights W1 = V1, and, for j ≥ 2, Wj =

Vj ∏
j−1
k=1(1−Wk). The sequence {Wj}j≥1 is said to follow a two-parameter GEM distribution, denoted

by {Wj}j≥1 ∼ GEM(ϑ, σ).

2In the paper of Perman et al. (1992) the authors refer to the process as the two-parameter Poisson-Dirichlet
process, the name Pitman-Yor process was introduced by Ishwaran and James (2001).
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We observe that conditions of Lemma 1 hold for a sequence {Wj}j≥1 ∼ GEM(ϑ, σ), and thus
we use to define the sequence of random jumps of the RPM in Equation 1.3. Starting from the
two-parameters GEM distribution, the PY can then be introduced as follows.

Definition 6. Let σ ∈ [0, 1), θ > −σ and P0 be a diffuse measure on (X, X ). Let {Wj}j≥1 ∼
GEM(ϑ, σ) and X̃1, X̃2, . . . iid∼ P0. Then the random probability measure

p̃ =
∞

∑
j=1

WjδX̃j

is distributed as a Pitman-Yor process with parameters θ and σ and base measure P0, p̃ ∼ PY(ϑ, σ, P0).

The DP is recovered as a special case by setting the discount parameter σ equal to zero.

Predictive distribution

The EPPF of a PY with parameters σ and ϑ is defined as

p(n)k (n1, . . . , nk) =
∏k−1

i=1 (ϑ + iσ)
(ϑ + 1)n−1

k

∏
j=1

(1− σ)nj−1,

where (a)k is the rising factorial. Then, following Equation 1.6, we have that, given X(n), the
conditional probability for Xn+1 to take a new value, is given by

p(n+1)
k+1 (n1, . . . , nk, 1)

p(n)k (n1, . . . , nk)
=

∏k
i=1(ϑ + iσ)
(ϑ + 1)n

k

∏
j=1

(1− σ)nj−1

∏k−1
i=1 (ϑ + iσ)
(ϑ + 1)n−1

k

∏
j=1

(1− σ)nj−1

=
ϑ + kσ

ϑ + n
,

while the conditional probability that Xn+1 coincides with X∗j , value appeared nj times in X(n),
is given by

p(n+1)
k (n1, . . . , nj + 1, . . . , nk)

p(n)k (n1, . . . , nk, 1)
=

∏k−1
i=1 (ϑ + iσ)
(ϑ + 1)n

(1− σ)nj

k

∏
l 6=j

(1− σ)nl−1

∏k−1
i=1 (ϑ + iσ)
(ϑ + 1)n−1

k

∏
l=1

(1− σ)nl−1

=
nj − σ

ϑ + n
.

We can the write the predictive distribution for the PY process as

P[Xn+1 ∈ dt|X1, . . . , Xn] =
ϑ + kσ

ϑ + n
P0(dt) +

k

∑
j=1

nj − σ

ϑ + n
δX∗j (dt).

Posterior representation

Pitman (1996) provides a convenient representation of the posterior distribution of a PY.

Theorem 5. (Corollary 20 in Pitman, 1996). Let X(n) be a sample from p̃, with p̃ ∼ PY(ϑ, σ, P0).
Let X∗1 , . . . , X∗k be the distinct values in X(n), and n1, . . . , nk the corresponding frequencies. Then,
conditionally on X(n),

p̃ =
k

∑
j=1

WjδX∗j + Wk+1 p̃k
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where (W1, . . . , Wk, Wk+1) ∼ Dir(n1− σ, . . . , nk − σ, ϑ + kσ) and p̃k ∼ PY(ϑ + kσ, σ, P0), and p̃k is
independent of (W1, . . . , Wk+1).

The previous result will be exploited in Chapter 3. A detailed proof of Theorem 5 can be found
in the PhD dissertation of Carlton (1999).

1.7 Other generalizations of the DP

While the PY is arguably the most popular generalization of the DP, the problem of defining
flexible classes of RPMs generalizing the DP, has attracted considerable attention in the last
decade.

Extensions based on CRM

The study of CRMs (see Appendix A) and their normalization has been the focus of interest-
ing contributions in recent Bayesian nonparametric literature. We have seen that a DP can be
defined as the normalization of a gamma process (Ferguson, 1973). The same approach can be
adopted more in general: a random probability measure can be defined by normalizing a CRM
(Regazzini et al., 2003). Under the additional assumption that the jumps of the CRM are inde-
pendent of their locations, we obtain RPMs named homogeneous normalized random measure
with independent increments (hNRMI) (see Regazzini et al., 2003; James et al., 2009).
The use of hNRMs in Bayesian nonparametrics has grown considerably in the last decade. The
more commonly adopted processes within this family are the normalized generalized gamma
process (NGG) (Pitman, 2003; Lijoi et al., 2007c, see also Prünster, 2002, James, 2002, Lijoi and
Prünster, 2003, Regazzini et al., 2003). The NGG includes, as special cases, the DP (Ferguson,
1973), the normalized σ-stable process (Kingman, 1975) and the normalized inverse Gaussian
process (Lijoi et al., 2005b).

Extensions based on stick-breaking

In one of the main references for the definition of stick-breaking RPMs, Ishwaran and James
(2001) were clear about the potential generality of this construction. In their paper, they intro-
duced the stick-breaking representation as

W1 = V1, Wj = Vj

j−1

∏
k=1

(1−Vj)

where the random variables Vj ∼ Beta(aj, bj) are characterized by two sequences of parameters
{aj}j≥1 and {bj}j≥1. With particular setting of the sequences {aj}j≥1 and {bj}j≥1, it is possi-
ble to reconstruct different families of process. We already discussed in the previous sections
the Dirichlet process (Ferguson, 1973) and the Pitman-Yor process (Pitman and Yor, 1997), but
the specification of {aj}j≥1 and {bj}j≥1 is known also for the Dirichlet-multinomial process
(Muliere and Secchi, 1995), the m-spike model (Liu, 1996), the finite dimensional Dirichlet pri-
ors (Ishwaran and Zarepour, 2002) and the Beta two-parameter process (Ishwaran and Zare-
pour, 2000). The previous list reports some examples of processes that have a stick-breaking
representation, but quoting Ishwaran and James (2001) "more measures will eventually be rec-
ognized as being stick-breaking in nature", also without the requirement of Beta distributed stick
breaks.
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Extensions based on EPPFs

A key tool for understanding combinatorial properties of a RPM is represented by the EPPF,
introduced in Section 1.2. We present here a classification of RPMs based on the form taken
by their EPPF. This insightful result was proved in De Blasi et al. (2015) and will be useful in
Chapter 4.
In a general framework the probability of getting a new value in a sampling sequence at the
(n + 1)-th step is a function of the number of already sampled values n, the number of distinct
values k and their frequencies n1, . . . , nk, i.e.

Pr[Xn+1 = ”new” | X1, . . . , Xn] = q(n, k, n1, . . . , nk).

The previous relation comes from the fact that an EPPF is a function of the type p(n)k (n1, . . . ,
nk) = g(n, k, n1, . . . , nk). Then it is possible to classify RPMs by their predictive distribution, as
follows.

Proposition 4 (De Blasi et al., 2015). Let p̃ a random measure, with related EPPF p(n)k (n1, . . . , nk).
The following classification holds:

(i) q(n, k, n1, . . . , nk) = q(n) if and only if p̃ is a Dirichlet process;

(ii) q(n, k, n1, . . . , nk) = q(n, k) if and only if p̃ is a Gibb-type process;

(iii) q(n, k, n1, . . . , nk) = q(n, k, n1, . . . , nk) otherwise.

The family of Gibb-type priors has interesting properties as it generalizes the DP while man-
taining a good degree of mathematical tractability: this is reflected by the fact that the probabil-
ity of discovering a new value in the predictive distribution depends on the observed sample
only through its sample size n and the number of distinct values k.

1.8 Definition of nonparametric priors

Due to their almost sure discreteness, the RPMs that we have considered in this chapter cannot
be used as prior processes to model directly continuous fenomena.
Consider a homogeneous RPM defined as in Section 1.4. A first use of these processes consists
in modelling phenomena with a discrete support. Let X(n) be an exchangeable sample from p̃,
where p̃ is a homogenous RPM. In the context of Bayesian nonparametric statistics, we refer to

p̃ =
∞

∑
j=1

WjδX̃j

as a species sampling model, name first introduced by Pitman (1995).
If instead we want to model continuous observations, we can follow the approach introduced
by Lo (1984) for the DP, and use the discrete RPM as a mixing measure in a mixture model,
thus obtaining an infinite mixture. That is, we consider a kernel function k(x, θ) onX×Θ and
define the random density

f̃ (x) =
∫
Θ

k(x, θ) p̃(dθ).

The random density f̃ lives in F , the space of density functions onX.
Finally, observe that while the use of a continuous kernel k(x, θ) serves the purpose of allowing
discrete RPMs to be used for continuous fenomena, it is anyway possible to consider infinite
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mixtures of discrete kernels, see for example Krnjajić et al. (2008), where a Poisson kernel is
adopted.

1.9 Outline and main contributions

In this thesis we investigate three important aspects of nonparametric mixtures, about their
modelling, computational and distributional properties. The chapters’ order relies to the gen-
erality of the processes considered: in the next chapter, Chapter 2, we expound modelling
properties of the DP. Chapter 3 describes computational aspects of the PY process. Finally
Chapter 4 approach the Gibbs-type prior family, with a study on distributional properties of
the size of the clusters underlying the data.
In details, Chapter 2 is a thorough study regarding the effect of invertible affine transformation
of the data on the posterior distribution of Dirichlet process mixture models, with particular at-
tention to DP mixtures of multivariate Gaussian kernels (DPM-G). We first provide an explicit
specification of the parameters of a DPM-G model, based on the transformation considered.
With the use of this particular specification, given the sampled data or the transformed data,
the posterior distributions and the inference made with DPM-G models are equivalent. Then,
after the formalization of asymptotic robustness of a model under affine transformation of the
data, we prove a result which show that, under mild assumptions on the data-generating distri-
bution, DPM-G models are asymptotically robust. The results are supported by an exhaustive
simulation study on the effect of affine transformations.
Chapter 3 describes the importance conditional sampler, a novel sampling strategy for PY mix-
ture models. The proposed method combines the best features of the conditional and marginal
sampling strategies for PY mixture models, by the use of an useful representation of the poste-
rior distribution of a PY (Pitman, 1996) and an importance sampling idea, similar in spirit to the
augmentation step of the celebrated Algorithm 8 of Neal (2000). After an introduction to the
modelling framework and the state-of-the-art of the main competitors, we expound the impor-
tance conditional sampler, with a detailed description of the steps for the implementation. We
perform an exhaustive simulation study, where we compare our proposal with its main com-
petitors. Finally the importance conditional sampler is used as a building block for devising a
new efficient algorithm for the class of GM-dependent DP mixture models (Lijoi et al., 2014a;
Lijoi et al., 2014b), for partially exchangeable data.
The last chapter, Chapter 4, propose an elicitation strategy for the parameters of a Gibbs-type
prior, based on some distributional properties. We first introduce the Gibb-type priors and
some introductory notions. Then we show the main contribution of the chapter, focuses on an
exchangeable sample from a Gibbs-type prior and provides a simple and convenient descrip-
tion of the the size of the (m+ 1)th observation’s cluster, given an unobserved sample of size m.
We propose some results to characterize the cluster size distribution, based on the main result.
We perform a study on the cluster size distribution for particular families of process, belong
to the Gibbs-type priors: the DP, the PY process and the NGG. The study of such distribution
provides the tools for a simple strategy for prior elicitation of the parameters for a Gibbs-type
prior, in the context of Gibbs-type mixture models.
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Chapter 2

Dirichlet process mixtures and affine
transformation

A process cannot be understood by
stopping it. Understanding must
move with the flow of the process,
must join it and flow with it.

Frank Herbert, Author

Based on:

Arbel, J., Corradin, R., Nipoti, B.
"Dirichlet process mixtures under affine transformations of the data"
Submitted (2018)

Arbel, J., Corradin, R., Lewandowski, M.
Discussion of “Bayesian Cluster Analysis: Point Estimation and Credible Balls”
Bayesian Analysis (2018)

A natural requirement for statistical methods for density estimation and clustering is for them
to be robust under affine transformations of the data. Such a desideratum is exacerbated in
multivariate problems where data components are incommensurable, that is not measured in
the same physical unit, and for which, thus, the definition of a metric on the sample space
requires the specification of constants relating units along different axes. As an illustrative ex-
ample, consider astronomical data consisting of position and velocity of stars, thus living in the
so-called phase-space: a metric on such a space can be defined by setting a dimensional con-
stant to relate positions and velocities. In this setting, any sensible statistical procedure should
be robust with respect to the specification of such a constant (Ascasibar and Binney, 2005; Ma-
ciejewski et al., 2009). This is specially important considering that often scarce to no a priori
guidance about dimensional constants might be available, thus making the model calibration a
daunting task. In this chapter we study how affine transformations of the data affect Bayesian
posterior inference carried out based on Dirichlet process (DP) mixture models. While several
kernels have been considered in the literature, including e.g. skew-normal (Canale and Scarpa,
2016), Weibull (Kottas, 2006), Poisson (Krnjajić et al., 2008), in this chapter we focus on the con-
venient and commonly adopted Gaussian specification first introduced by Lo (1984), and later
extended by Müller et al. (1996) to the case of multivariate Gaussian kernel (in this chapter we
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let DPM-G denote a Dirichlet process mixture model with multivariate gaussian kernel). Al-
though its properties have been thoroughly studied (see, e.g., Hjort et al., 2010), little attention
has been dedicated to its robustness under data transformations (see Arbel and Nipoti, 2013).
To the best of our knowledge, only Bean et al. (2016) and Shi et al. (2018) study the effect of data
transformation under a DPM model. The goal of Bean et al. (2016) is to transform the sample
so to facilitate the estimation of univariate densities on a new scale and thus to improve the
performance of the methodology; Shi et al. (2018), instead, study the consistency properties of
DPM models under affine data transformation, when studying the properties of the so-called
low information omnibus prior for DPM models they introduce.
The class of DPM models is a very commonly used model framework, whose asymptotic prop-
erties have been studied by Wu and Ghosal (2010), Shen et al. (2013) and Canale and De Blasi
(2017), among others. Our contribution to this area of research, presented in this chapter, fo-
cuses on the effect of applying an affine transformation to the data, in the context of DPM
models, in terms of density estimation and inference. In Section 2.1 we describe the modelling
framework and introduce the notation used throughout the chapter. In Section 2.2 we formalise
the intuitive idea that a DPM-G model on a given dataset induces a DPM-G model on rescaled
data and we provide the parameters mapping for the transformed DPM-G model. Section 2.3 is
dedicated to a brief review of some relevant results on posterior consistency for DPM models.
In Section 2.4 we introduce the notion of asymptotic robustness under affine transformations of
the data and show that, under mild assumptions on the true data generating process, DPM-G
models feature such robustness property. In Section 2.5 we discuss some recently introduced
methodologies to get an estimated partition, in the context of clustering analysis, based on the
output of a Markov chain Monte Carlo algorithm. The theoretical results presented in this
chapter are supported by a simulation study, described in Section 2.6. Finally, in Section 2.7,
we illustrate our findings by analysing an astronomical dataset and addressing a nontrivial
classification problem arising in the astronomical study of globular clusters.

2.1 Modelling framework

Let X(n) := (X1, . . . , Xn) be a sample of size n of d-dimensional observations Xi := (Xi,1, . . . ,
Xi,d)

ᵀ defined on some probability space (Ω, A ,P) and taking values in Rd, with probabil-
ity density function f . Consider a situation where an affine transformation is applied on the
data. An invertible affine transformation g : Rd −→ Rd is a map such that g(x) = Cx + b
where C is an invertible matrix of dimension d× d and b a d-dimensional column vector. The
nature of the transformation g is such that, if applied to a random vector X with probability
density function f , it gives rise to a new random vector g(X) with probability density function
fg = |det(C)|−1 f ◦ g−1, where the constant |det(C)|−1 depends on the scaling factor of the
transformation g and rescales the volume of the transformed function f ◦ g, so that it integrates
to one.
Let k(x; θ) be a kernel function on Rd parameterized by θ ∈ Θ, p̃ be a DP (see Section 1.5 for
details) with parameters ϑ (precision parameter) and P0 := E[ p̃] (base measure), where P0 is a
distribution defined on Θ. A DPM model is defined as

f̃ (x) =
∫

Θ
k(x; θ)dp̃(θ). (2.1)

Henceforth we denote by F the space of all density functions with support on Rd. A DPM
model defined as in (2.1) defines a random density on F , that is a probability distribution over
the space F . Due to the almost sure discreteness property of p̃, the random density f̃ can be



2.2. DPM-G model and affine transformations of the data 17

equivalently rewritten as

f̃ (x) =
∞

∑
i=1

wik(x; θ̃i),

where the random atoms θ̃i are i.i.d. from P0, and the random jumps Wi, independent of
the atoms, admit the stick-breaking representation derived by Sethuraman (1994) (see Sec-
tion 1.4.1).
We assume for the kernel a d-dimensional Gaussian distribution, with density function φd(x; µ,
Σ), provided that θ = (µ, Σ), where the column vector µ and the matrix Σ represent, respec-
tively, mean vector and covariance matrix of the Gaussian kernel. This specification defines the
model referred to as d-dimensional location-scale DPM-G, which can be represented in hierar-
chical form as

Xi | θi = (µi, Σi)
ind∼ φd(xi; µi, Σi),

θi | p̃ iid∼ p̃,
p̃ ∼ DP(ϑ, P0).

(2.2)

Although other specifications for the base measure can be considered (see, e.g., Görür and
Rasmussen, 2010), we choose to work within the framework set forth by Müller et al., 1996
where P0 is defined as the product of two independent distributions for the location parameter
µ and the scale parameter Σ, namely a multivariate normal and an inverse-Wishart distribution,
that is

P0(dµ, dΣ; π) = Nd(dµ; m0, B0)× IW(dΣ; ν0, S0). (2.3)

Note that this specification of the base measure conjugacy of (µ, Σ) does not hold jointly but
only marginally. For the sake of compactness, we use the notation π := (m0, B0, ν0, S0) to
denote the vector of hyperparameters characterising the base measure P0. We denote by Π the
prior distribution induced on F by the DPM-G model (2.2) with base measure (2.3).

2.2 DPM-G model and affine transformations of the data

Let f̃π be a DPM-G model defined as in (2.2), with base measure (2.3) and hyperparameters π.
The next result shows that, for any invertible affine transformation g(x) = Cx + b of the data,
there exists an opportune specification πg := (m(g)

0 , B(g)
0 , ν

(g)
0 , S(g)

0 ) of the hyperparameters
characterizing the base measure in (2.3), such that f̃πg = |det(C)|−1 f̃π ◦ g−1. That is, for every
ω ∈ Ω and given a random vector X distributed according to f̃π(ω), we have that f̃πg(ω) is
the random density of the transformed random vector g(X). The intuition is that, considering
that an affine transformation changes center and volume of the support of the distribution of
the data, the hyperparameters πg allow to change random density f̃πg accordingly.

Proposition 5 (Arbel, C. and Nipoti). Let f̃π be a location-scale DPM-G model defined as in (2.2),
with base measure (2.3) and hyperparameters π = (m0, B0, ν0, S0). For any invertible affine transfor-
mation g(x) = Cx + b, we have

f̃πg = |det(C)|−1 f̃π ◦ g−1,

where πg := (Cm0 + b, CB0Cᵀ, ν0, CS0Cᵀ).

The previous proposition follows from Proposition 3 (Lijoi and Prünster, 2009). For the sake of
completeness we report here a direct proof of Proposition 5.
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Proof. Model f̃π can be written as

f̃π(x) =
∫
(2π)−

d
2 det(Σ)−

1
2 exp

{
−1

2
(x− µ)ᵀΣ−1(x− µ)

}
p̃(dµ, dΣ; π)

=
∫
(2π)−

d
2 |det(C)|det(CΣCᵀ)−

1
2

× exp
{
−1

2
(Cx + b− Cµ− b)ᵀ(CΣCᵀ)−1(Cx + b− Cµ− b)

}
p̃(dµ, dΣ; π).

By performing the change of variables S = CΣCᵀ and m = Cµ + b and observing that, by
standard properties of the inverse-Wishart and normal distributions,

1. Σ ∼ IW(ν0, S0) implies S ∼ IW(ν0, CS0Cᵀ),

2. µ ∼ Nd(m0, B0) implies m ∼ Nd(Cm0 + b, CB0Cᵀ),

3. X ∼ Nd(µ, Σ) implies CX + b ∼ Nd(m, S),

we obtain

f̃π(x) = |det(C)|
∫
(2π)−

d
2 det(S)−

1
2

× exp
{
−1

2
(Cx + b−m)ᵀS−1(Cx + b−m)

}
p̃(dm, dS; πg)

= |det(C)| f̃πg(g(x)).

A simple reparametrisation leads to f̃πg = |det(C)|−1 f̃π ◦ g−1. All the identities in this proof
are deterministic, that is they hold for every ω ∈ Ω.

This result implies that, for any invertible affine transformation g, modelling the set of ob-
servations X(n) with a DPM-G model (2.2), with base measure (2.3) and hyperparameters π,
is equivalent with assuming the same model with transformed hyperparameters πg, for the
transformed observations g(X)(n) := (g(X1), . . . , g(Xn)). As a by-product, the same posterior
inference can be drawn conditionally on both the original and the transformed set of observa-
tions, as the conditional distribution of the random density f̃πg , given g(X)(n), coincides with
the conditional distribution of |det(C)|−1 f̃π ◦ g−1, given X(n). Proposition 5 thus provides a
formal justification for the procedure of transforming data, e.g. via standardisation or normal-
isation, often adopted to achieve numerical efficiency: as long as the prior specification of the
hyperparameters of a DPM-G model respects the condition of Proposition 5, transforming the
data does not affect posterior inference.
The result in Proposition 5 is surely not surprising (see Lijoi and Prünster, 2009), nonetheless
it provides an explicit and useful characterization of the hyperparameters πg for the flexible
class of DPM-G models considered here. In general, the elicitation of an honest prior, thus in-
dependent of the data, for the hyperparameters π of the base measure (2.3) of a DPM model
is a difficult task. A popular practice, therefore, consists in setting the hyperparameters equal
to some empirical estimates π̂(X(n)), by applying the so-called empirical Bayes approach (see,
e.g., Lehmann and Casella, 2006). Recent investigations (Petrone et al., 2014; Donnet et al., 2018)
provide a theoretical justification of this hybrid procedure by shedding light on its asymptotic
properties. The next example shows that this procedure satisfies the assumptions of Proposi-
tion 5 and, thus, guarantees that posterior Bayesian inference, under an empirical Bayes ap-
proach, is not affected by affine transformations to the data.
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Example 1 (Empirical Bayes approach). A commonly used empirical Bayes approach for speci-
fying the hyperparameters π of a DPM-G model, defined as in (2.2) and (2.3), consists in setting

m0 = X, B0 =
1

γ1
S2

X, S0 =
ν0 − d− 1

γ2
S2

X, (2.4)

where X = ∑n
i=1 Xi/n and S2

X = ∑n
i=1(Xi − X)(Xi − X)ᵀ/(n − 1) are the sample mean vector

and the sample covariance matrix, respectively, and γ1, γ2 > 0, ν0 > d + 1. This specification
for the hyperparameters π has a straightforward interpretation. Namely, the parameter m0,
mean of the prior guess distribution of µ, can be interpreted as the overall mean value and, in
absence of available prior information, set equal to the observed sample mean. Similarly, the
parameter B0, covariance matrix of the prior guess distribution of µ, is set equal to a penalised
version of the sample covariance matrix S2

X, where γ1 takes on the interpretation of the size of
the ideal prior sample upon which the prior guess on the distribution of µ is based. Similarly,
the hyperparameter S0 is set equal to a penalised version of the sample covariance matrix S2

X,
choice that corresponds to the prior guess that the covariance matrix of each component of
the mixture coincides with a rescaled version of the sample covariance matrix. Specifically,
S0 = S2

X(ν0 − d − 1)/γ2 follows by setting E[Σ] = S2
X/γ2 and observing that, by standard

properties of the inverse-Wishart distribution, E[Σ] = S0/(ν0 − d− 1). Finally the parameter
ν0 takes on the interpretation of the size of an ideal prior sample upon which the prior guess
S0 is based. Next we focus on the setting of the hyperparameters πg, given the transformed
observations g(X)(n). The same empirical Bayes procedure adopted in (2.4) leads to

m(g)
0 = g(X) = CX + b, B(g)

0 =
1

γ1
S2

g(X), S(g)
0 =

ν0 − d− 1
γ2

S2
g(X).

Observing that S2
g(X) = CS2

XCᵀ and setting ν
(g)
0 = ν0 shows that the described empirical Bayes

procedure corresponds to πg = (Cm0 + b, CB0Cᵀ, ν0, CS0Cᵀ) and, thus, by Proposition 5,
f̃πg = |det(C)|−1 f̃π ◦ g−1.

2.3 An introduction to posterior consistency

In the context of Bayesian nonparametric mixture models, due to the infinite dimensional na-
ture of the mixing measure, the study of asymptotic properties, as the sample size grows up
to ∞, is surely not trivial. Adopting the usual frequentist approach in the large n regime, here
we work ‘as if’ the observations X(n) were generated from a true and fixed generating process
(see for instance Rousseau (2016)). We also assume that this data generating process admits a
density function with respect to the Lebesgue measure, denoted by f ∗, where f ∗ ∈ F , with F
space of all density function with suport Rd. We already introduced the notation Π to denote
the prior distribution of the random density f̃ , induced on the space F , by a DPM model de-
fined as in (2.2) with base measure (2.3). Moreover, we denote by Π(· | X(n)) the posterior distri-
bution of the random density f̃ , given a set of observations X(n), and we focus on its behaviour
when n → ∞. We consider as metrics on F the Hellinger one, dH( f , g) = [

∫
(
√

f −√g)2]1/2,
or the L1 metric, dL1 =

∫
| f − g |. Note that they induce an equivalent topology on the space

F , given by the fact that d2
H( f , g) ≤ dL1( f , g) ≤ 2dH( f , g). Moreover, we denote by ‖ · ‖ the

Euclidean norm on Rd.
By posterior consistency of Π(· | X(n)) at the atom f ∗ of F we mean that the posterior distri-
bution Π(· | X(n)), when n goes to ∞, accumulates probability mass in a neighborhood of f ∗,
then for any ε > 0 we have
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Π
(
{ f : ρ( f , f ∗) > ε} | X(n)

)
→ 0

in Fn
0 -probability, where Fn

0 is the n-product measure and F0 is the probability measure asso-
ciated to f ∗, with ρ being the Hellinger metric or, equivalently, the L1 metric. To study the
behavior of the posterior distribution Π(· | X(n)), one has first to establish some conditions
on the support F . We require that F is dense in the neighborhood of f ∗, condition needed
to study limit situations. About the density of the space F , we consider the Kullback-Leibler
divergence (KL, also known as relative entropy) to characterize the support. An useful inter-
pretation of the Kullback-Leibler divergence between two functions, KL(g || f ) = dKL( f , g),
can be borrowed by the information theory, where this divergence is used to measure the in-
formation gained by using f instead of g. We say that Π satisfies the KL property at the point
f ∗ if

Π
({

f :
∫

f log( f / f ∗) ≤ η

})
> 0 ∀η > 0. (2.5)

This property, in the context of DPM-G models, was first studied by Wu and Ghosal (2008), in
the case of scalar covariance matrix, i.e. Σ = σ2 I, for σ2 ∈ R+ and I identity matrix. In a recent
paper, Canale and De Blasi (2017) studied the non-scalar case, where Σ is defined on the space
SΣ of semidefinite positive matrices.

Lemma 2. (Lemma 1 in Canale and De Blasi, 2017). Let Π be the prior on F induced by (2.2) with
base measure (2.3), and f ∗ ∈ F , true generating density of X(n), satisfies the conditions

A1. 0 < f ∗(x) < M, for some constant M and for all x ∈ Rd,

A2.
∣∣∫ f ∗(x) log f ∗(x)dx

∣∣ < ∞,

A3. ∃ δ > 0 such that
∫

f ∗(x) log ( f ∗(x)/ϕδ(x))dx < ∞, where
ϕδ(x) = inf{t : ‖t−x‖<δ} f ∗(t),

A4. for some η > 0,
∫
‖x‖2(1+η) f ∗(x)dx < ∞.

Then Π satisfies the Kullback-Leibler property (2.5).

The previous assumptions, A1–A4, require some regularity for the true data-generating den-
sity f ∗. Assumption A1 requires the density f ∗ to have full support. The second assumption
requires the finiteness of the entropy, thus allowing the computation of the relative entropy.
Assumption A3 refers to the local regularity of f ∗, in terms of finite local relative entropy with
respect to the local infimum. Finally, Assumption A4 requires the tails of f ∗ to be thin enough
for some moment of order strictly larger than two to exist. We refer to Canale and De Blasi
(2017) for a proof of Lemma 2.
Next we introduce some consistency results for DPM-G models which will represent the main
ingredients for our study of the asymptotic robustness of the same class of models in the next
section. While several authors considered the problem from a location-scale DPM models, we
refer to the main results in the paper of Canale and De Blasi (2017), where they introduced a
theorem with relaxed assumptions on the base measure specification. Let λ1(Σ

−1), . . . , λd(Σ
−1)

be the sequence of eigenvalues of Σ−1, in increasing order. Henceforth we write f (x) . g(x) to
indicate that the inequality f (x) ≤ cg(x) holds for some constant c and for any x.

Theorem 6. (Theorem 2 in Canale and De Blasi, 2017). Let f ∗ ∈ F , true generating density of
X(n), satisfy the conditions of Lemma 2, and model X(n) by means of a DPM-G model defined in (2.2).
Suppose that the base measure P0 has the product form P0(dµ, dΣ) = P0,1(dµ)P0,2(dΣ) and that P0,1
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and P0,2 satisfy the following conditions: for some positive constants c1, c2, c3, r > (d − 1)/2 and
κ > d(d− 1),

B1. P0,1(‖µ‖ > x) . x−2(r+1),

B2. P0,2(λd(Σ
−1) > x) . exp {−c1xc2},

B3. P0,2
(
λ1(Σ

−1) < 1
x

)
. x−c3 ,

B4. P0,2

(
λd(Σ

−1)

λ1(Σ
−1)

> x
)
. x−κ,

all for any sufficiently large x. Then the posterior distribution Π(·|X(n)) is consistent at f ∗, that is, for
every ε > 0,

Π
(

f : ρ( f , f ∗) < ε | X(n)
)
−→ 1

as n→ ∞.

Conditions B1–B4 refer to the shape of the base measure. The first condition is about the tails
of the location component distribution, and their weights. The second condition describes the
behavior of the largest eigenvalue of Σ−1, thus requiring that the most dispersed component
in the eigenvalue decomposition latent space does not explode. Condition B3 refers to the less
dispersed component and its decreasing speed. The last condition B4 describes the ratio be-
tween the biggest and the smallest eigenvalues, preventing situations where the most disperse
dimension is completely dominating the less dispersed one. We refer to Canale and De Blasi
(2017) for details regarding the proof.
Theorem 6 proves that location-scale DPM-G models, under the described regularity conditions
on the base measure, are consistent. In particular, the DPM-G model, defined as in (2.2) with
base measure (2.3), satisfies the requirements of Theorem 6.

Lemma 3. Conditions B1–B4 of Theorem 6 are satisfied by the multivariate normal / inverse-Wishart
base measure (2.3) with ν0 > (d + 1)(2d− 3).

That is, if f ∗ ∈ F is the true generating density of X(n), the previous results guarantee that, for
n→ ∞, the posterior distribution accumulates probability mass in a small neighbourhod of f ∗.
Although the proof of Lemma 3 can be found in Canale and De Blasi (2017) (see Corollary 1,
relying, in turn, on results by Shen et al. (2013)), we provide it here for the sake of completeness
and in order to account for the slightly different prior specification considered in this thesis.

Proof. The proof is based on some results of Shen et al. (2013) combined with Canale and De
Blasi (2017). We check, point-by-point, that the conditions of Theorem 6 are satisfied.

B1. Since µ ∼ Nd(m0, B0), then ‖µ‖2 ∼ χ2
d(δ) where d is the dimension of µ and δ = ‖m0‖ is

the non-centrality parameter of the chi-squared distribution. Then, for sufficiently large
x,

P0,1
(
‖µ‖2 > x

)
≤
( x

d

) d
2

exp
{

d− x
2

}
. x−2(r+1),

which holds for r > (d− 1)/2.

B2. We know that Σ ∼ IW(ν0, S0) and we start by considering the case corresponding to S0 =
Id, where Id denotes the d-dimensional identity matrix. It is known that Tr(Σ−1) ∼ χ2

ν0d.
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Thus, for sufficiently large x,

P0,2

(
λd(Σ

−1) > x
)
≤ P0,2

(
Tr(Σ−1) > x

)
≤
(

x
ν0d

) ν0d
2

exp
{

ν0d− x
2

}
. exp {−c1xc2} ,

for some positive constants c1 and c2. This result can be easily generalised to the case
S0 6= Id since IW(dΣ; ν0, S0) = S−1

0 IW(dΣ; ν0, Id).

B3. We know that Σ ∼ IW(ν0, S0) and we start by supposing that S0 = Id. The joint distribu-
tion of the eigenvalues λ

(
Σ−1) is known to be equal to

fλ(x1, . . . , xd) = cd,ν0 exp

{
−

d

∑
j=1

xj

2

}
d

∏
j=1

x
(ν0−d+1)

2
j ∏

j<k
(xk − xj),

for some normalising constant cd,ν0 , if (x1, . . . , xd) ∈ (0, ∞)d is such that x1 ≤ · · · ≤ xd,
and equal to 0 otherwise. It is easy to verify that, on the support of fλ,

∏
j<k

(xk − xj) ≤∏
j<k

xk =
d

∏
k=2

xk−1
k .

The density function of λ1(Σ
−1) then becomes

fλ1(x1) =
∫
· · ·

∫
fλ(x1, . . . , xd)dx2 · · ·dxd

≤ cd,ν0 x
ν0−d+1

2
1 e−

x1
2

d

∏
k=2

∞∫
0

x
ν0−d+1

2 +k−1
k e−

xk
2 dxk

= c′d,ν0
x

ν0−d+1
2

1 exp
{
− x1

2

}
,

for some new normalising constant c′d,ν0
. Then for any x > 0 we have

P0,2

(
λ1(Σ

−1) <
1
x

)
≤ c′d,ν0

∫ 1
x

0
x

ν0−d+1
2

1 dx1 . x−c3x

for some constant c3 and sufficiently large x. Again, this result can be generalised to the
case S0 6= Id since IW(dΣ; ν0, S0) = S−1

0 IW(dΣ; ν0, Id).

B4. We know that Σ ∼ IW(ν0, S0) and we start by considering the case corresponding to S0 =
Id. We define Z(Σ−1) = λd(Σ

−1)/λ1(Σ
−1) and the function q(λ(Σ−1)) = (λ1(Σ

−1), . . . ,
λd−1(Σ

−1), Z(Σ−1)). Let Jq−1 denote the Jacobian of the inverse of the function q, and
observe that

fλ1,...,λd−1,Z(x1, . . . , xd−1, z) = |Jq−1 | fλ(x1, . . . , xd−1, x1z).
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Then, by marginalising with respect to the first d− 1 components, we obtain

fZ(z) =
∫
· · ·

∫
|Jq−1 | fλ(x1, . . . , xd−1, x1z)dx1 · · ·dxd−1

=
∫
· · ·

∫
cd,ν0 exp

{
−

d−1

∑
j=1

xj

2
− x1z

2

}
d−1

∏
j=1

x
ν0+1−d

2
j (x1z)

ν0+1−d
2

× ∏
j<k≤d−1

(xk − xj)
d−1

∏
j=1

(x1z− xj)x1dx1 · · ·dxd−1

≤
∫
· · ·

∫
cd,ν0 exp

{
−

d−1

∑
j=1

xj

2
− x1z

2

}
d−1

∏
j=1

x
ν0+1−d

2
j (x1z)

ν0+1−d
2

d−1

∏
k=2

xk−1
k

d−1

∏
j=1

(x1z)x1dx1 · · ·dxd−1

= c′d,ν0
z(ν0+d−1)/2

∫
exp

{
−x1

(
z + 1

2

)}
xν0+1

1 dx1

= c′d,ν0
(ν0 + 1)!

(
2

z + 1

)ν0+2

z(ν0+d−1)/2

= c′′d,ν0

z(ν0+d−1)/2

(z + 1)ν0+2

≤ c′′d,ν0
z−(ν0−d+5)/2,

for some constants cd,ν0 , c′d,ν0
and c′′d,ν0

. Thus we have

P0,2 (Z > x) =
∫ ∞

x
fZ(z)dz ≤ c′′d,ν0

∫ ∞

x
z−(ν0−d+5)/2dz . x−κ,

for sufficiently large x, where κ = (ν0 − d + 3)/2 > d(d + 1) by the assumption that
ν0 > (d + 1)(2d− 3).

2.4 Large n asymptotic robustness of DPM-G models

We are interested in the relation between a DPM-G specified conditionally to the data X(n)

and a DPM-G conditionally to the transformed data g(X)(n), with g(x) = Cx + b invertible
affine transformation. Let Π be the prior distribution of the random density f̃ , induced on the
space F , by a DPM model defined as in (2.2) with base measure (2.3). Moreover, we denote
by Π(· | X(n)) the posterior distribution given a set of observations X(n) and by Π(· | g(X)(n))
the posterior distribution given a transformed set of observations g(X)(n). Finally, we use the
notation Π2(· | X(n)) to refer to their joint posterior distribution on F ×F .
Let f ∗g := |det(C)|−1 f ∗ ◦ g−1 be the true generating density corresponding to the transformed
data. First we need to show that the KL property, introduced in (2.5), holds also for the true
generating density of the transformed data. Next lemma shows that if f ∗ satisfies conditions
A1–A4 of Lemma 2, the same are satisfied also by so f ∗g , for any invertible affine transformation
g.

Lemma 4. If conditions A1–A4 of Lemma 2 are satisfied by f ∗, then for any invertible affine transfor-
mation g(x) = Cx + b, they are also satisfied by f ∗g .
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Proof. We assume that f ∗ satisfies conditions A1–A4 of Theorem 7 and check that the same
holds for f ∗g .

A1. Assume that 0 < f ∗(x) < M for every x ∈ Rd and some M > 0. Then, for every x ∈ Rd,
we have f ∗g (x) = |det(C)|−1 f ∗(g−1(x)) which implies

0 < f ∗g (x) < M′ = |det(C)|−1M.

A2. Assume that f ∗ is such that
∣∣∫ f ∗(x) log f ∗(x)dx

∣∣ < ∞. Then, we have∣∣∣∣∫ f ∗g (x) log f ∗g (x)dx
∣∣∣∣

=

∣∣∣∣∫ |det(C)|−1 f ∗(g−1(x)) log
(
|det(C)|−1 f ∗(g−1(x))

)
dx
∣∣∣∣

= |det(C)|−1
∣∣∣∣∫ f ∗(g−1(x)) log

(
|det(C)|−1

)
dx

+
∫

f ∗(g−1(x)) log
(

f ∗(g−1(x))
)

dx
∣∣∣∣

=

∣∣∣∣∫ f ∗(y) log
(
|det(C)|−1

)
dy +

∫
f ∗(y) log ( f ∗(y))dy

∣∣∣∣
=

∣∣∣∣log
(
|det(C)|−1

)
+
∫

f ∗(y) log ( f ∗(y))dy
∣∣∣∣

≤
∣∣∣log

(
|det(C)|−1

)∣∣∣+ ∣∣∣∣∫ f ∗(y) log ( f ∗(y))dy
∣∣∣∣ < ∞.

A3. Assume that f ∗ satisfies A3 with some δ′. Let δ = |det(C)|−1δ′ and observe that since g
is invertible

ϕ
(g)
δ (g(y)) = inf

{t : ‖t−g(y)‖<δ}
f ∗g (t) = inf

{s : ‖g(s)−g(y)‖<δ}
f ∗g (g(s))

= inf
{s : ‖s−y‖<δ′}

f ∗(s)|det(C)|−1 = ϕδ′(y)|det(C)|−1.

Then we have that

∫
f ∗g (x) log

(
f ∗g (x)

ϕ
(g)
δ (x)

)
dx =

∫
f ∗g (g(y)) log

(
f ∗g (g(y))

ϕ
(g)
δ (g(y))

)
|det(C)|dy

=
∫

f ∗(y) log
(
|det(C)|−1 f ∗(y)
|det(C)|−1ϕδ′(y)

)
dy

=
∫

f ∗(y) log
(

f ∗(y)
ϕδ′(y)

)
dy < ∞

where the last inequality holds by Assumption A3 on f ∗ with δ′. This finally shows that
f ∗g satisfies Assumption A3 with δ.
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A4. Observe that∫
‖x‖2(1+η) f ∗g (x)dx =

∫
‖g(y)‖2(1+η) f ∗g (g(y))|det(C)|dy

=
∫
‖g(y)‖2(1+η) f ∗(y)dy

≤
∫

22(1+η)−1
(
‖Cy‖2(1+η) + ‖b‖2(1+η)

)
f ∗(y)dy,

where the last inequality follows by combining triangular and Jensen’s inequalities. Thus
we can write∫

‖x‖2(1+η) f ∗g (x)dx

≤ 22(1+η)−1
(
|det(C)|2(1+η)

∫
‖y‖2(1+η) f ∗(y)dy + ‖b‖2(1+η)

)
< ∞,

where the last inequality follows by Assumption A4 on f ∗.

The next result shows that, under mild conditions on the true generating distribution, the pos-
terior joint distribution accumulates probability mass in the set

{( f1, f2) ∈ F ×F s.t. f1 = |det(C)| f2 ◦ g},

when n goes to ∞. Henceforth, we will say that a DPM-G model (2.2) with base measure (2.3)
is asymptotically robust to affine transformations of the data. Figure 2.1 displays an abstract
representation of the region of F ×F where the posterior joint distribution accumulates its
probability mass, for large values of n.

Theorem 7. Let f ∗ ∈ F , true generating density of X(n), satisfy the conditions

A1. 0 < f ∗(x) < M, for some constant M and for all x ∈ Rd,

A2.
∣∣∫ f ∗(x) log f ∗(x)dx

∣∣ < ∞,

A3. ∃ δ > 0 such that
∫

f ∗(x) log ( f ∗(x)/ϕδ(x))dx < ∞, where
ϕδ(x) = inf{t : ‖t−x‖<δ} f ∗(t),

A4. for some η > 0,
∫
‖x‖2(1+η) f ∗(x)dx < ∞.

Let g : Rd −→ Rd be an invertible affine transformation and Π2(· | X(n)) be the joint posterior
distribution induced by a DPM-G as (2.1) with base measure (2.3) where ν0 > (d + 1)(2d− 3). Then,
for any ε > 0,

Π2(( f1, f2) : ρ( f1, |det(C)| f2 ◦ g) < ε | X(n)) −→ 1

as n→ ∞.

Assumptions A1–A4 in Theorem 7 are the same of Lemma 2 and their interpretation was al-
ready discussed after Lemma 2. The proof of Theorem 7 follows by combining Theorem 6 with
Lemma 3 and Lemma 4.
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F

F

Aε = { f1, f2 : ρ( f1, |det(C)| f2 ◦ g) < ε}

Π2(Aε|X(n))→ 1

f1

|det(C
)|f2 ◦

g

f 1
=
|det(C

)| f 2
◦ g

FIGURE 2.1: Abstract graphical representation of the set in F ×F where the
posterior joint distribution accumulates its probability mass. In evidence a point
on F ×F . Filled area: the subset of F ×F where ρ( f1, | det(C) | f2 ◦ g) < ε, for

a fixed ε > 0.

Proof of Theorem 7. By combining Lemma 3, Lemma 4 and Theorem 6, we have that for any
ε > 0,

Π
(

f : ρ( f , f ∗) < ε/2 | X(n)
)
−→ 1,

Π
(

f : ρ( f , f ∗g ) < ε/2 | g(X)(n)
)
−→ 1,

as n → ∞. We notice that the distance ρ is invariant with respect to change of variables and
thus ρ(|det(C)| f2 ◦ g, f ∗) = ρ( f2, f ∗g ). This, combined with the triangular inequality, leads to

Π2(( f1, f2) : ρ( f1, |det(C)| f2 ◦ g) < ε | X(n))

≥ Π2

(
( f1, f2) : ρ( f1, f ∗) < ε/2, ρ( f2, f ∗g ) < ε/2 | X(n)

)
≥ Π2

(
( f1, f2) : ρ( f1, f ∗) < ε/2 | X(n)

)
+ Π2

(
( f1, f2) : ρ( f2, f ∗g ) < ε/2 | X(n)

)
− 1

= Π
(

f1 : ρ( f1, f ∗) < ε/2 | X(n)
)
+ Π

(
f2 : ρ( f2, f ∗g ) < ε/2 | g(X)(n)

)
− 1

−→ 1 + 1− 1 = 1,

as n→ ∞. As a result, for n→ ∞,

Π2(( f1, f2) : ρ( f1, |det(C)| f2 ◦ g) < ε | X(n)) −→ 1.
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2.5 Advances in partition estimation

A DPM model defined as in (2.2) implicitly defines a random clustering of the data, with two
observations Xi and Xj belonging to the same cluster if and only if the corresponding parame-
ters θi and θj coincide. In recent years, particular attention has been dedicated to methods for
defining point estimators in the space of partitions, given the output of a Markov chain Monte
Carlo samplers (Dahl, 2006; Wade and Ghahramani, 2018; Rastelli and Friel, 2018). In this sec-
tion we present the proposal of Wade and Ghahramani (2018) which will be exploited in the
next sections.
Dealing with the estimation of a partition is a challenging problem: given a set X(n), of n obser-
vations there are {

n
k

}
=

1
k!

k

∑
j=0

(−1)j
(

k
j

)
(k− j)n

different ways to partition a set of X(n) into k blocks, where {n
k} denotes a Stirling number of

the second kind. Considering all the possible values for k ∈ {1, . . . , n}, there are

Bn =
n

∑
k=1

{
n
k

}
different ways to partition X(n). Even for a small sample size n, the number Bn can get so large
to make an exhaustive exploration of the space of all partitions an impossible task.
Let ψn be the random partition of X(n) or, equivalently, a random partition of Nn = {1, . . . , n}
(see Section 1.2), induced by a DPM model, and p(ψn | X(n)) be its posterior distribution.
Each time a realization from the posterior distribution of a DPM model is generated we obtain,
as a by-product, also a realization ψn from its posterior distribution. Following Wade and
Ghahramani (2018), we look for a point estimate of the partition which can be considered, in
some sense, representative of the posterior distribution. From a decision theory point of view,
one can consider a loss function L(ψ∗n, ψ̂n) which assesses the cost of estimating with ψ̂n an
ideal true partition ψ∗n. Given that the true partition ψ∗n is not available, we can average over
all possible true partitions and consider the estimator

ψn = arg min
ψ̂n

E
[

L(ψn, ψ̂n) | X(n)
]
= arg min

ψ̂n

∑
ψn

L(ψn, ψ̂n)p(ψn | X(n)). (2.6)

A first simple choice for the loss function in equation (2.6) is the 0− 1 loss function, defined as
L0−1(ψn, ψ̂n) = 1[ψn 6=ψ̂n]

. Solving the problem described in equation (2.6) with L0−1 is equiva-
lent to estimate the posterior mode of the partition probability distribution, that is

ψn = arg min
ψ̂n

E
[

L0−1(ψn, ψ̂n) | X(n)
]
= arg max

ψ̂n

p(ψ̂n | X(n)).

The 0− 1 loss function is very simplistic as all the partitions which are different from the true
partition are penalized in the same way. An important contribution in the study of more gen-
eral loss functions was offered by Binder (1978). In the same paper Binder proposed the defi-
nition of a convenient loss function, hereafter named Binder loss function. Let k and k̂ be the
number of blocks in the partitions ψn and ψ̂n, respectively. Moreover, we denote by nij the
count of the observations which belong to the i-th block of ψn and to the j-th block of ψ̂n. The
Binder loss function is then defined as
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LB(ψn, ψ̂n) = ∑
i<j

s11[ψi=ψj]1[ψ̂i 6=ψ̂j]
+ s21[ψi 6=ψj]1[ψ̂i=ψ̂j]

,

where s1 and s2 are penalizing weights. Setting s1 = s2 = 1 the Binder loss function becomes

LB(ψn, ψ̂n) =
1
2

[
k

∑
i=1

n2
i· +

k̂

∑
i=1

n2
·j − 2

k

∑
i=1

k̂

∑
i=1

n2
ij

]
,

with ni· = ∑k̂
j=1 nij and n·j = ∑k

i=1 nij. As investigated in Arbel et al. (2018a) with a simula-
tion study, the partition estimated via Binder loss function tends to overestimate the number
of blocks, when a subspace of the partition space larger than the one explored during the sim-
ulation is considered. This behaviour can be appreciated, for example, when the greedy search
procedure of Wade and Ghahramani (2018), with the Binder loss function, is used.
Wade and Ghahramani (2018) propose to use a different loss function, based on the Variation of
Information (VI), a function of the information, expressed in terms of entropy of the partitions
ψn and ψ̂n, and the information shared by ψn and ψ̂n. The VI loss function was first introduced
by in a paper of Meilă (2007), defined as

LVI(ψn, ψ̂n) =
k

∑
i=1

ni·
n

log2

(ni·
n

)
+

k̂

∑
j=1

n·j
n

log2

(
n·j
n

)
− 2

k

∑
i=1

k̂

∑
j=1

nij

n
log2

(
nij

n

)
.

In the following sections we use the VI loss function and the relative estimated partition to
assess a DPM-G model under affine transformations.

2.6 Simulation study

We performed a simulation study to provide empirical support to our results on the large n
asymptotic robustness of a DPM-G model specified as in (2.2) with base measure (2.3), under
affine transformations of the data. That is, given different affine transformations, we studied if
the estimated densities and the related partitions become similar when the sample size grows,
keeping the same specification for the prior model. We considered 15 different simulation
scenarios. Specifically, we considered three different sample sizes, namely n = 100, n = 300
and n = 1 000. Then, for each sample size, we generated a sample from a mixture of two
Gaussian components, one being highly correlated and the other uncorrelated, defined as

X(n) ∼ 1
2

N2

([
−2
−2

]
,
[

1 0.85
0.85 1

])
+

1
2

N2

([
2
2

]
,
[

1 0
0 1

])
. (2.7)

In order to test the robustness of the model under affine transformations of the data, we com-
pressed or stretched the generated datasets by using five different constants, namely c = 1/5,
c = 1/2, c = 1, c = 2 and c = 5. For each constant, we multiplied the simulated data by
c, thus obtaining a transformed dataset X(n)

c := cX(n). For each simulation scenario, namely
c ∈ {1/5, 1/2, 1, 2, 5}, n ∈ {100, 300, 1 000}, we generated 100 replicates. We then fitted a DPM-
G model, specified as in (2.2) and (2.3), to each one of the 1 500 simulated datasets. In order to
enhance the flexibility of the model, we completed its specification by setting a normal/inverse-
Wishart prior distribution for the hyperparameters (m0, B0) of the base measure (2.3). Namely,
we set B0 ∼ IW(4, diag(15)) and m0 | B0 ∼ N(0, B0), specification chosen so that E[µ] = 0
and to guarantee a prior guess on the location component µ flat enough to cover the support
of the non-transformed data. As for the scale component of the base measure (2.3), we set
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(ν0, S0) = (4, diag(1)). Finally, the mass parameter ϑ of the Dirichlet process was set equal to
1. See Appendix C for details on conjugate distributions.
Realisations of the mean of the posterior distribution were obtained by means of a Gibbs sam-
pler relying on a Blackwell–McQueen Pólya urn scheme (see Müller et al., 1996), implemented
in the AFFINEpack R package1. See Appendix B for details on the marginal approach for DPM
models. For each replicate, posterior inference was drawn based on 5 000 iterations, obtained
after discarding the first 2 500. Convergence of the chains was assessed by visually investi-
gating traceplots referring to randomly selected replicates, which did not provide indication
against it.
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FIGURE 2.2: Simulation study. Based on a single replicate of the samples X(100),
X(300) and X(1000), scatter plot of the data (grey dots), contour plot of the estimated
densities based on a DPM-G model (red curves) and contour plot for the expected
prior density (blue filled curves). Left to right: rescaling constant c = 1/5, c =
1/2, c = 1, c = 2, c = 5. Top to bottom: sample size n = 100, n = 300, n = 1 000.

Figure 2.2 shows, for every n ∈ {100, 300, 1 000} and c ∈ {1/5, 1/2, 1, 2, 5}, a contour plot of
the estimated posterior densities. The difference between estimated densities, across different
values of c, is apparent when n = 100, with the two extreme cases, namely c = 1/5 and c = 5,
suggesting a different number of modes in the estimated density. For larger sample sizes, this
difference is less evident and, when n = 1 000, the contour plots are hardly distinguishable.
These qualitative observations are in agreement with the large n asymptotic results of The-
orem 7. The plots of Figure 2.2 refer to a single realisation of the samples X(100), X(300) and
X(1000) considered in the simulation study, although qualitatively similar results can be found
in almost any replicate.
The findings drawn from a visual inspection of Figure 2.2 were confirmed by assessing the
distance between estimated posterior densities. Specifically, for any considered sample size n
and for any pair of values c1 and c2 taken by the constant c, we approximately evaluated the L1

distance between the suitably rescaled estimated posterior densities obtained conditionally on

1The package is available at https://github.com/rcorradin/AFFINEpack and can be installed via devtools. For
reproducibility, the code is available at https://github.com/rcorradin/Affine.

https://github.com/rcorradin/AFFINEpack
https://github.com/rcorradin/AFFINEpack
https://github.com/rcorradin/Affine
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X(n)
c1 and on X(n)

c2 . The results of such analysis are shown in Figure 2.3 and indicate that as the
sample size grows, the difference in terms of L1 distance strictly decreases.
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FIGURE 2.3: Simulation study. L1 distance between suitably rescaled estimated
densities after data transformations for different constants c1 (X axis) and c2 (Y
axis), averaged over 100 replications. Left to right: sample size n = 100, n = 300

and n = 1000.

The posterior distribution of the random density induced by a DPM-G model provides inter-
esting insight also on the clustering structure of the data. The second goal of the simulation
study, thus, consisted in investigating the impact of the scaling factor c on the estimated num-
ber of groups in the partition induced on the data. To this end, for each considered n and c,
we estimated K̂(VI)

n , the number of groups in the optimal partition estimated using a procedure
introduced by Wade and Ghahramani, 2018 and based on the variation of information loss
function. The average values for this quantity, over 100 replicates, are reported in Table 2.1.
There appears to be a clear trend suggesting that a larger scaling constant c leads to a larger

c = 1/5 c = 1/2 c = 1 c = 2 c = 5
n = 100 1.81 2.04 2.84 5.96 10.52
n = 300 2.00 2.03 2.20 2.82 5.18
n = 1000 2.00 2.00 2.04 2.05 2.12

TABLE 2.1: Simulation study. Averages over 100 replicates for K̂(VI)
n , the number

of clusters of the estimated partition estimated by means of Wade and Ghahra-
mani (2018)’s variation of information method. Left to right: rescaling constant
c = 1/5, c = 1/2, c = 1, c = 2, c = 5. Top to bottom: sample size n = 100,

n = 300, n = 1 000.

K̂(VI)
n : this finding is consistent with the fact that, if the data are stretched while the prior spec-

ification is kept unchanged, then we expect the estimated posterior density to need a larger
number of Gaussian components to cover the support of the sample. For the purpose of this
simulation study the main quantity of interest is the ratio between the estimated number of
groups under any two distinct values c1 and c2 for the scaling constant c, that is K̂(VI)

n,c1 /K̂(VI)
n,c2 .

The results presented in Table 2.1 clearly indicate that, as the sample size n becomes large, such
ratios tend to approach 1. This suggests that the large n robustness property of the DPM-G
model nicely translates to an equivalent notion of robustness in terms of the estimated number
of groups K̂(VI)

n in the data.
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2.7 Application to the NGC 2419 globular cluster data

In this section we address an interesting astronomical classification problem, with data con-
sisting of multiviariate observations with incommensurable components, and for which the ro-
bustness of DPM-G models, investigated in Sections 2.4 and 2.6 turns out to be useful. Specifi-
cally, we consider a dataset consisting of measurements on a set of 139 stars, possibly belonging
to a globular cluster called NGC 2419 (see Ibata et al., 2011, for details on the globular cluster
NGC 2419). Globular clusters are sets of stars orbiting some galactic center. The NGC 2419,
showed in Figure 2.4, is one of the furthest known globular clusters in the Milky Way. For

FIGURE 2.4: An image of the remote Milky Way globular cluster NGC 2419
(about 300 000 light years away from the solar system). Picture by Bob Franke,

with permission (www.bf-astro.com).

each star we observe a four-dimensional vector (Y1, Y2, V, [Fe/H]), where (Y1, Y2) is a two-
dimensional projection on the plane of the sky of the position of the star, V is its line of sight
velocity and [Fe/H] its metallicity, a measure of the abundance of iron relative to hydrogen.
Out of these four components, only Y1 and Y2 are measured in the same physical unit, while
dimensional constants need to be specified in order to relate position, velocity and metallicity.
A key question arising with these data consists in identifying the stars that, among the 139 ob-
served, can be rightfully considered as belonging to NGC 2419: a correct classification would
be pivotal in the study of the globular cluster dynamics. Astronomers expect the large majority
of the observed stars to belong to the cluster: the remaining ones, called field stars or contami-
nants, are Milky Way stars, unrelated to the cluster, that happen to appear projected in the same
region of the plane of the sky. In general the contaminants have different kinematic and chemi-
cal properties with respect to the cluster members. Considering the nature of the problem, this
research question can be formalised as an unsupervised classification problem, the goal being
the identification of the stars which belong to the largest cluster, which can be interpreted as
the NGC 2419 globular cluster. Admittedly, the terms of such a classification problem are not
limited to the considered dataset but, on the contrary, are ubiquitous in astronomy and, more
in general, might arise in any field where data components are incommensurable.
We fitted the DPM-G model, specified as in (2.2) and with base measure (2.3), to the NGC 2419
dataset described in Section 1. The ultimate goal of our analysis consists in classifying, by the
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use of an opportune density estimation, stars as belonging to the NGC 2419 globular cluster
or as being contaminants: an accurate classification is crucial for the astronomers to study the
dynamics of the globular cluster. Since the large majority of the stars in the dataset is expected
to belong to the globular cluster, with only a few of them being contaminants, we will identify
the globular cluster as the largest group in the estimated partition of the dataset.
Prior to any analysis, data were standardized component by component, the legitimacy of
such procedure following from the robustness results of Theorem 7, then the estimated density
were transformed back to the original scale. Hyperprior distributions were specified for the
location parameter of the base measure (2.3) and on the DP mass parameter ϑ. Specifically,
B0 ∼ IW(6, diag(15)) and m0 | B0 ∼ N(0, B0), specification chosen to guarantee a prior guess
on the location component µ flat enough to cover the support of the data and centered at 0.
In addition, the precision parameter ϑ was given a gamma prior distribution with parameters
specified so to reflect the prior opinion of astronomers who would expect two distinct groups
of stars in the dataset. Let p̃ be distributed as a DP with mass parameter θ. Following Pitman
(2006), the expected number of unique values in a exchangeable sample of size n, distributed
according to p̃, is, a priori, equal to

E[Kn] =
n

∑
i

θ

i− 1 + θ
.

Here we assigned θ a hyperprior, specifically θ ∼ Gamma(aθ , bθ), and we set aθ = 1 and
bθ = 5.26, values chosen so that E[Kn] ' 2. Finally, as far as the scale component of the
base measure (2.3) is concerned, we set (ν0, S0) = (26, diag(21)), where the number of degrees
of freedom ν0 = 26 of the inverse-Wishart distribution was chosen to guarantee the condi-
tions of Theorem 7 and, in turn, the scale matrix S0 = diag(21) so that E[Σ] = diag(1). See
Appendix C for details on the choice of conjugate distributions. Realisations of the mean of
the posterior distribution were obtained by means of a Gibbs sampler relying on a Blackwell–
McQueen Pólya urn scheme2. See Appendix B for details on the marginal approach for DPM
models.
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FIGURE 2.5: Analysis of the sensitivity to the values taken by the parameter
α controlling the scale component in the base measure. Left plot: number of
clusters. Right plot: size of the largest cluster. Optimal partitions were estimated

by applying Wade and Ghahramani (2018)’s variation of information method.

2See footnote 1.
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A difficult task arising when specifying a DPM-G model refers to the choice of appropriate
values for the hyperparameters appearing in the base measure, as they might have an impact
on posterior estimates, both in terms of density and clustering. While it was possible to set hy-
perprior distributions for the parameters of the location component, preserving the asymptotic
result described in Theorem 7, the same could not be done for the scale component for which an
arbitrary specification was chosen. Here we investigate the effect of such choice by performing
a sensitivity analysis to evaluate the effect of the previous specification on the estimated clus-
tering of the data. To this end we modified the model specification so that the expected value
of the scale component, with ν0 = 26 and four dimensions, is equal to E[Σ] = diag(α). Then
we set a grid of values α ∈ {0.1, 0.2, 1, 5, 10} and studied the effect of α on the optimal partition
estimated by applying Wade and Ghahramani (2018)’s variation of information method, with a
focus on the number of clusters and the size of the largest one. The effect of α on the estimated
clustering shows a clear trend: as α grows, and thus the prior expectation of the scale compo-
nent takes a large value, the number of clusters gets small and the size of the largest cluster
increases; on the other hand, when α decreases, the model identifies more components with
the largest being less populated. While any sensible statistical analysis should take this sensi-
tivity into account, henceforth, for the sake of illustration, we set α = 1, which corresponds to
assuming S0 = diag(21).
In turn, posterior inference was drawn based on 20 000 iterations, after a burn-in period of 5 000
iterations. Convergence of the chains was assessed by visually investigating traceplots, which
did not provide indication against it.
Figure 2.6 displays contour plots for the six two-dimensional projections of the estimated poste-
rior density, while Figure 2.7 shows the scatter plots of the dataset with individual observations
coloured according to their membership in the partition estimated based on the variation of in-
formation loss function (Wade and Ghahramani, 2018) and labeled as main group (grey circles)
and other groups (coloured triangles). The estimated partition is composed of five groups. The
largest one, identified as the globular cluster, consists of 124 stars. The remaining 15 stars are
thus considered contaminants and are further divided into four groups, one composed by eight
stars (group A), one containing five stars (group B) and two singletons (groups C and D). A vi-
sual investigation of Figure 2.7 suggests that stars in group A differ from those in the globular
cluster in terms of metallicity and position, with the contaminants characterised by larger val-
ues for [Fe/H] and smaller values for Y1 and Y2. The stars in group B differ from the globular
cluster in terms of velocity and metallicity, with the contaminants showing larger values for V
and [Fe/H]). Finally, groups C and D are singletons, the first one being characterised by a high
metallicity and an extremely small value for the velocity, the second one showing large values
for both metallicity and location Y1.
Our unsupervised statistical clustering can be compared to the clustering of Ibata et al. (2011)
(described in their Figure 4) based on ad hoc physical considerations. Specifically, once the
best fitting physical model, in the class of either Newtonian or Modified Newtonian Dynamics
models, is detected, they use it in order to compute the average values of the physical variables
describing the stars. Stars are then assigned to the globular cluster based on a comparison
between their velocity and the average model velocity: those lying close enough are deemed to
belong to the cluster, while the others are considered as potential contaminants. For the latter,
the evidence of being contaminants is measured by evaluating how distant their metallicity is
from the average model one. Two classifications are then proposed: the first one assigns to
the globular cluster only the 118 stars for which the evidence seems strong, the second and
less conservative strategy classifies as belonging to the globular cluster a total of 130 stars.
Following this distinction and for the sake of simplicity, we summarise the results of Ibata et al.
(2011)’s analysis, by devising three groups of stars:
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FIGURE 2.6: NGC 2419 data. Contour plots of the bivariate marginal densities
estimated via DPM-G model.

- globular cluster: 118 stars deemed to belong to the globular cluster,

- likely globular cluster: 12 stars assigned to the globular cluster only when the less conser-
vative procedure is adopted,

- contaminants: 9 stars with strong evidence of being contaminants.

For the purpose of comparison, we report in Table 2.2 the confusion matrix of the groups ob-
tained via the DPG-G model against the groups detected by Ibata et al. All of the 124 stars
belonging to the largest group of the partition estimated based on the DPM-G model belong to
the groups identified as globular cluster or likely globular cluster by Ibata et al. At the same
time, out of the nine stars classified as contaminants by Ibata et al. , the approach based on
the DPM-G model assigns none to the globular cluster, three to group A, five stars to group
B, which is composed only by stars considered contaminants in Ibata et al. , and the star of
group C, which shows an extremely small value for the velocity variable. Finally, the group D
contains only one star, which is not consider a contaminant in Ibata et al.
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FIGURE 2.7: NGC 2419 data. Partition estimated via DPM-G models combined
with Wade and Ghahramani (2018)’s variation of information method. Five
groups are detected: the largest group (grey dots), group A (blue triangles), group

B (red triangles), group C (one orange triangle), group D (one green triangle).

2.8 Conclusions

The purpose of this chapter was to investigate the behaviour of the multivariate DPM-G model
when affine transformations are applied to the data. To this end we focused on the DPM-G
model with independent normal and inverse-Wishart specification for the base measure.
Our investigation covered both the finite sample size and the asymptotic setting. Specifically,
in Proposition 5, given any affine transformation g, an explicit model specification, depending
on g, was derived so to ensure coherence between posterior inferences carried out based on
a dataset or its transformation via g. We then considered a different setting where the spec-
ification of the model is assumed independent of the specific transformation g. In this case,
we formalised the notion of asymptotic robustness of a model under transformations of the
data and showed that mild conditions on the true data generating distributions are sufficient
to ensure that the DPM-G model features such a property. Specifically, Theorem 7 shows that
the posterior distributions obtained conditionally on a dataset or any affine transformation of
it, become more and more similar as the sample size grows. Inference on densities and, as
a by-product, on the clustering structure underlying the data, thus becomes increasingly less
dependent on the affine transformation applied to the data, as the sample size grows to infinity.



36 Chapter 2. Dirichlet process mixtures and affine transformation

DPM-G groups
largest A B C D

total 124 8 5 1 1

Ib
at

a
et

al
.

gr
ou

ps

globular cluster 118 114 4 0 0 0
likely globular cluster 12 10 1 0 0 1
contaminants 9 0 3 5 1 0

TABLE 2.2: NGC 2419 data. Comparison between the groups identified by Ibata
et al. (2011) and the groups estimated via DPM-G model.

As a special case, Theorem 7 implies that posterior inference based DPM-G models is asymp-
totically robust to data transformations commonly adopted for the sake of numerical efficiency,
such as standardisation or normalisation. This observation is particularly relevant when deal-
ing with the astronomical unsupervised clustering problem motivating this work.
Due to the lack of prior information on the dimensional constants relating different physical
units, we resorted to a standardisation of each component of the data and chose an arbitrary
model specification. Prior information was available in the form of the experts’ prior opinion on
the expected number of groups in the dataset and was used to elicit the hyperprior distribution
for ϑ, the total mass parameter of the DP.
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Chapter 3

Importance Conditional Sampler

A big computer, a complex algorithm
and a long time does not equal science.

Robert Gentleman, Statistician

Canale, A., Corradin, R., Nipoti, B.
Importance conditional sampler for Bayesian nonparametric mixtures.
In preparation.

Bayesian nonparametric mixtures have a central role in Bayesian nonparametric modelling.
The first proposal of such models was the Dirichlet process (DP, Ferguson, 1973, see Section 1.5)
mixture of Gaussian kernels, by Lo (1984), contribution which paved the way to the definition
of a wide variety of nonparametric mixture models. Specifically, in recent years, increasing
interest has been dedicated to the definition of mixture models based on nonparametric mixing
measures more general than the DP (e.g. Nieto-Barajas et al., 2004; Lijoi et al., 2005b; Lijoi et
al., 2005a; Lijoi et al., 2007c). Among these measures, the Pitman-Yor process (PY, Perman et
al., 1992; Pitman, 1995, see Section 1.6) stands out for conveniently combining mathematical
tractability, interpretability and modelling flexibility (see De Blasi et al., 2015).
Dealing with nonparametric mixtures involves the use of a random probability measure p̃
of infinite dimension (see Section 1.4 for details). Markov chain Monte Carlo (MCMC) sam-
pling methods represent the gold standard for carrying out posterior inference based on non-
parametric mixture models. Resorting to the terminology adopted by Papaspiliopoulos and
Roberts (2008), existing MCMC sampling methods can be classified into marginal and condi-
tional methods, the two classes being characterized by different ways to deal with the infinite-
dimensional random probability measure p̃. While the marginal approach relies on the pos-
sibility of analytically marginalizing p̃ out, conditional methods work with finite dimensional
summaries of p̃.
In this chapter we propose a novel algorithm for PY mixture models, named Importance Condi-
tional Sampler, with the goal of combining the appealing features of conditional and marginal
methods. Namely, we will show that, like existing marginal methods, the ICS i) has a simple
and interpretable sampling scheme, reminiscent of the Blackwell-McQueen Pólya urn (Black-
well and MacQueen, 1973), and ii) requires the update of a bounded number of random ele-
ments per iteration of the algorithm. At the same time, being a conditional method, the ICS
algorithm is such that iii) the step for allocating observations to different clusters is fully par-
allelizable, and iv) posterior uncertainty can be easily quantified. Our proposal exploits a con-
venient posterior representation of the PY process, proposed in Pitman (1996), combined with
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an importance sampling idea, similar in spirit to the augmentation step of Algorithm 8 of Neal
(2000). The name importance conditional sampler was thus chosen to reflect the conditional
nature of the scheme and to stress the innovative use of importance sampling in this frame-
work. The scheme characterizing the ICS can be naturally extended so to deal with partially
exchangeable data, its simplicity and efficiency being preserved. To this end, we use the ICS as
the building block of a new conditional algorithm for the class of GM-dependent DP mixture
models (GM-DDP, see Lijoi et al., 2014a; Lijoi et al., 2014b; Griffin et al., 2013), for partially
exchangeable data.
The rest of the chapter is ogranized as follows. In Section 3.1 we introduce the modelling frame-
work and the notation used in the rest of the chapter. Section 3.2 introduces to the state-of-the-
art of MCMC algorithms for PY mixture models and highlights some limitations of existing
methods. Motivated by these, in Section 3.3, we introduce and illustrate our proposal. In Sec-
tion 3.4 we provide the details of the implementation used for the competing algorithms that
were considered in the simulation study presented in Section 3.5. In Section 3.6 we describe
how the ICS scheme can be conveniently used to devise an efficient algorithm for GM-DDP
mixture models. Finally, Section 3.7 is dedicated to some concluding remarks.

3.1 Modelling framework

Let X(n) := (X1, . . . , Xn) be a sample of size n of observations defined on some probability
space (Ω, A ,P) and taking values inX. Let F denote the space of all probability distributions
on X, then a Bayesian nonparametric mixture model is a random distribution taking values in
F , defined as

f̃ (x) =
∫

Θ
k(x; θ)dp̃(θ), (3.1)

where k(x; θ) is a kernel function defined on X×Θ and p̃ is a random mixing distribution. In
this chapter we focus on p̃ ∼ PY(σ, ϑ; P0), that is we assume that p̃ is a random probability
measure distributed as a PY process with discount parameter σ ∈ [0, 1), total strength parame-
ter ϑ > −σ, and diffuse base measure P0 ∈ F . The DP is obtained as a special case when σ = 0.
Model (3.1) can be written in hierarchical form as

Xi | θi
ind∼ k(xi; θi) i = 1, . . . , n

θi | p̃ iid∼ p̃
p̃ ∼ Q,

(3.2)

where Q denotes the distribution of p̃, known as de Finetti measure (see Section 1.1 for details).
The joint distribution of θ := (θ1, . . . , θn) is characterized by the predictive distribution of the
the PY, which, for any i = 1, 2, . . ., is given by

P[θi+1 ∈ · | θ1, . . . , θi] =
ϑ + kiσ

ϑ + i
P0(·) +

ki

∑
j=1

nj − σ

ϑ + i
δθ∗j

(·), (3.3)

where ki is the number of distinct values θ∗j appearing in the first i draws, and nj, such that

∑ki
j=1 nj = i, is the number of θl , for l ∈ {1, . . . , i}, which coincide with θ∗j .

Alternatively, the distribution of p̃ can be described by its stick-breaking representation, which,
for the PY, was given by Perman et al. (1992). Specifically, p̃ can be thought of as an infinite sum
of random jumps {Wj}∞

j=1 occurring at random locations {θ̃j}∞
j=1, that is
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p̃ =
∞

∑
j=1

Wjδθ̃j
, (3.4)

where the distribution of the locations is independent of that one of the jumps and, while
the θ̃j’s are independent and identically distributed from P0, the distribution of the jumps is
characterized by

W1 = V1, Wj = Vj

j−1

∏
l=1

(1−Vl), Vj
ind∼ Beta(1− σ, ϑ + jσ). (3.5)

The sequence {Wj}j≥1 defined in (3.5) follows a two parameter GEM distribution, see Section
1.6 for more details.

3.2 State of the art

Marginal methods for nonparametric mixtures were first used in Escobar (1988) and Escobar
and West (1995), contributions which focused on DP mixtures (DPM) of univariate Gaussian
kernels. Extensions of such proposal include the works of Müller et al. (1996), Maceachern
(1994), Maceachern and Müller (1998), Neal (2000) and Favaro and Teh (2013). It is worth not-
ing that, while being the first class of MCMC methods for Bayesian nonparametric mixtures
appeared in the literature, marginal methods are still routinely used in popular packages such
as the DPpackage (Jara et al., 2011) library of R, the de facto software for many Bayesian non-
parametric models.
Alternatively, conditional methods rely on the use of summaries, of finite and possibly random
dimension, of realizations of p̃ from its stick-breaking representation. A first type of condi-
tional approach can be found in Ishwaran and Zarepour (2000) and Ishwaran and James (2001),
where a fixed truncation of the stick-breaking representation of a large class of random prob-
ability measures is considered and a bound for the introduced truncation error is provided.
Muliere and Tardella (1998) (for the DP) and Arbel et al. (2018b) (for the PY) make the trunca-
tion level random so to make sure that the resulting error is smaller than a given threshold. On
similar lines, Argiento et al. (2016a) and Argiento et al. (2016b) propose a random truncation
for mixture models based, respectively, on the normalized generalized gamma process and,
more in general, on normalized completely random measures (see Appendix A for details on
completely random measures).
Exact solutions which avoid introducing truncation errors are the slice sampler of Walker (2007)
and Kalli et al. (2011) and the retrospective sampler of Papaspiliopoulos and Roberts (2008).
Although originally introduced for the case of DPM models, the schemes of slice sampler and
retrospective sampler are naturally extended to a more general class of models admitting a
stick-breaking representation, and thus, in particular, to the class of PY mixture (PYM) models.
Finally, it is worth mentioning the Ferguson and Klass (1972) algorithm, a conditional method
which can be conveniently used for normalized random measure mixture models (Barrios et al.,
2013). Such a class of methods cannot be directly adopted for the PYM models and, nonetheless,
relies on a truncation of the involved random measure (see Arbel and Prünster, 2017).
Marginal methods are appealing for their simplicity and for the fact that the number of random
elements that must be drawn at each iteration of the sampler, i.e. the set of parameters θ(n), is
fixed. Conditional methods advantageously exploit the conditional independence of the pa-
rameters θi, given p̃ (or a finite summary of it), and thus lead to algorithms where the update
step of θ(n) is parallelizable. At the same time, the random truncation at the core of conditional



40 Chapter 3. Importance Conditional Sampler

methods such as slice sampler and retrospective sampler, makes the number of random ele-
ments that must be drawn at each iteration of the algorithm, random and unbounded. While
this last feature turns out not to be a problem when the DPM case is considered, the same
makes the use of these algorithms for the more general case of PYM models problematic, spe-
cially when large values for the discount parameter are considered. Finally, it is important
to observe that working without integrating p̃ out makes posterior uncertainty quantification
much more natural in conditional methods, as they allow to sample trajectories of the posterior
distribution, unlike marginal methods which produce realizations of its mean (see Arbel et al.,
2016, for a discussion).
Next, we briefly describe the rationale of three algorithms which, among the ones mentioned,
avoid introducing structural truncation errors, namely the marginal sampler, the slice sampler
and the retrospective sampler. As for the marginal sampler and the slice sampler, more details
on their implementation will be given in Section 3.4.

Marginal sampler

Inspired by the seminal work of Blackwell and MacQueen (1973), Escobar and West (1995)
proposed a marginal algorithm for DPM models, where the mixing DP is integrated out. The
same approach can be followed for the case of PYM models: after marginalizing with respect
to the random probability measure p̃ in (3.2), a Gibbs sampler can be devised such that, in turn,
every element of θ(n) is updated from its full conditional distribution

P[θi ∈ dt | θ(i), X(n)] ∝
ϑ + k(i)σ
ϑ + n− 1

∫
k(Xi, t)P0(dt) +

k(i)

∑
j=1

n(i),j

ϑ + n− 1
k(Xi, θ∗(i),j)δθ∗

(i),j
(dt) (3.6)

where θ(i) := (θ1, . . . , θi−1, θi+1, . . . , θn), k(i) is the number of distinct values in θ(i), θ∗(i),j the j-th
of such values and n(i),j its frequency. It is apparent that the structure of the full conditional
(3.6) is reminiscent of (3.3).

�

Slice sampler

The core idea of the slice sampler of Walker (2007) and Kalli et al. (2011) consists in introducing
an augmenting uniform random variable U, such that, conditionally on U, the number of jumps
of p̃ that must be sampled is finite. The model in (3.1) can be written as

f̃ (x) =
∞

∑
j=1

Wjk(x; θj), (3.7)

where the distribution of the Wj’s is described by the stick-breaking construction in (3.5). Then,
following Walker (2007), we consider a uniform random variable U and the joint density

f̃ (x, u) =
∞

∑
j=1

I[u<Wj]k(x; θj), (3.8)

where U has the effect of slicing the distribution of the Wj’s. It is apparent that, by marginaliz-
ing Equation 3.8 with respect to U, Equation 3.7 is recovered. Starting from the previous joint
distribution, it is possible to devise a Gibbs-sampler involving the update of the augmenting
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σ = 0 σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8

ϑ = 0.1 1.39 4.19 62.90 11497.19 94079.99
ϑ = 1 6.36 20.77 168.13 19459.96 98391.76
ϑ = 10 55.40 159.99 1371.14 43874.20 > 105

ϑ = 100 542.60 1425.41 11921.01 86810.41 > 105

TABLE 3.1: Slice sampler: average number of jumps (out of 100 replicates) of the
prior process that must be sampled in one iteration, for different specification of

the strength parameter ϑ and the discount parameter σ.

σ = 0 σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8

ϑ = 0.1 1.42 4.44 60.76 9054.75 95545.97
ϑ = 1 6.07 18.37 147.60 19309.82 99564.28
ϑ = 10 53.96 146.54 2052.05 47614.75 > 105

ϑ = 100 516.17 1459.22 11686.69 93930.31 > 105

TABLE 3.2: Retrospective sampler: average number of jumps (out of 100 repli-
cates) of the prior process that must be sampled in one iteration, for different

specification of the strength parameter ϑ and the discount parameter σ.

random variable. The convenience of the augmented model (3.8) lays in the fact that, con-
ditionally to the value of U, the number of jumps of p̃ that must be sampled is random but
finite.

�

Retrospective sampler

The retrospective sampler can be thought of as an adaptation of the well-known inverse cu-
mulative distribution function method for sampling from the posterior distribution of non-
parametric mixtures. Given the sequences {Wj}j≥1 and {θ̃j}j≥1 defining the RPM in (3.4), a
realization from p̃ can be obtained by first we generating a uniformly distributed U, and then
selecting the k-th value of {θ̃j}j≥1 such that

k−1

∑
j=0

Wj < u ≤
k

∑
j=1

Wj, (3.9)

with the proviso W0 = 0. Retrospective sampling simply exchanges the order of simulation
between U and the pairs {Wj, θ̃j}j≥1. Conditionally on a value sampled for U, if we need more
Wj’s than we currently have already sampled, we go back retrospectively until we have enough
Wj’s to satisfy the condition (3.9). Based on this idea, Papaspiliopoulos and Roberts (2008)
derived an exact sampling scheme for the posterior distribution of a DPM model, which is
naturally extended to the PYM model case.

�
While working more efficiently for the DPM model, both the slice sampler and the retrospective
sampler might face serious computational issues when used to fit a PYM model with discount
parameter σ deviating from 0. For both the algorithms, the number of jumps that must be
sampled at each iteration can be so large that a practical implementation of the algorithms is not
feasible. We empirically investigate this behaviour, by studying the number of jumps required,
in the prior process, for different values of the strength parameter ϑ and the discount parameter
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σ, with a fixed sample size n = 100. As shown in Tables 3.1 and 3.2, as the value of σ becomes
large, the required number of jumps grows, exploding when σ ≥ 0.6. Such behaviour can be
understood by considering the stick-breaking representation of the PY process, described in
Equation 3.5. Large values of the parameter σ make small jumps more likely to be sampled. As
a result, a larger number of jumps will tend to be needed to satisfy the probabilistic conditions
required by both the slice and the retrospective sampler. It is important to stress that, while
the implementation of slice sampler and retrospective sampler for PYM is troublesome already
for n = 100, the described issue is exacerbated for larger values of n. A similar behaviour of
the PY has been recently highlighted in Arbel et al. (2018b), when studying the accuracy of the
approximation obtained by truncating its stick-breaking representation.
Finally, the very similar results displayed in Table 3.2 and Table 3.1 are not surprising as the
number of required jumps has the same distribution for the two algorithms. Indeed, it is easy
to show that in both cases the number of jumps required a priori is given by

J∗ = min

{
J ≥ 1 s.t.

J

∑
j=1

Wj > Bn

}
, (3.10)

where Bn is a Beta random variable with parameters 1 and n. Due to the similar behaviour we
decided to compare our proposal in the next sections only with one conditional sampler, the
slice sampler.

3.3 The Importance Conditional Sampler

The random elements involved in a PYM model defined as in (3.2) are observations X(n), pa-
rameters θ and the PY random probability measure p̃. The joint distribution of (X(n), θ, p̃) can
be written as

p(X(n), θ, p̃) = p(X(n) | θ)p(θ | p̃)Q( p̃) =
n

∏
i=1

k(Xi; θi)
kn

∏
j=1

p̃(dθ∗j )
nj Q( p̃), (3.11)

where θ∗ := (θ∗1 , . . . , θ∗kn
) is the vector of unique values in θ, with frequencies (n1, . . . , nkn)

such that ∑kn
j=1 nj = n. In line of principle, the full conditional distributions of all random

elements can be derived from (3.11) and used to devise a Gibbs sampler. Given that the vector
X(n), conditionally on θ, is independent of p̃, the only step of the Gibbs sampler which works
conditionally on a realization of the infinite-dimensional p̃ is the full conditional of θ. The
conditional distribution p(θ | X(n), p̃) therefore will be the main focus of our attention: its
study will allow us to identify a finite-dimensional summary of p̃, sufficient for the purpose of
updating θ from its full conditional distribution. As a result, as far as p̃ is concerned, only the
update of its finite-dimensional summary will need to be included in the Gibbs-sampler, thus
making the conditional strategy possible.
Our proposal exploits a convenient representation of the posterior distribution of a PY process,
provided in Corollary 20 of Pitman (1996), introduced in Section 1.6, and for the sake of clarity
reported in the next proposition with the notation adopted in this chapter.

Proposition 6. (Corollary 20 in Pitman, 1996). Let t1, . . . , tn | p̃ ∼ p̃ where p̃ is a PY(σ, ϑ; P0), and
denote by (t∗1 , . . . , t∗kn

) and (n1, . . . , nkn) the set of kn distinct values and corresponding frequencies in
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(t1, . . . , tn). The conditional distribution of p̃, given (t1, . . . , tn), coincides with the distribution of

p0q̃(·) +
kn

∑
j=1

pjδt∗j (·),

where (p0, p1, . . . , pkn) ∼ Dirichlet(ϑ + knσ, n1 − σ, . . . , nkn − σ) and q̃ ∼ PY(σ, ϑ + knσ; P0) is
independent of (p0, p1, . . . , pkn).

To the best of our knowledge, Proposition 6 has not been exploited much for computationl
purposes, with the only contribution we are aware of being Fall and Barat (2014).
In the context of mixture models we are considering here, Pitman’s result implies that the full
conditional distribution of p̃ coincides with the distribution of a mixture composed by a PY
process q̃ with updated parameters, and a discrete random probability measure with kn fixed
jump points at t := (t∗1 , . . . , t∗kn

). This means that, in the context of a Gibbs sampler, while,
by conditional independence, the update of each parameter θi is done independently of the
other parameters (θ1, . . . , θi−1, θi+1, . . . , θn), the distinct values θ∗ taken by the parameters at a
given iteration, are carried on to the next iteration of the algorithm through p̃, in the form of
fixed jump points t. Specifically, if Θ∗ := Θ \ {t1, . . . , tkn}, then, for every i = 1, . . . , n, the full
conditional distribution of the i-th parameter θi can be written as

P[θi ∈ dt | Xi, p̃] ∝ p0k(Xi; t)q̃(dt) +
kn

∑
j=1

pjk(Xi; t∗j )δt∗j (dt), (3.12)

where q̃ is the restriction of p̃ to Θ∗, p0 := p̃(Θ∗) and, for every j = 1, . . . , kn, pj := p̃(t∗j ). The
full conditional in (3.12) is reminiscent of the Blackwell-MacQueen scheme (see Equation 3.6)
characterizing the update of the parameters in marginal methods: the parameter θi can either
coincide with one of the kn fixed jump points of p̃ or take a new value from a distribution
proportional to k(Xi; t)q̃(dt). The key observation at the basis of the ICS is that, for the pur-
pose of updating the parameters θ, there is no need to know the whole realization of p̃ but it
suffices to know the vector t of fixed jump points of p̃, the value p := (p0, p1, . . . , pkn) taken
by p̃ at the partition (Θ∗, t∗1 , . . . , t∗kn

) of Θ, and how to sample from a distribution proportional
to k(Xi, t)q̃(dt). As for the latter task, we adopt an importance sampling approach and we
introduce auxiliary random variables, in the spirit of the augmentation step of Neal (2000)’s
Algorithm 8, originally introduced to deal with a non-conjugate specification of the mixture
model in the context of marginal methods. For more details on importance sampling one can
refer to Agapiou et al. (2017) and references therein. Specifically, a vector s := (s1, . . . , sm), of
arbitrary size m ≥ 1, is generated from q̃ and then weighted by means of the kernel k(Xi; ·).
By almost sure discreteness of q̃, the generated vector will show ties with positive probability
and thus will feature km distinct values (s∗1 , . . . , s∗km

), with frequencies (m1, . . . , mkm). The full
conditional (3.12) can thus be rewritten as

P[θi ∈ dt | Xi, p̃] ∝ p0

km

∑
j=1

mj

m
k(Xi; s∗j )δs∗j (dt) +

kn

∑
j=1

pjk(Xi; t∗j )δt∗j (dt). (3.13)

From the last expression it is straightforward to identify (s, t, p) as a finite dimensional sum-
mary of p̃, sufficient for the purpose of updating the parameters θi from their full condition-
als. This means that, as far as p̃ is concerned, only its summary (s, t, p) must be included
in the updating steps of the Gibbs sampler. To this end, Proposition 6 provides the basis for
the update of (s, t, p). Indeed, conditionally on θ, the fixed jump points t coincide with the
kn distinct values appearing in θ, while the random vectors p and s are independent with
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p ∼ Dirichlet(ϑ + σkn, n1 − σ, . . . , nkn − σ) and the joint distribution of s characterized by the
predictive distribution of a PY(σ, ϑ + σkn; P0), that is, for any i = 0, 1, . . . , m− 1,

P[si+1 ∈ dt | s1, . . . , si] =
ϑ + σ(kn + ki)

ϑ + knσ + i
P0(dt) +

ki

∑
j=1

nj − σ

ϑ + σkn + i
δs∗j (dt), (3.14)

where (s∗1 , . . . , s∗ki
) is the vector of ki distinct values appearing in (s1, . . . , si), with corresponding

frequencies (n1, . . . , nki). Sampling s by means of (3.14) conveniently allows us to avoid the task
of generating realizations of the infinite-dimensional random probability measure q̃.
We have now all the elements for devising a Gibbs sampler for posterior simulation of (s, t, p):
the proposed Importance Conditional Sampler (ICS) is summarised in Algorithm 1. In turn, a
realization from the posterior distribution of (s, t, p) defines an approximate realization f (x) of
the posterior distribution of the random density defined in (2.1), namely

f (x) = p0

km

∑
l=1

ml

m
k(x; s∗l ) +

kn

∑
j=1

pjk(x; t∗j ).

Algorithm 1 includes an additional reshuffling step, meant to improve the mixing of the algo-
rithm and consisting in updating, at each iteration of the Gibbs sampler, the distinct values θ∗

from their full conditional distribution. Namely, for every j = 1, . . . , kn,

P[θ∗j ∈ dt | X(n)] ∝ P0(dt) ∏
i∈Cj

k(Xi; t), (3.15)

where Cj = {i ∈ {1, . . . , n} : θi = θ∗j }.
If the algorithm is ran for a total of R iterations, the first Rb of which are considered burn-in
and discarded, then the posterior mean can be evaluated as

f̂ (x) =
1

R− Rb

R

∑
r=Rb+1

f (r)(x),

where f (r) denotes the realization of f̃ obtained at the r-th iteration.
It is instructive to consider how the ICS works for the special case of DPM models (that is when
σ = 0). In such case, the steps described in Algoritm 1 can be nicely interpreted by resorting
to three fundamental properties characterizing the DP, namely conjugacy, self-similarity and
availability of finite-dimensional distributions. More specifically, when σ = 0, step 4 of Algo-
rithm 1 consists in generating the random weights p from a Dirichlet distribution of parameters
(ϑ, n1, . . . , nkn). This distribution for p follows by combining the conjugacy of the DP (Fergu-
son, 1973), for which p̃ | θ ∼ DP(ϑ; P0 + ∑kn

j=1 njδθ∗j
), with the availability of finite-dimensional

distributions of DP (Ferguson, 1973), which provides the distribution of p, defined as the eval-
uation of the conditional distribution of p̃ on the partition of Θ induced by θ. Moreover, when
σ = 0, according to the predictive distribution displayed in step 6 of Algorithm 1, the aug-
menting random variables s are exchangeable from q̃ ∼ DP(ϑ; P0), with q̃ independent of p.
This nicely follows from the self-similarity of the DP (see, e.g., Ghosal, 2010) which implies that
q̃ = p̃|Θ∗ is independent of p̃|Θ\Θ∗ , and thus of p, and is distributed as a DP(ϑP0(Θ∗); P0|Θ∗). As
a by-product observe that, by diffuseness of P0, we have q̃ has the same distribution of p̃, thus
implying that, in the DP case, the auxiliary random variables s are generated from the prior
model.
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Algorithm 1: Importance conditional sampler for the Pitman-Yor mixture model

[1] Set admissible initial values θ(0)

[2] for each iteration r = 1, . . . , R do

[3] set t(r) = θ(r−1)

[4] sample p(r) from p(r) ∼ Dirichlet(ϑ + k(r−1)
n σ, n(r−1)

1 − σ, . . . , n(r−1)
kn

− σ)

[5] for each i = 0, . . . , m− 1 do
[6] sample s(r)i+1 from

P[s(r)i+1 ∈ dt | s(r)1 , . . . , s(r)i ] =
ϑ + σ(k(r−1)

n + k(r)i )

ϑ + k(r−1)
n σ + i

P0(dt) +
k(r)i

∑
j=1

m(r)
j − σ

ϑ + σk(r−1)
n + i

δ
s∗(r)j

(dt)
[7]

[8] for each i = 1, . . . , n do
[9] sample θ

(r)
i from

P[θ(r)i = t | · · · ] ∝


p(r)0

m(r)
j

m k(Xi; s(r)j ) if t ∈ {s∗(r)1 , . . . , s∗(r)
k(r)m
}

p̃(r)j k(Xi; t∗(r)j ) if t ∈ {t∗(r)1 , . . . , t∗(r)
k(r−1)

m
}

0 otherwise

[10] for each unique value θ
∗(r)
j in θ(r) do

[11] update θ
∗(r)
j from P[θ∗(r)j ∈ dt | · · · ] ∝ P0(dt)∏i∈C(r)

j
k(Xi; t)

[12] end

3.4 Implementation of competing algorithms

In Section 3.5 the performance of the ICS will be compared with that one of the marginal sam-
pler and the slice sampler. For the sake of simplicity, we considered all the samplers without
introducing prior distributions on the hyerparameters, which are thus kept fixed. In this sec-
tion, for the sake of completeness, we report the implementation of the marginal sampler and
the slice sampler which were used in the study.

Algorithm 2: Marginal sampler

[1] Set admissible initial values θ(0)

[2] for each iteration r = 1, . . . , R do
[3] for each i = 1, . . . , n do
[4] sample θ

(r)
i from

P[θ(r)i = t | . . . ] ∝

(nj − σ)k(Xi; θ
∗(r)
j ) if θ

∗(r)
j ∈ {θ∗(r)1 , . . . , θ

∗(r)
k(r−1)

m
}

(ϑ + kσ)
∫

k(Xi, θ)P0(dθ) otherwise

[5] for each unique value θ
∗(r)
j in θ(r) do

[6] update θ
∗(r)
j from P[θ∗(r)j ∈ dt | · · · ] ∝ P0(dt)∏i∈C(r)

j
k(Xi; t)

[7] end
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The marginal sampler that we consider follows the steps of Müller et al. (1996), exception made
for the use of hyperprior distributions. Algorithm 2 shows the pseudo-code of the marginal
sampler’s implementation.
For the implementation of the slice sampler, we followed the scheme presented in Kalli et al.
(2011), with the weights ξ1, ξ2, . . . introduced in their paper (see Kalli et al., 2011, for details on
the weights) set equal to the PY weights, as in Walker (2007). Algorithm 3 shows the pseudo-
code of the slice sampler’s implementation.

Algorithm 3: Slice sampler for Pitman-Yor mixture model

[1] Set admissible initial values θ(0)

[2] for each iteration r = 1, . . . , R do
[3] set t(r) = θ(r−1)

[4] for each i = 1, . . . , n do
[5] Sample ui from the corresponding distribution

ui ∼ Uni f ([0, wi])

where wi = wj s.t. θi = θ∗j
[6] while ∑k

j=1 wj < 1− ui, for any i do

[7] Sample a new weight

vk+1 ∼ Beta(1− σ, ϑ + (k + 1)σ), wk+1 = vk+1 ∏
l<k+1

(1− vl).

[8] Sample t(r)k+1 ∼ P0(dθ)

[9] Set k = k + 1.

[10] for each i = 1, . . . , n do
[11] sample θ

(r)
i from

P[θ(r)i = t | · · · ] ∝

1[wj>ui ]k(Xi, t(r)j ) if t ∈ {t∗(r)1 , . . . , t∗(r)k }

0 otherwise

[12] for each unique value θ
∗(r)
j in θ(r) do

[13] update θ
∗(r)
j from P[θ∗(r)j ∈ dt | · · · ] ∝ P0(dt)∏i∈C(r)

j
k(Xi; t)

[14] Sample the weight wj with

vj ∼ Beta
(

1− σ + nj, ϑ + jσ + n+
j

)
, wj = vj ∏

l<j
(1− vl),

where nj = ∑n
i=1 1[θi=θ∗j ]

is the number of elements in the cluster j and

n+
j = n−∑

j
l=1 nj.

[15] end

A known problem, when dealing with the comparison of two or more methods, is the bias
induced by different implementations (see Kriegel et al., 2017, for a discussion). In order to re-
duce to a minimum such distortion, we implemented all methods in a low level language, C++
with the use of RcppArmadillo library, preserving, as far as possible, commonalities between
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the sub-routines of the samplers. All the samplers are implemented in the BNPmix R package 1.
More details are provided in Appendix D.

3.5 Simulation study

We want to investigate the performance of our proposal, the ICS, and compare it with the
performance of the marginal sampler and the slice sampler. For the whole simulation study,
simulated samples are generated from a mixture of two Gaussian distributions, namely

f ∗ =
3
4

N(−2.5, 1) +
1
4

N(2.5, 1). (3.16)

The generated samples from the posterior distribution, are analysed by considering two quanti-
ties, aimed to assess their quality and the computational cost of the samplers. The first measure
we consider is the effective sample size (ESS), defined as

ESS =
R− Rb

1 +
∞

∑
j=1

ρj(Y)
, (3.17)

where R is the number of iterations in the MCMC chain, Rb the number of burn-in iterations, Y
is a random quantity of interest and ρj(·) is the autocorrelation of lag j. In our studies we set Y
equal to the number of active clusters in each iteration, that is the number of distinct values ap-
pearing in θ. The infinite sum in (3.17) is approximated by its truncation up to the (R− Rb)/2-th
term, as it is standard practice. The ESS can be interpreted as the number of effective inde-
pendent observation produced in the sampler, it is a measure of the quality of the produced
sample.
A second measure we consider is the ratio between execution time T and the ESS, so to compare
the computational cost of different samplers, in terms of the time required to get an indepen-
dent realization. This is an indication of the effective time required to produce an independent
sample from the posterior distribution.
For all the considered samplers a Normal-Inverse-Gamma base measure was considered, i.e.
P0 = N(µ; m0, k0σ) × IG(σ; a0, b0). We set the base measure parameters as m0 = 0, k0 = 6,
a0 = 2 and b0 = 1, specification such that the prior variance is equal to the actual variance of
each component in the data-generating density (3.16), and the location component is rather flat
on the support. We ran the model for R = 1 500 of iterations, of which Rb = 500 are burn-in
iterations. For the three samplers, we checked the convergence by visual investigation of the
traceplots, which did not provide any evidence against it.
The first part of our study is focused on the ICS only and aims at investigating the effect on
the generated posterior sample, of different choices for m, the number of values generated in
the importance sampling step. To this end, we considered different scenarios, obtained by
considering different sample sizes n = {100, 300, 1 000}, different values for the parameter
m = {1, 5, 10, 100} and different values for the strength and discount parameters of the PY,
ϑ = {0.1, 1, 10} and σ = {0, 0.2, 0.4, 0.6, 0.8}. The results are averaged over 10 replications.
Figure 3.1 shows the ESS for different choices of the parameter m, as a function of the discount
parameter σ, for different choices of the strength parameter ϑ and the sample size n. The ESS
does not appear to be affected by the choice of the discount parameter σ, while it is interesting
to observe that, when the sample size increases, the ESS tends to decrease. What really matters
in this study is the effect of m on the ESS, which is more apparent when we consider large

1The package is available at https://github.com/rcorradin/BNPmix and can be installed via devtools.

https://github.com/rcorradin/BNPmix
https://github.com/rcorradin/BNPmix
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FIGURE 3.1: ICS: Effective sample size, for different values for the strength
parameter ϑ = {0.1, 1, 10}, different values of the discount parameter σ =

{0, 0.2, 0.4, 0.6, 0.8} and sample size n = {100, 300, 1 000}.

values of the strength parameter ϑ. In general, and not surprisingly, larger values for m lead
to larger ESS. More specifically, setting m = 1 seems to be a poor choice in terms of ESS. On
the other end, if we compare the ESS for m = 10 and m = 100, it might be argued that the
improvement obtained by setting m = 100 is marginal.
Figure 3.2 shows T/ESS, the ratio between execution time T and ESS, for the different scenarios
considered, in log scale. The ratio appears to be affected only slightly by different choices of
the discount parameter σ, exception made for m = 100 where σ has a stronger impact. Indeed,
when m = 100, the time needed to sample an independent realization from the posterior dis-
tribution becomes clearly larger increase if the discount parameter grows. Again, what matters
here is the effect of m on T/ESS. If we compare m = 10 and m = 100, it seems clear that
setting m = 100 leads to a significantly larger ratio T/ESS. Based on these considerations,
for the second part of the study and for the rest of the Chapter, we set m = 10, as it seems a
good compromise when quality of the sample (ESS) and computational efficiency (T/ESS) are
considered.
The second part of the study focuses on the comparison of ICS with the slice sampler and the
marginal sampler. Also in this case, we compare different scenarios, obtained by consider-
ing different values for the strength parameter, ϑ = {0.1, 1, 10}, for the discount parameter,
σ = {0.0, 0.15, 0.3, 0.45, 0.6}, and different sample sizes n = {100, 300, 1 000}. The results are
averaged over 10 replications.
Figure 3.3 shows the ESS, for the different scenarios considered, as a function of the discount pa-
rameter σ. Note that the blue lines, corresponding to the ESS of the slice sampler, are available
only for part of the range considered for σ: performing the simulation study in a reasonable
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FIGURE 3.2: ICS: ratio between execution time and effective sample size, in log
scale, for different values for the strength parameter ϑ = {0.1, 1, 10}, different
values of the discount parameter σ = {0, 0.2, 0.4, 0.6, 0.8} and sample size n =

{100, 300, 1 000}.

time, with large values of the discount parameter σ, turned out to be infeasible. Compared
with ICS and slice sampler, the marginal algorithm produces better samples, in terms of ESS,
thing which is in particularly apparent for large values of the strength parameter ϑ. As far as
the two conditional samplers are considered, the ICS generates better samples than the slice
sampler.
Figure 3.4 shows the ratio between execution time T and ESS, in log scale, for the different sce-
narios and the three samplers considered. Although, again, the blue curves are available only
for small values of σ, the plot clearly suggests that, in the slice sampler case, the considered ra-
tio explodes when the discount parameter σ grows. The ICS appears to be rather constant with
respect to the discount parameter, while the marginal sampler increases as σ becomes large.
Overall, the time needed to sample an independent observation from the posterior distribution
in the ICS is not greatly affected by the values of the discount and strength parameter. This
last observation suggests the ICS might conveniently adopted, for example, when the model is
endowed with hyperpriors for σ and ϑ. Finally and not surprisingly, for all the three samplers,
the ratio T/ESS is increasing as a function of the sample size.
Due to the amount of time required to perform the previous simulation study, we considered
only for the univariate case. Regarding the scalability of the algorithms, when the number
of dimensions increases, the computational time required to evaluate the kernels grows: the
differences measured for the different samplers in the univariate case are thus amplified.
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values of the discount parameter σ = {0, 0.15, 0.3, 0.45, 0.6} and sample size
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3.6 ICS for dependent Dirichlet process mixtures

The promising results obtained in the simulation study of the previous section, make the ICS a
good candidate for contexts where efficient samplers are needed in order to fit a Bayesian model
based on the use of nonparametric mixtures. One of such examples is surely represented by
the class of dependent Dirichlet process Maceachern (1999) and Maceachern (2000) for partially
exchangeable data (see J. Foti and Williamson, 2015, for a review). Within this class of models,
we consider a multivariate vector of GM-dependent Dirichlet processes (GM-DDP), as defined
and studied in Lijoi et al. (2014a) and Lijoi et al. (2014b), inspired by the work of Griffiths and
Milne (1978) on dependent and identically distributed Poisson random measures. For an allied
approach see also Griffin et al. (2013). In this section we describe how the ICS can be used as
a building block for devising a novel and efficient conditional algorithm for GM-DDP mixture
models.
Let µ0, µ1, . . . , µL be independent gamma completely random measures (see Appendix A) with
Lévy intensities respectively equal to ν0, ν1, . . . , νL, where

ν0(ds, dx) = c(1− z)
e−s

s
dsP0(dx),

νl(ds, dx) = cz
e−s

s
dsP0(dx), l = 1, . . . , L,



3.6. ICS for dependent Dirichlet process mixtures 51

n = 100 n = 300 n = 1000

ϑ  = 0.1
ϑ  = 1

ϑ  = 10

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

1

20

400

1

20

400

1

20

400

σ

T/
ES

S

Sampler
ICS

MPU

SLI
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scale, for the ICS, marginal sampler and slice sampler. Different values for the
strength parameter ϑ = {0.1, 1, 10}, different values of the discount parameter

σ = {0, 0.15, 0.3, 0.45, 0.6} and sample size n = {100, 300, 1 000}.

and z ∈ [0, 1]. A vector of GM-dependent gamma completely random measures (µ̃1, . . . , µ̃L) is
obtained by setting µ̃l = µl + µ0 for l = 1, . . . , L. Marginally, the completely random measures
µ̃l are identically distributed with Lévy intensity ν(ds, dx) = ce−s/sdsP0(dx). The use of the
common term µ0 in the definition of the µ̃l’s induce dependence across the components of
(µ̃1, . . . , µ̃L). A vector of identically distributed dependent Dirichlet processes is then obtained
by normalizing each component of the vector (µ̃1, . . . , µ̃L), thus obtaining ( p̃1, . . . , p̃L) where,
for each component, we have

p̃l =
µ̃l

µ̃l(X)

=
µl + µ0

µl(X) + µ0(X)

=
µl

µl(X)

µl(X)

µl(X) + µ0(X)
+

µ0

µ0(X)

µ0(X)

µl(X) + µ0(X)

= plwl + p0(1− wl),

where the pl := µl/µl(X), for l = 0, 1, . . . , L and wl := µl(X)/(µl(X) + µ0(X)). Notice that
the random probability measures pl’s, for l = 1, . . . , L, are independent Dirichlet processes with
base measure P0 and total mass cz and, in turn, they are independent of p0 which is a DP with
total mass c(1− z) and same base measure P0. The vector of random weights (w1, . . . , wL) takes
values in [0, 1]L and follows a multivariate beta distribution (Olkin and Liu, 2003). Moreover,
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by standard properties of gamma random variables, it is easy to verify that (p0, p1, . . . , pL) is
independent of (w1, . . . , wL). The vector ( p̃1, . . . , p̃L) is an L-dimensional vector of GM-DDP,
where the components are identically distributed, with base measure P0 and total mass c.
Let (X1,1, . . . , Xn1,1), (X1,2, . . . , Xn2,2), . . . , (X1,L, . . . , XnL,L) be L sets of observations such that ex-
changeability holds within each set but not across different sets. We assume the following
partially exchangeable mixture model (see Section 1.3) based on the vector ( p̃1, . . . , p̃L) of GM-
DDP.

(Xi1,1, Xi2,2, . . . , XiL,L) | θ(1), . . . , θ(L) ind∼
L

∏
l=1

k(xil ,l ; θil ,l)

θi,l | ( p̃1, . . . , p̃L)
iid∼ p̃l (3.18)

( p̃1, . . . , p̃L) ∼ GM-DDP(c, z, P0).

By specifying a model as in (3.18) it follows

(w1, . . . , wL) ∼ mult-Beta(cz, . . . , cz)
(w1, . . . , wL) |= (p0, p1, . . . , pL).

We want to exploit the ICS in this context, so to devise an efficient algorithm to fit the GM-DDP
mixture model in (3.18). The main idea of our approach consists in working in two stages:
first, once the observations are allocated to clusters belonging to either to the idiosyncratic
process pl’s or to the common process p0, we update the summaries for all the processes pl ,
l = 0, 1, . . . , L, that is

(sl , tl , pl), l = 0, . . . , L,

as done in Section 3.3 for a single process. Second, for every l = 1, . . . , L and 1 ≤ il ≤ nl , we
update θi,l from

P[θi,l ∈ dt|Xi,l , p̃l , . . . ]

∝ wl

(
p0,l

km,l

∑
j=1

mj,l

m
k(Xi,l , s∗j,l) +

kn,l

∑
j=1

pj,lK(Xi,l , t∗j,l)δt∗j,l (dt)

)
(3.19)

+ (1− wl)

(
p0,0

km,0

∑
j=1

mj,0

m
k(Xi,l , s∗j,0) +

kn,0

∑
j=1

pj,0K(Xi,l , t∗j,0)δt∗j,0(dt)

)

A crucial step is the update of the weights w = (w1, . . . , wL) in [0, 1]L, a priori distributed as a
multivariate beta distribution with parameters (cz, . . . , cz) and for which the full conditional is
given by

P[w = ω | c, z, θ, . . . ] ∝ B(cz, . . . , cz)
∏L

l=1 ω
cz+nl,l−1
l

(1−ωl)
cz−nl,0+1

[
1 +

L

∑
l=1

ωl

1−ωl

]−Lcz

, (3.20)

where nl,l = ∑nl
i=1 I[θi,l∈pl ] and nl,0 = ∑nl

i=1 I[θi,l∈p0]. To this end, we adopted an importance
sampling approach, consisting in sampling from an L-dimensional uniform proposal, and re-
weighting the sampled values by means of the full conditional (3.20).
The ICS for the GM-DDP mixture model is summarized in Algoritm 4.
For the sake of illustration, we used the ICS to fit a GM-DDP mixture model to analyze an
astronomical dataset. We consider a subset of the data studied in Balogh et al. (2004), where
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Algorithm 4: ICS for GM-dependent Dirichlet process mixture models

[1] Set admissible initial values θ(0)

[2] for each iteration r = 1, . . . , R do
[3] set t(r)0 = θ

(r−1)
0 where θ

(r−1)
0 are the common values

[4] sample p(r)
0 from p(r)

0 ∼ Dirichlet(c(1− z), n(r−1)
1,0 , . . . , n(r−1)

k0,0 )

[5] sample the sequence {si,0}m
i=1 from a DP(c(1− z), P0)

[6] for each urn l = 1, . . . , L do

[7] set t(r)l = θ
(r−1)
l without including the common values

[8] sample p(r)
l from p(r)

l ∼ Dirichlet(cz, n(r−1)
1,l , . . . , n(r−1)

kl ,l
)

[9] sample the sequence {si,l}m
i=1 from a DP(cz, P0)

[10] sample w(r) by the importance sampling step with weights as in (3.20)

[11] for each i = 1, . . . , nl ; l = 1, . . . , L do
[12] sample θ

(r)
i,l from

P[θ(r)i = t | · · · ] ∝



wl p
(r)
0,l

m(r)
j,l

m k(Xi; s(r)j,l ) if t ∈ {s∗(r)1,l , . . . , s∗(r)
k(r)l ,l
}

wl p
(r)
j,l k(Xi; t∗(r)j,l ) if t ∈ {t∗(r)1,l , . . . , t∗(r)

k(r−1)
l ,l
}

(1− wl)p(r)0,0
m(r)

j,0
m k(Xi; s(r)j,0 ) if t ∈ {s∗(r)1,0 , . . . , s∗(r)

k(r)0 ,0
}

(1− wl) p̃(r)j,0 k(Xi; t∗(r)j,0 ) if t ∈ {t∗(r)1,0 , . . . , t∗(r)
k(r−1)

m ,0
}

0 otherwise

[13] for each unique value θ
∗(r)
j,l in θ

(r)
l , l = 0, . . . , L do

[14] update θ
∗(r)
j,l from

P[θ∗(r)j,l ∈ dt | · · · ] ∝ P0(dt) ∏
θi,l∈pl

i∈C(r)
j,l

k(Xi; t)

[15] end

the authors analyze the difference of ultraviolet and red filters (U−R) color distribution of a set
of 24 346 galaxies, stratified by density (Mps) and luminosity (Mr) of the galaxy. Specifically, we
consider the subset of n = 6 344 observations with medium luminosity, i.e. −20 < Mr < −19.
Following Balogh et al. (2004), the considered dataset is stratified into five different groups, by
binning with respect to the density Mps. This leads to a dataset consisting of L = 5 groups
of cardinality respectively equal to n1 = 478, n2 = 1622, n3 = 2515, n4 = 1173 and n5 =
556. We modelled such data with a GM-DDP mixture model, specified with a Normal-Inverse-
Gamma base measure, i.e. P0 = N(µ; m0, k0σ)× IG(σ; a0, b0). We specified the base measure’s
parameters as m0 = 2, k0 = 5, a0 = 4 and b0 = 1. For the sake of simplicity, we specified the
mass parameter c = 2 and a non-informative prior weight z = 0.5 for the common process
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in the definition of the µ̃l’s. We ran the algorithm for 10 000 of iterations, after 2 500 burn-in
iterations.
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FIGURE 3.5: Galaxy colours data, GM-DDP mixture model. Solid lines: posterior
mean for the GM-DDP mixture model; filled areas: 95% posterior credible bands;

dashed lines: posterior mean for the marginal DPM model.

Figure 3.5 shows the results of the estimated posterior means for the five groups, obtained by
fittin a GM-DDP mixture model (solid lines) and the equivalent estimates obtained by fitting
five independent DPM models (dashed line), via ICS. The figure also shows 95% posterior cred-
ible intervals for the GM-DDP mixture model (filled area). A difference in terms of posterior
means can be appreciated when the GM-DDP mixture and the independent DPM models are
considered: the borrowing of information induced by the GM-dependence makes the bimodal-
ity of the distribution more apparent. For example in the fifth panel, the posterior mean is
bimodal when dependence is exploited while it is not if the data are analyzed marginally.

3.7 Conclusions

We proposed a novel algorithm, the ICS, to sample from the posterior distribution of a PYM
model, using a conditional approach. The method combines the appealing features of both
marginal and conditional approaches: it is simple and interpretable, the number of random
elements sampled in each step is bounded, the allocation of observations in clusters is not
done sequentially and therefore is parallelize, and it allows easy quantification of the posterior
uncertainty.
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The implementation of the ICS, presented in Algorithm 1, is simple and reminiscent of the
marginal approach. Interestingly, our proposal is the only conditional approach for PYM mod-
els we are aware of, which does not rely on the stick-breaking representation of the PY.
One of the reasons motivating us to study new strategies for sampling from the posterior of
PYM models, was the need of a sampler whose efficiency is not affected by the value taken by
the discount parameter σ. By means of a simulation study, we could see that the ICS meets
this desideratum. Specifically, the ICS outperforms its competitors, as far as the ratio between
execution time and effective sample size is considered.
Finally, the ICS is a good candidate for contexts where efficient samplers are needed in order to
fit a Bayesian model based on the use of nonparametric mixtures. We consider a GM-DDP mix-
ture model for partially exchangeable data and described how the ICS strategy can be adapted
to this case.
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Chapter 4

Elicitation of Gibbs-type priors

Fairy tales lie just as much as statistics
do, but sometimes you can find a grain
of truth in them.

Sergej Vasilievič Luk’janenko, Author

Corradin, R., Nipoti, B.
Elicitation of Gibbs-type priors via cluster size constraints.
In preparation.

The introduction of the Dirichlet process (DP) by Ferguson (1973) was a breakpoint in the his-
tory of Bayesian nonparametric statistics. Since the celebrated paper of Ferguson, the study of
discrete random probability measures, generalizing the DP, has been an active area of research.
A trade-off between flexibility and analytical tractability typically characterizes the classes of
processes generalizing the DP, appeared in the literature. In this perspective, a central role has
been played by the family of Gibbs-type priors, briefly introduced in Section 1.7, which can be
considered as a convenient compromise between flexibility and tractability. Gibbs-type priors
were first studied by Gnedin and Pitman (2006), and include, as special cases, commonly used
nonparametric priors, such as the Dirichlet process (Ferguson, 1973), the Pitman-Yor process
(PY, Perman et al., 1992), the normalized generalized gamma process (NGG, Lijoi et al., 2007c,
see also Pitman, 2003, Prünster, 2002, James, 2002, Lijoi and Prünster, 2003, Regazzini et al.,
2003) with its particular case, the inverse Gaussian process (Lijoi et al., 2005b), and the nor-
malized σ-stable process (Kingman, 1975). For a recent review on the properties of Gibbs-type
priors and their use in Bayesian nonparametric statistics, one can refer to De Blasi et al. (2015).
Random probability measures in the family of Gibbs-type priors have been used to define non-
parametric priors in a variety of fields. Just to mention a few examples, they have been ex-
ploited in mixture models (e.g., Ishwaran and James, 2001; Lijoi et al., 2007c), survival analysis
(e.g., Jara et al., 2010), species sampling problems (e.g., Lijoi et al., 2007b; Lijoi et al., 2007a) and
applications in linguistics and information retrieval (e.g., Teh, 2006; Teh and Jordan, 2010). In
this chapter we focus on the study of some distributional properties of Gibbs-type priors and
we show that our findings can be conveniently used for prior elicitation of the parameters of
Gibbs-type priors in the mixture model framework. More specifically, under the assumption of
observations being exchangeable under a Gibbs-type prior, we derive a novel (and surprisingly
simple) expression for the distribution of the size of the cluster the (n + 1)th observation will
belong to, conditionally on an unobserved sample of size n. We will then show that this turns
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out to be convenient when one wants to incorporate into the model available prior information
on the size of the clusters of the sample.
Section 4.1 gives a formal introduction to the class of Gibbs-type prior and their predictive
distribution. In Section 4.2 we present our main result on the size of the of the (n + 1)th obser-
vation’s cluster. In Section 4.3 we investigate how the main result specializes when particular
examples of Gibbs-type priors are considered, namely the Dirichlet process, the Pitman-Yor
process and the normalized generalized gamma process. In Section 4.4 we describe a possible
strategy for using the result of Section 4.2 to elicit the parameters of a Gibbs-type prior.

4.1 Gibbs-type prior and induced partitions

Let X be a Polish space, equipped with its Borel σ-field X , and P0 be a diffuse probability
measure defined on the measurable space (X, X ). We say that p̃ is a species sampling model
(Pitman, 1995) if p̃ is a random probability measure of the form

p̃ =
∞

∑
j=1

WjδX̃j
,

where {Wj}j≥1 is a sequence of nonnegative random weights, such that ∑∞
j=1 Wj = 1 almost

surely, {X̃j}j≥1 is a sequence of random atoms, independent and identically distributed from
P0, and weights and jumps are independent. Consider a sample X1, . . . , Xn modelled as ex-
changeable with distribution governed by p̃, that is

Xj | p̃
iid∼ p̃, j = 1, . . . n

p̃ ∼ Q, (4.1)

where Q, the distribution of p̃, is a probability distribution over MX, the space of all probability
measures on (X, X ). To get an interpretation of the previous quantities, in the species sampling
context, a random atom X̃j could be thought of as a particular species, or as a label assigned to
a particular species, and the corresponding random weight Wj as the proportion of the species
Xj in the population. Let {Xj}j≥1 be an exchangeable sequence governed by a species sampling
model p̃, that is a sequence such that, for any n ≥ 1 and A1, . . . , An ∈ X ,

P[X1 ∈ A1, . . . , Xn ∈ An | p̃] =
n

∏
j=1

p̃(Aj).

We refer to {Xj}j≥1 as species sampling sequence. Due to the almost sure discreteness of p̃, there
will be, almost surely, ties in a species sampling sequence.
A key quantity in the species sampling context, and more in general in Bayesian statistics, is the
predictive distribution, that is the conditional distribution of the next observation Xn+1, given
an observed sample X1, . . . , Xn of size n (see Section 1.4). Recall that it can be defined as the
posterior expectation of p̃, given X1, . . . , Xn, that is

P[Xn+1 ∈ dt | X(n)] =
∫

MX

p̃(dt)Q(dp̃ | X(n)), (4.2)

where Q(· | X(n)) is the posterior distribution of p̃ and MX is the space of the probability
measures with support X.
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Let X∗1 , . . . , X∗k be the k unique values in the sample X1, . . . , Xn, and n = (n1, . . . , nk) be the
corresponding frequencies. Moreover assume that p̃ is such that E[ p̃] := P0, with P0 diffuse
distribution on X. Then the predictive distribution in Equation 4.2 can be equivalently written
as

P[Xn+1 ∈ dt | X(n)] = g0(n, k, n)P0(dt) +
k

∑
j=1

hj(n, k, n)δX∗j (dt), (4.3)

where g0(n, k, n) is the weight of the prior guess and hj(n, k, n) the weight of the j-th unique
value X∗j in the observed sample.
We focus our attention on the family of species sampling models for which the weight g0(n, k, n)
in the predictive distribution (4.3), does not depend on n. As anticipated in Section 1.7, the
members of such a family of random probability measures are named Gibbs-type priors. In
other terms, in Gibbs-type priors, the weight of the prior guess depends only on the size n of
the observed sample and the number k of unique values in the sample.
Next, we recall two meaningful results that relate the form taken by the weights in the predic-
tive distribution 4.3 with the PY process and, more in general, with Gibbs-type priors. The first
result in this direction is a sufficientness postulate for the PY process, proved by Zabell (1997):
the author lists a set of assumptions, sufficient to guarantee that a species sampling model is of
PY type.

Proposition 7. (Zabell, 1997) Let p̃ be an arbitrary species sampling model, with predictive probability
as in Equation 4.3 and Ψn be the induced random partition on {1, . . . , n}. Consider the following
assumptions:

C1. Pr[Ψn = ψn] > 0, for any ψn partition of {1, . . . , n};

C2. g0(n, k, n) = g0(n, k);

C3. hj(n, k, n) = hj(n, nj), for any j = 1, . . . , k.

If assumptions C1− C3 hold, then there exist σ ∈ [0, 1), ϑ > −σ and cn ≥ 0, such that:

i) if k ≥ 2 then

g0(n, k) =
ϑ + kσ

ϑ + n
, hj(n, nj) =

nj − σ

ϑ + n
;

ii) if k = 1 then

g0(n, k) =
ϑ + kσ

ϑ + n
− cn, hj(n, nj) =

nj − σ

ϑ + n
+ cn.

Investigating the assumptions of Proposition 7 will help us understanding the properties of
the PY process. Assumption C1 states that, a priori, all partitions have positive probability.
Asumption C2 implies that the probability of sampling a new value, in the predictive distribu-
tion of a Pitman-Yor process, does not depend on the composition n. From C3 it follows that
the probability of observing a value X∗j already appeared in the sample, is independent of the
number k of already observed atoms and depends on n only through nj.
Finally, cn plays a penalization role when only one atom has appeared in the sample. When we
set cn = 0 for every n ≥ 1, the predictive distribution becomes

Pr[Xn+1 ∈ · | X(n)] =
ϑ + kσ

ϑ + n
P0(·) +

1
ϑ + n

k

∑
j=1

(nj − σ)δX∗j (·),
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which corresponds to the predictive distribution of a PY process, given a sample X(n).
In a recent article Bacallado et al. (2017) proved an extension of the result in Proposition 7 to a
more general case.

Proposition 8 (Proposition 1 in Bacallado et al., 2017). Let p̃ be an arbitrary species sampling model,
with predictive probability as in Equation 4.3, allowing for either an infinite number of atoms or for a
random number T of atoms, whit T supported in N. Let Ψn be the random partition of {1, . . . , n}
induced by p̃. Consider the following assumptions:

D1. Pr[Ψn = ψn] > 0, for any ψn partition of {1, . . . , n};

D2. g0(n, k, n) = g0(n, k);

D3. hj(n, k, n) = hj(n, k, nj), for any j = 1, . . . , k.

If the assumptions D1− D3 hold, then there exist a parameter σ < 1 and a collection of nonnegative
weights {Vn,k, n ≥ 1, 1 ≤ k ≤ n}, with V1,1 = 1 and satisfying the recursion rule Vn,k = Vn+1,k+1 +
Vn+1,k(n− kσ), such that

g0(n, k) =
Vn+1,k+1

Vn,k
, hj(n, k, nj) =

Vn+1,k

Vn,k
(nj − σ), (4.4)

for any j = 1, . . . , k.

A species sampling model p̃ for which holds (4.4), is named Gibbs-type prior, or Gibbs-type
species sampling model, with discount parameter σ < 1.
Assumptions D1− D3 are similar to assumptions C1− C3, with the only difference involving
C3 and D3, with D3 relaxing the assumption of the probability of an already observed atom
being independent of k.
For the rest of this chapter, we will focus on the family of the Gibbs-type priors with discount
parameter σ in [0, 1), a family of species sampling models characterized by an infinite number
of atoms.
Figures 4.1 and 4.2 show, with an example, two sampling schemes, the first one correspond-
ing to the predictive distribution of a generic species sampling model, the second one to the
predictive distribution of a Gibbs-type prior. Figure 4.2 nicely illustrates the two-stage sam-
pling scheme characterizing Gibbs-type priors, where the next observation can either be a new
species or an already observed one; conditionally on the fact that it is an already observed one,
the probability of a specific unique value X∗j depends only on its frequency nj, the sample size
n and the discount parameter σ.
Gibbs-type priors give rise to a conveniently simple EPPF (Pitman, 1995, see Section 1.2 for
details). Next, we report the definition of Gibbs type random partitions.

Definition 7 (Gnedin and Pitman, 2006). An exchangeable random partition Ψ of the natural num-
bers is said to be of the Gibbs-type form if there exist a sequence {Vn,k}n,k≥1, where n, k ∈ N and
1 ≤ k ≤ n, such that for each composition (n1, . . . , nk) ∈ 4k

n the EPPF satisfies

p(n)k (n1, . . . , nk) = Vn,k

k

∏
j=1

(1− σ)nj−1, (4.5)

where for {Vn,k} holds the recursive identity Vn,k = Vn+1,k+1 + Vn+1,k(n− kσ), with the proviso that
V1,1 = 1.

Note that the EPPF in Equation 4.5 satisfies the three EPPF properties stated in Section 1.2. As
for the first property, since V1,1 = 1, it is immediate to check that p1

1(1) = V1,1(1− σ)0 = 1.
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n1 n2

∝ g0(n, n, k) ∝ g1(n, n, k) ∝ g2(n, n, k)

FIGURE 4.1: A step of a sampling from the predictive distribution of a general
species sampling model (n = 3, k = 2, n1 = 2, n2 = 1).

n1 n2

∝ Vn+1,k+1
Vn,k

∝ Vn+1,k+1
Vn,k

(n1 − σ) ∝ Vn+1,k+1
Vn,k

(n2 − σ)

∝ Vn+1,k
Vn,k

(n− kσ)

FIGURE 4.2: A step of a sampling from the predictive distribution of a Gibbs-type
prior (n = 3, k = 2, n1 = 2, n2 = 1).

Moreover, let ρ : Nk → Nk be a permutation of the first k natural numbers. Then the second
property follows by observing that

p(n)k (nρ(1), . . . , nρ(k)) = Vn,k

k

∏
j=1

(1− σ)nρ(j)−1 = Vn,k

k

∏
j=1

(1− σ)nj−1 = p(n)k (n1, . . . , nk).

Finally, as for the third property, observe that, by applying the recursive identity Vn,k = Vn+1,k+1 +
Vn+1,k(n− kσ) we get

Vn,k

k

∏
r=1

(1− σ)nr−1 =
k

∏
r=1

(1− σ)nr−1 [Vn+1,k+1 + Vn+1,k(n− kσ)]

=
k+1

∏
r=1

(1− σ)nr−1

[
Vn+1,k+1 + Vn+1,k

k

∑
j=1

(nj − σ)

]

= Vn+1,k+1

k+1

∏
j=1

(1− σ)nj−1 +
k

∑
j=1

Vn+1,k(nj − σ)
k

∏
r=1

(1− σ)nr−1,
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which is equivalent with

p(n)k (n1, . . . , nk) = p(n+1)
k+1 (n1, . . . , nk, 1) +

k

∑
j=1

p(n+1)
k (. . . , nj + 1, . . . ).

This proves the validity of the addition rule described in Section 1.2.
Starting from the EPPF function in Equation 4.5, we can derive the predictive distribution for a
Gibbs-type prior. Recall that the predictive distribution can be expressed in terms of the EPPF
as

P[Xn+1 ∈ dx | X1, . . . , Xn] =
p(n+1)

k+1 (n1, . . . , nk, 1)

p(n)k (n1, . . . , nk, 1)
P0(dx)

+
k

∑
j=1

p(n+1)
k (. . . , nj + 1, . . . )

p(n)k (n1, . . . , nk, 1)
δX∗j (dx), (4.6)

with X∗j j-th unique value. By substituting the EPPF function (4.5) in Equation 4.6 we obtain

P[Xn+1 ∈ dx | X1, . . . , Xn] ∝
Vn+1,k+1

Vn,k
P0(dx) +

Vn+1,k

Vn,k

k

∑
j=1

(nj − σ)δX∗j (dx). (4.7)

When we add Xn+1 to the sample, we can interpret Vn+1,k+1/Vn,k as the probability of moving
from a partition of n observations into k blocks to a partition of n + 1 elements with k + 1
blocks; similarly Vn+1,k/Vn,k ∑k

j=1(nj − σ), that is Vn+1,k/Vn,k(n− kσ), can be interpreted as the
probability of moving from a partition of n observations into k blocks to a partition of n + 1
observations with the same number k of blocks. The weights in (4.7) are of the form introduced
in (4.4), then a Gibb-type partition leads to the predictive distribution of a Gibbs-type prior.
As noted in Lijoi et al. (2007c), the parameter σ regulates a reinforcement mechanism, control-
ling the concentration of the observations in different blocks of the partition: a large value of
σ favors partitions with a large number of groups, with low frequencies in most of the groups
and large abundances in a few groups.
Different choices for the sequence {Vn,k, n ≥ 1, 1 ≤ k ≤ n} lead to different families of pro-
cesses. When σ ∈ (0, 1), following Pitman (2003) (see also Gnedin and Pitman, 2006, for de-
tails), it is possible to represent the non-negative weights Vn,k in a convenient integral form, as
described in the following result.

Proposition 9. Let σ ∈ (0, 1). Then we can express the weights Vn,k in Equation 4.7 via the integral
representation

Vn,k =
σk

Γ(n− kσ)

∞∫
0

g(t)t−kσ

1∫
0

sn−1−kσ fσ((1− s)t)dsdt,

for some function g(·) : R+ → R+, where fσ(·) denotes the density function of a positive σ-stable
random variable with Laplace transform exp{−λσ}, for any λ > 0.

Thus we can parametrize a Gibbs-type prior by (σ, g, P0). Particular choices for the function
g lead to different processes, within the Gibbs-type family. For example, by setting g(t) =
gPY(t; σ, ϑ) := σΓ(ϑ)t−ϑΓ(ϑ/σ), for any choice of ϑ > −σ, we recover the weights of the PY
process, that is
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VPY
n,k =

1
(ϑ)n

k−1

∏
i=0

(ϑ + iσ). (4.8)

The weights for the DP case, specified with total mass ϑ > 0 and base measure P0, are obtained
by letting σ go to zero, which leads to

VDP
n,k =

ϑk

(ϑ)n
. (4.9)

By setting g(t) = gNGG(t; σ, β) := exp{β− β1/σt}, for any β > 0, we obtain the weights for the
NGG process , that is

VNGG
n,k =

eβσk−1

Γ(n)

n−1

∑
i=0

(
n− 1

i

)
(−1)iβ

i
σ Γ (k− i/σ; β) , (4.10)

where Γ(z; a) =
∫ ∞

z sa−1e−sds is the incomplete gamma function. Also in this case, the weights
of the Dirichlet process are recovered by letting σ go to zero.

4.2 Cluster size distribution

In the species sampling framework, the predictive structure of the underlying random proba-
bility measure plays a key role. Given a sample of exchangeable observations X1, . . . , Xn, from
(4.1), the object of study is the distribution of a set of future observations Xn+1, . . . , Xn+m and,
when the latter set is not observed, the distribution of the (n + m + 1)th observation Xn+m+1.
A related quantity of interest is the probability of detecting, at the (n + m + 1)th observation,
species that appeared with any given frequency s in the enlarged, and only partially observed,
sample of size n + m. The last quantity is known as m-step s-discovery probability.
These research questions were exhaustively addressed, for Gibbs-type prior models, in Lijoi
et al. (2007b), Favaro et al. (2009) and Favaro et al. (2012b).
More in detail, Favaro et al. (2012b) introduced a Bayesian nonparametric estimator for the
m-step s-discovery probability, under the assumption of a Gibbs-type prior model.
Our study aims at contributing to this area of research by providing new insight on the prior
distribution of the m-step s-discovery probability, for Gibbs-type priors. In what follows, we set
n = 0 and consider an unobserved sample of size m. We then denote by Sm the random number
of times the species detected at the (m + 1)th observation, has appeared in the unobserved
sample X1, . . . , Xm. Outside the species sampling metaphor, Sm can be seen as the random
size of the cluster the observation Xm+1 is assigned to, given that the sample X1, . . . , Xm is
unobserved.
The main result of our study consists in the derivation a novel and conveniently simple expres-
sion for the distribution of Sm. This simplicity of such an expression is the key ingredient for
the study of distributional properties of Sm, which, as illustrated in Section 4.4, can be used for
parameter elicitation in the context of mixture models with Gibbs-type random mixing mea-
sure.
Let p̃ be a random probability measure of Gibbs-type, with support (X, X ), and such that
E[ p̃] = P0. Let X1, X2, . . . be an exchangeable sequence from p̃ and consider X1, . . . , Xm unob-
served. We define the cluster size distribution pm as

pm(s) := P[Sm = s] = E

[
P

[
m

∑
i=1
1[Xm+1=Xi ] = s | X1, . . . Xm

]]
, (4.11)
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for s ∈ {0, 1, . . . , m} and where the expectation in the last expression is with respect to (X1, . . . ,
Xm). Observe that, when s = 0, pm(s) coincides with the probability that Xm+1 takes a new
value, not appeared in the unobserved sample X1, . . . , Xm. Next we present the main result of
this chapter: it is remarkable that the expression we get for the distribution pm(s), defined in
Equation 4.11, is in terms of only Gibbs weights Vj,1 with the second index set equal to 1.

Theorem 8. Let p̃ be a Gibbs-type prior with σ ∈ [0, 1), characterized by a sequence {Vm,k : m ≥
1, 1 ≤ k ≤ m} satisfying the recursion identity Vm,k = Vm+1,k+1 + (m − kσ)Vm+1,k. Then for any
s ∈ {0, 1, . . . , m} we have

pm(s) :=
m

∑
j=s

(
m
j

)(
j
s

)
(−1)j−s(1− σ)jVj+1,1. (4.12)

Proof. For every non-negative integer m and any s ∈ {0, 1, . . . , m}, we define

qm(s) =
m

∑
j=s

(
m− s
j− s

)
(−1)j−s(1− σ)jVj+1,1 (4.13)

and observe that pm(s) = (m
s )qm(s). It is then easy to verify that the triangular identity

qm(s) = qm−1(s)− qm(s + 1) (4.14)

holds for any m ≥ 1 and s ∈ {0, 1, . . . , m− 1}. We then introduce the quantity Fm(s) defined,
for any non-negative integer m and any s ∈ {0, 1, . . . , m}, as

Fm(s) = (1− σ)s

m−s

∑
k=0

Vm+1,k+1

{
δm,s + (1− δk,0) ∑

π∈Pm−s,k

k

∏
j=1

(1− σ)mj−1

}
, (4.15)

where δi,j denotes the Kroneker delta function andPm−s,k is the set of all partitions of {1, . . . , m−
s} into k groups. The proof is composed by the following three steps.

1. Proving that the weights Fm(s) in (4.15) satisfy a triangular identity, analogous to (4.14).
That is, for any m ≥ 1 and s ∈ {0, 1, . . . , m− 1},

Fm(s) = Fm−1(s)− Fm(s + 1). (4.16)

2. Proving, by using (4.16), that, for any positive m and s ∈ {0, 1, . . . , m}, the weights in
(4.13) and in (4.15) coincide, that is

qm(s) = Fm(s). (4.17)

3. Showing that

pm(s) =
(

m
s

)
Fm(s). (4.18)

Combining (4.17) and (4.18) completes the proof.

Step 1.
We denote by Pm,k the set of all partitions of {1, . . . , m} into k groups and call ψ a generic
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element of Pm,k. We observe that

∑
ψ∈Pm,k

k

∏
j=1

(1− σ)mj−1 = (m− 1− kσ) ∑
ψ∈Pm−1,k

k

∏
j=1

(1− σ)mj−1

+ ∑
ψ∈Pm−1,k−1

k−1

∏
j=1

(1− σ)mj−1

and therefore rewrite Fm(s), for s ∈ {0, 1, . . . , m− 1}, as

Fm(s) = (1− σ)sVm+1,m−s+1

− (s + 1− σ)(1− σ)s

m−s−1

∑
k=1

Vm+1,k+1 ∑
ψ∈Pm−s−1,k

k

∏
j=1

(1− σ)mj−1

+ (1− σ)s

m−s−1

∑
k=1

Vm+1,k+1(m− (k + 1)σ) ∑
ψ∈Pm−s−1,k

k

∏
j=1

(1− σ)mj−1

+ (1− σ)s

m−s−1

∑
k=2

Vm+1,k+1 ∑
ψ∈Pm−s−1,k−1

k−1

∏
j=1

(1− σ)mj−1

= (1− σ)sVm+1,m−s+1

− (1− σ)s+1

m−(s+1)

∑
k=1

Vm+1,k+1 ∑
ψ∈Pm−(s+1),k

k

∏
j=1

(1− σ)mj−1

+ (1− σ)s

m−s

∑
r=2

Vm+1,r(m− rσ) ∑
ψ∈Pm−s−1,r−1

r−1

∏
j=1

(1− σ)mj−1

+ (1− σ)s

m−s−1

∑
k=2

Vm+1,k+1 ∑
ψ∈Pm−s−1,k−1

k−1

∏
j=1

(1− σ)mj−1

= (1− σ)sVm+1,m−s+1 − Fm(s + 1) + (1− σ)sVm+1,m−s(m− (m− s)σ)

+ (1− σ)s

m−s−1

∑
k=2

(Vm+1,k(m− kσ) + Vm+1,k+1) ∑
ψ∈Pm−s−1,k−1

k−1

∏
j=1

(1− σ)mj−1.

Exploiting the recursion {Vm,k = Vm+1,k+1 + (m− kσ)Vm+1,k} twice, we get

Fm(s) = −Fm(s + 1) + (1− σ)s

m−s−1

∑
k=2

Vm,k ∑
ψ∈Pm−s−1,k−1

k−1

∏
j=1

(1− σ)mj−1 + (1− σ)sVm,m−s

= −Fm(s + 1) + (1− σ)s

m−s

∑
k=2

Vm,k ∑
ψ∈Pm−s−1,k−1

k−1

∏
j=1

(1− σ)mj−1

= −Fm(s + 1) + Fm−1(s).

Step 2.
By evaluating (4.13) and (4.15) it is immediate to verify that, for every non-negative m,

qm(m) = (1− σ)mVm+1,1 = Fm(m). (4.19)

Next, we proceed by induction. For m = 1, we know by (4.19) that q1(1) = F1(1). Moreover,
by evaluating (4.13) and (4.15) and exploiting Vm,k = Vm+1,k+1 + (m− kσ)Vm+1,k, we check that
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q1(0) = V2,2 = F1(0) and conclude that, for m = 1, (4.17) holds for all s ∈ {0, 1, . . . , m}.
Given a generic positive integer r, we assume that (4.17) holds true for m = r and for every
s ∈ {0, 1, . . . , r}. The proof is concluded by showing that qr+1(s) = Fr+1(s) for every s ∈
{0, 1, . . . , r + 1}. We already know that qr+1(r + 1) = Fr+1(r + 1) by (4.19). When s = r, (4.17)
allows to write Fr+1(r) = Fr(r)− Fr+1(r + 1). We observe that qr(r) = Fr(r) by assumption and
we already checked that qr+1(r + 1) = Fr+1(r + 1). We conclude that Fr+1(r) = qr(r)− qr+1(r +
1), which is in turn equal to qr+1(r) by (4.14). The same argument can be repeated iteratively
for all values of s ∈ {r− 1, . . . , 0}.
Step 3.
We call Ψm = {C1, . . . , Ck} the random partition of {1, . . . , m} induced by the observations
X(m). For any C ⊆ {1, . . . , m}, we agree on the notation {Xm+1 ∈ C} to denote the event
{Xm+1 = Xi if i ∈ C and Xm+1 6= Xi if i ∈ {1, . . . , m} \ C}. Observe that, for any given subset
C ⊆ {1, . . . , m} of size |C| ∈ {0, 1, . . . , m}, we have

P[Xm+1 ∈ C | X(m)] =


Vm+1,k+1

Vm,k
if |C| = 0,

Vm+1,k
Vm,k

(|C| − σ) if |C| 6= 0 and C ∈ Ψm,

0 if |C| 6= 0 and C /∈ Ψm.

(4.20)

Starting from (4.20) we can derive the marginal probability of {Xm+1 ∈ C} by marginalizing
with respect to all possible partitions in Pm,k. We consider three cases.

a. If |C| = 0, then

P[Xm+1 ∈ C] =
m

∑
k=1

∑
ψ∈Pm,k

P(Xm+1 ∈ C | X(m))p(m)
k (|C1|, . . . , |Ck|)

=
m

∑
k=1

Vm+1,k+1 ∑
ψ∈Pm,k

k

∏
j=1

(1− σ)|Cj|−1.

b. If |C| = m, then

P[Xm+1 ∈ C] = ∑
ψ∈Pm,1

P(Xm+1 ∈ C | X(m))p(m)
1 (m)

= Vm+1,1(1− σ)m.

c. If |C| 6= 0 and |C| 6= m, then

P[Xm+1 ∈ C] =
m

∑
k=1

∑
ψ∈Pm,k

P(Xm+1 ∈ C | X(m))p(m)
k (|C1|, . . . , |Ck|)

=
m

∑
k=1

∑
ψ∈Pm,k : C∈ψ

Vm+1,k(|C| − σ)
k

∏
j=1

(1− σ)|Cj|−1

= (1− σ)|C|

m−|C|

∑
r=1

Vm+1,r+1 ∑
ψ∈Pm−|C|,r

r

∏
j=1

(1− σ)|Cj|−1.
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By combining a, b and c, we conclude that

P[Xm+1 ∈ C] = (1− σ)|C|

m−|C|

∑
k=0

Vm+1,k+1

δm,|C| + (1− δk,0) ∑
ψ∈Pm−|C|,k

k

∏
j=1

(1− σ)|Cj|−1


= Fm(|C|). (4.21)

Since, by definition pm(s) = ∑C:|C|=s P(Xm+1 ∈ C), we can combine (4.21) and (4.17) to show
that

pm(s) = ∑
C:|C|=s

Fm(|C|) =
(

m
s

)
Fm(s).

Next, starting from the expression for the cluster size distribution pm presented in Theorem 8,
we study its moments.

Theorem 9. Let Sm be a discrete random variable with distribution pm defined as in Equation 4.12.
Then, for every positive integer r, the r-th moment is defined as

E[Sr
m] =

m

∑
j=1

mj(1− σ)j

{
r
j

}
Vj+1,1. (4.22)

In Theorem 9, we denote by mj = ∏
j−1
s=0(m− s) the falling factorial and by{

r
j

}
=

1
j!

j

∑
s=0

sr(−1)j−s
(

j
s

)
a Stirling number of the second kind, such that {r

j} = 0 for any j > r.

Proof. Starting from the weights defined in Equation 4.12 we have.

E[Sr
m] =

n

∑
s=0

sr pn(s)

=
m

∑
s=1

sr
m

∑
j=s

(
m
j

)(
j
s

)
(−1)j−s(1− σ)jVj+1,1,

where the last term in the previous equation could be written, switching the sums, as

E[Sr
m] =

m

∑
j=1

Vj+1,1(1− σ)j

(
m
j

) j

∑
s=1

sr
(

j
s

)
(−1)j−s

=
m

∑
j=1

Vj+1,1(1− σ)j
m!

(m− j)!
1
j!

j

∑
s=1

sr
(

j
s

)
(−1)j−s

=
m

∑
j=1

mj(1− σ)j

{
r
j

}
Vj+1,1,

where the last term coincides with Equation 4.22.



68 Chapter 4. Elicitation of Gibbs-type priors

Starting from the previous result, in the next corollary, we display explicit expressions for the
first two moments of pm.

Corollary 1. Let S be a discrete random variable defined as in Equation 4.12. Then the first two mo-
ments are

E[Sm] = m(1− σ)V2,1 (4.23)

and

E[S2
m] = m(1− σ)V2,1 + m(m− 1)(1− σ)(2− σ)V3,1. (4.24)

Proof. From Theorem 9, we have

E[Sm] =
m

∑
j=1

mj(1− σ)j

{
1
j

}
Vj+1,1

= m(1− σ)V2,1

1

∑
s=0

s
(

1
s

)
(−1)j−s

= m(1− σ)V2,1,

because {1
j} = 0 for any j > 1. For the second moment we have

E[S2
m] =

m

∑
j=1

mj(1− σ)j

{
1
j

}
Vj+1,1

=
2

∑
j=1

mj(1− σ)j

{
1
j

}
Vj+1,1

= E[S] + m(m− 1)(1− σ)(2− σ)V3,1
1
2!

2

∑
s=0

s
(

1
s

)
(−1)j−s

= m(1− σ)V2,1 + m(m− 1)(1− σ)(2− σ)V3,1,

because {2
j} = 0 for any j > 2.

In the next result we introduce a helpful strategy to evaluate, via Monte Carlo, the weights
pm(s), for a generic Gibbs-type prior parametrized by (σ, g, P0). Such a strategy is similar in
spirit to the one presented in Arbel et al. (2017) and turns out to be very convenient when the
weights Vj,1 appearing in (4.12) are not available in closed form. Let Sσ,1 denote a polynomi-
ally tilted positive σ-stable random variable with tilting parameter 1, with density function
p(x; σ) = Γ(1 + σ)x−σ fσ(x) (see Devroye, 2009), and Ba,b denote a beta random variable with
parameters a and b.

Corollary 2. Let σ ∈ (0, 1) and let p̃ be a Gibbs-type prior random probability measure, with parameter
(σ, g, P0). Given a species sampling sequence {Xj}j≥1 modeled as in Equation 4.1, for any m ≥ 0 and
s ∈ {0, 1, . . . , m},

pg
m(s) =

(1− σ)s(σ)m−s

Γ(s + 1)Γ(m− s + 1)
E

[
g
(

Sσ,1

Bm−s+σ,1−σ+s

)]
, (4.25)

where the random variables Sσ,1 and Bm−s+σ,1−σ+s are independent.
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Proof. Starting from Equation 4.12 of the weights pm(s) and substituting the integral represen-
tation for the Vj+1,1’s we have

pg
m(s) =

m

∑
j=s

(
m
j

)(
j
s

)
(−1)j−s(1− σ)jVj+1,1

=

(
m
s

)
σ

Γ(1− σ)

∫ ∞

0
g(t)t−σ

∫ 1

0
fσ((1− q)t)q−σ

[
m

∑
j=s

(
m− s
j− s

)
(−1)j−sqj

]
dqdt

=

(
m
s

)
σ

Γ(1− σ)

∫ ∞

0

∫ 1

0
g(t)t−σ fσ((1− q)t)qs−σ(1− q)m−sdqdt

=

(
m
s

)
σ

Γ(1− σ)

∫ ∞

0

∫ 1

0
g(t)t−σ fσ(qt)(1− q)s−σqm−sdqdt

=

(
m
s

)
σ

Γ(1− σ)

∫ ∞

0

∫ 1

0
g
(

w
q

)
(w/q)−σ fσ(w)(1− q)s−σqm−s−1dqdt

= Cm,s,σ

∫ ∞

0

∫ 1

0
g
(

w
q

)
Γ(1 + σ)w−σ fσ(w)

(1− q)s−σqm−s+σ−1

B(m−s+σ,s−σ+1)
dqdt

= Cm,s,σE

[
g
(

Sσ,1

Bm−s+σ,1−σ+s

)]
,

and denoting by B(m−s+σ,s−σ+1) the beta function, the normalizing constant Cm,s,σ is equal to

Cm,s,σ =

(
m
s

)
σB(m−s+σ,s−σ+1)

Γ(1− σ)Γ(1 + σ)

=

(
m
s

)
Γ(m− s + σ)Γ(s− σ + 1)

Γ(1− σ)Γ(σ)Γ(m + 1)

=
(1− σ)s(σ)m−s

Γ(s + 1)Γ(m− s + 1)
,

where the last term is the constant in Equation 4.25.

Realizations of pm(s) can thus be obtained by sampling independently Bm−s+σ,s−σ+1 and Sσ,1.
A sample from a polynomially tilted positive σ-stable distribution can be obtained by adopting
the efficient strategy presented by Devroye (2009). It is particularly convenient to sample from
the distribution Sσ,1 in Equation 4.25, due to the fact that it is independent of both m and s,
and therefore, once σ is fixed, realizations of Sσ,1 can be stored and used to evaluate pm(s)
for every m ≥ 1 and s ∈ {0, 1, . . . , n}. The last observation is a convenient by-product of the
aforementioned fact that the distribution pm in (4.12) is expressed in terms of Gibbs weights
Vj,1 with the second index fixed equal to 1.

4.3 Special cases: DP, PY and NGG

While in the previous section we studied distributional properties of the general class of Gibbs-
type priors, here we consider how the same results specialize when popular examples within
the Gibbs family are considered.
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We start by combining the weights defined in Equation 4.9, Equation 4.8 and Equation 4.10,
with the result in Theorem 8, to study the cluster size distribution for the DP, PY and NGG,
respectively.

Corollary 3. Let {Xn}n≥1 be a sequence governed by a Gibbs-type prior p̃ and the distribution pm be
defined as in (4.11). Then the followings hold.

i) If p̃ is a DP, then for any m ≥ 0 and s ∈ {0, 1, . . . , m}

pDP
m (s) =

ϑ(m− s + 1)s

(ϑ + m− s)s+1
.

i) If p̃ is a PY process, then for any m ≥ 0 and s ∈ {0, 1, . . . , m}

pPY
m (s) =

(
m
s

)
(1− σ)s(ϑ + σ)m−s

(ϑ + 1)m
. (4.26)

i) If p̃ is a NGG process, then for any m ≥ 0 and s ∈ {0, 1, . . . , m}

pNGG
m (s) =

eβ(1− σ)s

Γ(s + 1)Γ(m− s + 1)

m

∑
i=0

(
m
i

)
(−1)iβi/σ(−i + σ)m−sΓ (1− i/σ; β) . (4.27)

Proof. We consider first the PY case, item ii) in Corollary 3. By plugging the expression for the
weights in Equation 4.8 into the definition of pm(s) in Equation 4.12, we get

pPY
m (s) =

m

∑
j=s

(
m
j

)(
j
s

)
(−1)j−s(1− σ)j

ϑ

(ϑ)j+1

=

(
m
s

) m

∑
j=s

(
m− s
j− s

)
(−1)j−s(1− σ)j

ϑΓ(ϑ)
Γ(ϑ + j + 1)

=

(
m
s

) m−s

∑
j=0

(
m− s

j

)
(−1)j(1− σ)j+s

Γ(ϑ + 1)
Γ(ϑ + s + j + 1)

=

(
m
s

)
Γ(ϑ + 1)

Γ(ϑ + m + 1)

m−s

∑
j=0

(
m− s

j

)
(−1)j(1− σ)j+s

Γ(ϑ + 1)
Γ(ϑ + s + j + 1)

=

(
m
s

)
(1− σ)s

(ϑ + 1)m

m−s

∑
j=0

(
m− s

j

)
(−1)j(1− σ + s)j(ϑ + s + j + 1)(m−s)−j

=

(
m
s

)
(1− σ)s(ϑ + σ)m−s

(ϑ + 1)m
,

where the last term coincides with the result stated in Equation 4.26, and follow by observing
that (a + b)k = ∑k

i=1 (
k
i)(−1)i(a + i)k−i(−b)i, for any k ∈N.

The DP case, item i) in Corollary 3, is obtained by setting σ equal to zero in pPY
m (s), that is

pDP
m (s) = pPY

m (s)
∣∣∣
σ=0

=

(
m
s

)
(1− σ)s(ϑ + σ)m−s

(ϑ + 1)m

∣∣∣∣
σ=0

=

(
m
s

)
(1)s(ϑ)m−s

(ϑ + 1)m
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=
Γ(m + 1)Γ(ϑ + m− s)

Γ(m− s + 1)Γ(ϑ + m + 1)

= ϑ
(m− s + 1)s

(ϑ + m− s)s+1
.

For the NGG process we have

pNGG
m (s) =

m

∑
j=s

(
m
j

)(
j
s

)
(−1)j−s(1− σ)j

eβ

Γ(j + 1)

j

∑
i=0

(
j
i

)
(−1)iβi/σΓ(1− i/σ; β)

=
m

∑
j=s

s−1

∑
i=0

(
m
j

)(
j
s

)
(−1)j−s(1− σ)j

eβ

Γ(j + 1)

(
j
i

)
(−1)iβi/σΓ(1− i/σ; β)

+
m

∑
j=s

j

∑
i=s

(
m
j

)(
j
s

)
(−1)j−s(1− σ)j

eβ

Γ(j + 1)

(
j
i

)
(−1)iβi/σΓ(1− i/σ; β)

= A + B.

We focus on term A and observe that

A =
m

∑
j=s

(
m
j

)(
j
s

)
(−1)j−s(1− σ)j

eβ

Γ(j + 1)

s−1

∑
i=0

(
j
i

)
(−1)iβi/σΓ(1− i/σ; β)

= eβ
s−1

∑
i=0

(−1)iβi/σΓ(1− i/σ; β)
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where pFq(a1, . . . ap; b1, . . . , bq; c) is the generalized hypergeometric function. In a similar way
we work on B and obtain
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Now, by combining A and B we have
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which coincides with the expression in Equation 4.27.

The results stated in Corollary 3 allows us to study the distribution of well known families of
processes within the Gibbs family. Figure 4.3 displays the cluster size distribution pm for a PY
process, for different choices of the parameters σ and ϑ.
Observe that when ϑ = 1 and σ = 0, case corresponding to the DP case with mass equal to one,
the cluster size distribution is uniform over its support {0, . . . , m}. This means that, in this case,
given an unobserved sample of size m, all the cluster sizes for the next observation Xm+1, are
equally likely. For any fixed value σ, it can be appreciated that, when the parameter ϑ grows,
the cluster size distribution concentrates its mass on small values; on the contrary, when the
parameter ϑ becomes small, the cluster size distribution concentrates its mass on large values
of its support.
The parameter σ plays an opposite role: for any fixed ϑ, large values of σ favour small cluster
sizes, while small values of σ favour large cluster sizes.
Figure 4.4 shows the cluster size distribution for the NGG process, for different choices of the
parameter β = {0.5, 1, 2}, different values of the discount parameter σ = {0.15, 0.3, 0.45, 0.6},
and m = 10. The role played by the parameters β and σ is analogous to the role of ϑ and σ in
the PY process case. Specifically, for any fixed σ, when β becomes small, the mass in the cluster
size distribution moves to large values of its support; when the parameter β grows, the cluster
size distribution concentrates its mass on small values of its support. On the contrary, for any
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FIGURE 4.3: Cluster size distribution for the Pitman-Yor process, for different
values of the strength parameter ϑ = {0.5, 1, 2}, different values of the discount

parameter σ = {0, 0.25, 0.5, 0.75}, and m = 10.

fixed β, if σ becomes large, the mass of the cluster size distribution moves from large values to
small values of its support; when σ is small, large cluster sizes are favoured.
Starting from Corollary 1, we derive the expected values and the second moments of the cluster
size distribution for the DP, PY and NGG cases.

Corollary 4. Let p̃ be a Gibbs-type prior and S a discrete random variable with support {0, 1, . . . , m}
and distribution defined in Equation 4.12. Then the following results hold.

i) If p̃ is a DP with mass parameter ϑ, then

E[Sm] =
m

ϑ + 1
and E[S2

m] = E[Sm]

(
1 + 2

m− 1
ϑ + 2

)
ii) If p̃ is a PY process with discount parameter σ ∈ [0, 1) and strength parameter ϑ > −σ, then

E[Sm] =
m(1− σ)

ϑ + 1
and E[S2

m] = E[Sm]

(
1 +

(2− σ)(m− 1)
ϑ + 2

)
iii) If p̃ is a NGG process with parameters σ ∈ (0, 1) and β > 0, then

E[Sm] = m(1− σ)eβ
[
Γ(1; β)− β1/σΓ (1− 1/σ; β)

]
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FIGURE 4.4: Cluster size distribution for the normalized generalized gamma pro-
cess, for different values of β = {0.5, 1, 2}, different values of the discount param-

eter σ = {0.15, 0.3, 0.45, 0.6}, and m = 10.

and

E[S2
m] = m(1− σ)eβ

{
Γ(1; β)

[
1 +

(m− 1)(2− σ)

2

]
−2β1/σΓ (1− 1/σ; β) +

1
2

β1/σΓ (1− 2/σ; β)

}
The proof of the previous Corollary is trivial, and can be obtained by substituting the process-
specific weights Vj+1,1 in Equation 4.23 and Equation 4.24.
Next we study the behaviour of the expected values derived in Corollary 4, for different values
of the parameters characterizing the process. Figure 4.5 displays the expected value curves for
the PY process as a function of the discount parameter σ ∈ [0, 1), for different choices of the
strength parameter ϑ ∈ {0.5, 1, 2}, and for m = 10.
Figure 4.5 shows a linear dependence between the expected value of the cluster size distribu-
tion and the discount parameter σ. When σ moves closer to the upper extreme of its support,
the expected value decreases to zero. Figure 4.6 shows the behaviour of the variance of the
cluster size distribution for the PY process, as function of the parameter σ, for the same condi-
tions considered in Figure 4.5. The variance, as a function of the discount parameter σ, displays
a quadratic shape, with a scaling effect controlled by the strength parameter ϑ.
Similar observations can be made for the normalized generalized gamma process.
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FIGURE 4.5: Expected value of the cluster size distribution for the Pitman-Yor
process, as a function of the discount parameter σ ranging in [0, 1), for different

values of the strength ϑ ∈ {0.5, 1, 2}, and m = 10.
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FIGURE 4.6: Variance of the cluster size distribution ffor the Pitman-Yor process,
as a function of the discount parameter σ ranging in [0, 1), for different values of

the strength ϑ ∈ {0.5, 1, 2}, and m = 10.
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FIGURE 4.7: Expected value of the cluster size distribution for the normalized
generalized gamma process, as a function of the discount parameter σ ranging in

(0, 1), for different values of the parameter β ∈ {0.5, 1, 2} and m = 10.
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FIGURE 4.8: Variance of the cluster size distribution for the normalized gener-
alized gamma, as a function of the discount parameter σ ranging in (0, 1), for

different values of the parameter β ∈ {0.5, 1, 2} and m = 10.

Figures 4.7 and 4.8 show, respectively, the expected value and the variance curves for the NGG
process, as functions of the discount parameter σ ∈ (0, 1), for different choices of the parameter
β ∈ {0.5, 1, 2}, and for m = 10. The expected value curves show a sub-linear shape and seem
to approach linearity when β gets small. As for the variance, it interesting to observe that, at
least for the considered scenarios, for small values of the discount parameter σ, the variance is
an increasing function of β, while for large values of σ, the variance is decreasing in β.

4.4 Elicitation of a Gibbs-type prior parameters

A common problem arising when dealing with nonparametric models is their sensitivity to
the parameters characterizing the prior process. Different parameter choices might lead to
radically different posterior inferences and, as a result, to different statistical conclusions. As
an explanatory example, we consider a dataset of size n = 150 generated from a mixture
of two Gaussians and we fit to such data a PY mixture model with Gaussian kernel and
Normal/Inverse-Gamma base measure, i.e. P0 = N(µ; 0, 5σ)× IG(σ; 2, 1).

σ
0.0 0.2 0.4 0.6 0.8

ϑ

0.1 2.0 2.0 2.0 2.9 3.4
0.5 2.0 2.1 2.3 3.0 3.8
1 2.0 2.1 3.5 3.6 4.1
5 4.5 7.3 7.2 7.3 8.0
10 9.8 9.2 10.3 10.9 10.8
25 16.2 17.8 18.5 18.3 18.1

TABLE 4.1: Number of clusters in the VI estimated partition (see Wade and
Ghahramani, 2018, for details) for a PY mixture model. Left to right increasing
the discount parameter, top to bottom increasing the strength parameter. Results
averaged over 10 replications. Data simulated from a mixture of two Gaussian

distribution, 1
3 N(−2.5, 1) + 2

3 N(2.5, 1).

Table 4.1 shows the number of clusters of the VI estimated partition (see Wade and Ghahra-
mani, 2018, for details). It is possible to appreciate that the estimated number of clusters is
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very sensitive to the choice of the parameters. On top of that, it is important to stress that
also the specification of the base measure, and in particular the parameters characterizing its
scale component (here kept fixed across all the considered scenarios) might affect the estimated
clustering. This aspect will be investigated in Section 4.4.1.
In this section we focus on the class of mixture models with Gibb-type mixing measure and
investigate the elicitation of the parameter of the prior process when prior information on the
clustering structure underlying the data is available.
Specifically, we want to use Theorem 8 to devise an elicitation strategy for the parameters
of p̃, possibly restricting their support to a subset of plausible values. Suppose that a prior
belief on the cluster size distribution is available, we aim at integrating such information in the
specification of the Gibbs-type mixture model.
Here, we focus on the exemplifying case when the available prior knowledge refers to the prior
probability that the (m + 1)th observation Xm+1 will be assigned to a cluster with size larger or
equal than a given threshold τm, in the not yet observed sample X1, . . . , Xm.
Formally, let Sm be a discrete random variable with distribution defined in Equation 4.11, taking
values in {0, 1, . . . , m}. Observe that, for any threshold τm ∈ {0, 1, . . . , m} we have

Pr[Sm ≥ τm] =
m

∑
s=τm

pm(s)

=
m

∑
s=τm

m

∑
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(
m
j

)(
j
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)
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=
m

∑
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m

∑
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(
m
j

)(
j
s

)
(−1)j−s(1− σ)jVj+1,1

=
m

∑
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(
m
j

)
(1− σ)jVj+1,1

j

∑
s=τm

(
j
s

)
(−1)j−s

=
m

∑
j=τm

(
m
j

)(
j

τm

)
τm

j
(−1)j−τm(1− σ)jVj+1,1. (4.28)

Based on the last result, we can easily study the probability of any event of the type Pr[Sm ∈ A],
with A ⊆ {0, 1, . . . , m}. Nonetheless, for the sake of illustration, here we focus only on events
of the type A = {τm, τm + 1, . . . , m}. The last result can then be used, given a confidence level
pτm ∈ (0, 1), to restrict the parameter space to the subspace such that Pr[S ≥ τm] ≶ pτm .
Given a threshold τm, we can study how the probability Pr[Sm ≥ τm] changes as a function of
the parameters of a process. Figure 4.9 shows two surfaces corresponding to the probability
P[Sm ≥ τm] for a PY process, as a function of σ and ϑ, with m = 30. The left panel refers to
a threshold τ30 = 10, the right panel to τ30 = 20. Observe that, for fixed values of σ and ϑ, a
larger value of τm leads to a smaller value for P[Sm ≥ τm].
Similar comments can be made for Figure 4.10, where the displayed surfaces correspond to
Pr[Sm ≥ τm] for a NGG process, with m = 30: the left panel refers to a threshold τ30 = 10, the
right panel to τ30 = 20. Also for the NGG process, when the value of τm increases, the surface
of P[S ≥ τm] assumes smaller values.

4.4.1 Application to the NGC 2419 globular cluster

We already introduced in Section 2.7 an astronomical dataset, referring a portion of sky with
m = 139 stars, possibly belonging to a globular cluster called NGC 2419 (see Ibata et al.,
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FIGURE 4.9: Probability Pr[Sm ≥ τm] for the Pitman-Yor case, as a function of
σ ∈ [0, 1) and ϑ ∈ (−σ, . . . , 5), for sample size m = 30, lower bounds τ30 = 10

(left panel) and τ30 = 20 (right panel).

FIGURE 4.10: Probability Pr[Sm ≥ τm] for the normalized generalized gamma, as
a function of σ ∈ [0, 1) and β ∈ (0, 10), for sample size m = 30, lower bounds

τ30 = 10 (left panel) and τ30 = 20 (right panel).

2011, for details on the globular cluster). For each star we observe a four-dimensional vec-
tor (Y1, Y2, V, [Fe/H]), where (Y1, Y2) is a two-dimensional projection on the plane of the sky
of the position of the star, V is its line of sight velocity and [Fe/H] its metallicity, a measure of
the abundance of iron relative to hydrogen. A key question arising with these data consists in
identifying the stars that, among the 139 observed, can be rightfully considered as belonging
to NGC 2419.
Astronomers expect the large majority of the observed stars to belong to the globular cluster:
a priori, they believe that, if an ideal (m + 1)th star was to be observed in the same portion of
sky, it would be very likely for it to belong to a large cluster, that is a cluster of size larger or
equal than 100. We formalize this belief by setting the threshold τ139 = 100 and the confidence
level p100 = 0.9: we are then ready to implement the proposed elicitation strategy so to obtain
a restricted support for the parameters σ and ϑ.
We considered a PY mixture model with a multivariate Gaussian kernel (PYM-G). Let φd(x; µ, Σ)
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be a multivariate Gaussian density function, and θ = (µ, Σ), where the column vector µ and
the matrix Σ represent, respectively, mean vector and covariance matrix of the Gaussian kernel.
A PYM-G admits the following hierarchical representation:

Xi | θi = (µi, Σi)
ind∼ φd(xi; µi, Σi),

θi | p̃ iid∼ p̃,
p̃ ∼ PY(ϑ, σ, P0),

where σ ∈ [0, 1) and ϑ > −σ.
We choose for the base measure P0 the product of two distributions: the scale parameter is
distributed as an inverse-Wishart distribution while, conditionally to the scale parameter, the
location parameter is distributed as a normal distribution. The previous specification, namely
a multivariate normal-inverse-Wishart distribution, that is

P0(dµ, dΣ; π) = P(dµ | Σ; π)× P(dΣ; π)

= Nd(dµ; m0, k0Σ)× IW(dΣ; ν0, S0),

is jointly conjugate to a Gaussian kernel. By the use of the result in Equation 4.28, we restrict
the support of ϑ and σ to a subset of plausible values, based on the definition of the threshold
τ139 = 100 and the confidence level p100 = 0.9. We fitted the PYM-G model via the ICS algo-
rithm introduced in Chapter 3, and implemented in the BNPmix R package1. By applying the
proposed elicitation strategy, we were able to restrict the support of the parameters σ and ϑ to
the set Cσ,ϑ := {(σ, ϑ) : σ ∈ (0, 1), ϑ ∈ (−σ, ∞), Pr[S139 ≥ 100] ≥ 0.9}, shown in Figure 4.11.
We assigned a uniform hyperprior on Cσ,ϑ and introduced a griddy-Gibbs step (see Ritter and
Tanner, 1992, for details) for the posterior update of σ and ϑ within the GIbbs sampler.

σ

ϑ−1

1

0.01 0.015

FIGURE 4.11: Restricted parameter space for a PYM-G with n = 139, τ139 = 100
and p100 = 0.9, gray filled area.

Posterior inference was drawn based on 5 000 iterations, after 2 500 burn-in iterations. We spec-
ified the parameters in the base measure P0 so that µ | Σ ∼ N4(0, 5 Σ) and Σ ∼ IW(ν0, S0),
with (ν0, S0) = (26, diag(21)). The particular choice for the parameters of the scale component

1The package is available at https://github.com/rcorradin/BNPmix and can be installed via devtools.

https://github.com/rcorradin/BNPmix
https://github.com/rcorradin/BNPmix
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guarantees that E[Σ] = diag(1), and k0 = 5 is set so to ensure that the prior on the location
component is not strongly concentrated around its mean value.
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FIGURE 4.12: Analysis of the sensitivity to the values taken by the parameter
α controlling the scale component in the base measure of the restricted PYM-G
model. Left plot: number of clusters. Right plot: size of the largest cluster. Opti-
mal partitions were estimated by applying Wade and Ghahramani (2018)’s vari-

ation of information method.

Different specifications of the base measure might lead to different posterior inference. As far
as the clustering of the data is concerned, the parameters characterizing the scale component
of the base measure are expected to be particularly relevant. In order to evaluate the effect of
such a choice, we performed a sensitivity analysis for the specification of scale matrix charac-
terizing the scale component of the base measure. Specifically, we set Σ ∼ IW(ν0, αS0), with
ν0 = 26 and S0 = diag(21), implying that E[Σ] = diag(α), and considered a grid of values
α ∈ {0.1, 0.2, 1, 5, 10}. Figure 4.12 displays, as a function of α, the number of clusters and the
size of the largest cluster in the optimal partition of the data obtained by applying Wade and
Ghahramani (2018)’s variation of information method. It is interesting to observe that, at least
for the range of values we considered, α seems to have no impact on the number of clusters in
the optimal partition, which is constantly equal to 2. On the contrary, a clear trend can be ap-
preciated by looking at the size of the largest cluster, with larger values of α leading to a more
populated largest cluster. While any sensible statistical analysis should take this sensitivity into
account, henceforth, for the sake of illustration, we set α = 1, which corresponds to assuming
S0 = diag(21).
Figure 4.13 shows the scatter plots of the dataset with individual observations colored accord-
ing to their membership in the partition estimated based on the variation of information loss
function. The estimated partition is composed of two clusters and stars are either labeled as
main group and other group. The largest group, identified as the set of stars belonging to the
globular cluster, contains 124 stars (gray circles in Figure 4.13), size which is consistent with the
prior belief expressed by the astronomers and incorporated into the prior model. The remain-
ing 15 stars (red triangles in Figure 4.13) are thus considered contaminant.
Table 4.2 shows the comparison between the partitions estimated via PYM-G model, with the
restricted parameters’ space, the partition estimated via DPM-G model and the partition iden-
tified in Ibata et al. (2011) (for more details refer to Section 2.7). Interestingly, all the stars which,
according to Ibata et al. (2011), belong to or are likely to belong to the globular cluster, fall in
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FIGURE 4.13: NGC 2419 data. Partition estimated via PYM-G model, with sup-
port for σ and ϑ restricted by the constraint P[S139 ≥ 100] ≥ 0.9, combined with

Wade and Ghahramani (2018)’s variation of information method.

the largest cluster of the optimal partition estimated based on the restricted PYM-G model.
Moreover, if we compare the optimal partition obtained by means of the restricted PYM-G
model with that one obtained by means of a DPM-G model, it is possible to appreciate that the
restricted PYM-G model nicely gathers into a single group all the stars which are deemed to
contaminants, unlike the DPM-G which detected 4 distinct clusters of contaminants.

4.5 Conclusions

In this chapter we studied the distribution of the size of the cluster the (m + 1)th observation
is assigned to, given an unobserved sample of size m, in the context of Gibbs-type priors. The-
orem 8, main result of the chapter, provides a conveniently simple expression for the cluster
size distribution, which is a function of Gibbs weights only in the form Vj,1, with the second
index equal to 1. We proposed a general representation for such distribution for the (g, σ, P0)
parametrization of Gibbs-type priors. Starting from Theorem 8, we studied the moments of the
cluster size distribution, as showed in Corollary 1. We further investigated how the previous
quantities specialize when three popular members of the Gibbs family are considered, namely
DP, PY and NGG. Specifically, we obtained closed form expressions for the corresponding clus-
ter size distributions in Corollary 3, and for the moments in Corollary 4. Finally, in Section 4.4,
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Ibata et al. groups DPM-G groups
GC LGC C largest A B C D

total 118 12 9 124 1 5 1 8
restricted largest 124 114 10 0 123 0 0 1 0
PYM-G groups A 15 4 2 9 1 1 5 0 8

TABLE 4.2: NGC 2419 data. Comparison between the groups identified by the
PYM-G restricted model with the partition described in Ibata et al. (2011) (GC
globular cluster, LGC likely globular cluster and C contaminants) and the groups
estimated via DPM-G model. PYM-G and DPM-G partitions estimated with

Wade and Ghahramani (2018)’s variation of information method.

we considered mixture models with Gibbs-type mixing measure and proposed a convenient
strategy for eliciting the parameters of the prior process, based on the distributional properties
studied in this chapter. Our strategy is illustrated by analysing the globular cluster NGC 2419
dataset.
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Chapter 5

Conclusions

Every story is organic, and every story
finds its own ending.

Tom Coraghessan Boyle, Author

We presented a detailed investigation of three aspects concerning the modelling, computational
and distributional properties of nonparametric mixtures.
Chapter 1 provides an introduction to the fundamentals of the Bayesian nonparametric area,
which allowed us to introduce the main results needed to understand the concepts discussed
in the rest of the manuscript.
In Chapter 2 we investigated two aspects of invertible affine transformation of the data within
the context of Dirichlet process mixture models with Gaussian kernel (DPM-G). We first con-
sidered a finite sample size framework and derived an explicit expression which allows the
parameters of a DPM-G model to be specified in such a way that the posterior inference ob-
tained conditionally on transformed data is equivalent with that one obtained conditionally
on the original data. The main contribution of Chapter 2 is the derivation of an asymptotic
result which, under mild assumptions on the true data generating distribution, guarantees that
the posterior distributions obtained, conditionally on a dataset or any affine transformation of
it, become more and more similar as the sample size grows. We referred to such property as
asymptotic robustness of DPM-G models to affine transformations of the data. In force of this
asymptotic result, we carried out an analysis on an astronomical dataset of stars in the field of a
globular cluster, by marginally standardizing the data and by choosing a noninformative prior
specification for the standardized data.
Chapter 3 introduced a new strategy, named importance conditional sampler (ICS), to estimate
Pitman-Yor mixture models, using a conditional approach. The proposed strategy does not rely
on the stick-breaking representation of the Pitman-Yor process, thus avoiding the issues inher-
ited from such representation by popular algorithms such as the slice and the retrospective
sampler. The ICS was compared with popular algorithms for nonparametric mixture models,
by performing an exhaustive simulation study. Unlike other conditional approaches, the effi-
ciency of the ICS does not seem to be affected by the value taken by the discount parameter
of the Pitman-Yor process. The same sampling idea was then adopted to efficiently carry out
posterior inference based on flexible class of models for partially exchangeable data, obtained
by normalizing dependent gamma completely random measures. The performance of the ICS
scheme in this context was illustrated by analyzing an astronomical dataset referring to the
color distribution of galaxies, stratified by their density.
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In Chapter 4 we focused on species sampling problems and studied some prior properties of
Gibbs-type priors with the purpose of devising a convenient strategy for parameter elicitation.
Specifically we obtained a simple expression for the cluster size distribution of the next obser-
vation, given an unobserved exchangeable sample distributed according to a Gibbs-type prior.
In addition, we could characterize the moments of such distribution and obtain explicit expres-
sion for special processes in the family of Gibbs-type priors. Finally we described a simple
strategy for eliciting the parameters of Gibbs-type priors by exploiting our findings, and we
illustrated such procedure by analyzing an astronomical dataset referring to stars in the field
of a globular cluster. Based on the experts’ opinion regarding the size of the largest cluster, we
were able to restrict the process’ parameter space for a Pitman-Yor mixture model to a subset
of plausible values.
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Appendix A

Completely Random Measure

Completely random measures (CRM) were first introduced by Kingman (1967). Thorough
overviews can be found in Kingman (1993) and Daley and Vere-Jones (2008). For an insight-
ful discussion on the role of CRMs in Bayesian nonparametric statistics, one can refers to the
work of Lijoi and Prünster (2010). Let (X, X ) be a measurable space, with X Polish space and
X = B(X) the corresponding Borel σ-algebra.

Definition 8. We say that a measure µ on (X, X ) is boundedly finite if µ(A) < ∞ for any bounded
set A ∈ X .

We denote byMX the space of boundedly finite measures over the measurable space (X, X ),
with MX = B(MX) standing for the corresponding Borel σ-algebra.

Definition 9. A measurable map µ from a probability space (Ω, B, P) into (MX, MX) is named
completely random measure (CRM) on X if the random variables defined by µ(A1), . . . , µ(Ak) are
mutually independent, for any pairwise disjoint sets A1, . . . , Ak ∈ X.

Kingman (1993) proved that a CRM is almost sure discrete, which implies that any realization
of a CRM is a discrete measure with probability 1. A CRM µ defined on (X, X ) can always be
decomposed into two components, µc and µ0:

µ = µc + µ0 =
∞

∑
i=1

WiδXi +
M

∑
i=1

Jiδxi , (A.1)

where µc is still a completely random measure, with both random jumps Wi and random loca-
tions Xi, while µ0 is a measure with random jumps Ji and fixed locations xi. Moreover µc and
µ0 are independent. The first component µc in the representation described in Equation A.1 is
also characterized by the Lévy-Khintchine representation:

E
[
e−
∫

X
f (x)µc(dx)

]
= exp

−
∫

R+×X

[1− e−s f (x)]ν(ds, dx)

 , (A.2)

with f : X → R measurable function such that
∫
| f |dµc < ∞ almost surely. A CRM as µc can

be fully identified by the measure ν in Equation A.2, ν is named Lévy intensity of µc and it is a
measure on R+ ×X such that ∫

B×R+

min{s, 1}ν(ds, dx) < ∞, (A.3)

for any set B ∈ X . The measure ν contains all the information about the distribution of jumps
and locations of the CRM µc. If the measure ν admits the following representation

ν(ds, dx) = ρ(ds)α(dx), (A.4)
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then jumps and locations have independent distributions and µc is called homogeneous.
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Appendix B

Marginal distribution of DPM

Let p̃ follows a Dirichlet process distribution. Let X1, . . . , Xn be a n-size sample from a model
with hierarchical specification

Xi | θi ∼ k(Xi, θi)

θi | p̃ ∼ p̃
p̃ ∼ DP(α, P0).

We want to marginalize out the distribution of p̃ in the joint distribution of (θ, X(n), p̃):

Ep̃[L(θ, X(n), p̃)] = L(θ, X(n))

in the context of DPM, where p̃ is a DP, θ a vector of atoms and X(n) a vector of data. We have
that

Ep̃

[
n

∏
i=1

k(Xi, θi) p̃(dθi)

]
= Ep̃

[
n

∏
i=1

k(Xi, θi)
n

∏
i=1

p̃(dθi)

]

= Ep̃

[
n

∏
i=1

k(Xi, θi)
k

∏
j=1

p̃(dθ∗j )
nj

]
= Ep̃

 k

∏
j=1

p̃(dθ∗j )
nj ∏

i∈Cj

k(Xi, θ∗j )


where θ∗ is the vector of unique values of θ and nj is the frequency of θ∗j in θ, or equivalently
the number of observation belong to the block in Cj of the induced partition. A DP could be
expressed in term of normalization of a Gamma CRM µ (see A), so it is possible to write a DP as
µ(dθ∗j )

µ(Θ)
, where Θ is the whole support of the process (i.e. the support of the base measure). More-

over the value Eµ

[
e−µ(t)

]
with µ(t) =

∫
Θ t(x)µ(dx) is known. Then, following the previous

equation, we have

= Ep̃

 k

∏
j=1

µ(dθ∗j )
nj

µ(Θ)nj ∏
i∈Cj

k(Xi, θ∗j )


= Eµ

 k

∏
j=1

µ(dθ∗j )
nj ∏

i∈Cj

k(Xi, θ∗j )
1

Γ(n)

+∞∫
0

un−1e−uµ(X)du
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=
1

Γ(n)

+∞∫
0

un−1Eµ

[
k

∏
j=1

µ(dθ∗j )
nj e−uµ(X)

]
∏
i∈Cj

k(Xi, θ∗j )du

Note that by the additive property of µ(·), by setting Θ∗ = Θ \ {θ∗1 , . . . , θ∗k}, the measure µ eval-
uated over the entire support can be decomposed as µ(Θ) = µ(Θ∗) + µ(dθ∗1 ) + · · ·+ µ(dθ∗k ).
Back on the main equation, we have

=
1

Γ(n)

+∞∫
0

un−1Eµ

[(
k

∏
j=1

µ(dθ∗j )
nj e−uµ(dθ∗j )

)
e−uµ(Θ∗)

]
du ∏

i∈Cj

k(Xi, θ∗j )

ind
inc
=

1
Γ(n)

+∞∫
0

un−1
k

∏
j=1

Eµ

[
µ(dθ∗j )

nj e−uµ(dθ∗j )
]

Eµ

[
e−uµ(Θ∗)

]
︸ ︷︷ ︸

A

du ∏
i∈Cj

k(Xi, θ∗j )

We can rewrite A as A = Eµ

[
e−u

∫
X

1[X∗ ](x)µ(dx)
]
= Eµ

[
e−
∫

X
u1[X∗ ](x)µ(dx)

]
= E

[
e−µ(u1[X∗ ])

]
.

Then, substituting the decomposition instead of A in the main equation, we have

=
1

Γ(n)

+∞∫
0

un−1Eµ

[
e−µ(u1[Θ∗ ])

] k

∏
j=1

Eµ

[
(−1)nj

∂nj

∂unj
e−uµ(dθ∗j )

]
du ∏

i∈Cj

k(Xi, θ∗j )

=
1

Γ(n)

+∞∫
0

un−1Eµ

[
e−µ(u1[Θ∗ ])

] k

∏
j=1

(−1)nj
∂nj

∂unj
Eµ

[
e
−µ(u1[dθ∗j ]

)
]

du ∏
i∈Cj

k(Xi, θ∗j )

The Laplace transform of a CRM is given by the Lévy–Khintchine representation. For the expected
value of a Gamma CRM we have that

Eµ

[
e−µ(u1[Θ∗ ])

]
= exp

{
−
∫

Θ
log
(

1 + u1[Θ∗](x)
)

α(dx)
}

= exp {−α(Θ∗) log(1 + u)}
= (1 + u)−α(Θ∗)

and in the same way we can obtain Eµ

[
e
−µ(u1[dθ∗j ]

)
]
= (1+ u)−α(dθ∗j ). Back to the main equation

=
1

Γ(n)

+∞∫
0

un−1(1 + u)−α(Θ∗)
k

∏
j=1

(−1)nj
∂nj

∂unj
(1 + u)−α(dθ∗j )du ∏

i∈Cj

k(Xi, θ∗j )
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=
1

Γ(n)

+∞∫
0

un−1(1 + u)−α(Θ∗)
k

∏
j=1

(−1)nj(−1)nj

α(dθ∗j )(α(dθ∗j ) + 1) . . . (α(dθ∗j ) + nj − 1)(1 + u)−α(dθ∗j )−nj︸ ︷︷ ︸
cα(dθ∗j )+cα(dθ∗j )

2+···'cα(dθ∗j )=α(dθ∗j )(nJ−1)!

du ∏
i∈Cj

k(Xi, θ∗j )

=
1

Γ(n)

+∞∫
0

un−1(1 + u)−α(Θ∗)
k

∏
j=1

(1 + u)−α(dθ∗j )−nj α(dθ∗j )(nj − 1)!du ∏
i∈Cj

k(Xi, θ∗j )

=
1

Γ(n)

+∞∫
0

un−1(1 + u)−α(Θ)(1 + u)−ndu
k

∏
j=1

α(dθ∗j )(nj − 1)! ∏
i∈Cj

k(Xi, θ∗j )

=
∏k

j=1 Γ(nj)

Γ(n)

k

∏
j=1

α(dθ∗j ) ∏
i∈Cj

k(Xi, θ∗j )

+∞∫
0

un−1(1 + u)−α(Θ)−ndu

︸ ︷︷ ︸
B

Setting v = 1 + u , u = v− 1, and with l − α(X)− n < 1, we can exploit B as

B =

+∞∫
1

(v− 1)n−1v−α(Θ)−ndv

=

+∞∫
1

n−1

∑
l=0

(
n− 1

l

)
vl(−1)n−1−lv−α(Θ)−ndv

=
n−1

∑
l=0

(
n− 1

l

)
(−1)n−1−l

+∞∫
1

vl−α(Θ)−ndv

=
n−1

∑
l=0

(
n− 1

l

)
(−1)n−1−l vl−α(Θ)−n

l − α(Θ)− n + 1

∣∣∣∣+∞

1

=
n−1

∑
l=0

(
n− 1

l

)
(−1)n−1−l(l − α(Θ)− n + 1)−1

=
(n− 1)!(α− 1)!
(n + α− 1)!

=
Γ(n)Γ(α)
Γ(α + n)

.

Then back to the main equation we have

=
∏k

j=1 Γ(nj)Γ(n)Γ(α)
Γ(n)Γ(α + n)

k

∏
j=1

α(dθ∗j ) ∏
i∈Cj

k(Xi, θ∗j )

=
k

∏
j=1

Γ(nj)
1

(α)n

k

∏
j=1

α(dθ∗j ) ∏
i∈Cj

k(Xi, θ∗j )

= L(θ, X(n)),

where (α)n = Γ(α+n)
Γ(α) . Moreover let θ(i) be the vector θ \ θi, we know that
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(
θi|θ(i), X(n)

)
∝ L

(
X(n), θ(i)

)
,

then the marginal distribution of θi becomes

(
θi|θ(i), X(n)

)
∝ δΘ∗(θi)α(dθi)k(Xi, θi) +

k

∑
j=1

δθj(θi)njk(Xi, θ∗j ).
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Posterior distributions

Let X and θ be two random variables, with density p(Xx | θ) and p(θ) respectively, where θ is
a parameter which characterizes the distribution of X. Given an i.i.d. sample X1, . . . Xn from X,
we are interested in the study of the distribution of θ | X1, . . . Xn, where, by the use of Bayes’
rule, we have

p(θ | X) ∝ p(θ)p(X1, . . . , Xn | θ) = p(θ)
n

∏
i=1

p(Xi | θ). (C.1)

C.1 Univariate

Normal and Normal

Let X ∼ N(µ, σ2
X) and µ ∼ N(m0, σ2

µ). Suppose that we draw a sample X1, . . . , Xn i.i.d. to X,
then by (C.1) we have

p(µ | X1, . . . Xn) ∝ exp

{
−1

2

[
(µ−m0)2

σ2
µ

+
n

∑
i=1

(Xi − µ)2

σ2
X

]}

= exp

{
−1

2

[
µ2 − 2µm0 + m2

0
σ2

µ

+
n

∑
i=1

X2
i − 2Xiµ + µ2

σ2
X

]}

∝ exp

−1
2

µ2

(
1
σ2

µ

+
n

σ2
X

)
− 2µ

(
m0

σ2
µ

+
nX
σ2

X

) ( 1
σ2

µ
+ n

σ2
X

)
(

1
σ2

µ
+ n

σ2
X

)

 ,

which identifies a Gaussian distribution, µ | X1, . . . Xn ∼ N(mn, σ2
µ,n), with mn = σ2

µ,n

(
m0
σ2

µ
+ nX

σ2
X

)
and σ2

µ,n =
(

1
σ2

µ
+ n

σ2
X

)−1
.

Normal and Normal-Inverse Gamma

Let X ∼ N(µ, σ2) and (µ, σ2) ∼ NIG(m0, k0, a0, b0), i.e. σ2 ∼ IG(a0, b0) and µ | σ2 ∼
N(m0, k0σ2). Suppose that we draw a sample X1, . . . , Xn i.i.d. to X. Recalling that

n

∑
i=1

(Xi − µ)2 = n(µ− X)2 +
n

∑
i=1

(Xi − X)2,

and
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k0(µ−m0)
2 + n(µ− X)2 = (k0 + n)(µ−mn)

2 +
k0n

k0 + n
(X−m0)

2,

with mn = k0m0+nX
k0+n , then by (C.1) we can derive the posterior distribution for (µ, σ2) as

p(µ, σ2 | X1, . . . , Xn)

∝ (σ2)−
1
2 (σ2)−a0− n

2−1 exp

{
− 1

2σ2

[
n

∑
i=1

(Xi − µ)2 + k0(µ−m0)
2 + 2b0

]}

∝ (σ2)−
1
2 (σ2)−an−1 exp

{
− 1

2σ2

[
kn(µ−mn)

2+

2b0 +
n

∑
i=1

(Xi − X)2 +
k0n
kn

(X−m0)
2

]}
,

where we identify the parameters for the posterior distribution

kn = k0 + n

mn =
k0m0 + nX

k0 + n

an = a0 +
n
2

bn = b0 +
1
2

[
n

∑
i=1

(Xi − X)2 +
k0n
kn

(X−m0)
2

]
.

C.2 Multivariate

Normal and Normal

Let X ∼ N(µ, ΣX) and µ ∼ N(m0, Σµ) d-dimensional random vectors. Suppose that we draw a
sample X1, . . . , Xn i.i.d. to X, then by (C.1) we have

p(µ | X1, . . . Xn) ∝ exp

{
−1

2

[
(µ−m0)

ᵀΣ−1
µ (µ−m0) +

n

∑
i=1

(Xi − µ)ᵀΣ−1
X (X− µ)

]}

∝ exp
{
−1

2

[
µᵀΣ−1

µ µ− 2µᵀΣ−1
µ m0 + nµᵀΣ−1

X µ− 2nµΣ−1
X X

]}
∝ exp

{
−1

2

[
µᵀ(Σ−1

µ + nΣ−1
X )µ−

2µᵀ
(

Σ−1
µ m0 + nΣ−1

X X
) (Σ−1

µ + nΣ−1
X )

(Σ−1
µ + nΣ−1

X )

]}

which identifies a Gaussian distribution, µ | X1, . . . Xn ∼ N(mn, Σµ,n), with mn = Σµ,n

(
Σ−1

µ m0 + nΣ−1
X X

)
and Σµ,n = (Σ−1

µ + nΣ−1
X )−1.
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Normal and Normal-Inverse Wishart

Let X ∼ N(µ, Σ) and (µ, Σ) ∼ NIW(m0, k0, ν0, S0), i.e. Σ ∼ IW(ν0, S0) and µ | Σ ∼ N(m0, k0Σ),
with X and µ d-dimensional random vectors and Σ d× d-dimensional random matrix. Suppose
that we draw a sample X1, . . . , Xn i.i.d. to X. Recalling that

n

∑
i=1

(Xi − µ)(Xi − µ)ᵀ = n(µ− X)(µ− X)ᵀ +
n

∑
i=1

(Xi − X)(Xi − X)ᵀ,

and

k0(µ−m0)(µ−m0)
ᵀ + n(µ− X)(µ− X)ᵀ

= (k0 + n)(µ−mn)(µ−mn)
ᵀ +

k0n
k0 + n

(X−m0)(X−m0)
ᵀ.

Moreover we have

n

∑
i=1

(Xi − µ)ᵀΣ−1(Xi − µ)

=
n

∑
i=1

d

∑
j=1

d

∑
k=1

(Xij − µj)
ᵀΣ−1

jk (Xik − µk)

=
d

∑
j=1

d

∑
k=1

Σ−1
jk

n

∑
i=1

(Xij − µj)(Xik − µk)
ᵀ

= Tr

[
Σ−1

jk

(
n

∑
i=1

(Xij − µj)(Xik − µk)
ᵀ

)]

= Tr

[
Σ−1

jk

(
n

∑
i=1

(Xij − X)(Xik − X)ᵀ + n(X− µ)(X− µ)ᵀ
)]

.

Then the posterior distribution become

p(µ, Σ | X1, . . . , Xn) ∝ k0|Σ|−1|Σ|−
v0+d+1

2 |Σ|− n
2 exp

{
−1

2

[
Tr(S0Σ−1)

+k0(µ−m0)
ᵀΣ−1(µ−m0) +

n

∑
i=1

(Xi − µ)ᵀΣ−1(Xi − µ)

]}

∝ k0|Σ|−1|Σ|−
vn+d+1

2 exp

{
−1

2

[
Tr

(
Σ−1

(
S0 +

n

∑
i=1

(Xij − X)(Xik − X)ᵀ+

k0n
k0 + n

(X−m0)(X−m0)
ᵀ
))

+ (k0 + n)(µ−mn)
ᵀΣ−1(µ−mn)

]}
,
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where we identify a Normal-Inverse Wishart distribution with updated parameters

kn = k0 + n

mn =
k0m0 + nX

k0 + n
νn = ν0 + n

Sn = S0 +
n

∑
i=1

(Xij − X)(Xik − X)ᵀ +
k0n

k0 + n
(X−m0)(X−m0)

ᵀ

C.3 Dirichlet process mass in mixture models

Following the results presented in Escobar and West (1995), introducing an augmentation vari-
able, it is possible to define a conjugate prior for the mass of a Dirichlet process. Let α be
the total mass of a DP, let k be the number of blocks of a DP with mass α, given a sample
of size n. Assuming a continuous distribution prior distribution for α, and an implied prior
p(k | n) = E [p(k | α, n)], we have that

p(k | α, n) = cn(k)n!αk Γ(α)
Γ(α + n)

, k = 1, . . . , n,

where cn(k) does not depend on α (see Antoniak, 1974). Except for the terms cn(k)n!, which
does not depend on α, n does not appear in the previous equation (see Escobar and West,
1995, for more details). According to (C.1) we have that p(α | k) ∝ p(α)p(k | α). Now
suppose that α ∼ Gamma(a0, b0), parametrized with shape and rate parameters. Recalling that

Γ(α)
Γ(α+n) =

(α+n)β(α+1,n)
αΓ(n) , with β(·, ·) the beta function, then for k = 1, . . . , n we have

p(α | k) ∝ p(α)αk−1(α + n)β(α + 1, n)

∝ p(α)αk−1(α + n)
∫ 1

0
xα(1− x)n−1dx,

and the previous implies that p(α | k) is the marginal distribution of a joint distribution for
(α, η), i.e. p(α, η | k) ∝ p(α)αk−1(α + n)ηα(1− η)n−1. We can work with the respective condi-
tional distributions, as follows. Let p(α) ∼ Gamma(a0, b0) be the prior distribution for α. Then
we have

p(α | η, k) ∝ αa0+k−2(α + n) exp[−α(b0 − log(η))]

∝ αa0+k−1 exp[−α(b0 − log(η))] + nαa0+k−2 exp[−α(b0 − log(η))],

which identifies a mixture of two Gamma distributions, a Gamma(a0 + k, b − log(η)) and a
Gamma(a0 + k− 1, b− log(η)), weighted by ωη and 1−ωη respectively, where ωη is identified
by the equation ωη/(1− ωη) = (a0 + k − 1)/[n(b0 − log(η))]. Finally, p(η | α, k) ∝ ηα(1−
η)n−1, with 0 < η < 1, which implies that η ∼ Beta(α + 1, n).
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Code details

An issues which commonly appears when we are dealing with Bayesian nonparametric mod-
els is the time needed to estimate the models. We decide to implement in an efficient way all
the routines used in the previous chapters. Considering that the main problem to deal with
the BNP modelling is the presence of nested loops, which could be inefficient in high level lan-
guages as, for example, R, we decided to implement all the algorithms in a low level language,
C++, to strongly reduce the computational time required for the model estimation.
We decided to base all the implementation of the routines on the use of void functions, functions
which do not return any result argument and, eventually, point directly the objects in the mem-
ory to update them. This approach is particular suitable in the context of Monte Carlo Markov
Chain (MCMC) methods, where the procedures are based on an updating rule, and the strat-
egy of working directly with parameters updating instead of function which return arguments
reduced the memory use and the computational time.
The AFFINEpack R package, available on GitHub, contains all the routines used in Chapter 2.
The BNPmix R package, available on GitHub, contains all the routines used for Chapter 3 and
Chapter 4. Focus the attention on the second one, the BNPmix package contains two main func-
tions: condMCMC and condMCMCmv, the univariate and the multivariate functions respectively to
estimate a Pitman-Yor mixture model.
Common arguments over the two functions are:

- data, a dataset (a vector for condMCMC and a matrix for condMCMCmv);

- grid, a grid to evaluate the estimated density;

- niter, number of total iterations;

- nburn, number of burn-in iterations;

- method, the sampler considered (ICS for importance conditional sampler, SS for slice
sampler, MS for marginal sampler);

- process, PY or DP;

- mass, the total mass parameter ϑ;

- sigma_PY, the discount parameter σ, if 0 the DP routine is used;

- napprox, number of elements in the importance sampling step for the ICS.

Specific for the condMCMC function we have:

- m0, the mean value of the location component of the base measure;

- k0, the weight of the variance in the location component of the base measure;

https://github.com/rcorradin/AFFINEpack
https://github.com/rcorradin/BNPmix
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- a0, shape parameter of the scale component of the base measure;

- b0, scale parameter of the scale component of the base measure.

Specific for the condMCMCmv function we have:

- m0, the mean vector of the location component of the base measure;

- k0, the weight of the covariance matrix in the location component of the base measure;

- n0, gdl of the scale component of the base measure;

- S0, scale matrix of the scale component of the base measure.

Both functions condMCMC and condMCMCmv return an S4 object modCond and modCondMv respec-
tively. The returned object contains all the information regarding the estimation, as

- density, the estimated density;

- clust, the clusters matrix, one vector for each (niter - nburn) iteration;

- nnew, number of new clusters generated for each iteration;

- tot_time, execution time.

We extended also the plot function to the modCond and modCondMv classes.
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[83] M. Meilă. “Comparing clusterings—an information based distance”. In: Journal of Mul-
tivariate Analysis 98.5 (2007), pp. 873 –895.

[84] P. Muliere and P. Secchi. A note on a proper Bayesian bootstrap. Quaderni di Dipartimento.
Dipartimento di economia politica e metodi quantitativi, Universita degli studi di Pavia,
1995.

[85] P. Muliere and L. Tardella. “Approximating Distributions of Random Functionals of
Ferguson-Dirichlet Priors”. In: The Canadian Journal of Statistics / La Revue Canadienne de
Statistique 26.2 (1998), pp. 283–297.

[86] P. Müller, A. Erkanli, and M. West. “Bayesian curve fitting using multivariate normal
mixtures”. In: Biometrika 83.1 (1996), pp. 67–79.

[87] R. M. Neal. “Markov Chain Sampling Methods for Dirichlet Process Mixture Models”.
In: Journal of Computational and Graphical Statistics 9.2 (2000), pp. 249–265.

[88] L. E. Nieto-Barajas, I. Prünster, and S. G. Walker. “Normalized random measures driven
by increasing additive processes”. In: Ann. Statist. 32.6 (2004), pp. 2343–2360.

[89] I. Olkin and R. Liu. “A bivariate beta distribution”. In: Statistics & Probability Letters 62.4
(2003), pp. 407 –412.

[90] O. Papaspiliopoulos and G. O. Roberts. “Retrospective Markov Chain Monte Carlo
Methods for Dirichlet Process Hierarchical Models”. In: Biometrika 95.1 (2008), pp. 169–
186.



104 BIBLIOGRAPHY

[91] M. Perman, J. Pitman, and M. Yor. “Size-biased sampling of Poisson point processes and
excursions”. In: Probability Theory and Related Fields 92.1 (1992), pp. 21–39.

[92] S. Petrone, J. Rousseau, and C. Scricciolo. “Bayes and empirical Bayes: do they merge?”
In: Biometrika 101.2 (2014), pp. 285–302.

[93] J. Pitman. “Exchangeable and partially exchangeable random partitions”. In: Probability
Theory and Related Fields 102 (1995), pp. 145–158.

[94] J. Pitman. “Some Developments of the Blackwell-Macqueen URN Scheme”. In: Lecture
Notes-Monograph Series 30 (1996), pp. 245–267.

[95] J. Pitman. “Poisson-Kingman partitions”. In: Statistics and science: a Festschrift for Terry
Speed. Ed. by D. R. Goldstein. Vol. Volume 40. Lecture Notes–Monograph Series. Beach-
wood, OH: Institute of Mathematical Statistics, 2003, pp. 1–34.

[96] J. Pitman. Combinatorial Stochastic Processes. Ecole d’Eté de Probabilités de Saint-Flour XXXII
- 2002. Ed. by J. Picard. Springer-Verlag Berlin Heidelberg, 2006.

[97] J. Pitman and M. Yor. “The two-parameter Poisson-Dirichlet distribution derived from
a stable subordinator”. In: Ann. Probab. 25.2 (1997), pp. 855–900.

[98] I. Prünster. “Random probability measures derived from increasing additive processes
and their application to Bayesian statistics”. PhD thesis. University of Pavia, 2002.

[99] R. Rastelli and N. Friel. “Optimal Bayesian estimators for latent variable cluster mod-
els”. In: Statistics and Computing 28.6 (2018), pp. 1169–1186.

[100] E. Regazzini, A. Lijoi, and I. Prünster. “Distributional results for means of normalized
random measures with independent increments”. In: Ann. Statist. 31.2 (2003), pp. 560–
585.

[101] C. Ritter and M. A. Tanner. “Facilitating the Gibbs Sampler: The Gibbs Stopper and the
Griddy-Gibbs Sampler”. In: Journal of the American Statistical Association 87.419 (1992),
pp. 861–868.

[102] J. Rousseau. “On the frequentist properties of Bayesian nonparametric methods”. In:
Annual Review of Statistics and Its Application 3 (2016), pp. 211–231.

[103] J. Sethuraman. “A constructive definition of Dirichlet priors”. In: Statistica Sinica 4 (1994),
pp. 639–650.

[104] W. Shen, S. T. Tokdar, and S. Ghosal. “Adaptive Bayesian multivariate density estima-
tion with Dirichlet mixtures”. In: Biometrika 100.3 (2013), pp. 623–640.

[105] Y. Shi, M. Martens, A. Banerjee, and P. Laud. “Low Information Omnibus (LIO) Priors
for Dirichlet Process Mixture Models”. In: Bayesian Analysis (2018).

[106] Y. W. Teh. “A Hierarchical Bayesian Language Model Based on Pitman-Yor Processes”.
In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th
Annual Meeting of the Association for Computational Linguistics. 2006, pp. 985–992.

[107] Y. W. Teh and M. I. Jordan. “Hierarchical Bayesian nonparametric models with applica-
tions”. In: Bayesian Nonparametrics. Ed. by N. L. Hjort, C. Holmes, P. Müller, and S. G.
Walker. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Uni-
versity Press, 2010, 158–207.

[108] S. Wade and Z. Ghahramani. “Bayesian Cluster Analysis: Point Estimation and Credible
Balls”. In: Bayesian Anal. 13.2 (2018), pp. 559–626.

[109] S. G. Walker. “Sampling the Dirichlet Mixture Model with Slices”. In: Communications in
Statistics - Simulation and Computation 36.1 (2007), pp. 45–54.



BIBLIOGRAPHY 105

[110] Y. Wu and S. Ghosal. “Kullback Leibler property of kernel mixture priors in Bayesian
density estimation”. In: Electronic Journal of Statistics 2 (2008), pp. 298–331.

[111] Y. Wu and S. Ghosal. “The L1-consistency of Dirichlet mixtures in multivariate Bayesian
density estimation”. In: Journal of Multivariate Analysis 101.10 (2010), pp. 2411–2419.

[112] S. Zabell. “The continuum of inductive methods revisited”. English. In: The Cosmos of
Science: Essays of Exploration. Ed. by J. Earman and J. Norton. University of Pittsburgh
Press, 1997, pp. 351–385.


	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	A concise introduction to Bayesian nonparametric statistics
	Exchangeability and de Finetti's representation theorem
	Exchangeable partitions and EPPF
	Partial exchangeability
	Distributions on the space of probability measures
	Definition through Stick-Breaking
	Predictive distribution

	Dirichlet process
	Other properties

	Pitman-Yor process
	Other generalizations of the DP
	Definition of nonparametric priors
	Outline and main contributions

	Dirichlet process mixtures and affine transformation
	Modelling framework
	DPM-G model and affine transformations of the data
	An introduction to posterior consistency
	Large n asymptotic robustness of DPM-G models
	Advances in partition estimation
	Simulation study
	Application to the NGC 2419 globular cluster data
	Conclusions

	Importance Conditional Sampler
	Modelling framework
	State of the art
	The Importance Conditional Sampler
	Implementation of competing algorithms
	Simulation study
	ICS for dependent Dirichlet process mixtures
	Conclusions

	Elicitation of Gibbs-type priors
	Gibbs-type prior and induced partitions
	Cluster size distribution
	Special cases: DP, PY and NGG
	Elicitation of a Gibbs-type prior parameters
	Application to the NGC 2419 globular cluster

	Conclusions

	Conclusions
	Completely Random Measure
	Marginal distribution of DPM
	Posterior distributions
	Univariate
	Multivariate
	Dirichlet process mass in mixture models

	Code details
	Acknowledgements
	Bibliography

