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Introduction

In this thesis we deal with the problem to find particular forms for incidence matrices of

incidence structures 77 = (L{', L}; ©).

Denote by Q a set of finite size n, say Q = {1,2,--- ,n} and by L" the power set of Q.
We partition it into the sets Llf’, for 0 < i < n, where Llf“ is the set of subsets of Q of size
i; i.e. the elements of Ll.” are the i-subsets of Q.

I3 = (L, Ly ©) is the incidence structure so defined: for x € Lf" and y € L}, x and y

are incident if and only if x C y. Its incidence matrix is denoted by W;.

R.M.Wilson in [15] ( Theorem 3.1.6 ) finds a diagonal form for W;; with purely combi-
natorics methods. For shortness we will refer to this result as “Wilson’s Theorem™.

Many other authors have dealt with the same problem, see for example [2], [7], [8] and

[11].

The heart of the thesis is Chapter 4 where we give a new proof of Wilson’s Theorem via

linear maps.

Looking at [5] and starting from Z we construct a new algebraic structure:

let G € Sym(n) be a permutation group on Q. The action of G on Q induces a natural
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action on L". Formally, if g € Sym(n) and ay,- - - @; € Q then
{a’la' o ’ai}g = {a,(lg’. o ’a,l('g}'

So G acts on any L.

This action partitions each Llf1 into orbits; 7; denotes the number of orbits of G on Llf“.

For 0 <t < k < n, if we call Q" = {A},As,--- ,A;,} and QF = (I,Ty,- - 7} the
G-orbits sets on L' and LZ, the pair (€, Qk ) is a tactical decomposition of I[Z Then we

can define two matrices
+ _ ot — _ (yv—
X = (xl.j and X, = (xﬁ)

where

xl.; = |{x € Aj : x Cy, for one fixed y € I}}|

and

X = {y €T; : x Cy, for one fixed x € A;}|.

To be precise we should write (X Z*I;)G, but we cut G to avoid too heavy notation.

X ;1; and X . are called the incidence matrices of (¢, Qk). Clearly, X;;( and X . are integral

Tx X 7y and 7; X T, -matrices, respectively.

If G = {1} then the orbits of G correspond to the subsets and X}, = WtTk is the transpose

matrix of the incidence structure Z7.
In Chapter 5 we will give some new results related to the invariant factors of X .

The thesis is so organized: in Chapter 2 we give the necessary prerequisites about

modules and equivalence of matrices; in Chapter 3 we present the original Wilson’s

6
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proof given in [15].
In Chapter 4 we introduce an algebra related to the boolean poset L", in order to give

our new proof of Wilson’s Theorem, drawing from [4], [13] and [14],

Let R be one of Q or R, we construct the vector space RL" of formal sums of elements

of L" with coeflicients in R, i.e.

RL":{Z IeX xEL”,rXER}.

xelLn

We give to RL" the structure of algebra by adding a multiplication operation. For

x,y € L" we define a product in the following way:
xX-y=xUy

and extend this linearly to RL". If f = 3, fixand h= } f,y, we put
xeLn yeLn

feh= ) fihyx-y.

x,yeL"

We want to extend the C relation from L” into RL"™. To do this we define incidence

maps:

>y if|x|<n > x if|y|>0
ox X<y

€M (x) = { pitinia and AW (y) = 4 1xlesl1

0 otherwise 0 otherwise
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We also consider in section 4.1, for any 0 < ¢ < k < n, the functions e,(”)k and Blin)t SO

defined

RL! — RL] RL! — RL]
Mk and e .
t X = 2y ko y — 2 X
yein weir

We observe that the matrices associated to et(”)k and GIE")[, with respect to the bases L'

and LZ, are Wsz and W;, respectively.
The results of Chapter 4 are achieved considering a particular basis for RL".

Given 0 <t <n—1and k =t + 1, we construct two symmetric maps

vi=d"e™ ™ RL) - RL! and v =€ L RL, — RL!,

and we state Theorems 4.2.2 and 4.2.3.

Theorem 4.2.2. Suppose that 2t < n. Then v, has t + 1 eigenvalues
A0 > A1y > - > A1 > A1, =0
and v} has t + 1 eigenvalues

Ao > g > > Ay > Ay 20,

n

with multiplicity n; = (l) — (ifl),for 0 <i < t. In particular we have the decomposition

RLf:Efo@Efl@'“@Eft

n o + . . . . . n _ (ny __ n
where E' is the v; -eigenspace with eigenvalue A; ; and dimpg E', = (l) (l._l).

8
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Theorem 4.2.3. If 2t > nand 0 <t < n, then v, has n —t + 1 positive eigenvalues. In

particular we have the decomposition

tn—t*

RL} =E\®E & - -®FE , &L,

We prove that the eigenspaces E/'; are irreducible Sym(n)-invariant and that

k
e"NE) = E},.

We observe that from these decompositions it is immediate to find two bases in RL;" and

RL}, respectively, such that the associated matrix to et(”)k : RL{! — RL; is the diagonal

form of W;; found by R.M. Wilson.

If we consider Wy as incidence matrix of the incidence structure 1"

tk’
matrix associated to et(")k restricted to the Z-module ZL}.

we can see W) as

This suggested us to address the problem via linear algebra. Unluckly the result for the

Z- modules is not immediate.

In section 4.3, looking at [4], we give a generating set ' of eigenvectors for the vector

space RL, withi = 0,-- -, n, called polytopes.

For our approach an important role is played by the Z-module ZL! with basis L
(i =0,---,n) together with the submodule ZS" generated by polytopes.

It is easy to prove that the following restrictions hold:

et zLr — 7Ly, oMzl — ZL!

SRRV ATY A M zZSt — 7S,
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We will determine the invariant factors of the matrix WtTk finding the Smith group of

et(")k 1 ZL} — ZL} (see Definition 2.4.21). The result is obtained constructing in section

4.4 a standard basis of polytopes. We report here the final results.

Theorem 4.5.1. Let 0 <t < k < nandt+ k < n. Then the Smith group of
e . zS) - 7S]
is isomorphic to
(Cap)™ X -+ X (Cg,)" X Z,
where d; = (). m = (1) — () Jori = 0.+~ and 1 = () — (3.
Theorem 4.54. Let O <t < kwitht+ k < nand s;i be a standard polytope of type

(i,i), fori =0,--- ,t. ThenZS} & - - - ® LS., is isomorphic to ZL; N (Exo @ - -+ ® Egy).
(n)k

An isomorphism is given by the map ¢, linear extension of the map defined on a

standard basis of polytopes by
o (e (51) = € ). (L1)

Corollary 4.5.5. Let 0 <t < k < nwitht+ k < nand Sﬁc,— be a standard polytope of

type (i,i), fori = 0,--- ,t. Then the map
@ : 78T e zSt) — ZL! MK (ZL)

defined by
(e (1) + €M@ = € () + €7 (ZL),

and extended by linearity, is an isomorphism.

In Chapter 5 we introduce the submodule of ZL" which consists of elements fixed by G,
that is
(ZL?)G ={veZL! :v® =v, forany g € G};

10
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we denote by (ZS")° the module (ZL!")“ N ZS", and we prove the following

Theorem 5.1.7. Let O <t < k and t + k < n. Then the Smith group of
e (zshC — (zsp°©

is isomorphic to

(Cg)™ X (CgY™ X - X (Cyg)™ X ZL,

where d; = (*1),mj =1, —1_1,i=0,-+ ,tand | = 7 — 7y.

In section 5.2 we restrict our attention to the case t + k = n and we consider the
G-isomorphism

+y: QL — QL

defined on basis elements in the following way: if x € L' and y is its complement in €,
the map +y is so defined

N X D).
The map +y restricts to isomorphisms between (ZL")® and (ZLZ)G and between (ZS")¢

and (ZS})¢. This allows us to prove

Theorem 5.2.5. Ler0 < t < k < nandt+k = n. Then the groups (ZL})° e ((zZLMO)
and (ZSZ)G / et(n)k((ZS,”)G) have the same order.

Actually we conjecture that, for any group G C Sym(n) and t + k = n, the Smith group

(n)k

of " : (ZL")C — (ZLZ)G is isomorphic to (Cg,)" X (Cg,)™ X -+ - X (Cg,)™.

Some evidence is given from results in section 5.3, in particular from Theorem 5.3.4.
Moreover, using Magma Computational Algebra System (see Appendix A) we can see

that, forn < 11, ¢ < k and ¢ + k = n, our conjecture is true, while the statement is not true

11
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in general for ¢ + k < n (see example 5.3.6). I would especially like to thank Prof. Pablo
Spiga for the stimulating discussions we had and for his help with the computational

load in the case t + k = n.
About the matrices X} we just prove that, for 0 < ¢ < k = n — ¢, the matrix
M = (nglezl---lX;,'{)
has index one (see Definition 2.4.15) and rank ;.
This is actually the analogue of the first step of Wilson’s original proof given in [15];
this suggested us to follow Wilson’s proof to get result for X}, but this is not possible.

In his proof it is necessary that the matrix M;; has index 1 also fort < k < n — 1 (see

Proposition 3.1.3). This is not true in our case for matrix M.

12



Notation

Bor

Ql
QLy

En

t,i

Wik

The centralizer algebra of G on M p. 83
{Xx:AeQf} p. 17
xeA

The set {1,--- ,n} p. 16
The set of orbits of G on L/ p-17
The vector space with basis L;' p. 58
The i"" eigenspace of v* in L p. 54
A finite permutation group on p. 83
The power set of Q p. 16
The set of subsets of Q of size i p. 16
0~ (") P8
M- (") p.53
min{t,n —t} p. 54
The incidence matrix associated to incidence structure p. 16
(Ly.L1,C)

13
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X The matrix associated to "% : (ZL")G — (ZL})Y with respect p. 17
to bases Bgr and Bk
X The matrix associated to 0,&"” D (ZLY)S — (ZL!C with respect p.17

to bases Bk and Bor

In this thesis, groups always act on the right and for group action we use exponential

notation. Maps are applied on the left.

14



CHAPTER 2

Modules over a P.I.D. and Matrix Normal Form

In this Chapter we reorganize and deepen various concepts found in the literature. We
consider the necessary prerequisites about modules and equivalence of matrices. For

more references see [1], [5], [9] and [12].

2.1 Incidence matrices

For completeness we recall some well-known notion about incidence structures.

Definition 2.1.1. A finite incidence structure is a triple Ipg = (P,8B; 1) where P and
B are nonempty finite sets and I C P X B. The sets P and B are called the point set
and the block set of Ipg, respectively, and their elements are called points and blocks.

The set I is called the incidence relation.

Definition 2.1.2. An incidence matrix of the incidence structure Ipg is the (0,1)-matrix
whose rows are indexed by the points of Ipg, columns are indexed by the blocks of Ipg

and the (p, b)-entry is equal to 1 if and only if (p,b) € 1.

15



Modules over a P.I.D. and Matrix Normal Form

In this work we deal with particular incidence structure, which we are going to define

now.

Given Q = {1,2,--- ,n} afinite set, we denote by L" the power set of Q2 and we partition
it into the sets Ll.”, for 0 < i < n, where Ll.” is the set of subsets of Q of size i; i.e. the

elements of Lf are the i-subsets of Q.

Put # = L}, B = L} and I the containment relation for subsets of Q, that is (7, K) € I

if and only if 7 C K; the triple Z} = (L}, L}; C) is an incidence structure.

The incidence matrix associated to this incidence structure is denoted by W;(n) and it
is called the incidence matrix of t-subsets vs. k-subsets of Q2. When there is no chance

of confusion, we will write W, for W, (n).

We conclude this section with the introduction of a concept useful later on. A tactical
decomposition of an incidence structure Zpg = (P, B; 1) is a partition of P into disjoint
point sets (called the point classes) A, together with a partition of 8 into disjoint block
sets (block classes) I', such that for any point class A and any block class I', the number
of points of A on a block B € I' depends only on A and I', not on B, and can hence be
denoted by yra. Dually, the number of blocks of I' through P € A depends only on I'

and A, and can be denoted by xar.

Now let 7], be a tactical decomposition of a finite incidence structure pg and let the

(point and block) classes of 7, be numbered in an arbitrary but fixed way: Ay, - -+, A,
and I',---,I's. Then we define two matrices
Y = (ra;) and X = (xa;1,)-

Y and X are called incidence matrices of 1/

pg» With respect to the chosen numbering of

the 7 ,-classes. Clearly, Y and X are integral s X r- and r X s-matrices, respectively.

Now, if we denote by Sym(n) the symmetric group on Q, the action of Sym(n) is extended

16



2.2 Equivalence of matrices with entries in a P.1.D.

in natural way to L. Formally, if g € Sym(n) and ay,- - - @; € Q then

{al"" ’a/i}g = {a/ig9 aa,;g}

Taken G C Sym(n) a permutation group on Q, we denote by 7; the number of orbits of
GonL!' For0 <t <k<n weputQ ={A, - ,A,}and Q° = {I},--- [, } the
G-orbits sets on L and L}, respectively. The pair (Q, Q%) is a tactical decomposition

of I,

We denote by X} = (x;;.) and X, = (xﬁ) the incidence matrices of (Q, Q¥), where

x;;- = |{x € Aj : x Cy, for one fixed y € I}}|

and

X, = {y €I : x Cy, for one fixed x € A;}|.

2.2 Equivalence of matrices with entries in a P.L.D.

In the following D is a principal ideal domain. Here we give some results of Module

Theory (see [9]).

Definition 2.2.1. Let A and B be two matrices over D of the same size m X n. Then B is

said to be equivalent fto A (over D), and we write A ~ B, if there exist invertible matrices

Q € GL,(D) and P € GL,(D) such that A = Q~'BP.

In particular, a matrix B € Mat,, ,(D) is said to be a diagonal form for the matrix A, if
A ~ B and the entry (i, j) is 0 when i # j. Observe that in general m # n; so we have

the following possible cases for diagonal matrices

17



Modules over a P.I.D. and Matrix Normal Form

A
A2
A 0o - 0
A2 0 - 0
A, | if m>n, if m<n (2.1)
0 - 0
0 0 0
An 0 - 0
0 O 0
or
A
A2
if m=n (2.2)
Am

In general, if s the minimum between m and n, we will write these matrices

diag(/ll, e ’/ls)'
The relation defined in 2.2.1 is an equivalence relation. It is possible to obtain equivalent
matrices by appropriate elementary row and column operations (see [9], Chapter 7)

Definition 2.2.2. We say that the matrix B € Mat,,,(D) is in Smith Normal Form if
B =diag(d,,- - - ,ds) such that the entry d; divides d;.,. If A € Mat,, ,(D) is equivalent
to B = diag(d,,--- ,d;), then the sequence d,,- - - ,d; is called a sequence of invariant

factors of A over D.

We observe that the sequence of invariant factors is unique up to multiplication by units.

We will make use of the two following Theorems, we give them without proof (see [9]).

18



2.3 Finitely Generated Modules over a P.I.D.

Theorem 2.2.3. Every matrix A = (a;;) € Mat,,,(D) is equivalent to a matrix in Smith

Normal Form over D.

Theorem 2.2.4. Two m X n matrices over a principal ideal domain D are equivalent

over D if and only if they have the same sequence of invariant factors over D up to units.

2.3 Finitely Generated Modules over a P.I.D.

Throughout D denotes a P.I.D. We assume that concepts about direct sums, linear
independence and free modules are known (see [9]). We are now in a position to state
and prove the theorem on the structure of the finitely generated modules over a P.I.D.
D (see Theorem 2.3.8). It leads, in fact, to a classification of such modules (in terms
of certain sequences of elements of D), achieved by expressing them as direct sums of

certain cyclic submodules.

Despite the fact that the theorem is well known, it is also the theoretical framework of
this thesis and, accordingly, we will report it with proof. Our reference for the content

of this section is [9].

Theorem 2.3.1. Let M be a free D-module of finite rank n, and N a submodule of M.

Then there exists a basis {v,..,v,} of M and d,,- - - ,d, € D such that

(1) the non-zero elements of {dyvi,- - - ,d,v,} form a basis for N and
(2) di|da] -+ |dy
Proof.

Let N be a submodule of a free D-module M and 8 = {v;,---,v,} be a basis of M. If
N = {0}, then {dvy,- - - ,d,v,}, where d; = 0, is a basis of N.

19



Modules over a P.I.D. and Matrix Normal Form

n
If N # {0}, Nis free. Let now C = {wy,---wy} be a basis of N. Then w; = } a;v;.
j=1
Leta : N — M be the map such that @(w) = w. The matrix associated to @ with respect

to C and B of Nand M is A = (aj;).

Then there exist two invertible matrices Q and P over D such that B = Q7 'AP =
diag(d,,--- ,dy) and di|d| - - - |d,, (see Theorem 2.2.3). Q and P determine two new
bases B’ = {vl’,- ~-,vy}and C’ = {wl’,~ -+ ,w,,} of M and N such that

n
4 _— .. .
Vi = Z 4jiVj
Jj=1

and

m
’ —_ . .
W = Zp]lw]
Jj=1

The elements v; are expressed in terms of the v ]’ by means of the matrix Q~!. The matrix
of a with respect to C’ and 8’ is B = O~ 'AP, which is the Smith Normal Form of A.

In particular

wl’ = dlvl’
q: (2.3)
Wy = dmVy,
Put d,,+1 = - - - = d, = 0 we have the claim. O

Definition 2.3.2. If M is a D-module, then the annihilator of M, denoted Ann(M), is
defined by
Ann(M)={d e D: dm =0 forallm € M}.

20



2.3 Finitely Generated Modules over a P.I.D.

Definition 2.3.3. Let M be a D-module. We say that m € M is a torsion element if there

exists d # 0 € D such that dm = 0. Let T be the set of torsion elements of M, i.e.
T={meM :3d+0¢eZs.t dn=0}.
M is said to be torsion-free if T = {0}, and M is a torsion module if M = T.

Theorem 2.3.4. Let M be a D-module and let T be the set of torsion elements of M.

Then

1. T is a submodule of M, called the torsion submodule.

2. M|/T is torsion-free.

Proof. 1. Clearly O € T. Let t;,t € T, then by definition there exist non-zero
r,ry» € D such that rit; = raty = 0. Hence riry(t) — t2) = (rar)ty — ()t = 0.
Since D has no zero divisors, rir, # 0 and so t; — t, € T. Furthermore, if r € D,

then rl(rtl) = r(rltl) =0,andry €T.

2. Suppose that r # 0 € Dand r(m+T) =T € M/T. Then rm € T, so there is
s # 0 € D with (sr)m = s(rm) = 0. Since sr # 0, it follows that m € T, i.e.
m+T=T¢eM|T.

O

Definition 2.3.5. Let M be a cyclic D-module and let Ann(M) be the annihilator of M.
Since D is a principal ideal domain, Ann(M) = Dd, where d € D. Then we say that d
is the order of M.

We will deal always with finitely generated D-module. We just remind

Lemma 2.3.6. Every finitely generated D-module is a homomorphic image of a free

D-module.

21



Modules over a P.I.D. and Matrix Normal Form

Lemma 2.3.7. Let L = Ly @ - - - ® L, be an internal direct sum of D-submodules. For
each i, let N; be a submodule of L and N = N @ --- @ N,. Then, ifv: L — % is the

natural epimorphism, we have % =v(L)=v(L)®---®v(L)and v(L;) = %

We are now ready to prove

Theorem 2.3.8. Let M be a finitely generated D-module. Then M can be expressed as
an internal direct sum M = M; & --- & M;, t > 0, such that M; is a non-trivial cyclic

submodule of M of order d; and dy|d5| - - - |d,.

Proof. Since M is a finitely generated module, by Lemma 2.3.6 there exists a free
module V such that ¢ : V. — M is an epimorphism. Put W = Ker ¢ C V, there exists an

isomorphism ¢ : % — M.

Letnow B8 = {v,---,v,} beabasisof V,then V = Dv; @ --- @® Dv,, and W C V is free.
So there exist ¢, - - - , ¢, such that ¢ - - - | ¢, and the non-zero elements of {c{vy,- -+ , ¢, v, }
form a basis of W, by Theorem 2.3.1. Then W = D(cjv)) & - -+ @ D(cvy). Ifv: V — 3

is the canonical epimorphism, then we have

% =v(V)=v(Dv))®---®v(Dv,) = Dv(v)) ® --- & Dv(v,) (2.4)

In particolar v(v;) has order ¢;. Actually, dv(v;) = 0, where 0 # d € D if and only
if v(dv;) = 0 if and only if dv; € W = Ker v if and only if dv; € D(c;v;) (because it
belongs to W N Dv;) if and only if ¢;|d.

Since ¢ is an isomorphism, it maps the direct decomposition of V/W into a direct

decomposition of M.

Let u be the last integer i such that ¢; is a unit. Then cy,---,¢, are all units by the

divisibility condition, and the corresponding modules in Equation 2.4 are exactly the

22



2.4 Pure modules and index of submodules

zero modules and can be omitted. Therefore, t = n —uand M = M| & --- & M,,
where M; = Dyv(v,4;) = D¢(v,4;) is a non-trivial cyclic module of order d; = ¢,+; and

di|d>| - - - |d;. This concludes the proof. O

ftM=M®e:- - &M = Ml/ @ ---® M, are two direct decompositions of M into
non-trivial cyclic modules M; of order d; and Ml.' of order dl.' such that d||d;| - - - |dy and
a’l'ldz'l . . |a’t', then s = ¢ and Dd; = Ddl.', fori = 1,---,s. In particular d; and dl.' are

associates.

The sequence dy,d»,- - - ,d; is called sequence of invariant factors of M, unique up to

multiplication by units.

Corollary 2.3.9. Let M be a finitely generated D-module. Then if T is the torsion

submodule of M, we have M =T @&V, where V is a free submodule of finite rank.

2.4 Pure modules and index of submodules

In this section we introduce the concept of pure module and of index of a matrix (see [3],
[12] and [15]). These topics play a fundamental role in our proof of “Wilson’s Theorem”
(Theorem 4.5.4 ). For this reason we reorganize known notions, integrating them with
useful properties for achieve our purpose. We observe that we will use properties of pure
module, while R.M. Wilson considers the concept of index of a matrix. In Proposition

2.4.17 is pointed out the relation between purity and index of a matrix.

In the sequel we take D = Z, that is we consider Z-modules, and M will denote a

Z-module.

Definition 2.4.1. [12] Let M| be a submodule of M. Then we say that M, is a pure
submodule of M if My N aM = aM,, for every a € Z.

23



Modules over a P.I.D. and Matrix Normal Form

Example 2.4.2. Given M = Z X Z, let N and L be the submodules generated by (1,0)
and (2,0) respectively. Then N is pure in M, while L is not pure. To see this it is enough
to take a = 4. The element (4,0) = 4(1,0) = 2(2,0) € L N 4M, but it is not in 4L.

We often will make use of the following remark.

Remark 2.4.3. We observe that the inclusion aM; C My N aM is always true; moreover,

the equality is trivial if a = 0.

Proposition 2.4.4. Let M; and M, be submodules of M such that My C M,. If M, is a

pure submodule of M, then it is also a pure submodule of M5.

Proof. Since My N aM = aM,, for every a € Z, and aM, C aM, we have M| N aM, C
My N aM = aM;. The claim follows. O

Proposition 2.4.5. Let M, be a pure submodule of M and let My be a pure submodule
of M. Then My is a pure submodule of M.

Proof. Let a € Z \ {0}, by hypothesis M| N aM, = aM; and M, N aM = aM,. Let
x € MiNnaM, since M; C M>,then x € M, naM = aM>,so x € My NaM, = aM,. 1t

follows that M; NaM C aM,;. |

Proposition 2.4.6. Let M|, M, be Z-modules, and p : M; — M, an isomorphism. If a
submodule Ly of My is pure in M then Ly = p(Ly) is pure in M.

Proof. Leta € Z\ {0} and y € L, N aM,. There exist x € L; and my € M, such
that p(x) = y and y = amy. But my = p(m;) for some m; € M, it follows that
y = ap(m;) = p(amy) and so y = p(am;) = p(x). We conclude that am; = x by
injectivity of p. Therefore, x € Ly N aM; = aly, by purity of L; in M, then there exists

Iy € Ly such that x = aly. Finally, y = p(x) = ap(l;) € al;. O
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For later use, we focus our attention on properties of purity when M is a free Z-module.

Proposition 2.4.7. Let M be a free Z-module of rank n and let M;, i € I, be a non-empty
Sfamily of pure submodules of M. Then F = (\;c; M; is a pure submodule of M.

Proof. It is enough to prove that F N aM C aF, for every a € Z. As usual we suppose
a # 0. Thenlet f € FNnaM, thereis m € M such that f = am and since f € F, we have
feM,iel ButM;nNaM = aM;, hence there are m; € M; such that f = am;. We
consider i # j, by f = am; = am;, we deduce that a(m; —m;) = 0 € M, where a # 0.
So m; = mj, for each i,j € I, because M is torsion-free. It follows that m; € N;c/M;,

thus f = am; € aF. O

Here we introduce an operator of closure of modules. This relates the concept of pure

module to that of index of a matrix (see Definition 2.4.15).

Definition 2.4.8. [3] Let M be a free Z-module of rank n and let F be a submodule of M.
Then the pure closure of F in M is the module F defined as the intersection of all pure

submodules of M containing F. Clearly if F is a pure submodule of M, we have F = F.

Proposition 2.4.9. [3] Let M be a free Z-module of rank n and let F be a submodule of
M. Then
F={leM :3ceZ\{0}s.r cleF}.

Proof. Put L ={l € M :3c € Z\ {0} s.t. ¢l € F}. We want to prove F = L. Clearly
FCLandsoF C L. We prove that L is a pure submodule of M, i.e. LNaM C aL, for
any a € Z \ {0}, so we can deduce that F C L. For [ € L N aM, there is m € M such
that [ = am; as [ € L, there exists ¢ € Z \ {0} such that ¢/ € F. Thus, ¢l = acm € F,
with ac # 0, and we deduce that m € L by definition. We conclude that [ = am € aL.
It follows that L is a pure submodule of M and, by definition of purity, L = L. Hence
FCL.
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Conversely, if [ € L, then there is @ € Z \ {0} such that al € F. Soal € aM N F = aF.
We conclude that there exists f € F such that al = af, hence [ = f, as M is torsion
free. Thus L C F. O

We give the definition of index of submodules.

Definition 2.4.10. Let M be a free Z-module of rank n and let F be a submodule of M.
The index of F is the index of F as a subgroup of F.

Note that F is pure in M if and only if F has index 1.

The following results prove that a pure submodule F of a free module M coincides with

M if F and M have the same rank (Lemma 2.4.14).

Theorem 2.4.11. Let M be a free Z-module of rank n and let F be a submodule of M of

rank r. Then there exist a basis {vi,- - - ,v,} of M and non-zero integers d,,- - - ,d, such
that {d\vy,- - - ,d,v,} and {vy,--- ,v,} are bases for F and F, respectively.
Proof. By Theorem 2.3.1, there exist a basis {v,---,v,} of M and non-zero integers

dy,--- ,d, such that {dvy,- - - ,d,v,} is a basis of F.

Now, we prove that {v,---,v,} is a basis for F. Since d;v; € F,fori =1,--- ,r, we have
v; € F, by Proposition 2.4.9. Thus it is enough to prove that F = spang{vi,-- - ,v}.
Let x € F, then there exists a non-zero integer ¢ such that cx € F. The vector cx is

P
a linear combination of elements of a F-basis, i.e. cx = ), k;d;v;. On the other hand,
i=1

n n
x € M, so x = ), hv;. It follows that cx = ), ch;v; and ch; = k;d;, fori =1,--- ,r and
i=1 i=l
-
hyy1 = -+ = h, = 0. We conclude that x = )] h;v; is a linear combination of vectors
i=1
Vi,© -, V. Thus x € spanz{vy,--- ,v,}. O

26
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Proposition 2.4.12. [15] Let M be a free Z-module of rank n. Let F and L be submodules
of M such that F C L and F is pure in M. Then the quotient L] F is a free Z-module.

Proof. Let | + F € L/F be a torsion element, then there exists ¢ € Z \ {O}such that
c-(l+F)=F. Itfollows thatcl € F,sol € F = F. O

Note that in general the quotient of free modules is not free.

Proposition 2.4.13. Let M be a free Z-module of rank n and let F, L be submodules of
M. If F is pure in M, then any Z-basis of F' can be extended to a Z-basis of F + L by

adjoining elements of L.

Proof. F C F+ L € M and by hypothesis F is pure in M. Then, by proprosition 2.4.12,
(F + L)/F is a free Z-module, so there exists a basis {; + F,l, + F,--- ,l, + F}, where
{l,bh,---,I,} C L. Let{fi, f»,---, fi} be a basis of the free module F. Now we prove
that {fi,---, fi,h1,-- -, } isabasis of F + L.

Letme F+L,thenm+F = ) hi(l; + F) = (3 hjl;) + F, it follows that m — ), h;l; € F.

l=1 [:1 l:1

r 1 1 r
Hence m — Z hil; = Z kjfj, and m = Z kjfj + Z hil;.
j=1 j=1 i=1

i=1 Jj=
The vectors fi,-- -, fi, 11, - - , I are linearly independent, indeed if k1 fi +- - - + k; f; + hi ]y +
o+ hl, =0, then F = (kifi+ -+ kfi+ b+ +h )+ F =+ -+hl)+F =
hmh+F)+---+h(l, + F). Since {| + F,Lb + F,--- ,l, + F} is a basis for the quotient
module, ; = 0, fori =1,---,r. It follows that k1 f; + - - - + k; f; = 0, so k; = 0 because
{fi» f2,- -+, [t} is a basis of F. O

The following proposition is very important in our Wilson’s Theorem proof.

Lemma 2.4.14. [3] Let M be a free Z-module of rank n. If F and L are submodules of
M such that
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1. FCL,
2. Fispurein M,

3. rank(F) = rank(L),

then FF = L.

Proof. We consider the submodule L = F + L. By Proposition 2.4.13, any basis of F
can be extended to a basis of L adjoining elements of L. But F and L have the same rank,

so any basis of F is a basis of L. O

Now we return to the matrices with coefficient in Z and we work on modules generated

by their rows.

Let A be an integral matrix m X n. Then we use rowz(A) to denote the Z-module spanned
by the row vectors of A, and rowg(A) to denote the vector space over Q, generated by

the rows of A.

Definition 2.4.15. [15] We define the index of an integral matrix A to be the index
of rowz(A) as a subgroup of the module Z(A) of all integral vectors which belong to

rowg(A).

We observe that if A has index 1, then every integral vector which is a rational linear
combination of the rows of A is already an integral linear combination of the rows of A,

that is rowz(A) is a pure submodule of Z".

About index we recall the proposition proved by Wilson below.

Proposition 2.4.16. [15] Let A be an integral matrix. Then A has index 1 if and only if

A = ABA for some integral matrix B.
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2.4 Pure modules and index of submodules

Proof. Suppose A = ABA and let x be an integral vector in rowg(A), say x = yA, where
y is rational. Then

x =yA=yABA = (xB)A = zA

where z is integral; so x € rowz(A) and this shows that A has index 1.

Conversely, suppose EAF = D, where E, F are unimodular and D is diagonal with
entries 0 and 1. Say Aism X n. If m < n, let F’ = F and E’ be obtained from E by
adjoining (n — m) rows of zeros; if m > n, let E’ = E and let F’ be obtained from F by

adjoining (m — n) columns of zeros. In either case, AF'E’A = A. O

Proposition 2.4.17. Let A be an integral matrix of size s X n. Put F = rowz(A). Then

F=2ZA)inZ"

Proof. Let {Aj,---,Ag} be the rows of A, that is a generating set of rowz(A). First we
prove that F C Z(A). Let x € F, then there exists ¢ # 0 € Z such that cx € F C Z(A) C
rowg(A). Since rowg(A) s a vector space and ¢ # 0 we havex = ¢!(¢cx) € rowg(A). So
x € Z(A). Conversely, lety € Z(A), theny € Z"Nrowg(A). Hencey = q1A1+- - -+q,A;,
where ¢g; € Q, and there exists ¢ # 0 € Z such that cy € rowz(A) = F. We conclude

thaty € F. |

The following proposition allows to link the non-zero invariant factors of a matrix A

with the index of the module generated by its rows.

Proposition 2.4.18. Let B be a diagonal form of an integral matrix A and suppose that

it has non-zero entries di,d»,- - - ,d,. Then the group m%v(ZA(Q) is finite and is isomorphic
to the direct sum of cyclic groups of orders d, d>,- - - ,d,.

Proof. We want to apply Lemma 2.3.7. We put F' = rowz(A); by Proposition 2.4.17 we
have that F = Z(A).
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Let @ : Z™ — 7" be the map induced by AT with respect to the canonical bases, so

defined

X1 X1
— AT
Xm Xm
Ima = spanz(Aley,--- ,ATe,) = rowz(A), where {e},-- - ,e,} is a canonical basis of
7", Let AT ~ B = diag(dy,--- ,d,), where dy,- - - ,d, are non-zero integers. So there
exist two bases {wy,---,w,,} di 2™ and {v,---,v,} of Z", such that a(w;) = d;v; for
i=1---,randa(w;)=0fori=r+1,---,m.

It follows that F = Im a = spanz(a(wy),- - - ,a(wy,)) = spanz(div,- - - ,d,v,).

B’ = {dv, - ,dyv,} is a basis of F, since Z" is torsion free. By Theorem 2.4.11,
{vi,*++,v,} is a basis of F.SOF=Zv®---®Zv, and F = Z(dvy) @ - - - & Z(d,vy).
The claim follows from Lemma 2.3.7. O

Now we quote Proposition 3 in [15]

Proposition 2.4.19. Let v, vy, - - ,v, be a Z-basis of a module M C Z" of index 1. Then

the matrix whose rows are dyvi,d,v3, - - - ,d,v, has as a diagonal form the r X n diagonal
matrix with entries dy,dy,- - - ,d, and in particular it has index did; - - - d,, if all d; are
non-zero.

Proof. Let D = {vy,...,v,} be a Z-basis of M. Fixed dj,...,d, € Z, we consider the

linear map
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2.4 Pure modules and index of submodules

M — z"
i hivi = X dihvi

Since M has index 1, it is pure and we can extend D to abasis C = {Vi, ..., Vi, Wyl co0y Wy }
of Z" (see Proposition 2.4.13). Thus Im ¢ = spanz(divy, ..., d,v,) and the matrix associ-

ated to ¢ with respect to the bases D and C is

0 O 0
0 O 0
Now we consider the canonical basis & = {ej, ez, ,e,} in Z". With respect to the

bases D and &, the matrix associated to ¢ is

AT:(d1v1 | dova | ... | d,v,),

whose columns are d;v; for any i = 1,...,r. We conclude that DT and AT are equivalent,

that is D is a diagonal form of A”.

Now we suppose d; # 0, fori = 1,--- ,r. Since Im(yp) = spanz(dvy, ...,d,v,) € M and
M is pure in Z" we get Im ¢ C M, by Definition 2.4.8. Thus Im ¢ C Im ¢ C M. From
rank(Im @) = rank(M), we have rank(Im ¢) = rank(M). By Lemma 2.4.14, we get
Img=M.

Applying Lemma 2.3.7to Imo =Zv, ® --- ® Zv, and Im ¢ = Zd\v ® - - - ® Zd,v,, we

31



Modules over a P.I.D. and Matrix Normal Form

have that the module % is direct sum of cyclic modules of order d;, that is

Ime = Zn y y Zv,
Ime ~ Zdv Zd,v,”

The claim follows considering the matrices A and D and observing that Im ¢ = rowz(A).

O

Example 2.4.20. If you take M = 73, vi = (1,0,0), v» = (1,1,0), v3 = (1,0,1) and d; = 2,

dy =3, d3 =4, then
2 00

A=[3 3 0]
40 4

Applying the elementary column operations we get
2 00 2 00
A~13 3 0|~|0 3 0]
0 0 4 0 0 4
If we consider the map ¢ defined in Proposition 2.4.19, then Im ¢ = {2v},3v;,4v3} =

rowz(A) and Im ¢ = spanz{vi,v2,v3} = Z3. So

1
ﬂ = () X (3 X Cy,
Img

where C; is the cyclic group of order i.

We conclude this chapter with the definition of Smith group of a linear map.
Definition 2.4.21. Given the free Z-modules M, N of finite rank and a linear map
¢o:N—=M.

Then the Smith group of ¢ is defined as

M
@(N)
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2.4 Pure modules and index of submodules

We observe that in general % =T @V, where T is the torsion submodule and V is a
free submodule of finite rank (Corollary 2.3.9). If M = ¢(N), then % =T.
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CHAPTER 3

A diagonal form for incidence matrices of 7-subsets vs

k-subsets

In this chapter we deal with well-known results about a diagonal form for incidence
matrices of 7-subets vs k-subsets on a n-set ). These matrices, introduced in Chapter 2

and denoted by W;;(n) have been studied by Wilson in [15] and Bier in [2].

3.1 A diagonal form for the incidence matrix W;;

(Wilson’s proof)

Here we give Wilson’s original proof. He uses the notion of index introduced in section
2.4: the index of an integral matrix M is the index of the Z-module generated by the
rows of M, called rowz(M), as a subgroup of the module Z(M) of all integral vectors

which belong to rowg(M), the vector space generated by the rows of M.

We will construct a matrix M, (n) using the matrices Wji(n), fori = 0, - - - ,¢; in Propo-
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sition 3.1.3 we will prove that M;;(n) has index 1, that is Z(M;(n)) = rowz(M;;(n)) and
that W;x(n) and M,;(n) have the same rank. Thus, in order to give a diagonal form of
Wik (n), (see Theorem 3.1.6), it will be enough to find appropriate bases of rowz(M;i(n))
and rowz(W;(n)) (see Propositions 3.1.4 and 3.1.5).

We begin with some notation. Given the n; X m matrices A; withi = 0,- - - ,¢, we denote

by

Ja

i=0
the ng + n; + - - - + n; X m matrix obtained by stacking the matrices Ag, Ay, - - , A; one on
top of the other, that is
A
Aj
A=
A;

For 0 <t < k < n we define

Wok(n)
! W,
M (n) = U Wir(n) = Uf(n) :
i=0 :
Wik(n)

Example 3.1.1. Taken n = 3, t = 1 and k = 2, the matrix Mj>(3), whose rows are
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3.1 A diagonal form for the incidence matrix W;;
(Wilson’s proof)

indexed by 0,{1},{2},{3} and columns are indexed by {1,2},{1,3},{2,3}, is

I 11
1 10
1 01
011

In the sequel, if there is not confusion, we write W;; instead W;;(n) and M, instead

M;i(n). The following Lemma will be of fundamental importance

Lemma 3.1.2. ForO< j<t<k<n

o
W, Wi = (t_]f,)w,-k. (3.1)

Proof. The proof follows immediatly from the relation
WiWoi(S,K) = " Wii(S, T)Wui (T, K),
T

for an j-subset S and a k-subset K and where the sum is extended over all #-subsets T of
Q. We have the claim observing that the number of ¢z-subsets 7" such that S C T C K is
(];:JJ ) if S € K, and 0 otherwise. O
Now, we observe that the Equation 3.1 shows that rowg(W;r) C rowg(Wy) for j <t
and hence rowg(M;i) = rowg(Wik). In particular, My has rank at most () (i.e. the

number of rows of W;;).

More precisely, we get:

Proposition 3.1.3. For non-negative integers t,k,n with 0 < t < k < n —t, the matrix

My has rank ('t’) and index 1.
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Proof. We consider separately two cases:

1.0<t<k<nandk=n-—t,

2.0<t<k<nandk <n-—t.

Case 1. We claim that

t
ey —

;(—1) Wi Wit = I(n), (3.2)
where Iny is the identity matrix of order (};) and Wi is the (7}) x (}) matrix defined
by

B 1 ifSNK=0
Wir(S,K) = (3.3)

0 otherwise

for a i-subset S and a k-subset K. To prove this just note that the entry in row A

and column B on the left-hand side of 3.2 is

2(_1)i(|3| _ |l,A N Bl) _ 0 ifA#B 34)
i=0 1 ifA=B

Indeed, for an i fixed, W;{Wik(A, B) is the number of all i-subsets S of Q such that
SNA=0andS§ C B, that is (|B|*|iAmB|). If A = B itis clear that the left-hand
side of equation (3.4) is 1. If A # B, then |A N B| > n — 2t, as both A and B have
cardinality n — ¢ (the bound is achieved when A contains the complement of B),
hencet >n—t—|ANB|=|B|—|ANB|. Putqg = |B| — |AN B|; we get

t B q .
Z(—l)"('B lan B') - Z(—l)’(?) (141,

i=0 i=0
So 3.2 can be written as
—r B
MM = 1),
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3.1 A diagonal form for the incidence matrix W;;

(Wilson’s proof)

where

t
My = U(_l)iWik-
i=0

The matrix A = M;c is an integral matrix such that AM;; = I(n). We deduce that

rowz(l(?)) C rowz(My); so (}) = rank(l(?)) < rank(My) and rank(My;) = (7).

About the index, we observe that M,y AM;x = M;, so that by Proposition 2.4.16,

M, has index 1.

Case 2. We assume k < n — t and we prove the statement by induction on n + ¢ + k. If

t = 0 then the claim follows observing that

M0k=W0k=(1--~1).

Now we suppose 0 < t < k < n—t. Givenl < j < ¢, choose a point xg in the n-set

Q. Then the rows (j-subsets) and columns (k-subsets) of W (n) are partitioned

according to whether or not they contain x¢. This gives us a block decomposition

of Wji(n):

Wi_ig—1(n—1) ‘ 0

Wik(n) =

Wisca(n—1) | Wyeln —1)

After permuting rows, we find that M, (n) is equivalent to

M1 j—1(n—1) ‘ 0

Mt,k—l(”l - 1) ‘ Mtk(n - 1)

By the induction hypothesis applied to M;_;;—i(n — 1) and M;;(n — 1), we can use

elementary integral row and column operations to reduce the above matrix to

L 00 O
0 0]0 O
3.5)
x x| 0
* |0 0
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where /; and I are identity matrices of orders (7_|) and ("), respectively. Then

rank(M;;(n)) > ("_1) + (n_]) = (’Z), hence rank(M;(n)) = (r;)

t—1 t
Further row operations on the matrix in 3.5 can be used to create an identity of

order (7) as a submatrix of some M ~ My(n).

Since (?) is the rank of M, (n), all other entries of M must be zeros. We deduce

that My (n) is equivalent to a diagonal matrix with 1’s entries, so its index is 1.

The argument in Lemma 3.1.3 shows that Z(My;(n)) = rowz(My(n)), of rank (7). As
rowz(Wix) € rowz(M;r(n)) and rank (rowz(M;;(n))) = rank (rowz(W;y)), by 2.4.14
we have that Z(W) = Z(M;r(n)).

As said above, we want to find an appropriate basis of Z(M;;(n)) and, consequently, a

Z(Mx(n)

basis of rowz(W;) such that it is easy to determine the module rowa (W)

Proposition 3.1.4. Let k < n and | = min{k,n — k}. There exist integral matrices
Eok, Evgs ..., Er g such that Ej, is a ((:’) — (lfl)) X (7)) matrix, the rows of which are in

rowz(W;) and such that for each t < I, the rows of Eo; U ... U Ey form a Z-basis for

rowz(Myy).

Proof. Let Eor = Wyi. By induction on i, we suppose Eor U Ej; U --- U E;; basis of
rowz(M;y), with i < [. By Proposition 2.4.13 we extend the Z-basis Eg; U ... U Ej;

of rowz(M;x), which has index 1 by Proposition 3.1.3, to a Z-basis of rowz(M;+1x) =

n
i+1

rowz(Mii) +rowz(Wis14), by adding (,},) — (/) vectors from rowz(Wi.). By recursion

we obtain the claim. O

Proposition 3.1.5. Let Eox, Ei, ..., Erx be as in Proposition 3.1.4. Then, fort < [, a
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3.1 A diagonal form for the incidence matrix W;;
(Wilson’s proof)

Z-basis for rowz(W;y) is provided by the rows of

k k—1 k—2
Eor U Ey U Er U ... U Ey. 3.6
(t) 0k (t—l) 1k (r—Z) 2k 1k (3.6)

Proof. The proof is by induction on k. The case k = O is trivial. Fix k > 0. There
is nothing to prove if t = k, because Wy = I and rowz(Wyr) = rowz(Myg), (in
general rowz(W;;) C rowz(M;;)). The assertion reduces to Proposition 3.1.4. So we
assume ¢t < k. The equation 3.1 shows that the rows of (’t:’ )Wik are contained in
rowz(Wy). The matrix E = Uizo E;; has index 1, because its rows form a Z-basis for

rowz(Myi) = Z(Mix), so rowz(E) = rowz(My) = Z(My) = Z(E).

By Proposition 2.4.19 the rows of |J!_, (lt‘:l.i)Eik span a submodule M of rowz(M,;) of

rank (’t’) and index

! _ 7 (7)_(ifl)
N=[] (k ’) . (3.7)

120 r—1

In particular we observe that M C rowz(W;;), by Lemma 3.1.2. We will show that

rowz(Wy) has index N, defined by 3.7.

We have 2t < n. Let Eg, Eyy, ..., Ey; be the ((’l') — (l.fl)) X () matrices as in Proposition

3.1.4. Define integral matrices A;;; for 0 <i <t by

k—i
EWi = (t . l.)Aitk- (3-8)

In the following we prove that
t
A=A
i=0
forms a Z-basis for rowz(M;;(n)) and

t .
U (];:l.l)Aitk

i=0

forms a Z-basis for rowz(W;;).
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Given that the rows of E;; are linear combinations of the rows of W;;, we have that the
rows of E;;W;; are linear combination of the rows of W;;W,; and by equation 3.1, each
Ak is a matrix ((’f) —(" )) X (), whose rows are linear combinations of the rows of

i—1
Wik.

Wi = 1, so rowz(M,,) consists of all integral vectors of lenght ('Z) Moreover the union

of the rows of Eyy, Ey, ..., E;; forms a Z-basis of rowz(M;,). It follows that the rows of
t .
k—i
A.
U ( r— l) itk
form a Z-basis of rowz(W;x). They span rowz(W;;) because taken w € rowz(Wy;), this
vector is a linear combination of the rows of Wy,
w1

wa
w=hwi + ... + hywy = (hy, ..., hy)

Ws

where s = () and wy, ..., w; are the rows of Wy.

Since (hy, ..., hy) is a vector of lenght ('t’), it is a linear combination of Ult-:o E;;. So the

wi

W) B
product (hy, ..., hy) is a linear combination of !_, E;; Wi = U!_, (’;_;)Al-,k.
W

Our aim is to prove that the rows of

t
A=A
i=0

form a Z-basis for rowz(M;;), which has index 1. Applying the Proposition 2.4.19 we

conclude that rowz(W;;) has index N.
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3.1 A diagonal form for the incidence matrix W;;
(Wilson’s proof)

For this purpose we observe that the rows of A are contained in rowz(M;; ), because they
are integral vectors, rational linear combination of the rows of W;; and M,; has index 1.

Now by our induction hypothesis, rowz(W;;) has Z-basis consisting of the rows of

Tt —i
U N VP
o\
By equation 3.8 and since (k ]j )Wix = Wj; Wy, the rows of ( )W]k are integral linear

combinations of the rows of

U R e e

k—\[,7 ) (k—i
- A;
(f—j) (U (J - ) tk)
It follows that the rows of W;; are integral linear combinations of the rows of
J .
k—1i
U ( )Altk
Jj—i
and these are integral linear combinations of the rows of A. This prove that rowz(W ;) €

rowz(A) and completes the proof. O

Theorem 3.1.6. Lett < k < n—k. Then Wy has as a diagonal form the (}) x (}) matrix

with diagonal entries
k— i
( l) with multiplicity (n) — ( " ), i=0,1,....¢.
t—i i i—1

Proof. The propositions 3.1.4 and 3.1.5 assert the existence of an integral matrix E, of
size () % (}), such that the rows of which form a Z-basis for an index 1 module rowz(Mx)
and, called B the diagonal matrix with () — (.",) occurrences of (*~/) on the diagonal,
the rows of BE form a Z-basis for rowz(W;x). Then the rows of W;; are integral linear
combinations of the rows of BE. This means that we can obtain W;; from BE with row
elementary operations and so Wy, ~ BE. By Proposition 2.4.19 the matrix BE has as a

diagonal form the matrix B. O
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A diagonal form for incidence matrices of 7-subsets vs k-subsets

For simplicity, in the sequel we refer to the Theorem 3.1.6 as Wilson’s Theorem.
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CHAPTER 4

A diagonal form for the incidence matrix W;; via linear

algebra

Here we give a new proof of Wilson’s Theorem seen in the previous chapter. Many of
the ideas of sections 4.1 and 4.2 are based upon [4], [13] and [14]. In section 4.3 we
will determine a particular basis for QL; related to Sym(n)-irreducible representations.

Our reference is [10].

4.1 The Boolean lattice

We begin this chapter with a short introduction to the Boolean lattice, essential for the
use we will make later. In the following R is one of Q or R; Q is the finite set {1,2,- - - ,n};
L" is the power set of QQ and RL" is the vector space of formal sums of elements of L"

with coefficients in R, i.e.
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A diagonal form for the incidence matrix W;; via linear algebra

RL”:{Z rxx:xeL”,rxeR}.

xeLn

Of course RL"™ has dimension 2".

We give to RL" the structure of algebra by adding a multiplication operation. For

x,y € L' we define a product in the following way:
x-y=xUy (4.1)

and extend this linearly to RL". If f = . fixand h= ) f,y, we put
xelLn yeLn

frh= ) fehyxoy.
x,yeLn

This means that a i-set is a product of its i elements, so we can write «; - - - @; instead of

{a1,- - - ,q;}. Note that the union of sets induces an associative product on RL".

Definition 4.1.1. We call f =} fix and h = )] f,y disjoint from each other provided
that for all x,y € L", with x Ny # 0, we have f, = 0 or hy, = 0.

On RL" we define the standard inner product (; ) by setting
(x;y) =1if x = y and (x;y) = 0 otherwise,

for all x,y € L". We extend this into RL" linearly in both arguments. Note that this
product is positive-definite and bilinear by construction. It also transforms the basis L"
of RL" into an orthonormal basis. So if

=) fyeRL",

yeLn
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4.1 The Boolean lattice

with f, € R, we get

(00 =) fyixy = ) fix) = fulxx) = feo

yeLn yeL"

With an inner product we get a natural norm on RL", defined to be

1F1% = (f5 -

As we said, L" is an orthonormal basis of RL" since for any x € L" we have

l[x]l = V{x;x) = 1.
Example 4.1.2. If f = —3{1,2} + {1,3,5} and h = 4{1,3} + {1,2,4}, then
f-h=—12{1,2,3} — 3{1,2,4} + 4{1,3,5} + {1,2,3,4,5}

and

(fi{L.2}) = =3.

Now we encode the partial order C of the Boolean lattice (L",C) into the algebra

RL" in an algebraic way. To this end we introduce the maps €™ : RL" — RL" and

™ : RL"™ — RL" defined on basis elements x,y € L" by

>,y if|x| <n > x if|y|>0

€(x) = 4 bl and A (y) = bl

0 otherwise 0 otherwise

and extended linearly. This means that (¢"”(x);y) = 1 if and only if |y| = |x| + 1 and

y 2 x. Moreover, (x;8"(y)) = 1if and only if |x| = |y| —l and x C y.

We observe that €™(Q) = 0 since Q is the maximal element of L". The same is true for

A" (0).
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A diagonal form for the incidence matrix W;; via linear algebra

Proposition 4.1.3. If fi, o> € RL" then (€"(f); /) = (fi;0(f)). In particular €™

and 8™ are adjoints of each other.

Proof. Since (; ) is linear in the first and second variables, it is enough to prove this for
x,y € L". Note that
1 if|y|=|x|+landx Cy

(e(x);y) =
0 otherwise

However, this is the same when we look at §®:

if|x] =|y|—land x C y
(x,0"(y)) = :
0 otherwise

As we know, L" = U | L". The space RL" splits naturally into a direct sum
RL"=RL{®RL{ & ---®RL,,
where RL! is the subspace with basis the i-sets of L".

We can restrict €™ and d)-maps:

e RL — RL! 8" RL”

n
r+1 1+1 41 — RL;.
In the following, unless necessary, we write €, 0, e{” and 6; 1 instead €™, 9™, gl

1
and a(”)f

t+1 "

Note that if we compose € *! with 9’

|1 We obtain a vector space endomorphism of RL,

denoted by

+ ._ ot t+1
v, =0, .

48



4.1 The Boolean lattice

v/ is non-zero only if 0 < r < n — 1. Observe that v;" is the restriction of the linear map

v* = de to RL]. Similarly, we define the restriction
N Ay |
v, =60,
of v~ = €. This is non-zero only if 1 < ¢ < n.

By Proposition 4.1.3 we know that € and 9 are adjoints of each other and so

(VI(fi); o) = (e(fi) (o)) = (fisv' (f2))- (4.2)
Hence v* is symmetric. Similarly for v—.
A basic property of the maps v* and v~ is given by next Lemma.

Lemma 4.1.4. Let 0 < t < n and let id; be the identity map on RL;. Then

v —v, =(n—2t)id,.

Proof. The statement is true for # = 0. We assume ¢ # 0. Since v;” and v, are linear it

is enough to prove this for basis elements.

Since €*! and 9!

1, are adjoints of each other, for any x,y € L', we have that

(i) y) = (0!, € (x);y) = (€M (x); € ()

is the number of z € L7, containing both x and y. Thus

n—t if xX=y
v (x)y) = 1 if xnyelL",

0 otherwise
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A diagonal form for the incidence matrix W;; via linear algebra

Similarly, (v, (x); y) = (et’_l(?f_l(x);y) = (8" 1(x); 0/ "!(y)) is the number of all 7 € L',

contained in both x and y. Thus

t if x=y
vy (xxyy=11 if xnyel!,
0 otherwise

We get

B n—2t if x=y
(O = v )x)y) =

0 otherwise

The claim follows remembering that

0 =y = )0 = vy

yeLy

We conclude this section with some notion about the action of Sym(n) on RL".

The natural action of Sym(n) on Q induces an action on L. for g € Sym(n) and

x={a, - @} € L;’ we have

{a’b' o ’ai}g = {ag" v ,a’g}
1 i

RL! becomes a RSym(n)-space, if we think to L! as a basis of RL".

Moreover it is easy to prove the following Lemmas
Lemma 4.1.5. If fi, f> € RL" and g € Sym(n) then {fi; f») = (flg;fzg)

Lemma 4.1.6. Let fi, f> € RL" and g € Sym(n) then (fi - )8 = flg . fzg.

It follows that the action of Sym(n) on RL" commutes with the maps € and d we have

introduced.
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4.2 Eigenspace decomposition

Lemma 4.1.7. The action of Sym(n) on RL" commutes with the € and 0-functions. In

particular, for f € RL" we have

e(f)* = e(f*) and a(f)* = a(f*).

Proof. Since € and 9 are linear, it is enough to show the equality for basis elements. So

let x € L}, then

g
e =| D (M enyy] = D (T,
yELt"H yeLrn+1
and
er(xf) = > (e )y
yELthrl
Forze L', (€(x); z) = lif and only if (e/*!(x8); z8) = 1, since x C z implies x8 C z8

and conversely. So, in the first equation z& has coefficient 1 if and only if the coefficient
of z8 in the second equation is 1. This argument works in reverse, proving equality.

Similarly we prove d(f)8 = d(f%). O
Lemma 4.1.7 tells us that the Sym(n)-action also commutes with

vt =0eand v = €.

4.2 Eigenspace decomposition

Our aim is to split RL} into a direct sum of irreducible Sym(n)-invariant spaces. We
will do this using the symmetric map v,;". Next Lemma allows us to relate eigenspaces

and eigenvalues of v and v, to each other.
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A diagonal form for the incidence matrix W;; via linear algebra

Lemma 4.2.1. Let A and B be vector spaces and let « : A — Band : B — A be
linear maps. Then Ba : A — A and aff : B — B have the same non-zero eigenvalues.
Furthermore, if A is a non-zero eigenvalue with eigenspaces Ay € A and B, C B for
Ba and apf respectively, then a and B restrict to isomorphisms a : Ay — By and

ﬂ:B/l—)A/L

Proof. In order to prove that Sa and a8 have the same non-zero eigenvalues, we consider
an eigenvalue A # 0 of 8. Then we have some w € B such that aS(w) = Aw. Applying

B to both sides, we get
Ba(B(w)) = AB(w),

so A is also an eigenvalue of Sa. Now we consider the map a : Ay — B, and suppose
that a(v) = a(w) for v,w € A,. Applying B8 we have Ba(v) = Ba(w), whence Av = Aw.
It follows that « is injective from A, to B,. Now we prove that it is surjective. For this
purpose, let w € By, so %ﬁ(w) € Ay and (%ﬁ(w)) = w. The claim follows. A similar

argument shows that § is an isomorphism from B, to A,. |

In particular we may take A = RL!, B = RL!, |, a = €/*' and 8 = 9/, . Above Lemma

implies that et”l and 8; ., Testrict to isomorphisms between non-zero eigenspaces of v,

and v,

+.» and any eigenvector for v, , with eigenvalue 4 # 0 is also an eigenvector for

+

Vt+1

with eigenvalue A + n — 2t — 2, by Lemma 4.1.4.
In the following Theorem using Lemma 4.1.4 we get the eigenvalues v," and v, .

Theorem 4.2.2. Suppose that 2t < n. Then v, has t + 1 eigenvalues
A—10 > A1 > -0 > Apgp1 > A1 = 0

and v} has t + 1 eigenvalues
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4.2 Eigenspace decomposition

/lt,() > /lnl > e > lt’[fl > /l;,[ Z 0,

with multiplicity n; = () — (")), for 0 < i < t. In particular we have the decomposition
RL! =E\®E & - ®L] (4.3)

n . + . . . . n _ .
where El is the v;"-eigenspace with eigenvalue A; ; and dimpg E, =mn;.

Proof. Clearly (7) > (,";) and n —2¢ > 0. If t+ = 0, then v, has only one zero
eigenvalue. Now let + > 0 and by induction hypothesis, for 0 < i < ¢ —1, let 4,5 ;

be non-negative eigenvalues of v~

> With multiplicity n;. Thus there exist non-zero

eigenvectors w; € RL? | such that vt__l(wi) = A;—2,;w; and by Lemma 4.1.4
Vi wi) = v (i) + (n =2t + 2)w; = [Aa,; + (n— 21 + 2)|w;.

Called A,y ; = A4, + (n—2t +2), it is clear that A,_; ; are positive eigenvalues of Vt+—1’
withi =0,---,r—1. By Lemma 4.2.1 vttl and v, have the same non-zero eigenvalues,

we deduce that they are
Ar—10 > Ap—11 > -+ > A1

Since dim RL}! > dim RL;LP it follows that there exists a zero eigenvalue 4,1, of v, ,

with multiplicity () — (,",)-

Applying again Lemma 4.1.4, we obtain the eigenvalues of v, :
Ao > Ay > o> g1 > Ay 20,

where

/lt,,' = /1[71,,' + (n — 2t) > 0,

with0 <i<r—1and A;; =0+n—2t > 0. Fromv;” = v, + (n — 2t)id, follows that

v, and v, have the same eigenspaces. So A, ; has multiplicity n;, for 0 <i < ¢. O
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A diagonal form for the incidence matrix W;; via linear algebra

Theorem 4.2.3. If 2t > nand 0 <t < n, then v, has n —t + 1 positive eigenvalues. In

particular we have the decomposition

RL} = E,’fo @ Efl O Efn_t_l ®E, (4.4)

Proof. We prove the Theorem for inductiononn—t. Letn—t = 0,s0v, : RL; — RL} is
defined by v, (Q) = nQ. The claim follows. Now we take n —¢ > 0 and we suppose that

. . — _ _t+laqt . n
the statement is true forn—r—1 > 0,i.e. fort+1 < n. So V=€ 6z+1 :RL',

n
— RL7,
has eigenvalues

Ao > A1 > o> Appy—1 > 0,

with multiplicity n; = (7) — (ifl), fori =0,---,n—t—1. By Lemma4.2.1, v _

+
4 and v,

have the same non-zero eigenvalues. Since dim RL;! > dim RL”

+
s We have that v; has

an eigenvalue A,_, = 0 with multiplicity (7) — (,},) = (,",) — (,_7_,)-

For any A, ; there exists a non-zero eigenvector w; such that v;"(w;) = A;;w;. So, by

Lemma 4.1.4,
v, (wi) = v (wi) — (n—20)w; = (A, — n + 2t)w;.

Put 4,1, = A4, —n+2t,fori =0,---,n—t, we have 4,_1; > 0 with multiplicity
n;. Called E'; the eigenspaces associated to 4, ;, for any i = 0,--- ,n — ¢, we have that

dimE!; =n;and RL} = E/®E[, & --- ® E]|

n
tn—t—1 S E o

tin—t

The decompositions 4.3 and 4.4 give the scheme in Table 4.1.

In the sequel we use the following notation: ¢’ = min{t,n —t}.

Remark 4.2.4. We note that EIHI(E;?i) =0 ifand only ifi = t' and t > n/2, while
8;*1(Et”l.) =0 ifand only ifi =t" and t < n/2. Except this cases, by Lemma 4.2.1 and

Theorems 4.2.2 and 4.2.3, the maps ef“ and 0; L1 Testrict to isomorphisms

t+1 . n n t . pn
€ Et,j - Et+l,j’ at+1 : Et+l,j

n
AR — Et,j
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4.2 Eigenspace decomposition

RL! = EI,
Al
n — n n
RLn—l - En—l,O ® En—l,l
Al Al
Al Al
n — n n n n
RL} = E!Y ® E, & - ® E' | o E
Al Al Al
RLY, = Etn—l,O ® Ezn—l,l ® - O Etn—l,t—l
Al Al
Al Al
RL;1 = El’fo ® Ef]
Al
RL(’)’ = ES,O

Table 4.1: Eigenspace Decomposition

for 0 < j < t'. In other words, all modules in the same column of Table 4.1 are

isomorphic to each other via powers of et”l or 0' .. In particular,

t+1°

n n n
EO’Oa ELO’ E2,0$ T, En,O

have dimension 1, while

n n n n
El,l’ E2,1’ E3,1’ o Enfl,l

have dimension () — (8) and so on.

In the sequel if there is not confusion, we write E; ; instead E7',.
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A diagonal form for the incidence matrix W;; via linear algebra

Corollary 4.2.5. Let 0 < t < nand let Q C R be a field. Then the eigenvalues of

v/ :RL} — RL are

Ari = (@t —i+1)(n—1t—1i)> 0 with multiplicity ('ll) — ( " )

i—1
fori=0,---,t'.

Proof. Applying induction on ¢ and using Lemma 4.1.4, Theorems 4.2.2 and 4.2.3, we

have

di= 3 (n—zj):(r—i+1)n—2(i+---+t):(t—i+1)n—2(@—@) -
i<j<t

(t — i+ 1)(n — t — i), with multiplicity ('Z) — (ifl)- =

In the following we will assume R = Q as the eigenvalues of v;" are rational numbers.
Corollary 4.2.6. For each 0 <t <nand (0 <i <t’, the eigenspaces E;; are Sym(n)-

invariant.

Proof. Let f € E, ; forsome 0 <i <t <nandletg € Sym(n). Then
vI(fE) = 0T = A fE.

This means that f¢ is an eigenvector of v* with eigenvalue A, ; and so f8 € E; ;. Hence

the E; ; are Sym(n)-invariant. O

Theorem 4.2.7. Each of the E; ;, for 0 < i < t’, is QSym(n)-irreducible.

Proof. Take x € L. Then the stabilizer in Sym(n) of x has ¢’ + 1 orbits on L7,
corresponding to the possible intersection cardinalities of y N x for y € L;'. In other

words, Sym(n) has permutation rank ¢” + 1 on L}'. Therefore QL' decomposes into at

56



4.2 Eigenspace decomposition

most ¢’ + 1 irreducibles. Since the decomposition of QL;' already has ¢ + 1 summands
which are Sym(n)-invariant it follows that each of the summands is irreducible. The
dimension of E; ; is the multiplicity () — (,",) of A, ; and as these are pairwise distinct

fori =0,---,t’ the E; ; are pairwise non-isomorphic. ]

Theorem 4.2.8. Let 0 <t < k < n, witht + k < n. Then we have
QL =El0®En® - ®E; K

QLln = ElO ) El] D---D En (45)

where

K=E;1®- @ Ey

is the kernel of 0! E 615*1 : QLZ — QL. Furthermore, Ey; = E; ; for 0 <i <t. We

have Ey; = E,j if and only if i = j and furthermore dimg(Ey;) = n; = (7) — (,"))-

Proof. We consider the maps 6, QL — QL; defined by

e,k(x) = Z y, withy € L}

y2Xx

for x € L and 9, : QL] — QL] defined by

a,(y) = Z x, with x € L]

xCy
for y € L}!. These maps can be expressed as powers of € and 4. Let d = k — 1. Then
there are (d!) distinct chains x = x9 C x; C -+ C x4 = y of subsets of Q for any y

appearing in €X(x). Therefore

=(d) e IEk 2 et (4.6)
and similarly
oy = (d) o), 050y (4.7)
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A diagonal form for the incidence matrix W;; via linear algebra

Let E; ; and Ey ; be the eigenspaces in 4.3 and 4.4. Since 0 <t <k <nandt+k <n
we have ¢t = min{t,n —t} < min{k,n — k}. From 4.6 and 4.7 it follows that €* restricts
to an injective map E;; — Ej ; and that (')]’c restricts to a surjective map Ey ; — E;; for
eachi = 0,---,t. The eigenvalues of 6,’(6,]‘ can be computed from 4.6 and 4.7 using

Corollary 4.2.5. O

This decomposition is called the spectral decomposition of the incidence structure

L = (L L5 ©)-

4.3 Polytopes

Now the next thing to do is to give to QL' a generating set of eigenvectors. To this end,

drawing from [4] we introduce the so-called polytopes.
In the sequel, we will consider the natural order in €2.

Definition 4.3.1. Letr 0 <t < n 0 <i<t'andj=t—i Ifa, - ,a,B, - ,B
are pairwise distinct elements of Q and vyy,--- ,7y, the collection of all j-subsets of

Q\A{ay,- -+ ,q;,B1,- - ,Bi}, then we define a polytope of type (t,i), with head

(a1 —B1) (i — Bi)

and tail
Y1+ +vu)

to be the element
sii= e, B Bily = (@ — ) (@ — B)(yi + -+ yu) € QLY.
Denote the set of all polytopes of type (t,i) by S;'; and S;' = S/ U --- U S},
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4.3 Polytopes

Example 4.3.2. Ifn = 6 and t = 2, then the element
s21 = ({1} —{2}) ({3} + {4} + {5} + {6})
is a polytope of type (2,1). Now we write explicitly s, as
{1,3} + {1,4} + {1,5} + {1,6} — {2,3} — {2,4} — {2,5} — {2,6}. (4.8)

For every set x that appears in 4.8 we say that x occurs in the expansion of the polytope.

For example the set {2,3} occurs in the expansion of sy with coefficient —1.
n ; : n
Remark 4.3.3. The group Sym(n) acts on S} with orbits St
For convenience put s;; = 0 if s;; is undefined, for instance if t < 0, n < ¢, ¢’ < i or
n < 2i.

We define two maps which arise for polytopes.

Definition 4.3.4. For 0 <t <nand 0 <i <t’, we define the tail-extension

. on n
18 S
by
sl‘,i = [ala' o aai;ﬁla' o 7ﬁl]] — S:l = [al,. o ’ai;ﬁl" o 9ﬁl]]+1 .
Similarly, the tail-cutting map
=80 =Sy

by

spi = lan - @i B Bily — s = -+ Lai B L Bil o -

Remark 4.3.5. Note that s}, = 0 whent > 5 and i = t', and that s, ; = 0 whent < 7
andi =t'. Apart from these cases the tail-extension and tail-cutting are functions which

are inverse to each other.
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A diagonal form for the incidence matrix W;; via linear algebra

We remember the Leibniz Rule that will be used in 4.3.7.

Lemma 4.3.6. (Leibniz Rule) If f, h in QL™ are disjoint then d(f-h) = d(f)-h+ f-d(h).

Proof. It is enough to consider the case when f = x and & = y are subsets of Q. In this

case it is obvious and the remainder follows by linearity. O

Lemma 4.3.7. Let0 <t <nand0 <i <t'. Then

(a) O(s;i)=(m—t—i+ 1)s;.;

(b) s:,i € Ey ;.

Proof.  (a) Note that d(a — ) = 0 — 0 = 0 and hence by Lemma 4.3.6 we have

(a.1) d((a — 1)+ (a; — B;)) = 0,

(a.2) Lets; = (a1 —p1)--- (@ — Bi)(y1 + -+ vu). Then
O (a1 —pB1) (i —B)y1+-+v4) =0 (a1 — 1) -+ (@i — ;)
i+ t+y)+H(@—pB) (@ —B)olyi+ - +y) =
= (a1 — 1) (i — B)o(y1 + - - + ).

Clearly, 0(y;+- - -+7,) is equal to a constant ¢ times the sum of all (t—i—1)-subsets

of Q\ {ay, -+ ,@;, B, - ,Bi}. Therefored =(n—t —i+1).

(b) Leti =t =t" and consider a polytope s;; = (a1 — 1) - - - (@; — B;) of type (i,i). We
prove that s;; € E;;. By Lemma 4.3.6 we have d(s;;) = 0. So s;; € Ker (0) = Ej; ,
by Theorem 4.2.8.

In general, let s, ; = (a1 — 1) - - - (@i — Bi)(y1 + - - - +yu) be a polytope of type (z,1).
By part (a), applying (¢ — i)-times the map 9, we get

" (s1.i) = clag — B1) - - (@ — Bi),
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4.3 Polytopes

for some ¢ € Q. On the other hand if s,_; ; is the polytope of type (n — i, i) with

head (a1 — B1) - - - (@; — B;), for some a,b € Q we have
0" (snii) = asii (4.9)

and

an—Zi(sn_i’i) =blay — B) - (a; — By). (4.10)

Since "% is an isomorphism between QL” . and QL (see table 4.1), which
restricts to an isomorphism between E,,_;; and E; ;, we have that s,,_;; € E,_; ;,
by equation 4.10. Using equation 4.9 we conclude that s;; € E;;, as 8" ' is an

isomorphism from E,_; ; to E; ;.
O

Theorem 4.3.8. Let 0 <t <nand0 <i <t’. Then the polytopes of type (t,i) span E; ;

as a vector space.
Proof. We prove the statement distinguishing two cases

Case1 i =t =1¢’. Fix a polytope s; ; in E; ; and consider the space

spanQ{sfl. : g € Sym(n)}.

This is a subspace of E; ; and by construction it is Sym(n)-invariant. Since E; ; is
irreducible, by Theorem 4.2.7, E; ; = spanQ{sfi : g € Sym(n)}. So the set of all

polytopes of type (i,7) is a generating set of E;;, for 0 <i < 7.

Case 2 Now, let s;; be a polytope of type (¢,i). By Lemma 4.3.7, s;; € E;;. Since
the power of 0 is an isomorphism between E; ; and E; ;, by Case 1 and part (a) of
Lemma 4.3.7, we have that the set of all polytopes of type (z,i) is a spanning set
of E;;.
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Corollary 4.39. Let0 <t <nand0 <i <t'. Then

e(spi)=@+1— i)s;:i.

Proof. Ifi < n—t,ass;; € E;;, by Corollary 4.2.5 we have
Oe(sti) =v (sp) =@ +1—i)n—1t—i)sp;.

Using Lemma4.3.7 applied to s, we get de(sy,;) = (t+1—i)(n—t—i)s;; = (t+1—i)0(s;",).

Since d is an isomorphism between E,.; and E; ;, we deduce that
€(s,i) = (t +1—1)s],.

If i = n — ¢ then €(s;;) = 0, since €(E;,_;) = 0, by remark 4.2.4. O

Obviously we have
Corollary 4.3.10. The tail-extension and tail-cutting maps extend to QS ym(n)-isomorphisms
+:ELi — Ep and —E ;i — Eq,

forO <t <nand0 <i <t’, except the particular cases seen in remark 4.3.5.

Proof. From Lemma 4.2.1 we have that the maps

t+1 ., t .
€ : Et,i — Et+1,i and 5H_1 . EH_]’,‘ — E,’l‘

are isomorphisms. Applying Lemmas 4.3.7 and 4.3.9 we get the claim. O

Notation 4.3.11. Putd = k—t, we denote by s:f the polytope obtained from s; ; by d-fold

tail-extension. Similarly s;? is the polytope obtained from sy ; by d-fold tail-cutting,
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Remark 4.3.12. Let 0 <t < k < n, witht + k < n, and d = k — t. Using repeatedly

Lemma 4.3.9 we have
(6 €y sr) = (k= i)k —i = 1)---(t — i +1)s;¢

Since (k —t)!le} = (elf_lelf:; - ") we have

Ezk(st,i) =

(k—i)(k—i—1)--(t—i+1) +d_(l;:li) +d @.11)

(k—t)! st,i - ti’

Remark 4.3.13. Let 0 <t < k <n,witht+k < n, and d = k — t. Using repeatedly

Lemma 4.3.7 we have

0,00 V) =(n—k—i+1)---(n—t—i—D(n—1—i)s. ¢,

t+171+2

Since (k —1)!0}, = (9! gl .. ﬁlf_l) we have

t+17t+2

9 (sk,i) = (n—k—i+D)---(n—t—i—Dn—1-10 _d—(”—t—i) —d

k=1 Ski =\ g ]Sk (4.12)

4.4 Standard basis of polytopes

Let ZS;' be the submodule generated by the set of all polytopes S;'. The aim of this
section is to find a basis for ZSj', called “standard basis”, which will be essential in

section 4.5.
We know that ZS}', C E, ; and we observe that
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Definition 4.4.1. Let
soi = o @ B Bili—i = (e = B) (@ — Bi) - (i 4+ ys)

be a polytope of type (t,i), withi < t’. Then

1. ifi =0, s;0 is a “standard polytope”,
2. ifi > 0, we say that s; ; is a “standard polytope” provided that

(a) <@y <---<a@and B < B <--- <P
(b) aj <6 foralls € Q\A{ay, - ,a,pB1, - ,Bi}, and

(c) aj < Bjforalll < j<i.

Example 4.4.2. Ifn = 6 and t = 2, we have the following standard polytopes

e of type (2,0) :
(1,2} + {13} + {14} + {1,5} + {1,6} + {2.3} + {24} + {2,5} + {2.6} + {3.4} +
(3.5} + {36} + {4,5} + {4,6} + {5.6};

e of type (2,1) :

{1y = {2H{3} + {4} + {5} + {6}), {1y — {3H)2} + {4} + {5} + {6}),
{1y —{4H2} + {3} + {5} + {6}), {1y = {5H2} + {3} + {4} + {6}),
{1y = {62} + {3} + {4} + {5});

o of type (2,2) :

{1 ={2H3r = {4}, {1 —{2H{3} —{5}), ({1} —{2H)({3} —{6}),
{1 ={8H)|2 = {4}), {1 —{83H{H2} —{5})., {1} —{3H{2} —A{6}),
{1} —{4h{2} = {5}, ({1} —{4hH{2} —{6}), ({1} —{5H({2} —{6}).

64



4.4 Standard basis of polytopes

Next Lemmas 4.4.3 and 4.4.5 prove that a standard polytope is actually determined by
the set {By,--- ,Bi}.

Lemma4.4.3. Let0 <i < n/2ands;; = (a1—pB1) - (@i—pB), 5.i = (@—p1) - - - (@ —P5:)
be distinct standard polytopes of type (i,i). Then the sets x = {B,---,Bi} and ¥ =
{B1,- -+, Bi} are distinct.

Proof. Suppose that the ordered sets x and ¥ are equal, that is 8; = 3;, for j = 1,-- - ,i.

As s;; # 5ii, let jo be the smallest index such that @, # @;,. We write
sii = (@1 — B1) - (@jo—1 — Bjo—1)(@jy — Bjo) + - - (@i — Bi)
and
Si.i = (1 — B1) - (@jo—1 — Bjo—1)(@jy — Bjo) + - - (@ — Bi)-
In particular, without loss of generality, we can suppose that a;, < @;,; by definition

4.4.1, we have that a;, does not appear in the polytope §; ;.

Soaj, € Q\{a1," - ,@jy—1,@jy,- - , @, PB1,- - -, Bi}, contradicting the hypothesis @, < d,

forall6 € Q\ {1, -, @j;—1,@jy, - @, B1,- - -, Bi} (point 2b of the definition4.4.1). O

In order to prove that if x and x are distinct, then s; ; # §;;, we introduce the following

order relation on L.

Definition 4.4.4. [6] (The reverse lexicographic order). We fix 1 < t < n and consider

the reverse lexicographic order on L;'. That is for all y, x € L' we say y < x if and only

ifmax(y \ x) < max(x\ y).

Lemmad4.4.5. Let0 <i < n/2ands;; = (a1—pB1) - - (@i—pB), 5i.i = (@—p1) - - - (@ —PB:)
be standard polytopes of type (i,i) such that x = {B,--- ,Bi} and ¥ = {1, -- ,B;} are

distinct. Then s; ; and §; ; are distinct.
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Proof. As x # X, without loss of generality, we can suppose x < X, with respect to
reverse lexicographic order. Now, we note that x is the largest set y for which y occurs

in the expansion of s; ;. So X does not appear in s; ;. It follows that s; ; # §; ;. O

Asx ={B,---,Bi}, with B < --- < B;, determines the corresponding standard polytope
(a1 — B1) - - - (@i — Bi) of type (i,i), we put s = (a1 — B1) - - - (@i — By).

The QSym(n)-irreducible modules are well known. For reference on the representation
of the symmetric groups Sym(n) see for example [10]. These QSym(n)-irreducible
modules are the Specht modules. We are interested to find a basis for E;;. It is not
difficult to see that the standard polytopes of type (i, i) correspond one-to-one to the

standard polytabloids, via the following correspondence

Crab(x) — S = (@1 — 1) -+ (@i — Bi),
where e;4(x) is the standard polytabloid associated with the standard tableau

a < - < @ < 4y < - <
tab(x) =

B < oo < B

Every partition (n —i,7) of n determines a Specht module, a basis of whose is given from

standard polytabloids (see [10]).

We summarize this in the following lemma.

Lemma 4.4.6. Let 0 < i < 5. Then the standard polytopes of type (i,i) correspond
one-to-one to the standard polytabloids for the partition (n — i,i) of n. Moreover the
cardinality of the set of all standard polytopes of type (i,i) is (7) — (l.fl).

We thank Prof. Antonio Pasini for the following alternative purely combinatoric proof

of Lemma 4.4.6, that avoids any reference to polytabloids:
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Proof. By inductionon i, fori =1,--- ,g, we prove that the cardinality of the set of all
standard polytopes of type (i,i) is (7) — (,",). The result is true for i = 1, as {I} — {j},
with j = 2,3, ,n,arethen—1 = (|) — (i) standard polytopes. If i > 1, we suppose that
the statement is true for standard polytopes of type (j, j), with j < i and we count all the
standard polytopes of type (i,7). Let (a; — B1) - - - (a; — B;) be a standard polytope of type
(i,i). B; can be any value within the set {2i,--- ,n}. If k + 1 is the value chosen for f3;,
the other terms Sy, - - -, 8;—; must be selected within the set {1,2,--- ,k}. By induction
hypothesis the standard polytopes of type (a; — B1) - - - (a;_1 — Bi_1) are (l.fl) — fz) So

the number of standard polytopes of type (i, i) is

n—l k k
> ((l, " 1) - (i h 2)). (4.13)

k=2i—1

Now it is enough to prove that the sum in equation 4.13 is equal to () — (,",), that is

of KO A RN R

k=2i—1

We prove the equation 4.14 by induction on n > 2i. If n = 2i, 4.14 becomes

2i —1 2i —1 2i 2i
iy B e I e @13
Since

TS s Al iy v vt ) I PR
()6

the equation 4.15 holds.

Now we suppose that 4.14 holds for n and we prove it for n + 1, that is
n
k k n+1 n+1
DAS R CR) we
k=2i—1
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We can rewrite 4.16 as follows:

DR S M) S S PN R

By induction hypothesis we have

R S AN A A

The last equation is trivial. So the claim follows. O

By Theorem 4.2.8, (7) — (,”,) is the dimension of the vector space E;;. It is easy to
realize that the set of all s is linearly independent: this is immediate for i = 0, and for
i > 0 we write explicitly the polytope s'. (see example 4.4.8). We note that x is the largest
set y (with respect to reverse lexicographic order) for which y occurs in the expansion
of s'. Since different x determine different standard polytopes (Lemma 4.4.5), it is not
difficult to see that the set of all s’ is linearly independent over K. It is enough to consider
the matrix whose columns are the coordinates of s’. with respect to the basis L. This

matrix contains a square triangular submatrix, of size () — (,",), which has +1 on the

main diagonal.
This proves the following Lemma

Lemma 4.4.7. Let K be an arbitrary field, 0 < i < n/2 and let KL be the vector space

of basis L. Then the set of standard polytopes st of type (i,1) is linearly independent in
KL

1

We clarify the proof of Lemma 4.4.7 with an example.

Example 4.4.8. We refer back to Example 4.4.2 and we denote

7(6,2) = {{2,4},{2,5}.{2,6},{3,4},{3,5},.{3,6},{4,5},{4,6},{5,6}}.
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and

2 = (11} — 213} — {4, 2 = ({1} = 2D{3} = (5D,
% = ({1} — (2)({3) — {6}, Py = (1} — BN} — (4D,
25 = ({1} — 3DA2) — (5)), 2, = {1} = 3NA2} — {6)),
5 = (1) — (4D((2) — (5, Py = (1} — (4D((2} — 6],

stsey = ({1 = {5D({2} — {6})

the standard polytopes of type (2,2).

We write every s2 as linear combination of the elements of the canonical basis

LS = {{1,2},{1,3}, {14}, {1, 5}, {1,6},{2.3}, {2,4}.{2,5},{2,6}. {34}, {3,5}.{3,6}. {4,5},
{4,6),{5,6}}.

For example 57, . = ({1} — {2)({3} — {4}) = {1,3} — (L4} — {2,3} + {2,4).

The dimension of the vector space KS262 is given from rank of the matrix A of size
15 X 9, whose columns are the coordinates of all the standard polytopes of type (2,2)

with respect to the basis Lg.
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1 0 0 0 0 0 -1 -1 O
A= 0 1 0 O O O 0 0 -1
o 0 1 0 0 O O 0 O
o o o0 1 0 o0 o0 0 O
o 0 o o0 1 o0 0 0 0
o 0 o o0 o 1T 0 0 O
o o 0 o0 0 o 1 0 O
o 0o 0 o0 0 o o0 1 O
O 0 0o 0 O0O O 0 o0 1

It is immediate to see that the last 9 rows are independent, so that rank(A) = 9 for any

field K: if B is the submatrix of A consisting of the last 9 rows, then det(B) = 1.

We note that in the expansion of s’. the set x appears with coordinate 1.

Our aim is to prove that the set of all standard polytopes of type (z,i), fori = 0,--- ,t’,

forms a basis of the Z-module ZS;'.

Theorem 4.4.9. If0 < i < t/, then the set of standard polytopes of type (t,i) is a Z-basis
of ZS}';, called standard basis. It follows that the union of all standard polytopes is a

standard basis of
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Proof. We observe thati < 5, asi <1’ Putn; = () — ("), by Theorem 4.2.8, we have

E;; = E,;and dim E; ; = n;. Moreover, from Lemma 4.4.7, we get that the »;’s standard
polytopes of type (i,i) are linearly independent in ZS; < QLY. Applying the map
tail-extension, we obtain #; independent polytopes in ZS;';. In particular we deduce that
rank(ZSt’fi) > n;. Since ZSZi C E;; and dimgE; ; = n;, it follows that rank(ZSZi) = n;,

forany r andi < t’.

It remains to prove that they span ZS;'.. For this purpose we prove that the standard

polytopes of type (i,i) span ZS”.. Let L’ be the submodule of ZS!'; spanned by standard

n

i1

7+ s a finite

polytopes of type (i,i). We have rank(L") = rank(ZS!';) = n;, hence
group. Suppose for contradiction that ZS'; # L’. Then there exist w € ZS, \ L’ and a

prime p such that pw € L’. We have

pw = Z ays, (4.18)

s%. standard polytope

where a, € Z and not all divisible by p, otherwise w € L’. Reducing mod p the equation
in 4.18, we infer that the set of standard polytopes of type (i,i) is linearly dependent
in Z/pZ. This contradicts Lemma 4.4.7. Thus ZS; = L’. By tail-extension, ZS}; is
spanned by standard polytopes of type (z,7). It follows immediately that the union of all

standard polytopes of type (t,i), for each 0 < i < ¢’, forms a basis for ZS;'. O
Remark 4.4.10. Note that in general a basis of ZS!' is not a basis of ZL}.

Example 4.4.11. Going back to examples 4.4.2 and 4.4.8, we consider the expansion
of every standard polytope of QLS. The matrix of change of basis from the set of all

. . 16
standard polytopes to the canonical basis L is
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111 1 1 0 O O -1 O O -1 O —1 -1
l1 -1 -1 o0 o 0 -1 -1-1-1-1-1 0 0 0
l1 -1 60 -1 0 0 1 0 0 O O O -1 -1 O
B=l1 -1 0 0 -1 0 0 1 0 O O O O O -1
lI-1r 0 0 0 -1 0 0 1 O O O O 0 O
1 0 -1 -1 0 0 0 0 0 1T O O O 0 O
1 0 -1 0 -1 0 0 0 0O O 1 0 0 0 O
1 0 -1 0 0 -1 0 06 0 0 O 1 0 0 O
1 o 0 -1 -1 06 0 0 0 O O O 1 0 O
1 o 0 -1 06 -1 0 0 0 O O O o0 1 O
1 o 0 06 -1 -1 0O 0 0 0 O O 0 0 1

The determinant of B is —15360. This means that B is not invertible in Z and the set of

all standard polytopes is not a basis of ZLS. It follows that ZS26 C ZLS.

This shows us that to find a diagonal form of W;; is not enough to consider a basis of
polytopes of ZS;" and ZS]'. This observation is the starting point of the next section,

where we give our proof of Wilson’s Theorem.
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4.5 Wilson’s Theorem via linear maps

In [15] R.M. Wilson proves that the incidence matrix W;; associated to the incidence
structure Z;’]z = (L], LZ,Q), where 0 < t < k < nandt+ k < n,is equivalent to a
k—i

H.) and multiplicity (7) — ( ")

diagonal form, with non-zero diagonal entries d; = ( i

For this purpose, he constructs a matrix M;; = Ul’.:O Wi and he proves that it has index

one and rank (), for any t < k where ¢ + k < n (Proposition 3.1.3).

Now, the maps etk and 9!, which we have introduced in proof of Theorem 4.2.8 on vector

spaces, restrict to Z-modules
€ :ZL! — ZL] and 0, 1 ZL} — ZL].

The matrices associated to them, with respect to the bases L;' and LZ are WtTk and Wy,
respectively. Thus to determine the invariant factors of Wy is equivalent to find the

Smith group of etk CZL — ZL.

We observe that, in terms of pure modules and linear maps, Wilson’s Proposition 3.1.3
means that

€ (ZLY) + - + € (ZL!)

is a pure submodule of ZL] of rank (7).

In [2] T. Bier improves Wilson’s Theorem showing that an opportune basis of Z-module
rowz(M;;) can be chosen from the rows of matrix My itself, as it contains a (7) x (%)
submatrix of index 1. Moreover, in [8] the authors modify slightly the concept of
standard tableau to study the notion of rank of a finite set of positive integers, which was

introduced by Frankl [6]. Utilizing this, they construct an incidence matrix equivalent

to Mzk.

In this work, with arguments inspired by the results in previous papers ([2], [6] and [8]),
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using the standard basis of polytopes of ZS]’.‘, we will explicitly construct a standard basis
C;of ZL;?, for j = 0,--- ,n, such that the matrix associated to €* with respect to C, and

Cy is the diagonal form found by R.M. Wilson in [15].

We fix the following facts that will be used later. In the sequel, for convenience, put:
F(ni)={xelL: s' is a standard polytope of type (i,i)}
(note that for n = 6 and i = 2, we already used the notation in Example 4.4.8).

For any x; € ¥ (n,i), going back to the definition of sii we have:

1. s €ZS" CE;;:
i 1,1 ’

X

k(i .
2. €' (sy) € LS}

3. if s, = (a1 =) -+~ (@ — ), then €/ (s§,) = (a1 = B1) -+ (@i = B) Y1+ - +7u) is
a standard polytope of type (k,i), where yy,- - - ,y, is the collection of all (k — i)-
subsets of Q \ {a, -, @, B ,Bi};

4. the set

{el-k (sii) : sii standard polytope of type (i,i), i = 0,--- ,¢}

is a basis of ZS} ) @ - -- @ ZS}, (by Theorem 4.4.9 and points (1), (2) and (3) ).

Our proof is given by three steps.

Step 1. We find the Smith group of etk 1 ZS; — LS} (see definition 2.4.21).
Theorem 4.5.1. Let 0 <t < k <nandt + k < n. Then the Smith group of
€ 28 — 7Sy
is isomorphic to (Cyy)" X +++ X (Cy, )" X Z!, where d; = (k_i), ni = (1) — ("), for

t—i i i—1
i=0,---,tandl = (Z) — ().

t
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Proof. If t = k the claim is trivial, since € is the identity map. So we assume ¢ # k.
Since t < k and ¢t + k < n, we have etk(Et,,-) # 0, foralli =0,---,t. In particular, if
f eZS; iswrittenas f = fro+ fea+ -+ fixr, with fi ; € ZSZ,j’ then f has finite order
over e,k (zS}') if and only if fi ;41 = -+ - = fik’ = 0. Therefore the module of all elements

f € ZS} which have finite order over ek(zZsr) is
ZSiy® - ®LS),.
In particular,
ZSp /e (ZS)) = 28}, /€M(ZS]y) @ - -- S LS}, /€ (ZS],) @ 7/

where [ = (;) — (7).

t

Let d = k —t and select some 0 < i < t. Although we now introduce some other

notation a little bit heavy for the reader, we prefer to give the proof using a general basis

for ZS;'. Let By = {sti1,- -+ ,Stin } be a basis of ZS},, then replacing each s;;; by S:ii‘
we obtain a basis B:i = {s;;.’l,- e szi’ni} of ZS} ; (see Notation 4.3.11) .
Furthermore,

k—i
k _ +d
& (s10) = (t g Stij?

with I < j < n;, by equation 4.11. We conclude that ZS) ./ etk(ZSt”i) = (Cg )", where
d; = (k_i) and n; = (7) — (") and so

t—i i i—1
ZS? €M (ZS!) = (Cgp)™ X -+ X (Cg, )" X Z',
with I = (}) — (7). O

t

Step 2. Of fundamental importance are Lemmas 4.5.2 and 4.5.3.
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Lemma 4.5.2. Let1 <i < 5 and x = {By,---,Bi} € L' suchthatn € x and p < --- <

Bi =n. Then x € F(n,i) ifand only if x’ € F(n —1,i — 1), where x’ = x \ {n}.

Proof. For x € F(n,i) let s’ = (a; — 1)+ (a; — B;) be the standard polytope based
on x. By definition s;_,l = (g — B1) - -+ (@i—1 — Bi—1) is a standard polytope based on
x" € F(n—1,i —1). Vice versa, we observe that, by hypothesis, n > 2. If x’ = 0,
then x = {n} and s\ = (1 — n) is a standard polytope of type (1,1). If i > 1 and
x'e Fn—1Li—1), si, = (ay — B1) - - - (@j—1 — Bi—1) is the standard polytope based
on x’. Then st = (a; — B1) - - - (@i_1 — Bi—1)(@; — n) is the standard polytope based on
x ={p,- - ,Bi—1,n}, where

o =min{d : 6 € Q\{a1,- - ,@i—1,B1,- -, Bi—1,n}}.
O
Lemma 4.53. Let 1 < i < ”T*I and x = {By,---,Bi} € LI, such that n ¢ x and
i< <
1. x € F(ni)ifand only if x € F(n—1,i);

2. ¥(n,0) = F(n—1,0).

Proof. 1. Applying the Definition 4.4.1, the claim follows.

2. F(n,0)={0} = F(n—1,0).

Step 3. With methods similar to those used in [8] we prove the following

Theorem 4.54. Let 0 <t < k witht + k < n and sii be a standard polytope of type
(i,i), fori =0,--- ,t. Then LSy ® - ® LS} is isomorphic to ZLi N (Exo® - ® Epy).
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An isomorphism is given by the map ¢§””‘ linear extension of the map defined on a

standard basis of polytopes by

() = a1

Proof. Putd = k —i and (s;i)“l as in Notation 4.3.11, with s;i a standard polytope of
type (i,i) in ZS};. By equation 4.11 we have that the standard polytope of type (ki)

based on x is ei(”)k(s;i) = (s%.)*. From Theorem 4.4.9 we deduce that
{ei(")k(s;i) : s;i is a standard polytope of type (i,i),i =0, -- ,t}

is a basis of ZS,’;O O D ZSZJ. We note that el.(")k(x,-) €ZLYN (Exo® -+ @ Epy).

In the following Ag")k denotes the matrix (}) X () with the columns indexed by el.(n)k (x;),
fori = 0,---,¢ and the rows indexed by y € L; moreover we rearrange the terms in

accord to whether or not they contain n.

In order to apply Lemma 2.4.14 to get that goﬁmk is bijective, we must prove that Im gogn)k

is a pure submodule of ZL; of rank (’:) For this purpose it is enough to prove that Agn)k

has index 1 and rank (/). This implies that
{el.(”)k(x,-) : s;i is a standard polytope of type (i,i), i = 0,--- ,t}
spans a pure submodule of ZL7 of rank ().
We prove the claim by induction on n + t.
If + = 0, obviously ZS,’(”O =ZL; N Ep and s8 =0, so goé")k is the identity map.

If n = 1 then we have two possibilities

1.t =k=0;
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2. t=0and k =1,

which are part of previous case.

Instead if n = 2, the four cases are

l.t=k=0;
2.t=0,k=1;
3.t=0,k =2;
4. t=k=1

In this last case, it is easy to prove the claim. Actually, since the standard polytope of

type (L1) is ({1} — {2}), we have €/7'(0) = {1} + {2} and €' ({2}) = {2}. It follows

on (1O .
that A1 = has index 1 and rank 2.
1 1

The above observations prove the first step of induction. So we can consider # > 0 and
)k
T

n > 3. By induction we suppose that the statement is true forn +f < n+1¢,i.e. AY’" has

index 1 and rank (?), with 0 <7 < k and 7 + k < 7. In particular

@ Agn_l)k has index 1 and rank ("t_l), withO <t <kandt+k <n—1,

(I1) Ag’:l)k_l has index 1 and rank (’t’:]l), with0 <t—1<k—landt—1+k—1<n—1,
(I1D) Ag"il)k*l has index 1 and rank ("t_l) withO0<t<k—landt+k—1<n—1,
(IV) Ag':l)t has index 1 and rank (’;:11), withO<t—1<tandt+t—1<n—1,

(V) Aﬁn_l)t has index 1 and rank (":1), witht >0andt+t <n—1,
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4.5 Wilson’s Theorem via linear maps

We distinguish four cases

1. Lett =k = 3.

We index the columns and the rows of AE”)’ in accord to
(n)t A . (n)t . -
{7 (xi) :nex,i=1--,1}U{g " (x;) :n¢x,i=0,--,1—1}

and{y e L' : ney}U{y e L : n¢y}, respectively.

Observe that in {el.(”)t(x,-) :né¢x;,i=0,---,t—1} the index i runs between 0 and
t—1,sinceif s’ = (@1 — 1) - - - (a; — B;) is a standard polytope of type (7, t), then
B: = n; whence n € x;.

If n € x;, then el.(”)l(x,-) = {n}el.(fl_l)’_l(xl.’), where x/ = x; \ {n}, by Lemmas 4.5.2
and 4.5.3 we get

(n—r—1
Agn)t — Atfl ‘

(n—1)t
0 |a”)

By induction hypothesis, the square matrices AE':l)tfl, of size ("_]), and Ag':l)t,

of size (/~}), have index 1 and rank ("~]). Since n —1 =t +t — 1, we have that
(") = (") So A" has index 1 and rank )+ () = ()

2. Letr=k <.

Again in this case, we index the columns and the rows of Ain)t in accord to
{el.(")t(x,-) tnex,i=1---,t}U {el.(")t(x,-) néx,i=0,---,t}

and {y € L} : ne€ y}U{y € L} : n ¢ y}, respectively. As above, by Lemmas
4.5.2 and 4.5.3 we have

(n—1r—1
A
0 ‘ Agnfl)t

Agn)t —
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A diagonal form for the incidence matrix W;; via linear algebra

. . . . (n—1)r—1 . —1 (n—1)t
By induction hypothesis, the square matrices A l'il , of size ('I’_l), and At" ,
of size (",'), have index 1 and rank ("_!) and ("), respectively. So A" has index

1 and rank (;‘:11) + (") = ().

t t
. Lett+ k =nandt < k. We index the columns and the rows of Ag")k in accord to

(n)k

{el.<”)k(xl-) cnex,i=1L---,t}U{e " (x) 1 n ¢ x,}U{el.(")k(x,-) né¢x,i=0,---,t—1}

and {y € L} : n€ y} U{y € L] : n ¢ y}, respectively. So we have

(n—1)k—1 (n—1)k—1
Al ‘ * ‘At—l

(n—1)k
At—l

Agn)k —

k3k

0

So Agn)k is equivalent to

Agil)kq‘ . ‘ 0 Agnfl)kfl‘ 0

-k |~
A 0

(n—1)k

k3k kok

n—l1

(n—1)k
Atfl t—1

), has index 1 and rank

By induction hypothesis, the matrix , of size (

(’::11) Thus

Agn—l)k—l ‘ 0 Agn—l)k—l ‘ 0 Agn—l)k—l ‘ 0

n—Dk |~
sk At1 0

~

0 x| 1 0 ‘I

where [ is the identity matrix of size (’;:11) By induction hypothesis, the matrix

Agn_l)k_l, of size (”*l), has index 1 and rank (":1). As (”*1) + (”*1) = (7), the

t t—1 t

claim follows.

. Lett+k <nandt < k. In this case we index the columns and the rows of Agn)k

in accord to
e.(n)k(xi nex,i=1---,t}U ek X)) :né¢x,i=0,---,t
1 4

and {y € L} : ne y}U{y € L] : n ¢y}, respectively. So we have
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4.5 Wilson’s Theorem via linear maps

(n—1)k—1
Agn)k — Atfl ‘

b

0

Agnfl)k

and by induction hypothesis, the matrices AE':Dk_I and Agn_l)k have index 1 and

rank (/) and (","), respectively. We have the thesis.

O

Corollary 4.5.5. Let 0 <t < k < nwitht +k < nand sﬁci be a standard polytope of

type (i,i), fori = 0,--- ,t. Then the map
¢ IS}/ (ZS)) — ZLY /& (ZL])

defined by
ol (sh,) + €1(2SM) = e (x) + 2L,

and extended by linearity, is an isomorphism.

Proof. By Theorem 4.5.4, we have that gogn)k is an isomorphism. Hence
{el.k (x) : s;i is a standard polytope of type (i,i),i = 0,--- ,t}
forms a basis of ZLZ N(Exo ® --- ® Ey;). In particular
{el.k (x) : s;i is a standard polytope of type (i,i), i = 0,--- ,k'}

and
{€/(x:): s;i is a standard polytope of type (i,i),i = 0,--- ,t}

are bases of ZL; and ZL] respectively.

Clearly the claim is true if r = k, so we take ¢t < k. By equation 4.6 we get

k—i k k t
(t—i)ei =€€.

The relations 4.20, 4.21 and 4.22 together with Theorem 4.5.1 give us
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A diagonal form for the incidence matrix W;; via linear algebra

ZLYeF(ZL!) = ZSP [F(ZST) = (Cgy)™ X -+ X (Cg)™ X Z,

with 1= (3) = (7). di = () and m; = (7) — (")). o

t—i i
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CHAPTER 5

G-modules and orbit matrices

In this section we consider a generic permutation group G C Sym(n), n = |Q|, with the
induced action over L". If R is one of Q or Z we define the "orbit module" of G in the

following way
Definition 5.0.1. Let M be a submodule of RL!'. Then the "orbit module" of G on M,

denoted by M©, is the centralizer algebra

MC:={veM :v¢=vforany g € G}.

Since the action of G on QL" commutes with €, we have the following restrictions

e (ZLHC — (ZL)H© (5.1
and

€ (ZSHE — (ZS})°. (5.2)

denotes the set of polytopes. As G maps polytopes of type

n _ Qn n n
St =8I USL U US,

(z,7) in polytopes of the same type, it is immediate to recognize:
zS)°’ = (2S])° & --- & (ZS],)°.
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G-modules and orbit matrices

We are interested to Smith groups of the restrictions of etk to the orbit modules of G on

ZL} and ZS7'.

If G = {Ig} then the orbits on L correspond to the subsets. So (ZL")® = ZL! and

(ZS™M© = ZS". Hence we can see the problem to find the Smith group of
€ (ZLHC — (ZL)HC
as a generalization of Wilson’s Theorem, 3.1.6 and 4.5.5.

The main original result of this chapter is Theorem 5.1.7 where we obtain the Smith
group of etk :(ZSMC — (ZSZ)G. This generalizes Theorem 4.5.1. Moreover in sections

5.2 and 5.3 we give some ideas which lead to conjecture that if # + k = n, then

(ZLHC JelzLMC = (ZSHC ek (zSM°. (5.3)

The conjecture will be formally stated in 5.3.5.

Finally in section 5.4, we consider the orbits Ay,--- ,A;, of G over the 7-subsets L;' and
the orbits I}, - - - , Iy, of G over the k-subsets L}, Denote by Q' the orbit set {A,--- , A}
and by QF the orbit set {I,- -, I}

It is not difficult to recognize that the incidence matrices X, and X, denoted by G-

1k’
orbits matrices, of the tactical decomposition (', QX) of 17 = (L, L}; C) are actually

the matrices of
e (zLM® — 2ZL)© and 95 1 (ZL)S — (ZL"°©
with respect to the canonical bases (see Corollary 5.1.6)

BQ;I{Zx:jZI,"',Tt} and BQk:{Zy:i:L“'9Tk}'

XEAj yert

So again for G = {1}, X} and X, coincide with the matrices Wta and Wy.
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5.1 G-orbit decomposition

To look for a diagonal form of X7} is equivalent to determine the Smith group of

el (ZLH° — (ZL)°.

We give some results about the matrices X} and X, in the case ¢ + k = n, reinforcing

our conjecture (see 5.3.5).

As usual, when there is not confusion, we write (QL,)%, (ZL,)°, (QS,), (ZS;,)¢ instead

QL)Y (ZLN), (QS])°, (ZS])°.

5.1 G-orbit decomposition

The Smith group of €* : (ZS,)¢ — (ZS,)® will be determined in Theorem 5.1.7. To
achieve the result we need some preliminary theorems, which make use of the concept

of pure module.

Theorem 5.1.1. For each 0 < t < n, denote by Ay,- - - , A, the orbits of G over L{'. Then

the set Q' is a generating set for the vector space (QL,)°, that is

(QLt)G = spang Z X Aj e Q) andj =0,---,7y

XGAj

Proof. Forany g € Gand j =0,---,7;

(Zx)g:ng:Zx.

XGAJ' X€Aj XEAJ'

Hence spang{ Y, x : Aj € Q' and j =0,---,7,} C (QL,)C.

)CEA]'

Conversely, let f € (QL,)¢, we can write

f= erx: Z FoXi+ -+ Z Iy, Xz, -

)CEL;1 X1EA] Xrp EAT,
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G-modules and orbit matrices

By hypothesis, fé = f forall g € G, so

8 g _
IR I P S ol Sl

X1EA X1y EAT, X1EA; Xrp EAT,

We deduce that ry; depends only from the orbit. Thus

f=n Zx1+-~-+rTz Z Xg,.

X1EA] Xrp EATZ

The statement follows. In particular, we get that dimg(QL,)® = 1. O

Following some ideas of [13] and previous section we get Theorem 5.1.2.

Theorem 5.1.2. Put G C Sym(n) andt < k < n, witht + k < n. Then

(QS:,)° = (QSk,)°

for all 0 < i < t. Actually, the tail-cutting and tail-extension maps restrict to G-

isomorphisms between the two G-orbit vector spaces and are inverse to each other.

Proof. First we consider i = 0. The polytope Y. x of type (,0) belongs to (QS;0)°.
xeL}
So E;o = spang( 2, x) = (QS,0)C. The claim follows since that E; o = E; .

n
xeL;

For 0 < i < ¢, we saw in Corollary 4.3.10 that the map tail-cutting — : E;1; — E;; is
a QSym(n)-isomorphism, so also a QG-isomorphism. It follows that for f € (QS41;)°,
(f7) =(f8) = f,sothat f~ € (QL)° N E;; = (QS,)°.

Similarly, the map + : E,; — E,; restricts to the map + : (QS; ;)¢ — (QS;41.,)°.

Whence (QSM)G = (QSi41, i)¢. The maps + and — are inverse to each other. m|

Theorem 5.1.3. [13] Let O < t < n, then
(QL)® = (@S;0)% @ --- @ (QS,1)°.
In particular, dimQ(QS,,l-)G =T — T
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5.1 G-orbit decomposition

Proof. We observe that (QS,0)° @ - - - @ (QS;,/)® € (QL)°.

Let now f be an element of (QL,)°, that is /¢ = f for any g € G. We have (QL,)° C

QL = E;p® - ® E;;r and E;; are G-invariant subspaces of QL/. So, we write

f:fl,0+"'+fl,t’:ffo""""'fti"

where f,; € E,;. As fé = f and fl‘i € E,;, we get ffi = f;.: by the uniqueness of
writing. This proves (QL;)¢ C (QS,0)° & --- & (QS;;+)”. So the equality holds.

Now, we argue on the dimension and we prove by induction that dimg(QS;, ) =1—T1i_1,

forOSiS%.

Ifi = 0, then dimQ(QSo,O)G = 19 = 1. Now we assume that
dimQ(QSj,j)G =T, —Tj_1,
for any j < i. By Theorem 5.1.2, we have dimg(QS; ;)¢ = 1; — 7j_1. Since
QL)Y = (QSi0)° @ (@S’ @ - & (QS;;-1)7 & (QS;,)°,
we have
7 = dimg(QL)° = dimg(QS;0)¢ ®dimg(QS;)° @- - - @ dimg(QS;;—1)° @ dimg(QS; )¢
and by induction hypothesis, we get
Ti=T0+T — 7o+ +Ti_]—Ti—2+ dimQ(QS,-,i)G.

Thus
dimQ(QSi,i)G =T, — Ti—1.

Applying again Theorem 5.1.2 we get dimg(QS;;)¢ = 7, — 71—, for 0 <i < t’. m]

Now we examine the Z-module (ZL,)C.
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G-modules and orbit matrices

Proposition 5.1.4. Let 0 < t < n, then (ZL,)° is a pure submodule of ZL}.

Proof. As usual we just prove that (ZL,)¢ N aZL} C a(ZL,)°, for any a € Z\ {0}. If
v e (ZL)° n aZL] then v = aw, with w € ZL}. Since v¢ = v, for any g € G, we have

)Y, The claim follows. O

that a(w® —w) = 0. As ZL] is torsion-free, we get w € (ZL,

We use the previous result to get the analogue of Theorem 5.1.1 for the Z-module (ZL,)°.

Proposition 5.1.5. Let 0 <t < nand Q' = {A,--- ,A., }. Then

spans{ S x i =1 )

XEAj

is a pure submodule of ZL}' of rank t;.

Proof. Leta € Z\ {0} andv € spanz{ >, x : j=1,---,7;} NaZL}], then there exists
XEA;
Tt ! T
w € ZL! suchthatv =aw. Butv = X r; 3 xandw = 3, 3 s.x, for some r; and s,
j=1 ’ XEAj jZIXGAj
Tt

Tt
inZ. As L} isabasisof ZL and X r; 3. x = ) }. as.x, we getr; = asy, for any

j=1 XEAj j=1x€A]‘
xe€Ajandj=1---,7. Sowe€spanz{ 3, x : j=1---,1}. O
)CEAj

Corollary 5.1.6. Let 0 <t <nand Q' = {Ay,--- ,A,}. Then
spanz{ Y x i j =15} = (ZL)°
X€A;

and its rank is ;.

Proof. As spanz{ Y x : j =1,---,1} C (ZL,)®, then rank (ZL))° > 1,. Since
)CGA_/'

(ZL,)° < (QL,), it follows that rank (ZL,)® = 1;; applying the Lemma 2.4.14, we get

the claim. O
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5.1 G-orbit decomposition

In the next Theorem we find the Smith group of €' : (ZS,)¢ — (ZS;)“, which is our
main result of this section. As usual, we putd = k —¢t and s;]fl the polytope of type (k,i)

obtained from s;;; by d-fold tail extension.
Theorem 5.1.7. Let 0 <t < k and t + k < n. Then the Smith group of
ek (28)° — (ZS)°

is isomorphic to
(Cap)™ X (Ca)™ X -+ - X (Cg, )" X Z,

k—i

)ymi=1—7,i=0,--- tandl =1} — 7,

where d; = (
Proof. The claim is trivial if k = 1, since 6," is the identity map. So we consider ¢ # k
andt + k < n. Select some 0 <i < tand let C;; = {cyi1,- - - , Crim; } be a basis of (ZSt,,-)G.
Take {ss1,- -, Ssin, } @ basis of polytopes of 4§}, then there exist a;j1, - - - , @jin; € Z such

n;
that ¢;i; = 3 a1 ssj, with1 < I < m;. Thus
Jj=1

ni

n; .
k—1i
e,"(ct,-l) = e,"(z a;1jsij) = (t - i) Zailjs;;l'

Jj=1 Jj=1

Itis easy to prove that the maps tail-extension and tail-cutting restrict to the isomorphisms
+ (28,0 = (ZSi41.0)¢ and — : (ZS;41,)° — (Z5,.)°,

since +(ZS;.1)¢ C (ZS;41.:)¢, —(ZS:41.))¢ C (ZS,.;)° and they are inverse to each other.

So the set C;d = {(c;i)™4,- - ,(cn-ml.)“Ld}, obtained from C; applying d-times tail-
extension map, is a basis of (ZSy ;). It follows (ZSy )/ etk((ZSt, %) = (Cg;)™, with

d; = (l;:ll) and m; = 7, — 7.

It follows that
(ZSK)°

€' (28,)9)
where [ = 1, — 1;. O

= (Cgy)™ X -+ X (Cg )™ X Z',
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G-modules and orbit matrices

Example 5.1.8. Letn=6,t =1, k =2 and G = {(1,2,3),(1,2)(4,5)). Then
(28:)C/€X(281)° = Cy x Z7.

(Z8)¢ = (Z810)° ® (ZS1)°

and

(28,)° = (ZS20)° @ (Z5:1)° & (Z552)°.

As usual, for avoid confusion, we denote the set Q by {ay, a3, - - , g} instead {1,2,- - - ,6}.

The G-orbits on Ll6 are A| = {a, a0, a3}, Ao = {ay, as}, Az = {ag}, while those on LS

are
Ar = {{1,2},{2,3},{1.3}}, As = {{1,4},{2.4},{2,5}, {3,4}.{1,5}. {3,5}},

A?) = {{1’6}’{2’6}’{3’6}}a A4 = {{5’6}’ {4’6}}’ AS = {{4’5}}

We want to find a basis of (Z5)¢. For this purpose we give a Z-basis of (ZS10)¢ and of
(Z811)°.

1. The module (ZS10)° is spanned by eé((?)) = ) X

xeLf

2. To find a generating set of (251,)¢ we consider the standard basis of polytopes of type
1L1):

{(a1 — @2), (a1 — @3), (@1 — ), (@1 — as), (1 — ae)}-

It is easy to see that the elements v = (a1 — aq) + (@1 — as5) — 2(a) — ag) and w =
(a1 — @) + (a1 — @3) — 3(a1 — ag) are fixed by every g € G. So they are in (ZS11)C. On
the other hand they are linearly independent and span a pure submodule of Z.51;. To see
this, put N = spanz{v,w} and prove that for any non-zero integer a, N N aZS;; € aN.
Let u € N NaZS). Then u = byv + bpw = a i ai(ay — ;), for some by, by,a; € Z.

i=2

Whence a divides by and b;. It follows that u € aN.
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5.2Thecaset+k =n

Since (ZSU)G has rank Ty — 179 = 2, by Lemma 2.4.14 we have

(Z811)°¢ = spanz{v,w}.

Now we consider the module (ZS,)°. The element eg((i)) = ) x= %612( > Xx)isa
xELg )CEL16

basis of (ZS20)¢. Moreover (25,1)¢ = elz(ZSLl)G. Remembering Theorem 2.3.8 and
Corollary 2.3.9, by direct computation we get

(Z$)°

=22~ o, x 72,
e2zs)°

5.2 Thecaser+k=n

Here we assume ¢ + k = n and we prove that the Smith groups of
€ (ZL)® — (ZLy)°

and
€ (28)° — (ZSk)°

have the same order (see Theorem 5.2.5).

In chapter 4 we defined the maps + and — between QL; and QL ,. Applying them
d-times (d = k — t) we got two isomorphisms between QL;" and QL7, which we called
+d and —d. We notice that they do not restrict to isomorphisms between Z-modules

ZL;" and ZL;. We clarify this concept with an example.

Example 5.2.1. Ler Q = {1,2,3,4,5,6}, t = 2 and k = 4. For avoid confusion, we
denote by «; the i""-element of Q. We do the calculation using Magma Computational

Algebra System (see Appendix B). Taken
V= —qap — a4 + araq + 2anas + apag + @46 € ZLS,
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G-modules and orbit matrices

we get v+2 = —%0/3(14635046 + %0/2&4&50[6 + %a1a3a5a6 + jaza4ag + %alazas% +

%(1/2&3(1’40'6 + %azaga4a5 — Q13405 — q1Q2a304 + %(11&’2&’30’5 — %0’10’2030'6 ¢ ZLZ)
In order to argue on the order of (ZL;)®/e!(ZL,)® we need to define a new map between
QL7 and QL; (and conversely), which restrict to Z-isomorpshim.

We define the new tail-extension +y : QL;" — QL; in the following way.

We consider the canonical bases L;" and L; of ZL;" and ZL;, respectively. For x € L/,

denote by x the complement of x in Q. We put x*¥ = X and we extend linearly.
Similarly, we define the new tail-cutting —y : QL — QL such that y™ = y.
Summarizing,

QL — QL} QL — QL}
+nN —N
X — X y — y

In the next Theorem we prove that st+lN = (-1 is;rlfl, where d = n — 2t and s,; is a

polytope of type (¢,i), fori = 0,--- ,t.

Theorem 5.2.2. Let 0 <t < k < nwitht+ k = n. Then for every polytopes s; ; of type

(t,1), we have s;rlN =(—1 is:;i, where d = n — 2t.

Proof. Lets;; = (a1 — B1)- - (@i — Bi)(y1 + - - - + y,) be a polytope of type (¢,7). Then
sid = (@ —B) - (@i = B)y| + - +7,),
where y is the complement of y; in Q\ {a1,- -, @i, 1, -+ . B}, for j = 0,- - ,u.

If i = O the statement is trivial. We assume i > 0. Let x be a ¢-set such that it appears in

s;,i and let y = ¥ be the complement of x in Q. Note that y; C x if and only if yjf Cy,
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5.2Thecaset+k =n

forj =0,---,uand @, € xif and only if 5, € y, for 0 < r < i (conversely B, € x if and

only if @, € y). For example, if x = {a1,- - ,;} Uy, theny = {By,---, B} Uy,

The image s:f’ is obtained from s, ; by substitution of every «, with g8, and y; with y ]’ .

Whence

s = Br—a) - (B — )]+ +y)
= (1) (@1 — )+ (0 — B+ + )

= (—1)'s;d

This Theorem justifies the symbols +x and —y used to indicate these maps, which we

call new tail-extension and new tail-cutting.
Example 5.2.3. Ifn =6,1t =2, k =4 and 571 = (1 — a3)(2 + @4 + @5 + ). Then
s;f’ = (a3 — ap)(uasa6 + @506 + QR A4Q6 + QR A4Q5).

Remark 5.2.4. It is easy to see that the maps +y and —y restrict to

+n 1 (ZL)° — (ZLy)°, —n : (ZLy)°Y — (ZL)°
and

+n 1 (ZS)E — (ZSK)°, —n 1 (ZSK) — (Z8)°.
We conclude this section proving that the groups (ZL;)° /X ((ZL,)%) and (ZS;)° / €k ((ZS,)¢)
have the same order.

Theorem 5.2.5. Let 0 <t < k < nandt+ k = n, then the groups (ZLk)G/etk((ZLt)G)
and (ZSy)° | €X((25,)°) have the same order.
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G-modules and orbit matrices

Proof. The proof is given by three steps.

Step 1.

(ZLi)® [(ZSK)© = (ZL)° [(ZS)°.

We observe that (ZL,)° and (ZS,)° have the same rank 7;, the number of G-orbits
on L". So by 2.4.11 there exist a basis {v},- -+, vy} of (ZL,;)® and non-zero integers

P+ 1y, such that {rvy,- -+ vy, } is a basis of (ZS)°. We denote by v;™,--- ,v;"

t

the images of vy,---,v;, by the map new tail-extension. The map new tail-extension
is a G-isomorphism between the Z-modules (ZL,)° and (ZL;)®. It follows that the set
{v/™,---,vzN} is a basis of (ZL;)®. Moreover, the restriction of +y to the Z-module
(ZS;)€ is an isomorphism between (ZS,) and (ZSx)“, so the set {riv, ™, -+ ,rr,v;"} is

a basis of (ZS; ). The claim follows.

Step 2.

X ((ZL)O) /€l (28)9) = (ZL,)° /(Z5,)°.

The statement follows immediately from the first isomorphism Theorem, considering

the linear map

Y (ZL)C — €(ZL)) /€ (Z5)9)
defined by y(f;) = €*(f,) + €X((ZS,)€). It is obviously surjective and its kernel is (ZS,)°.

Step 3. We use second isomorphism Theorem: we have

L) @L)®

ek (@sC) _ (ZLi)C d f@sG) _ (ZL)C
espe_ -~ (@soe N Fano) €A (ZLy)S)
ek (@s1)C) FizsnG)

By parts (1)-(2) we deduce that the order of (ZL;)¢/ etk ((ZL,)®) is the same of the order
of (ZSk)° /€ (Z8,)%). O
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5.3 Particular cases

5.3 Particular cases

The result of Theorem 5.2.5 suggests us the following question. When ¢ + k = n, does

exist an isomorphism between the finite groups
(ZSk)C /€F(25,)C and (ZLy)C /X (ZL,)?

A positive answer is suggested by some cases (see in particular Theorem 5.3.4) which
we are going to describe below and by numerical computational results which confirm
the existence of isomorphism for any subgroup G C Sym(n), with n < 11 (see Appendix

A).
In the sequel G is any permutation subgroup of Sym(n).

To avoid confusion among coefficients and integers of €, in this section we rename the

elements of () putting

Q=A{a,pr, -, Bur}.

Theorem 5.3.1. Taket =1, k =2 andn = 3. Let

o (25,)° . (ZLy)°
€2 ((ZS)%) € ((ZL)%)

be the linear map defined by ¢ (f + € (ZS)°)) = f + & ((ZL\)®). Then ¢ is an

isomorphism.

Proof. Clearly ¢ is well defined and a homomorphism. So it is enough to prove that ¢

G G
is an injection, since the groups Z(ZSZ) (ZLo)

2((25)9) (@) have the same order.

and

We remember that (ZS,)¢ = (ZS20)° @ (ZS,1)°. Since
- ((Z811)°) = (Z821)°
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and
6 ((2811)%) € (289,
we get

(28:)° = (Z820)° + €((Z81)°).

Now note that (ZS,0)% = €€}((ZSo0)?), so

5% = & (3@ + @51

Hence, if f + €2((Z$1)%) € Ker ¢ then, for some fy € (ZSo0)? and f; € (ZS1)°, we have
1
f=é (56(1)( fo) + ﬁ) € (25,)° né (ZL)°).

Since €? is injective we get %e(l)( fo) + fi € (ZL))°.

1

It follows
1
Ee(l)(fo) € (ZL)°.

The latter means that for the inner product we have
1, 1 0 1
< Efo(fo),x >= 35 < Jo, 0 (x) >= 5 < fo.0 >€ Z

forall x € L?. Thus f; is an even multiple of @ and J€(fo) € €)((ZSo0)?). We conclude

that f € & ((Z$1)°). O

Remark 5.3.2. We observe that the injectivity is independent from n, that is ¢ is injective

for any n, whent = 1and k = 2.

Theorem 5.3.3. Lett =3, k =4 and n = 7. Then the map

VAN (ZL4)C
€ ((ZS3)°) €} ((ZL3)%)

defined by ¢ (f + e?((ZS3)G)) =f+ eg‘ ((ZL3)G) is an isomorphism.
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Proof. Clearly ¢ is a linear map well defined, so by Lemma 5.2.5 it is enough to prove
that it is an injection. First we consider a standard basis 8B of polytopes of type (2,2).

Put Q = {a,B1, B2, - ,Be} and B = {s1,52," - - , 514}, where

s1 = (@ —B1)(B2—pB3), 52 = (@—p1)(B2—Ba), 53 = (@—B1)(B2— PBs),
sa = (@—B1)(B2—Pe) ss = (@ —B2)(B1—B3), s6 = (@ —B2)(B1—Ba),
s7= (@ —B2)(B1—Ps), ss = (@ —B2)(B1—Be) s9 = (@ —B3)(B1—Pa),
sio = (@—pB3)(Bi—ps), s = (@—PB3)(B1—Pe), si2 = (@—pBa)(B1—ps),
s13 = (@—PBa)(B1—Pe) sia = (@ —Bs)(B1 — Bo)

are the standard polytopes of type (2,2).

Now let f + €5 ((ZS3)°) € Ker . We want to prove that f € € ((ZS3)¢). For this

purpose we observe that
G_ 4l G 1 G 1 G G
(ZS4)” = & Z(ZS&O) + 5(Z53,1) + E(Zss,z) +(ZS833)7 ] -

So
1 1 1
f=¢ (Zf3o + St 5 f+ f33) e el (@n)’),

with f39 € (ZSg’Q)G, fa1 € (ZS3,1)G, fr € (ZSg’z)G and f33 € (253,3)6. By injectivity of 6;

we have
1 1 1 G
h = Zf30 + §f31 + §f32 € (ZL3)". (5.4)

In particular 4 € (ZL3)® and so

4
3/ e (ZL3)°. (5.5)

6
Since f31 € (ZS3)Y, there exists fi; € (ZS1;)¢ such that f3 = ef(fu) and fii = X zj(a—
j=1
B;j), where {@ — B, — fB2,- - ,a& — Bg} is a standard basis of polytopes of ZS;;.

Then chosen x = {B;, 8;,,8;,} and y = {a, B;,, Bis} two distinct sets in L/, we have
4
3 < fALx+y>€Z.
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Using the equation 4.6, we have
6
4 4
g < f31’x ty>= g(_Zil — Zip, — Ziz — Ziy — s + rz_; Zr)~
Whence z; = 0mod 3, for any 1 < j < 6. It follows %f31 € (ZS3))°.

To this point it remains to prove that A’ = h — % fa = }l S0 + % fi € (Z53)°. From

equations 5.4 and 5.5 we deduce
h' € (ZL3)°,

whence 21" = 3 fio + f3 € (ZL3)° and 50 hyg = 3f30 € (ZL3)° N E]) = (ZS30)°.
Replacing it in 4’ we have h’ = %h”jo + % f32. We can suppose

14

’ 1 3 1 3
W =30+ puisy 5 04+ ps)

where (o, € Z, po,pi € {0,1}, s% is the polytope of type (3,0), s; as above and

sl.3 = 623(s,-). Our goal is to prove that pg = p; = --- = p1g = 0.

- 14
For this purpose, put 1" = % posa + % st p,-sl.3, for any x,y € Lg we have

1 3

14 14
1 1
<h" x—y>= > < posy X —y > +§ < Zpis?,x—y >= 3 < Zpisf,x—y >€ Z.
i=1 i=1

If x = {a,B1,62} and y = {3, B4, 55} then

14

. 1 1
<h",x—y>=—=( E Pi — P9 — p1o — p12) = =(pu + p13 + p14) € Z. (5.6)
24 2

If x = {@.,B1. B2} and y = {B3, B4, B} then

14

. 1 1
<h",x—y>= 5(2 Pi — P9 — P11 — p13) = 5(;010 +p12 + pus) € Z. (5.7)
i=0
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5.3 Particular cases

If x = {@,B1,52} and y = {3, B5, B } then

14

. 1 1
<h"x—y>= E(Z pi = P10 — P —p14) = 5(0o + pr2 + p13) € Z. (5.8)
i=9

If x = {@,p1,B2} and y = {B4, B5, Be} then

14

. 1 1
<h",x—y>= E(Z Pi — P12 — P13 — P14) = §(p9 +p10 + pu) € Z. (5.9
i=9

If x = {@,p1,B3} and y = {Ba, B4, Bs} then

1 1
<h",x—y>= §(P6 +p7+ pg+ P12+ P13 + P14 — P6 — P7— P12) = E(ps+p13+m4) eZ.
(5.10)

From equations 5.6 and 5.10, we have %(pn — pg) € Z, S0

P8 = pi1.

If x = {@,B1.B3} and y = {32, B4, B} then

. 1 1
<h",x—y>= §(P6 +p7+ P8+ P12+ P13+ P1a—pP6— P — P13) = 5(,07+,012 +p14) € Z.
(5.11)

From equations 5.7 and 5.11 we have %(plo — p7) €Z, SO

P10 = P7-

Again if x = {a’ﬁlaﬁ3} and y= {ﬁZvﬁ57ﬂ6} then

” 1 1
<h",x—y>= 5(/)6 +p7+ 08+ P12+ P13+ pP1a— p7— P8 — P14) = E(pG +p12+p13) € Z.
(5.12)
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From equations 5.8 and 5.12, %(p6 — po9) € Z, thus

P6 = P9.

If x = {@,p1,B4} and y = {B2, B3, B5} then

. 1 1
<h",x—y>= E(Ps +p7+ P8+ P10+ P11+ P14 — Ps— P7— P10) = E(Ps +p1+p14) € Z.
(5.13)

From 5.10 and 5.13, %(pu — p13) € Z, thus

P11 = P13,

moreover from 5.13 and pg = p;; = p13, we have %(pg + pu + p1a) = %(Zpg + p1u) € Z,
SO

p14 = 0.

If x = {a’ﬁl,ﬂ4} and y= {ﬁ3,ﬁ5’ﬁ6} then

1 1
<h",x—y>= E(Ps + 07+ pg+ P10+ P11+ P14 — P10 — P11 — P14) = E(Ps +p7+p3) € Z.
(5.14)

From equations 5.14, 5.9, p;; = ps and pjp = p7, we have %(pg — ps) € Z, SO

P9 = ps.

If x = {a,p1,B5} and y = {B2, B3, B4} then

1 1
<h”,x—y>= 5(p5+p6+ps+p9+pn+p13—ps—p6—p9) = 5(ps+pn+p13) €Z. (5.15)

From equation 5.15 and pg = pj; = p13, we have %(3pg) € Z and so

ps =0,
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whence

ps=pn=pi3=0.

If x = {@,B1.Bs} and y = {B2, B3, B4} then

., 1 1
<h",x—y>= 5(,05+p6 +p7+ P9 + P10 + P12 — P5— P — P9) = §(p7+p10+p12) €Z.
(5.16)

From equation 5.16 and p;7 = pjp we have %(2,07 + p12) € Z, s0
p12=0
moreover from equation 5.7 and py; = p14 = 0,
1 1
E(PIO + P12+ p14) = SP10 € Z,

hence
p10=0

and by equation 5.9 and py; = pjo =0,

I
e

P9

If x = {a,$2,63} and y = {1, B4, 55} then

1 1
<h"x—y>= E(Pz +p3+ps—p2—p3+pi3t+p1a) = §(P4 +p13+p14) € Z. (5.17)

Since p13 = p14 = 0, we have

p4=0.

If x = {a@, B2, B3} and y = {Bi, B4, Be} then
., 1 1
<h",x—y>= E(pz + 03+ ps— p2— patp2)= E(p3 +p12) € Z. (5.18)
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By equation 5.18 and pj; = 0 we have

p3=0.

Again if x = {@, B2, 83} and y = {1, Bs, Bs} then
. 1 1
<h"x—y>=s(p2+p3+ps—p3—ps)=5m €L,

SO

P2 = 0.
Finally if x = {«@, 82,84} and y = {1, Bs, Bs } then
. 1 1
<h",x—y>= E(m +p3+ 04— P9 — P3— P4) = E(Pl — p9) € Z,
whence
P1 = 0.
We conclude that h” = §pos; € (ZL3)°, hence
po=0

and this concludes the proof.

Next Theorem considers a more general situation.

Theorem 5.34. Lett =2, k =n—2and gcd(n,3) = 1. Let

(ZSan)G (ZLan)G
¥ n—2 - n—2
e~ ((252)°) e~ ((ZLy)°)

(5.19)

(5.20)

be a map defined by ¢(f + 63*2 ((Z$2)9)) = f + 6;72 ((ZL2)C). Then ¢ is an isomor-

phism.
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(280 2)C g _(ZLa2)®
& 2((2%2)9) & 2((ZL2)%)

the same order, it is enough to prove that ¢ is injective. Note that, by proof of Theorem

Proof. Clearly ¢ is a linear map well defined. Since have

4.5.1, we have

(ZS1-2)° =(Z81-20)¢ ® (Z8,-21)° @ (ZSy—22)¢ =

B Wz(n—?o)eg_2 ((ZS Z’O)G) T i 3 & q ((ZSLI)G) +e ((ZSz,z)G) =

2
=" —————(Z5,0)° +
(n— ’

2 D=3 & ((ZSI,I)G) + (Zsz,z)G)

1
(n—3)"

hence if f + eg_z((ZSz)G) € Ker ¢ then

- 2 ! .
f=&7 (mfzo + mﬁz(fu) + fzz) cey? ((ZLz)G)
with f>50 € (ZSz,o)G, fii € (ZSU)G and f, € (ZSLQ)G. This implies
_ 2 1 2 G
h = (n—2)(n— 3)f20 + (n— 3)61 (fi) € (ZL») (5.21)

by injectivity of 6;—2. We want to prove that m f0 € (ZS20)¢ and ﬁelz( fin) €
(ZS51)C, so that h € (ZS,)C.

Clearly
(n=3)h = — fo + € (fu) € (ZLo)", (5.22)
whence
o€ (Z820)°.
Put /iy = ﬁ f20, by definition
hao = bsao

with so0 = ), x polytope of type (2,0) and b € Z. We can write
xeLy
1

h =
n—3

1
hyo + mflz(fll) € (ZLy)",
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with hyg € (ZSZ,())G and f; € (ZSM)G.

It is enough to prove that b = 0 mod(n —3). We consider {a@ — B, — B2, - - ,a& — Bp—1}
a standard basis of polytopes of type (1,1). Let x = {a, 8}, y = {@,B;}, withi # j and

1<ij<n—1

It is easy to see that #3 < hyp,x —y >= ﬁ(b — b) = 0. It follows

1 1 1
< hx—y>= —— < € (fu),x—y >= < fiOy(x—y) >= < fiLBi—p; >
n—3 n—3 n—3
(5.23)
is integer as h € (ZL,)°. Since fi; € (ZS11)°, we have
fi=z(a—p) + (e —B2) + -+ + zp—1(@ — Bu1),
for some integer z, - - -, z4—1. As fi = (z1+22+- - -+ zZ—1)a—2uB1—2202—"* - —Zn—1Bn—1,
then the inner product 5.23 becomes
1
<hx—y>=——(—z+ Zj) € Z,
n—3
thus
—zi +zj = 0mod(n — 3). (5.24)
Moreover
<hx>= < hyg, x > + < &(fi)x >= < hpo,x > + < fi, 03(x) >=
n— n—3 n—3 n—3
1 1 1 1
= < hyog, x > + < fiba + B; >= b+ (z1+- 4201 —2) €Z,
n—3 n—3 n—3 n—3
whence

b+Z1+"'+Zn71_Zl‘ EOmod(n—3) (525)

Now let w = {f;,8;}, with1 < i,j < n—1landi # j, so < hyw >= ﬁ < hyo,w >

1 2 1 1 1 1 1
+m < GI(fi]),W >= n_—?)b+ w3 < ﬁ],az(W) >= mb‘l‘ 3 < fi],ﬁl‘ +ﬂj >=
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—L(b— z — zj). So we conclude

b—z—zj = 0mod(n—3)
From equations 5.24 and 5.26 we have

b—2z; = 0mod(n —3).

(5.26)

(5.27)

Again, from 5.26 and 5.25, for each set of three distinct indexes i, j,[, where 1 < i, j,l <

n — 1 we have

n—1

b+zi++zZp1— 2+ Z (b—Zl—Zj) =b+(n—3)b+z—(n—3)z; = Omod(n—3),

j=lj#il
thus
b+ z; = Omod(n — 3)

Finally, by 5.27 and 5.28, we can deduce
b—2z1+2b+2z =3b=0mod(n—3)
for each 1 </ < n—1. Since gcd(n,3) = 1 by hypothesis, we conclude
b = 0mod(n — 3).

This concludes the proof.

We conclude this section giving the following conjecture

Conjecture 5.3.5. I[f0 <t < k <nandt+ k =n, then

% ~ (Cd )mo X(Cd)mIX"'X(Cd)m'
- 0 1 t s
ek(zLmo
where d; = (It:') andm; = 7, — 1,4, fori = 0,--- ,1.
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In general this statement is not true for # + k < n.
Example 5.3.6. Ifn=8,t =2, k =3 and
G =((1,2,3,8)(4,6,7,5),(5,8,6),(1,4,7),(2,6)(5,8),(2,8)(5,6),(1,7)(3,4),(1,4)(3,7)),

we consider the bases above introduced Bg: and B (see the beginning of chapter) and

we write the matrix X2+3 associated to the map
3. 8\G 8\G
€ : (ZLy)” — (ZL3)",

with respect to these bases. By direct computation with Magma Computational Algebra

30
System, we get X5, = . Its invariant factors are 1 and 6. So that
1 2
@
— = (.
& (ZLS)C

If the equation 5.29 is true for t + k < n, then
(ZLY)S

W = (Cgy)™ X (Cg))™ x (Cay)™,
2\ &b

withdy=3,d =2, d,=1,mg=1 m =0and my = 1. So Cg = C3. Contradiction.

5.4 Matrices X " and X t*,;

In this last section we report some consideration about the matrices X, = (x;;.) and
X, = (xﬁ) of the tactical decomposition (Q/, Q¥). Here, we follow closely the original
proof of Wilson’s Theorem ( [15] ) for a diagonal form of W;;. Actually we will prove

that the Equations 5.30 and 5.31 hold in order to get that the matrices
M. = (g 1)
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and
Xok
-
- 1k
M,
Xk

have rank 7; and index 1. See chapter 3, Proposition 3.1.3.

We begin giving an example for matrices X = (x;;.) and X, = (x;;) wheren = 6,1 =2
and G = ((1,2,3),(1,2)(4,5)). We recall that X}, = (x;;.) and X, = (xj;) are the matrices
associated to €f : (ZL"¢ — (ZLZ)G and 0, : (ZLZ)G — (ZLM)C with respect to the

bases above introduced Bq: and B (see the beginning of chapter).

Example 54.1. Letn =6,t =2 and G = ((1,2,3),(1,2)(4,5)). Then the 2-orbits are
Al = {{1, 2}7 {2’ 3}’ {1’ 3}}’ AZ = {{1’ 4}’ {24}’ {27 5}7 {3’ 4}’ {1, 5}, {3, 5}}’

Az = {{1’6}’{2’6}’{3’6}}’A4 = {{5’6}’ {4’6}}’ As = {{4’5}}

and the 4-orbits

I = {{3,4,5,6},{1,4,5,6},{2,4,5,6}},
I ={{2,3,5,6}.{1,3,5,6},{1,3,4,6},{1,2,5,6},{2,3,4,6},{1.2,4,6}},

I3 ={{2,3,4,5},{1,3,4,5},{1,2,4,5} },Tu = {{1,2,3,4},{1,2,3,5}},T's = {{1,2,3,6}}.

So we have that

(ZLZ)G = spanZ(Z x:j=1---,5),

XEAj

and

(ZLy)C = spanz(z y:i=1---,5).
yel
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Then
02121
12210
Xu=X,=|11 40 0 1
33000
30300

To determine the matrix Mlz = (X6L4|X12) we consider the 1-orbits

{1,2,3} (4,5} {6}.
Then
1121
1211
Mi=l1220
1310
1301

Now to prove that matrices M;; and M, have index 1 we introduce some Lemmas.
Denoting by H; the incidence matrix between t-subsets and t-orbits, that is H;(T,A;) =1
if T € Aj and H(T,Aj) = 0 otherwise; put HI'H, = N;; it is easy to recognize that N,
is the diagonal matrix such that N;(j, j) is the number of elements in the orbit A;. We

have the following results (see also [5] section 1.3, and [13]).

Lemma 5.4.2. [13](Lemma 3.1)

1. Hi X}, = W! H; and H, X, = Wy Hy;
2. (X)) Ni X = HI Wy W! H, and (X,))"N, X, = H] W} Wy Hy;

3N X = (X )TN, Ne(XE X)) = (X )TN, X,

N(X X+) = (XN X and 1\1,()(;)(,7{)N,—1 = (X X7
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Lemma 5.4.3. Let0 < j <t < k < n, then

X, X =

Proof. By Lemmas 5.4.2 and 3.1.2,

—v— _ T —v— _
Nijtth - Hj Hijter -

k—j

k —
= H~T( .)ijHk = (
J t—j t—

It follows

X X,

jt tk —

because N; is non-singular.

P
( / )X;{ (5.30)
t—j) /

HI W H,X, = H W;;Wy Hy =

Nt v— - (K= 3\ w x-
j)HJ. HX, = (t _j)N,Xjk.

Lemma 5.4.4. Let0 < j <t <k <n, then

+ v+ _
XX =

Proof. By Lemmas 5.4.2 and 3.1.2,

N X5 X5, = H H. X}, X =

k—j k— k—j
T T T
= H! (t_j)ijH- = (t_j)HkaXj+ = (t_j)NkX;k.

It follows

X X5 =

thk“*jt

because Ny is non-singular.

We introduce now a new matrix

k—Jj\o_
=i
J
O
k_j +
(t—j)Xf" (5.31)
Ty T T T wT
H erHthJrr =H W, W;Hj =
k—j
=
J
O
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Definition 5.4.5. Let 0 <t < k <nandt+k < n. Then forany 0 < i < t we define X;
the matrix whose rows are indexed by all G-orbits A on L' and the columns by G-orbits

I'on LZ, such that
Xic(A,T)=|{y €T : ynx = 0,for one fixed x € A}]|.
Lemma 5.4.6. Let0O <t <k <nandt+k <n. Then forany0 <i <t
H;Xi;. = WixHy,
where for each i-set x and k-set y
lifxNny=20

Wi(x,y) =
0 otherwise

Proof. First we note that x Ny = (@ if and only if x8 N y8 = 0, for any g € G.

So {y €' : ynx = 0,for one fixed x € A}| depends only on the orbit A and not on a
choice of x. Then
HiXi(x,T) = ) Hi(x, A)Xik(A,T), (5.32)
A
since H;(x,A) = 1if and only if x € A, we have that the right-hand side of equation 5.32

is equal to H;(x, A)Xi1(A,T) = Xi1(A,T), with x € A.

On the other hand, by definition of X;, we have

WieHi(x,T) = > Wil H(,D) = > 1= Xg(AT).
yELZ xNy=0,yel’

The claim follows. O

Theorem 5.4.7. LetO <t <k <nandt+ k =n. Then

M5 = (XX 1)
has rank i and index 1. Moreover the Z-module spanned by its columns is equal to Z'.
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Proof. First we prove that
+X()k
—Xux
NiM, = Ng.
(—1) Xk

Indeed by Lemma 5.4.2, we have Hle.*,; = WI.YILH,-; moreover by Lemma 5.4.6, H X, =

— t + —

WixHy and finally, by Equation 3.2 , }; (—1)’Wl.7,;W,-k = I(Z)’ where I(Z) is the identity
i=0

matrix of order (}), we deduce

+X()k +X0k
—Xik —Xik
NkM;l—c = HZHkM;,; =
(—1)" Xk (—1) Xk
+X()k
- H'H, (x+ |x* | e - H t )V H X" Xy =
= He i\ Xgp 1 Xyl 1XG N kz(_) ki ik =
i=0
(—1) X1

t t t
HY Y (1) Wi X = HY Y (1 Wi WiHy = H{ (Z(—l)lw;;vv,.k) Hy =
i=0 i=0 i=0

= H] Hy = Ny.

Hence, since Nj is a non-singular matrix,
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with I, identity matrix of order 7x. So
+)_(Ok
—X X
M, 1 M = My,
(—1) Xk
and, by Proposition 2.4.16, M} has index 1. This means that the Z-module spanned by
the columns of M is a pure submodule of Z™ of rank 7;. By Lemma 2.4.14 we have

the claim. a

Remark 5.4.8. By equation Hy X} = WtTkHt, we deduce that the non-zero invariant

actors of X5 are the same of WT H,, which is the matrix associated to the restriction
tk tk
e (zL)° - zL,

with respect to the canonical bases Bq: and L, respectively.

Using the relations given in Lemma 5.4.2 it is possible to prove Theorem

Theorem 5.4.9. LetO <t <k <nandt+ k =n. Then

Xox

t X—

- _ - _ 1k
Mtk - UXik -

=0 Ce

X~

tk

has rank t, and index 1.

Theorems 5.4.7 and 5.4.9 are exactly the first step of Wilson’s proof. This suggested us
conjecture 5.3.5. We tried to continue following the arguments of Wilson. We realized
(see Proposition 3.1.3) that in his proof it is necessary that the matrix M;; has index 1

also for t < k < n — t. This is not true in our cases for matrices M ;;( and Mt;.
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APPENDIX A

Smith group of €* : (ZL)° — (ZL;)°

In this section we insert the program used in the Magma Computational Algebra System
to verify that for any permutation group G on Q = {1,--- ,n}, wheren < 11,0 <t < k
and  + k = n, the orbit matrix X! is equivalent to a diagonal form with entries d; = (’l:’ )

and multiplicity m; = 7, — 7,1, fori = 0, - - - ,t.

checkG:=function (G,k, t)

local deg,Lk,Lt,Ll1,0k,Ot,Ol,Op,X,i,j,Ti,Kj,x,M,min,u,Y,W,molt,d,l,r,col,r
deg:=Degree (G);

Lk:=Subsets ({1..deg},k);

Lt:=Subsets ({1..deg},t);

Lk:=GSet(G,Lk);

Lt:=GSet(G, Lt);

Ok:=Orbits (G,Lk);

Ot:=0rbits (G, Lt);
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Smith group of €

:(ZL)C — (ZLy)®

Op:=0;
row:=#0t;
col :=#0k;

min :=Minimum ( col ,row);

for 1 in [0..t] do
Ll:=Subsets ({1..deg},1);
L1:=GSet(G,Ll1);
Ol:=0rbits (G,L1);
molt:=#01-Op;
if molt ne O then
for i in [r..r+molt—1] do
for j in [1..col] do
if i ne j then
d:=0;
else
d:=Binomial (k—1,t—1);
end if;
Y:=Append(Y,d);
end for;
end for;
r:=r+molt;
end if;
Op:=#0l;
end for;

W:=Matrix (Integers () ,row,col ,Y);
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return(<ElementaryDivisors (W) >);

end function;

checkGG:=function (G,k, t)
local deg,Lk,Lt,Ok,Ot,i,j,Tj,Ki,y,x,L,N;
deg:=Degree (G);
Lk:=Subsets ({1..deg} ,k);
Lt:=Subsets ({1..deg},t);
Lk:=GSet(G,Lk);
Lt:=GSet(G, Lt);
Ok:=0Orbits (G,Lk);
Ot:=0rbits (G, Lt);
L:=[1];
for i in [1..#0k] do

Ki:=O0k[1i];

y:=Representative (Ki);

for j in [1..#0t] do

Tj:=0t[j I;
L:=Append(L,#{x:x in Tj|x subset y});

end for;
end for;
N:=Matrix (Integers () ,#0k,#0Ot,L);
return(<ElementaryDivisors (N) >);

end function;

S:=Sym(8);
Sub:=Subgroups(S);

115



Smith group of €' : (ZL,)° — (ZL;)°

Sub:=[x AlIt+96 subgroup:x in Sub];
for G in Sub do
nr:=Degree(G);
for k in [1..nr] do
if k ne nr—k then
for t in [1..Minimum(k,nr—k)] do
c:=checkG(G,k,t);
cc:=checkGG(G,k,t);
if not c[1] eq cc[1] then
print <G,c[1],cc[1],t k,nr>;
end if;

end for;
end if;
end for;
end for;

print <"Terminato">;
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APPENDIX B

Thecaser+ k=n

Here we write the program used to determine the vector v*Zinthe case Q = {1,2,3,4,5,6},

t = 2 and k = 4. For avoid confusion, we denote by «a; the i element of Q, with

G :{a'la'Za @3, a3, a1y, @204, X2as5, X304, A1A5,

@3as, a6, @206, 306, A5A6, X4Q6, A4Q5}
be a canonical basis and

Py ={ Z x, (a1 — a2)(az — aq), (01 — a2)(a3 — as), (a1 — a2)(a3 — @), (a1 — @3)(@2 — ay),

xeL§
(a1 — @3)(az — @s), () — a3)(@2 — ap), (a1 — ag)(az — a@s), (@ — a)(@2 — ap),

(1 — as)(@2 — ap), €2 (a1 — @), € (a1 — @3), 67 (a1 — au), € (a1 — as), € (1 — @)}

be a standard basis of QL26.
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The casetr+k =n

Similarly, let

Cs ={azasasae, masasae, ar04a506, 230506, Q1A3A5A6, X1A3A4A6, A1A2A5X6,

@346, X1Q2A4A6, A2AZALAS, AA3ALA5, A Q2A4AS, A X2A3Q4, A1A2A3X5, A A2A3A6 )

be a canonical basis and
Ps ={ Z & (a1 — a)(@3 — aw)), & (a1 — a2)(@3 — @s)), & (a1 — a2) (@3 — ap)),
yeLg
& (a1 — a3)(@2 — aa)), & (a1 — a3)(@2 — @s)), & (a1 — @3)(@2 — ),
& (a1 — as)(@2 — as)), & (1 — as)(@2 — @), & (1 — @s)(@2 — @),

6'(a1 — @), 6 (a1 — @3), ! (1 — au), €' (1 — as), €' (@1 — ap)}
be a standard basis of QLg.

We call x and y the matrices of change of basis from #, to C, and from P4 to Cj,

respectively.

\begin{lstlisting}

Q:=RealField ();
Q<o0>:=CyclotomicField (3);
R<a>:=PolynomialRing (Q,1);
F<a>:=FieldOfFractions (R);
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G:=MatrixAlgebra(F,15);

x:=G!]
1,0,0,0,1,1,1,1,1,1,0,1,1,1,1,
l,-1,-1,-1,-1,—-1,-1,0,0,0,—1,—-1,0,0,0,
1,1,1,1,0,0,0,0,0,0,1,0,1,1,1,
1,-1,0,0,-1,0,0,0,0,0,1,1,0,1,1,
1,1,0,0,0,0,0,-1,-1,0,—-1,0,—-1,0,0,
1,0,1,0,0,0,0,0,0,—-1,—-1,0,0,—1,0,
1,0,0,0,1,0,0,0,0,0,0,—1,—1,0,0,
1,0,-1,0,0,-1,0,—-1,0,0,1,1,1,0,1,
1,0,0,0,0,1,0,0,0,0,0,—-1,0,—-1,0,
1,0,0,-1,0,0,—-1,0,—-1,—1,1,1,1,1,0,
1,0,0,1,0,0,0,0,0,0,-1,0,0,0,—1,
1,0,0,0,0,0,1,0,0,0,0,—-1,0,0,—1,
1,0,0,0,0,0,0,0,0,1,0,0,0,—1,—1,
1,0,0,0,0,0,0,0,1,0,0,0,—1,0,—1,
1,0,0,0,0,0,0,1,0,0,0,0,—1,—1,0];

y:=G![
1,0,0,0,1,1,1,1,1,1,0,—-1,—-1,—-1,—1,
l1,-1,-1,-1,-1,-1,-1,0,0,0,1,1,0,0,0,
1,1,1,1,0,0,0,0,0,0,—-1,0,—-1,—1,—1,
1,-1,0,0,-1,0,0,0,0,0,—-1,—-1,0,—1,—1,
1,1,0,0,0,0,0,-1,-1,0,1,0,1,0,0,
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The casetr+k =n

1,0,1,0,0,0,0,0,0,-1,1,0,0,1,0,
1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,
1,0,-1,0,0,-1,0,-1,0,0,—-1,—-1,—-1,0,—1,
1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,
1,0,0,-1,0,0,-1,0,—-1,-1,—-1,—-1,—-1,—-1,0,
1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,
1,0,0,0,0,0,1,0,0,0,0,1,0,0,1,
1,0,0,0,0,0,0,0,0,1,0,0,0,1,1,
1,0,0,0,0,0,0,0,1,0,0,0,1,0,1,
1,0,0,0,0,0,0,1,0,0,0,0,1,1,07;

Determinant (x);

n

print" ";

V:=VectorSpace (F,15);

v:=v![-1,0,0,-1,1,2,0,0,0,1,0,0,0,1,0];

z:=x"—1;

w:=v*Transpose(z);

print v;

print w;

wk Transpose (y);
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