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Introduction

In this thesis we deal with the problem to find particular forms for incidence matrices of

incidence structures In
tk = (L

n
t , L

n
k ; ⊆).

Denote by Ω a set of finite size n, say Ω = {1,2, · · · ,n} and by Ln the power set of Ω.

We partition it into the sets Ln
i , for 0 ≤ i ≤ n, where Ln

i is the set of subsets of Ω of size

i; i.e. the elements of Ln
i are the i-subsets of Ω.

In
tk = (L

n
t , L

n
k ; ⊆) is the incidence structure so defined: for x ∈ Ln

t and y ∈ Ln
k , x and y

are incident if and only if x ⊆ y. Its incidence matrix is denoted by Wtk .

R.M.Wilson in [15] ( Theorem 3.1.6 ) finds a diagonal form for Wtk with purely combi-

natorics methods. For shortness we will refer to this result as “Wilson’s Theorem”.

Many other authors have dealt with the same problem, see for example [2], [7], [8] and

[11].

The heart of the thesis is Chapter 4 where we give a new proof of Wilson’s Theorem via

linear maps.

Looking at [5] and starting from In
tk we construct a new algebraic structure:

let G ⊆ Sym(n) be a permutation group on Ω. The action of G on Ω induces a natural
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action on Ln. Formally, if g ∈ Sym(n) and α1, · · · αi ∈ Ω then

{α1, · · · , αi}
g = {α

g

1
, · · · , α

g
i }.

So G acts on any Ln
i .

This action partitions each Ln
i into orbits; τi denotes the number of orbits of G on Ln

i .

For 0 ≤ t ≤ k ≤ n, if we call Ωt = {∆1,∆2, · · · ,∆τt } and Ωk = {Γ1,Γ2, · · · ,Γτk } the

G-orbits sets on Ln
t and Ln

k , the pair (Ω
t,Ωk) is a tactical decomposition of In

tk . Then we

can define two matrices

X+tk = (x
+
i j) and X−

tk = (x
−
ji )

where

x+i j = |{x ∈ ∆ j : x ⊆ y, for one fixed y ∈ Γi}|

and

x−ji = |{y ∈ Γi : x ⊆ y, for one fixed x ∈ ∆ j}|.

To be precise we should write (X+tk)
G, but we cut G to avoid too heavy notation.

X+tk and X−
tk are called the incidencematrices of (Ωt,Ωk). Clearly, X+tk and X−

tk are integral

τk × τt and τt × τk-matrices, respectively.

If G = {1G} then the orbits of G correspond to the subsets and X+tk = WT
tk is the transpose

matrix of the incidence structure In
tk .

In Chapter 5 we will give some new results related to the invariant factors of X+tk .

The thesis is so organized: in Chapter 2 we give the necessary prerequisites about

modules and equivalence of matrices; in Chapter 3 we present the original Wilson’s
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proof given in [15].

In Chapter 4 we introduce an algebra related to the boolean poset Ln, in order to give

our new proof of Wilson’s Theorem, drawing from [4], [13] and [14],

Let R be one of Q or R, we construct the vector space RLn of formal sums of elements

of Ln with coefficients in R, i.e.

RLn =

{ ∑
x∈Ln

rx x : x ∈ Ln,rx ∈ R

}
.

We give to RLn the structure of algebra by adding a multiplication operation. For

x, y ∈ Ln we define a product in the following way:

x · y = x ∪ y

and extend this linearly to RLn. If f =
∑

x∈Ln
fx x and h =

∑
y∈Ln

fyy, we put

f · h =
∑

x,y∈Ln

fx hyx · y.

We want to extend the ⊆ relation from Ln into RLn. To do this we define incidence

maps:

ε (n)(x) =


∑
y⊇x

|y |= |x |+1

y if |x | < n

0 otherwise

and ∂(n)(y) =


∑
x⊆y

|x |= |y |−1

x if |y | > 0

0 otherwise

.
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We also consider in section 4.1, for any 0 ≤ t ≤ k ≤ n, the functions ε (n)kt and ∂(n)tk so

defined

ε
(n)k
t :


RLn

t → RLn
k

x → ∑
y⊇x

y∈Ln
k

y and ∂
(n)t
k :


RLn

k → RLn
t

y → ∑
x⊆y

x∈Lnt

x .

We observe that the matrices associated to ε (n)kt and ∂(n)tk , with respect to the bases Ln
t

and Ln
k , are WT

tk and Wtk , respectively.

The results of Chapter 4 are achieved considering a particular basis for RLn
i .

Given 0 ≤ t ≤ n − 1 and k = t + 1, we construct two symmetric maps

ν+t = ∂
(n)t
t+1 ε

(n)t+1
t : RLn

t → RLn
t and ν−t+1 = ε

(n)t+1
t ∂

(n)t
t+1 : RLn

t+1 → RLn
t+1

and we state Theorems 4.2.2 and 4.2.3.

Theorem 4.2.2. Suppose that 2t ≤ n. Then ν−t has t + 1 eigenvalues

λt−1,0 > λt−1,1 > · · · > λt−1,t−1 > λt−1,t = 0

and ν+t has t + 1 eigenvalues

λt,0 > λt,1 > · · · > λt,t−1 > λt,t ≥ 0,

with multiplicity ni =
(n

i

)
−

( n
i−1

)
, for 0 ≤ i ≤ t. In particular we have the decomposition

RLn
t = En

t,0 ⊕ En
t,1 ⊕ · · · ⊕ En

t,t

where En
t, i is the ν

+
t -eigenspace with eigenvalue λt, i and dimR En

t, i =
(n

i

)
−

( n
i−1

)
.
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Theorem 4.2.3. If 2t > n and 0 < t ≤ n, then ν−t has n − t + 1 positive eigenvalues. In

particular we have the decomposition

RLn
t = En

t,0 ⊕ En
t,1 ⊕ · · · ⊕ En

t,n−t−1 ⊕ En
t,n−t .

We prove that the eigenspaces En
t, i are irreducible Sym(n)-invariant and that

ε
(n)k
t (En

t, i) = En
k, i .

We observe that from these decompositions it is immediate to find two bases in RLn
t and

RLn
k , respectively, such that the associated matrix to ε (n)kt : RLn

t → RLn
k is the diagonal

form of Wtk found by R.M. Wilson.

If we consider Wtk as incidence matrix of the incidence structure In
tk , we can see WT

tk as

matrix associated to ε (n)kt restricted to the Z-module ZLn
t .

This suggested us to address the problem via linear algebra. Unluckly the result for the

Z- modules is not immediate.

In section 4.3, looking at [4], we give a generating set Sn
i of eigenvectors for the vector

space RLn
i , with i = 0, · · · ,n, called polytopes.

For our approach an important role is played by the Z-module ZLn
i with basis Ln

i

(i = 0, · · · ,n) together with the submodule ZSn
i generated by polytopes.

It is easy to prove that the following restrictions hold:

ε
(n)k
t : ZLn

t → ZLn
k, ∂

(n)t
k : ZLn

k → ZLn
t

ε
(n)k
t : ZSn

t → ZSn
k , ∂

(n)t
k : ZSn

k → ZSn
t .

9
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We will determine the invariant factors of the matrix WT
tk finding the Smith group of

ε
(n)k
t : ZLn

t → ZLn
k (see Definition 2.4.21). The result is obtained constructing in section

4.4 a standard basis of polytopes. We report here the final results.

Theorem 4.5.1. Let 0 ≤ t ≤ k ≤ n and t + k ≤ n. Then the Smith group of

ε
(n)k
t : ZSn

t → ZSn
k

is isomorphic to

(Cd0)
n0 × · · · × (Cdt )

nt × Zl,

where di =
(k−i

t−i

)
, ni =

(n
i

)
−

( n
i−1

)
, for i = 0, · · · , t and l =

(n
k

)
−

(n
t

)
.

Theorem 4.5.4. Let 0 ≤ t ≤ k with t + k ≤ n and si
xi be a standard polytope of type

(i, i), for i = 0, · · · , t. Then ZSn
k,0 ⊕ · · · ⊕ ZSn

k,t is isomorphic to ZLn
k ∩ (Ek,0 ⊕ · · · ⊕ Ek,t).

An isomorphism is given by the map ϕ
(n)k
t linear extension of the map defined on a

standard basis of polytopes by

ϕ
(n)k
t

(
ε
(n)k
i (si

xi )

)
= ε
(n)k
i (xi). (1.1)

Corollary 4.5.5. Let 0 ≤ t ≤ k ≤ n with t + k ≤ n and si
xi be a standard polytope of

type (i, i), for i = 0, · · · , t. Then the map

ϕ : ZSn
k/ε
(n)k
t (ZSn

t )→ ZLn
k/ε
(n)k
t (ZLn

t )

defined by

ϕ(ε
(n)k
i (si

xi ) + ε
(n)k
t (ZSn

t )) = ε
(n)k
i (xi) + ε

(n)k
t (ZLn

t ),

and extended by linearity, is an isomorphism.

In Chapter 5 we introduce the submodule of ZLn
i which consists of elements fixed by G,

that is

(ZLn
i )

G = {v ∈ ZLn
i : vg = v, for any g ∈ G};

10
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we denote by (ZSn
i )

G the module (ZLn
i )

G ∩ ZSn
i , and we prove the following

Theorem 5.1.7. Let 0 ≤ t ≤ k and t + k ≤ n. Then the Smith group of

ε
(n)k
t : (ZSn

t )
G → (ZSn

k )
G

is isomorphic to

(Cd0)
m0 × (Cd1)

m1 × · · · × (Cdt )
mt × Zl,

where di =
(k−i

t−i

)
, mi = τi − τi−1, i = 0, · · · , t and l = τk − τt .

In section 5.2 we restrict our attention to the case t + k = n and we consider the

G-isomorphism

+N : QLn
t → QLn

k

defined on basis elements in the following way: if x ∈ Ln
t and y is its complement in Ω,

the map +N is so defined

+N : x → y.

The map +N restricts to isomorphisms between (ZLn
t )

G and (ZLn
k )

G and between (ZSn
t )

G

and (ZSn
k )

G. This allows us to prove

Theorem 5.2.5. Let 0 ≤ t ≤ k ≤ n and t+k = n. Then the groups (ZLn
k )

G/ε
(n)k
t ((ZLn

t )
G)

and (ZSn
k )

G/ε
(n)k
t ((ZSn

t )
G) have the same order.

Actually we conjecture that, for any group G ⊆ Sym(n) and t + k = n, the Smith group

of ε (n)kt : (ZLn
t )

G → (ZLn
k )

G is isomorphic to (Cd0)
m0 × (Cd1)

m1 × · · · × (Cdt )
mt .

Some evidence is given from results in section 5.3, in particular from Theorem 5.3.4.

Moreover, using Magma Computational Algebra System (see Appendix A) we can see

that, for n ≤ 11, t ≤ k and t+ k = n, our conjecture is true, while the statement is not true
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in general for t + k < n (see example 5.3.6). I would especially like to thank Prof. Pablo

Spiga for the stimulating discussions we had and for his help with the computational

load in the case t + k = n.

About the matrices X+tk we just prove that, for 0 ≤ t ≤ k = n − t, the matrix

M+tk =
(
X+
0k |X

+
1k | · · · |X

+
tk

)
has index one (see Definition 2.4.15) and rank τt .

This is actually the analogue of the first step of Wilson’s original proof given in [15];

this suggested us to follow Wilson’s proof to get result for X+tk , but this is not possible.

In his proof it is necessary that the matrix Mtk has index 1 also for t < k < n − t (see

Proposition 3.1.3). This is not true in our case for matrix M+tk .

12



Notation

MG The centralizer algebra of G on M p. 83

BΩt {
∑

x∈∆
x : ∆ ∈ Ωt} p. 17

Ω The set {1, · · · ,n} p. 16

Ωt The set of orbits of G on Ln
t p. 17

QLn
t The vector space with basis Ln

t p. 58

En
t, i The ith eigenspace of ν+ in Ln

t p. 54

G A finite permutation group on Ω p. 83

Ln The power set of Ω p. 16

Ln
i The set of subsets of Ω of size i p. 16

ni
(n

i

)
−

( n
i−1

)
p. 8

ni
(n

i

)
−

( n
i−1

)
p. 53

t ′ min{t,n − t} p. 54

Wtk The incidence matrix associated to incidence structure

(Ln
t , L

n
k,⊆)

p. 16
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X+tk The matrix associated to ε (n)kt : (ZLn
t )

G → (ZLn
k )

G with respect

to bases BΩt and BΩk

p. 17

X−
tk The matrix associated to ∂(n)tk : (ZLn

k )
G → (ZLn

t )
G with respect

to bases BΩk and BΩt

p. 17

In this thesis, groups always act on the right and for group action we use exponential

notation. Maps are applied on the left.
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CHAPTER 2

Modules over a P.I.D. and Matrix Normal Form

In this Chapter we reorganize and deepen various concepts found in the literature. We

consider the necessary prerequisites about modules and equivalence of matrices. For

more references see [1], [5], [9] and [12].

2.1 Incidence matrices

For completeness we recall some well-known notion about incidence structures.

Definition 2.1.1. A finite incidence structure is a triple IPB = (P,B;I) where P and

B are nonempty finite sets and I ⊆ P × B. The sets P and B are called the point set

and the block set of IPB , respectively, and their elements are called points and blocks.

The set I is called the incidence relation.

Definition 2.1.2. An incidence matrix of the incidence structure IPB is the (0, 1)-matrix

whose rows are indexed by the points of IPB , columns are indexed by the blocks of IPB
and the (p, b)-entry is equal to 1 if and only if (p, b) ∈ I.

15



Modules over a P.I.D. and Matrix Normal Form

In this work we deal with particular incidence structure, which we are going to define

now.

Given Ω = {1,2, · · · ,n} a finite set, we denote by Ln the power set of Ω and we partition

it into the sets Ln
i , for 0 ≤ i ≤ n, where Ln

i is the set of subsets of Ω of size i; i.e. the

elements of Ln
i are the i-subsets of Ω.

Put P = Ln
t , B = Ln

k and I the containment relation for subsets of Ω, that is (T,K) ∈ I

if and only if T ⊆ K; the triple In
tk = (L

n
t , L

n
k ; ⊆) is an incidence structure.

The incidence matrix associated to this incidence structure is denoted by Wtk(n) and it

is called the incidence matrix of t-subsets vs. k-subsets of Ω. When there is no chance

of confusion, we will write Wtk for Wtk(n).

We conclude this section with the introduction of a concept useful later on. A tactical

decomposition of an incidence structure IPB = (P,B;I) is a partition of P into disjoint

point sets (called the point classes) ∆, together with a partition of B into disjoint block

sets (block classes) Γ, such that for any point class ∆ and any block class Γ, the number

of points of ∆ on a block B ∈ Γ depends only on ∆ and Γ, not on B, and can hence be

denoted by yΓ,∆. Dually, the number of blocks of Γ through P ∈ ∆ depends only on Γ

and ∆, and can be denoted by x∆,Γ.

Now let I ′
PB

be a tactical decomposition of a finite incidence structure IPB and let the

(point and block) classes of I ′
PB

be numbered in an arbitrary but fixed way: ∆1, · · · ,∆r

and Γ1, · · · ,Γs. Then we define two matrices

Y = (yΓi,∆j ) and X = (x∆j,Γi ).

Y and X are called incidence matrices of I ′
PB

, with respect to the chosen numbering of

the I ′
PB

-c1asses. Clearly, Y and X are integral s × r- and r × s-matrices, respectively.

Now, if we denote by Sym(n) the symmetric group onΩ, the action of Sym(n) is extended

16



2.2 Equivalence of matrices with entries in a P.I.D.

in natural way to Ln
i . Formally, if g ∈ Sym(n) and α1, · · · αi ∈ Ω then

{α1, · · · , αi}
g = {α

g

1
, · · · , α

g
i }.

Taken G ⊆ Sym(n) a permutation group on Ω, we denote by τi the number of orbits of

G on Ln
i . For 0 ≤ t ≤ k ≤ n, we put Ωt = {∆1, · · · ,∆τt } and Ωk = {Γ1, · · · ,Γτk } the

G-orbits sets on Ln
t and Ln

k , respectively. The pair (Ω
t,Ωk) is a tactical decomposition

of In
tk .

We denote by X+tk = (x
+
i j) and X−

tk = (x
−
ji ) the incidence matrices of (Ωt,Ωk), where

x+i j = |{x ∈ ∆ j : x ⊆ y, for one fixed y ∈ Γi}|

and

x−ji = |{y ∈ Γi : x ⊆ y, for one fixed x ∈ ∆ j}|.

2.2 Equivalence of matrices with entries in a P.I.D.

In the following D is a principal ideal domain. Here we give some results of Module

Theory (see [9]).

Definition 2.2.1. Let A and B be two matrices over D of the same size m × n. Then B is

said to be equivalent to A (over D), and we write A ∼ B, if there exist invertible matrices

Q ∈ GLm(D) and P ∈ GLn(D) such that A = Q−1BP.

In particular, a matrix B ∈ Matm,n(D) is said to be a diagonal form for the matrix A, if

A ∼ B and the entry (i, j) is 0 when i , j. Observe that in general m , n; so we have

the following possible cases for diagonal matrices

17



Modules over a P.I.D. and Matrix Normal Form

©«

λ1

λ2

· · ·

· · · λn

0 0 · · · 0

· · · · · · · · · · · ·

0 0 · · · 0

ª®®®®®®®®®®®®®®®®¬

i f m > n,

©«

λ1 0 · · · 0

λ2 0 · · · 0

· · · 0 · · · 0

λm 0 · · · 0

ª®®®®®®®¬
i f m < n (2.1)

or ©«

λ1

λ2

· · ·

λm

ª®®®®®®®¬
i f m = n (2.2)

In general, if s the minimum between m and n, we will write these matrices

diag(λ1, · · · , λs).

The relation defined in 2.2.1 is an equivalence relation. It is possible to obtain equivalent

matrices by appropriate elementary row and column operations (see [9], Chapter 7)

Definition 2.2.2. We say that the matrix B ∈ Matm,n(D) is in Smith Normal Form if

B = diag(d1, · · · , ds) such that the entry di divides di+1. If A ∈ Matm,n(D) is equivalent

to B = diag(d1, · · · , ds), then the sequence d1, · · · , ds is called a sequence of invariant

factors of A over D.

We observe that the sequence of invariant factors is unique up to multiplication by units.

We will make use of the two following Theorems, we give them without proof (see [9]).

18



2.3 Finitely Generated Modules over a P.I.D.

Theorem 2.2.3. Every matrix A = (ai j) ∈ Matm,n(D) is equivalent to a matrix in Smith

Normal Form over D.

Theorem 2.2.4. Two m × n matrices over a principal ideal domain D are equivalent

over D if and only if they have the same sequence of invariant factors over D up to units.

2.3 Finitely Generated Modules over a P.I.D.

Throughout D denotes a P.I.D. We assume that concepts about direct sums, linear

independence and free modules are known (see [9]). We are now in a position to state

and prove the theorem on the structure of the finitely generated modules over a P.I.D.

D (see Theorem 2.3.8). It leads, in fact, to a classification of such modules (in terms

of certain sequences of elements of D), achieved by expressing them as direct sums of

certain cyclic submodules.

Despite the fact that the theorem is well known, it is also the theoretical framework of

this thesis and, accordingly, we will report it with proof. Our reference for the content

of this section is [9].

Theorem 2.3.1. Let M be a free D-module of finite rank n, and N a submodule of M.

Then there exists a basis {v1, .., vn} of M and d1, · · · , dn ∈ D such that

(1) the non-zero elements of {d1v1, · · · , dnvn} form a basis for N and

(2) d1 |d2 | · · · |dn

Proof.

Let N be a submodule of a free D-module M and B = {v1, · · · , vn} be a basis of M. If

N = {0}, then {d1v1, · · · , dnvn}, where di = 0, is a basis of N.

19



Modules over a P.I.D. and Matrix Normal Form

If N , {0}, N is free. Let now C = {w1, · · ·wm} be a basis of N. Then wi =
n∑

j=1
a jiv j .

Let α : N → M be the map such that α(w) = w. The matrix associated to α with respect

to C and B of N and M is A = (a ji).

Then there exist two invertible matrices Q and P over D such that B = Q−1AP =

diag(d1, · · · , dm) and d1 |d2 | · · · |dm (see Theorem 2.2.3). Q and P determine two new

bases B ′ = {v ′
1
, · · · , v ′n} and C ′ = {w ′1 , · · · ,w

′
m} of M and N such that

v ′i =

n∑
j=1

q jiv j

and

w ′i =

m∑
j=1

p jiw j

The elements vi are expressed in terms of the v ′j by means of the matrix Q−1. The matrix

of α with respect to C ′ and B ′ is B = Q−1AP, which is the Smith Normal Form of A.

In particular


w ′
1
= d1v ′1

...

w ′m = dmv
′
m

(2.3)

Put dm+1 = · · · = dn = 0 we have the claim. �

Definition 2.3.2. If M is a D-module, then the annihilator of M , denoted Ann(M), is

defined by

Ann(M) = {d ∈ D : dm = 0 for all m ∈ M}.

20



2.3 Finitely Generated Modules over a P.I.D.

Definition 2.3.3. Let M be a D-module. We say that m ∈ M is a torsion element if there

exists d , 0 ∈ D such that dm = 0. Let T be the set of torsion elements of M , i.e.

T = {m ∈ M : ∃ d , 0 ∈ Z s.t. dm = 0}.

M is said to be torsion-free if T = {0}, and M is a torsion module if M = T .

Theorem 2.3.4. Let M be a D-module and let T be the set of torsion elements of M.

Then

1. T is a submodule of M , called the torsion submodule.

2. M/T is torsion-free.

Proof. 1. Clearly 0 ∈ T . Let t1, t2 ∈ T , then by definition there exist non-zero

r1,r2 ∈ D such that r1t1 = r2t2 = 0. Hence r1r2(t1 − t2) = (r2r1)t1 − (r1r2)t2 = 0.

Since D has no zero divisors, r1r2 , 0 and so t1 − t2 ∈ T . Furthermore, if r ∈ D,

then r1(rt1) = r(r1t1) = 0, and rt1 ∈ T .

2. Suppose that r , 0 ∈ D and r(m + T) = T ∈ M/T . Then rm ∈ T , so there is

s , 0 ∈ D with (sr)m = s(rm) = 0. Since sr , 0, it follows that m ∈ T , i.e.

m + T = T ∈ M/T .

�

Definition 2.3.5. Let M be a cyclic D-module and let Ann(M) be the annihilator of M.

Since D is a principal ideal domain, Ann(M) = Dd, where d ∈ D. Then we say that d

is the order of M.

We will deal always with finitely generated D-module. We just remind

Lemma 2.3.6. Every finitely generated D-module is a homomorphic image of a free

D-module.

21



Modules over a P.I.D. and Matrix Normal Form

Lemma 2.3.7. Let L = L1 ⊕ · · · ⊕ Lt be an internal direct sum of D-submodules. For

each i, let Ni be a submodule of Li and N = N1 ⊕ · · · ⊕ Nt . Then, if ν : L → L
N is the

natural epimorphism, we have L
N = ν(L) = ν(L1) ⊕ · · · ⊕ ν(Lt) and ν(Li) �

Li

Ni

We are now ready to prove

Theorem 2.3.8. Let M be a finitely generated D-module. Then M can be expressed as

an internal direct sum M = M1 ⊕ · · · ⊕ Mt , t ≥ 0, such that Mi is a non-trivial cyclic

submodule of M of order di and d1 |d2 | · · · |dt .

Proof. Since M is a finitely generated module, by Lemma 2.3.6 there exists a free

module V such that φ : V → M is an epimorphism. Put W = Ker φ ⊆ V , there exists an

isomorphism ψ : V
W → M .

Let now B = {v1, · · · , vn} be a basis of V, then V = Dv1 ⊕ · · · ⊕ Dvn and W ⊆ V is free.

So there exist c1, · · · , cn such that c1 | · · · |cn and the non-zero elements of {c1v1, · · · , cnvn}

form a basis of W, by Theorem 2.3.1. Then W = D(c1v1) ⊕ · · · ⊕ D(cnvn). If ν : V → V
W

is the canonical epimorphism, then we have

V
W
= ν(V) = ν(Dv1) ⊕ · · · ⊕ ν(Dvn) = Dν(v1) ⊕ · · · ⊕ Dν(vn) (2.4)

In particolar ν(vi) has order ci. Actually, dν(vi) = 0, where 0 , d ∈ D if and only

if ν(dvi) = 0 if and only if dvi ∈ W = Ker ν if and only if dvi ∈ D(civi) (because it

belongs to W ∩ Dvi) if and only if ci |d.

Since ψ is an isomorphism, it maps the direct decomposition of V/W into a direct

decomposition of M.

Let u be the last integer i such that ci is a unit. Then c1, · · · , cu are all units by the

divisibility condition, and the corresponding modules in Equation 2.4 are exactly the
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2.4 Pure modules and index of submodules

zero modules and can be omitted. Therefore, t = n − u and M = M1 ⊕ · · · ⊕ Mt ,

where Mi = Dψν(vu+i) = Dφ(vu+i) is a non-trivial cyclic module of order di = cu+i and

d1 |d2 | · · · |dt . This concludes the proof. �

If M = M1 ⊕ · · · ⊕ Ms = M
′

1
⊕ · · · ⊕ M

′

t are two direct decompositions of M into

non-trivial cyclic modules Mi of order di and M
′

i of order d
′

i such that d1 |d2 | · · · |ds and

d
′

1
|d
′

2
| · · · |d

′

t , then s = t and Ddi = Dd
′

i , for i = 1, · · · , s. In particular di and d
′

i are

associates.

The sequence d1, d2, · · · , ds is called sequence of invariant factors of M, unique up to

multiplication by units.

Corollary 2.3.9. Let M be a finitely generated D-module. Then if T is the torsion

submodule of M , we have M = T ⊕ V , where V is a free submodule of finite rank.

2.4 Pure modules and index of submodules

In this section we introduce the concept of pure module and of index of a matrix (see [3] ,

[12] and [15]). These topics play a fundamental role in our proof of “Wilson’s Theorem”

(Theorem 4.5.4 ). For this reason we reorganize known notions, integrating them with

useful properties for achieve our purpose. We observe that we will use properties of pure

module, while R.M. Wilson considers the concept of index of a matrix. In Proposition

2.4.17 is pointed out the relation between purity and index of a matrix.

In the sequel we take D = Z, that is we consider Z-modules, and M will denote a

Z-module.

Definition 2.4.1. [12] Let M1 be a submodule of M . Then we say that M1 is a pure

submodule of M if M1 ∩ aM = aM1, for every a ∈ Z.
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Example 2.4.2. Given M = Z × Z, let N and L be the submodules generated by (1,0)

and (2,0) respectively. Then N is pure in M , while L is not pure. To see this it is enough

to take a = 4. The element (4,0) = 4(1,0) = 2(2,0) ∈ L ∩ 4M , but it is not in 4L.

We often will make use of the following remark.

Remark 2.4.3. We observe that the inclusion aM1 ⊆ M1 ∩ aM is always true; moreover,

the equality is trivial if a = 0.

Proposition 2.4.4. Let M1 and M2 be submodules of M such that M1 ⊆ M2. If M1 is a

pure submodule of M , then it is also a pure submodule of M2.

Proof. Since M1 ∩ aM = aM1, for every a ∈ Z, and aM2 ⊆ aM , we have M1 ∩ aM2 ⊆

M1 ∩ aM = aM1. The claim follows. �

Proposition 2.4.5. Let M2 be a pure submodule of M and let M1 be a pure submodule

of M2. Then M1 is a pure submodule of M .

Proof. Let a ∈ Z \ {0}, by hypothesis M1 ∩ aM2 = aM1 and M2 ∩ aM = aM2. Let

x ∈ M1 ∩ aM , since M1 ⊆ M2, then x ∈ M2 ∩ aM = aM2, so x ∈ M1 ∩ aM2 = aM1. It

follows that M1 ∩ aM ⊆ aM1. �

Proposition 2.4.6. Let M1, M2 be Z-modules, and ρ : M1 → M2 an isomorphism. If a

submodule L1 of M1 is pure in M1 then L2 = ρ(L1) is pure in M2.

Proof. Let a ∈ Z \ {0} and y ∈ L2 ∩ aM2. There exist x ∈ L1 and m2 ∈ M2 such

that ρ(x) = y and y = am2. But m2 = ρ(m1) for some m1 ∈ M1, it follows that

y = aρ(m1) = ρ(am1) and so y = ρ(am1) = ρ(x). We conclude that am1 = x by

injectivity of ρ. Therefore, x ∈ L1 ∩ aM1 = aL1, by purity of L1 in M1, then there exists

l1 ∈ L1 such that x = al1. Finally, y = ρ(x) = aρ(l1) ∈ aL2. �
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2.4 Pure modules and index of submodules

For later use, we focus our attention on properties of purity when M is a free Z-module.

Proposition 2.4.7. Let M be a free Z-module of rank n and let Mi, i ∈ I, be a non-empty

family of pure submodules of M. Then F =
⋂

i∈I Mi is a pure submodule of M .

Proof. It is enough to prove that F ∩ aM ⊆ aF, for every a ∈ Z. As usual we suppose

a , 0. Then let f ∈ F ∩aM , there is m ∈ M such that f = am and since f ∈ F, we have

f ∈ Mi, i ∈ I. But Mi ∩ aM = aMi, hence there are mi ∈ Mi such that f = ami. We

consider i , j, by f = ami = am j , we deduce that a(mi − m j) = 0 ∈ M , where a , 0.

So mi = m j , for each i, j ∈ I, because M is torsion-free. It follows that m j ∈ ∩i∈I Mi,

thus f = am j ∈ aF. �

Here we introduce an operator of closure of modules. This relates the concept of pure

module to that of index of a matrix (see Definition 2.4.15).

Definition 2.4.8. [3] Let M be a free Z-module of rank n and let F be a submodule of M.

Then the pure closure of F in M is the module F defined as the intersection of all pure

submodules of M containing F. Clearly if F is a pure submodule of M , we have F = F.

Proposition 2.4.9. [3] Let M be a free Z-module of rank n and let F be a submodule of

M. Then

F = {l ∈ M : ∃c ∈ Z \ {0} s.t. cl ∈ F}.

Proof. Put L = {l ∈ M : ∃c ∈ Z \ {0} s.t. cl ∈ F}. We want to prove F = L. Clearly

F ⊆ L and so F ⊆ L. We prove that L is a pure submodule of M, i.e. L ∩ aM ⊆ aL, for

any a ∈ Z \ {0}, so we can deduce that F ⊆ L. For l ∈ L ∩ aM , there is m ∈ M such

that l = am; as l ∈ L, there exists c ∈ Z \ {0} such that cl ∈ F. Thus, cl = acm ∈ F,

with ac , 0, and we deduce that m ∈ L by definition. We conclude that l = am ∈ aL.

It follows that L is a pure submodule of M and, by definition of purity, L = L. Hence

F ⊆ L.
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Conversely, if l ∈ L, then there is a ∈ Z \ {0} such that al ∈ F. So al ∈ aM ∩ F = aF.

We conclude that there exists f ∈ F such that al = a f , hence l = f , as M is torsion

free. Thus L ⊆ F. �

We give the definition of index of submodules.

Definition 2.4.10. Let M be a free Z-module of rank n and let F be a submodule of M .

The index of F is the index of F as a subgroup of F .

Note that F is pure in M if and only if F has index 1.

The following results prove that a pure submodule F of a free module M coincides with

M if F and M have the same rank (Lemma 2.4.14).

Theorem 2.4.11. Let M be a free Z-module of rank n and let F be a submodule of M of

rank r. Then there exist a basis {v1, · · · , vn} of M and non-zero integers d1, · · · , dr such

that {d1v1, · · · , drvr} and {v1, · · · , vr} are bases for F and F, respectively.

Proof. By Theorem 2.3.1, there exist a basis {v1, · · · , vn} of M and non-zero integers

d1, · · · , dr such that {d1v1, · · · , drvr} is a basis of F.

Now, we prove that {v1, · · · , vr} is a basis for F. Since divi ∈ F, for i = 1, · · · ,r , we have

vi ∈ F, by Proposition 2.4.9. Thus it is enough to prove that F = spanZ{v1, · · · , vr}.

Let x ∈ F, then there exists a non-zero integer c such that cx ∈ F. The vector cx is

a linear combination of elements of a F-basis, i.e. cx =
r∑

i=1
kidivi. On the other hand,

x ∈ M , so x =
n∑

i=1
hivi. It follows that cx =

n∑
i=1

chivi and chi = kidi, for i = 1, · · · ,r and

hr+1 = · · · = hn = 0. We conclude that x =
r∑

i=1
hivi is a linear combination of vectors

v1, · · · , vr . Thus x ∈ spanZ{v1, · · · , vr}. �
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2.4 Pure modules and index of submodules

Proposition 2.4.12. [15] Let M be a freeZ-module of rank n. Let F and L be submodules

of M such that F ⊆ L and F is pure in M . Then the quotient L/F is a free Z-module.

Proof. Let l + F ∈ L/F be a torsion element, then there exists c ∈ Z \ {0}such that

c · (l + F) = F. It follows that cl ∈ F, so l ∈ F = F. �

Note that in general the quotient of free modules is not free.

Proposition 2.4.13. Let M be a free Z-module of rank n and let F, L be submodules of

M. If F is pure in M, then any Z-basis of F can be extended to a Z-basis of F + L by

adjoining elements of L.

Proof. F ⊆ F + L ⊆ M and by hypothesis F is pure in M. Then, by proprosition 2.4.12,

(F + L)/F is a free Z-module, so there exists a basis {l1 + F, l2 + F, · · · , lr + F}, where

{l1, l2, · · · , lr} ⊆ L. Let { f1, f2, · · · , ft} be a basis of the free module F. Now we prove

that { f1, · · · , ft, l1, · · · , lr} is a basis of F + L.

Let m ∈ F + L, then m+ F =
r∑

i=1
hi(li + F) = (

r∑
i=1

hili)+ F, it follows that m−
r∑

i=1
hili ∈ F.

Hence m −
r∑

i=1
hili =

t∑
j=1

k j f j , and m =
t∑

j=1
k j f j +

r∑
i=1

hili.

The vectors f1, · · · , ft, l1, · · · , lr are linearly independent, indeed if k1 f1+ · · ·+ kt ft+h1l1+

· · ·+ hr lr = 0, then F = (k1 f1+ · · ·+ kt ft + h1l1+ · · ·+ hr lr)+F = (h1l1+ · · ·+ hr lr)+F =

h1(l1 + F) + · · · + hr(lr + F). Since {l1 + F, l2 + F, · · · , lr + F} is a basis for the quotient

module, hi = 0, for i = 1, · · · ,r . It follows that k1 f1 + · · · + kt ft = 0, so k j = 0 because

{ f1, f2, · · · , ft} is a basis of F. �

The following proposition is very important in our Wilson’s Theorem proof.

Lemma 2.4.14. [3] Let M be a free Z-module of rank n. If F and L are submodules of

M such that
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1. F ⊆ L,

2. F is pure in M ,

3. rank(F) = rank(L),

then F = L.

Proof. We consider the submodule L = F + L. By Proposition 2.4.13, any basis of F

can be extended to a basis of L adjoining elements of L. But F and L have the same rank,

so any basis of F is a basis of L. �

Now we return to the matrices with coefficient in Z and we work on modules generated

by their rows.

Let A be an integral matrix m×n. Then we use rowZ(A) to denote the Z-module spanned

by the row vectors of A, and rowQ(A) to denote the vector space over Q, generated by

the rows of A.

Definition 2.4.15. [15] We define the index of an integral matrix A to be the index

of rowZ(A) as a subgroup of the module Z(A) of all integral vectors which belong to

rowQ(A).

We observe that if A has index 1, then every integral vector which is a rational linear

combination of the rows of A is already an integral linear combination of the rows of A,

that is rowZ(A) is a pure submodule of Zn.

About index we recall the proposition proved by Wilson below.

Proposition 2.4.16. [15] Let A be an integral matrix. Then A has index 1 if and only if

A = ABA for some integral matrix B.
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2.4 Pure modules and index of submodules

Proof. Suppose A = ABA and let x be an integral vector in rowQ(A), say x = yA, where

y is rational. Then

x = yA = yABA = (xB)A = zA

where z is integral; so x ∈ rowZ(A) and this shows that A has index 1.

Conversely, suppose E AF = D, where E,F are unimodular and D is diagonal with

entries 0 and 1. Say A is m × n. If m ≤ n, let F ′ = F and E ′ be obtained from E by

adjoining (n − m) rows of zeros; if m ≥ n, let E ′ = E and let F ′ be obtained from F by

adjoining (m − n) columns of zeros. In either case, AF ′E ′A = A. �

Proposition 2.4.17. Let A be an integral matrix of size s × n. Put F = rowZ(A). Then

F = Z(A) in Zn.

Proof. Let {A1, · · · , As} be the rows of A, that is a generating set of rowZ(A). First we

prove that F ⊆ Z(A). Let x ∈ F, then there exists c , 0 ∈ Z such that cx ∈ F ⊆ Z(A) ⊆

rowQ(A). Since rowQ(A) is a vector space and c , 0wehave x = c−1(cx) ∈ rowQ(A). So

x ∈ Z(A). Conversely, let y ∈ Z(A), then y ∈ Zn∩rowQ(A). Hence y = q1A1+· · ·+qs As,

where qi ∈ Q, and there exists c , 0 ∈ Z such that cy ∈ rowZ(A) = F. We conclude

that y ∈ F. �

The following proposition allows to link the non-zero invariant factors of a matrix A

with the index of the module generated by its rows.

Proposition 2.4.18. Let B be a diagonal form of an integral matrix A and suppose that

it has non-zero entries d1, d2, · · · , dr . Then the group Z(A)
rowZ(A)

is finite and is isomorphic

to the direct sum of cyclic groups of orders d1, d2, · · · , dr .

Proof. We want to apply Lemma 2.3.7. We put F = rowZ(A); by Proposition 2.4.17 we

have that F = Z(A).
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Let α : Zm → Zn be the map induced by AT with respect to the canonical bases, so

defined

©«
x1

· · ·

xm

ª®®®®¬
→ AT

©«
x1

· · ·

xm

ª®®®®¬
Im α = spanZ(AT e1, · · · , AT em) = rowZ(A), where {e1, · · · , em} is a canonical basis of

Zm. Let AT ∼ B = diag(d1, · · · , dr), where d1, · · · , dr are non-zero integers. So there

exist two bases {w1, · · · ,wm} di Zm and {v1, · · · , vn} of Zn, such that α(wi) = divi for

i = 1, · · · ,r and α(wi) = 0 for i = r + 1, · · · ,m.

It follows that F = Im α = spanZ(α(w1), · · · , α(wm)) = spanZ(d1v1, · · · , drvr).

B ′ = {d1v1, · · · , drvr} is a basis of F, since Zn is torsion free. By Theorem 2.4.11,

{v1, · · · , vr} is a basis of F. So F = Zv1 ⊕ · · · ⊕ Zvr and F = Z(d1v1) ⊕ · · · ⊕ Z(drvr).

The claim follows from Lemma 2.3.7. �

Now we quote Proposition 3 in [15]

Proposition 2.4.19. Let v1, v2, · · · , vr be a Z-basis of a module M ⊆ Zn of index 1. Then

the matrix whose rows are d1v1, d2v2, · · · , drvr has as a diagonal form the r × n diagonal

matrix with entries d1, d2, · · · , dr and in particular it has index d1d2 · · · dr , if all di are

non-zero.

Proof. Let D = {v1, ..., vr} be a Z-basis of M . Fixed d1, ..., dr ∈ Z, we consider the

linear map
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2.4 Pure modules and index of submodules

ϕ :


M → Zn∑r

i=1 hivi → ∑r
i=1 dihivi

Since M has index 1, it is pure and we can extendD to a basis C = {v1, ..., vr,wr+1, ...,wn}

of Zn (see Proposition 2.4.13). Thus Im ϕ = spanZ(d1v1, ..., drvr) and the matrix associ-

ated to ϕ with respect to the bases D and C is

DT =

©«

d1 0 ... 0

0 d2 ... 0

... ... ... ...

0 0 ... dr

0 0 ... 0

... ... ... ...

0 0 ... 0

ª®®®®®®®®®®®®®®®®¬

.

Now we consider the canonical basis E = {e1, e2, · · · , en} in Zn. With respect to the

bases D and E, the matrix associated to ϕ is

AT =
(
d1v1 | d2v2 | ... | drvr

)
,

whose columns are divi for any i = 1, ...,r . We conclude that DT and AT are equivalent,

that is DT is a diagonal form of AT .

Now we suppose di , 0, for i = 1, · · · ,r . Since Im(ϕ) = spanZ(d1v1, ..., drvr) ⊆ M and

M is pure in Zn we get Im ϕ ⊆ M , by Definition 2.4.8. Thus Im ϕ ⊆ Im ϕ ⊆ M . From

rank(Im ϕ) = rank(M), we have rank(Im ϕ) = rank(M). By Lemma 2.4.14, we get

Im ϕ = M .

Applying Lemma 2.3.7 to Im ϕ = Zv1 ⊕ · · · ⊕ Zvr and Im ϕ = Zd1v1 ⊕ · · · ⊕ Zdrvr , we
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have that the module Im ϕ
Im ϕ is direct sum of cyclic modules of order di, that is

Im ϕ

Im ϕ
�
Zv1
Zd1v1

× · · · ×
Zvr

Zdrvr
.

The claim follows considering the matrices A and D and observing that Im ϕ = rowZ(A).

�

Example 2.4.20. If you take M = Z3, v1 = (1,0,0), v2 = (1, 1,0), v3 = (1,0, 1) and d1 = 2,

d2 = 3, d3 = 4, then

A =
©«
2 0 0

3 3 0

4 0 4

ª®®®®¬
.

Applying the elementary column operations we get

A ∼

©«
2 0 0

3 3 0

0 0 4

ª®®®®¬
∼

©«
2 0 0

0 3 0

0 0 4

ª®®®®¬
.

If we consider the map ϕ defined in Proposition 2.4.19, then Im ϕ = {2v1,3v2,4v3} =

rowZ(A) and Im ϕ = spanZ{v1, v2, v3} = Z3. So

Im ϕ

Im ϕ
� C2 × C3 × C4,

where Ci is the cyclic group of order i.

We conclude this chapter with the definition of Smith group of a linear map.

Definition 2.4.21. Given the free Z-modules M , N of finite rank and a linear map

ϕ : N → M .

Then the Smith group of ϕ is defined as

M
ϕ(N)

.
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We observe that in general M
ϕ(N) = T ⊕ V , where T is the torsion submodule and V is a

free submodule of finite rank (Corollary 2.3.9). If M = ϕ(N), then M
ϕ(N) = T .
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CHAPTER 3

A diagonal form for incidence matrices of t-subsets vs

k-subsets

In this chapter we deal with well-known results about a diagonal form for incidence

matrices of t-subets vs k-subsets on a n-set Ω. These matrices, introduced in Chapter 2

and denoted by Wtk(n) have been studied by Wilson in [15] and Bier in [2].

3.1 A diagonal form for the incidence matrix Wtk

(Wilson’s proof)

Here we give Wilson’s original proof. He uses the notion of index introduced in section

2.4: the index of an integral matrix M is the index of the Z-module generated by the

rows of M , called rowZ(M), as a subgroup of the module Z(M) of all integral vectors

which belong to rowQ(M), the vector space generated by the rows of M .

We will construct a matrix Mtk(n) using the matrices Wik(n), for i = 0, · · · , t; in Propo-
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sition 3.1.3 we will prove that Mtk(n) has index 1, that is Z(Mtk(n)) = rowZ(Mtk(n)) and

that Wtk(n) and Mtk(n) have the same rank. Thus, in order to give a diagonal form of

Wtk(n), (see Theorem 3.1.6), it will be enough to find appropriate bases of rowZ(Mtk(n))

and rowZ(Wtk(n)) (see Propositions 3.1.4 and 3.1.5).

We begin with some notation. Given the ni ×m matrices Ai with i = 0, · · · , t, we denote

by

t⋃
i=0

Ai

the n0 + n1 + · · ·+ nt ×m matrix obtained by stacking the matrices A0, A1, · · · , At one on

top of the other, that is

A =

©«

A0

A1

...

At

ª®®®®®®®¬
.

For 0 ≤ t ≤ k ≤ n we define

Mtk(n) =
t⋃

i=0

Wik(n) =

©«

W0k(n)

W1k(n)
...

Wtk(n)

ª®®®®®®®¬
.

Example 3.1.1. Taken n = 3, t = 1 and k = 2, the matrix M12(3), whose rows are
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(Wilson’s proof)

indexed by ∅, {1}, {2}, {3} and columns are indexed by {1,2}, {1,3}, {2,3}, is

©«

1 1 1

1 1 0

1 0 1

0 1 1

ª®®®®®®®¬
.

In the sequel, if there is not confusion, we write Wtk instead Wtk(n) and Mtk instead

Mtk(n). The following Lemma will be of fundamental importance

Lemma 3.1.2. For 0 ≤ j ≤ t ≤ k ≤ n

W jtWtk =

(
k − j
t − j

)
W j k . (3.1)

Proof. The proof follows immediatly from the relation

W jtWtk(S,K) =
∑

T

W jt(S,T)Wtk(T,K),

for an j-subset S and a k-subset K and where the sum is extended over all t-subsets T of

Ω. We have the claim observing that the number of t-subsets T such that S ⊆ T ⊆ K is(k− j
t− j

)
if S ⊆ K , and 0 otherwise. �

Now, we observe that the Equation 3.1 shows that rowQ(W j k) ⊆ rowQ(Wtk) for j ≤ t

and hence rowQ(Mtk) = rowQ(Wtk). In particular, Mtk has rank at most
(n

t

)
(i.e. the

number of rows of Wtk).

More precisely, we get:

Proposition 3.1.3. For non-negative integers t, k,n with 0 ≤ t ≤ k ≤ n − t, the matrix

Mtk has rank
(n

t

)
and index 1.

37



A diagonal form for incidence matrices of t-subsets vs k-subsets

Proof. We consider separately two cases:

1. 0 ≤ t ≤ k ≤ n and k = n − t,

2. 0 ≤ t ≤ k ≤ n and k < n − t.

Case 1. We claim that
t∑

i=0

(−1)iW̄T
ikWik = I(nk), (3.2)

where I(nk) is the identity matrix of order
(n
k

)
and W̄ik is the

(n
i

)
×

(n
k

)
matrix defined

by

W̄ik(S,K) =


1 if S ∩ K = ∅

0 otherwise
(3.3)

for a i-subset S and a k-subset K . To prove this just note that the entry in row A

and column B on the left-hand side of 3.2 is

t∑
i=0

(−1)i
(
|B | − |A ∩ B |

i

)
=


0 if A , B

1 if A = B
(3.4)

Indeed, for an i fixed, W̄T
ikWik(A,B) is the number of all i-subsets S of Ω such that

S ∩ A = ∅ and S ⊆ B, that is
(
|B |−|A∩B |

i

)
. If A = B it is clear that the left-hand

side of equation (3.4) is 1. If A , B, then |A ∩ B| ≥ n − 2t, as both A and B have

cardinality n − t (the bound is achieved when A contains the complement of B),

hence t ≥ n − t − |A ∩ B | = |B | − |A ∩ B|. Put q = |B | − |A ∩ B |; we get

t∑
i=0

(−1)i
(
|B| − |A ∩ B|

i

)
=

q∑
i=0

(−1)i
(
q
i

)
= (−1 + 1)q.

So 3.2 can be written as

M̄T
tk Mtk = I(nt),
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3.1 A diagonal form for the incidence matrix Wtk
(Wilson’s proof)

where

M̄tk =

t⋃
i=0

(−1)iW̄ik .

The matrix A = M̄T
tk is an integral matrix such that AMtk = I(nt). We deduce that

rowZ(I(nt)) ⊆ rowZ(Mtk); so
(n

t

)
= rank(I(nt)) ≤ rank(Mtk) and rank(Mtk) =

(n
t

)
.

About the index, we observe that Mtk AMtk = Mtk , so that by Proposition 2.4.16,

Mtk has index 1.

Case 2. We assume k < n − t and we prove the statement by induction on n + t + k. If

t = 0 then the claim follows observing that

M0k = W0k =
(
1 · · · 1

)
.

Nowwe suppose 0 < t ≤ k < n− t. Given 1 ≤ j ≤ t, choose a point x0 in the n-set

Ω. Then the rows ( j-subsets) and columns (k-subsets) of W j k(n) are partitioned

according to whether or not they contain x0. This gives us a block decomposition

of W j k(n):

W j k(n) =
©«

W j−1,k−1(n − 1) 0

W j,k−1(n − 1) W j k(n − 1)

ª®¬ .
After permuting rows, we find that Mtk(n) is equivalent to

©«
Mt−1,k−1(n − 1) 0

Mt,k−1(n − 1) Mtk(n − 1)

ª®¬ .
By the induction hypothesis applied to Mt−1,k−1(n− 1) and Mtk(n− 1), we can use

elementary integral row and column operations to reduce the above matrix to

©«

I1 0 0 0

0 0 0 0

∗ ∗ I2 0

∗ ∗ 0 0

ª®®®®®®®¬
(3.5)
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A diagonal form for incidence matrices of t-subsets vs k-subsets

where I1 and I2 are identity matrices of orders
(n−1

t−1

)
and

(n−1
t

)
, respectively. Then

rank(Mtk(n)) ≥
(n−1

t−1

)
+

(n−1
t

)
=

(n
t

)
, hence rank(Mtk(n)) =

(n
t

)
.

Further row operations on the matrix in 3.5 can be used to create an identity of

order
(n

t

)
as a submatrix of some M ∼ Mtk(n).

Since
(n

t

)
is the rank of Mtk(n), all other entries of M must be zeros. We deduce

that Mtk(n) is equivalent to a diagonal matrix with 1’s entries, so its index is 1.

�

The argument in Lemma 3.1.3 shows that Z(Mtk(n)) = rowZ(Mtk(n)), of rank
(n

t

)
. As

rowZ(Wtk) ⊆ rowZ(Mtk(n)) and rank (rowZ(Mtk(n))) = rank (rowZ(Wtk)), by 2.4.14

we have that Z(Wtk) = Z(Mtk(n)).

As said above, we want to find an appropriate basis of Z(Mtk(n)) and, consequently, a

basis of rowZ(Wtk) such that it is easy to determine the module Z(Mtk (n))
rowZ(Wtk )

.

Proposition 3.1.4. Let k ≤ n and l = min{k,n − k}. There exist integral matrices

E0k,E1,k, ...,El,k such that Eik is a
( (n

i

)
−

( n
i−1

) )
×

(n
k

)
matrix, the rows of which are in

rowZ(Wik) and such that for each t ≤ l, the rows of E0k ∪ ... ∪ Etk form a Z-basis for

rowZ(Mtk).

Proof. Let E0k = W0k . By induction on i, we suppose E0k ∪ E1,k ∪ · · · ∪ Ei,k basis of

rowZ(Mik), with i < l. By Proposition 2.4.13 we extend the Z-basis E0k ∪ ... ∪ Eik

of rowZ(Mik), which has index 1 by Proposition 3.1.3, to a Z-basis of rowZ(Mi+1,k) =

rowZ(Mik)+rowZ(Wi+1,k), by adding
( n
i+1

)
−

(n
i

)
vectors from rowZ(Wi+1,k). By recursion

we obtain the claim. �

Proposition 3.1.5. Let E0k,E1,k, ...,El,k be as in Proposition 3.1.4. Then, for t ≤ l, a
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3.1 A diagonal form for the incidence matrix Wtk
(Wilson’s proof)

Z-basis for rowZ(Wtk) is provided by the rows of(
k
t

)
E0k ∪

(
k − 1

t − 1

)
E1k ∪

(
k − 2

t − 2

)
E2k ∪ ... ∪ Etk . (3.6)

Proof. The proof is by induction on k. The case k = 0 is trivial. Fix k > 0. There

is nothing to prove if t = k, because Wkk = I and rowZ(Wkk) = rowZ(Mkk), (in

general rowZ(Wtk) ⊆ rowZ(Mtk)). The assertion reduces to Proposition 3.1.4. So we

assume t < k. The equation 3.1 shows that the rows of
(k−i

t−i

)
Wik are contained in

rowZ(Wtk). The matrix E =
⋃t

i=0 Eik has index 1, because its rows form a Z-basis for

rowZ(Mtk) = Z(Mtk), so rowZ(E) = rowZ(Mtk) = Z(Mtk) = Z(E).

By Proposition 2.4.19 the rows of
⋃t

i=0
(k−i

t−i

)
Eik span a submoduleM of rowZ(Mtk) of

rank
(n

t

)
and index

N =
t∏

i=0

(
k − i
t − i

)(ni)−( n
i−1)

. (3.7)

In particular we observe that M ⊆ rowZ(Wtk), by Lemma 3.1.2. We will show that

rowZ(Wtk) has index N, defined by 3.7.

We have 2t ≤ n. Let E0t,E1t, ...,Ett be the
( (n

i

)
−

( n
i−1

) )
×

(n
t

)
matrices as in Proposition

3.1.4. Define integral matrices Aitk for 0 ≤ i ≤ t by

EitWtk =

(
k − i
t − i

)
Aitk . (3.8)

In the following we prove that

A =
t⋃

i=0

Aitk

forms a Z-basis for rowZ(Mtk(n)) and

t⋃
i=0

(
k − i
t − i

)
Aitk

forms a Z-basis for rowZ(Wtk).
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A diagonal form for incidence matrices of t-subsets vs k-subsets

Given that the rows of Eit are linear combinations of the rows of Wit , we have that the

rows of EitWtk are linear combination of the rows of WitWtk and by equation 3.1, each

Aitk is a matrix
( (n

i

)
−

( n
i−1

) )
×

(n
k

)
, whose rows are linear combinations of the rows of

Wik .

Wtt = I, so rowZ(Mtt) consists of all integral vectors of lenght
(n

t

)
. Moreover the union

of the rows of E0t,E1t, ...,Ett forms a Z-basis of rowZ(Mtt). It follows that the rows of

t⋃
i=0

(
k − i
t − i

)
Aitk

form a Z-basis of rowZ(Wtk). They span rowZ(Wtk) because taken w ∈ rowZ(Wtk), this

vector is a linear combination of the rows of Wtk ,

w = h1w1 + ... + hsws = (h1, ..., hs)

©«

w1

w2

...

ws

ª®®®®®®®¬
where s =

(n
t

)
and w1, ...,ws are the rows of Wtk .

Since (h1, ..., hs) is a vector of lenght
(n

t

)
, it is a linear combination of

⋃t
i=0 Eit . So the

product (h1, ..., hs)

©«

w1

w2

...

ws

ª®®®®®®®¬
is a linear combination of

⋃t
i=0 EitWtk =

⋃t
i=0

(k−i
t−i

)
Aitk .

Our aim is to prove that the rows of

A =
t⋃

i=0

Aitk

form a Z-basis for rowZ(Mtk), which has index 1. Applying the Proposition 2.4.19 we

conclude that rowZ(Wtk) has index N .

42



3.1 A diagonal form for the incidence matrix Wtk
(Wilson’s proof)

For this purpose we observe that the rows of A are contained in rowZ(Mtk), because they

are integral vectors, rational linear combination of the rows of Wtk and Mtk has index 1.

Now by our induction hypothesis, rowZ(W jt) has Z-basis consisting of the rows of
j⋃

i=0

(
t − i
j − i

)
Eit .

By equation 3.8 and since
(k− j

t− j

)
W j k = W jtWtk , the rows of

(k− j
t− j

)
W j k are integral linear

combinations of the rows of

(

j⋃
i=0

(
t − i
j − i

)
Eit)Wtk =

j⋃
i=0

(
t − i
j − i

)
(EitWtk) =

j⋃
i=0

(
t − i
j − i

) (
k − i
t − i

)
Aitk =

=

(
k − j
t − j

) ( j⋃
i=0

(
k − i
j − i

)
Aitk

)
.

It follows that the rows of W j k are integral linear combinations of the rows of
j⋃

i=0

(
k − i
j − i

)
Aitk

and these are integral linear combinations of the rows of A. This prove that rowZ(W j k) ⊆

rowZ(A) and completes the proof. �

Theorem 3.1.6. Let t ≤ k ≤ n− k. ThenWtk has as a diagonal form the
(n

t

)
×

(n
k

)
matrix

with diagonal entries(
k − i
t − i

)
with multiplicity

(
n
i

)
−

(
n

i − 1

)
, i = 0, 1, ..., t.

Proof. The propositions 3.1.4 and 3.1.5 assert the existence of an integral matrix E , of

size
(n

t

)
×

(n
k

)
, such that the rows of which form a Z-basis for an index 1module rowZ(Mtk)

and, called B the diagonal matrix with
(n

i

)
−

( n
i−1

)
occurrences of

(k−i
t−i

)
on the diagonal,

the rows of BE form a Z-basis for rowZ(Wtk). Then the rows of Wtk are integral linear

combinations of the rows of BE . This means that we can obtain Wtk from BE with row

elementary operations and so Wtk ∼ BE . By Proposition 2.4.19 the matrix BE has as a

diagonal form the matrix B. �
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A diagonal form for incidence matrices of t-subsets vs k-subsets

For simplicity, in the sequel we refer to the Theorem 3.1.6 as Wilson’s Theorem.
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CHAPTER 4

A diagonal form for the incidence matrix Wtk via linear

algebra

Here we give a new proof of Wilson’s Theorem seen in the previous chapter. Many of

the ideas of sections 4.1 and 4.2 are based upon [4], [13] and [14]. In section 4.3 we

will determine a particular basis for QLn
t related to Sym(n)-irreducible representations.

Our reference is [10].

4.1 The Boolean lattice

We begin this chapter with a short introduction to the Boolean lattice, essential for the

use wewill make later. In the following R is one ofQ orR;Ω is the finite set {1,2, · · · ,n};

Ln is the power set of Ω and RLn is the vector space of formal sums of elements of Ln

with coefficients in R, i.e.
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A diagonal form for the incidence matrix Wtk via linear algebra

RLn =

{ ∑
x∈Ln

rx x : x ∈ Ln,rx ∈ R

}
.

Of course RLn has dimension 2n.

We give to RLn the structure of algebra by adding a multiplication operation. For

x, y ∈ Ln we define a product in the following way:

x · y = x ∪ y (4.1)

and extend this linearly to RLn. If f =
∑

x∈Ln
fx x and h =

∑
y∈Ln

fyy, we put

f · h =
∑

x,y∈Ln

fx hyx · y.

This means that a i-set is a product of its i elements, so we can write α1 · · · αi instead of

{α1, · · · , αi}. Note that the union of sets induces an associative product on RLn.

Definition 4.1.1. We call f =
∑

fx x and h =
∑

fyy disjoint from each other provided

that for all x, y ∈ Ln, with x ∩ y , ∅, we have fx = 0 or hy = 0.

On RLn we define the standard inner product 〈 ; 〉 by setting

〈x; y〉 = 1 if x = y and 〈x; y〉 = 0 otherwise,

for all x, y ∈ Ln. We extend this into RLn linearly in both arguments. Note that this

product is positive-definite and bilinear by construction. It also transforms the basis Ln

of RLn into an orthonormal basis. So if

f =
∑
y∈Ln

fyy ∈ RLn,
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4.1 The Boolean lattice

with fy ∈ R, we get

〈 f ; x〉 = 〈
∑
y∈Ln

fyy; x〉 =
∑
y∈Ln

fy 〈y; x〉 = fx 〈x; x〉 = fx .

With an inner product we get a natural norm on RLn, defined to be

‖ f ‖2 = 〈 f ; f 〉.

As we said, Ln is an orthonormal basis of RLn since for any x ∈ Ln we have

‖x‖ =
√
〈x; x〉 = 1.

Example 4.1.2. If f = −3{1,2} + {1,3,5} and h = 4{1,3} + {1,2,4}, then

f · h = −12{1,2,3} − 3{1,2,4} + 4{1,3,5} + {1,2,3,4,5}

and

〈 f ; {1,2}〉 = −3.

Now we encode the partial order ⊆ of the Boolean lattice (Ln,⊆) into the algebra

RLn in an algebraic way. To this end we introduce the maps ε (n) : RLn → RLn and

∂(n) : RLn → RLn defined on basis elements x, y ∈ Ln by

ε (n)(x) =


∑
y⊇x

|y |= |x |+1

y if |x | < n

0 otherwise

and ∂(n)(y) =


∑
x⊆y

|x |= |y |−1

x if |y | > 0

0 otherwise

and extended linearly. This means that 〈ε (n)(x); y〉 = 1 if and only if |y | = |x | + 1 and

y ⊇ x. Moreover, 〈x; ∂(n)(y)〉 = 1 if and only if |x | = |y | − 1 and x ⊆ y.

We observe that ε (n)(Ω) = 0 since Ω is the maximal element of Ln. The same is true for

∂(n)(∅).
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A diagonal form for the incidence matrix Wtk via linear algebra

Proposition 4.1.3. If f1, f2 ∈ RLn then 〈ε (n)( f1); f2〉 = 〈 f1; ∂(n)( f2)〉. In particular ε (n)

and ∂(n) are adjoints of each other.

Proof. Since 〈 ; 〉 is linear in the first and second variables, it is enough to prove this for

x, y ∈ Ln. Note that

〈ε (n)(x); y〉 =


1 if |y | = |x | + 1 and x ⊆ y

0 otherwise
.

However, this is the same when we look at ∂(n):

〈x; ∂(n)(y)〉 =


1 if |x | = |y | − 1 and x ⊆ y

0 otherwise
.

�

As we know, Ln = ∪n
i=0Ln

i . The space RLn splits naturally into a direct sum

RLn = RLn
0 ⊕ RLn

1 ⊕ · · · ⊕ RLn
n ,

where RLn
i is the subspace with basis the i-sets of Ln.

We can restrict ε (n) and ∂(n)-maps:

ε
(n)t+1
t : RLn

t → RLn
t+1 ∂

(n)t
t+1 : RLn

t+1 → RLn
t .

In the following, unless necessary, we write ε , ∂, ε t+1
t and ∂t

t+1 instead ε
(n), ∂(n), ε (n)t+1t

and ∂(n)tt+1 .

Note that if we compose ε t+1
t with ∂t

t+1 we obtain a vector space endomorphism of RLn
t ,

denoted by

ν+t := ∂t
t+1 ε

t+1
t .
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4.1 The Boolean lattice

ν+t is non-zero only if 0 ≤ t ≤ n − 1. Observe that ν+t is the restriction of the linear map

ν+ = ∂ε to RLn
t . Similarly, we define the restriction

ν−t := ε t
t−1 ∂

t−1
t

of ν− = ε∂. This is non-zero only if 1 ≤ t ≤ n.

By Proposition 4.1.3 we know that ε and ∂ are adjoints of each other and so

〈ν+( f1); f2〉 = 〈ε( f1); ε( f2)〉 = 〈 f1; ν+( f2)〉. (4.2)

Hence ν+ is symmetric. Similarly for ν−.

A basic property of the maps ν+ and ν− is given by next Lemma.

Lemma 4.1.4. Let 0 ≤ t ≤ n and let idt be the identity map on RLn
t . Then

ν+t − ν−t = (n − 2t)idt .

Proof. The statement is true for t = 0. We assume t , 0. Since ν+t and ν−t are linear it

is enough to prove this for basis elements.

Since ε t+1
t and ∂t

t+1 are adjoints of each other, for any x, y ∈ Ln
t , we have that

〈ν+t (x); y〉 = 〈∂
t
t+1ε

t+1
t (x); y〉 = 〈ε

t+1
t (x); ε

t+1
t (y)〉

is the number of z ∈ Ln
t+1 containing both x and y. Thus

〈ν+t (x); y〉 =


n − t if x = y

1 if x ∩ y ∈ Ln
t−1

0 otherwise

.
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A diagonal form for the incidence matrix Wtk via linear algebra

Similarly, 〈ν−t (x); y〉 = 〈ε t
t−1
∂t−1

t (x); y〉 = 〈∂
t−1
t (x); ∂

t−1
t (y)〉 is the number of all z ∈ Ln

t−1

contained in both x and y. Thus

〈ν−t (x); y〉 =


t if x = y

1 if x ∩ y ∈ Ln
t−1

0 otherwise

.

We get

〈(ν+t − ν−t )(x); y〉 =


n − 2t if x = y

0 otherwise
.

The claim follows remembering that

(ν+t − ν−t )(x) =
∑
y∈Ln

t

〈(ν+t − ν−t )(x); y〉y.

�

We conclude this section with some notion about the action of Sym(n) on RLn.

The natural action of Sym(n) on Ω induces an action on Ln
i : for g ∈ Sym(n) and

x = {α1, · · · , αi} ∈ Ln
i we have

{α1, · · · , αi}
g = {α

g

1
, · · · , α

g
i }.

RLn
i becomes a RSym(n)-space, if we think to Ln

i as a basis of RLn
i .

Moreover it is easy to prove the following Lemmas

Lemma 4.1.5. If f1, f2 ∈ RLn and g ∈ Sym(n) then 〈 f1; f2〉 = 〈 f
g

1
; f g

2
〉.

Lemma 4.1.6. Let f1, f2 ∈ RLn and g ∈ Sym(n) then ( f1 · f2)g = f g
1
· f g

2
.

It follows that the action of Sym(n) on RLn commutes with the maps ε and ∂ we have

introduced.
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4.2 Eigenspace decomposition

Lemma 4.1.7. The action of Sym(n) on RLn commutes with the ε and ∂-functions. In

particular, for f ∈ RLn we have

ε( f )g = ε( f g) and ∂( f )g = ∂( f g).

Proof. Since ε and ∂ are linear, it is enough to show the equality for basis elements. So

let x ∈ Ln
t , then

ε t+1
t (x)

g =
©«

∑
y∈Ln

t+1

〈ε t+1
t (x); y〉y

ª®¬
g

=
∑
y∈Ln

t+1

〈ε t+1
t (x); y〉y

g,

and

ε t+1
t (x

g) =
∑
y∈Ln

t+1

〈ε t+1
t (x

g); y〉y .

For z ∈ Ln
t+1, 〈ε

t+1
t (x); z〉 = 1 if and only if 〈ε t+1

t (x
g); zg〉 = 1, since x ⊆ z implies xg ⊆ zg

and conversely. So, in the first equation zg has coefficient 1 if and only if the coefficient

of zg in the second equation is 1. This argument works in reverse, proving equality.

Similarly we prove ∂( f )g = ∂( f g). �

Lemma 4.1.7 tells us that the Sym(n)-action also commutes with

ν+ = ∂ ε and ν− = ε∂.

4.2 Eigenspace decomposition

Our aim is to split RLn
t into a direct sum of irreducible Sym(n)-invariant spaces. We

will do this using the symmetric map ν+t . Next Lemma allows us to relate eigenspaces

and eigenvalues of ν+t and ν−t to each other.
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A diagonal form for the incidence matrix Wtk via linear algebra

Lemma 4.2.1. Let A and B be vector spaces and let α : A → B and β : B → A be

linear maps. Then βα : A → A and αβ : B → B have the same non-zero eigenvalues.

Furthermore, if λ is a non-zero eigenvalue with eigenspaces Aλ ⊆ A and Bλ ⊆ B for

βα and αβ respectively, then α and β restrict to isomorphisms α : Aλ → Bλ and

β : Bλ → Aλ.

Proof. In order to prove that βα and αβ have the same non-zero eigenvalues, we consider

an eigenvalue λ , 0 of αβ. Then we have some w ∈ B such that αβ(w) = λw. Applying

β to both sides, we get

βα(β(w)) = λ(β(w),

so λ is also an eigenvalue of βα. Now we consider the map α : Aλ → Bλ and suppose

that α(v) = α(w) for v,w ∈ Aλ. Applying β we have βα(v) = βα(w), whence λv = λw.

It follows that α is injective from Aλ to Bλ. Now we prove that it is surjective. For this

purpose, let w ∈ Bλ, so 1
λ β(w) ∈ Aλ and α

(
1
λ β(w)

)
= w. The claim follows. A similar

argument shows that β is an isomorphism from Bλ to Aλ. �

In particular we may take A = RLn
t , B = RLn

t+1, α = ε
t+1
t and β = ∂t

t+1. Above Lemma

implies that ε t+1
t and ∂t

t+1 restrict to isomorphisms between non-zero eigenspaces of ν+t
and ν−t+1, and any eigenvector for ν−t+1 with eigenvalue λ , 0 is also an eigenvector for

ν+t+1 with eigenvalue λ + n − 2t − 2, by Lemma 4.1.4.

In the following Theorem using Lemma 4.1.4 we get the eigenvalues ν+t and ν−t .

Theorem 4.2.2. Suppose that 2t ≤ n. Then ν−t has t + 1 eigenvalues

λt−1,0 > λt−1,1 > · · · > λt−1,t−1 > λt−1,t = 0

and ν+t has t + 1 eigenvalues
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4.2 Eigenspace decomposition

λt,0 > λt,1 > · · · > λt,t−1 > λt,t ≥ 0,

with multiplicity ni =
(n

i

)
−

( n
i−1

)
, for 0 ≤ i ≤ t. In particular we have the decomposition

RLn
t = En

t,0 ⊕ En
t,1 ⊕ · · · ⊕ En

t,t (4.3)

where En
t, i is the ν

+
t -eigenspace with eigenvalue λt, i and dimR En

t, i = ni.

Proof. Clearly
(n

t

)
>

( n
t−1

)
and n − 2t ≥ 0. If t = 0, then ν−

0
has only one zero

eigenvalue. Now let t > 0 and by induction hypothesis, for 0 ≤ i ≤ t − 1, let λt−2, i

be non-negative eigenvalues of ν−t−1
, with multiplicity ni. Thus there exist non-zero

eigenvectors wi ∈ RLn
t−1

such that ν−t−1
(wi) = λt−2, iwi and by Lemma 4.1.4

ν+t−1(wi) = ν
−
t−1
(wi) + (n − 2t + 2)wi = [λt−2, i + (n − 2t + 2)]wi .

Called λt−1, i = λt−2, i + (n− 2t + 2), it is clear that λt−1, i are positive eigenvalues of ν+t−1
,

with i = 0, · · · , t − 1. By Lemma 4.2.1 ν+t−1
and ν−t have the same non-zero eigenvalues,

we deduce that they are

λt−1,0 > λt−1,1 > · · · > λt−1,t−1.

Since dim RLn
t > dim RLn

t−1
, it follows that there exists a zero eigenvalue λt−1,t of ν−t ,

with multiplicity
(n

t

)
−

( n
t−1

)
.

Applying again Lemma 4.1.4, we obtain the eigenvalues of ν+t :

λt,0 > λt,1 > · · · > λt,t−1 > λt,t ≥ 0,

where

λt, i := λt−1, i + (n − 2t) > 0,

with 0 ≤ i ≤ t − 1, and λt, t = 0 + n − 2t ≥ 0. From ν+t = ν
−
t + (n − 2t)idt follows that

ν+t and ν−t have the same eigenspaces. So λt, i has multiplicity ni, for 0 ≤ i ≤ t. �
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A diagonal form for the incidence matrix Wtk via linear algebra

Theorem 4.2.3. If 2t > n and 0 < t ≤ n, then ν−t has n − t + 1 positive eigenvalues. In

particular we have the decomposition

RLn
t = En

t,0 ⊕ En
t,1 ⊕ · · · ⊕ En

t,n−t−1 ⊕ En
t,n−t . (4.4)

Proof. Weprove the Theorem for induction on n−t. Let n−t = 0, so ν−n : RLn
n → RLn

n is

defined by ν−n (Ω) = nΩ. The claim follows. Now we take n− t > 0 and we suppose that

the statement is true for n−t−1 ≥ 0, i.e. for t+1 ≤ n. So ν−t+1 = ε
t+1
t ∂t

t+1 : RLn
t+1 → RLn

t+1

has eigenvalues

λt,0 > λt,1 > · · · > λt,n−t−1 > 0,

with multiplicity ni =
(n

i

)
−

( n
i−1

)
, for i = 0, · · · ,n − t − 1. By Lemma 4.2.1, ν−t+1 and ν

+
t

have the same non-zero eigenvalues. Since dim RLn
t > dim RLn

t+1, we have that ν
+
t has

an eigenvalue λt,n−t = 0 with multiplicity
(n

t

)
−

( n
t+1

)
=

( n
n−t

)
−

( n
n−t−1

)
.

For any λt, i there exists a non-zero eigenvector wi such that ν+t (wi) = λt, iwi. So, by

Lemma 4.1.4,

ν−t (wi) = ν
+
t (wi)− (n − 2t)wi = (λt, i − n + 2t)wi .

Put λt−1, i = λt, i − n + 2t, for i = 0, · · · ,n − t, we have λt−1, i > 0 with multiplicity

ni. Called En
t, i the eigenspaces associated to λt, i, for any i = 0, · · · ,n − t, we have that

dim En
t, i = ni and RLn

t = En
t,0 ⊕ En

t,1 ⊕ · · · ⊕ En
t,n−t−1

⊕ En
t,n−t . �

The decompositions 4.3 and 4.4 give the scheme in Table 4.1.

In the sequel we use the following notation: t ′ = min{t,n − t}.

Remark 4.2.4. We note that ε t+1
t (E

n
t, i) = 0 if and only if i = t ′ and t ≥ n/2, while

∂t−1
t (E

n
t, i) = 0 if and only if i = t ′ and t ≤ n/2. Except this cases, by Lemma 4.2.1 and

Theorems 4.2.2 and 4.2.3, the maps ε t+1
t and ∂t

t+1 restrict to isomorphisms

ε t+1
t : En

t,j → En
t+1,j, ∂t

t+1 : En
t+1,j → En

t,j
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4.2 Eigenspace decomposition

RLn
n = En

n,0

�

RLn
n−1

= En
n−1,0

⊕ En
n−1,1

� �

... =
...

... · · ·
. . .

� �
RLn

t = En
t,0 ⊕ En

t,1 ⊕ · · · ⊕ En
t,t−1

⊕ En
t,t

� � �

RLn
t−1

= En
t−1,0

⊕ En
t−1,1

⊕ · · · ⊕ En
t−1,t−1

� �

... =
...

... · · · . .
.

� �

RLn
1

= En
1,0

⊕ En
1,1

�

RLn
0

= En
0,0

Table 4.1: Eigenspace Decomposition

for 0 ≤ j ≤ t ′. In other words, all modules in the same column of Table 4.1 are

isomorphic to each other via powers of ε t+1
t or ∂t

t+1. In particular,

En
0,0,E

n
1,0,E2,0, · · · ,En

n,0

have dimension 1, while

En
1,1,E

n
2,1,E

n
3,1, · · · ,E

n
n−1,1

have dimension
(n
1

)
−

(n
0

)
, and so on.

In the sequel if there is not confusion, we write Et, i instead En
t, i.
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A diagonal form for the incidence matrix Wtk via linear algebra

Corollary 4.2.5. Let 0 ≤ t ≤ n and let Q ⊆ R be a field. Then the eigenvalues of

ν+t : RLn
t → RLn

t are

λt, i = (t − i + 1)(n − t − i) ≥ 0 with multiplicity
(n

i

)
−

( n
i−1

)
,

for i = 0, · · · , t ′.

Proof. Applying induction on t and using Lemma 4.1.4, Theorems 4.2.2 and 4.2.3, we

have

λt, i =
∑

i≤ j≤t
(n − 2 j) = (t − i + 1)n − 2(i + · · · + t) = (t − i + 1)n − 2

(
t(t+1)
2 − i(i−1)

2

)
=

(t − i + 1)(n − t − i),with multiplicity
(n

i

)
−

( n
i−1

)
. �

In the following we will assume R = Q as the eigenvalues of ν+t are rational numbers.

Corollary 4.2.6. For each 0 ≤ t ≤ n and 0 ≤ i ≤ t ′, the eigenspaces Et, i are Sym(n)-

invariant.

Proof. Let f ∈ Et, i for some 0 ≤ i ≤ t ′ ≤ n and let g ∈ Sym(n). Then

ν+( f g) = (ν+( f ))g = λt, i f g .

This means that f g is an eigenvector of ν+ with eigenvalue λt, i and so f g ∈ Et, i. Hence

the Et, i are Sym(n)-invariant. �

Theorem 4.2.7. Each of the Et, i, for 0 ≤ i ≤ t ′, is QSym(n)-irreducible.

Proof. Take x ∈ Ln
t . Then the stabilizer in Sym(n) of x has t ′ + 1 orbits on Ln

t ,

corresponding to the possible intersection cardinalities of y ∩ x for y ∈ Ln
t . In other

words, Sym(n) has permutation rank t ′ + 1 on Ln
t . Therefore QLn

t decomposes into at
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4.2 Eigenspace decomposition

most t ′ + 1 irreducibles. Since the decomposition of QLn
t already has t ′ + 1 summands

which are Sym(n)-invariant it follows that each of the summands is irreducible. The

dimension of Et, i is the multiplicity
(n

i

)
−

( n
i−1

)
of λt, i and as these are pairwise distinct

for i = 0, · · · , t ′ the Et, i are pairwise non-isomorphic. �

Theorem 4.2.8. Let 0 ≤ t < k ≤ n, with t + k ≤ n. Then we have

QLn
k = Ek0 ⊕ Ek1 ⊕ · · · ⊕ Ekt ⊕ K

QLn
t = Et0 ⊕ Et1 ⊕ · · · ⊕ Ett (4.5)

where

K = Ek,t+1 ⊕ · · · ⊕ Ek,k ′

is the kernel of ∂t
t+1 · · · ∂

k−1
k : QLn

k → QLn
t . Furthermore, Ek, i � Et, i for 0 ≤ i ≤ t. We

have Ek, i � Et,j if and only if i = j and furthermore dimQ(Ek, i) = ni =
(n

i

)
−

( n
i−1

)
.

Proof. We consider the maps ε k
t : QLn

t → QLn
k defined by

ε k
t (x) :=

∑
y⊇x

y, with y ∈ Ln
k

for x ∈ Ln
t and ∂t

k : QLn
k → QLn

t defined by

∂t
k(y) :=

∑
x⊆y

x, with x ∈ Ln
t

for y ∈ Ln
k . These maps can be expressed as powers of ε and ∂. Let d = k − t. Then

there are (d!) distinct chains x = x0 ⊂ x1 ⊂ · · · ⊂ xd = y of subsets of Ω for any y

appearing in ε k
t (x). Therefore

ε k
t = (d!)

−1ε k
k−1ε

k−1
k−2
· · · ε t+1

t (4.6)

and similarly

∂t
k = (d!)

−1∂t
t+1∂

t+1
t+2 · · · ∂

k−1
k . (4.7)
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A diagonal form for the incidence matrix Wtk via linear algebra

Let Et, i and Ek, i be the eigenspaces in 4.3 and 4.4. Since 0 ≤ t < k ≤ n and t + k ≤ n

we have t = min{t,n − t} ≤ min{k,n − k}. From 4.6 and 4.7 it follows that ε k
t restricts

to an injective map Et, i → Ek, i and that ∂t
k restricts to a surjective map Ek, i → Et, i for

each i = 0, · · · , t. The eigenvalues of ∂t
kε

k
t can be computed from 4.6 and 4.7 using

Corollary 4.2.5. �

This decomposition is called the spectral decomposition of the incidence structure

In
tk = (L

n
t , L

n
k ; ⊆).

4.3 Polytopes

Now the next thing to do is to give to QLn
t a generating set of eigenvectors. To this end,

drawing from [4] we introduce the so-called polytopes.

In the sequel, we will consider the natural order in Ω.

Definition 4.3.1. Let 0 ≤ t ≤ n, 0 ≤ i ≤ t ′ and j = t − i. If α1, · · · , αi, β1, · · · , βi

are pairwise distinct elements of Ω and γ1, · · · , γu the collection of all j-subsets of

Ω \ {α1, · · · , αi, β1, · · · , βi}, then we define a polytope of type (t, i), with head

(α1 − β1) · · · (αi − βi)

and tail

(γ1 + · · · + γu)

to be the element

st, i := [α1, · · · , αi ; β1, · · · , βi] j = (α1 − β1) · · · (αi − βi)(γ1 + · · · + γu) ∈ QLn
t .

Denote the set of all polytopes of type (t, i) by Sn
t, i and Sn

t = Sn
t,0 ∪ · · · ∪ Sn

t,t ′ .
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4.3 Polytopes

Example 4.3.2. If n = 6 and t = 2, then the element

s2,1 = ({1} − {2}) ({3} + {4} + {5} + {6})

is a polytope of type (2, 1). Now we write explicitly s2,1 as

{1,3} + {1,4} + {1,5} + {1,6} − {2,3} − {2,4} − {2,5} − {2,6}. (4.8)

For every set x that appears in 4.8 we say that x occurs in the expansion of the polytope.

For example the set {2,3} occurs in the expansion of s2,1 with coefficient −1.

Remark 4.3.3. The group Sym(n) acts on Sn
t with orbits Sn

t, i .

For convenience put st, i = 0 if st, i is undefined, for instance if t < 0, n < t, t ′ < i or

n < 2i.

We define two maps which arise for polytopes.

Definition 4.3.4. For 0 ≤ t ≤ n and 0 ≤ i ≤ t ′, we define the tail-extension

+ : Sn
t, i → Sn

t+1, i

by

st, i = [α1, · · · , αi ; β1, · · · , βi] j → s+t, i = [α1, · · · , αi ; β1, · · · , βi] j+1 .

Similarly, the tail-cutting map

− : Sn
t, i → Sn

t−1, i

by

st, i = [α1, · · · , αi ; β1, · · · , βi] j → s−t, i = [α1, · · · , αi ; β1, · · · , βi] j−1 .

Remark 4.3.5. Note that s+t, i = 0 when t ≥ n
2 and i = t ′, and that s−t, i = 0 when t ≤ n

2

and i = t ′. Apart from these cases the tail-extension and tail-cutting are functions which

are inverse to each other.
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A diagonal form for the incidence matrix Wtk via linear algebra

We remember the Leibniz Rule that will be used in 4.3.7.

Lemma 4.3.6. (Leibniz Rule) If f , h inQLn are disjoint then ∂( f ·h) = ∂( f ) ·h+ f ·∂(h).

Proof. It is enough to consider the case when f = x and h = y are subsets of Ω. In this

case it is obvious and the remainder follows by linearity. �

Lemma 4.3.7. Let 0 ≤ t ≤ n and 0 ≤ i ≤ t ′. Then

(a) ∂(st, i) = (n − t − i + 1)s−t, i ;

(b) st, i ∈ Et, i.

Proof. (a) Note that ∂(α − β) = ∅ − ∅ = 0 and hence by Lemma 4.3.6 we have

(a.1) ∂((α1 − β1) · · · (αi − βi)) = 0,

(a.2) Let st, i = (α1 − β1) · · · (αi − βi)(γ1 + · · · + γu). Then

∂ ((α1 − β1) · · · (αi − βi)(γ1 + · · · + γu)) = ∂ ((α1 − β1) · · · (αi − βi))

(γ1 + · · · + γu) + (α1 − β1) · · · (αi − βi)∂(γ1 + · · · + γu) =

= (α1 − β1) · · · (αi − βi)∂(γ1 + · · · + γu).

Clearly, ∂(γ1+· · ·+γu) is equal to a constant δ times the sum of all (t−i−1)-subsets

of Ω \ {α1, · · · , αi, β1, · · · , βi}. Therefore δ = (n − t − i + 1).

(b) Let i = t = t ′ and consider a polytope si,i = (α1− β1) · · · (αi − βi) of type (i, i). We

prove that si,i ∈ Ei,i. By Lemma 4.3.6 we have ∂(si,i) = 0. So si,i ∈ Ker (∂) = Ei,i ,

by Theorem 4.2.8.

In general, let st, i = (α1− β1) · · · (αi − βi)(γ1 + · · ·+ γu) be a polytope of type (t, i).

By part (a), applying (t − i)-times the map ∂, we get

∂t−i(st, i) = c(α1 − β1) · · · (αi − βi),
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4.3 Polytopes

for some c ∈ Q. On the other hand if sn−i, i is the polytope of type (n − i, i) with

head (α1 − β1) · · · (αi − βi), for some a, b ∈ Q we have

∂n−i−t(sn−i, i) = ast, i, (4.9)

and

∂n−2i(sn−i, i) = b(α1 − β1) · · · (αi − βi). (4.10)

Since ∂n−2i is an isomorphism between QLn
n−i and QLn

i (see table 4.1), which

restricts to an isomorphism between En−i, i and Ei, i, we have that sn−i, i ∈ En−i, i,

by equation 4.10. Using equation 4.9 we conclude that st,i ∈ Et,i, as ∂n−i−t is an

isomorphism from En−i, i to Et, i.

�

Theorem 4.3.8. Let 0 ≤ t ≤ n and 0 ≤ i ≤ t ′. Then the polytopes of type (t, i) span Et, i

as a vector space.

Proof. We prove the statement distinguishing two cases

Case 1 i = t = t ′. Fix a polytope si, i in Ei, i and consider the space

spanQ{s
g
i, i : g ∈ Sym(n)}.

This is a subspace of Ei, i and by construction it is Sym(n)-invariant. Since Ei, i is

irreducible, by Theorem 4.2.7, Ei, i = spanQ{s
g
i, i : g ∈ Sym(n)}. So the set of all

polytopes of type (i, i) is a generating set of Ei i, for 0 ≤ i ≤ n
2 .

Case 2 Now, let st, i be a polytope of type (t, i). By Lemma 4.3.7, st, i ∈ Et, i. Since

the power of ∂ is an isomorphism between Et, i and Ei, i, by Case 1 and part (a) of

Lemma 4.3.7, we have that the set of all polytopes of type (t, i) is a spanning set

of Et,i.
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�

Corollary 4.3.9. Let 0 ≤ t ≤ n and 0 ≤ i ≤ t ′. Then

ε(st, i) = (t + 1 − i)s+t, i .

Proof. If i < n − t, as st, i ∈ Et,i, by Corollary 4.2.5 we have

∂ε(st, i) = ν
+
t (st, i) = (t + 1 − i)(n − t − i)st, i .

UsingLemma4.3.7 applied to s+t, i, we get ∂ε(st, i) = (t+1−i)(n−t−i)st, i = (t+1−i)∂(s+t, i).

Since ∂ is an isomorphism between Et+1, i and Et, i, we deduce that

ε(st, i) = (t + 1 − i)s+t, i .

If i = n − t then ε(st, i) = 0, since ε(Et,n−t) = 0, by remark 4.2.4. �

Obviously we have

Corollary 4.3.10. The tail-extension and tail-cuttingmaps extend toQSym(n)-isomorphisms

+ : Et, i → Et+1, i and − : Et, i → Et−1, i,

for 0 ≤ t ≤ n and 0 ≤ i ≤ t ′, except the particular cases seen in remark 4.3.5.

Proof. From Lemma 4.2.1 we have that the maps

ε t+1
t : Et, i → Et+1, i and ∂t

t+1 : Et+1, i → Et, i

are isomorphisms. Applying Lemmas 4.3.7 and 4.3.9 we get the claim. �

Notation 4.3.11. Put d = k−t, we denote by s+d
t, i the polytope obtained from st, i by d-fold

tail-extension. Similarly s−d
k, i is the polytope obtained from sk, i by d-fold tail-cutting,
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Remark 4.3.12. Let 0 ≤ t < k ≤ n, with t + k ≤ n, and d = k − t. Using repeatedly

Lemma 4.3.9 we have

(ε k
k−1

ε k−1
k−2
· · · ε t+1

t )(st, i) = (k − i)(k − i − 1) · · · (t − i + 1)s+d
t, i

Since (k − t)!ε k
t = (ε

k
k−1

ε k−1
k−2
· · · ε t+1

t ) we have

ε k
t (st, i) =

(k − i)(k − i − 1) · · · (t − i + 1)

(k − t)!
s+d

t, i =

(
k − i
t − i

)
s+d

t, i , (4.11)

Remark 4.3.13. Let 0 ≤ t ≤ k ≤ n, with t + k ≤ n, and d = k − t. Using repeatedly

Lemma 4.3.7 we have

(∂t
t+1∂

t+1
t+2 · · · ∂

k−1
k )(sk, i) = (n − k − i + 1) · · · (n − t − i − 1)(n − t − i)s−d

k, i .

Since (k − t)!∂t
k = (∂

t
t+1∂

t+1
t+2 · · · ∂

k−1
k ) we have

∂t
k(sk, i) =

(n − k − i + 1) · · · (n − t − i − 1)(n − t − i)
(k − t)!

s−d
k, i =

(
n − t − i
n − k − i

)
s−d

k, i (4.12)

4.4 Standard basis of polytopes

Let ZSn
t be the submodule generated by the set of all polytopes Sn

t . The aim of this

section is to find a basis for ZSn
t , called “standard basis”, which will be essential in

section 4.5.

We know that ZSn
t, i ⊆ Et, i and we observe that

ZSn
t = ZSn

t,0 ⊕ ZSn
t,1 ⊕ · · · ⊕ ZSn

t,t ′ .
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Definition 4.4.1. Let

st, i = [α1, · · · , αi ; β1, · · · , βi]t−i := (α1 − β1) · · · (αi − βi) · (γ1 + · · · + γs)

be a polytope of type (t, i), with i ≤ t ′. Then

1. if i = 0, st,0 is a “standard polytope”,

2. if i > 0, we say that st, i is a “standard polytope” provided that

(a) α1 < α2 < · · · < αi and β1 < β2 < · · · < βi,

(b) αi < δ for all δ ∈ Ω \ {α1, · · · , αi, β1, · · · , βi}, and

(c) α j < β j for all 1 ≤ j ≤ i.

Example 4.4.2. If n = 6 and t = 2, we have the following standard polytopes

• of type (2,0) :

{1,2} + {1,3} + {1,4} + {1,5} + {1,6} + {2,3} + {2,4} + {2,5} + {2,6} + {3,4} +

{3,5} + {3,6} + {4,5} + {4,6} + {5,6};

• of type (2, 1) :

({1} − {2})({3} + {4} + {5} + {6}), ({1} − {3})({2} + {4} + {5} + {6}),

({1} − {4})({2} + {3} + {5} + {6}), ({1} − {5})({2} + {3} + {4} + {6}),

({1} − {6})({2} + {3} + {4} + {5});

• of type (2,2) :

({1} − {2})({3} − {4}), ({1} − {2})({3} − {5}), ({1} − {2})({3} − {6}),

({1} − {3})({2} − {4}), ({1} − {3})({2} − {5}), ({1} − {3})({2} − {6}),

({1} − {4})({2} − {5}), ({1} − {4})({2} − {6}), ({1} − {5})({2} − {6}).
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Next Lemmas 4.4.3 and 4.4.5 prove that a standard polytope is actually determined by

the set {β1, · · · , βi}.

Lemma4.4.3. Let 0 < i ≤ n/2 and si, i = (α1−β1) · · · (αi−βi), s̄i, i = (ᾱ1− β̄1) · · · (ᾱi− β̄i)

be distinct standard polytopes of type (i, i). Then the sets x = {β1, · · · , βi} and x̄ =

{ β̄1, · · · , β̄i} are distinct.

Proof. Suppose that the ordered sets x and x̄ are equal, that is β j = β̄ j , for j = 1, · · · , i.

As si, i , s̄i, i, let j0 be the smallest index such that α j0 , ᾱ j0 . We write

si, i = (α1 − β1) · · · (α j0−1 − β j0−1)(α j0 − β j0) · · · (αi − βi)

and

s̄i, i = (α1 − β1) · · · (α j0−1 − β j0−1)(ᾱ j0 − β j0) · · · (ᾱi − βi).

In particular, without loss of generality, we can suppose that α j0 < ᾱ j0 ; by definition

4.4.1, we have that α j0 does not appear in the polytope s̄i, i.

So α j0 ∈ Ω\{α1, · · · , αj0−1, ᾱ j0, · · · , ᾱi, β1, · · · , βi}, contradicting the hypothesis ᾱ j0 < δ,

for all δ ∈ Ω\{α1, · · · , αj0−1, ᾱ j0, · · · , ᾱi, β1, · · · , βi} (point 2b of the definition 4.4.1). �

In order to prove that if x and x̄ are distinct, then si, i , s̄i, i, we introduce the following

order relation on Ln
t .

Definition 4.4.4. [6] (The reverse lexicographic order). We fix 1 ≤ t ≤ n and consider

the reverse lexicographic order on Ln
t . That is for all y, x ∈ Ln

t we say y < x if and only

if max(y \ x) < max(x \ y).

Lemma4.4.5. Let 0 < i ≤ n/2 and si, i = (α1−β1) · · · (αi−βi), s̄i, i = (ᾱ1− β̄1) · · · (ᾱi− β̄i)

be standard polytopes of type (i, i) such that x = {β1, · · · , βi} and x̄ = { β̄1, · · · , β̄i} are

distinct. Then si, i and s̄i, i are distinct.
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Proof. As x , x̄, without loss of generality, we can suppose x < x̄, with respect to

reverse lexicographic order. Now, we note that x is the largest set y for which y occurs

in the expansion of si, i. So x̄ does not appear in si, i. It follows that si, i , s̄i, i. �

As x = {β1, · · · , βi}, with β1 < · · · < βi, determines the corresponding standard polytope

(α1 − β1) · · · (αi − βi) of type (i, i), we put si
x = (α1 − β1) · · · (αi − βi).

The QSym(n)-irreducible modules are well known. For reference on the representation

of the symmetric groups Sym(n) see for example [10]. These QSym(n)-irreducible

modules are the Specht modules. We are interested to find a basis for Ei, i. It is not

difficult to see that the standard polytopes of type (i, i) correspond one-to-one to the

standard polytabloids, via the following correspondence

etab(x) → si
x = (α1 − β1) · · · (αi − βi),

where etab(x) is the standard polytabloid associated with the standard tableau

tab(x) =
α1 < · · · < αi < αi+1 < · · · < αn−i

β1 < · · · < βi

.

Every partition (n− i, i) of n determines a Specht module, a basis of whose is given from

standard polytabloids (see [10]).

We summarize this in the following lemma.

Lemma 4.4.6. Let 0 ≤ i ≤ n
2 . Then the standard polytopes of type (i, i) correspond

one-to-one to the standard polytabloids for the partition (n − i, i) of n. Moreover the

cardinality of the set of all standard polytopes of type (i, i) is
(n

i

)
−

( n
i−1

)
.

We thank Prof. Antonio Pasini for the following alternative purely combinatoric proof

of Lemma 4.4.6, that avoids any reference to polytabloids:
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Proof. By induction on i, for i = 1, · · · , n
2 , we prove that the cardinality of the set of all

standard polytopes of type (i, i) is
(n

i

)
−

( n
i−1

)
. The result is true for i = 1, as {1} − { j},

with j = 2,3, · · · ,n, are the n− 1 =
(n
1

)
−

(n
0

)
standard polytopes. If i > 1, we suppose that

the statement is true for standard polytopes of type ( j, j), with j < i and we count all the

standard polytopes of type (i, i). Let (α1− β1) · · · (αi − βi) be a standard polytope of type

(i, i). βi can be any value within the set {2i, · · · ,n}. If k + 1 is the value chosen for βi,

the other terms β1, · · · , βi−1 must be selected within the set {1,2, · · · , k}. By induction

hypothesis the standard polytopes of type (α1 − β1) · · · (αi−1 − βi−1) are
( k
i−1

)
−

( k
i−2

)
. So

the number of standard polytopes of type (i, i) is
n−1∑

k=2i−1

(

(
k

i − 1

)
−

(
k

i − 2

)
). (4.13)

Now it is enough to prove that the sum in equation 4.13 is equal to
(n

i

)
−

( n
i−1

)
, that is

n−1∑
k=2i−1

(

(
k

i − 1

)
−

(
k

i − 2

)
) =

(
n
i

)
−

(
n

i − 1

)
. (4.14)

We prove the equation 4.14 by induction on n ≥ 2i. If n = 2i, 4.14 becomes(
2i − 1

i − 1

)
−

(
2i − 1

i − 2

)
=

(
2i
i

)
−

(
2i

i − 1

)
. (4.15)

Since(
2i
i

)
−

(
2i

i − 1

)
=

(
2i − 1

i

)
+

(
2i − 1

i − 1

)
−

(
2i − 1

i − 1

)
−

(
2i − 1

i − 2

)
=

(
2i − 1

i

)
−

(
2i − 1

i − 2

)
=

=

(
2i − 1

i − 1

)
−

(
2i − 1

i − 2

)
,

the equation 4.15 holds.

Now we suppose that 4.14 holds for n and we prove it for n + 1, that is
n∑

k=2i−1

(

(
k

i − 1

)
−

(
k

i − 2

)
) =

(
n + 1

i

)
−

(
n + 1

i − 1

)
. (4.16)
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We can rewrite 4.16 as follows:(
n−1∑

k=2i−1

(

(
k

i − 1

)
−

(
k

i − 2

)
)

)
+

(
n

i − 1

)
−

(
n

i − 2

)
=

(
n
i

)
−

(
n

i − 2

)
.

By induction hypothesis we have(
n
i

)
−

(
n

i − 1

)
+

(
n

i − 1

)
−

(
n

i − 2

)
=

(
n
i

)
−

(
n

i − 2

)
. (4.17)

The last equation is trivial. So the claim follows. �

By Theorem 4.2.8,
(n

i

)
−

( n
i−1

)
is the dimension of the vector space Ei, i. It is easy to

realize that the set of all si
x is linearly independent: this is immediate for i = 0, and for

i > 0wewrite explicitly the polytope si
x (see example 4.4.8). We note that x is the largest

set y (with respect to reverse lexicographic order) for which y occurs in the expansion

of si
x . Since different x determine different standard polytopes (Lemma 4.4.5), it is not

difficult to see that the set of all si
x is linearly independent overK. It is enough to consider

the matrix whose columns are the coordinates of si
x with respect to the basis Ln

i . This

matrix contains a square triangular submatrix, of size
(n

i

)
−

( n
i−1

)
, which has ±1 on the

main diagonal.

This proves the following Lemma

Lemma 4.4.7. Let K be an arbitrary field, 0 ≤ i ≤ n/2 and let KLn
i be the vector space

of basis Ln
i . Then the set of standard polytopes si

x of type (i, i) is linearly independent in

KLn
i .

We clarify the proof of Lemma 4.4.7 with an example.

Example 4.4.8. We refer back to Example 4.4.2 and we denote

F (6,2) = {{2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6}}.
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and

s2
{2,4}
= ({1} − {2})({3} − {4}), s2

{2,5}
= ({1} − {2})({3} − {5}),

s2
{2,6}
= ({1} − {2})({3} − {6}), s2

{3,4}
= ({1} − {3})({2} − {4}),

s2
{3,5}
= ({1} − {3})({2} − {5}), s2

{3,6}
= ({1} − {3})({2} − {6}),

s2
{4,5}
= ({1} − {4})({2} − {5}), s2

{4,6}
= ({1} − {4})({2} − {6}),

s2
{5,6}
= ({1} − {5})({2} − {6})

the standard polytopes of type (2,2).

We write every s2x as linear combination of the elements of the canonical basis

L6
2
= {{1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5},

{4,6}, {5,6}}.

For example s2
{2,4}
= ({1} − {2})({3} − {4}) = {1,3} − {1,4} − {2,3} + {2,4}.

The dimension of the vector space KS6
2,2

is given from rank of the matrix A of size

15 × 9, whose columns are the coordinates of all the standard polytopes of type (2,2)

with respect to the basis L6
2
.
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A =

©«

0 0 0 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0

−1 0 0 −1 0 0 0 0 0

0 −1 0 0 −1 0 −1 0 0

0 0 −1 0 0 −1 0 −1 −1

−1 −1 −1 −1 −1 −1 0 0 0

1 0 0 0 0 0 −1 −1 0

0 1 0 0 0 0 0 0 −1

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

It is immediate to see that the last 9 rows are independent, so that rank(A) = 9 for any

field K: if B is the submatrix of A consisting of the last 9 rows, then det(B) = 1.

We note that in the expansion of si
x the set x appears with coordinate ±1.

Our aim is to prove that the set of all standard polytopes of type (t, i), for i = 0, · · · , t ′,

forms a basis of the Z-module ZSn
t .

Theorem 4.4.9. If 0 ≤ i ≤ t ′, then the set of standard polytopes of type (t, i) is a Z-basis

of ZSn
t, i, called standard basis. It follows that the union of all standard polytopes is a

standard basis of

ZSn
t = ZSn

t,0 ⊕ ZSn
t,1 ⊕ · · · ⊕ ZSn

t,t ′ .
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Proof. We observe that i ≤ n
2 , as i ≤ t ′. Put ni =

(n
i

)
−

( n
i−1

)
, by Theorem 4.2.8, we have

Ei, i � Et, i and dim Ei, i = ni. Moreover, from Lemma 4.4.7, we get that the ni’s standard

polytopes of type (i, i) are linearly independent in ZSn
i,i ⊆ QLn

i . Applying the map

tail-extension, we obtain ni independent polytopes in ZSn
t, i. In particular we deduce that

rank(ZSn
t, i) ≥ ni. Since ZSn

t, i ⊆ Et, i and dimQEt, i = ni, it follows that rank(ZSn
t, i) = ni,

for any t and i ≤ t ′.

It remains to prove that they span ZSn
t, i. For this purpose we prove that the standard

polytopes of type (i, i) span ZSn
i, i. Let L ′ be the submodule of ZSn

i, i spanned by standard

polytopes of type (i, i). We have rank(L ′) = rank(ZSn
i, i) = ni, hence

ZSn
i, i

L ′ is a finite

group. Suppose for contradiction that ZSn
i, i , L ′. Then there exist w ∈ ZSn

i, i \ L ′ and a

prime p such that pw ∈ L ′. We have

pw =
∑

six standard polytope

axsi
x, (4.18)

where ax ∈ Z and not all divisible by p, otherwise w ∈ L ′. Reducing mod p the equation

in 4.18, we infer that the set of standard polytopes of type (i, i) is linearly dependent

in Z/pZ. This contradicts Lemma 4.4.7. Thus ZSn
i, i = L ′. By tail-extension, ZSn

t, i is

spanned by standard polytopes of type (t, i). It follows immediately that the union of all

standard polytopes of type (t, i), for each 0 ≤ i ≤ t ′, forms a basis for ZSn
t . �

Remark 4.4.10. Note that in general a basis of ZSn
i is not a basis of ZLn

i .

Example 4.4.11. Going back to examples 4.4.2 and 4.4.8, we consider the expansion

of every standard polytope of QL6
2
. The matrix of change of basis from the set of all

standard polytopes to the canonical basis L6
2
is
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B =

©«

1 0 1 1 1 1 0 0 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 0 1 1 −1 0 0 −1 0 0 0 0 0

1 1 1 1 0 1 0 −1 0 0 −1 0 −1 0 0

1 1 1 1 1 0 0 0 −1 0 0 −1 0 −1 −1

1 −1 −1 0 0 0 −1 −1 −1 −1 −1 −1 0 0 0

1 −1 0 −1 0 0 1 0 0 0 0 0 −1 −1 0

1 −1 0 0 −1 0 0 1 0 0 0 0 0 0 −1

1 −1 0 0 0 −1 0 0 1 0 0 0 0 0 0

1 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0

1 0 −1 0 −1 0 0 0 0 0 1 0 0 0 0

1 0 −1 0 0 −1 0 0 0 0 0 1 0 0 0

1 0 0 −1 −1 0 0 0 0 0 0 0 1 0 0

1 0 0 −1 0 −1 0 0 0 0 0 0 0 1 0

1 0 0 0 −1 −1 0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

The determinant of B is −15360. This means that B is not invertible in Z and the set of

all standard polytopes is not a basis of ZL6
2
. It follows that ZS6

2
⊂ ZL6

2
.

This shows us that to find a diagonal form of Wtk is not enough to consider a basis of

polytopes of ZSn
t and ZSn

k . This observation is the starting point of the next section,

where we give our proof of Wilson’s Theorem.
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4.5 Wilson’s Theorem via linear maps

In [15] R.M. Wilson proves that the incidence matrix Wtk associated to the incidence

structure In
tk = (L

n
t , L

n
k,⊆), where 0 ≤ t ≤ k ≤ n and t + k ≤ n, is equivalent to a

diagonal form, with non-zero diagonal entries di =
(k−i

t−i

)
and multiplicity

(n
i

)
−

( n
i−1

)
.

For this purpose, he constructs a matrix Mtk =
⋃t

i=0 Wik and he proves that it has index

one and rank
(n

t

)
, for any t ≤ k where t + k ≤ n (Proposition 3.1.3).

Now, the maps ε k
t and ∂t

k , which we have introduced in proof of Theorem 4.2.8 on vector

spaces, restrict to Z-modules

ε k
t : ZLn

t → ZLn
k and ∂t

k : ZLn
k → ZLn

t .

The matrices associated to them, with respect to the bases Ln
t and Ln

k are WT
tk and Wtk ,

respectively. Thus to determine the invariant factors of Wtk is equivalent to find the

Smith group of ε k
t : ZLn

t → ZLn
k .

We observe that, in terms of pure modules and linear maps, Wilson’s Proposition 3.1.3

means that

ε k
0 (ZLn

0) + · · · + ε
k
t (ZLn

t )

is a pure submodule of ZLn
k of rank

(n
t

)
.

In [2] T. Bier improves Wilson’s Theorem showing that an opportune basis of Z-module

rowZ(Mtk) can be chosen from the rows of matrix Mtk itself, as it contains a
(n

t

)
×

(n
t

)
submatrix of index 1. Moreover, in [8] the authors modify slightly the concept of

standard tableau to study the notion of rank of a finite set of positive integers, which was

introduced by Frankl [6]. Utilizing this, they construct an incidence matrix equivalent

to Mtk .

In this work, with arguments inspired by the results in previous papers ([2], [6] and [8]),
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using the standard basis of polytopes of ZSn
j , we will explicitly construct a standard basis

Cj of ZLn
j , for j = 0, · · · ,n, such that the matrix associated to ε k

t with respect to Ct and

Ck is the diagonal form found by R.M. Wilson in [15].

We fix the following facts that will be used later. In the sequel, for convenience, put:

F (n, i) = {x ∈ Ln
i : si

x is a standard polytope of type (i, i)}

(note that for n = 6 and i = 2, we already used the notation in Example 4.4.8).

For any xi ∈ F (n, i) , going back to the definition of si
xi we have:

1. si
xi ∈ ZSn

i, i ⊆ Ei, i;

2. ε k
i (s

i
xi ) ∈ ZSn

k, i ;

3. if si
xi = (α1− β1) · · · (αi − βi), then ε k

i (s
i
xi ) = (α1− β1) · · · (αi − βi)(γ1 + · · ·+ γu) is

a standard polytope of type (k, i), where γ1, · · · , γu is the collection of all (k − i)-

subsets of Ω \ {α1, · · · , αi, β1, · · · , βi};

4. the set

{ε k
i (s

i
xi ) : si

xi standard polytope of type (i, i), i = 0, · · · , t}

is a basis of ZSn
k,0 ⊕ · · · ⊕ ZSn

k,t (by Theorem 4.4.9 and points (1), (2) and (3) ).

Our proof is given by three steps.

Step 1. We find the Smith group of ε k
t : ZSn

t → ZSn
k (see definition 2.4.21 ).

Theorem 4.5.1. Let 0 ≤ t ≤ k ≤ n and t + k ≤ n. Then the Smith group of

ε k
t : ZSn

t → ZSn
k

is isomorphic to (Cd0)
n0 × · · · × (Cdt )

nt × Zl , where di =
(k−i

t−i

)
, ni =

(n
i

)
−

( n
i−1

)
, for

i = 0, · · · , t and l =
(n
k

)
−

(n
t

)
.
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Proof. If t = k the claim is trivial, since ε t
t is the identity map. So we assume t , k.

Since t < k and t + k ≤ n, we have ε k
t (Et, i) , 0, for all i = 0, · · · , t. In particular, if

f ∈ ZSn
k is written as f = fk,0+ fk,1 + · · ·+ fk,k ′, with fk,j ∈ ZSn

k,j , then f has finite order

over ε k
t (ZSn

t ) if and only if fk,t+1 = · · · = fk,k ′ = 0. Therefore the module of all elements

f ∈ ZSn
k which have finite order over ε k

t (ZSn
t ) is

ZSn
k,0 ⊕ · · · ⊕ ZSn

k,t .

In particular,

ZSn
k/ε

k
t (ZSn

t ) � ZSn
k,0/ε

k
t (ZSn

t,0) ⊕ · · · ⊕ ZSn
k,t/ε

k
t (ZSn

t,t) ⊕ Z
l

where l =
(n
k

)
−

(n
t

)
.

Let d = k − t and select some 0 ≤ i ≤ t. Although we now introduce some other

notation a little bit heavy for the reader, we prefer to give the proof using a general basis

for ZSn
t . Let Bt, i = {st,i,1, · · · , st,i,ni } be a basis of ZSn

t, i, then replacing each st,i,j by s+d
t,i,j

we obtain a basis B+d
t, i = {s

+d
t,i,1, · · · , s

+d
t,i,ni
} of ZSn

k, i (see Notation 4.3.11) .

Furthermore,

ε k
t (st,i,j) =

(
k − i
t − i

)
s+d

t,i,j,

with 1 ≤ j ≤ ni, by equation 4.11. We conclude that ZSn
k, i/ε

k
t (ZSn

t, i) � (Cdi )
ni , where

di =
(k−i

t−i

)
and ni =

(n
i

)
−

( n
i−1

)
and so

ZSn
k/ε

k
t (ZSn

t ) � (Cd0)
n0 × · · · × (Cdt )

nt × Zl ,

with l =
(n
k

)
−

(n
t

)
. �

Step 2. Of fundamental importance are Lemmas 4.5.2 and 4.5.3.
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Lemma 4.5.2. Let 1 ≤ i ≤ n
2 and x = {β1, · · · , βi} ∈ Ln

i such that n ∈ x and β1 < · · · <

βi = n. Then x ∈ F (n, i) if and only if x ′ ∈ F (n − 1, i − 1), where x ′ = x \ {n}.

Proof. For x ∈ F (n, i) let si
x = (α1 − β1) · · · (αi − βi) be the standard polytope based

on x. By definition si−1
x ′ = (α1 − β1) · · · (αi−1 − βi−1) is a standard polytope based on

x ′ ∈ F (n − 1, i − 1). Vice versa, we observe that, by hypothesis, n ≥ 2. If x ′ = ∅,

then x = {n} and s1x = (1 − n) is a standard polytope of type (1, 1). If i > 1 and

x ′ ∈ F (n − 1, i − 1), si
x ′ = (α1 − β1) · · · (αi−1 − βi−1) is the standard polytope based

on x ′. Then si
x = (α1 − β1) · · · (αi−1 − βi−1)(αi − n) is the standard polytope based on

x = {β1, · · · , βi−1,n}, where

αi = min{δ : δ ∈ Ω \ {α1, · · · , αi−1, β1, · · · , βi−1,n}}.

�

Lemma 4.5.3. Let 1 ≤ i ≤ n−1
2 and x = {β1, · · · , βi} ∈ Ln

i , such that n < x and

β1 < · · · < βi.

1. x ∈ F (n, i) if and only if x ∈ F (n − 1, i);

2. F (n,0) = F (n − 1,0).

Proof. 1. Applying the Definition 4.4.1, the claim follows.

2. F (n,0) = {∅} = F (n − 1,0).

�

Step 3. With methods similar to those used in [8] we prove the following

Theorem 4.5.4. Let 0 ≤ t ≤ k with t + k ≤ n and si
xi be a standard polytope of type

(i, i), for i = 0, · · · , t. Then ZSn
k,0 ⊕ · · · ⊕ ZSn

k,t is isomorphic to ZLn
k ∩ (Ek,0 ⊕ · · · ⊕ Ek,t).
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An isomorphism is given by the map ϕ
(n)k
t linear extension of the map defined on a

standard basis of polytopes by

ϕ
(n)k
t

(
ε
(n)k
i (si

xi )

)
= ε
(n)k
i (xi). (4.19)

Proof. Put d = k − i and (si
xi )
+d as in Notation 4.3.11, with si

xi a standard polytope of

type (i, i) in ZSn
i, i. By equation 4.11 we have that the standard polytope of type (k, i)

based on x is ε (n)ki (si
xi ) = (s

i
xi )
+d . From Theorem 4.4.9 we deduce that

{ε
(n)k
i (si

xi ) : si
xi is a standard polytope of type (i, i), i = 0, · · · , t}

is a basis of ZSn
k,0 ⊕ · · · ⊕ ZSn

k,t . We note that ε (n)ki (xi) ∈ ZLn
k ∩ (Ek,0 ⊕ · · · ⊕ Ek,t).

In the following A(n)kt denotes the matrix
(n
k

)
×

(n
t

)
with the columns indexed by ε (n)ki (xi),

for i = 0, · · · , t and the rows indexed by y ∈ Ln
k ; moreover we rearrange the terms in

accord to whether or not they contain n.

In order to apply Lemma 2.4.14 to get that ϕ(n)kt is bijective, we must prove that Im ϕ
(n)k
t

is a pure submodule of ZLn
k of rank

(n
t

)
. For this purpose it is enough to prove that A(n)kt

has index 1 and rank
(n

t

)
. This implies that

{ε
(n)k
i (xi) : si

xi is a standard polytope of type (i, i), i = 0, · · · , t}

spans a pure submodule of ZLn
k of rank

(n
t

)
.

We prove the claim by induction on n + t.

If t = 0, obviously ZSn
k,0 = ZLn

k ∩ Ek,0 and s0
∅
= ∅, so ϕ(n)k

0
is the identity map.

If n = 1 then we have two possibilities

1. t = k = 0;
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2. t = 0 and k = 1,

which are part of previous case.

Instead if n = 2, the four cases are

1. t = k = 0;

2. t = 0, k = 1;

3. t = 0, k = 2;

4. t = k = 1.

In this last case, it is easy to prove the claim. Actually, since the standard polytope of

type (1, 1) is ({1} − {2}), we have ε (2)1
0
(∅) = {1} + {2} and ε (2)1

1
({2}) = {2}. It follows

that A(2)1
1
=

©«
1 0

1 1

ª®¬ has index 1 and rank 2.

The above observations prove the first step of induction. So we can consider t > 0 and

n ≥ 3. By induction we suppose that the statement is true for n+ t < n+ t, i.e. A(n)k
t

has

index 1 and rank
(n

t

)
, with 0 ≤ t ≤ k and t + k ≤ n. In particular

(I) A(n−1)k
t has index 1 and rank

(n−1
t

)
, with 0 ≤ t ≤ k and t + k ≤ n − 1,

(II) A(n−1)k−1
t−1

has index 1 and rank
(n−1

t−1

)
, with 0 ≤ t − 1 ≤ k − 1 and t − 1+ k − 1 ≤ n− 1,

(III) A(n−1)k−1
t has index 1 and rank

(n−1
t

)
, with 0 ≤ t ≤ k − 1 and t + k − 1 ≤ n − 1,

(IV) A(n−1)t
t−1

has index 1 and rank
(n−1

t−1

)
, with 0 ≤ t − 1 ≤ t and t + t − 1 ≤ n − 1,

(V) A(n−1)t
t has index 1 and rank

(n−1
t

)
, with t ≥ 0 and t + t ≤ n − 1,
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4.5 Wilson’s Theorem via linear maps

We distinguish four cases

1. Let t = k = n
2 .

We index the columns and the rows of A(n)tt in accord to

{ε
(n)t
i (xi) : n ∈ xi, i = 1, · · · , t} ∪ {ε (n)ti (xi) : n < xi, i = 0, · · · , t − 1},

and {y ∈ Ln
t : n ∈ y} ∪ {y ∈ Ln

t : n < y}, respectively.

Observe that in {ε (n)ti (xi) : n < xi, i = 0, · · · , t − 1} the index i runs between 0 and

t − 1, since if st
xt = (α1 − β1) · · · (αt − βt) is a standard polytope of type (t, t), then

βt = n; whence n ∈ xt .

If n ∈ xi, then ε (n)ti (xi) = {n}ε
(n−1)t−1
i−1

(x ′i ), where x ′i = xi \ {n}, by Lemmas 4.5.2

and 4.5.3 we get

A(n)tt =
©«

A(n−1)t−1
t−1

∗

0 A(n−1)t
t−1

ª®¬ .
By induction hypothesis, the square matrices A(n−1)t−1

t−1
, of size

(n−1
t−1

)
, and A(n−1)t

t−1
,

of size
(n−1

t−1

)
, have index 1 and rank

(n−1
t−1

)
. Since n − 1 = t + t − 1, we have that(n−1

t−1

)
=

(n−1
t

)
. So A(n)tt has index 1 and rank

(n−1
t−1

)
+

(n−1
t

)
=

(n
t

)
.

2. Let t = k < n
2 .

Again in this case, we index the columns and the rows of A(n)tt in accord to

{ε
(n)t
i (xi) : n ∈ xi, i = 1, · · · , t} ∪ {ε (n)ti (xi) : n < xi, i = 0, · · · , t}

and {y ∈ Ln
t : n ∈ y} ∪ {y ∈ Ln

t : n < y}, respectively. As above, by Lemmas

4.5.2 and 4.5.3 we have

A(n)tt =
©«

A(n−1)t−1
t−1

∗

0 A(n−1)t
t

ª®¬ .
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By induction hypothesis, the square matrices A(n−1)t−1
t−1

, of size
(n−1

t−1

)
, and A(n−1)t

t ,

of size
(n−1

t

)
, have index 1 and rank

(n−1
t−1

)
and

(n−1
t

)
, respectively. So A(n)tt has index

1 and rank
(n−1

t−1

)
+

(n−1
t

)
=

(n
t

)
.

3. Let t + k = n and t < k. We index the columns and the rows of A(n)kt in accord to

{ε
(n)k
i (xi) : n ∈ xi, i = 1, · · · , t}∪{ε (n)kt (xt) : n < xt}∪{ε

(n)k
i (xi) : n < xi, i = 0, · · · , t−1}

and {y ∈ Ln
k : n ∈ y} ∪ {y ∈ Ln

k : n < y}, respectively. So we have

A(n)kt =
©«

A(n−1)k−1
t−1

∗ A(n−1)k−1
t−1

0 ∗∗ A(n−1)k
t−1

ª®¬
So A(n)kt is equivalent to

©«
A(n−1)k−1

t−1
∗ 0

0 ∗∗ A(n−1)k
t−1

ª®¬ = ©«
A(n−1)k−1

t 0

0 ∗∗ A(n−1)k
t−1

ª®¬ .
By induction hypothesis, the matrix A(n−1)k

t−1
, of size

(n−1
t−1

)
, has index 1 and rank(n−1

t−1

)
. Thus

©«
A(n−1)k−1

t 0

0 ∗∗ A(n−1)k
t−1

ª®¬ ∼
©«

A(n−1)k−1
t 0

0 ∗∗ I

ª®¬ ∼
©«

A(n−1)k−1
t 0

0 I

ª®¬
where I is the identity matrix of size

(n−1
t−1

)
. By induction hypothesis, the matrix

A(n−1)k−1
t , of size

(n−1
t

)
, has index 1 and rank

(n−1
t

)
. As

(n−1
t−1

)
+

(n−1
t

)
=

(n
t

)
, the

claim follows.

4. Let t + k < n and t < k. In this case we index the columns and the rows of A(n)kt

in accord to

{ε
(n)k
i (xi) : n ∈ xi, i = 1, · · · , t} ∪ {ε (n)ki (xi) : n < xi, i = 0, · · · , t}

and {y ∈ Ln
k : n ∈ y} ∪ {y ∈ Ln

k : n < y}, respectively. So we have
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4.5 Wilson’s Theorem via linear maps

A(n)kt =
©«

A(n−1)k−1
t−1

∗

0 A(n−1)k
t

ª®¬ ,
and by induction hypothesis, the matrices A(n−1)k−1

t−1
and A(n−1)k

t have index 1 and

rank
(n−1

t−1

)
and

(n−1
t

)
, respectively. We have the thesis.

�

Corollary 4.5.5. Let 0 ≤ t ≤ k ≤ n with t + k ≤ n and si
xi be a standard polytope of

type (i, i), for i = 0, · · · , t. Then the map

ϕ : ZSn
k/ε

k
t (ZSn

t )→ ZLn
k/ε

k
t (ZLn

t )

defined by

ϕ(ε k
i (s

i
xi ) + ε

k
t (ZSn

t )) = ε
k
i (xi) + ε

k
t (ZLn

t ),

and extended by linearity, is an isomorphism.

Proof. By Theorem 4.5.4, we have that ϕ(n)kt is an isomorphism. Hence

{ε k
i (xi) : si

xi is a standard polytope of type (i, i), i = 0, · · · , t}

forms a basis of ZLn
k ∩ (Ek0 ⊕ · · · ⊕ Ekt). In particular

{ε k
i (xi) : si

xi is a standard polytope of type (i, i), i = 0, · · · , k ′} (4.20)

and

{ε t
i (xi) : si

xi is a standard polytope of type (i, i), i = 0, · · · , t} (4.21)

are bases of ZLn
t and ZLn

k respectively.

Clearly the claim is true if t = k, so we take t < k. By equation 4.6 we get(
k − i
t − i

)
ε k

i = ε
k
t ε

t
i . (4.22)

The relations 4.20, 4.21 and 4.22 together with Theorem 4.5.1 give us
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A diagonal form for the incidence matrix Wtk via linear algebra

ZLn
k/ε

k
t (ZLn

t ) � ZSn
k/ε

k
t (ZSn

t ) � (Cd0)
n0 × · · · × (Cdt )

nt × Zl ,

with l =
(n
k

)
−

(n
t

)
, di =

(k−i
t−i

)
and ni =

(n
i

)
−

( n
i−1

)
. �
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CHAPTER 5

G-modules and orbit matrices

In this section we consider a generic permutation group G ⊆ Sym(n), n = |Ω|, with the

induced action over Ln. If R is one of Q or Z we define the "orbit module" of G in the

following way

Definition 5.0.1. Let M be a submodule of RLn
i . Then the "orbit module" of G on M ,

denoted by MG, is the centralizer algebra

MG := {v ∈ M : vg = v for any g ∈ G}.

Since the action of G on QLn commutes with ε , we have the following restrictions

ε k
t : (ZLn

t )
G → (ZLn

k )
G (5.1)

and

ε k
t : (ZSn

t )
G → (ZSn

k )
G . (5.2)

Sn
t = Sn

t,0 ∪ Sn
t,1 ∪ · · · ∪ Sn

t,t ′ denotes the set of polytopes. As G maps polytopes of type

(t, i) in polytopes of the same type, it is immediate to recognize:

(ZSn
t )

G = (ZSn
t,0)

G ⊕ · · · ⊕ (ZSn
t, t ′)

G .
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G-modules and orbit matrices

We are interested to Smith groups of the restrictions of ε k
t to the orbit modules of G on

ZLn
t and ZSn

t .

If G = {1G} then the orbits on Ln
t correspond to the subsets. So (ZLn

t )
G = ZLn

t and

(ZSn
t )

G = ZSn
t . Hence we can see the problem to find the Smith group of

ε k
t : (ZLn

t )
G → (ZLn

k )
G

as a generalization of Wilson’s Theorem, 3.1.6 and 4.5.5.

The main original result of this chapter is Theorem 5.1.7 where we obtain the Smith

group of ε k
t : (ZSn

t )
G → (ZSn

k )
G. This generalizes Theorem 4.5.1. Moreover in sections

5.2 and 5.3 we give some ideas which lead to conjecture that if t + k = n, then

(ZLn
k )

G/ε k
t (ZLn

t )
G � (ZSn

k )
G/ε k

t (ZSn
t )

G . (5.3)

The conjecture will be formally stated in 5.3.5.

Finally in section 5.4, we consider the orbits ∆1, · · · ,∆τt of G over the t-subsets Ln
t and

the orbits Γ1, · · · ,Γτk of G over the k-subsets Ln
k . Denote byΩ

t the orbit set {∆1, · · · ,∆τt }

and by Ωk the orbit set {Γ1, · · · ,Γτk }.

It is not difficult to recognize that the incidence matrices X+tk and X−
tk , denoted by G-

orbits matrices, of the tactical decomposition (Ωt,Ωk) of In
tk = (L

n
t , L

n
k ; ⊆) are actually

the matrices of

ε k
t : (ZLn

t )
G → (ZLn

k )
G and ∂t

k : (ZLn
k )

G → (ZLn
t )

G

with respect to the canonical bases (see Corollary 5.1.6)

BΩt = {
∑
x∈∆j

x : j = 1, · · · , τt} and BΩk = {
∑
y∈Γi

y : i = 1, · · · , τk}.

So again for G = {1G}, X+tk and X−
tk coincide with the matrices WT

tk and Wtk .
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5.1 G-orbit decomposition

To look for a diagonal form of X+tk is equivalent to determine the Smith group of

ε k
t : (ZLn

t )
G → (ZLn

k )
G.

We give some results about the matrices X+tk and X−
tk in the case t + k = n, reinforcing

our conjecture (see 5.3.5).

As usual, when there is not confusion, we write (QLt)
G, (ZLt)

G, (QSt)
G, (ZSt,i)

G instead

(QLn
t )

G, (ZLn
t )

G, (QSn
t )

G, (ZSn
t,i)

G.

5.1 G-orbit decomposition

The Smith group of ε k
t : (ZSt)

G → (ZSk)
G will be determined in Theorem 5.1.7. To

achieve the result we need some preliminary theorems, which make use of the concept

of pure module.

Theorem 5.1.1. For each 0 ≤ t ≤ n, denote by ∆1, · · · ,∆τt the orbits of G over Ln
t . Then

the set Ωt is a generating set for the vector space (QLt)
G, that is

(QLt)
G = spanQ


∑
x∈∆j

x : ∆ j ∈ Ω
t and j = 0, · · · , τt

 .
Proof. For any g ∈ G and j = 0, · · · , τt

(
∑
x∈∆j

x)g =
∑
x∈∆j

xg =
∑
x∈∆j

x.

Hence spanQ{
∑

x∈∆j
x : ∆ j ∈ Ω

t and j = 0, · · · , τt} ⊆ (QLt)
G.

Conversely, let f ∈ (QLt)
G, we can write

f =
∑
x∈Ln

t

rx x =
∑
x1∈∆1

rx1x1 + · · · +
∑

xτt ∈∆τt

rxτt xτt .
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G-modules and orbit matrices

By hypothesis, f g = f for all g ∈ G, so∑
x1∈∆1

rx1x
g

1
+ · · · +

∑
xτt ∈∆τt

rxτt xgτt =
∑
x1∈∆1

rx1x1 + · · · +
∑

xτt ∈∆τt

rxτt xτt .

We deduce that rxj depends only from the orbit. Thus

f = r1
∑
x1∈∆1

x1 + · · · + rτt
∑

xτt ∈∆τt

xτt .

The statement follows. In particular, we get that dimQ(QLt)
G = τt . �

Following some ideas of [13] and previous section we get Theorem 5.1.2.

Theorem 5.1.2. Put G ⊆ Sym(n) and t ≤ k ≤ n, with t + k ≤ n. Then

(QSt, i)
G � (QSk, i)

G

for all 0 ≤ i ≤ t . Actually, the tail-cutting and tail-extension maps restrict to G-

isomorphisms between the two G-orbit vector spaces and are inverse to each other.

Proof. First we consider i = 0. The polytope
∑

x∈Ln
t

x of type (t,0) belongs to (QSt,0)
G.

So Et,0 = spanQ(
∑

x∈Ln
t

x) = (QSt,0)
G. The claim follows since that Ek,0 � Et,0.

For 0 ≤ i ≤ t, we saw in Corollary 4.3.10 that the map tail-cutting − : Et+1, i → Et, i is

a QSym(n)-isomorphism, so also a QG-isomorphism. It follows that for f ∈ (QSt+1, i)
G,

( f −)g = ( f g)− = f −, so that f − ∈ (QLt)
G ∩ Et, i = (QSt, i)

G.

Similarly, the map + : Et, i → Et+1, i restricts to the map + : (QSt, i)
G → (QSt+1, i)

G.

Whence (QSt, i)
G � (QSt+1, i)

G. The maps + and − are inverse to each other. �

Theorem 5.1.3. [13] Let 0 ≤ t ≤ n, then

(QLt)
G = (QSt,0)

G ⊕ · · · ⊕ (QSt,t ′)
G .

In particular, dimQ(QSt, i)
G = τi − τi−1.
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5.1 G-orbit decomposition

Proof. We observe that (QSt,0)
G ⊕ · · · ⊕ (QSt,t ′)

G ⊆ (QLt)
G.

Let now f be an element of (QLt)
G, that is f g = f for any g ∈ G. We have (QLt)

G ⊆

QLt = Et,0 ⊕ · · · ⊕ Et,t ′ and Et,i are G-invariant subspaces of QLn
t . So, we write

f = ft,0 + · · · + ft,t ′ = f gt,0 + · · · + f gt,t ′,

where ft, i ∈ Et, i. As f g = f and f gt, i ∈ Et, i, we get f gt, i = ft, i by the uniqueness of

writing. This proves (QLt)
G ⊆ (QSt,0)

G ⊕ · · · ⊕ (QSt,t ′)
G . So the equality holds.

Now, we argue on the dimension andwe prove by induction that dimQ(QSi, i)
G = τi−τi−1,

for 0 ≤ i ≤ n
2 .

If i = 0, then dimQ(QS0,0)G = τ0 = 1. Now we assume that

dimQ(QSj, j)
G = τj − τj−1,

for any j < i. By Theorem 5.1.2, we have dimQ(QSi, j)
G = τj − τj−1. Since

(QLi)
G = (QSi,0)

G ⊕ (QSi,1)
G ⊕ · · · ⊕ (QSi,i−1)

G ⊕ (QSi, i)
G,

we have

τi = dimQ(QLi)
G = dimQ(QSi,0)

G⊕dimQ(QSi,1)
G⊕· · ·⊕dimQ(QSi,i−1)

G⊕dimQ(QSi, i)
G

and by induction hypothesis, we get

τi = τ0 + τ1 − τ0 + · · · + τi−1 − τi−2 + dimQ(QSi, i)
G .

Thus

dimQ(QSi, i)
G = τi − τi−1.

Applying again Theorem 5.1.2 we get dimQ(QSt, i)
G = τi − τi−1, for 0 ≤ i ≤ t ′. �

Now we examine the Z-module (ZLt)
G.
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G-modules and orbit matrices

Proposition 5.1.4. Let 0 ≤ t ≤ n, then (ZLt)
G is a pure submodule of ZLn

t .

Proof. As usual we just prove that (ZLt)
G ∩ aZLn

t ⊆ a(ZLt)
G, for any a ∈ Z \ {0}. If

v ∈ (ZLt)
G ∩ aZLn

t then v = aw, with w ∈ ZLn
t . Since vg = v, for any g ∈ G, we have

that a(wg − w) = 0. As ZLn
t is torsion-free, we get w ∈ (ZLt)

G. The claim follows. �

We use the previous result to get the analogue of Theorem 5.1.1 for the Z-module (ZLt)
G.

Proposition 5.1.5. Let 0 ≤ t ≤ n and Ωt = {∆1, · · · ,∆τt }. Then

spanZ{
∑
x∈∆j

x : j = 1, · · · , τt}

is a pure submodule of ZLn
t of rank τt .

Proof. Let a ∈ Z \ {0} and v ∈ spanZ{
∑

x∈∆j
x : j = 1, · · · , τt} ∩ aZLn

t , then there exists

w ∈ ZLn
t such that v = aw. But v =

τt∑
j=1

r j
∑

x∈∆j
x and w =

τt∑
j=1

∑
x∈∆j

sx x, for some r j and sx

in Z. As Ln
t is a basis of ZLn

t and
τt∑
j=1

r j
∑

x∈∆j
x =

τt∑
j=1

∑
x∈∆j

asx x, we get r j = asx , for any

x ∈ ∆ j and j = 1, · · · , τt . So w ∈ spanZ{
∑

x∈∆j
x : j = 1, · · · , τt}. �

Corollary 5.1.6. Let 0 ≤ t ≤ n and Ωt = {∆1, · · · ,∆τt }. Then

spanZ{
∑
x∈∆j

x : j = 1, · · · , τt} = (ZLt)
G

and its rank is τt .

Proof. As spanZ{
∑

x∈∆j
x : j = 1, · · · , τt} ⊆ (ZLt)

G, then rank (ZLt)
G ≥ τt . Since

(ZLt)
G ⊆ (QLt)

G, it follows that rank (ZLt)
G = τt ; applying the Lemma 2.4.14, we get

the claim. �
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5.1 G-orbit decomposition

In the next Theorem we find the Smith group of ε k
t : (ZSt)

G → (ZSk)
G, which is our

main result of this section. As usual, we put d = k − t and s+d
ti j the polytope of type (k, i)

obtained from sti j by d-fold tail extension.

Theorem 5.1.7. Let 0 ≤ t ≤ k and t + k ≤ n. Then the Smith group of

ε k
t : (ZSt)

G → (ZSk)
G

is isomorphic to

(Cd0)
m0 × (Cd1)

m1 × · · · × (Cdt )
mt × Zl,

where di =
(k−i

t−i

)
, mi = τi − τi−1, i = 0, · · · , t and l = τk − τt .

Proof. The claim is trivial if k = t, since ε k
t is the identity map. So we consider t , k

and t + k ≤ n. Select some 0 ≤ i ≤ t and let Cti = {cti1, · · · , ctimi } be a basis of (ZSt, i)
G.

Take {sti1, · · · , stini } a basis of polytopes of ZSn
t, i, then there exist ail1, · · · ,ailni ∈ Z such

that ctil =
ni∑
j=1

ail j sti j , with 1 ≤ l ≤ mi. Thus

ε k
t (ctil) = ε

k
t (

ni∑
j=1

ail j sti j) =

(
k − i
t − i

) ni∑
j=1

ail j s+d
ti j .

It is easy to prove that themaps tail-extension and tail-cutting restrict to the isomorphisms

+ : (ZSt, i)
G → (ZSt+1, i)

G and − : (ZSt+1, i)
G → (ZSt, i)

G,

since +(ZSt, i)
G ⊆ (ZSt+1, i)

G, −(ZSt+1, i)
G ⊆ (ZSt, i)

G and they are inverse to each other.

So the set C+d
ti = {(cti1)

+d, · · · , (ctimi )
+d}, obtained from Cti applying d-times tail-

extension map, is a basis of (ZSk, i)
G. It follows (ZSk, i)

G/ε k
t ((ZSt, i)

G) � (Cdi )
mi , with

di =
(k−i

t−i

)
and mi = τi − τi−1.

It follows that
(ZSk)

G

ε k
t ((ZSt)

G)
� (Cd0)

m0 × · · · × (Cdt )
mt × Zl,

where l = τk − τt . �
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Example 5.1.8. Let n = 6, t = 1, k = 2 and G = 〈(1,2,3), (1,2)(4,5)〉. Then

(ZS2)G/ε21 (ZS1)G � C2 × Z
2.

(ZS1)G = (ZS1,0)G ⊕ (ZS1,1)G

and

(ZS2)G = (ZS2,0)G ⊕ (ZS2,1)G ⊕ (ZS2,2)G .

As usual, for avoid confusion, we denote the setΩ by {α1, α2, · · · , α6} instead {1,2, · · · ,6}.

The G-orbits on L6
1
are Λ1 = {α1, α2, α3},Λ2 = {α4, α5},Λ3 = {α6}, while those on L6

2

are

∆1 = {{1,2}, {2,3}, {1,3}},∆2 = {{1,4}, {2.4}, {2,5}, {3,4}, {1,5}, {3,5}},

∆3 = {{1,6}, {2,6}, {3,6}},∆4 = {{5,6}, {4,6}},∆5 = {{4,5}}.

We want to find a basis of (ZS1)G. For this purpose we give a Z-basis of (ZS1,0)G and of

(ZS1,1)G.

1. The module (ZS1,0)G is spanned by ε 1
0
(∅) =

∑
x∈L6

1

x.

2. To find a generating set of (ZS1,1)G we consider the standard basis of polytopes of type

(1, 1) :

{(α1 − α2), (α1 − α3), (α1 − α4), (α1 − α5), (α1 − α6)}.

It is easy to see that the elements v = (α1 − α4) + (α1 − α5) − 2(α1 − α6) and w =

(α1 − α2) + (α1 − α3)− 3(α1 − α6) are fixed by every g ∈ G. So they are in (ZS1,1)G. On

the other hand they are linearly independent and span a pure submodule of ZS1,1. To see

this, put N = spanZ{v,w} and prove that for any non-zero integer a, N ∩ aZS1,1 ⊆ aN .

Let u ∈ N ∩ aZS1,1. Then u = b1v + b2w = a
6∑

i=2
ai(α1 − αi), for some b1, b2,ai ∈ Z.

Whence a divides b1 and b2. It follows that u ∈ aN .
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Since (ZS1,1)G has rank τ1 − τ0 = 2, by Lemma 2.4.14 we have

(ZS1,1)G = spanZ{v,w}.

Now we consider the module (ZS2)G. The element ε2
0
(∅) =

∑
x∈L6

2

x = 1
2ε

2
1
(
∑

x∈L6
1

x) is a

basis of (ZS2,0)G. Moreover (ZS2,1)G = ε2
1
(ZS1,1)G. Remembering Theorem 2.3.8 and

Corollary 2.3.9, by direct computation we get

(ZS2)G

ε2
1
(ZS1)G

� C2 × Z
2.

5.2 The case t + k = n

Here we assume t + k = n and we prove that the Smith groups of

ε k
t : (ZLt)

G → (ZLk)
G

and

ε k
t : (ZSt)

G → (ZSk)
G

have the same order (see Theorem 5.2.5).

In chapter 4 we defined the maps + and − between QLn
t and QLn

t+1. Applying them

d-times (d = k − t) we got two isomorphisms between QLn
t and QLn

k , which we called

+d and −d. We notice that they do not restrict to isomorphisms between Z-modules

ZLn
t and ZLn

k . We clarify this concept with an example.

Example 5.2.1. Let Ω = {1,2,3,4,5,6}, t = 2 and k = 4. For avoid confusion, we

denote by αi the ith-element of Ω. We do the calculation using Magma Computational

Algebra System (see Appendix B). Taken

v = −α1α2 − α1α4 + α2α4 + 2α2α5 + α1α6 + α4α6 ∈ ZL6
2,
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we get v+2 = − 1
2α3α4α5α6 +

3
2α2α4α5α6 +

1
2α1α3α5α6 + α1α3α4α6 +

1
2α1α2α5α6 +

1
2α2α3α4α6 +

3
2α2α3α4α5 − α1α3α4α5 − α1α2α3α4 +

1
2α1α2α3α5 −

1
2α1α2α3α6 < ZL6

4

In order to argue on the order of (ZLk)
G/ε k

t (ZLt)
G we need to define a new map between

QLn
t and QLn

k (and conversely), which restrict to Z-isomorpshim.

We define the new tail-extension +N : QLn
t → QLn

k in the following way.

We consider the canonical bases Ln
t and Ln

k of ZLn
t and ZLn

k , respectively. For x ∈ Ln
t ,

denote by x̄ the complement of x in Ω. We put x+N = x̄ and we extend linearly.

Similarly, we define the new tail-cutting −N : QLn
k → QLn

t such that y−N = ȳ.

Summarizing,

+N :


QLn

t → QLn
k

x → x̄
−N :


QLn

k → QLn
t

y → ȳ

In the next Theorem we prove that s+Nt, i = (−1)is+d
t, i , where d = n − 2t and st, i is a

polytope of type (t, i), for i = 0, · · · , t.

Theorem 5.2.2. Let 0 ≤ t ≤ k ≤ n with t + k = n. Then for every polytopes st, i of type

(t, i), we have s+Nt, i = (−1)is+d
t, i , where d = n − 2t.

Proof. Let st, i = (α1 − β1) · · · (αi − βi)(γ1 + · · · + γu) be a polytope of type (t, i). Then

s+d
t, i = (α1 − β1) · · · (αi − βi)(γ

′
1 + · · · + γ

′
u),

where γ ′j is the complement of γ j in Ω \ {α1, · · · , αi, β1, · · · , βi}, for j = 0, · · · ,u.

If i = 0 the statement is trivial. We assume i > 0. Let x be a t-set such that it appears in

st, i and let y = x̄ be the complement of x in Ω. Note that γ j ⊆ x if and only if γ ′j ⊆ y,
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for j = 0, · · · ,u and αr ∈ x if and only if βr ∈ y, for 0 ≤ r ≤ i (conversely βr ∈ x if and

only if αr ∈ y). For example, if x = {α1, · · · , αi} ∪ γ1, then y = {β1, · · · , βi} ∪ γ
′
1
.

The image s+Nt, i is obtained from st, i by substitution of every αr with βr and γ j with γ ′j .

Whence

s+Nt, i = (β1 − α1) · · · (βi − αi)(γ
′
1 + · · · + γ

′
u)

= (−1)i(α1 − β1) · · · (αi − βi)(γ
′
1 + · · · + γ

′
u)

= (−1)is+d
t, i

�

This Theorem justifies the symbols +N and −N used to indicate these maps, which we

call new tail-extension and new tail-cutting.

Example 5.2.3. If n = 6, t = 2, k = 4 and s2,1 = (α1 − α3)(α2 + α4 + α5 + α6). Then

s+N
2,1
= (α3 − α1)(α4α5α6 + α2α5α6 + α2α4α6 + α2α4α5).

Remark 5.2.4. It is easy to see that the maps +N and −N restrict to

+N : (ZLt)
G → (ZLk)

G , −N : (ZLk)
G → (ZLt)

G

and

+N : (ZSt)
G → (ZSk)

G , −N : (ZSk)
G → (ZSt)

G .

Weconclude this section proving that the groups (ZLk)
G/ε k

t ((ZLt)
G) and (ZSk)

G/ε k
t ((ZSt)

G)

have the same order.

Theorem 5.2.5. Let 0 ≤ t ≤ k ≤ n and t + k = n, then the groups (ZLk)
G/ε k

t ((ZLt)
G)

and (ZSk)
G/ε k

t ((ZSt)
G) have the same order.
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Proof. The proof is given by three steps.

Step 1.

(ZLk)
G/(ZSk)

G � (ZLt)
G/(ZSt)

G .

We observe that (ZLt)
G and (ZSt)

G have the same rank τt , the number of G-orbits

on Ln
t . So by 2.4.11 there exist a basis {v1, · · · , vτt } of (ZLt)

G and non-zero integers

r1, · · · ,rτt such that {r1v1, · · · ,rτtvτt } is a basis of (ZSn
t )

G. We denote by v+N
1
, · · · , v+Nτt

the images of v1, · · · , vτt by the map new tail-extension. The map new tail-extension

is a G-isomorphism between the Z-modules (ZLt)
G and (ZLk)

G. It follows that the set

{v+N
1
, · · · , v+Nτt } is a basis of (ZLk)

G. Moreover, the restriction of +N to the Z-module

(ZSt)
G is an isomorphism between (ZSt)

G and (ZSk)
G, so the set {r1v+N1

, · · · ,rτtv
+N
τt } is

a basis of (ZSk)
G. The claim follows.

Step 2.

ε k
t ((ZLt)

G)/ε k
t ((ZSt)

G) � (ZLt)
G/(ZSt)

G .

The statement follows immediately from the first isomorphism Theorem, considering

the linear map

γ : (ZLt)
G → ε k

t ((ZLt)
G)/ε k

t ((ZSt)
G)

defined by γ( ft) = ε k
t ( ft)+ ε

k
t ((ZSt)

G). It is obviously surjective and its kernel is (ZSt)
G.

Step 3. We use second isomorphism Theorem: we have

(ZLk )
G

εkt ((ZSt )
G )

(ZSk )
G

εkt ((ZSt )
G )

� (ZLk )
G

(ZSk )G
and

(ZLk )
G

εkt ((ZSt )
G )

εkt ((ZLt )
G )

εkt ((ZSt )
G )

� (ZLk )
G

εkt ((ZLt )
G)

By parts (1)-(2) we deduce that the order of (ZLk)
G/ε k

t ((ZLt)
G) is the same of the order

of (ZSk)
G/ε k

t ((ZSt)
G). �
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5.3 Particular cases

The result of Theorem 5.2.5 suggests us the following question. When t + k = n, does

exist an isomorphism between the finite groups

(ZSk)
G/ε k

t (ZSt)
G and (ZLk)

G/ε k
t (ZLt)

G?

A positive answer is suggested by some cases (see in particular Theorem 5.3.4) which

we are going to describe below and by numerical computational results which confirm

the existence of isomorphism for any subgroup G ⊆ Sym(n), with n ≤ 11 (see Appendix

A).

In the sequel G is any permutation subgroup of Sym(n).

To avoid confusion among coefficients and integers of Ω, in this section we rename the

elements of Ω putting

Ω = {α, β1, · · · , βn−1}.

Theorem 5.3.1. Take t = 1, k = 2 and n = 3. Let

ϕ :
(ZS2)G

ε2
1

(
(ZS1)G

) → (ZL2)
G

ε2
1

(
(ZL1)

G
)

be the linear map defined by ϕ
(
f + ε2

1

(
(ZS1)G

) )
= f + ε2

1

(
(ZL1)

G)
. Then ϕ is an

isomorphism.

Proof. Clearly ϕ is well defined and a homomorphism. So it is enough to prove that ϕ

is an injection, since the groups (ZS2)G

ε2
1 ((ZS1)G)

and (ZL2)
G

ε2
1 ((ZL1)

G)
have the same order.

We remember that (ZS2)G = (ZS2,0)G ⊕ (ZS2,1)G. Since

ε21 ((ZS1,1)G) = (ZS2,1)G
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and

ε21 ((ZS1,1)G) ⊆ ε21 ((ZS1)G),

we get

(ZS2)G = (ZS2,0)G + ε21 ((ZS1)G).

Now note that (ZS2,0)G = 1
2ε

2
1
ε 1
0
((ZS0,0)G), so

(ZS2)G = ε21

(
1

2
ε 10((ZS0,0)G) + (ZS1)G

)
Hence, if f + ε2

1
((ZS1)G) ∈ Ker ϕ then, for some f0 ∈ (ZS0,0)G and f1 ∈ (ZS1)G, we have

f = ε21

(
1

2
ε 10( f0) + f1

)
∈ (ZS2)G ∩ ε21

(
(ZL1)

G
)
.

Since ε2
1
is injective we get 1

2ε
1
0
( f0) + f1 ∈ (ZL1)

G.

It follows
1

2
ε 10( f0) ∈ (ZL1)

G .

The latter means that for the inner product we have

<
1

2
ε 10( f0), x >=

1

2
< f0, ∂01 (x) >=

1

2
< f0,∅ >∈ Z

for all x ∈ L3
1
. Thus f0 is an even multiple of ∅ and 1

2ε
1
0
( f0) ∈ ε 10((ZS0,0)G). We conclude

that f ∈ ε2
1

(
(ZS1)G

)
. �

Remark 5.3.2. We observe that the injectivity is independent from n, that is ϕ is injective

for any n, when t = 1 and k = 2.

Theorem 5.3.3. Let t = 3, k = 4 and n = 7. Then the map

ϕ :
(ZS4)G

ε4
3

(
(ZS3)G

) → (ZL4)
G

ε4
3

(
(ZL3)

G
)

defined by ϕ
(

f + ε4
3
((ZS3)G)

)
= f + ε4

3

(
(ZL3)

G)
is an isomorphism.
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Proof. Clearly ϕ is a linear map well defined, so by Lemma 5.2.5 it is enough to prove

that it is an injection. First we consider a standard basis B of polytopes of type (2,2).

Put Ω = {α, β1, β2, · · · , β6} and B = {s1, s2, · · · , s14}, where

s1 = (α− β1)(β2− β3), s2 = (α− β1)(β2− β4), s3 = (α− β1)(β2− β5),

s4 = (α− β1)(β2− β6), s5 = (α− β2)(β1− β3), s6 = (α− β2)(β1− β4),

s7 = (α− β2)(β1− β5), s8 = (α− β2)(β1− β6), s9 = (α− β3)(β1− β4),

s10 = (α−β3)(β1−β5), s11 = (α−β3)(β1−β6), s12 = (α−β4)(β1−β5),

s13 = (α−β4)(β1−β6), s14 = (α− β5)(β1− β6)

are the standard polytopes of type (2,2).

Now let f + ε4
3

(
(ZS3)G

)
∈ Ker ϕ. We want to prove that f ∈ ε4

3

(
(ZS3)G

)
. For this

purpose we observe that

(ZS4)G = ε43

(
1

4
(ZS3,0)G +

1

3
(ZS3,1)G +

1

2
(ZS3,2)G + (ZS3,3)G

)
.

So

f = ε43

(
1

4
f30 +

1

3
f31 +

1

2
f32 + f33

)
∈ ε43

(
(ZL3)

G
)
,

with f30 ∈ (ZS3,0)G, f31 ∈ (ZS3,1)G, f32 ∈ (ZS3,2)G and f33 ∈ (ZS3,3)G. By injectivity of ε43
we have

h =
1

4
f30 +

1

3
f31 +

1

2
f32 ∈ (ZL3)

G . (5.4)

In particular 4h ∈ (ZL3)
G and so

4

3
f31 ∈ (ZL3)

G . (5.5)

Since f31 ∈ (ZS3,1)G, there exists f11 ∈ (ZS1,1)G such that f31 = ε31 ( f11) and f11 =
6∑

j=1
z j(α−

β j), where {α − β1, α − β2, · · · , α − β6} is a standard basis of polytopes of ZS1,1.

Then chosen x = {βi1, βi2, βi3} and y = {α, βi4, βi5} two distinct sets in L7
3
, we have

4

3
< f31, x + y >∈ Z.
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Using the equation 4.6, we have

4

3
< f31, x + y >=

4

3
(−zi1 − zi2 − zi3 − zi4 − zi5 +

6∑
r=1

zr).

Whence z j ≡ 0mod 3, for any 1 ≤ j ≤ 6. It follows 1
3 f31 ∈ (ZS3,1)G.

To this point it remains to prove that h ′ = h − 1
3 f31 = 1

4 f30 + 1
2 f32 ∈ (ZS3)G. From

equations 5.4 and 5.5 we deduce

h ′ ∈ (ZL3)
G,

whence 2h ′ = 1
2 f30 + f32 ∈ (ZL3)

G and so h30 = 1
2 f30 ∈ (ZL3)

G ∩ E7
3,0
= (ZS3,0)G.

Replacing it in h ′ we have h ′ = 1
2h30 + 1

2 f32. We can suppose

h ′ =
1

2
(2ζ0 + ρ0)s3∅ +

1

2

14∑
i=1

(2ζi + ρi)s3i ,

where ζ0, ζi ∈ Z, ρ0, ρi ∈ {0, 1}, s3
∅
is the polytope of type (3,0), si as above and

s3i = ε
3
2
(si). Our goal is to prove that ρ0 = ρ1 = · · · = ρ14 = 0.

For this purpose, put h ′′ = 1
2 ρ0s3

∅
+ 1

2

∑14
i=1 ρis3i , for any x, y ∈ L7

3
we have

< h ′′, x − y >=
1

2
< ρ0s3

∅
, x − y > +

1

2
<

14∑
i=1

ρis3i , x − y >=
1

2
<

14∑
i=1

ρis3i , x − y >∈ Z.

If x = {α, β1, β2} and y = {β3, β4, β5} then

< h ′′, x − y >=
1

2
(

14∑
i=9

ρi − ρ9 − ρ10 − ρ12) =
1

2
(ρ11 + ρ13 + ρ14) ∈ Z. (5.6)

If x = {α, β1, β2} and y = {β3, β4, β6} then

< h ′′, x − y >=
1

2
(

14∑
i=9

ρi − ρ9 − ρ11 − ρ13) =
1

2
(ρ10 + ρ12 + ρ14) ∈ Z. (5.7)
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If x = {α, β1, β2} and y = {β3, β5, β6} then

< h ′′, x − y >=
1

2
(

14∑
i=9

ρi − ρ10 − ρ11 − ρ14) =
1

2
(ρ9 + ρ12 + ρ13) ∈ Z. (5.8)

If x = {α, β1, β2} and y = {β4, β5, β6} then

< h ′′, x − y >=
1

2
(

14∑
i=9

ρi − ρ12 − ρ13 − ρ14) =
1

2
(ρ9 + ρ10 + ρ11) ∈ Z. (5.9)

If x = {α, β1, β3} and y = {β2, β4, β5} then

< h ′′, x− y >=
1

2
(ρ6+ ρ7+ ρ8+ ρ12+ ρ13+ ρ14− ρ6− ρ7− ρ12) =

1

2
(ρ8+ ρ13+ ρ14) ∈ Z.

(5.10)

From equations 5.6 and 5.10, we have 1
2 (ρ11 − ρ8) ∈ Z, so

ρ8 = ρ11.

If x = {α, β1, β3} and y = {β2, β4, β6} then

< h ′′, x− y >=
1

2
(ρ6+ ρ7+ ρ8+ ρ12+ ρ13+ ρ14− ρ6− ρ8− ρ13) =

1

2
(ρ7+ ρ12+ ρ14) ∈ Z.

(5.11)

From equations 5.7 and 5.11 we have 1
2 (ρ10 − ρ7) ∈ Z, so

ρ10 = ρ7.

Again if x = {α, β1, β3} and y = {β2, β5, β6} then

< h ′′, x− y >=
1

2
(ρ6+ ρ7+ ρ8+ ρ12+ ρ13+ ρ14− ρ7− ρ8− ρ14) =

1

2
(ρ6+ ρ12+ ρ13) ∈ Z.

(5.12)
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From equations 5.8 and 5.12, 1
2 (ρ6 − ρ9) ∈ Z, thus

ρ6 = ρ9.

If x = {α, β1, β4} and y = {β2, β3, β5} then

< h ′′, x− y >=
1

2
(ρ5+ ρ7+ ρ8+ ρ10+ ρ11+ ρ14− ρ5− ρ7− ρ10) =

1

2
(ρ8+ ρ11+ ρ14) ∈ Z.

(5.13)

From 5.10 and 5.13, 1
2 (ρ11 − ρ13) ∈ Z, thus

ρ11 = ρ13,

moreover from 5.13 and ρ8 = ρ11 = ρ13, we have 1
2 (ρ8 + ρ11 + ρ14) =

1
2 (2ρ8 + ρ14) ∈ Z,

so

ρ14 = 0.

If x = {α, β1, β4} and y = {β3, β5, β6} then

< h ′′, x− y >=
1

2
(ρ5+ ρ7+ ρ8+ ρ10+ ρ11+ ρ14− ρ10− ρ11− ρ14) =

1

2
(ρ5+ ρ7+ ρ8) ∈ Z.

(5.14)

From equations 5.14, 5.9, ρ11 = ρ8 and ρ10 = ρ7, we have 1
2 (ρ9 − ρ5) ∈ Z, so

ρ9 = ρ5.

If x = {α, β1, β5} and y = {β2, β3, β4} then

< h ′′, x−y >=
1

2
(ρ5+ρ6+ρ8+ρ9+ρ11+ρ13−ρ5−ρ6−ρ9) =

1

2
(ρ8+ρ11+ρ13) ∈ Z. (5.15)

From equation 5.15 and ρ8 = ρ11 = ρ13, we have 1
2 (3ρ8) ∈ Z and so

ρ8 = 0,
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whence

ρ8 = ρ11 = ρ13 = 0.

If x = {α, β1, β6} and y = {β2, β3, β4} then

< h ′′, x − y >=
1

2
(ρ5+ ρ6+ ρ7+ ρ9+ ρ10+ ρ12− ρ5− ρ6− ρ9) =

1

2
(ρ7+ ρ10+ ρ12) ∈ Z.

(5.16)

From equation 5.16 and ρ7 = ρ10 we have 1
2 (2ρ7 + ρ12) ∈ Z, so

ρ12 = 0

moreover from equation 5.7 and ρ12 = ρ14 = 0,

1

2
(ρ10 + ρ12 + ρ14) =

1

2
ρ10 ∈ Z,

hence

ρ10 = 0

and by equation 5.9 and ρ11 = ρ10 = 0,

ρ9 = 0.

If x = {α, β2, β3} and y = {β1, β4, β5} then

< h ′′, x − y >=
1

2
(ρ2 + ρ3 + ρ4 − ρ2 − ρ3 + ρ13 + ρ14) =

1

2
(ρ4 + ρ13 + ρ14) ∈ Z. (5.17)

Since ρ13 = ρ14 = 0, we have

ρ4 = 0.

If x = {α, β2, β3} and y = {β1, β4, β6} then

< h ′′, x − y >=
1

2
(ρ2 + ρ3 + ρ4 − ρ2 − ρ4 + ρ12) =

1

2
(ρ3 + ρ12) ∈ Z. (5.18)
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By equation 5.18 and ρ12 = 0 we have

ρ3 = 0.

Again if x = {α, β2, β3} and y = {β1, β5, β6} then

< h ′′, x − y >=
1

2
(ρ2 + ρ3 + ρ4 − ρ3 − ρ4) =

1

2
ρ2 ∈ Z, (5.19)

so

ρ2 = 0.

Finally if x = {α, β2, β4} and y = {β1, β5, β6} then

< h ′′, x − y >=
1

2
(ρ1 + ρ3 + ρ4 − ρ9 − ρ3 − ρ4) =

1

2
(ρ1 − ρ9) ∈ Z, (5.20)

whence

ρ1 = 0.

We conclude that h ′′ = 1
2 ρ0s3

∅
∈ (ZL3)

G, hence

ρ0 = 0

and this concludes the proof. �

Next Theorem considers a more general situation.

Theorem 5.3.4. Let t = 2, k = n − 2 and gcd(n,3) = 1. Let

ϕ :
(ZSn−2)

G

εn−2
2

(
(ZS2)G

) → (ZLn−2)
G

εn−2
2

(
(ZL2)

G
)

be a map defined by ϕ( f + εn−2
2

(
(ZS2)G)

)
= f + εn−2

2

(
(ZL2)

G)
. Then ϕ is an isomor-

phism.
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5.3 Particular cases

Proof. Clearly ϕ is a linear map well defined. Since (ZSn−2)
G

εn−2
2 ((ZS2)G)

and (ZLn−2)
G

εn−2
2 ((ZL2)

G)
have

the same order, it is enough to prove that ϕ is injective. Note that, by proof of Theorem

4.5.1, we have

(ZSn−2)
G =(ZSn−2,0)

G ⊕ (ZSn−2,1)
G ⊕ (ZSn−2,2)

G =

=
2

(n − 2)(n − 3)
εn−2
2

(
(ZS2,0)G

)
+

1

(n − 3)
εn−2
2

ε21

(
(ZS1,1)G

)
+ εn−2

2

(
(ZS2,2)G

)
=

= εn−2
2

(
2

(n − 2)(n − 3)
(ZS2,0)G +

1

(n − 3)
ε21

(
(ZS1,1)G

)
+ (ZS2,2)G

)
hence if f + εn−2

2
((ZS2)G) ∈ Ker ϕ then

f = εn−2
2

(
2

(n − 2)(n − 3)
f20 +

1

(n − 3)
ε21 ( f11) + f22

)
∈ εn−2

2

(
(ZL2)

G
)

with f20 ∈ (ZS2,0)G, f11 ∈ (ZS1,1)G and f22 ∈ (ZS2,2)G. This implies

h =
2

(n − 2)(n − 3)
f20 +

1

(n − 3)
ε21 ( f11) ∈ (ZL2)

G (5.21)

by injectivity of εn−2
2

. We want to prove that 2
(n−2)(n−3) f20 ∈ (ZS2,0)G and 1

(n−3)ε
2
1
( f11) ∈

(ZS2,1)G, so that h ∈ (ZS2)G.

Clearly

(n − 3)h =
2

n − 2
f20 + ε21 ( f11) ∈ (ZL2)

G, (5.22)

whence
2

n − 2
f20 ∈ (ZS2,0)G .

Put h20 = 2
n−2 f20, by definition

h20 = bs20

with s20 =
∑

x∈Ln
2

x polytope of type (2,0) and b ∈ Z. We can write

h =
1

n − 3
h20 +

1

n − 3
ε21 ( f11) ∈ (ZL2)

G,
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G-modules and orbit matrices

with h20 ∈ (ZS2,0)G and f11 ∈ (ZS1,1)G.

It is enough to prove that b ≡ 0mod(n− 3). We consider {α− β1, α− β2, · · · , α− βn−1}

a standard basis of polytopes of type (1, 1). Let x = {α, βi}, y = {α, β j}, with i , j and

1 ≤ i, j ≤ n − 1.

It is easy to see that 1
n−3 < h20, x − y >= 1

n−3 (b − b) = 0. It follows

< h, x−y >=
1

n − 3
< ε21 ( f11), x−y >=

1

n − 3
< f11, ∂12(x−y) >=

1

n − 3
< f11, βi−β j >

(5.23)

is integer as h ∈ (ZL2)
G. Since f11 ∈ (ZS1,1)G, we have

f11 = z1(α − β1) + z2(α − β2) + · · · + zn−1(α − βn−1),

for some integer z1, · · · , zn−1. As f11 = (z1+z2+· · ·+zn−1)α−z1β1−z2β2−· · ·−zn−1βn−1,

then the inner product 5.23 becomes

< h, x − y >=
1

n − 3
(−zi + z j) ∈ Z,

thus

−zi + z j ≡ 0mod(n − 3). (5.24)

Moreover

< h, x > =
1

n − 3
< h20, x > +

1

n − 3
< ε21 ( f11), x >=

1

n − 3
< h20, x > +

1

n − 3
< f11, ∂12(x) >=

=
1

n − 3
< h20, x > +

1

n − 3
< f11, α + βi >=

1

n − 3
b +

1

n − 3
(z1 + · · · + zn−1 − zi) ∈ Z,

whence

b + z1 + · · · + zn−1 − zi ≡ 0mod(n − 3). (5.25)

Now let w = {βi, β j}, with 1 ≤ i, j ≤ n − 1 and i , j, so < h,w >= 1
n−3 < h20,w >

+ 1
n−3 < ε2

1
( f11),w >= 1

n−3b + 1
n−3 < f11, ∂12(w) >=

1
n−3b + 1

n−3 < f11, βi + β j >=
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5.3 Particular cases

1
n−3 (b − zi − z j). So we conclude

b − zi − z j ≡ 0mod(n − 3) (5.26)

From equations 5.24 and 5.26 we have

b − 2zi ≡ 0mod(n − 3). (5.27)

Again, from 5.26 and 5.25, for each set of three distinct indexes i, j, l, where 1 ≤ i, j, l ≤

n − 1 we have

b+ z1+ · · ·+ zn−1− zi +

n−1∑
j=1,j,i,l

(b− zl − z j) = b+ (n−3)b+ zl − (n−3)zl ≡ 0mod(n−3),

thus

b + zl ≡ 0mod(n − 3) (5.28)

Finally, by 5.27 and 5.28, we can deduce

b − 2zl + 2b + 2zl = 3b ≡ 0mod(n − 3)

for each 1 ≤ l ≤ n − 1. Since gcd(n,3) = 1 by hypothesis, we conclude

b ≡ 0mod(n − 3).

This concludes the proof. �

We conclude this section giving the following conjecture

Conjecture 5.3.5. If 0 ≤ t ≤ k ≤ n and t + k = n, then

(ZLn
k )

G

ε k
t (ZLn

t )
G
� (Cd0)

m0 × (Cd1)
m1 × · · · × (Cdt )

mt , (5.29)

where di =
(k−i

t−i

)
and mi = τi − τi−1, for i = 0, · · · , t.
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G-modules and orbit matrices

In general this statement is not true for t + k < n.

Example 5.3.6. If n = 8, t = 2, k = 3 and

G = 〈(1,2,3,8)(4,6,7,5), (5,8,6), (1,4,7), (2,6)(5,8), (2,8)(5,6), (1,7)(3,4), (1,4)(3,7)〉 ,

we consider the bases above introduced BΩt and BΩk (see the beginning of chapter) and

we write the matrix X+
23

associated to the map

ε32 : (ZL8
2)

G → (ZL8
3)

G,

with respect to these bases. By direct computation with Magma Computational Algebra

System, we get X+
23
=

©«
3 0

1 2

ª®¬. Its invariant factors are 1 and 6. So that

(ZL8
3
)G

ε3
2
(ZL8

2
)G

� C6.

If the equation 5.29 is true for t + k < n, then

(ZL8
3
)G

ε3
2
(ZL8

2
)G

� (Cd0)
m0 × (Cd1)

m1 × (Cd2)
m2,

with d0 = 3, d1 = 2, d2 = 1, m0 = 1, m1 = 0 and m2 = 1. So C6 � C3. Contradiction.

5.4 Matrices X−
tk and X+tk

In this last section we report some consideration about the matrices X+tk = (x
+
i j) and

X−
tk = (x

−
ji ) of the tactical decomposition (Ωt,Ωk). Here, we follow closely the original

proof of Wilson’s Theorem ( [15] ) for a diagonal form of Wtk . Actually we will prove

that the Equations 5.30 and 5.31 hold in order to get that the matrices

M+tk =
(
X+
0k |X

+
1k | · · · |X

+
tk

)
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5.4 Matrices X−
tk and X+tk

and

M−
tk =

©«

X−
0k

X−
1k

· · ·

X−
tk

ª®®®®®®®¬
have rank τt and index 1. See chapter 3, Proposition 3.1.3.

We begin giving an example for matrices X+tk = (x
+
i j) and X−

tk = (x
−
ji ) where n = 6, t = 2

and G = 〈(1,2,3), (1,2)(4,5)〉. We recall that X+tk = (x
+
i j) and X−

tk = (x
−
ji ) are the matrices

associated to ε k
t : (ZLn

t )
G → (ZLn

k )
G and ∂t

k : (ZLn
k )

G → (ZLn
t )

G with respect to the

bases above introduced BΩt and BΩk (see the beginning of chapter).

Example 5.4.1. Let n = 6, t = 2 and G = 〈(1,2,3), (1,2)(4,5)〉. Then the 2-orbits are

∆1 = {{1,2}, {2,3}, {1,3}},∆2 = {{1,4}, {2.4}, {2,5}, {3,4}, {1,5}, {3,5}},

∆3 = {{1,6}, {2,6}, {3,6}},∆4 = {{5,6}, {4,6}},∆5 = {{4,5}}

and the 4-orbits

Γ1 = {{3,4,5,6}, {1,4,5,6}, {2,4,5,6}},

Γ2 = {{2,3,5,6}, {1,3,5,6}, {1,3,4,6}, {1,2,5,6}, {2,3,4,6}, {1,2,4,6}},

Γ3 = {{2,3,4,5}, {1,3,4,5}, {1,2,4,5}},Γ4 = {{1,2,3,4}, {1,2,3,5}},Γ5 = {{1,2,3,6}}.

So we have that

(ZL2)
G = spanZ(

∑
x∈∆j

x : j = 1, · · · ,5),

and

(ZL4)
G = spanZ(

∑
y∈Γi

y : i = 1, · · · ,5).

107



G-modules and orbit matrices

Then

X+24 = X−
24
=

©«

0 2 1 2 1

1 2 2 1 0

1 4 0 0 1

3 3 0 0 0

3 0 3 0 0

ª®®®®®®®®®®¬
.

To determine the matrix M+
14
=

(
X+
04
|X+

14

)
we consider the 1-orbits

{1,2,3} {4,5} {6}.

Then

M+14 =

©«

1 1 2 1

1 2 1 1

1 2 2 0

1 3 1 0

1 3 0 1

ª®®®®®®®®®®¬
.

Now to prove that matrices M+tk and M−
tk have index 1 we introduce some Lemmas.

Denoting by Ht the incidence matrix between t-subsets and t-orbits, that is Ht(T,∆ j) = 1

if T ∈ ∆ j and Ht(T,∆ j) = 0 otherwise; put HT
t Ht = Nt ; it is easy to recognize that Nt

is the diagonal matrix such that Nt( j, j) is the number of elements in the orbit ∆ j . We

have the following results (see also [5] section 1.3, and [13]).

Lemma 5.4.2. [13](Lemma 3.1)

1. Hk X+tk = WT
tk Ht and Ht X−

tk = Wtk Hk;

2. (X+tk)
T Nk X+tk = HT

t WtkWT
tk Ht and (X−

tk)
T Nt X−

tk = HT
k WT

tkWtk Hk;

3. Nk X+tk = (X
−
tk)

T Nt , Nk(X+tk X−
tk) = (X

−
tk)

T Nt X−
tk ,

Nt(X−
tk X+tk) = (X

+
tk)

T Nk X+tk and Nt(X−
tk X+tk)N

−1
t = (X

−
tk X+tk)

T .
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tk and X+tk

Lemma 5.4.3. Let 0 ≤ j ≤ t ≤ k ≤ n, then

X−
jt X−

tk =

(
k − j
t − j

)
X−

j k (5.30)

Proof. By Lemmas 5.4.2 and 3.1.2,

Nj X−
jt X−

tk = HT
j Hj X−

jt X−
tk = HT

j W jt Ht X−
tk = HT

j W jtWtk Hk =

= HT
j

(
k − j
t − j

)
W j k Hk =

(
k − j
t − j

)
HT

j Hj X−
j k =

(
k − j
t − j

)
Nj X−

j k .

It follows

X−
jt X−

tk =

(
k − j
t − j

)
X−

j k

because Nj is non-singular. �

Lemma 5.4.4. Let 0 ≤ j ≤ t ≤ k ≤ n, then

X+tk X+jt =
(
k − j
t − j

)
X+j k (5.31)

Proof. By Lemmas 5.4.2 and 3.1.2,

Nk X+tk X+jt = HT
k Hk X+tk X+jt = HT

k WT
tk Ht X+jt = HT

k WT
tkWT

jt Hj =

= HT
k

(
k − j
t − j

)
WT

jk Hj =

(
k − j
t − j

)
HT

k Hk X+j k =

(
k − j
t − j

)
Nk X+j k .

It follows

X+tk X+jt =
(
k − j
t − j

)
X+j k

because Nk is non-singular. �

We introduce now a new matrix
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G-modules and orbit matrices

Definition 5.4.5. Let 0 ≤ t ≤ k ≤ n and t + k ≤ n. Then for any 0 ≤ i ≤ t we define X̄ik

the matrix whose rows are indexed by all G-orbits Λ on Ln
i and the columns by G-orbits

Γ on Ln
k , such that

X̄ik(Λ,Γ) = |{y ∈ Γ : y ∩ x = ∅, for one fixed x ∈ Λ}|.

Lemma 5.4.6. Let 0 ≤ t ≤ k ≤ n and t + k ≤ n. Then for any 0 ≤ i ≤ t

Hi X̄ik = W̄ik Hk,

where for each i-set x and k-set y

W̄ik(x, y) =


1 if x ∩ y = ∅

0 otherwise
.

Proof. First we note that x ∩ y = ∅ if and only if xg ∩ yg = ∅, for any g ∈ G.

So |{y ∈ Γ : y ∩ x = ∅, for one fixed x ∈ Λ}| depends only on the orbit Λ and not on a

choice of x. Then

Hi X̄ik(x,Γ) =
∑
Λ

Hi(x,Λ)X̄ik(Λ,Γ), (5.32)

since Hi(x,Λ) = 1 if and only if x ∈ Λ, we have that the right-hand side of equation 5.32

is equal to Hi(x,Λ)X̄ik(Λ,Γ) = X̄ik(Λ,Γ), with x ∈ Λ.

On the other hand, by definition of X̄ik , we have

W̄ik Hk(x,Γ) =
∑
y∈Ln

k

W̄ik(x, y)Hk(y,Γ) =
∑

x∩y=∅,y∈Γ

1 = X̄ik(Λ,Γ).

The claim follows. �

Theorem 5.4.7. Let 0 ≤ t < k ≤ n and t + k = n. Then

M+tk =
(
X+
0k |X

+
1k | · · · |X

+
tk

)
has rank τk and index 1. Moreover the Z-module spanned by its columns is equal to Zτk .
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tk and X+tk

Proof. First we prove that

Nk M+tk

©«

+X̄0k

−X̄1k

· · ·

(−1)t X̄tk

ª®®®®®®®¬
= Nk .

Indeed by Lemma 5.4.2, we have Hk X+ik = WT
ik Hi; moreover by Lemma 5.4.6, Hi X̄ik =

W̄ik Hk and finally, by Equation 3.2 ,
t∑

i=0
(−1)iW̄T

ikWik = I(nk), where I(nk) is the identity

matrix of order
(n
k

)
, we deduce

Nk M+tk

©«

+X̄0k

−X̄1k

· · ·

(−1)t X̄tk

ª®®®®®®®¬
= HT

k Hk M+tk

©«

+X̄0k

−X̄1k

· · ·

(−1)t X̄tk

ª®®®®®®®¬
=

= HT
k Hk

(
X+
0k |X

+
1k | · · · |X

+
tk

) ©«

+X̄0k

−X̄1k

· · ·

(−1)t X̄tk

ª®®®®®®®¬
= HT

k

t∑
i=0

(−1)iHk X+ik X̄ik =

HT
k

t∑
i=0

(−1)iWT
ik Hi X̄ik = HT

k

t∑
i=0

(−1)iWT
ikW̄ik Hk = HT

k

(
t∑

i=0

(−1)iWT
ikW̄ik

)
Hk =

= HT
k Hk = Nk .

Hence, since Nk is a non-singular matrix,

M+tk

©«

+X̄0k

−X̄1k

· · ·

(−1)t X̄tk

ª®®®®®®®¬
= Iτk ,
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with Iτk identity matrix of order τk . So

M+tk

©«

+X̄0k

−X̄1k

· · ·

(−1)t X̄tk

ª®®®®®®®¬
M+tk = M+tk

and, by Proposition 2.4.16, M+tk has index 1. This means that the Z-module spanned by

the columns of M+tk is a pure submodule of Zτk of rank τk . By Lemma 2.4.14 we have

the claim. �

Remark 5.4.8. By equation Hk X+tk = WT
tk Ht , we deduce that the non-zero invariant

factors of X+tk are the same of WT
tk Ht , which is the matrix associated to the restriction

ε k
t : (ZLt)

G → ZLk,

with respect to the canonical bases BΩt and Ln
k , respectively.

Using the relations given in Lemma 5.4.2 it is possible to prove Theorem

Theorem 5.4.9. Let 0 ≤ t < k ≤ n and t + k = n. Then

M−
tk =

t⋃
i=0

X−
ik =

©«

X−
0k

X−
1k

· · ·

X−
tk

ª®®®®®®®¬
has rank τt and index 1.

Theorems 5.4.7 and 5.4.9 are exactly the first step of Wilson’s proof. This suggested us

conjecture 5.3.5. We tried to continue following the arguments of Wilson. We realized

(see Proposition 3.1.3) that in his proof it is necessary that the matrix Mtk has index 1

also for t < k < n − t. This is not true in our cases for matrices M+tk and M−
tk .
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APPENDIXA

Smith group of ε k
t : (ZLt)

G → (ZLk)
G

In this section we insert the program used in the Magma Computational Algebra System

to verify that for any permutation group G on Ω = {1, · · · ,n}, where n ≤ 11, 0 ≤ t ≤ k

and t+ k = n, the orbit matrix X+tk is equivalent to a diagonal form with entries di =
(k−i

t−i

)
and multiplicity mi = τi − τi−1, for i = 0, · · · , t.

checkG := f u n c t i o n (G, k , t )

l o c a l deg , Lk , Lt , Ll , Ok , Ot , Ol , Op ,X, i , j , Ti , Kj , x ,M, min , u ,Y,W, molt , d , l , r , co l , row ;

deg := Degree (G ) ;

Lk := Sub s e t s ( { 1 . . deg } , k ) ;

Lt := Sub s e t s ( { 1 . . deg } , t ) ;

Lk := GSet (G, Lk ) ;

Lt := GSet (G, Lt ) ;

Ok:= O r b i t s (G, Lk ) ;

Ot := O r b i t s (G, Lt ) ;
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Smith group of ε k
t : (ZLt)

G → (ZLk)
G

Op : = 0 ;

row :=#Ot ;

c o l :=#Ok ;

min :=Minimum ( co l , row ) ;

Y : = [ ] ;

r : = 1 ;

f o r l i n [ 0 . . t ] do

Ll := Sub s e t s ( { 1 . . deg } , l ) ;

Ll := GSet (G, Ll ) ;

Ol := O r b i t s (G, Ll ) ;

mol t :=#Ol−Op ;

i f mol t ne 0 t h en

f o r i i n [ r . . r +molt −1] do

f o r j i n [ 1 . . c o l ] do

i f i ne j t h en

d : = 0 ;

e l s e

d := Binomia l ( k−l , t−l ) ;

end i f ;

Y:= Append (Y, d ) ;

end f o r ;

end f o r ;

r := r +mol t ;

end i f ;

Op:=#Ol ;

end f o r ;

W:= Mat r i x ( I n t e g e r s ( ) , row , co l ,Y ) ;
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r e t u r n ( < E l emen t a r yD i v i s o r s (W) > ) ;

end f u n c t i o n ;

checkGG := f u n c t i o n (G, k , t )

l o c a l deg , Lk , Lt , Ok , Ot , i , j , Tj , Ki , y , x , L ,N;

deg := Degree (G ) ;

Lk := Sub s e t s ( { 1 . . deg } , k ) ;

Lt := Sub s e t s ( { 1 . . deg } , t ) ;

Lk := GSet (G, Lk ) ;

Lt := GSet (G, Lt ) ;

Ok:= O r b i t s (G, Lk ) ;

Ot := O r b i t s (G, Lt ) ;

L : = [ ] ;

f o r i i n [ 1 . . # Ok] do

Ki :=Ok[ i ] ;

y := R e p r e s e n t a t i v e ( Ki ) ;

f o r j i n [ 1 . . # Ot ] do

Tj := Ot [ j ] ;

L := Append (L , # { x : x i n Tj | x s u b s e t y } ) ;

end f o r ;

end f o r ;

N:= Mat r i x ( I n t e g e r s ( ) , #Ok , # Ot , L ) ;

r e t u r n ( < E l emen t a r yD i v i s o r s (N) > ) ;

end f u n c t i o n ;

S :=Sym ( 8 ) ;

Sub := Subgroups ( S ) ;
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Smith group of ε k
t : (ZLt)

G → (ZLk)
G

Sub : = [ x A l t +96 subgroup : x i n Sub ] ;

f o r G i n Sub do

nr := Degree (G ) ;

f o r k i n [ 1 . . n r ] do

i f k ne nr−k t h en

f o r t i n [ 1 . . Minimum ( k , nr−k ) ] do

c := checkG (G, k , t ) ;

cc := checkGG (G, k , t ) ;

i f no t c [ 1 ] eq cc [ 1 ] t h en

p r i n t <G, c [ 1 ] , cc [ 1 ] , t , k , nr > ;

end i f ;

end f o r ;

end i f ;

end f o r ;

end f o r ;

p r i n t <" Te rmina to " >;
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APPENDIXB

The case t + k = n

Herewewrite the programused to determine the vector v+2 in the caseΩ = {1,2,3,4,5,6},

t = 2 and k = 4. For avoid confusion, we denote by αi the ith element of Ω, with

i = 1, · · · ,6.

Let

C2 ={α1α2, α2α3, α1α3, α1α4, α2α4, α2α5, α3α4, α1α5,

α3α5, α1α6, α2α6, α3α6, α5α6, α4α6, α4α5}

be a canonical basis and

P2 ={
∑
x∈L6

2

x, (α1 − α2)(α3 − α4), (α1 − α2)(α3 − α5), (α1 − α2)(α3 − α6), (α1 − α3)(α2 − α4),

(α1 − α3)(α2 − α5), (α1 − α3)(α2 − α6), (α1 − α4)(α2 − α5), (α1 − α4)(α2 − α6),

(α1 − α5)(α2 − α6), ε
2
1 (α1 − α2), ε

2
1 (α1 − α3), ε

2
1 (α1 − α4), ε

2
1 (α1 − α5), ε

2
1 (α1 − α6)}

be a standard basis of QL6
2
.
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Similarly, let

C4 ={α3α4α5α6, α1α4α5α6, α2α4α5α6, α2α3α5α6, α1α3α5α6, α1α3α4α6, α1α2α5α6,

α2α3α4α6, α1α2α4α6, α2α3α4α5, α1α3α4α5, α1α2α4α5, α1α2α3α4, α1α2α3α5, α1α2α3α6}

be a canonical basis and

P4 ={
∑
y∈L6

4

y, ε42 ((α1 − α2)(α3 − α4)), ε
4
2 ((α1 − α2)(α3 − α5)), ε

4
2 ((α1 − α2)(α3 − α6)),

ε42 ((α1 − α3)(α2 − α4)), ε
4
2 ((α1 − α3)(α2 − α5)), ε

4
2 ((α1 − α3)(α2 − α6)),

ε42 ((α1 − α4)(α2 − α5)), ε
4
2 ((α1 − α4)(α2 − α6)), ε

4
2 ((α1 − α5)(α2 − α6)),

ε41 (α1 − α2), ε
4
1 (α1 − α3), ε

4
1 (α1 − α4), ε

4
1 (α1 − α5), ε

4
1 (α1 − α6)}

be a standard basis of QL6
4
.

We call x and y the matrices of change of basis from P2 to C2 and from P4 to C4,

respectively.

\ b eg in { l s t l i s t i n g }

Q:= Re a l F i e l d ( ) ;

Q<o >:= Cyc l o t om i cF i e l d ( 3 ) ;

R<a >:= Po lynomia lR ing (Q , 1 ) ;

F<a >:= F i e l dO f F r a c t i o n s (R ) ;
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G:= Ma t r i xA lgeb r a ( F , 1 5 ) ;

x :=G! [

1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 ,

1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,0 ,0 ,0 ,−1 ,−1 ,0 ,0 ,0 ,

1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 ,

1 , −1 ,0 , 0 , −1 ,0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1 ,

1 ,1 ,0 ,0 ,0 ,0 ,0 ,−1 ,−1 ,0 , −1 ,0 , −1 ,0 ,0 ,

1 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 , −1 , −1 ,0 ,0 , −1 ,0 ,

1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , −1 , −1 ,0 , 0 ,

1 ,0 , −1 ,0 ,0 , −1 ,0 , −1 ,0 ,0 ,1 ,1 ,1 ,0 ,1 ,

1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , −1 ,0 , −1 ,0 ,

1 ,0 ,0 , −1 ,0 ,0 , −1 ,0 , −1 ,−1 ,1 ,1 ,1 ,1 ,0 ,

1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , −1 ,0 , 0 , 0 , −1 ,

1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , −1 ,0 , 0 , −1 ,

1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , −1 , −1 ,

1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , −1 ,0 , −1 ,

1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , −1 , −1 , 0 ] ;

y :=G! [

1 ,0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,1 ,0 ,−1 ,−1 ,−1 ,−1 ,

1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ,0 ,

1 ,1 ,1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 , −1 ,0 , −1 ,−1 ,−1 ,

1 ,−1 ,0 ,0 ,−1 ,0 ,0 ,0 ,0 ,0 ,−1 ,−1 ,0 ,−1 ,−1 ,

1 , 1 , 0 , 0 , 0 , 0 , 0 , −1 , −1 ,0 , 1 , 0 , 1 , 0 , 0 ,
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1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , −1 , 1 , 0 , 0 , 1 , 0 ,

1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 ,

1 ,0 ,−1 ,0 ,0 ,−1 ,0 ,−1 ,0 ,0 ,−1 ,−1 ,−1 ,0 ,−1 ,

1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 ,

1 ,0 ,0 ,−1 ,0 ,0 ,−1 ,0 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,0 ,

1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ,

1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 ,

1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 ,

1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 ,

1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 ] ;

De t e rm inan t ( x ) ;

p r i n t " " ;

V:= Vec to rSpace ( F , 1 5 ) ;

v :=V! [ −1 , 0 , 0 , −1 , 1 , 2 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 ] ;

z := x^−1;

w:= v∗Transpose ( z ) ;

p r i n t v ;

p r i n t w;

w∗Transpose ( y ) ;
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