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Abstract

Recent advances in several research fields of Life Sciences, such as Bioinformatics, Com-
putational Biology and Medical Imaging, are generating huge amounts of data that require
effective computational tools to be analyzed, while other disciplines, like Systems Biology,
typically deal with mathematical models of biochemical networks, where issues related to the
lack of quantitative parameters and the efficient description of the emergent dynamics must
be faced. In these contexts, High-Performance Computing (HPC) infrastructures represent
a fundamental means to tackle these problems, allowing for both real-time processing of
data and fast simulations. In the latest years, the use of general-purpose many-core devices,
such as Many Integrated Core coprocessors and Graphics Processing Units (GPUs), gained
ground. The second ones, which are pervasive, relatively cheap and extremely efficient
parallel many-core coprocessors capable of achieving tera-scale performance on common
workstations, have been extensively exploited in the work presented in this thesis.

Moreover, some of the problems described here require the application of Computa-
tional Intelligence (CI) methods. As a matter fact, the Parameter Estimation problem in
Systems Biology, the Haplotype Assembly problem in Genome Analysis as well as the
enhancement and segmentation of medical images characterized by a bimodal gray level
intensity histogram can be viewed as optimization problems, which can be effectively ad-
dressed by relying on CI approaches. In the case of the Parameter Estimation problem,
Evolutionary and Swarm Intelligence techniques were exploited and coupled with novel
GPU-powered simulators—designed and developed in this thesis to execute both coarse-
grained and fine-grained simulations—which were used to perform in a parallel fashion the
biochemical simulations underlying the fitness functions required by these population-based
approaches. The Haplotype Assembly and the enhancement of medical images problems
were both addressed by means of Genetic Algorithms (GAs), which were shown to be very
effective in solving combinatorial problems. Since the proposed approaches based on GAs
are computationally demanding, a Master-Slave paradigm was exploited to distribute the
workload, reducing the required running time.

The overall results show that coupling HPC and CI techniques is advantageous to address
these problems and speed up the computational analyses in these research fields.
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Introduction

Nowadays, the recent advances in several biomedical research �elds, such as Bioinformatics,

Computational Biology and Medical Imaging, are generating a huge amount of data on

an ongoing basis [170, 461, 135]. On the other hand, different disciplines related to Life

Sciences (e.g., Systems Biology) require computational methods capable of dealing with

the lack of quantitative data, especially when large-scale biological systems are taken into

account. Processing and analyzing this ensemble of data in a reasonable time, even in

real-time, or solving the issues related to the paucity of information to investigate the

functioning of complex cellular systems, are dif�cult tasks that can be addressed by relying

on High-Performance Computing (HPC) infrastructures. In the biomedical research context,

for instance, grid computing and computer clusters have been largely used due to their

peculiarities that allow researchers to access global-scale resources. These infrastructures are

generally �exible and characterized by a high scalability, which allows for achieving high

performance by exploiting any available computational methods with minimal changes to

the original code. During the latest years, the use of general-purpose many-core devices,

such as Many Integrated Core (MIC) coprocessors and Graphics Processing Units (GPUs),

gained ground. As a matter of fact, traditional computational methods and software tools

designed and developed in research �elds related to Life Sciences share a common trait: they

easily become computationally demanding on Central Processing Units (CPUs), hindering

their applicability in many circumstances. In order to overcome this limitation, GPUs

have been widely adopted as an alternative approach to classic parallel architectures for

the parallelization of computational methods in Bioinformatics, Computational Biology

and Systems Biology, as extensively reviewed in [308]. GPUs were initially developed

to deal with the calculations required by real-time three-dimensional computer graphics,

by exploiting their underlying parallel architecture and thus freeing the CPU for further

calculations [302]. Since GPUs are pervasive, relatively cheap and extremely ef�cient

parallel many-core coprocessors, they are drawing an ever-growing attention by the scienti�c

community. As a matter of fact, even common consumer machines are equipped with

GPUs that allow the access to tera-scale performance on common workstations (and peta-
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scale performance on GPU-equipped supercomputers [220]). They can markedly decrease

the running times required by traditional CPU-based software, still maintaining low-costs

and energetic ef�ciency. However, we highlight that, in general, the implementation of

computational methods able to fully exploit the peculiar architecture of GPUs is challenging,

since speci�c programming skills are required and a complete algorithm redesign is often

necessary to fully leverage the computational power of these many-core devices.

Objectives of the work

Given the effectiveness of HPC solutions, the research activity discussed in this thesis focused

on the design, development and application of HPC approaches to solve computationally

expensive tasks in different disciplines of Life Sciences, proposing new solutions capable

of ef�ciently dealing with both the lack of quantitative data and the request of an effective

processing of huge amounts of data. In particular, the four major problems addressed in this

thesis are:

1. the de�nition of ef�cient tools to simulate and investigate the emergent dynamics of

biological systems;

2. the estimation of unknown parameters of mathematical models of biochemical systems;

3. the Haplotype Assembly problem in Genome Analysis;

4. the enhancement and segmentation of medical images characterized by bimodal gray

level intensity histograms.

It is worth noting that each of these problems also bene�ted from the use of Computational

Intelligence (CI) algorithms, since they are all related to �nding an optimal solution in

a huge search space of candidate solutions. Evolutionary Computation (EC) [105] and

Swarm Intelligence (SI) [224] are two different CI strategies that allow for measuring

the quality of each candidate solution according to a speci�ed �tness function, as in the

case of mathematical optimization problems. In particular, the main concept underlying

the EC methods is the evolution process that exploits genetic operators (i.e.,selection,

mutationandcrossover) to evolve a population of candidate solutions. On the contrary, SI

approaches rely on the emergent intelligence arising from thecollectiveeffort of simple

agents reciprocally sharing information about the explored search space to �nd an optimal

solution with respect to the de�ned �tness function. The optimization problems considered

in this thesis can be partitioned into two different classes: continuous (e.g., Parameter

Estimation) and discrete (e.g., Haplotype Assembly) problems, which can be effectively

tackled either by means of EC or SI techniques. EC methods, like Genetic Algorithms (GAs),
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have been successfully applied to optimize discrete problems, while other methods, such as

Particle Swarm Optimization (PSO) or Covariance Matrix Adaptation Evolution Strategy

(CMA-ES), obtain better performance on real-valued problems.

All the methods based on EC and SI proposed in this thesis require a lot of �tness function

evaluations, and they are employed to address problems that are intrinsically computational

demanding. Since the calculations of the �tness functions are independent and some problems

can be decomposed in sub-problems, parallel and distributed architectures can be used to

reduce the required running time. Among all possible architectures, GPUs, MICs and multi-

core CPUs have been used to accelerate the proposed methods, and the results discussed in

this thesis con�rm that the coupling of HPC architectures with CI represents an extremely

suitable mean to achieve fast and ef�cient solutions to the aforementioned problems.

Figure 1 shows the main areas discussed in this thesis together with their conceptual

interconnections. Namely, green hexagons represent Systems Biology and biochemical

simulations; blue hexagons indicate mathematical optimization solved using EC [105] and

SI [224] methods; orange hexagons symbolize the issues related to Genome Analysis; purple

hexagons represent the Medical Imaging area, speci�cally focusing on the enhancement and

segmentation of Magnetic Resonance (MR) images.

Research questions in Systems Biology

Problems1 and2 mentioned above pertain to Systems Biology, a multidisciplinary research

�eld relying on the cross-talk between mathematical, computational and experimental tools.

As a �rst step, rigorous mathematical models describing—at the desired level of detail—

the complex, dynamical and non-linear nature of the biological systems must be de�ned.

After a validation step throughad hoclaboratory experiments, mathematical models can

be used to investigate and analyze the behavior of the biological systems in conditions that

are hard or even impossible to measure with laboratory experiments. These computational

analyses allow for understanding the functioning of biological systems and their response to

environmental and structural perturbations [205], thus helping to formulate new hypotheses

that can be tested by means of further laboratory experiments. The knowledge derived from

these experiments can then be used to increase the detail of the mathematical models, as well

as suggest novel research directions [229], leading to an iterative cycle of model re�nements

[84].

In this thesis, the conceptual framework of mechanistic modeling was taken into account

to model biochemical networks. This modeling approach provides a detailed description

of the molecular mechanisms that drive the interactions between the components of the

biochemical network under analysis [71]. As a matter of fact, mechanistic models represent
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Fig. 1 Overview of the topics discussed in this thesis. Different colors have been used to
represent the distint research �elds and the exploited methodologies: green for Systems
Biology and the tools for biochemical simulations (Chapters 1 and 4) accelerated by means of
both MIC and GPUs; blue for mathematical optimization, which is the basis for the Parameter
Estimation problem (Chapters 1 and 5), solved using EC and SI methods; orange for Genome
Analysis (Chapters 1 and 6) that has been tackled by exploiting GAs and multi-core CPUs;
purple for Medical Imaging, focusing on the enhancement and segmentation of MR images
characterized by bimodal histograms (Chapters 1 and 7), addressed by means of GAs and
multi-core CPUs. The EC and SI algorithms, exploited during this thesis, are presented in
Chapter 2, while the HPC architecture used to accelerate the proposed methodologies are
described in Chapter 3. This work aims at providing fast and reliable computational tools
to achieve the aforementioned tasks, paving the way for further works integrating different
disciplines for a deeper analysis of biomedical investigations.

the most prominent formalism to achieve a detailed comprehension of biological systems,

since they allow for quantitative predictions of cellular dynamics. Among all possible

mathematical formalizations that can be used to de�ne mechanistic models, Reaction-Based
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Models (RBMs) were considered in this thesis [41]. This choice was based on the following

motivations: (i) RBMs are more easily readable and comprehensible with respect to other

mathematical formalisms, such as differential equations. This is mostly important when

experimental biologists are involved in the modeling phase and in the execution of the

simulations and analyses of biological systems; (ii ) RBMs are a �exible formalism that

can be easily extended or modi�ed during further model re�nements, by simply adding

or removing new reactions and/or species to the sets of reactions and chemical species

previously de�ned; (iii ) when an RBM is de�ned, it can be simulated by using both stochastic

and deterministic simulators, according to the mass-action kinetics [154, 84].

The simulation of mathematical models of complex biological systems is indispensable to

determine and predict the quantitative variation of the molecular species in time and in space.

Simulations can be performed by relying on deterministic, stochastic or hybrid algorithms

[466], which should be chosen according to the scale of the modeled system, the nature of its

components and the possible role played by the biological noise. Simulations and analyses of

mechanistic models can be performed if and only if a full model parameterization is properly

speci�ed, that is, all kinetic parameters and the initial conditions (i.e., molecular amounts

or concentrations of the chemical species) are provided. Since a small change of even a

single kinetic parameter or an initial condition can drastically modify the dynamic behavior

of the system, the model parameterization should be as accurate as possible. Unfortunately,

kinetic parameters are usually expensive or even impossible to measure by means ofin

vivoexperiments, leading to the de�nition of the Parameter Estimation (PE) problem [285],

which aims at the inference of accurate parameters values1. The most naïve, diffused, error-

prone and time-consuming approach is the manually tuning of the model parameters [454].

Conversely, several automatic methods de�ned to identify a model parameterization that can

reproduce some target dynamics can be used to obtain repeatable results. Generally, solving a

PE problem consists in �nding the model parameterization that allows for obtaining simulated

dynamics that overlap at best some target time-series measurements of the chemical species

involved in the system. This strategy is challenging since it generally leads to a non-linear,

non-convex and multi-modal optimization problem [311, 432]. Moreover, an additional

challenge has to be faced when data related to multiple time-series are available, each one

obtained by executing different experiments under different chemico-physical conditions

(e.g., temperature), replicated many times.

1Notice that to infer the kinetic parameters or the initial amounts of some species relying on PE procedures,
it is implicit to assume that all the reactions characterizing the model are known.
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Contribution In order to deal with the computational burden of biochemical simulations,

we designed and developed two deterministic GPU-powered biochemical simulators. The

former, named LASSIE (LArge-Scale SImulator) [425], was proposed to accelerate the

simulations of large-scale biological systems, characterized by thousands reactions and

molecular species. The latter, named FiCoS (Fine- and Coarse-grained Simulator) [428], was

designed to reduce the running time required by the PE and other computational methods

(e.g., Parameter Sweep Analysis [307] and Sensitivity Analysis [70]) that rely on a massive

number of simulations of large-scale models. Moreover, a stochastic simulator based on

the Stochastic Simulation Algorithm (SSA) [154] and accelerated by exploiting the MIC

coprocessors [427] was proposed. These simulators allow researchers to perform simulations

of biological system under physiological or perturbed conditions on common workstations.

The PE problem was tackled by exploiting several bio-inspired metaheuristics, all based

on global optimization approaches. Considering the PE of small-scale models we performed

a thorough analysis about the application of EC and SI approaches, showing that the PE

problem is completely different to the classic benchmark functions [311, 432]. Afterwards,

in order to deal with optimization problems characterized by multiple targets obtained under

different experimental conditions, we proposed a multi-swarm PE approach [430] based

on PSO. The PE problem of large-scale models was solved by coupling Fuzzy Self-Tuning

Particle Swarm Optimization (FST-PSO) with FiCoS [442].

Research questions in Genome Analysis

Problem3 pertains to the research �eld of Genome Analysis in Bioinformatics, more precisely

to the reconstruction of the two distinct copies of each chromosome, called haplotypes, which

is an essential step to fully characterize the genome of an individual. The computational

problem of inferring the full haplotype of a cell, starting from read sequencing data, is

known as Haplotype Assembly, and consists in assigning all heterozygous Single Nucleotide

Polymorphisms (SNPs) to exactly one of the two chromosomes. SNPs are one of the most

studied genetic variations since they play a fundamental role in many medical applications,

such as drug-design, as well as in characterizing their effect on the expression of phenotypic

traits [195]. Indeed, the knowledge of the complete haplotypes is generally more informative

than analyzing single SNPs, especially in the study of complex disease susceptibility. Since a

direct experimental reconstruction of haplotypes still requires huge sequencing efforts and is

not cost-effective [240], computational approaches are extensively used to solve this problem.

In particular, two classes of methods exist for the haplotype phasing [404]. The �rst class

consists of statistical methods that try to infer the haplotypes from genotype samples in a

population. These data, combined with datasets describing the frequency by which the SNPs
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are usually correlated in different populations, can be used to reconstruct the haplotypes

of an individual. The second class of methods directly leverages sequencing data: in such

a case, the main goal is to partition the entire set of reads into two sub-sets, exploiting

the partial overlap among them to ultimately reconstruct the corresponding two different

haplotypes of a diploid organism [333]. Among the computational methods for Haplotype

Assembly, the Minimum Error Correction (MEC) is one of the most successful approaches.

A weighted variant of MEC, named weighted MEC (wMEC), was proposed in [169], where

the weights represent the con�dence for the presence of a sequencing error and the correction

process takes into account the weight associated with each SNP value of a read. These error

schemes generally regard phred quality score [129], which represents the probability that

a given base is called incorrectly by the sequencer, and are very valuable for processing

long reads generated by third-generation sequencing technologies, as they are prone to high

sequencing error rates [333]. MEC computes the two haplotypes that partition the sequencing

reads into two disjoint sets with the least number of corrections to the SNP values [457],

but unfortunately it was proven to be NP-hard [265]. Due to the NP-hardness of the MEC

problem, some methods exploiting heuristic strategies have been proposed (see for instance

[121, 239, 457, 459]).

Contribution In order to tackle the computational complexity of the haplotyping problem,

we proposed GenHap [433], which can ef�ciently solve large instances of the wMEC problem.

GenHap is a novel computational method based on GAs that yields optimal solutions by

means of a global search process, without anya priori hypothesis about the sequencing

error distribution in the reads. The computational complexity is reduced by relying on

a divide-et-imperaapproach, which was distributed exploiting a Master-Slave computing

paradigm that allows for speeding up the required computations, reducing the computational

burden.

Research questions in Medical Imaging

Problem4 pertains to the research �eld of Medical Imaging, which plays a key role in the clin-

ical work�ow thanks to its capability of representing anatomical and physiological features

that are otherwise inaccessible for inspection, thus proposing accurate imaging biomarkers

and clinically useful information [367, 243]. Due to the appearance of the depicted objects

as well as the information conveyed by the pixels, medical images are considerably different

from the pictures usually analyzed in Pattern Recognition and Computer Vision. As a matter

of fact, medical imaging techniques exploit several different principles to measure spatial

distributions of physical attributes of the human body, allowing us to better understand
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complex or rare diseases [441]. The effectiveness of these techniques can be reduced by

a lot of phenomena, such as noise and partial volume effect [441], which might affect the

measurement processes involved in imaging and data acquisition devices. Image contrast

and details might also be impaired by the procedures used in medical imaging, as well as

by the physiological nature of the body part under investigation. Moreover, medical images

actually convey an amount of information related to high image resolution and high pixel

depth, which could overwhelm the human vision capabilities in distinguishing among dozens

of gray levels [325]. Thus, improvements in the appearance and visual quality of medical

images are essential to allow physicians to attain valuable information that would not be

immediately observable in the original image, and assisting them in anomaly detection,

diagnosis, and treatment. In this context, image enhancement techniques aim at realizing a

speci�c improvement in the quality of a medical image: the enhanced image is expected to

better reveal certain features, compared to their original appearance [104].

In the clinical routine, Contrast-Enhanced (CE) MRI is a diagnostic technique that enables

a more precise assessment of the imaged tissues, resulting the most prominent modality

to obtain soft-tissue imaging [54], especially in oncology, since it provides signi�cant

improvements—in terms of image contrast and resolution—between lesion and healthy

tissue [288]. However, MRI data are affected by acquisition noise [417] and are also prone

to imaging artifacts, related to magnetic susceptibility and large intensity inhomogeneities of

the static magnetic �eld (i.e., streaking or shadowing artifacts [33]), especially by using high

magnetic �eld strengths. These aspects make MR image enhancement a challenging task

devoted to improve the outcome of automatic segmentation. Medical image segmentation

concerns both detection and delineation of anatomical or physiological structures from the

background, distinguishing among the different components included in the image [27].

This allows for the extraction of clinically useful information and features in medical image

analysis [367, 218]. Accordingly, computer-assisted approaches enable quantitative imaging

[122], aiming at accurate and objective measurements from digital images regarding a Region

of Interest (ROI) [482, 243]. Indeed, image segmentation is still one of the most challenging

research areas especially in medical image analysis [122]. Accurately delineating the ROIs

is a critical task, since manual segmentation procedures are time-expensive, error-prone, and

operator-dependent (i.e., not ensuring result repeatability).

Contribution The existing image enhancement approaches generally attempt to improve

the contrast level of the whole image and do not address the issues related to overlapped gray

level intensities; by so doing, neither the region contour sharpness nor the image thresholding

results can be improved. However, determining the best pre-processing of an image—able
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to preserve the structural information of the image while enhancing the underlying bimodal

distribution of the histogram bins—is a complex task on a multi-modal �tness landscape.

For this reason, we proposed MedGA [379], a novel image enhancement technique based on

GAs that aims at strengthening the sub-distributions in medical images with an underlying

bimodal histogram of the gray level intensities. We developed also a Master-Slave version

of MedGA to distribute on multiple cores the analysis of the batch of slices obtained by the

CE-MRI of a single patient.

Thesis structure

This thesis is structured as follows. In the �rst part (Chapters 1–3) the prerequisites necessary

for the development of the proposed solutions are introduced. In the second part (Chapters

4–7), the novel computational approaches proposed in the thesis, together with their appli-

cations, are described in details. These chapters constitute the original contribution of the

research activities proposed in this thesis. The last chapter �nally provides a discussion of

this work and future research directions. More precisely:

• In Chapter 1, the complex problems addressed in this thesis are introduced. In the

�rst two sections, the principal modeling approaches for biochemical networks, along

with the simulations methodologies, are described. In this context, the role of model

parameters is shown and the PE problem de�ned. Afterwards, the Haplotype Assembly

problem is discussed and, �nally, an introduction to medical images characterized by a

bimodal histogram is provided. For each problem, the main state-of-the-art approaches

are also presented.

• Chapter 2 starts with a description of classic and local optimization techniques. Then,

the most known EC and SI techniques are presented. Among them, GAs, PSO, and

two improved version of PSO relying on Fuzzy Logic are discussed in more details,

since the former was used to tackle the Haplotype Assembly and the enhancement of

MR images, while the latter to address the PE problem.

• In Chapter 3, the main features of the most known HPC paradigms are described,

analyzed and discussed, starting from traditional architectures (grid computing and

compluter clusters) to many-core solutions (MICs and GPUs). General-Purpose GPU

computing is described in details along with the Compute Uni�ed Device Architecture

(CUDA), which has been exploited to develop both LASSIE and FiCoS.
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• In Chapter 4, we describe the two deterministic GPU-powered biochemical simulators

(i.e., LASSIE and FiCoS), as well as the stochastic simulator accelerated by means of

MICs coprocessors. We show, in particular, that FiCoS drastically reduces the running

time required by the Parameter Sweep Analysis of two real RBMs. We also propose

an empirical analysis that might facilitate the selection of proper HPC architectures to

parallelize SSA, depending on the number of required independent simulations.

• Chapter 5 describes the PE problem and its solution by means of EC and SI techniques.

A comparison of the ef�ciency of different EC and SI techniques in solving benchmark

functions with respect to the PE problem is also presented [311, 432]. Then, a PE

methodology designed to deal with the availability of experimental data measured in

multiple initial conditions is discussed. Finally, a PE methodology combining FiCoS

and a Fuzzy Logic-based version of PSO is presented to solve the PE of large-scale

models of biological systems [442].

• In Chapter 6, GenHap is described in details along with the obtained results. The results

show that GenHap always obtains high accuracy solutions (in terms of haplotype error

rate), and is faster than a state-of-the-art approach, considering both short and long

reads generated by second and third-generation sequencing technologies, respectively.

We also assessed the performance of GenHap on two different real datasets, showing

that future-generation sequencing technologies can highly bene�t from GenHap, thanks

to its capability of ef�ciently solving large instances of the Haplotype Assembly

problem.

• Chapter 7 focuses on MedGA. First, the method for image enhancement and its results

are presented, showing that MedGA is capable of outperforming the state-of-the-art

approaches. Afterwards, a segmentation pipeline based on MedGA is proposed and

the achieved results discussed in details. The results highlight that applying MedGA as

a pre-processing step, the MR image segmentation accuracy is considerably increased,

allowing for measurement repeatability in clinical work�ows.

• In the last chapter some conclusive remarks about the presented works are given.

Possible improvements and future directions are also discussed.

• In Appendix A the RBMs of some real biochemical systems, exploited to test the

methodologies proposed in this thesis, are described.
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Chapter 1

Complex problems in Life Sciences

In this chapter, the main concepts and state-of-the-art methods about the four problems

addressed during this thesis (i.e., the simulation of (large-scale) biochemical models, the

Parameter Estimation (PE) problem of biochemical systems, the Haplotype Asssembly, the

enhancement and segmentation of medical images characterized by bimodal histograms) are

introduced and explained in details. In the �rst three sections, we present (i) the different

modeling approaches that can be exploited to describe biological systems, (ii ) the simula-

tion methodologies that can be used to investigate the dynamic behaviors of the modeled

systems, and (iii ) the fundamental role played by the parameters on the emergent behaviors

of biological systems, along with the PE problem. In the following section, the Haplotye

Assembly problem, which is one of the most hot topics in Bioinformatics and Genome

Analysis, is introduced. Finally, in the last section we provide a description of the main

issues related to the enhancement and the segmentation of medical images characterized by

bimodal histograms.

1.1 Modeling biochemical systems

The representation of a biological system by means of a mathematical formulation, which

allows for understanding the phenomenon of interest, must take into account the scale of the

modeled system, the nature of its components, and the possible role played by the biological

noise. The chosen mathematical formulation should be capable of integrating the different

kinds of data obtained from laboratory experiments, as well as providing new hypotheses to

be testedin vivo. As a matter of fact, the mathematical formulation should allows us to: (i)

investigate the functioning of complex biological systems; (ii ) characterize their emergent

properties exploiting the interactions among their fundamental components [10]; (iii ) predict
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how these complex biological systems might behave in both physiological and perturbed

conditions.

Biochemical reaction networks can be described by relying on different modeling ap-

proaches, depending on the desired level of details. A plethora of computational methods

can then be used to simulate and analyze the properties of the modelled system. The choice

of the most appropriate mathematical and computational approaches is related to the purpose

of the study, and should take into account the speci�c biological problem under investigation,

as well as the complementary analysis performed by means of laboratory experiments. In

order to de�ne the most appropriate mathematical model, the following factors must be

carefully considered: (1) the purpose (i.e., the scienti�c question) underlying the model; (2)

the expected information that should be collected fromin silico analyses; (3) the available

data and their quality. These factors allow for properly determining the abstraction level of

the model that we should de�ne and use.

The modeling approaches can be partitioned into two classes: (i) coarse-grained models

(e.g., interaction-based or constraint-based models), and (ii ) �ne-grained (e.g., mechanism-

based) models. The former class is suitable for the identi�cation of the main components

or modules of the system under investigation, but they generally do not take into account

the majority of quantitative and kinetic properties of the system, resulting too often poor of

biochemical details. The latter class is composed of mechanism-based modeling approaches

that are characterized by the highest predictive capabilities about the functioning of the

system at molecular level. Nevertheless, they require detailed kinetic information about

the interactions between the molecular species occurring in the system. The lack of these

data may limit the applicability of such detailed modeling approaches. Figure 1.1 depicts a

complete overview of interaction-based, constraint-based and mechanism-based modeling

approaches, along with their main characteristics.

The interaction-based modeling approaches exploit graphs to describe biochemical net-

works: the nodes represent the chemical species, while the edges represent the existing

connections between two species by means of some kind of biochemical or functional in-

teractions. Due to their simplicity and the low computational burden, this methodology is

suited for modeling large-scale networks (e.g., genome-wide), a task that has become more

and more suitable also thanks to the last high-throughput technologies, which generate a

huge amount of data about living systems [407]. The main analyses that can be performed

on these interaction graphs are related to the topological characteristics of the network, such

as shortest paths, degree distribution or clustering coef�cient, allowing for determining the

main features of the structural organization of the network at the large-scale level. These

analyses are suitable for understanding the processes underlying the evolution of the network
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Fig. 1.1 Figure adapted from [71] showing the principal modeling approaches as well as
their main characteristics and differences. These modeling approaches can be partitioned
in coarse-grained (interaction-based, constraint-based) and �ne-grained (mechanism-based)
models, which vary in terms of: (i) size of the system (i.e., number of components and
respective interactions); (ii ) computational demand required forin silico analysis; (iii )
predictive capabilities. The interaction-baseds approaches allow for de�ning genome-wide
models, while the mechanism-based approaches are more suitable for core models. Regarding
the analysis, interaction-based models are generally exploited for the static and qualitative
investigation of the topological properties of the network; constraint-based models are used
to study the quantitative �ux distributions at steady-state; due to their fully parameterization,
mechanism-based models are the best choice for the quantitative analysis of the system
dynamics.

structure [262], providing new insights about the components at the basis of the robustness

and redundancy in the biochemical network [29]. Bayesian Networks (BANs) [335] represent

another type of interaction-based models. In such a case, the vertices of the directed acyclic

graph are random variables, while the arcs represent conditional dependencies between the

vertices. BANs are a powerful framework to design probabilistic relationships between

the components (e.g., genes and their mutual regulations) of the biochemical system under

investigation. However, since in BANs it is not possible to include loops and feedback

mechanisms [56], they remain rarely used.

Constraint-based models include some quantitative information in addition to the network

structure previously discussed. Constraint-based models are generally exploited to explore
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the set of possible �ux distributions (i.e., �ows of metabolites [324]) in large-scale metabolic

networks. Among all possible sources of information, reaction stoichiometry (explained

in details in Section 1.1.1) represents the basic one that can be considered. However, this

information does not allow for fully determining the feasible states of the system. In order

to limit the search space of the candidate solutions of �ux distributions, further constraints

should be exploited. The most used constraints are given by transcriptomic and enzyme

capacity, as well as thermodynamic constraints associated to the reversibility of the reactions.

In literature, several techniques have been proposed to the aim of investigating the feasible

�ux distributions at steady-state. It is worth mentioning Flux Balance Analysis [324],

Extreme Pathway Analysis [348, 386], and Elementary Mode Analysis [444]. Since the

constraints are generally modeled as linear equations, the Simplex Method (described in

Section 2.1.1) is probably the most used approach to solve the resulting Linear Programming

problem that aims at identifying the optimal state of the system.

Mechanism-based models are generally used to quantitatively describe the system at

the level of functional biochemical interactions, obtaining the highest predictive capability

regarding the cellular dynamics. Due to this peculiarity, they represent the best solution to

achieve a detailed comprehension of biological systems [71], as they allow for reproducing

the temporal evolution of all the molecular species occurring in the model. Despite their

high predictive capability, they can be become easily unfeasible to be used due to the

required computational burden of the simulations and analyses that increases along with

the number of the components and interactions composing the system under investigation.

In addition, mechanism-based modeling approaches require the complete knowledge of

quantitative parameters (i.e., reaction stoichiometry, initial molecular concentrations/number

of molecules of the chemical species, and kinetic constants). Unfortunately, these parameters

are dif�cult or even impossible to measure by means ofin vivoandad hocexperiments. Thus,

the lack of these data can limit the applicability of this modeling approach. Mechanistic

models can be de�ned by means of different mathematical formalism, as described in Section

1.1.1.

1.1.1 Mechanistic modeling

The biochemical reaction networks taken into account in this thesis are assumed to obey the

mass-action kinetic (MAK) law [84, 78, 455, 301], which is the fundamental and empirical

law governing biochemical reaction rates. MAK states that in a diluted solution in dynamic

equilibrium, the rate of an elementary reaction is directly proportional to the product of

the concentrations of its reactants, raised to the power of the corresponding stoichiometric

coef�cients [78, 301]. Since MAK is the most general framework to describe the biochemical
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kinetics, it is at the basis of the modeling approaches, simulation tools and PE methods

designed and developed in this thesis. In addition, all the biological systems considered in

what follows are assumed to be well-stirred, at thermal equilibrium and characterized by a

�xed volume.

Reaction-based models

Given a biochemical systemW, the corresponding Reaction-Based Model (RBM) is de�ned

by specifying the set ofN molecular speciesf S1; : : : ;SNg and the set ofM biochemical

reactionsf R1; : : : ;RMg. A generic reaction is described as follows:

Ri :
N

å
j= 1

ai j Sj
ki�!

N

å
j= 1

bi j Sj ; i = 1; : : : ;M; (1.1)

whereai j , bi j 2 N are the stoichiometric coef�cients of the reactants and products species—

that is, the number of molecules of speciesSj that are consumed or produced when the

reaction takes place, respectively—andki 2 R+ is the kinetic constant associated withRi.

The set of reactionsf R1; : : : ;RMg can be written compactly in the matrix-vector form:

AS K�! BS;

whereS = [ S1 � � � SN]T is the N-dimensional column vector of molecular species,K =

[k1 � � � kM]T is theM-dimensional column vector of kinetic constants, andA;B 2 NM� N

are the so-called stoichiometric matrices whose (non-negative) elements[A]i; j and[B]i; j cor-

respond to the stoichiometric coef�cientsai j andbi j of the reactants and the products of all

reactions, respectively. BesidesA;B we can de�ned the state change matrixH = A � B asso-

ciated to the system, whose rowshi 2 Z, with hi = ( hi1; : : : ;hiN) = ( bi1 � ai1; : : : ;biN � aiN),

are the state change vectors. Notice that each vectorhi represents the stoichiometric change

of the speciesSj due to the reactionRi. We also denote byH the state change matrix com-

posed of the elementshi; j = 0 of the speciesSj 2 F, whereF � S is the subset of species

whose amounts is kept �xed during the simulation of the dynamics of the whole system.

This strategy allows for simulating the non-limiting availability of some chemical resources,

and can be used to mimic the execution ofin vitro experiments where some species are

continually introduced inWto keep their amount constant [82].

Null reactions (i.e.,bi j = ai j = 0 for all j = 1; : : : ;N, indicated as/0
ki�! /0), are not taken

into account in this thesis, as well as reactions in the formRi : a jSj
ki�! b jSj , for anya j andb j .

As a matter of fact, reactions in that form correspond to unfeasible biochemical processes that

converta j molecules of the speciesSj in b j molecules of the same species. On the contrary,
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source and degradation reactions are considered feasible. A source reactionRi (denoted as

/0
ki�! products) is characterized byai j = 0, for all j = 1; : : : ;N, while a degradation reaction

(denoted asreagents
ki�! /0) is obtained by settingbi j = 0, for all j = 1; : : : ;N.

The state of the systemW at timet is de�ned asx(t) = ( x1(t); : : : ;xN(t)) , wherex j

represents the amount of the speciesSj at timet. In RBMs, the amount of chemicals

composing the biochemical system can be given either as concentrations (i.e.,x j 2 R)

or number of molecules (i.e.,x j 2 N). Concentrations are used to perform deterministic

simulations, while number of molecules are suitable for stochastic simulations. In the latter

case, the valueki is usually indicated byci and represents the stochastic constant associated

to the reactionRi (a real value representing the physical and chemical properties ofRi [153]).

The fundamental hypothesis underlying the stochastic formulation of chemical kinetics states

that the average probability of the reactionRi to occur in the interval (t, t + dt) is equal

to cidt [153]. The dynamics of the system can then be calculated by using a stochastic

simulation algorithm, as described in Section 1.2.2, taking into account the probabilities of

all the reactions.

Notice that since a reaction simultaneously involving more than two reactants has a

probability to take place almost equal to zero, in this thesis only �rst and second-order

reactions (i.e., at most two reactant molecules of the same or different species can appear in

the left hand side of Equation 1.1) are considered. For this reason, the matricesA andB are

sparse.

Differential equations

Ordinary Differential Equations (ODEs) represents the traditional mechanistic modeling

approach in Systems Biology. The dynamics (i.e., rate of changes) of the chemical species

can be investigated by describing a biochemical reaction networkWby means of a system of

coupled ODEs. For instance, starting from the following biochemical reactions involving

four species, namelyS1, S2, S3 andS4:

S1 + S2

k1

�

k2

S3

k3

! S4; (1.2)
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the following system of coupled ODEs can be derived by assuming the MAK law:

8
>>>>>><

>>>>>>:

dx1
dt = � k1x1x2 + k2x3

dx2
dt = � k1x1x2 + k2x3

dx3
dt = k1x1x2 � k2x3 � k3x3

dx4
dt = k3x3

; (1.3)

wherex j represents the concentration value of speciesSj
1.

More generally, given an arbitrary RBM it is always possible to obtain the corresponding

system of ODEs as follows:
dx
dt

= ( B � A)T [k � xA]; (1.4)

whereA and B are the stoichiometric coef�cient matrix of the reactants and products,

respectively,k is the column vector of the kinetic constants,x is the column vector of the

concentration values, andxA denotes the vector-matrix exponentiation form [78], where the

symbol� denotes the entry-by-entry matrix multiplication (Hadamard product). Formally,xA

is aM-dimensional vector whosei-th component is given byxAi1
1 � � � xAiN

N , for i = 1; : : : ;M. It

is worth noting that each ODE appearing in Equation 1.4 is a polynomial function consisting

in at least one monomial, which is associated with a speci�c kinetic constant.

ODE models can be easily generalized by exploiting the Reaction Rate Equations (RREs)

[18]. Assuming that there existN different chemical species involved inM different reactions,

for each speciesSj the following ODE is derived:

dxj

dt
=

M

å
i= 1

hi j a i(x;ki); for j = 1; : : :N; (1.5)

wherea i is the so-called propensity function of the reactionRi, de�ned according to the

reactant concentrations (contained in the state vectorx) and the kinetic parameters of the

reaction. For instance, given the biochemical system de�ned in Equation 1.1.1, according to

the MAK law, since the reactionR1 involves the speciesS1 andS2, its propensity is� k1x1x2.

ODE models represent a powerful mathematical framework to simulate biochemical sys-

tems. However, the dynamics obtained by means of ODE solvers represent an approximation

of the system. As a matter of fact, ODE models do not take into account the stochasticity

that usually characterizes several biochemical systems [444]. As a way of example, many

1The ODE models described in this section could obviously exploit other biochemical kinetic laws, such as
Michaelis-Menten kinetic [301] or Hill functions, which are not explicitly taken into account in this thesis
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Fig. 1.2 Example of bistable (top panel, Schlögl model) and oscillatory (bottom panel,
Ras/cAMP/PKA model) dynamics. In both cases, a deterministic simulation (black line)
and128stochastic simulations (colored dotted lines) are compared. The Schlögl model (see
Appendix A.6) is a simple biochemical system characterized by bistability, in which two
steady states are reached starting from the same initial condition. The deterministic simulation
can reach only one of the possible states, while stochastic simulations allow for reproducing
the bistability characterizing this model. The Ras/cAMP/PKA model (see Appendix A.5)
plays a major role in the regulation of metabolism in the yeastSaccharomyces cerevisiae.
This model is characterized by oscillatory dynamics that can be correctly reproduced by
using both deterministic and stochastic simulations. As a matter of fact, the deterministic
simulation is able to reproduce the average trend of the dynamics.

cellular regulation networks are characterized by molecular species occurring in very low

amounts in the cell and, as such, they are often affected by noise [127]. Moreover, non

deterministic behaviors can arise from the randomness at the molecular scale, which produces

stochastic phenomena at the macromolecular scale (e.g., bistability). Since classical ODE

approaches are not capable of capturing the effects of stochastic processes, they cannot be

straightforwardly exploited to simulate and analyze bistability phenomena (see Figure 1.2,
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top panel), while stochastic approaches [173] are more suitable for an effective investigation

of macromolecular phenomena of this type. On the contrary, ODE models can be effectively

and ef�ciently used to simulate and analyze other kind of emergent dynamics, such as oscil-

latory systems (see Figure 1.2, bottom panel), thanks to their lower computational load with

respect to that required by stochastic approaches.

An extension of ODEs is represented by Stochastic Differential Equations (SDEs), such

as the Chemical Langevin Equations (CLEs) [156, 158]. These modeling approaches allow

for reproducing the dynamics of the systems by adding noise terms to the rate equations;

still, CLEs can only yield an approximation of the correct dynamics of the system under

investigation. CLEs can be properly used where the concentration of chemical species

corresponds to a high number of molecules. In such a case, the system can be modeled by

means of the following stochastic equation:

x(t + t ) = x(t)+
M

å
i= 1

hiN(a i(x(t)) t ;a i(x(t)) t ); (1.6)

whereN(a i(x(t)) t ;a i(x(t)) t ) is a normally distributed random variable with meanm=

a i(x(t)) t and variances 2 = a i(x(t)) t . Nevertheless, when either the amount of molecules

is low (e.g., lower than100) or the number of reactions that occurs in the time interval

(t;t + t ) is small, CLEs do not represent a good modeling solution.

Chemical Master Equation

The Chemical Master Equation (CME) can be exploited to model a biochemical system

Wwhen a stochastic approach is required to investigateW, by describing the probability

distribution function associated toWitself [449]. The probability that the system will be in a

statex at timet, starting from an initial statex0 at timet0, is indicated asP(x;tjx0; t0). It can

be calculated by applying the CME as follows:

¶P(x;tjx0; t0)
¶t

=
M

å
i= 1

�
a i(x � vi)P(x � vi ; tjx0; t0) � a i(x)P(x;tjx0; t0)

�
; (1.7)

wherehi is the state change associated to the reactionRi anda i(x) is the propensity function

of Ri . Given an arbitrary couple of initial statex0 and initial timet0, CME allows for exactly

calculating the probability that the system will be in the statex at timet. However, the

analytical solution of the CME is generally untractable. In Section 1.2.2 it will be shown

how to deal with this issue.



24 Complex problems in Life Sciences

Rule-based models

Rule-based models represent an extension of RBMs suitable for dealing with the combinato-

rial complexity that derives from multiple protein-protein interactions, which generally cause

an explosion of the reactions as well as of the intermediate molecular complexes [196]. This

modeling approach has a higher level of abstraction with respect to RBMs: the molecules are

represented by means of “objects" with extended features, while the chemical reactions are

de�ned as rules involving these objects, instead of speci�c chemical species. This strategy

allows for reducing both the size and complexity of the model under investigation [197].

In order to simulate a rule-based model, two main approaches exist. The former consists

in re-expanding the model by explicitly enumerating all the chemical species and reactions

[280], obtaining an RBM that can be simulated by applying a stochastic or a deterministic

method. This approach generates large-scale models characterized by hundreds or thousands

of species and reactions, which are generally dif�cult to simulate. The latter relies on

“network-free" Monte Carlo [480] methods, by explicitly representing all the molecules

composing the system. However, this strategy cannot be applied in case of large-scale

models due to the required prohibitive spatial computational complexity. Some “hybrid"

particle-counters approaches have been proposed to deal with this issue: they represent the

chemical species that appear in large numbers by means of normal variables [87].

In this thesis, the rule-based modeling is used to generate large-scale RBMs that are then

simulated by means of FiCoS (Fine- and Coarse-grained Simulator) [428], as described in

Section 4.3.

1.2 Simulation algorithms for mechanism-based models

Given a biochemical system modeled by exploiting one of the mechanistic approaches

described in the previous section, its dynamics can be obtained by using a simulation

methodology, which is generally strongly related to the chosen modeling formalism. Notice

that it is not suf�cient to describe the biochemical system as a simple interaction network to

perform the simulation of a mechanistic model. As a matter of fact, both deterministic and

stochastic simulation techniques require that a proper kinetic parameterization and the initial

state of the system are known, which must be provided as part of the model. In the following

sections the most common simulation techniques are described in details.
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1.2.1 Deterministic simulation

Deterministic simulations rely on ODE modelling approach: given the system of ODEs,

along with a set of kinetic constants as well as an initial state at timet0, the temporal evolution

of the biological system in the interval[t0; tmax] can be obtained by means of a numerical

integration algorithms.

We remind that, given a system ofN ODEs (one for each species occurring in the

biochemical system), its Cauchy problem is de�ned as:

8
<

:

dx
dt = f (t;x)

x(t0) = x0

; (1.8)

wherex(t) = ( x1(t);x2(t); : : : ;xN(t)) is the state of the system,x j (t) represents the concen-

tration of speciesSj at timet, andt 2 [t0; tmax].

Euler method

The most straightforward and basic numerical algorithm for solving systems of ODEs is the

Euler's method (EM), de�ned by the mathematician Euler in1768[59]. It is an iterative

algorithm in which the differential equation is considered as a simple formula to calculate

the slope of the tangent to the unknown curve described by the system of ODEs. To be more

precise, in the case of a single ODEx0(t) = f (t;x(t)) , given the initial pointx(t0) = x0 and

a �xed step-sizeh, the ODE is used to calculate the slope of the curve in each point, by

exploiting the value of the previous point as follows:

xn+ 1 = xn + h f(tn;xn);

wherexn � x(tn). Note thatxn is an approximation of the real solution to the ODE at timetn.

EM can be derived by considering the Taylor expansion of the functionf around a pointt0:

x(t0 + h) = x(t0) + hx0(t0) +
1
2

h2x00(t0) + O(h3):

EM is obtained by substitutingx0with f (t;x), which corresponds to the differential equation

de�nition, and ignoring the quadratic and higher-order terms. EM results in a �rst-order,

explicit, single- and �xed-step approximation method, whose error at each timet is O(h2).
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Besides the explicit version of the EM, we can derive the implicit version [67] (also

called Backward EM) of this simple method as follows:

xn+ 1 = xn + h f(tn+ 1;xn+ 1):

Since the new approximationxn+ 1 appears on both sides of the equation, a non-linear equation

for the unknown termxn+ 1 must be solved during each iteration of the method.

Backward EM is the simplest Backward Differentiation Formulae (BDF), since it repre-

sents the BDF of order 1. The general formula for a BDF can be written as

q

å
i= 0

a ix(t � ti) = hb0 f (t;x(t)) ; (1.9)

where the coef�cientsa i (with a0 = 1) andb0 are chosen according to the orderq of BDF

[438], andh is user-de�ned. Note that, forq > 6, the absolute stability region of the resulting

BDF methods is too small, so that these BDFs are characterized by numerical instability

[147]. Therefore, BDFs with an orderq greater than6 are not used. Considering a system of

ODEs, since each BDF is an implicit method, at each time step it requires the solution of a

non-linear system of equations, which can be solved by using the iterative Newton–Raphson

method [35]. This system can be written as follows:

g(x(t)) � x(t) � hb0 f (t;x(t)) + cx(t) = 0; (1.10)

wherecx(t) = å q
i= 1a ix(t � ti) is a constant quantity depending on previous values of the

state of the systemx(t) and on the orderq.

The Newton–Raphson method allows for �nding successively better approximationsz of

the zeros of a real-valued functionf (z) = 0, and it is repeated until a suf�ciently accurate

value is reached. The approximation at iterationn is calculated as follows:

zn+ 1 = zn �
f (zn)
f 0(zn)

: (1.11)

This idea can be extended to a system of non-linear equations, by using the Jacobian matrix

J(t;x(t)) of f (t;x(t)) . Therefore, the following system must be solved:

8
<

:
J(xi)vxi = � f (xi)

xi+ 1 = xi + vxi
; (1.12)
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wherevxi is the vector used to updatexi , andxi+ 1 at timet can be written as

xi+ 1(t) = xi(t) �

 

I �
¶ f
¶x

! � 1

g(xi(t)) : (1.13)

Since the calculations required to invert the matrix

 

I � ¶ f
¶x

!

are computationally expensive,

we can derive the following linear system:

8
<

:
(III � hb0

¶ fff
¶x (t;xi(t))DDDvvvi = � g(t;xi(t))

xi+ 1(t) = xi(t) + DDDvvvi
; (1.14)

whereDDDvvvi is the vector solution of the linear system (Equation 1.14) at iterationi, andI is

the identity matrix. TheDDDvvvi vector is used to update the iteration vectorxi+ 1(t) required by

the Newton-Raphson method.

Since the evaluation of the Jacobian matrix at each iteration is computationally expensive,

the modi�ed Newton–Raphson method [403] can be exploited to reduce the computational

load. Thus, the iteration matrix is evaluated once at the beginning of each step, based on the

predicted valuex0(t), and it is used for all the iterations during the current step. The linear

system can be solved by using a linear system solver, such as the LU factorization method

[30]. The Newton-Raphson method is iterated until the maximum number of iterations is

reached, or a suf�ciently accurate value is achieved (i.e., smaller than a user-de�ned tolerance

valueeNR). When this method ends, the state of the system is updated asx(t + h) = xi+ 1(t).

Runge-Kutta methods

The mathematicians Runge and Kutta introduced a family of methods to mitigate the error of

EM, by extending the basic idea of the EM itself [59]. A generic Runge-Kutta (RK) method

of orderr—the value describing the desired local truncation error, i.e.,O(hr+ 1)—andsstages

is de�ned as:

x(tn+ 1) ' xn+ 1 = xn + h
s

å
i= 1

bi l i ; (1.15)

The auxiliary variablesl i are given by the following relationship:

l i = f (tn + cih;xn + h
s� 1

å
j= 1

a i j l j );with i = 1; : : : ;s: (1.16)
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Table 1.1 Butcher tableau of a generic Runge-Kutta method.

c1 a11 a12 � � � a1s

c2 a21 a22 � � � a2s
...

...
...

...
...

cs as1 as2 � � � ass

b1 b2 � � � bs

b �
1 b �

2 � � � b �
s

=
c LLL

bbbT

The coef�cientsa i j , bi andci allow for characterizing every RK method, which can be

represented in the so-called Butcher tableau (see Table 1.1).

The RK methods are partitioned into three classes based on the coef�cients represented

in their Butcher tableau. To be more precise, the following rules are applied:

• if the matrixLLL is lower triangular (i.e.,a i j = 0 for j > i, with i; j = 1; : : : ;s), then the

method is said to beexplicit;

• if the matrixLLL is lower triangular including the main diagonal, the method is called

semi-implicit;

• conversely, the method isimplicit. In such a case, in order to calculate the auxiliary

variablesl i , with i = 1; : : : ;s, at least one non-linear system must be solved. As a matter

of fact, eachl i depends on alll j , with j = 1; : : : ;s.

Generally, implicit RK methods are exploited for the resolution of stiff problems due to

their stability regions. Stiffness is a well-known phenomen characterizing the numerical

solution of ODEs. It is a subtle, dif�cult and important concept that depends on the ODE

to be solved, the initial conditions, as well as the numerical method taken into account. An

ODE is considered stiff if the sought solution varies slowly, but at the same time nearby

solutions varying rapidly exist. In this condition, explicit methods may use small integration

step-size to obtain satisfactory results, increasing the required running time. Systems of

ODEs related to biochemical systems are often affected by stiffness [194]. Note that a system

of biochemical reactions may be stiff when two well-separated dynamical modes, determined

by fast and slow reactions, occur [158].

The most simple RK method is the midpoint method (also called RK2), which is a

second-order method with two stages. Considering a single ODE, its Butcher tableau is
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Table 1.2 Butcher tableau of the midpoint method, which corresponds to a two stages
Runge-Kutta method of second-order.

0
1
2

1
2

0 1

shown in Table 1.2, which corresponds to:

xn+ 1 = xn + h f
�

tn +
1
2

h;xn +
1
2

h f(tn;xn)
�

:

In such a case, the slope is calculated twice: (i) the slope of the curve is calculated fromtn to

tn + h; (ii ) this value is used to obtain the slope at the midpointtn + 1
2h. The midpoint method

has a local error at each step of orderO(h3), while the global error is of orderO(h2).

The most popular explicit single- and �xed-step RK method is called RK4, which is

a fourth-order method. According to its Butcher tableau (see Table 1.3), the following

quantities must be calculated:

l1 = f (tn;xn);

l2 = f
�

tn +
1
2

h;xn +
1
2

hl1
�

;

l3 = f
�

tn +
1
2

h;xn +
1
2

hl2
�

;

l4 = f
�

tn + h;xn + hl3
�

:

Starting from these quantities, the new pointxn+ 1 is calculated as the weighted average ofl1,

l2, l3 andl4:

xn+ 1 = xn +
1
6

h(l1 + 2l2 + 2l3 + l4):

RK4 has a �nal error of orderO(h4), which allows for obtaining an improved approximation

of the unknown curve.

In contrast to the multi-step methods, RK methods are single-step methods in which

it is possible to change the step-size during the ODE resolution, according to the desired

error, which is controlled by means of two tolerances (i.e., absolute and relative tolerances).

Adaptive RK methods are characterized by two embedded methods, as shown in the Butcher

tableau (Table 1.1) withbi andb �
i , with i = 1; : : : ;s.
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Table 1.3 Butcher tableau of the RK4 method, which is a fourth-order Runge-Kutta method.

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

The most known explicit adaptive RK methods are: (i) the Runge–Kutta–Fehlberg (RKF)

[134, 277, 176, 133] method that implements two methods of orders5 and4, respectively;

(ii ) the Dormand–Prince (DOPRI) method [116, 115, 176]. To be more precise, in this thesis

we exploited the DOPRI5 version, which is a method of order5. Both RKF and DOPRI5

are capable of varying the integration step-size during the resolution of the ODE system by

exploiting their embedded methods.

Runge–Kutta–Fehlberg. Given a single ODE to be solved, according to the Butcher

tableau given in Table 1.4, RKF requires two different approximated solutionsun+ 1 and

wn+ 1, which are generated as follows:

un+ 1 = xn +
25
216

l1 +
1408
2565

l3 +
2197
4104

l4 �
1
5

l5;

wn+ 1 = xn +
16
135

l1 +
6656
12825

l3 +
28561
56430

l4 �
9
50

l5 +
2
55

l6;
(1.17)

where
l1 = h f(t;xn);

l2 = h f
�

tn +
1
4

h;xn +
1
4

l1
�

;

l3 = h f
�

tn +
3
8

h;xn +
3
32

l1 +
9
32

l2
�

;

l4 = h f
�

tn +
12
13

h;xn +
1932
2197

l1 �
7200
2197

l2 +
7296
2197

l3
�

;

l5 = h f
�

tn + h;xn +
439
216

l1 � 8l2 +
3680
513

l3 �
845
4104

l4
�

;

l6 = h f
�

tn +
1
2

h;xn �
8
27

l1 + 2l2 �
3544
2565

l3 +
1859
4104

l4 �
11
40

l5
�

:

(1.18)
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Table 1.4 Butcher tableau of the RKF method.

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

� 7200
2197

7296
2197

1 439
216 � 8 3680

513
� 845
4104

1
2

� 8
27 2 � 3544

2565
1859
4104

� 11
40

25
216 0 1408

2565
2197
4104

� 1
5 0

16
135 0 6656

12825
28561
56430

� 9
50

2
55

Table 1.5 Butcher tableau of the DOPRI5 method.

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45

� 56
15

32
9

8
9

19372
6561

� 25360
2187

64448
6561

� 212
729

1 9017
3168

� 355
33

46732
5247

49
176

� 5103
18656

1 35
834 0 500

1113
125
192

� 2187
6784

11
84

35
834 0 500

1113
125
192

� 2187
6784

11
84 0

5179
57600 0 7571

16695
393
640

� 92097
339200

187
2100

1
40

To evaluate the accuracy ofun+ 1 andwn+ 1, a user-de�ned tolerancee 2 R is exploited.

Two additional values,ER2 R andd 2 R, are calculated as follows:

ER=
jwn+ 1 � un+ 1j

h
; d = 0:84

� e
ER

� 1
4
: (1.19)

If ER� e, thenun+ 1 is accepted as new solution, that is,xn+ 1 = un+ 1; otherwise, the solutions

un+ 1 andwn+ 1 are rejected and recalculated by using a new step-size, which is computed as

h = h� d. Thus, RKF is a method with an error estimator of orderO(h5).

Dormand-Price. Similar to RKF, given a single ODE to be solved, DOPRI5 requires two

different approximated solutionsun+ 1 andwn+ 1 (see the Butcher tableau given in Table 1.5),
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which are generated as follows:

un+ 1 = xn +
35
834

l1 +
500
1113

l3 +
125
192

l4 �
2187
6784

l5 +
11
84

l6;

wn+ 1 = xn +
5179
57600

l1 +
7571
16695

l3 +
393
640

l4 �
92097
339200

l5 +
187
2100

l6 +
1
40

l7;
(1.20)

where

l1 = h f(t;xn);

l2 = h f
�

tn +
1
5

h;xn +
1
5

l1
�

;

l3 = h f
�

tn +
3
10

h;xn +
3
40

l1 +
9
40

l2
�

;

l4 = h f
�

tn +
4
5

h;xn +
44
45

l1 �
56
15

l2 +
32
9

l3
�

;

l5 = h f
�

tn +
8
9

h;xn +
19372
6561

l1 �
25360
2187

l2 +
64448
6561

l3 �
212
729

l4
�

;

l6 = h f
�

tn + h;xn +
9017
3168

l1 �
355
33

l2 +
46732
5247

l3 +
49
176

l4 �
5103
18656

l5
�

;

l7 = h f
�

tn + h;xn +
35
834

l1 +
500
1113

l3 +
125
192

l4 �
2187
6784

l5 +
11
84

l6
�

:

(1.21)

Once the solutions of the two embedded methods are calculated, they are used to evaluated

the committed error. If the error is greater than the desirable error—which strongly depends

on the user-de�ned absolute and relative tolerances—the current solutions are rejected and

re-calculated using a smaller step-size; otherwise,un+ 1 is accepted as new solution, that

is, xn+ 1 = un+ 1. In both cases, the solutions of the two embedded methods are also used

to calculate the step-size for the next iteration. The absolute tolerance is a threshold below

which the value of the solution is considered unimportant. The absolute error tolerance

determines the accuracy when the solution approaches zero. The relative tolerance is a

measure of the error relative to the size of the solution. Approximately, this value controls

the number of correct digits in the solution, except those smaller than the absolute tolerance.

DOPRI5 is a method with an error estimator of orderO(h6).

Radau IIA family. Among the implicit adaptive RK methods, the Radau IIA family

[177, 178] is probably the most known. The most exploited Radau IIA method is the

so-called RADAU5 (Table 1.6 shows its Butcher tableau), which is a method of order 5.

Since RADAU5 is implicit, given a single ODE to be solved it requires the resolution of

one non-linear equation for eachl i (with i = 1; : : : ;s) that must be calculated. Sinceb �
1 = 0

andb �
2 = 0, four non-linear equations will be solved during each iteration of the method. In
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Table 1.6 Butcher tableau of the RADAU5 method.

4�
p

6
10

88� 7
p

6
360

296� 169
p

6
1800

� 2+ 3
p

6
225

4+
p

6
10

296+ 169
p

6
1800

88+ 7
p

6
360

� 2� 3
p

6
225

1 16�
p

6
36

16+
p

6
36

1
9

16�
p

6
36

16+
p

6
36

1
9

0 0 1

the case of a system of ODEs, four non-linear systems must be solved during each iteration

of the method. Notice that the Jacobian matrix of the system of ODEs is required to solve the

non-linear systems. The �rst three non-linear systems are converted into three linear systems

exploiting the modi�ed Newton–Raphson method [403] and then solved by means of the

LU factorization method [30]. Notice that in each iteration of the Newton–Raphson method,

these three linear systems must be solved. The last non-linear system is converted into a

linear system using a linear combination of thel i (with i = 1; : : : ;s) obtained at the end of

Newton–Raphson method. This linear system is then solved exploiting the LU factorization

method.

Once the solutions of the two embedded methods are calculated, they are used to evaluated

the committed error. If the error is greater than the desirable error, which depends on the user-

de�ned absolute and relative tolerances, the current solutions are rejected and re-calculated

by using a smaller step-size; otherwise, they are accepted. In both cases, the solutions of the

two embedded methods are also used to calculate the step-size for the next iteration.

Notice that in both DOPRI5 and RADAU5 the maximum number of internal iterations

allowed for the integration can be modi�ed by the user.

Figure 1.3 depicts the comparison of the aforementioned methods to solve the differential

equationx0(t) = � 0:5e
t
2 sin(5t)+ 5e

t
2 cos(5t)+ x(t) with initial conditionx(0) = 0, whose

exact solution isx(t) = e
t
2sin(5t). This simple example shows that �xed step-size methods

(explicit EM, implicit EM, RK2 and RK4) are capable of obtaining a good approximation

of the exact solution only when a correct step-size is selected (top panel). As a matter of

fact, using a step-size too large (bottom panel) the error is propagated during the iterations.

Even though implicit EM resulted less accurate with respect to RK4 in this simple example,

it is suitable for a stiff ODE (or a system of ODEs), while RK4 might require a very small

step-size to obtain accurate solutions.
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Fig. 1.3 Numerical solutions obtained by explicit EM, implict EM, RK2, RK4, RKF, DOPRI5,
and RADAU5 to solve the differential equationx0(t) = � 0:5e

t
2 sin(5t)+ 5e

t
2 cos(5t)+ x(t)

with initial condition x(0) = 0, whose exact solution isx(t) = e
t
2sin(5t). The solutions

obtained usingh = 0:001are shown in the top panel, while those obtained usingh = 0:1
are depicted in the bottom panel. This simple example shows that �xed step-size methods
(explicit EM, implicit EM, RK2 and RK4) require the selection of a properh value—which
is kept constant during the iterations of the methods—to well approximate the exact solution.

LSODA

Livermore Solver of Ordinary Differential Equations (LSODA) [341] is an ODE solver

capable of automatically recognizing stiff and non-stiff systems, switching between the
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most appropriate integration family of methods: (i) the Adams-Moulton family [176] in

the absence of stiffness, and (ii ) the BDF otherwise. Both families are multi-step methods,

so the current solution depends on more than one previous state. Initially, the problem is

assumed to be non-stiff and during the integration some heuristics are exploited to evaluate

the stiffness. If the problem becomes stiff, LSODA automatically switches to the BDF

family. As in the case of implicit EM and Radau IIA family, LSODA exploits the Jacobian

matrix of the system of ODEs, which must by provided by the user as a function (LSODA

implementation is available inFORTRAN, CandPython programming languages). In order

to control the performance and quality of the solution of the ODEs, LSODA has several

functioning settings that can be provided by the user. Among them, the most important are

the absolute and relative error tolerances (as in the case of RADAU5 and DOPRI5), and the

maximum number of internal iterations allowed for a single integration step.

The Variable-coef�cient ODE solver (VODE) [53] exploits the same integration method

family of LSODA. Differently from LSODA, VODE does not switch between the two

families of solvers during the integration, but it selects the most appropriate family at the

beginning of the integration by exploiting some heuristics.

1.2.2 Stochastic simulation

Stochastic modeling approaches are suitable to represent biochemical systems when some

molecular species occur in a low number of copies in the systemW. In such a case, the

simulated trajectories diverge from those generated by the deterministic simulation. Indeed,

stochastic approaches allow for a deeper knowledge of the behavior of systems where

intrinsic biological noise plays a fundamental role, such as those characterized by bistability.

According to a speci�c probability distribution for the �ring of reactions, a stochastic

simulation reproduces one of the possible trajectories that can occur. Differently from ODE

modeling, stochastic approaches assume that the state of the system is discrete, that is, it

is represented by a vector of integer-valued numbers whose values correspond to the exact

amount of molecules of the chemical species occurring inW.

In stochastic modeling and simulation, given a systemWwe would like to know the

probability thatWwill be in any statex at timet starting from the initial conditionx0 at

time t0. As described in Section 1.1.1, this probability is given by the CME and can be

obtained by calculating every possible state ofW. Since the number of possible states ofW

increases exponentially with the number of chemical species, the CME cannot be easily used

to investigate complex (biochemical reaction) systems. As a matter of fact, as a consequence

of the reactions �ring [211], a speci�c differential equation exist for each possible state than

can be reached, leading to the so-called “curse of dimensionality”.
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During the years, numerical algorithms based on matrix descriptions of the discrete-state

Markov process [412] were proposed to solve the CME. Considering systems consisting in a

lot of molecular species, which lead to a huge number or even in�nite reachable states, the

computational demand makes these methods unfeasible. In literature there exist also analytic

algorithms that allow for solving the CME. Among them, it is worth mentioning those based

on uniformization methods [192, 397, 488], �nite state projection algorithms [58, 296], or

the sliding window method [470].

Differently from these solutions, stochastic simulation algorithms generate trajectories of

the underlying Markov process to provide a solution that is equivalent to the CME. Among

this family of algorithms, in the next section we describe the Gillespie's Stochastic Simulation

Algorithm [153, 154].

Gillespie's Stochastic Simulation Algorithm

Gillespie introduced the Stochastic Simulation Algorithm (SSA) [153, 154] that generates

exact realizations of the CME of a biochemical system. Given a systemW, SSA is capable of

providing trajectories of the associated continuous time and discrete state space jump Markov

processx of W. Notice that the CME determines the initial conditional density function of

the system [155].

SSA works as follows: given the statex of the system, the reaction that will take place in

the next time interval[t; t + t ) has to be chosen. To this aim, the probability of each reaction

Ri to occur in the next in�nitesimal time step[t;t + dt) is evaluated: SSA exploits the joint

probability density functionP(i; t jx;t) of the two random variablesi (i.e., the index of the

next reaction) andt (i.e, the time to the next reaction), given that the system is currently in

statex at timet. Gillespie proved thatP(i; t jx;t) can be formulated as

P(i; t jx;t) = a i(x) exp(� a0(x)t );

wherea i(x) = ci � di(x) is the so-calledpropensity functionof the reactionRi—whereci

is the stochastic constant associated with the reaction, anddi(x) is the number of distinct

combinations of the reactant molecules inRi occurring in statex—anda0(x) = å M
i= 1a i(x).

Then, SSA computes the timet before a reaction takes place as:

t =
1

a0(x)
ln

�
1
r 1

�
;
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wherer 1 is a random number sampled in[0;1] with a uniform probability. The reactionRi to

be actually executed is then chosen by taking the smallest integer in the set1; : : : ;M such that

i

å
i0= 1

a i0(x) > r 2 � a0(x);

wherer 2 is a second random number sampled in[0;1] with a uniform probability.

This is the traditional formulation of SSA, called the Direct Method (DM). The First

Reaction Method (FRM) is a variant of the DM introduced by Gillespie in which a putative

time t i is calculated for each reactionRi . Once all the putative times are known, the reaction

that has the smallest putative time is applied. Even if they seem different, Gillespie proved

that the DM and the FRM are equivalent [153].

The most expensive part of SSA consists in calculating the propensity function at each

step. As a matter of fact, the only propensity functions that should be updated are those

related to the reactions whose reactants were interested by a reaction �red in the previous

simulation step. Gibson and Bruck introduced an approach based on the FRM, called the

Next Reaction Method (NRM) [152], which exploits a dependency graph to update at each

simulation step only the propensity functions whose reactants were interested in the previous

step. Moreover, in the NRM the putative times are reused to reduce the computational time

by avoiding the generation of random numbers, which is a computationally expensive task.

Finally, the NRM takes advantage of optimized priority queues to store both the propensity

functions and putative times in order to ef�ciently perform the updates.

The improvements proposed by the NRM were not enough to reduce the computational

burden of SSA, especially in the case of biochemical systems characterized by a lot of

reactions and chemical species. In order to deal with this issue, Gillespie proposedt -leaping

[157], which is an approximate but faster version of SSA. The major modi�cation introduced

in t -leaping regards the reactions that can be applied at each step: in this approximate version

severalreactions can be applied during each step of the method, instead of asinglereaction

as is the case of SSA.

1.2.3 State-of-the-art

Among the CPU-based simulators of biochemical models, it is worth mentioning the COm-

plex PAthway SImulator (COPASI) [202], which integrates different algorithms, including

LSODA and SSA, and is one of the most used tools in the community of Systems Biology.

Since in this thesis we exploit High-Performance Computing (HPC) solutions to accelerate

both deterministic and stochastic simulations, in this section we provide an overview of the
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existing simulators accelerated on Graphics Processing Units (GPUs). The existing tools can

be classi�ed with respect to two main concepts: the simulation granularity and the simulation

type [308]. The �rst category determines how the threads are used: in coarse-grained simula-

tion each thread corresponds to an independent simulation, while in �ne-grained simulation

the calculations of a single simulation are distributed over multiple threads. The second

category determines the type of simulation: deterministic or stochastic.

Regarding deterministic simulation, Ackermannet al. [3] developed a GPU-accelerated

simulator to execute massively parallel simulations of biological molecular networks. This

methodology automatically converts a model, described using the Systems Biology Mark-up

Language (SBML) standard [229], into a speci�c Compute Uni�ed Device Architecture

(CUDA) implementation of the EM (see Section 3.4.1 for further details about CUDA). The

authors developed also a CPU version of the EM to test the ef�ciency of the proposed GPU

simulator. The evaluation of this implementation on a Nvidia GeForce 9800 GX2 showed a

speed-up between28� and63� , compared to the execution on a CPU Xeon 2.66 GHz. In

a similar vein, a simulator developed in CUDA (named cuda-sim), which exploits LSODA

as ODE solver, was presented by Zhouet al. [491]. Notice that cuda-sim implements also

a GPU-powered version of SSA. The cuda-sim simulator performs the so-called “just in

time” (JIT) compilation (that is, the creation, compilation and linking atrun-timeof new

source code) by converting an SBML model into CUDA code. With respect to the CPU

implementation of LSODA contained in the numpy library ofPython, cuda-sim achieved a

47� speed-up. Nobileet al. [306] presented another parallel simulator relying on the LSODA

algorithm, named cupSODA, to speed-up the simultaneous execution of a large number

of deterministic simulations. Differently from cuda-sim, cupSODA saves execution time

by avoiding JIT compilation and by relying on a GPU-side parser. cupSODA achieved an

acceleration up to86� with respect to COPASI [202], used as reference CPU-based LSODA

simulator. This relevant acceleration was obtained thanks to a meticulous optimization of the

data structures and an intensive usage of the whole memory hierarchy on GPUs (described in

detail in Section 3.4.1).

When stochastic simulations are taken into account, a problematic issue is the availability

of GPU-side high-quality random numbers generators (RNGs). Since the CURAND library

(see Section 3.4.1) was introduced with the fourth release of CUDA, early GPU implemen-

tations required the development of custom kernels for RNGs. This problem was faced

for the CUDA version of SSA developed by Li and Petzold [259], who implemented the

Mersenne Twister RNG [278], achieving a50� speed-up with respect to a common single-

threaded CPU implementation of SSA. Sumiyoshiet al. [419] extended this methodology by

performing both coarse-grain and �ne-grain parallelization: the former allows for multiple
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simultaneous stochastic simulations of a model, while the latter is achieved by distributing

over multiple threads the calculations related to the model reactions. This version of SSA

achieved a130� speed-up with respect to the sequential simulation on the host computer.

Thet -leaping algorithm allows for a faster generation of the dynamics of stochastic models

with respect to SSA, by properly calculating longer simulation steps [159, 64]. Komarov

et al. [235] proposed a GPU-powered �ne-grainedt -leaping implementation, which was

shown to be ef�cient in the case of extremely large (synthetic) biochemical networks (i.e.,

characterized by more than105 reactions). Nobileet al. [307] then proposed cuTauLeaping, a

GPU-powered coarse-grained implementation of the optimized version oft -leaping proposed

by Caoet al. [64]. Thanks to the optimization of data structures in low-latency memories

and to the splitting of the algorithm into multiple phases corresponding to lightweight CUDA

kernels, cuTauLeaping was up to three orders of magnitude faster on a GeForce GTX 590

GPU than the CPU-based implementation oft -leaping contained in COPASI, executed on a

CPU Intel Core i7-26003:4 GHz. A mixed approach of �ne- and coarse-grained accelerations

is GPU-ODM [234], which is based on a variant of SSA called the Optimized DM.

The simulators proposed in this thesis—i.e., LASSIE (LArge-Scale SImulator) [425] and

FiCoS, together with a coarse-grained implementation of SSA by means of Many Integrated

Core coprocessors [427]—will be extensively described and analyzed in Chapter 4.

1.3 Parameter Estimation in Systems Biology

The design and development of ef�cient methods to analyze the functioning of cellular

systems represent one of the main goals of Computational Systems Biology. The emergent

behavior is a system-level property due to the complex interactions among lots of molecular

species. The analyses of these complex interactions cannot be performed by only relying on

classic experimental research based onin vivo experiments. As described in the previous

sections, mathematical modeling along with simulation techniques have become valuable

tools that are capable of describing and understanding the molecular mechanisms taking

place in cellular processes. However, mathematical (mechanism-based) models require

proper quantitative parameterizations to performin silico simulations of the system dynamics

in physiological or perturbed conditions [84]. These chemico-physical parameters (e.g.,

reaction rates) are fundamental for biochemical modeling since they drive the emergent

behavior of the system. As a matter of fact, sometimes even a small change in the parameters

values can dramatically change the output dynamics. Figure 1.4 shows how small changes

in the initial value of the parameters lead to completely different dynamics in the case of a

simple model like the Brusselator (see Appendix A.1).
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Fig. 1.4 Example of different emergent behaviors obtained by varying the kinetic parameters.
The Brusselator is a simple and theoretical model for an autocatalytic reaction, characterized
by four reactions and �ve chemical species (see Appendix A.1 for further details). The
top panel shows the dynamics of the speciesX andY obtained using the following kinetic
parameters:k1 = 1, k2 = 1, k3 = 1, k4 = 1. By settingk3 equal to0:5 the resulting dynamics
are completely different (middle panel). By varyingk3 from 0:5 to 0:05 the oscillations are
no longer present (bottom panel). This simple example shows that the parameters play a
fundamental role, driving the emergent behavior of the system under investigation.

The lack of knowledge of kinetic parameters limits the effectiveness of mathematical

modeling andin silico simulations. These parameters are generally hard or even impossible

to measure directly by means of classicin vivo experiments, leading to the de�nition of

PE problem [84, 356]. The main goal of the PE problem is the inference of the unknown

values of the model parameters. In this thesis, this problem will correspond to determine

the unknown values of the constants associated with the set of reactionsR = f R1; : : : ;RMg

in an RBM. Notice that, when some prior knowledge about a number of kinetic constants

is available, the PE task can be performed by considering only a subset of the reactions

R 0= f R1; : : : ;RDg � R , with D � M. The estimation process is carried out by exploiting

the availability of some other experimental data (related, for instance, to time-series amounts

of some molecular species occurring in the system), which can be measured by means of

classic laboratory experiments and protocols.
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1.3.1 State-of-the-art

Several PE methodologies was proposed to deal with the lack of data when both deterministic

and stochastic simulation approaches are taken into account. Generally, these methodologies

rely on approximation strategies [263, 356, 368], probabilistic methods [300, 347, 460],

global optimization [43, 118, 294], or a combination of these approaches [487].

Probabilistic methods and approximation strategies have been applied especially for the

PE of stochastic biological systems. Since they require a huge amount of simulations to

obtain reliable results, becoming very time consuming, they are unfeasible in the case of

large-scale systems.

The traditional methods based on the Gradient Descend or local search strategies (de-

scribed in Section 2.1.2) are also not suitable to address the PE problems because (i) the

�tness landscape is non-linear, non-convex and multi-modal, thus the probability that these

methods converge to a local minimum is high (also by applying multi-start strategies [285]);

(ii ) when stochastic simulations are considered, the �tness landscape is rugged due to the

stochastic �uctuations, which generally produce a lot of local minima increasing the dif�culty

of the optimization problem.

In order to overcome the limitations af�icting the methods based on the Gradient Descend,

global optimization techniques (see, e.g., Sections 2.2 and 2.3) can be applied. In [285], the

authors showed that Simulated Annealing (see Section 2.1.3) was able to outperform local

search approaches for the PE of the mechanism of irreversible inhibition of HIV proteinase.

The main drawback of the proposed approach is represented by the computational time

required to perform the PE of this simple model. Mendes [284] applied different optimization

methods to deal with the PE of a large three-step pathway characterized by36 kinetic

parameters to estimate. The results indicate that Evolutionary Programming is the best choice

since it found a set of parameters that allows for obtaining simulated dynamics overlapping

the target of the analyzed system, while the other tested methods failed in �nding good

parameterizations. A benchmark model consisting in36parameters have been used as case

study in [294]. The authors tested several global optimization methods, showing that the

most suitable approach to solve the PE problem, among those considered in this work, is

the Evolution Strategy using Stochastic Ranking (SRES) [369]. This effective method uses

a stochastic ranking as the constraint handling technique, which exploits the bubble-sort

algorithm, to automatically adjust the balance between the �tness and penalty functions

during the evolutionary search. Also in this case, the main drawback is represented by

the time required to perform a computation, burdened by the sorting algorithm. Dräger

et al. [118] performed an empirical comparison of six alternative models of valine and

leucine bio-synthesis inC. glutamicum, characterized by different levels of complexity and
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considering different kinetic equations, resulting in up to59 parameters to be estimated. The

authors reported that, when the settings of Particle Swarm Optimization (PSO) (see Section

2.3.4) are carefully tuned, it results the most ef�cient algorithm for the PE problem.

Although global optimization methods require the execution of a non negligible number

of �tness evaluations, they are the best candidates to solve the PE problem. Moreover, the

computation of the �tness functions can be parallelized by using some HPC architecture,

especially GPUs (see Chapter 5 for further details).

1.4 The Haplotype Assembly problem in Genome Analysis

Somatic human cells are diploids, that is, they contain22pairs of homologous chromosomes

and a pair of sex chromosomes, one copy inherited from each parent. In order to fully

characterize the genome of an individual, the reconstruction of the two distinct haplotypes

is essential [254]. The inference of the full haplotype information is known as haplotyping,

which consists in assigning all heterozygous Single Nucleotide Polymorphisms (SNPs)

to exactly one of the two chromosome copies. SNPs are one of the most studied genetic

variations, since they play a fundamental role in many medical applications (e.g., drug-design,

disease susceptibility studies). This information can be valuable in several contexts, including

linkage analysis, association studies, population genetics, and clinical genetics [404].

The advent of second-generation sequencing technologies revolutionized the �eld of

genomics, enabling a more complete view and understanding of the genome of different

species. However, despite their great contribution to the �eld, the data produced by these

technologies are still unsuitable for several applications, including Haplotype Assembly. The

short length of the reads produced by second-generation sequencing technologies might be

not long enough to span over a relevant number of SNP positions, leading to the reconstruction

of short haplotype blocks [489, 99] and ultimately hindering the possibility of reconstructing

the full haplotypes. In recent years, however, a third-generation of sequencing technologies

was developed and paved the way to the production of sequencing data characterized by reads

covering hundreds of kilobases, thus able to span different SNP loci at once [358, 363, 212].

Unfortunately, the increase in length comes at the cost of a decrease in the accuracy of the

reads, compared to the short and precise ones produced by second-generation sequencing

technologies, such as NovaSeq (Illumina Inc., San Diego, CA, USA) [350]. In order to

compensate for this inadequacy, there is a need to increase read coverage. Formally, the

coverage of a sequencing experiment is the average number of times that each nucleotide is
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expected to be covered by a read. This value is given by the following relationship:

cov= ( L � N)=G; (1.22)

wherecov stands for the coverage,L for the read length,N for the number of reads andG

for the length of the haploid region of the genome on which the reads are mapped [245].

Equation 1.22 shows that longer reads or a higher amount of reads are needed to increase

the coverage. In practice, an average coverage higher than30� is thede factostandard for

accurate SNP detection [398].

1.4.1 Current trends in sequencing experiments

The �rst studies regarding Single Nucleotide Variations (SNVs) showed that all homozygous

SNVs can be effectively detected by using sequencing experiments with average coverage

equal to15� , while a higher coverage (i.e.,33� on average) is necessary to discover the

same proportion of heterozygous SNVs [398]. In the latest years, a sequencing coverage of

35� is thede factostandard for SNV as well as insert and deletion (InDel) detection, even if

Ajay et al. [6] suggested that an average coverage of50� is required to allow for reliable

calling of SNVs and small InDel analyses.

Whole Genome Sequencing (WGS) is becoming more and more important in many

applications, ranging from SNV to Copy Number Variation (CNV) detection. Depending

on the aims of the proposed study, the typical coverage for WGS experiments varies from

1� -8� for CNVs to60� for InDel analyses [149, 13]. Due to the high cost of the WGS

experiments, a coverage equal to 15� is the most common.

Considering Whole Exome Sequencing (WES) studies, a greater average read depth is

mandatory to achieve the same breadth of coverage of WGS experiments, requiring an80�

average depth to cover 89:6%-96:8% of the target bases [398].

De novoassembly requires a sequencing depth between38� and56� [149, 398]. As

shown in [355], the minimum sequencing coverage from technologies producing short reads

should be equal to29� . In [76], the authors proposed a comparative study aboutde novo

assembly, showing that long reads can be applied to this purpose; however, exploiting long

reads alone with a coverage below35� is not suf�cient to produce satisfying results. This

study suggested that, in the case of low coverage, hybrid assembly methods are the best

choices.

During the latest years, single-cell RNA sequencing (scRNA-seq) experiments gained

ground since they provide the expression pro�le of individual cells, allowing for revealing

complex and rare cell populations [204], which are fundamental for the characterization of
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the sub-population structure of a heterogeneous cell population. Downstream analyses are

applied to uncover regulatory relationships between genes as well as track the trajectories of

distinct cell lineages in development. In this �eld, the coverage of the underlying sequencing

experiments is generally de�ned as the number of reads per cell. Depending on the scRNA-

seq approach and the purpose of the study, different read depth (per cell) are used, varying

from 104 to 106 [185]. For instance, the different cell types of a population can be classi�ed

by exploiting a sequencing depth of5� 104 reads per cell, which allows for accurate and

reliable results [414, 185].

Finally, for SNP and SNV detection as well as small InDel identi�cations, the minimum

coverage should be equal to 30� [398].

1.4.2 State-of-the-art

Several computational Haplotype Assembly approaches for human genome phasing have

been proposed in literature [83]. Most of these methods solve the NP-hard Minimum Error

Correction (MEC) problem, which aims at inferring the haplotype pair that yields two disjoint

sets of the sequencing reads characterized by the minimum number of SNP values to be

corrected [457]. An additional variant of MEC exists, called weighted MEC (wMEC) [169],

which takes into account also the information concerning the quality of the reads. Figure 1.5

shows a “phylogenetic tree”-like diagram of the existing haplotyping methods, which are

brie�y described in what follows.

Beagle [55] is one of the earliest heuristic approaches based on Hidden Markov Models

(HMMs). Considering the genotype information of an individual, Beagle �nds the most likely

haplotype pair among different possible haplotype solutions. It has a quadratic computational

complexity with respect to the input data. SHAPEIT [110] starts from genotyping data from

a population and, given the genotype data of an individual, exploits an HMM-based approach

to estimate the haplotype pair. The population data are used to apply constraints on the graph,

which denotes all possible haplotypes compatible with the input data, in order to determine

the haplotype of that individual. At each iteration, SHAPEIT has a linear complexity with

respect to the number of haplotypes. Eagle2 [266] is a phasing algorithm that exploits

the Burrows-Wheeler transform to encode the information from large external reference

panels. It relies on an HMM to explore only the most relevant phase paths among all possible

paths. The authors showed that Eagle is20 times faster than SHAPEIT [110]. HapCUT [28]

leverages sequencing data (i.e., the entire set of reads is considered) instead of population

genotypes. It infers the haplotype pair of an individual by partitioning the set of reads

solving the MEC problem. The MEC problem is reduced to the max-cut problem, which

is greedily solved over the graph representation of the input instance. HapCUT2 [124] is a
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Fig. 1.5 The “phylogeny” of haplotyping methods. Over the past few years, the reper-
toire of tools for haplotyping has rapidly expanded. A “phylogenetic tree”-like diagram is
used here to depict the division of the algorithms in four different classes, namely: exact,
greedy, probabilistic, metaheuristic. Hybrid methods are connected with dashed lines to
the implemented multiple computational techniques. The orange superscript denotes the
analyzed data: sequencing (S) and genotyping (G). Methods that solve either the MEC or
the wMEC problem are denoted with blue or magenta, respectively. Finally, the Haplotype
Assembly methods that exploit HPC are highlighted with a green arrow directed to the used
computational resources.

recent heuristic approach that exploits a haplotype likelihood model for the sequencing reads.

A partial likelihood function is used to evaluate the likelihood of a subset of the fragments.

Differently from its previous version (HapCUT [28]), which is based on a max-cut algorithm,

HapCUT2 optimizes the likelihood to �nd a max-cut in graph representation of the input

instance.
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ProbHap [239] relies on an exact likelihood optimization technique to solve a generalized

version of the MEC problem. It exploits a dynamic programming algorithm capable of

exactly optimizing a likelihood function, which is speci�ed by a probabilistic graphical

model that generalizes the MEC problem. ProbHap can handle long reads coverage values

up to20� , which is not appropriate for higher coverage short-read datasets; on the other

hand, it works better with very long reads at a relatively shallow coverage (� 12� ).

ReFHap [121] is based on a heuristic algorithm to �nd the max-cut. ReFHap solves the

Maximum Fragments Cut (MFC) problem instead of the classic MEC problem. The max-

cut problem is reduced to the MFC problem, which is addressed using a greedy approach.

HuRef [254] is a heuristic approach that aims at inferring the heterozygous variants of

an individual. It is based on a greedy algorithm that iteratively re�nes the initial partial

haplotype solutions. The authors leveraged this Haplotype Assembly approach to study

non-SNP genetic alterations considering the diploid nature of the human genome.

Chenet al. (2013) [81] proposed an exact approach for the MEC problem using an

integer Linear Programming solver. First, the fragment matrix is decomposed into small

independent sub-matrices. Each of these sub-matrices is used to de�ne an integer Linear

Programming problem that is then exactly solved. WhatsHap [333] is an exact method

relying on a dynamic programming algorithm used to solve wMEC. It implements a �xed

parameter tractable algorithm [191, 51], where the �xed parameter is the maximum coverage

of the input instance, to deal with the NP-hardness of the wMEC problem, leveraging the

long-range information of long reads. This method does not assume the all-heterozygosity

of the phased positions, however, it can deal only with datasets of limited coverage up to

� 20� . pWhatsHap [52] is an ef�cient version of WhatsHap [333], which was designed to

leverage multi-core architectures in order to obtain a relevant reduction of the execution time

required by WhatsHap. The proposed implementation exploits the physical shared memory

of the underlying architecture to avoid data communication among threads. HapCol [342]

implements a dynamic programming algorithm to solve an alternative version of the wMEC

problem, calledk-MEC, which is used to take into account the distribution of sequencing

errors of future-generation technologies. In this strategy, the number of corrections per

column is bounded by the parameterk. No all-heterozygous assumption is required, but it

can only deal with instances of relatively small coverages up to� 25� 30� .

Two-Level ACO [36] is based on the Ant Colony Optimization (ACO) technique (see

Section 2.3.1), which is a metaheuristic designed to deal with combinatorial problems on

graphs generated starting from the genotyping data given as input. This approach is based

on the pure parsimony criterion to �nd the smallest set of distinct haplotypes that solves

the Haplotype Assembly problem. Probabilistic Evolutionary Algorithm with Toggling
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for Haplotyping (PEATH) [298] is based on the Estimation of Distribution Algorithm (see

Section 2.2.4), which is exploited to deal with noisy sequencing reads, aiming at inferring

one haplotype, under the all-heterozygous assumption. The method proposed by Wanget al.

(2005) [457] relies on Genetic Algorithms (GAs), which are extensively explained in Section

2.2.5, to address an extended version of the MEC problem, called MEC with Genotype

Information (MEC/GI), which also considers genotyping data during the SNP correction

process. GAHap [459] uses GAs to infer the haplotype pair of an individual working on

nucleotide strings. During the optimization, GAHap solves the MEC problem by using a

�tness function based on a majority rule that takes into account the allele frequencies. The

results shown in [459] are limited to a coverage up to10� and a haplotype length equal to

700. No all-heterozygous assumption is required.

In Chapter 6 we will explain in details GenHap [433], which is a novel computational

method based on GAs, designed to deal with the computational hardness of the Haplotype

Assembly problem.

1.5 Medical image enhancement and segmentation

Medical imaging systems often require the application of image enhancement techniques

to help physicians in anomaly/abnormality detection and diagnosis, as well as to improve

the quality of images that undergo automated image processing. Appropriate image pre-

processing steps can improve the result accuracy achieved by computer-assisted segmentation

methods. Among the low-level intensity-based Pattern Recognition techniques, which are

widely adopted in scenarios with real-time constraints, the simplest unsupervised image

segmentation algorithm is global thresholding, which essentially reduces to a pixel classi�ca-

tion problem [165]. In particular, image binarization classi�es the input pictorial data into

exactly two classes (i.e., foreground and background), given a threshold intensity value [365].

This global threshold value is ef�ciently computed by operating on the image histogram

alone. Unfortunately, adaptive thresholding techniques for two-class segmentation work

properly only for images characterized by bimodal histograms [477]. Therefore, in the case

of images with a bimodal intensity distribution, image binarization techniques are able to

classify the input pictorial data into two classes. In practice, different types of regions in an

image could overlap, thus affecting the bimodality conditions of the gray level histogram,

where the histogram modes semantically correspond to different types of regions. Image

pre-processing can de�nitely improve the result accuracy achieved by computer-assisted

segmentation methods [365], by sharpening the peaks of the two sub-distributions, so that

the resulting histogram is characterized by a stronger bimodality, even in the case of blurred
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region contours and of the related Mach band effect pertaining to edge-detection in the human

visual system [97, 238]. As a way of example, in radiology this phenomenon is accentuated

in edges of adjacent regions that slightly differ in terms of gray level intensities [353].

No existing pre-processing technique addresses the issues related to medical image

enhancement for subsequent binarization by using adaptive thresholding [477]. Literature

methods may be inadequate when dealing with low-contrast images [257], producing false

edges and under-/over-segmentation when input images are affected by noise, as in the case

of Magnetic Resonance Imaging (MRI) data [144], which represents the leading modality

for the imaging of soft-tissues in current medical practice, with particular relevance in cancer

imaging, allowing for high-contrast between the tumors and the surrounding tissues [128].

Unfortunately, MRI data are affected by acquisition noise [400] and are also prone to imaging

artifacts, mainly caused by magnetic susceptibility and large intensity inhomogeneities of

the principal �eld (i.e., streaking or shadowing artifacts [402]), especially in the latest MRI

acquisition devices with high magnetic �eld intensity.

1.5.1 State-of-the-art

Most of the existing enhancement techniques are empirical or heuristic methods—strongly

related to a particular type of images—which generally aim at improving the contrast

level of images degraded during the acquisition process [79]. As a matter of fact, �nding

the best gray level mapping that adaptively enhances each different input image can be

considered an optimization problem [334, 117]. Unfortunately, no unifying theory employing

a standardized image quality measure is currently available to de�ne a general criterion for

image enhancement [297]. In addition, in the case of medical imaging, techniques tailored on

speci�c tasks are necessary to achieve a signi�cant enhancement and, in general, interactive

procedures involving considerable human effort are needed to obtain satisfactory results.

In order to achieve objective and reproducible measurements conveying clinically useful

information, operator-dependence should be minimized by means of automated methods.

Point-wise operations in the spatial (pixel) domain, representing the simplest form of image

processing, are effective solutions since ef�ciency requirements have also to be met. In the

case of image enhancement, they re-map each input gray level into a certain output gray

level, according to a global transformation [165]. Thus, such kind of techniques treat images

as a whole, without considering speci�c features of different regions, or selectively distin-

guishing between a collection of contrast enhancement degrees or settings [297]. Histogram

Equalization (HE) is the most common global image enhancement technique, whose aim

is to uniformly redistribute the input gray level values according to the cumulative density

function of its histogram [165, 180]. Unfortunately, HE does not take into account the image
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mean intensity [80], which is subject to a signi�cant change during the equalization process

by invariably shifting the output mean brightness to the middle gray level, regardless of the

mean gray level in the input image [143]. Consequently, HE is not able to preserve the input

mean brightness, possibly suffering from over-enhancement, and giving rise to artifacts such

as the so-called washed-out effect [80]. This global transformation method applies contrast

stretching just on gray levels with the highest frequencies, causing a signi�cant contrast

loss concerning the gray levels characterized by low frequencies in the input histogram

[227]. Bi-Histogram Equalization (Bi-HE), which is a re�ned version of the traditional HE,

was proposed to overcome the limitations related to input mean brightness preservation,

mainly caused by histogram �attening [227]. Firstly, Bi-HE splits the original histogram

into two sub-histograms according to the global mean of the original image; afterwards, the

sub-histograms are independently processed by applying the standard HE method to each of

them.

In addition to HE, which automatically yields an image with a uniform histogram, it is

possible to explicitly specify the desired shape of the output histogram. This method, named

Histogram Speci�cation (HS), aims at matching the histogram of the gray level intensities of

the input image against a desired histogram [165]. Unfortunately, this approach cannot be

applied in the case of image datasets characterized by heterogeneous gray level distributions,

since the histogram to be matched should be de�ned eithera priori for all the images in

the dataset, or interactively for each processed image, by separating and shaping the two

underlying sub-distributions [473].

Other traditional global gray level transformations generally used for contrast stretching

are formalized as transformation functions of the forms= T (r), whereT (�) maps an input

intensity valuer into an output intensity values [165]. Power-law transformation—also

called Gamma Transformation (GT)—is a non-linear operation of the formT (r) = crg,

where typicallyc = 1. For instance, when the image is predominantly dark, an expansion

of the intensity levels is desirable. In such a case, GT withg < 1 yields a brighter image

by increasing the number of hyper-intense pixels; on the contrary, by usingg > 1, the GT

converts the input gray-scale range into a darker one, by increasing the occurrences of darker

pixels. Obviously, the value ofg strongly depends on the (medical) application. Accordingly,

logarithmic and anti-logarithmic transformations make an image much brighter and darker,

respectively. Unfortunately, for medical images characterized by low-contrast and weak

edges at adjacent tissue boundaries, GT may result in merely brighter or darker images,

leading to dif�culties in the visualization and discrimination of different tissues. Therefore,

to adequately enhance contrast, the two different behaviors of GT—corresponding to values

g > 1 andg < 1—should be combined for contextually decreasing the darker pixel gray
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values and increasing the brighter pixel gray values. This results in a signi�cant improvement

of the contrast, by enhancing the edges thanks to the increased gradient magnitude of

the image [144]. This kind of contrast stretching can be achieved by using a Sigmoid

intensity Transformation (ST), which darkens a wide range of hypo-intense gray levels and

brightens a wide range of hyper-intense gray levels [165]. Such an operation indirectly

increases the difference between low and high intensity values, resulting in the overall

contrast enhancement of the image [144].

The complexity of the enhancement criteria to be met (i.e., the effective contrast stretching

combined with image detail preserving) leads to the application of global search metaheuris-

tics that allow for coping with several constraints, which are not generally tractable by means

of traditional exhaustive computational approaches [334, 297, 325]. Evolutionary methods

have been widely adopted in the image enhancement domain to �nd the optimal enhancement

kernel [297], sequence of �lters [233], or input-output mapping transformation [381, 65].

Recently, [188] proposed a GA-based method that ef�ciently encodes the histogram by

means of the non-zero intensity levels, by employing genetic operators that directly process

images to increase the visible details and contrast of low illumination regions, especially in

the case of high dynamic ranges. The authors argued that this method yields “natural-looking”

images, considering the visual appearance.

Regarding other evolutionary computation approaches, Genetic Programming (GP) [236]

was shown to be a powerful framework to select and combine existing algorithms in the

most suitable way. Differently to GAs, GP evolves a population of functions, or more

generally, computer programs to solve a computational task. The solutions in the computer

program space can be represented as trees, lines of code, expressions in pre�x or post�x

notations as well as strings of variable length [69]. For instance, [49] tackled the video

change detection problem (among the frames of video streams) by combining existing

algorithmsvia different GP solutions exploiting several fusion schemes. The �tness function

was composed of different performance measures regarding change detection evaluation. For

what concerns the application of GP in image enhancement, [343] proposed an approach

to yield optimally pseudo-colored images for visualization purposes, aiming at combining

multiple gray-scale images (e.g., time-varying images, multi-modal medical images, and

multi-band satellite images) into a single pseudo-color image. This approach relies on user

interactions to determine which candidate solution should be the winner intournament

selection, so it does not explicitly require a �tness function. As case studies, a pair of brain

MRI sequences were fused as well as the motion of the heart on echocardiographic images

was synthesized into a single pseudo-color image. Other works exploited Swarm Intelligence

techniques. The approach presented in [392], called Multi-Objective Histogram Equalization,
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uses PSO [225] to enhance the contrast and preserve the brightness at the same time. The

work presented in [117] employed the same encoding of candidate solutions and histogram

mapping strategy described in [188], within an optimization strategy based on the Arti�cial

Bee Colony (ABC) algorithm [223]. However, since ABC natively works in a continuous

space, while a discrete representation is used for the solutions (i.e., gray-level mapping),

a discretization step is mandatory in the correction operation during the search phase. An

alternative approach using the ABC algorithm for image contrast enhancement was proposed

in [79], wherein the optimal values for the parameters of a parametric image transformation,

namely the Incomplete Beta Function, are estimated. Differently to the work described in

[117], the optimization procedure is carried out in a continuous search space. Finally, multi

objective Bat Optimization and a neuron-based model of Dynamic Stochastic Resonance

were combined in [399] for the enhancement of brain MR images.

In Chapter 7 we will describe a novel image enhancement technique based on GAs, called

MedGA [379], speci�cally aimed at strengthening the sub-distributions in medical images

with an underlying bimodal histogram of the gray level intensities.





Chapter 2

Optimization techniques

An optimization problem is de�ned as the problem of �nding the optimal solution by

means of mathematical or computational methodologies, among all feasible solutions in

a D-dimensional search space that is generally bounded (i.e., a set of given constraints

bounds the search space). The most common optimization problems are minimization

(maximization) problems, in which the solutionx� 2 RD minimizing (or maximizing) an

objective functionF : RD ! R must be identi�ed. All the optimization problems considered

in this thesis are expressed as minimization problems, wherex� is the optimal solution if

and onlyF(x� ) < F(x0), 8x06= x� . Notice that any maximization problem can be easily

formulated as a minimization problem by inverting the sign of the objective function, and

viceversa.

The most naïve approach consists in enumerating all the feasible solutions, evaluating

them by means of the objective function and ranking them according to the calculated values.

This method cannot be applied due to the size of the search space, which may be too large or

even in�nite. Several methods have been proposed to ef�ciently explore the search space in

order to �nd the best solution of the given objective function.

In this chapter, the classic optimization techniques will be presented, then Evolutionary

Computation (EC) and Swarm Intelligence (SI) will be introduced and some examples of

algorithms belonging to these �elds will be explained. We highlight that Computational

Intelligence is the �eld of research involving Neural Networks, Fuzzy Systems, EC and SI

[120]. All these disciplines are based on practical adaptation, self-organization concepts

and algorithms that can promote actions in complex environments. In this thesis, EC and SI

methods have been taken into account to solve complex real world problems.
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Fig. 2.1 Example of the execution of the SM maximizing the objective function described in
Equation 2.1. The blue lines represent the2-polytope de�ned by the5 constraints (Equation
2.2), that is,3 inequations and the non-negativity conditions of the variablesx1 andx2.
The 3 inequations are represented by the orange, red and brown dashed lines, while the
non-negativity conditions by using the black dashed lines. The gray polygon indicates the
feasible region obtained considering the aforementioned constraints. SM starts selecting
an initial vertex as candidate solutionx� of the problem (herex� = ( 0;0)). The algorithm
moves across the vertices (green dots), by following the edges of the polytope improving the
objective function (green arrows). When no improving directions are found, the SM stops.
By so doing, the last visited vertex corresponds to the global optimum (herex� = ( 2;6)).

2.1 Classic optimization techniques

2.1.1 Simplex Method

The Simplex Method (SM) [101] is probably the most known traditional technique used

to solve Linear Programming (LP) problems where both the objective function and the

constraints are linear. In SM, as shown in Figure 2.1, the space of the feasible solutions is
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described by means of a convexD-polytope, which is a polytope characterized by a convex

set of points in theD-dimensional space generated by the linear constraints.

SM is an exact iterative algorithm in which, given a initial vertexx� 2 RD of the D-

polytope, the objective function is evaluated on the vertices of the setV connected tox� by

means of an edge. Considering a maximization problem, the vertex inV characterized by the

highest value (i.e.,F(x0) > F(x� ) andF(x0) > F(x) 8 x0;x 2 V such thatx06= x) is selected as

the new optimal solutionx� and the process is repeated. When no adjacent vertex improving

the objective function is found (i.e.,F(x0) � F(x� ), 8 x02 V), the SM stops. Figure 2.1

depicts the execution of the SM maximizing the following objective function:

maximizing 3x1 + 5x2; (2.1)

with 5 constraints: 8
>>>>>>>>><

>>>>>>>>>:

x1 � 4

2x2 � 12

3x1 + 2x2 � 18

x1 � 0

x2 � 0

; (2.2)

with global optimum inx� = ( 2;6).

The described SM requires that the feasible region is convex and both the constraints and

the objective function are linear. Moreover, in [231] the authors showed that for some classes

of optimization problems SM has an exponential complexity in the worst case. Since many

real world problems are strongly non-linear and non-convex (e.g., the Parameter Estimation

of biological systems shown in Chapter 5), SM cannot be applied. Nevertheless, SM is used

in some Systems Biology applications, such as the Flux Balance Analysis (FBA) [324], in

which the vector of reaction �uxes in a biochemical system must be optimized. A classic

FBA problem is represented by the maximization of some products of the system (e.g., ATP

[351] or biomass [57]), where the constraints are represented by some biophysical limits (e.g.,

�uxes limitations or mass balance). Since a steady-state assumption is taken into account,

the optimization of these �uxes can be stated as a LP problem and can be effectively solved

by exploiting the SM.

2.1.2 Gradient Descent

As discussed above, the SM can be exploited when the region of feasible solutions is convex,

the constraints as well as the objective function are linear. These assumptions limit the
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