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Abstract

This work studies systems, and the processes they execute, in the way they
can be distributed. To this aim, the central notion is that when a system is
distributed, a remote observation requires an exchange of information from the
different locations of the system.

The chosen formalisms are taken in the framework of Petri net theory. El-
ementary net systems, and condition/event net systems provide specifications
for the systems. Causal nets and partially ordered sets allow for modelling pro-
cesses. With these last formalisations, the state of the art provides a notion
of subprocesses that can be structured so as to carry information on how a
process can be distributed. This structure is formalised as an orthomodular
lattice. This work shows that the minimal non trivial elements of this lattice,
the minimal subprocesses, can be ordered so as to provide an abstraction of
the process. The nature of this notion of subprocess permits to show that this
abstraction depicts the localities of the process, parts of the process which can
run independently from each other.

The behaviour of elementary, and condition/event net systems, is modelled
with labelled transition systems. This work adheres to an interpretation of the
set of elementary regions, as the one of locally observable properties of the sys-
tem, motivated by elementary net synthesis. According to this interpretation,
elementary regions represent a suitable specification of the available infrastruc-
ture on which to distribute a system. The state of the art shows that the set
of regions of an elementary, or condition/event system, forms an orthomodular
poset, thus providing a way to retrieve a canonical labelled transition system
such that all regions of the orthomodular poset are also regions of it. The
question of whether this canonical transition system has more regions than the
specified ones is an open problem. The canonical transition system is the largest
one can obtain from an orthomodular poset, in the sense that systems comply-
ing with the specification, can be found as subsystems of it. However, not all its
subsystems display the same regional structure. This work presents a sufficient
condition for this to happen. This is achieved by providing a structure to the
set of events, or labels, of the canonical system, which reflects concurrency.

An orthomodular poset is called stable when it is isomorphic to the set of
regions of its canonical transition system. The state of the art shows that when
the first poset is of a given class, it embeds in the second. It is conjectured
that all posets that arise as the sets of elementary regions of an elementary
system, regional posets, are stable. This work provides a condition necessary
for an orthomodular poset to be regional, and shows that when it holds, the
embedding is strong. Not every embedding is strong, but all isomorphisms are,
in particular, strong embeddings. This result implies that the embedding maps
minimal regions to minimal regions.
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Chapter 1

Introduction

A Distributed System consists of several computing components, each of which
is located at a different point in space. A network of computers distributed
around the globe is an example of such a system.

Different models allow for description and specification of such systems,
among which Labelled Transition Systems and Petri Nets are widespread
paradigms. The two are very closely related in that Labelled Transition Sys-
tems are commonly used to represent the behaviour of Petri Net Systems.
Indeed, the former capture statically, in one single snapshot, all possible be-
haviours of the system, whereas the latter rely on a dynamic expression of
behaviour to more succinctly represent the system.

Petri Net models are, in this sense, closer to the implementation level,
and they are, for instance, used in the design of digital circuits, or logistic
networks. Furthermore, the Petri Net paradigm allows for representation of
the processes a system is able to execute.

The Elementary setting refers to subclasses of either Labelled Transition
Systems and Petri Nets, the evolutions of which are guided strictly by Boolean
conditions. The execution of a possible action relies solely on the true or false
value of series of variables, or flags. In this sense, elementary systems are bare
of any data carrying, or counting capacity. However, this restriction on the
expressive power of the models permits a formal analysis of concurrency of
the systems in logical terms.

Indeed, in the elementary framework, given the specification of either a
system or a process in one of the aforementioned models, concurrency features
can be distilled into a particular class of algebraic structures. These structures
carry the relevant information on the extent to which the system, or process,
can be distributed in space, allowing for exploitation of the computational
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2 CHAPTER 1. INTRODUCTION

power of as many components as possible. It is in this sense, that the way a
system, or process, can be distributed is referred to as its distributability.

This first chapter is structured in four sections, the first of which is a
brief presentation of the field of distributed systems. The second section deals
with the mathematical formalisations of these, and motivates the choice of the
models at stake in this work. The third section presents the main principles
that will be followed when analysing how a system can be distributed. Finally,
the fourth section presents the structure of the thesis, underlining its main
contributions.

1.1 Distributed Systems

Distributed Systems have the characteristic that components do not need to
share memory or clocks, hence all communication is performed by message
passing [25]. In the words of F. Mattern: “A distributed system can be
characterised by the fact that the global state is distributed and that a common
time base does not exist” [41]. When a system is composed of one single
component, namely one locality, and one clock, it is said to be fully sequential,
its computations are totally ordered sequences of states. When composed of
several sequential components, a system is distributed, and is able to perform
actions corresponding to each of its components asynchronously, in parallel.

The study of systems, distributed or sequential, is, apart from the obvious
theoretical interest, of great use in practice. Indeed, when designing a system,
such as a microprocessor, or a network protocol, one will certainly want to
verify that the chosen implementation complies with a given specification. For
instance, a CPU should never reach a deadlock state, or full stop of the system,
since in this situation, a user could not get any service from it, thus violating
the requirements of the specification. Model-checking is a field of computer
science devoted to the verification of such a compliance of the system to the
specification (see for example [24]). In general, specifications are provided in
some formal language, suitable to express behaviours of the system. Temporal
logics are commonly used in this frame. The converse problem of model-
checking is the synthesis. In this case, one would like to design a procedure,
which, given a suitable specification, would automatically generate a model
of a system compliant with it. These two approaches are well settled, and an
extensive literature exists presenting techniques and solutions. However, most
of them regard fully sequential systems, and in general do not scale very well
to the distributed case.

The reasons for this lack of scalability are of different natures. First, ei-
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ther model-checking, or synthesis techniques need, in the distributed case, to
face the so called ”state explosion problem”. This problem is due to the fact
that independent components evolve independently, unless communication is
set to synchronise them. In such a situation, a global state of the system
will represent a combination of the local states of each component. Since each
such component is able to change its state independently, the number of global
states, as combinations of local states, grows exponentially with the number of
components. This exponential increment presents a great barrier in practical
application, in particular for large systems, and has led to the development of
a set of alternatives such as structural analysis, and the lately very popular
modular approach. This last approach focuses on seeing the whole system as
the composition of smaller modules, such that the properties to be checked
hold on the whole system whenever they hold on each of the modules. Un-
der these circumstances, it would be sufficient to check the properties in the
possibly logarithmically smaller modules, to assert that the property holds
in the system. In the case of the synthesis, the limitations are even greater.
For instance, although it is known that the reactive synthesis problem, also
known as Churchs solvability problem, admits a solution in 2-EXP time in
the sequential case [49], it was shown to be undecidable in the general dis-
tributed case [50]. Late advances in this field have however provided decidable
subclasses of the problem, dealing still with a very high complexity [32].

Another strong limitation for the analysis of distributed systems is the
principle of locality itself. When reasoning about testable properties of such a
system, it will be assumed that an observer can not be at two different localities
simultaneously. Hence, his knowledge about the global state of the system is
restricted to what he can learn by observing a given sequential component.
Note that he might be able to infer information about other components of
the system, from the way they interface with the one at its location. However,
this information remains incomplete. Indeed, the observation of a distant
component is subject to a form of uncertainty principle: to receive information
about the remote system, this one will have to send a message, thus changing
its state. Furthermore, the lack of a global clock prevents the observer from
gaining information about previous states of the system, for it would require to
know the state of several components at a given instant. In his seminal paper
Time, Clocks, and the Ordering of Events in a Distributed System, L. Lamport
[40] addressed the question of comparing the delay in message transmission
with the time-lapse between events of a single sequential process. When this
delay is not negligible with respect to execution times in the process, the
notion of simultaneity only has sense at actual interfaces.

This principle justifies a mathematical link between this work and quantum
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mechanics. The model with which these observable properties of distributed
systems are represented was mainly developed and studied by Garrett Birkhoff
and John von Neumann as early as 1936 [19], in an attempt to axiomatically
formalise the set of testable properties of a quantum system. A rich theory
has been developed in this topic ever since. In this work, results from that
field will be extensively used. In particular, the notion of quantum logic,
formalised as an orthomodular partial order, will be presented as a suitable
algebraic structure to represent the logic of observable properties of distributed
systems. This approach was introduced in [8], and further developed in [7].

Although the principle of uncertainty allows for the analogy with quantum
mechanics, the systems studied in this work are of a very different nature than
those of quantum physics. So even though the mathematical models developed
for the quantum theory are a suitable frame for the present study, focus will
be put on a particular subclass of such models, that differs from the cases of
interest in that field. As a matter of fact, the subclass of interest will arise
very naturally from the study of classical models of distributed systems.

1.2 Models of Computation

Distributed computation admits different kinds of formalisation. As models
of computation, they evolve around the central notion of Automaton. An
automaton is a mathematical model of a computing device, or system. It
consists of a finite set of states, usually depicted as points, or vertices of a
graph, and a set of labelled arcs linking them, represented as labelled arrows
between the corresponding nodes. The labels on the arcs represent actions
that, when performed by the system, lead this one from one state to another.
A particular state is set as initial, meaning that the system starts in that state,
and remains there until reading any kind of input. Sequences of actions which
correspond to a path from the initial state on the automaton are interpreted as
a computation. In the classical setting, some states are marked as accepting,
indicating when reached, that the corresponding computation terminates, and
is thus a valid computation for such a model. The main drawback of such a
simple representation is that a given automaton can only recognise a restricted
set of computations, those corresponding to a regular expression. Classical
theory deals with more general models so as to include memory, yielding stack
automata, and Turing machines. The latter represent the main paradigm of
general computation, due to its versatility, and its capacity to adapt to the
input. Indeed, it represents the main model of programmable machines, in
the sense that the input, encoded as a string of characters in the memory,
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can alter the way the input itself will be treated. As a matter of fact, the
well-known Church-Turing hypothesis conjectures that any computation can
be performed by a suitable Turing machine.

All these paradigms, however, deal with a finite notion of computation.
Indeed, in such models, a computation is a sequence of actions that terminates.
In some cases however, this assumption is very limiting. One can easily think
of a program, such as an operating system, that after performing a given
computation would remain idle until further instructions are given by the
user. Reactive systems are a set of mathematical models that deal with this
possibility. In most cases, the set of accepting states is simply substituted by
a set of accepting conditions, that can vary depending on the requirements.
These can be simply reaching a given set of states, or requiring that they
be visited infinitely often. When abstracting from accepting conditions, one
simply considers a set of states, labelled arcs between them, and in some cases
an initial state. Such a model is called a labelled transition system, and will
be the focus of an important part of the study presented in this work. The
choice of such model is motivated by its generality, in the sense that it can
be further interpreted by deciding suitable accepting conditions, or extended
with different memory formalisations. On the other hand, it is a suitable
frame for the study of concurrency, since one can easily express features of
concurrent systems on it. Indeed, when interpreted as a distributed system,
a labelled transition system depicts concurrency by means of the so called
interleaving semantics. In this frame, states of the labelled transition system
represent global states of the system. Actions, in fact, are assumed to be
bound to a locality, so that an action belonging to different components of
the system can only represent a synchronisation among these. In the classes
of labelled transition systems that will be considered in this work, one can
further determine if two actions are concurrent, whenever at a given global
state, executing them leads the system to a same single state, independently
of the order in which they are executed. In this case, one may say the two
actions commute. Note that in such a situation, the mid-states, in which one
of the actions has been executed, but yet not the other, do not coincide. The
concurrent occurrence of two actions will hence be characterised by such four
states: the initial one, two mid-states in which one action has occurred but
not the other, and the single state in which both have been performed. Such
a configuration is called a diamond. This is the simple case of two concurrent
actions, but the notion of diamond can be naturally extended to arbitrary
sets of concurrent actions, each to be performed by a sequential component
of the system. Note that the number of global mid-states grows exponentially
with the number of concurrent actions. Indeed, a diamond involving three
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actions will consist of 8 global states, whereas a diamond involving 4 actions
will count 16 states. This exponential number of mid-states is actually what
was earlier introduced as the state space explosion problem. It represents the
main drawback of such models, be it for the analysis or the design of systems.

A great effort has been put by the community in order to overcome this
problem. It has lead to a wide range of models, all meant to deal with concur-
rency while trying to avoid expressing mid-states of diamonds. Each of such
models present specific advantages, and the intended use should motivate their
choice. For instance, asynchronous automata [63] are suitable for the study of
formal languages in a concurrent setting, whereas interface automata [28] are
best suited for the analysis of the interactions of the different components of
a system. This work however, will focus on the paradigm of Petri nets [56].
Petri nets present the advantage of explicitly depicting concurrency. Indeed in
this model the localities are explicitly represented, and actions are not simple
labels on edges, but rather nodes of their own, that interact directly with the
localities of the system.

1.3 Approach to the Analysis of Distributability

In this work, Petri net models are taken as the basic representation of a
distributed system. The reason for this choice is that, in this family of math-
ematical models, concurrency is explicit. A large literature has tackled the
analysis of concurrency in them, leading to several notions of distributability.
Most of these rely on the notion of state machine. Indeed, structural analysis
is a well-known set of techniques that allow, in particular, for the identification
of the state machines of a net. A state machine is a part of the net, or subnet,
which is fully sequential, it depicts no concurrency. In this last sense, it can
be identified with a subclass of finite state automata. A natural approach
for studying how the system can be distributed is to try to allocate each of
these state machines to a different spatial location. The way state machines
are interconnected would then depict the way they communicate. A different
approach for allocating parts of the system to spatial locations is developed
in [3], or [16]. However, that line of research presents, in the view of the au-
thor, the drawback that the mode of communication among the components
is limited. Indeed, parts of the system assigned to different locations can only
communicate by exchanging messages. Although accurately representing the
reality, this approach imposes limitations when designing a system.

The approach adopted in this work is different. Instead of trying to assign
parts of the system to spatial locations, the notion of observation is exploited.
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The systems will be decomposed in possibly overlapping parts, that will be
called sequential components. A sequential component is a part of the system
which is observable from one spatial locality. Hence, a sequential component
not only includes the set of local states and instructions allocated to a point
in space, it extends to the parts of the system it is able to obtain informa-
tion from. In this sense, two sequential components are allowed to overlap,
on a part of the system they agree upon. This shared part of the system is
to be interpreted as their communication protocol, and in fact, this approach
permits to interpret distributability so as to consider a wide range of commu-
nication modes. The building blocks for these modes will be handshaking, the
simultaneous execution of an action from several parts, and communication
channels, implemented as shared memory. By composing these basic features,
more complex protocols can be implemented. In this setting, a wider range
of designs can be interpreted as distributable. This approach is characterised
by the fact that the notion of observation, and observability, are central.

The notion of observation, and observability, is an important matter of
study, in particular, in physics, where the design and interpretation of ex-
periments is crucial. In particular, in quantum mechanics, these notions are
formalised in terms of logic. A property of a physical system is, as in computer
science, a statement about the system which can hold at a given instant, or
not. This is formalised as a Boolean variable that can take the value true or
false. The nature of the system then imposes restrictions on the dependencies
among these variables, generating structures that express these dependencies.
A property is said to be observable if it can be observed in the system without
interfering with its behaviour. This idea will be motivated and developed in
Section 4.1.2.

In order to apply this notion of observability, this work restricts its focus
within the class of Petri net models to the elementary and condition/event
case. Indeed, the behaviour of these models is guided by Boolean conditions,
variables that take the value true or false. In these models such variables
represent the local states of the system, in such a way that the value of a col-
lection of local states determines the global state the system is at. This allows
one to interpret observable properties as potential local states, states that if
not present, could be added to the system without altering its behaviour. The
theory of Petri net synthesis (see for example [2]) allows for identifying all
such redundant states.

Hence, this work is guided by two main principles. The first one comes
from the field of Petri nets, and was postulated by Petri himself [48]. An event
is a component of the model which represents an action of the system. The
principle of extensionality states that the events of a system are characterised
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by their effect. An event is only observable by the way it modifies the system,
and so two events applying the same modifications on it should be considered
the same. The second principle that serves as a guideline in this work, is what
is here called the principle of locality. It postulates that remote observations
can only be performed through communication. From a given location, the
acquisition of information about a remote part of the system can only be
performed by communicating with it, thus imposing that the remote part
alters its state. Hence, the observations performed by a sequential component
on another must be integrated in the part of the system which is shared by
both, their communication protocol.

1.4 Outline of the Thesis and its Main
Contributions

This work is structured as follows. Chapter 2 will introduce the basic math-
ematical formalism regarding the models at stake. After briefly introducing
some general notions of Petri net theory, the focus is put on elementary net
systems, and condition/event net systems. The nonsequential processes that
these systems can run will be formalised as causal nets. Labelled transition
systems will then be introduced as interleaving models for the behaviour of
such net systems, so a particular attention will be put on elementary and
condition/event transition systems. Finally, orthomodular partial orders, and
orthomodular lattices will be introduced as the main tools for analysing these
systems, and their processes, respectively.

Chapter 3 will deal with process distributability. After motivating the
formalisation of processes as causal nets, it will present the mathematical
instrument introduced in [10]. It is a tool that permits to analyse a process
by endowing it with an algebraic structure. This structure is composed of
subsets of the causal net, interpreted as subprocesses, together with a set of
relations among them, and forms an orthomodular lattice. This lattice carries
information about concurrency of the process, and the causal dependences
among its parts.

The first contributions of this work will then be presented. The properties
of this orthomodular lattice are exploited so as to extract a canonical abstrac-
tion of the process which carries all information regarding its concurrency
and its causal dependences. In particular, the concurrency relation among
the minimal non-trivial elements of this lattice is shown to be sufficient to
determine the whole structure. As a consequence, the relation between the
subprocesses corresponding to these elements are sufficient to determine how
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the process can be distributed. This novel canonical abstraction omits the in-
formation regarding the parts of the process for which the causal dependences
described in its specification impose that they belong to the same spatial lo-
cality. The remaining information it depicts regards the way the process can
be distributed in space, and the way information flows among the distinct
parts. The introduction of this abstraction represents the contribution of this
work regarding processes, most of which can be found in [1].

Chapters 4 and 5 will be concerned with system distributability. In Chap-
ter 4, the notion of observable property of a system will be motivated. To
this aim, the main results of elementary net synthesis are first presented, thus
introducing the notion of region. These results are then used to justify that
to every observable property of the system, there corresponds an elementary
region. Since the observability of these properties is subject to the principle
of locality, the structure of elementary regions, as introduced in [7], is pre-
sented as a suitable tool for analysing the distributability of the system. This
structure, known as quantum logic, is formalised as an orthomodular partial
order. The authors of that work described a synthesis procedure that provides
a model of all possible behaviour implementable from a given specification of
the properties of the system that should be observable, the so called saturated
transition system. They further conjectured that no additional property can
be observable on a system with a behaviour consistent with the one described
in the synthesised model. In other words, each region of the synthesised sys-
tem should correspond to an element of the orthomodular poset it was built
from.

The construction of this saturated transition system will be presented, and
its analysis will lead to the original contributions of this chapter. Based on
the concurrency of its events, the saturated transition system will be endowed
with a structure. Indeed, it will be shown that these events can be partially
ordered, and an independence relation among them will be defined, based on
their structural properties. It will be shown that this independence relation
coincides with their pairwise commutativity, and can thus be interpreted as
concurrency. This additional structure, provided to the synthesised system,
allows to select a subset of events which is sufficient to depict all concurrency
of the system. As a consequence, a system having this subset as events, will
have the same regions as the saturated one. Hence, the contribution permits
to further exploit the results of [7]. Most of the contribution in this line of
research can be found in [15]

In Chapter 5, the problem of whether no additional property is observable
on the saturated transition system is tackled. The problem is first discussed,
and stated: an orthomodular poset is called stable when it is isomorphic to
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the structured set of regions of its saturated transition system. The state
of the art shows that when an orthomodular poset verifies a given collection
of properties, then it embeds into the aforementioned set of regions. It is
conjectured that, when it arises as the collection of regions of some elementary
system, then this embedding is an isomorphism. In other words, regional
orthomodular posets are stable.

Although the conjecture remains an open problem in the general case, it
will be proven as an original contribution of this work, that the formalisation
of observable properties must comply with an additional axiom, which is not
required in the general case. This additional axiom is found to be a property
of every regional orthomodular poset.

It is further shown, with this additional requirement, that the embedding
of the orthomodular poset into the regions of its saturated transition system
is in fact strong. This represents a step forward in proving the conjecture.
Indeed, strong embeddings are closer to being isomorphisms in that their
lack of surjectivity is narrowed down. In fact, under this assumption, the
embedding must map each minimal element to a minimal region, so that no
property whose extension is properly contained in such a region is observable
on the saturated transition system.

Finally, it is shown for a few subclasses of structures of observable prop-
erties, that the conjecture is in fact true. Most of the results which constitute
the contribution of this work in this chapter can be found in [13], and [14].



Chapter 2

Elementary Systems

In the analysis of a distributed system, it is assumed that a specification of
the system, or of its behaviour, is provided in terms of some formal model.
The fact that the system is distributed, imposes on such a model to express
concurrency. Labelled Transition Systems, and Petri Net Systems, generalise
Finite State Automata in very different ways. Indeed, the two models differ
in that they represent concurrency with different formalisms.

Hence, the main difference between a Petri net and a finite state automaton
is that actions, rather than labelling the arcs of the underlying graph, become
vertices of their own, allowing one to represent transitions between the states
in a much richer way. Indeed, arcs of a sequential automaton transit from one
state to another, whereas actions in a Petri Net are allowed to have several
states as input and several output states. The main consequence of this dif-
ference, is that states in a Petri net acquire a local nature. In some sense, the
richer relational structure between actions and vertices spread global states of
the system across vertices of the model. Given a Petri net system, a model
of the processes it can run can be derived rather naturally. Actions executed
along such a process are represented with their causal dependencies, which can
be formalised as a partial order. A representation of the local states visited
along the process allows to determine whether lack of causal dependency cor-
responds to concurrent occurrence, or mutual exclusion. Labelled transition
systems as a formalism, remain closer to finite state automata. Different arcs
carrying the same label are considered as different occurrences of the same
action. In this case, concurrency of actions is not explicit, but is expressed by
means of the so called interleaving semantics. In the elementary framework,
two actions are considered concurrent whenever they commute. The order in
which two concurrent actions occur is not relevant, in the sense that the two

11
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corresponding sequences of occurrences will lead to the same state.
The evolution of an elementary system is guided strictly by Boolean con-

ditions. This classical restriction on models of concurrent systems [57], will
allow for a logical analysis of concurrency. Two main consequences of this
restriction are to be considered. Regarding Petri net systems, the elementary
framework imposes that local states adopt a Boolean nature, becoming vari-
ables that can only take values true or false. The set of global states in which
a given local state holds the value true is its extension. The local states of a
labelled transition systems will be uniquely characterised by their extension.
As such they will be identifiable with the observable properties of the system.

This, in turn, implies that the processes executed by such a system are
representable in such a way that the intermediary state between the occurrence
of two causally dependent actions can be interpreted as a set of flags raised by
the first action which allow for the occurrence of the second. The elementary
setting, in particular, provides a logical interpretation both of local states of
a system, and of a particular class of sub-processes. With the appropriate
structure, there arise orthomodular partial orders. These models of logical
propositions have been studied in certain fields of physics, in which, like in
this work, the principle of locality plays an important role.

2.1 Elementary Net Systems, and Net Processes

Petri Nets are named after Carl Adam Petri, who introduced them as a formal
tool for a theory of systems, and of information flow [46]. They are nowadays
commonly used in fields ranging from industrial engineering to hardware de-
sign, and of course, theoretical computer science [58]. To suit the requirements
of each field of application, several variants of the original formalism have been
developed. Starting from the so called low-level nets, which keep the model
to its simplest expression, several features can be added to handle clocks and
delays, data types, and even variables and values by the means of guards. [44]
provides a survey on the various types of formalisms, and [57] covers them in
more detail. These extended models, the so called high-level nets, each rep-
resenting an interesting matter of study on its own, widely exceed, however,
the topic of this work. The focus will be therefore put on the simplest classes
of Petri Nets, the so called Elementary net systems.

2.1.1 Petri Nets

Petri Nets have proven to be a powerful tool in the field of Computer Science.
Indeed they allow for representation of both distributed systems, and the
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Figure 2.1: A Petri Net N = (B,E,F). Conditions, in B, are represented by
circles, and events, in E, by rectangles. The flow relation is represented by
arrows going from conditions to events, or from events to conditions.

processes these are able to carry out. Rather than a model, they are a class
of models with the common characteristic that the elements of the system
which encode its state, its localities, are represented at the same level as the
elements which modify its state, its actions. The usual terminology refers to
these as conditions, and events respectively.

Definition 2.1.1 (Petri Net). A Petri Net is a tuple (B,E,F)1, where
B is the set of its conditions
E is the set of its event
B ∩ E = ∅, no element is both a condition and an event, and
F ⊆ (B × E) ∪ (E × B) is the flow relation expressing the causal depen-

dencies between conditions and events.

One advantage of Petri Nets is that they admit an intuitive graphical
representation, that makes the model rather popular among engineers and
system designers.

As depicted in Figure 2.1, conditions are commonly depicted by circles,
whereas events are drawn as rectangles or squares. The flow relation is then
simply a set of arcs linking conditions to events, or events to conditions. The
flow relation only relates conditions to events, and events to conditions. The
causal dependencies between events must be expressed by the means of local-
ities, and events are the only allowed link between localities.

Given an event, the flow relation dictates to which conditions it is bound.
The flow being oriented, one can distinguish the conditions it depends on from

1B stands for ”Bedingungen”, the German term for Conditions, and E stands for
”Ereignisse”, German for Events.
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the ones that depend on it. Analogously, one can consider the sets of events
which depend on a given condition, or which the condition depends on.

Definition 2.1.2 (Pre-set, Post-set). Given an event e ∈ E, its pre-set, or
set of pre-conditions is the set of conditions which precede e according to the
flow relation.

•e := {b ∈ B | (b, e) ∈ F} ⊆ B
Symmetrically, the post-set, or set of post-conditions, of e is the set of con-
ditions which depend on e.

e• := {b ∈ B | (e, b) ∈ F} ⊆ B
Given a condition b ∈ B, its pre- and post-sets are defined analogously.

•b := {e ∈ E | (e, b) ∈ F} ⊆ E are the pre-events of b, and

b• := {e ∈ E | (b, e) ∈ F} ⊆ E are its post-events.

∀x ∈ B ∪ E : ν(x) := •x ∪ x• is called its neighbourhood

In the original view of Petri, elements of a net are characterised by their
extension [48]. This notion, called principle of extensionality, states that an
event in itself is not observable, only its effect on a system is. The effect of
an event is, as it will be seen in the next section, formalised by means of its
neighbouring conditions. According to this principle, two events with the same
pre-, and post-conditions could not be distinguished. Conversely, a condition
should be characterised by its contribution to the states of the system. If two
conditions have the same pre-, and post-events, then whatever effect of this
that applies to one, will also apply to the other. Then these two conditions
will always provide the same information regarding the states of the system.
Again, according to the principle of extensionality, they should be the same
element.

Although in many Petri net models, this principle has been dropped for
the sake of versatility, it is required to hold in the elementary setting. As a
matter of fact, the principle of extensionality plays an important role in the
development of the theory which is the focus of this work, and the reader will
encounter it throughout the chapters. The consequences that concern this
section are of structural type. In particular, the Petri nets to be considered
in this work will fulfil the following properties.

Definition 2.1.3 (Simple Petri Net). A Petri net (B,E,F) is said to be
simple, whenever the flow relation distinguishes any two different elements.

∀x, y ∈ B ∪ E : (•x = •y and x• = y•)→ x = y
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A condition b ∈ B and an event e ∈ E are said to form a self-loop, whenever
both (b, e) ∈ F and (e, b) ∈ F . A Petri net without self-loops is said to be
pure. This notion can be formalised as follows.

Definition 2.1.4 (Pure Petri Net). A Petri net (B,E,F) is said to be pure,
whenever any condition, or event has disjoint pre- and post-sets.

∀x ∈ B ∪ E : •x ∩ x• = ∅

Pureness follows, in the elementary frame, from the extensionality princi-
ple, in that an event involved in a self-loop would have no observable effect.

The most interesting characteristic of these models in the analysis of either
systems or processes, is that the causal dependencies between the possible
actions are strictly expressed by the means of conditions. If an action must
be carried out before another, then there must be a condition expressing this
dependency. Such a dependence relation is commonly interpreted as a flow
of information, that should be stored at a point in space. Symmetrically, if
in the execution, two conditions are required to exchange information, then
there must be an action expressing this exchange.

2.1.2 Elementary Net Systems

Elementary Net Systems [57], or ENS, represent a suitable paradigm to study
the logical structure of observable properties of distributed systems. As a
class of Petri Nets, they explicitly represent concurrency, and as elementary
systems, their local states are interpretable as Boolean variables, they take
values true or false. They have indeed shown to be useful in the design of
digital circuits, and hardware in general [23].

Definition 2.1.5 (Elementary Net System). An Elementary Net System is
a tuple (B,E,F ,m0)
such that

(B,E,F) is a pure and simple Petri net, and

m0 : B → {0, 1} is the initial marking.

A marking of the system is any map of the kind m : B → {0, 1}.

Markings are represented graphically, by assigning tokens to conditions.
Given a marking m, a condition b of the net, represented by a circle, will
contain a token if m(b) = 1, and none when m(b) = 0, as in Figure 2.2.
Markings represent a global state of the system, and will often be be referred
to as states.
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Figure 2.2: An elementary net system with the underlying net of figure 2.1.
The represented marking assigns 1 to b2 and b4, and 0 to all other conditions.
It can be seen as the set {b2, b4}.

Remark 2.1.1. A binary function f : X → {0, 1} can be seen as a subset
of X. Indeed, its support supp(f) := {x ∈ X | f(x) 6= 0} ⊆ X, corresponds
precisely to the elements of X it assigns 1 to. Given an arbitrary subset S of
X, one can define its characteristic function fS : X → {0, 1} as:

fS(x) :=

{
0 x /∈ S
1 x ∈ S

(2.1)

Then trivially S = supp(fS), and f ≡ fsupp(f). This duality will be exploited
throughout this work, and binary functions will be commonly referred to as
their supports.

In particular, a marking of an elementary net system will often be viewed
as the subset of conditions it assigns the value true to. Equivalently a state
will be identified with the set of conditions that hold at it.

Events represent the actions of the system. Conditions represent, when
they are marked, local states of the system. Conditions are to be understood as
localities, which participate in a global state, when the corresponding marking
contains it.

At a given marking, some events are allowed to fire. The firing of an event
represents the execution of the corresponding action, which leads the system
from one state to another. The firing of events describes the dynamics of the
system. However, these dynamics are guided by the marking of conditions,
that dictate which events can fire at a given state. When a marking allows for
the firing of an event, it said to enable it. In order to do so, it must assign a
token to each of its pre-conditions, and no tokens to any of its post-conditions.
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Definition 2.1.6 (Enabled Event). (B,E,F ,m0) be an elementary net sys-
tem. A marking m enables an event e, denoted m[e〉, whenever

∀b ∈ •e : m(b) = 1 and ∀b ∈ e• : m(b) = 0

A situation in which ∀b ∈ •e : m(b) = 1, but ∃b ∈ e• : m(b) = 1 is called
a contact. Contacts will be relevant when considering processes of a system,
they are characterised by the fact that an event is not enabled, although all
its pre-conditions are true.

When an event is enabled, it is allowed to fire, yielding a new marking m′

Definition 2.1.7 (Elementary Firing Rule). The elementary firing rule allows
to compute a new marking m′ obtained from firing an enabled event e, at a
marking m.

m[e〉m′ ⇔ m′(b) :=


0 b ∈ •e
1 b ∈ e•

m(b) otherwise

In this setting, a condition will be said to hold, its value to be true, at a
given state, whenever the corresponding marking assigns a token to it. A state
is then simply a truth assignment to the conditions of the system. In this way,
an event will be enabled whenever all conditions in its pre- set hold, and none
of the conditions in its post-set do. Upon the firing of an event, all its pre-
conditions cease to hold, and all its post-conditions become true. According to
the extensionality principle, this is the observable effect of an event, meaning
that each event e should be identified with the pair of sets 〈•e, e•〉. Also,
according to the firing rule, if there is a condition belonging both to the pre-
and post-sets of an event, then that event can never fire. Indeed, the condition,
either marked or unmarked, prevents the event from firing. Such an event is
said to be dead, providing no behaviour to the system. As a matter of fact,
such an event would have no observable effect. This justifies, following the
extensionality principle, the requirement that the underlying Petri nets of
elementary net systems are pure and simple. In this work, no dead event will
be considered a part of the system.

Net systems are a dynamic model, in the sense that only one marking is
represented at a time. In order to see the full behaviour, one must let it run.
Graphically, this makes sense, since a marking is determined by distributing
tokens in the corresponding conditions. Therefore, the behaviour of the system
can only be analysed by letting it run. This is done by iteratively selecting
enabled events, or events, and letting them fire, leading the system from one
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state to another. Such a sequence of occurrences of events is called a firing
sequence.

Definition 2.1.8 (Firing Sequence). A firing sequence is a finite sequence
(ei)i≤n, ∀i ≤ n : ei ∈ E, such that for every i there are two markings m and
m′ satisfying m[ei〉m′ and m′[ei+1〉 When m0[e1〉, the firing sequence is said
to be initial.

In a firing sequence, a given event can be fired several times, according
to the previous definition, there could be i < j ≤ n such that ei = ej . This
is why it is considered, rather than a sequence of events, as a sequence of
their occurrences. Indeed, an event is a structural element of the system, it
is its occurrence, or firing, which has a dynamic effect. Thus, conditions and
events are the structural elements of the systems, whereas its dynamics will be
guided by markings, and firings. A state, or marking, is said to be reachable,
if the system can eventually visit it along its run.

Definition 2.1.9 (Reachable Marking). A marking is reachable if there exists
a firing sequence that leads to it. Formally, a marking mn is reachable from m
whenever there exist a sequence of markings (mi)1≤i≤n, and a firing sequence
(ei)i≤n such that

m[e1〉, and ∀i ≤ n : mi−1[ei〉mi (2.2)

An event is said to be dead at a marking m if no marking reachable from
m enables it. Throughout this work, elementary systems will be assumed to
have no dead events at the initial marking.

Given a marking m the set of all reachable markings from m is denoted
by M . One can consider the reachability relation R := {(m,m′) ∈ ({0, 1}B)×
({0, 1}B) | m′ is reachable from m}. Note that if three markings m1,m2,m3

are such that m2 is reachable from m1, and m3 is reachable from m2, then
there must be a firing sequence leading from m1 to m3. Hence, R is a transitive
relation.

It is worth noting at this point, that the initial marking is key to determine
the evolution of the system. Indeed a same Petri Net (B,E,F) can lead to
different net systems, whenever the initial state m0 is chosen differently. In
fact, different initial markings usually lead to different sets of reachable states
M .

Example 2.1.1. Figure 2.2 represents a system N1 = (B,E,F ,m0), with
the underlying net N of Figure 2.1. Its initial marking is m0 = {b2, b4}. The
event e4 is enabled at m0, since •e4 = {b4} ⊆ m0, and e•4∩m0 = {b3}∩m0 = ∅.
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Then system could follow the execution:
m0[e4〉{b2, b3}[e5〉{b2, b5}[e1〉{b1}[e2〉{b2, b3}[e3〉{b2, b4}. Then
(e4, e5, e1, e2, e3) is a firing sequence, and {b2, b3}, {b2, b5}, {b1}, and {b2, b3}
are reachable markings.

Consider the elementary net system consisting of the Petri net of Fig-
ure 2.1, with initial marking m′0 = {b5, b2, b4}, N2 = (B,E,F ,m′0). In this
system, (e4, e5, e1, e2, e3) is not a firing sequence, since after firing e4, the
marking {b5, b2, b3} contains a post condition of e5, and so it is not enabled.
This system is different from N1.

However, two different initial markings could eventually lead to the same
state. This state would belong to the intersection of the sets of markings,
reachable from each initial state. In order to characterise the possible be-
haviours bound to the structure of a Petri net, it would be suitable to consider
disjoint sets of reachable markings.

This leads to a different class of systems, in which backward firing is also
considered.

Definition 2.1.10 (Backward Enabled Event). (B,E,F ,m0) be an elemen-
tary net system. An event e is backward enabled by a marking m, denoted
[e〉m, when m marks all post-conditions of e, and none of its pre-conditions.

∀e ∈ E : [e〉m⇔ (∀b ∈ •e : m(b) = 0) ∧ (∀b ∈ e• : m(b) = 1)

Definition 2.1.11 (Backward Firing). The backward firing of an event leads
to another marking m′

m′[e〉m⇔ m′(b) :=


0 b ∈ e•

1 b ∈ •e
m(b) otherwise

Backward firing allows to properly classify system behaviour in terms of
sets of reachable markings. Indeed, when one considers both backward and
forward reachability, the corresponding relation on markings is not only tran-
sitive, but also symmetric. By assuming every state to be reachable from
itself, one thus obtains an equivalence relation of reachability. The classes of
equivalence for this relation, form a partition of the set of all possible markings
{0, 1}B. Each marking belongs to exactly one class.

Remark 2.1.2. Consider a set X. An equivalence relation on X is a binary
relation ∼ ⊆ X ×X which is
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1. reflexive, ∀x ∈ X : (x, x) ∈ ∼

2. symmetric, ∀x, y ∈ X : (x, y) ∈ ∼ → (y, x) ∈ ∼

3. transitive, ∀x, y, z ∈ X : ((x, y) ∈ ∼ ∧ (y, z) ∈ ∼)→ (x, z) ∈ ∼

The sets [x]∼ := {y ∈ X | (x, y) ∈ ∼} are called equivalence classes of ∼.
They form a partition of X, every x ∈ X is in some class of equivalence, and
these are pairwise disjoint.

A partition of X is a collection of subsets P ⊆ 2X , such that they are
pairwise disjoint, and their union is the whole set, formally

1. ∀S1, S2 ∈ P : S1 ∩ S2 = ∅

2.
⋃
S∈P S = X

The set of all equivalence classes is called the quotient X/∼.

This consideration allows to define a net system which presents the same
advantages as elementary net systems, regarding the scope of this work.

Definition 2.1.12 (Condition/Event Net System). A condition/event net
system, is a tuple (B,E,F ,M), such that (B,E,F) is a pure and simple Petri
net, and M is a class of markings for the relation of backward and forward
reachability. Furthermore, ∀e ∈ E : ∃m ∈M : m[e〉.

The dynamics of condition/event net systems are guided by both the back-
ward and the forward firing rule.

Condition/event net systems will be useful in the following, since they
present the same advantages as elementary net systems, and allow to leave
reachability considerations aside. Indeed, by considering the full class of mark-
ings, it is ensured that these will be backward, or forward reachable.

As a classes of Petri net systems, both elementary net systems and condi-
tion/event net systems present the desired properties regarding concurrency in
the system. Indeed, concurrency in this frame can be reduced to a structural
property called independence.

Definition 2.1.13 (Concurrency). Two events e1 and e2 are said to be inde-
pendent whenever they share no pre- or post-conditions, namely

(•e1 ∪ e•1) ∩ (•e2 ∪ e•2) = ∅ (2.3)

Whenever two events are independent, and there is a marking m which
enables both of them, m[e1〉 and m[e2〉, they are said to be concurrent.
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This structural property makes this model rather comfortable for the study
of distributed systems.

Note that a marking may enable two events without them being concur-
rent. The firing of one might lead to a marking which does not enable the
other any more. In this case, it is said that the two events are in conflict.
Of course, for the occurrence of an event to have disable another, either the
first consumed a token from the pre-conditions of the second, or it produced
a token to one of its post-conditions.

Definition 2.1.14 (Conflict). Two events e1 and e2 are in conflict whenever
at least one of the following conditions hold:

1. •e1 ∩ •e2 6= ∅, (backward conflict)

2. e•1 ∩ e•2 6= ∅, (forward conflict)

A Petri net without conflicts is called conflict-free. The class of conflict-free
is characterised as the set of Petri nets (B,E,F) which satisfy ∀b ∈ B : |•b| ≤
1 ∧ |b•| ≤ 1.

When two events are in conflict, and there is a reachable marking m which
enables both m[e1〉, and m[e2〉, they are said to constitute a choice.

Example 2.1.2. With reference to Figure ??, •e1 = {b2, b5}, and e•1 = {b1},
so ν(e1) = {b1, b2, b5}. ν(e4) = {b3, b4}, and so e1 and e4 are independent.
Consider the systems N1 and N2 from Example 2.1.1. In N1, no reachable
marking enables both e1 and e4. Although they are independent, they are not
concurrent in N1. In N2, the initial marking m′0 = {b5, b2, b4} enables both
e1, and e4. Hence e1 and e4 are concurrent in N2, (e1, e4), and (e4, e1) are
both valid firing sequences, and they lead to the same marking {b1, b3}. This
marking presents a contact. e2 is not enabled at it, although •e2 ⊆ {b1, b3}.
The condition b3 creates structural conflict. e3 and e5 are in backward conflict
since •e3 ∩ •e5 = {b3} 6= ∅. The marking {b1, b3} enables both of them, but
the firing of one disables the other, by consuming the token in {b3}, and so e3

and e5 are in choice at {b1, b3}. Similarly, e2 and e4 are in forward conflict,
e•2 ∩ e•4 = {b3} 6= ∅. At the marking {b1, b4} both can fire, but the firing of one
would disable the other by contact.

One of the main advantages of Petri net systems, is that they allow for
structural analysis. In this work, it will be presented with the scope of iden-
tifying the sequential components of a system.
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Figure 2.3: To the left, the elementary net systemN3 has sequential behaviour.
To the right, N4 is a subsystem of N3, which is a state machine.

Definition 2.1.15 (State machine). A Petri net N(B,E,F) is called a state
machine whenever it’s underlying graph is connected, and

∀e ∈ E : |•e| = 1 and |e•| = 1

A condition/event net system N = (B,E,F ,M) is called a mono-marked
state machine, when it is a state machine, and its conditions are mutually
exclusive, namely

∀m ∈M : ∃b ∈ B : m = {b}

This definition transfers to elementary systems by considering M as the
set of reachable markings. In a mono-marked state machine, all conditions
are mutually exclusive such that each marking selects exactly one of them.

A mono-marked state machine is fully sequential. No two of its events
can fire concurrently. With the elementary definition, state machines coincide
with the class of deterministic finite state automata that have no repeated
labels.

This definition will help localising the sequential parts of a system. These
parts will be called sequential components.

Definition 2.1.16 (Generated Subnet, Subsystem). Let N = (B,E,F ,M)
be a condition/event net system. Given a collection S ⊆ B of conditions,
consider the union of their neighbourhoods ES :=

⋃
b∈S ν(b). Then the subnet

generated by S is defined as

N(S) = (S,ES ,F�(S×ES)∪(ES×S))
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Consider MS = {m�S | m ∈M}, then the subsystem generated by S is

N(S) = (S,ES ,F�(S×ES)∪(ES×S),MS)

A state machine component of N is a subsystem of N which is a state
machine.

The following is a well known result. It is here restated for the condi-
tion/event case.

Proposition 2.1.1 (State Machine Component). Let N = (B,E,F ,M) be a
condition/event net system. Let S ⊆ B be a collection of mutually exclusive
conditions, such that

∀m ∈M : |m ∩ S| = 1

Then the subsystem generated by S is a mono-marked state machine.

Definition 2.1.17 (State Machine Decomposable Net System). A condi-
tion/event, or elementary, net system is said to be state machine decom-
posable, when all its conditions are contained in some subset which generates
a state machine subsystem.

Example 2.1.3. With reference to Figure 2.3, in the net system N3 (left),
the conditions {a, b, c, d} are mutually exclusive, no reachable marking selects
more than one. The system N4 (right), is the subsystem of N3 generated
by {a, b, c, d}. Each of its events has only one pre-condition, and one post-
condition, so it is a state machine. N4 is a state machine component of N3.
Since each reachable marking has exactly one condition, it is mono-marked.

The set {a∨ b, c, d} generates a subsystem with only {e2, e3, e4} as events,
it is also a state machine component of N3.

Finally, {c,¬c} generates another state machine component with events
{e2, e3}. Each condition of N3 is contained in some of its state machine
components, so it is state machine decomposable.

N3 has sequential behaviour, his firing sequences are all of the sort
(e1, e2, e3, e4, e1, . . .). It consists of a single sequential component.

Note that a system may be state machine decomposable without being a
state machine in itself. An event of a state machine component may have
more than one pre-, or post- condition in the ambient system. However, the
fact that the conditions of the component are mutually exclusive restricts the
behaviour of its events. These can never fire concurrently.

Consequently, state machine components are interpreted as belonging to
the same sequential components.
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Remark 2.1.3. The notion of distributability has already been addressed in
this formal context. One of the most relevant approaches, to the knowledge of
the author, is that of [3]. The notion of distributability proposed in that work,
differs from the one presented here, in the following two main aspects.

1. Every element of the net model must belong to exactly one location.

2. Every conflict must be solved locally: two conflicting events must belong
to the same location, as all their pre-conditions.

Intuitively, this approach interprets all modes of communication as simple
message passing. The reader is referred to [16] for further details.

In the view proposed in this work, components are allowed to share ele-
ments. This permits to represent basic interactions as handshaking, shared
local states (as a model of shared memory). With these fundamental modes
of interaction, more complex means of communication can be modelled, such
message passing. In this case, the communication channel must be explicitly
represented as one component of the system.

The main advantage this work will take of considering elementary and
condition/event net systems, is that they allow for a Boolean interpretation.
The binary restriction on the markings allows for only two values for each
condition, zero or one, these will be intended as false and true. Conditions
can be seen as Boolean variables. Hence, this paradigm represents a suitable
framework for the study of the testable propositions on a distributed system.

The following example should give an idea of the study that will be carried
out.

Example 2.1.4. In the net system N3 of Figure 2.3, the condition a ∨ b is
marked exactly when either a is marked, or b is marked. At each reachable
marking m, its truth value is determined by m(a ∨ b) = m(a) ∨m(b).

Analogously, the condition ¬c is marked exactly when c is not, its truth
value is determined, at each reachable marking m, by m(¬c) = ¬m(c).

These two conditions are redundant regarding the behaviour of the system,
since N3, and N4 admit the same firing sequences

2.1.3 Causal Nets as Partial Orders

A process can be represented by means of a Petri Net [47, 59]. However, in this
case, no tokens, and hence no markings, are considered. As a matter of fact,
events are not to be considered as actions any more, but rather as occurrences
of actions. Indeed, in a net system, an event represents a single action that can
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occur several times during the run of the system. When considering processes
however, each event represents one single occurrence of the corresponding
action, and so to each action there may correspond several events. Conditions
in a process are to be interpreted analogously. They represent the occurrence
of local states. In this way, the flow relation will now express the causal
dependencies between the different occurrences of the elements of the system,
and since each new occurrence will lead to a new element, the whole structure
will contain no cycles, it forms a partial order [17].

A process corresponds to the record of a possible behaviour of a system.
The system might execute one action several times along a process. The
sequential execution of a process is a total ordering of the actions that compose
it. Just like a string accepted by a finite state automaton takes symbols from
an alphabet, the process run by a net system takes symbols from its set of
events, and conditions. Thus, symbols are allowed to be repeated along a
process. Among the different generalisations of strings accepted by automata,
meant to include concurrency ([42],[45, 62]), the present work will focus on
causal nets.

Causal nets are a class of Petri nets, which are suitable for representing
the processes of Petri net systems, and in particular of elementary systems.
In fact, given an elementary net system, its processes can be derived from its
execution. This matter will be covered

Strings are total orderings of action occurrences. This order of actions
can be thought of as marked by a clock. After each tick, one single action
is allowed to occur. In a distributed setting however, the lack of global clock
may prevent an observer from knowing which of two remote actions actually
occurred first. In causal nets, time is replaced by a weaker notion, causality.
Causality, just like time, is formalised by an order relation.

Definition 2.1.18 (Order Relation). An order relation or ordering of a set
X is a binary relation ≤ ⊆ X ×X which is

1. reflexive, ∀x ∈ X : (x, x) ∈ ≤

2. antisymmetric, ∀x, y ∈ X : (x, y), (y, x) ∈ ≤ → x = y

3. transitive, ∀x, y, z ∈ X : (x, y), (y, z) ∈ ≤ → (x, z) ∈ ≤

The order is total whenever ∀x, y ∈ X : x ≤ y or y ≤ x

In a sequential system, only one action can be performed at a time. Hence,
time is a total ordering, each action must happen before, or after, any other
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action. Causal dependence is weaker in this sense. Causally independent
actions remain unordered, the underlying order is partial.

Definition 2.1.19 (Partially ordered set). A partially ordered set, or poset,
is a set equipped with an order relation (P,≤), which need not be a total
ordering.

Given a subset S ⊆ P , its up-set is the set of elements of P which greater
or equal to some element of S,

↑S : {x ∈ P | ∃y ∈ S : y ≤ x}

Analogously, the down-set of S is the set of elements of P less or equal to
some element of S,

↓S : {x ∈ P | ∃y ∈ S : x ≤ y}

In a partial order, the notion of minimum may not correspond to a single
element. It is defined so as to provide a subset of elements which are not
greater or equal to any other element. Let S ⊆ P , then

min(S) := {x ∈ S | ∀y ∈ S : ¬(y ≤ x)}

Analogously, the maximum is defined as

max(S) := {x ∈ S | ∀y ∈ S : ¬(x ≤ y)}

Given two partial orders (P,≤), and (P ′,≤′). Then (P ′,≤′) is a subposet
of (P,≤) whenever there is an injective morphism φ : P ′ ↪→ P such that it
preserves the order

∀x, y ∈ P ′ : x ≤′ y → φ(x) ≤ φ(y)

It may be required that the order is also reflected,

∀x, y ∈ P ′ : φ(x) ≤ φ(y)→ x ≤′ y

In this case, the morphism is called an order embedding, and P ′ is called an
induced subposet of P . An induced subposet can be defined as P ′ ⊆ P , with
≤′:=≤�P ′.

Instead of representing the fact that an action occurred before another,
causality expresses the fact that for an action to happen, the occurrence of
another is required. Hence, this order expresses causal dependency. By con-
vention, an element always depends causally on itself. Causality shares some
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properties with time. If one action occurs before another, and this second
action before a third, then certainly the first will have occurred before the
third. Causality is also taken to be transitive, in the sense that in a chain of
three causally dependent occurrences, the third action requires the occurrence
of the first one, in order to occur. Note that, if the occurrence of the third
action is required for the occurrence of the first one, then none of the chain
can effectively happen. Such a behaviour can never be observed, and so, out
of the extensionality principle, the causality relation is taken antisymmetric.

When representing causal dependence by means of a Petri net, one must
ensure that the flow relation generates an order. The flow relation only rep-
resents the direct involvement of conditions in the occurrence of actions, and
so one must extend it to represent transitive causality.

Definition 2.1.20 (Transitive Closure). Let R ⊆ X × X be an arbitrary
binary relation on a set X. The transitive closure R+ of R the smallest
binary relation on X such that

1. R ⊆ R+

2. ∀x, y, z ∈ X : (x, y), (y, z) ∈ R+ → (x, z) ∈ R+

It is the intersection of all transitive relations which contain R.

Conditions express the fact that a given action has occurred, and so the
actions which depend on it are allowed to occur themselves. Note that, just
like a tick of a clock happens only once, one must distinguish the occurrence
of a condition from the condition itself. In a causal net, a condition is not
understood as a variable that can take the value true or false. It rather
represents the fact that a given variable takes the value true along an execution
of the system. It is the occurrence of a condition. If along the execution, a
given condition ceases to hold, and becomes true again, the fact that it is true
will be represented twice along a process.

In order to interpret the lack of ordering as causal independence, one must
pay attention to the following fact. Suppose, in an elementary system, that a
marked condition enables two events. The occurrence of any two of the events
will lead to a marking which does not contain the condition, thus disabling the
other event. It is said they constitute a choice. These two occurrences would
not be causally independent, in the sense that the occurrence of one does
depend on whether the other has fired or not. However, the flow relation does
not represent this dependence. One could consider both occurrences and still
obtain an order from the flow. A symmetric situation arises when two events
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Figure 2.4: A causal net

share a post-condition. Note that a process represents one single execution of
the system, and so in such a situation, only one of the two occurrences is to
be represented. Thus, the class of causal nets will not allow such situations,
they are conflict-free.

Definition 2.1.21 (Causal net). A causal net is a conflict-free Petri net, such
that the transitive closure of its flow relation is an order.

Causal nets will be the basic structures underlying processes. However,
some additional restrictions should be added. In particular, processes will
formally carry the information on how they relate to the net system they are
an execution of. Hence, causal nets do not represent processes in themselves,
but as part of their formalisation, they allow for the appropriate interpretation
of the following notions regarding partial orders.

Definition 2.1.22 (Relations on a poset). Let (P,≤) be a partially ordered
set. Two elements x, y ∈ P are said to be in li relation, x li y, whenever
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either x ≤ y or y ≤ x. The li relation is the symmetric closure of the order

li = ≤ ∪≤−1

Two elements x, y ∈ P are said to be concurrent, x co y, whenever neither
x ≤ y nor y ≤ x. The concurrency relation is the complement of the li relation

co = P 2\ li

Note that li is reflexive and symmetric, but does not need to be transitive.
Similarly, co is irreflexive, and symmetric, but does not need to be transitive.

Partial orders will arise in many different settings in this work, and it will
sometimes be convenient to distinguish whether a given relation corresponds
to one, or another. In these cases, ≤P , liP , and coP will denote that the
relations are taken in the poset P .

In what follows, it will be assumed that the partial order (P,≤) is obtained
from a causal netN ′ = (B′, E′,F ′), as P = B′∪E′ and≤ = F+. Two elements
are in line when there is some causal dependence between them, independently
from the orientation of it. Thus, two elements will be concurrent when they
are causally independent. It is interesting to extend these notions to subsets
of the partial order.

Definition 2.1.23 (Lines and Cuts). Let (P,≤) be a partially ordered set.

A li-set is a clique of li in P , namely a subset S ⊆ P which satisfies that
∀x, y ∈ S : x li y.

A line is a maximal li-set, namely a li-set S such that adding any element
to it would violate the above condition. Formally, this reads as ∀y /∈ S : (∃x ∈
S : x co y)

Analogously, a co-set is a clique of co in P , namely a subset S ⊆ P such
that ∀x, y ∈ S : x 6= y → x co y.

A cut is a maximal co-set, namely a co-set S such that ∀y /∈ S : (∃x ∈ S :
x li y)

In a causal net, a cut c ⊆ B′ is called a B-cut, and a cut c′ ⊆ E′, an
E-cut.

A line is a maximal totally ordered subset, it will be interpreted as ex-
pressing a sequential subprocess. It corresponds to a sequence of actions and
conditions that need to occur in that particular order. It is relevant to stress
that when order expresses time, a total ordering represents the possibility of
the actions happening in that order. When order expresses causality, a total
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Figure 2.5: A partially ordered set P underlying the causal net of Figure 2.4.
Solid lines represent the order, oriented downwards. Such that, for example,
x3 ≤ y2, and x1 ≤ y1. The dashed line represents a cut. The shaded path is a
line. min(P ) = {x1, x2, x3}, and max(P ) = {y1, y2, y3, y4}.

ordering represent the necessity that the occurrences relate in this particular
way.

Hence, a line represents a set of occurrences for which causality fully im-
poses the order of execution.

Symmetrically, a cut represents a set of occurrences that can happen in
any time-wise order. Indeed, since no particular ordering is required amongst
them, they may occur in any possible order. The lack of causal dependence
allows to distribute a cut. In particular, the actions of an E-cut could be exe-
cuted remotely from one another. This implies that they might as well occur
simultaneously. However, the lack of global clock assumption prevents from
observing such situation. Under this assumption, one could not effectively
observe the time- wise order of occurrences of an E-cut.

An analogous situation is found regarding B-cuts. Any two elements of
a B-cut correspond to conditions of an elementary net system that can be



2.2. INTERLEAVING SEMANTICS: ELEMENTARY TRANSITION
SYSTEMS 31

marked simultaneously. Out of maximality, a B-cut corresponds to a marking,
which is possibly visited along the execution of the system. Again, this does
not mean that the marking is necessarily visited, only that it is reachable.

With this interpretation, the concurrency relation permits to analyse how
the process can be distributed. It can be lifted to subsets of a partial order,
that will be identified with the parts of the process that can be distributed,
separated from one another. These parts will be considered as subprocesses,
although their formalisation is weaker than the standard notion of subprocess
of Petri net theory. They will be defined, and studied in Chapter 3.

2.2 Interleaving Semantics: Elementary Transition
Systems

Elementary Net Systems are useful models in the interpretation of observable
properties as logical propositions. Although these models convey a plain in-
tuition about its motivations, the present work will rather focus on Labelled
Transition Systems. There are two main reasons for this. First, Labelled Tran-
sition Systems are, among the two, the most widespread paradigm in either
model-checking, and model design. Indeed, even though structural analysis of
Net Systems has proven to be highly efficient, the amount of contributions in
this field remains largely smaller than existing literature regarding Labelled
Transition Systems. As a matter of fact, most of model checking techniques
for Net Systems, require the computation of their Case Graphs, and it is this
latter model which is actually checked. The popularity of Transition System
Models is justified by the fact that, as automata, they remain closer to clas-
sical models of computation. As such, they admit interpretations that allow
for widespread model-checking techniques.

2.2.1 Labelled Transitions Systems

The dynamic nature of Net Systems, presents some limitations. Indeed, in
order to analyse the behaviour of the system, it would be suitable to handle a
model in which all reachable states are depicted in one single snapshot. One
can easily, given an elementary net system, obtain an equivalent model with
such characteristics.

Definition 2.2.1 (Case Graph). Given an Elementary Net System N =
(B,E,F ,m0), its Case Graph is a tuple CG(N) = (M,E, T,m0) where

M is the set of reachable markings of N
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T := {(m, e,m′) ∈ M × E ×M | m[e〉m′} represents the transitions from
states m to m′, labelled by event e ∈ E.

In order to provide some intuition, the Case Graph of an elementary Net
System can be defined alternatively as a graph [4]. Its vertices are all reachable
markings of the system, and each arc is labelled by an event e, when its
occurrence leads from one state to another. Namely CG(N) = (M,T ′, λ,m0)
where T ′ ⊂M×M , and λ : T ′ → E are such that m[e〉m′ ⇒ (m,m′) ∈ T ′ with
λ(m,m′) = e. Such a definition provides a natural graphical representation,
where markings are depicted as points, and there is an arrow labelled with an
event that links two points, whenever the occurrence of this event changes the
state of the system from one corresponding marking to the other.

The definition of case graph is absolutely analogous in the case of condi-
tion/event systems, one only needs to consider backward reachability in the
definition of the set T of transitions.

Such a labelled graph is said to depict the behaviour of the system. Indeed,
behavioural properties, become apparent in this representation. For instance,
a deadlock, or full stop of the system, will be characterised by the existence of a
state, or vertex, with no outgoing arcs. If the system is allowed to iterate part
of its execution indefinitely, this will correspond to a circuit among states in
the graph. The system is said to be reversible if from any state of the system,
there is a path leading back to the initial marking.

It will be useful, in what follows, to consider the set of markings in which
a given condition holds, as a subset of states of the case graph.

Definition 2.2.2 (Extension of a Condition). Let N = (B,E,F ,m0) be an
elementary net system, and CG(N) = (M,E, T,m0). For each b ∈ B, the
extension of b is the set ext(b) := {m ∈M | m(b) = 1}.

A path on the case graph of a net system, or rather the sequence of labels
one encounters along it, is a firing sequence.

The formalism in which one expresses the case graph of a net system is
in itself a widespread model of reactive computation. In the general case,
its instances are simply called labelled transition systems. They form a class
of automata built on the notion of state and of state transition. In labelled
transition systems, transitions are labelled by the elements of an alphabet,
here called events.

Definition 2.2.3 (Labelled Transition System). A labelled transition system
is a structure A = (Q,E, T ), where Q is a set of states, E is a set of events
and T ⊆ Q× E ×Q is a set of transitions such that



2.2. INTERLEAVING SEMANTICS: ELEMENTARY TRANSITION
SYSTEMS 33

1. the underlying graph of the transition system is connected;

2. ∀(q1, e, q2) ∈ T q1 6= q2;

3. ∀(q, e1, q1)(q, e2, q2) ∈ T q1 = q2 ⇒ e1 = e2;

4. ∀e ∈ E ∃ (q1, e, q2) ∈ T .

It will be sometimes useful to drop the first requirement, in which case the
labelled transition system will be called generalised transition system

In many definitions of labelled transition systems, the second axiom is not
required. It states the absence of events such that their occurrence does not
alter the state of the system. In elementary, or condition/events systems, such
an event would have no observable effect, and should, out of the principle of
extensionality, not be represented.

Remark 2.2.1. In this work, only transition systems with a finite set of states,
and a finite set of events are considered.

Example 2.2.1. Figure 2.6 depicts an elementary net system with initial
marking {p1, r2}. It is the initial state q0 of CG(N). All reachable markings of
N are represented in CG(N) as the states {q0, q1, . . . , q7}. The four events of
N are the labels on the arcs of CG(N). A transition going from qi to qj carries
the label ek whenever qi[ek〉qj. The events e1, and e4 are concurrently enabled
at q0, and their firings lead respectively to q1 = {p2, r2}, and q4 = {p1, r1}.
Since they are concurrent, after both have fired, the system will reach state
q2 = {p2, r1}, independently of the order in which they do. All reachable
markings of N are states of the system CG(N).

A whole field of study is dedicated to classify Labelled Transition Systems
according to the class of Net Systems they can express the behaviour of.
Such a study is commonly tagged as Net Synthesis. This work will focus
on the Transition Systems which are isomorphic to the Case Graph of some
Elementary Net System, namely Elementary Transition Systems, as well as
on variations of such models.

2.2.2 Elementary Transition Systems

Since the case graph of a net system is a labelled transition system. A natural
question to be asked, is whether every transition system is the case graph
of some net system. This was shown not to be the case in general, and the
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Figure 2.6: An elementary net system N (above), and its case graph CG(N)
(below). The initial marking of N , is the initial state of CG(N) q0 = {p1, r2}

characterisation of the subclass of transition systems which are the case graph
of an elementary net system has proven to be non-trivial, and has led to a
whole field of research, Petri Net Synthesis. The net synthesis problem can
be stated as follows.

Given a labelled transition system A, is there a Petri Net System such that
its Case graph is isomorphic to A?

The idea to solve the elementary synthesis dates back to [30, 31], and set
the basis for solutions to the problem in wider classes of net systems.

Elementary transition systems can be naturally defined as the labelled
transition systems which are the case graph of some elementary net system.

However, in their seminal series of papers [30, 31], A. Ehrenfucht and G.
Rozenberg provided a full characterisation of this class of transition system.
Such a characterisation is here presented as the actual definition. Although
in [30, 31] the results were developed using a slightly different formalism, 2-
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structures, they are here presented in terms of the models at stake in this
work.

The key to the characterisation of the class of elementary transition sys-
tems is the notion of region.

A region of a transition system is a subset of its states such that each
event has a uniform crossing relation, entering, leaving or not crossing, with
the region itself through each of its occurrences, as formalised in the next
definition.

Definition 2.2.4 (Region). A region of a transition system A = (Q,E, T ) is
a subset r of Q such that every event crosses r uniformly, namely:
∀e ∈ E,∀(q1, e, q2), (q3, e, q4) ∈ T :

1. (q1 ∈ r and q2 6∈ r) implies (q3 ∈ r and q4 6∈ r) and

2. (q1 6∈ r and q2 ∈ r) implies (q3 6∈ r and q4 ∈ r).

This uniform crossing property is sufficient for a subset of states to be a
region. The intuition behind it is that these are the subsets with respect to
which the orientation of transitions is consistent with the labelling. Indeed,
as a case graph of a net system, a transition system labels its transitions with
events of the net. The uniform crossing property makes sure that all instances
of a same label have the same orientation with respect to regions. This in turn
allows for identifying a region with the extension of a condition, the set of
states which assign the value true to it. In this way, the orientation of a label
with respect to a region provides the flow relation between the corresponding
event, and condition. Given a transition system A, its set of regions will be
denoted by R(A); given a state q ∈ Q, the set of regions containing q will be
denoted by Rq(A) and, when the transition system that originates the regions
is clear from the context, simply by Rq. Note that the set of regions R(A) of
a transition system A = (Q,E, T ) can not be empty since at least the whole
set of states Q is a region.

For the sake of intuition, it is worth noting that the extension of each
condition of a condition/event system is a region of its case graph. The proof
of this result is a long known result that can be found, for instance, in [30, 31].
It is here reported to convey intuition about the relation between conditions
of a net system, and regions of its case graph.

Proposition 2.2.1. Let N = (B,E,F ,M) be a condition/event net system,
and CG(N) = (M,E, T ) be its case graph. For each b ∈ B, consider its
extension ext(b) := {m ∈M : b ∈ m}. Then ∀b ∈ B : ext(b) ∈ R(CG(N)).
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Figure 2.7: A region of an elementary transition system. All the occurrence
of e1 exit the region. The event e4 has a single entering occurrence. No
occurrence of e2, or e3, exits or enters the region. The region satisfies the
uniform crossing property.

Proof. Consider b ∈ B, and ext(b) ⊆ M . Let e ∈ E, then, since N is pure,
either e ∈ •b, or e ∈ b•, or neither of the two.

Suppose there are two states m1 ∈ ext b, m2 ∈M \ext b, and a transition
(m1, e,m2) ∈ T . Clearly, b ∈ m1 and b /∈ m2. Then out of the firing rule,
it must be •e = m1 \m2, and e• = m2 \m1, then b ∈ •e, and so (b, e) ∈ F .
Then it holds that ∀m ∈ M : m[e〉 → b ∈ m. This, in turn, implies that
∀(m3, e

′,m4) ∈ T : e′ = e → (b ∈ m3 and b /∈ m4). And so every transition
labelled with e will go from a state in the extension of b, to a state outside of
it.

Now suppose there are two states m1 ∈ M \ ext b, m2 ∈ ext b, and a
transition (m1, e,m2) ∈ T , then e• = m2 \m1. An analogous argument shows
that every transition labelled with e will go to a state in the extension of b,
from a state outside of it.

Finally, consider the following two cases. On one hand, if m1 ∈M \ ext b,
and m2 ∈ M \ ext(b), on the other hand m1 ∈ ext(b), and m2 ∈ ext(b).
In either case, the existence of a transition (m1, e,m2) ∈ T implies that •e =
m1 \m2, and e• = m2 \m1, and so b /∈ (•e∪e•). Then b is independent from e,
neither (b, e), nor (e, b) are in F . Hence, at any marking, the firing of e will not
change the value of b, ∀(m3, e

′,m4) ∈ T : e′ = e→ (b ∈ m3 ↔ b ∈ m4).

This result motivates that the notion of pre- and post-sets can be extended
to regions.
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Definition 2.2.5 (Pre-sets, Post-sets on Transition Systems). Let A = (Q,E, T )
be a transition system. The pre-set and post-set operations, denoted respec-
tively by the operators •(·) and (·)•, applied to regions r ∈ R(A) and events
e ∈ E are defined by:

1. •r = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 6∈ r and q2 ∈ r};

2. r• = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 ∈ r and q2 6∈ r};

3. •e = {r ∈ R(A) | e ∈ r•};

4. e• = {r ∈ R(A) | e ∈ •r}.

The pre- and post-sets of the extension of a condition, as a region of the
case graph of a net system, coincide with its the pre- and post-sets as described
by the flow relation of the net. The following is a well known result.

Proposition 2.2.2. Let N = (B,E,F , q0) be an elementary net system,
and let A = CG(N) = (Q,E, T ) be its case graph. Then ∀b ∈ B : •b =
• ext(b) and b• = ext(b)•

Proof. Let b ∈ B, and r = ext(b). Consider e ∈ •r then ∃(q1, e, q2) ∈ T such
that q1 6∈ r and q2 ∈ r}. Then q1(b) = 1, q2(b) = 0, and q1[e〉q2, and so b ∈ •e.
Conversely, if b ∈ •e, then for every pair of markings q1, q2 ∈ Q such that
q1[e〉q2, it must hold that q1(b) = 1, and q2(b) = 0. Then (q1, e, q2) ∈ T , and
so e ∈ •r.

The result for e• is derived analogously.

Regarding the synthesis problem, the set of regions of a transition system
provides all candidates for conditions of the net system to be found. Whether
such a system exists depends, however, on the fact that the system behaviour
is guided by the markings of such conditions. Intuitively, there must be enough
regions to determine this behaviour.

These situations were characterised in [30, 31] by identifying the so called
separation axioms.

Definition 2.2.6 (Elementary Separation Axioms).

1. ∀ q1, q2 ∈ Q : Rq1 = Rq2 → q1 = q2;

2. ∀q1 ∈ Q : ∀e ∈ E : •e ⊆ Rq1 → ∃q2 ∈ Q : (q1, e, q2) ∈ T ;
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These axioms make sure that a system built with this set of regions as
conditions will generate the transition system as its case graph. Note that
the key idea is that the elementary separation axioms make sure that the
existential quantifiers in Definition 2.2.5 are in fact universal. This, in turn,
ensures that the principle of extensionality holds among the set of regions,
and the set of events of the system. Indeed, when the separation axioms
hold, events are characterised by their orientation with respect to regions.
Furthermore, when the graph underlying the transition system is connected,
then a region r is characterised by the pair 〈•r, r•〉.

However, since elementary net systems depend on the definition of an
initial state, one must also be able to identify it on the transition system. An
elementary transition system will present a state from which all other states
are reachable.

Definition 2.2.7 (Elementary Transition System). An elementary transition
system is a tuple A = (Q,T,E, q0) where A = (Q,E, T ) is a labelled transition
system satisfying the elementary separation axioms of Definition 2.2.6, and
q0 ∈ Q is an initial state such that each q ∈ Q is reachable from it.

The consideration of this initial state is rather cumbersome. Reachability
being a dynamic property, it leads away from the scope of this work, con-
cerned essentially with structural properties of the systems. It will therefore
be suitable to handle condition/event transition systems.

2.2.3 Condition/Event Transition Systems

In a condition/event net system, instead of defining an initial marking, a
whole class of reachable markings is considered. However, for such a class to
be properly defined, backward reachability needs to be considered. In some
sense, a condition/event system allows for several different initial states.

In determining whether a labelled transition system is the case graph of
some condition/event net system, the requirement that there exists an initial
state is dropped. However, the backward firing of events, in such a model,
imposes the consideration of an additional axiom.

Definition 2.2.8 (Condition/Event Separation Axioms). A Condition/Event
Transition System is a transition system such that the following conditions are
satisfied:

1. ∀q1, q2 ∈ Q : Rq1 = Rq2 → q1 = q2;

2. ∀q1 ∈ Q : ∀e ∈ E : (•e ⊆ Rq1)→ (∃q2 ∈ Q : (q1, e, q2) ∈ T );
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Figure 2.8: To the left, an elementary transition system A1. To the right, a
condition/event transition system A2

3. ∀q1 ∈ Q : ∀e ∈ E : (e• ⊆ Rq1)→ (∃q2 ∈ Q : (q2, e, q1) ∈ T ).

It was shown in [30, 31] that so defined, a condition/event transition system
is isomorphic to the case graph of some condition/event net system.

Condition/event transition systems and elementary transition systems form
distinct classes of labelled transition systems. These are not comparable. In-
deed, the following example shows both a condition/event transition system
which is not an elementary, and an elementary transition system which is not
condition/event.

Example 2.2.2. The transition system on the left side of Figure 2.8 is ele-
mentary, with initial state q0. It can be shown that it is not condition/event.
Focus on the regions in the post-set of e1. Let r ∈ e•1. Certainly, r must con-
tain q3, and not q2. It must also contain q1, but not q0. Since it contains q1

and not q2, it must be that r ∈ •e2, and so it must also contain q5, but not q6.
Now ∀r ∈ e•1 : q5 ∈ r, so in particular e•1 ⊆ Rq5. Note that e1 is not backward
enabled at q5, so the third axiom of Definition 2.2.8 fails to hold.

On the same figure, the transition system to the right is condition/event.
In this similar case, e′1 is backward enabled at q′5. However, the system is not
elementary. Indeed, q′7 is not forward reachable from q′0, and vice-versa. No
choice of an initial state makes all its states forward reachable.

Note that the definition of region is the same in both models. As one can
verify on the previous example, the sets of regions can often be identified.
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This is the case, not only when considering the plain set of regions, but also
when endowing it with a structure.

The class of algebraic structures that one obtains when ordering regions by
set inclusion is highly relevant for the study of distributability of the system.
Indeed, one can identify regions with the local states of the system, and their
structure as subsets of states will provide insight in the way the system can
be distributed. Hence, the formalism with which regions are structured is one
of the main focuses of this work. When ordered by inclusion, regions form
orthomodular partial orders.

2.3 Orthomodular Posets as Logics

When reasoning about the properties that hold in a system, one can identify
each of these with its extension. The extension of a property is the set of
global states in which it holds, its value is true. Obviously the extension
of the negation of any property coincides with the set states in which this
property carries the value false, the set complement of its extension. If the
extension of a property is contained in the extension of another, the second
will be true whenever the first is. Properties are, in this way, endowed with
an order that translates the idea of implication.

In the purely sequential case, the lack of concurrency in a labelled transi-
tion system, lifts all restrictions on observability. Any subset of states corre-
sponds to a proposition which is observable. Such a full structure of subsets
is known to form a Boolean algebra, when ordered by set inclusion.

This ceases to be the case when one considers a labelled transition system
depicting concurrent behaviour. In this case, the system is assumed to be
distributed and so the principle of locality applies. Some subsets of states
will not be observable anymore. Only regions of the system are considered
observable, due to their consistency with respect to the effect of the event in
the system. Still, one can order the set of regions according to set inclusion,
obtaining a slightly weaker structure than a Boolean algebra. Indeed, most of
the identities that hold in the latter, also apply in the former, distributivity,
however, is replaced by a much weaker notion, orthmodularity.

A similar mathematical formalisation arises when reasoning about concur-
rency in processes. In this case, one considers subprocesses. A subprocess is
understood to be a part of the global process that can be executed as a mod-
ule. It can be abstracted by a single action, or rather as it will be shown in
Chapter 3, as a local state of the system. The scope of the construction that
this work presents, is to isolate parts of the process which can run in parallel,
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and for the resulting set of subprocesses, set inclusion defines the relation “is a
subprocess of”. In this case, one could obtain a Boolean algebra, if no subpro-
cesses interact with each other, and can run independently from one another.
However, when they depict causal dependencies, the mathematical structure
is weakened, replacing once again distributivity by the orthomodular law.

2.3.1 Logics as Partial Orders

Orthomodular posets were introduced by Birkhoff and von Neumann in 1936
as the algebraic structure of linear subspaces of Hilbert spaces, in relation
to quantum mechanics [19]. It was originally intended as a formalisation of
the propositions which are testable on a quantum mechanical system. This
field of physics has been the main engine in the development of the theory
of these particular structures, often referred to as quantum logics. In order
to provide some intuition regarding the logical interpretation of orthomodular
posets, and to justify the prominent use of the term logic to refer to them, a
few well-known concepts are collected.

Classical propositional logic can be built from a set of variables V =
{v1, v2, ..., vn}, and two constants C = {0, 1} = {false, true}
Formulas of the logic φ ∈ Φ are defined recursively:

1. C ⊂ Φ, and V ⊂ Φ

2. ∀φ, ψ ∈ Φ : (φ),¬φ, φ ∨ ψ, φ ∧ ψ, φ→ ψ ∈ Φ

A truth assignment on the variables is a function t : V → C. It uniquely
determines a truth assignment t̃ : Φ→ C on all formulas.

One can then identify formulas which take the same value for all truth
assignments. To formalise this, define φ ∼ ψ ⇔ (∀t ∈ CV : t̃(φ) = t̃(ψ)). ∼
is not only an equivalence relation, but a congruence with respect to ¬,∨,∧,
and →.

Remark 2.3.1. Consider a set X with an n-ary operation o : Xn → X. An
equivalence relation ∼ in X is called a congruence with respect to o whenever
it is consistent with it, namely

∀(xi)i≤n, (x′i)i≤n : (∀i ≤ n : (xi, x
′
i) ∈ ∼)→ (o(xi)i≤n, o(x

′
i)i≤n) ∈ ∼

Φ/∼ forms a Boolean algebra B, further more, if V is finite, then so is Φ/∼.
Intuitively, a Boolean algebra considers the logical propositions in terms of the
truth values they can take, and represents their logical dependencies by the
means of a negation operation, and an ordering which defines implication. It
can be formalised as a tuple B = (B, 0, 1,≤,¬) such that
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1. B = Φ/∼,

2. ∀φ ∈ Φ : ¬[φ]∼ = [¬φ]∼,

3. ∀[b1]∼, [b2]∼ ∈ B : [b1]∼ ≤ [b2]∼ ⇔ (∀t̃ : t̃(b1 → b2) = 1)

Then ∀[b1]∼, [b2]∼ ∈ B.

1. [b1]∼ ∨ [b2]∼ is the least upper bound of [b1]∼ and [b2]∼,

2. [b1]∼ ∧ [b2]∼ is the greatest lower bound of [b1]∼ and [b2]∼

The last two observations motivate the use of the symbols in the next
definition.

Definition 2.3.1 (Join, Meet). Consider a set X endowed with an order ≤.
Let S ⊆ X. The least upper bound, supremum, or join of S, denoted

∨
s∈S s,

or simply
∨
S, is an element x ∈ X such that

1. ∀s ∈ S : s ≤ x

2. ∀y ∈ X : (∀s ∈ S : s ≤ y)→ x ≤ y

Analogously, the greatest lower bound, or, infimum, or meet of S, denoted∧
s∈S s, or simply

∧
S, is an element x ∈ X such that

1. ∀s ∈ S : x ≤ s

2. ∀y ∈ X : (∀s ∈ S : y ≤ s)→ y ≤ x.

In an arbitrary partial order, such elements might not be defined. However,
it is inherent to their definition, that if they exist they must be unique. In the
general case, this uniqueness is not guaranteed.

When there is risk of confusion, the operations on a partial order P will
be tagged with the corresponding name: ≤P ,∨P ,∧P .

Definition 2.3.2 (Lattice, Complete Lattice). A partial order (P,≤) is called
a lattice whenever for any finite subset S ⊆ P ,

∨
S ∈ P and

∧
S ∈ P are

well defined.

It is called a complete lattice whenever for any subset S ⊆ P ,
∨
S ∈ P

and
∧
S ∈ P are well defined.
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When the set S consists of two elements {a, b}, in-fix notation is commonly
used, a∨b, and a∧b instead of

∨
{a, b}, and

∧
{a, b}, respectively. In this way,

∨ and ∧ are seen as binary operations. They are commutative a∨b = b∨a, and
a∧b = b∧a ,and associative a∧(b∧c) = (a∧b)∧c, and a∨(b∨c) = (a∨b)∨c.
In general, they do not distribute over each other.

Definition 2.3.3 (Distributive Lattice). A lattice (L,∨,∧) is called distribu-
tive when ∀a, b ∈ L the following hold

1. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

2. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

When a poset has a minimum element, and a maximal element, it said to
be bounded. Note that any formula φ implies true, and is implied by false,
this motivates the use of 0, and 1, to denote respectively the minimal and
maximal elements of a bounded poset.

Definition 2.3.4 (Orthocomplemented Poset). A poset (P,≤) is said to be
complemented whenever there are two elements 0, and 1, and a unary opera-
tion (·)′ such that

1. ∀a ∈ P : 0 ≤ a ≤ 1.

2. ∀a ∈ P : ∃a′ ∈ P : a ∨ a′ = 1 and a ∧ a′ = 0.

a′ is called the complement of a.

(P,≤) is said to be orthocomplemented if it is complemented, and the
following hold

1. ∀a ∈ P : (a′)′ = a.

2. ∀a, b ∈ P : a ≤ b→ b′ ≤ a′.

In this case, (·)′ is called an involution. When two elements a and b of an
orthocomplemented poset satisfy a ≤ b′, then clearly b ≤ a′, and they are said
to be orthogonal, written a ⊥ b. Orthogonality is an irreflexive and symmetric
relation. It is only transitive in Boolean algebras.

Note that ∀x ∈ P : 0 ≤ x′, and so 0 is orthogonal to all elements of the
poset. In a complemented poset, De Morgan’s laws always hold. (a ∨ b)′ =
a′ ∧ b′, and (a ∧ b)′ = a′ ∨ b′.

By requiring all these conditions, one obtains a Boolean algebra
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0

{x4}

{x3}

{x1}′ ∧ {x2}′
= ({x1} ∨ {x2})′

{x2}

{x1}′ = {x2, x3, x4}

{x1}

{x2}′

{x1} ∨ {x2}
= {x1, x2}

1

Figure 2.9: Hasse diagram of a Boolean algebra, in which order is represented
upwards. It has a minimal element 0, and a maximal element 1. It has 16
elements. It represents the collection of subsets of X = {x1, x2, x3, x4}, and
set inclusion as ordering. The join of elements is the union, the meet is the
intersection, and the orthocomplement corresponds to set complement.

Definition 2.3.5 (Boolean Algebra). A Boolean algebra is an orthocomple-
mented distributive lattice.

Orthomodular partial orders are a weaker version of Boolean algebras.
Although admitting an analogous logical interpretation, join and meet oper-
ations are not defined for all pairs of elements. They are orthocomplemented
posets, but in general, not lattices. Still, joins are defined among orthogonal
elements, and they satisfy the orthmodular law, which states a weak form of
distributivity subordinated to complementation. In this work, notation and
terminology follow those of [51], where orthomodular posets are called quan-
tum logics, or simply logics. The name is motivated by the fact that this
notion was first formalised, and further on studied, in an attempt to axioma-
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tise quantum mechanics.

Definition 2.3.6 (Orthomodular partial order). An orthomodular partial
order, orthomodular poset, also quantum logic 〈L,≤, (.)′, 0, 1〉 is a set L
endowed with a partial order ≤ and a unary operation (·)′ (called orthocom-
plement), such that the following conditions are satisfied:

1. L has a least and a greatest element (respectively 0 and 1) and 0 6= 1;

2. ∀x, y ∈ L x ≤ y ⇒ y′ ≤ x′;

3. ∀x ∈ L (x′)′ = x;

4. if {xi | i ∈ N} is a countable subset of L such that i 6= j ⇒ xi ⊥ xj,
then

∨
i∈N xi exists in L;

5. ∀x, y ∈ L : x ≤ y → y = x ∨ (x′ ∧ y).

The latter condition is the aforementioned orthomodular law.

In this work, the term logic will often be used as a shorthand for quantum
logic, or orthomodular poset, and L instead of 〈L,≤, (.)′, 0, 1〉, when there can
be no ambiguity.

Definition 2.3.7 (Sublogic). A sublogic of L is a subset L̂ of L that remains
a logic with respect to the restrictions of the operation (.)′ and the relation ≤
to L̂. In particular, x ∈ L̂ ⇒ x′ ∈ L̂ and, for X = {xi}i∈N ⊆ L̂ a sequence of
mutually orthogonal elements, the supremum of X taken in L belongs to L̂.

A sublogic is Boolean if it is a Boolean algebra.

Morphisms of logics are defined in such a way that they preserve order
(and consequently orthogonality) and compatibility.

Definition 2.3.8 (Logic Morphism). ([51]) Let L1 and L2 be logics. A map-
ping f : L1 → L2 is a morphism of logics if the following conditions are
satisfied:

1. f(0) = 0;

2. ∀x ∈ L1 f(x′) = f(x)′;

3. for any sequence {xi | i ∈ N} of mutually orthogonal elements in L1,
f(
∨
i∈N xi) =

∨
i∈N f(xi).
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Proposition 2.3.1. ([51]) Morphisms of logics preserve order, and orthogo-
nality.

A morphism f : L1 → L2 is an isomorphism if f is injective, maps L1 onto
L2 and f−1 is a morphism. Moreover, f is an embedding if f(L1) is a sublogic
of L2 and f : L1 → f(L1) is an isomorphism.

2.3.2 Partial Order of Regions

Regions of elementary (or condition/event) transition systems were proven
to form orthomodular partial orders in [7]. In order to provide some intu-
ition regarding orthomodular posets, an analogy is here presented with the
representability of Boolean algebras.

In his seminal paper of 1936 [60], M. H. Stone presented a result according
to which the elements of a boolean algebra can be interpreted as subsets of a
carrier set X.

Indeed, one can easily check that given a carrier set X, then the collection
of all its subsets, called its power set 2X : {S ⊆ X} can be endowed with
a Boolean algebra structure. It is in order to do so, sufficient to take set
inclusion as order relation, and set complement as negation. Defined as the
infimum, and supremum respectively, meet, and join operations coincide with
set intersection, and set union.

As a matter of fact, in what concerns this work, this is the structure of
regions one obtains from a system which is purely sequential. In either elemen-
tary or condition/event framework, fully sequential systems are characterised
by the fact that no pair of transitions carry the same label. Intuitively, two
different states are, as markings of a net system, distinguished by at least one
condition. If both states enable the same event, then this condition can not
be involved in its firing. Such a condition being independent from the event,
it must belong in different sequential components, and so the system has at
least two sequential components.

Example 2.3.1. Consider the transition system A = (X,E, T ) with set of
states X = {x1, x2, x3, x4}, set of events E = {e1, e2, e3, e4}, and transi-
tions T = {(x1, e1, x2), (x2, e2, x3), (x3, e3, x4), (x4, e4, x1)}. It has a sequential
cyclic behaviour, and is either condition/event, or elementary, if one selects
any of its states as initial. Since all transitions have different labels, the uni-
form crossing property imposes no restrictions, and any subset of X is a re-
gion. Then R(A) = 2X forms the Boolean algebra of Figure 2.9, when ordered
by set inclusion.
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Figure 2.10: The regions of the transition system of Figure 2.7 form partitions
of the set of states.

Note that the set of all singletons, subsets consisting of one single element,
form a partition of the carrier. Any subset can be retrieved as disjoint unions
of these singletons.

When a transition system is sequential, any subset of states is trivially
a region. Hence, the structure of regions forms a Boolean algebra. In the
general case however, the labelling of transitions prevents some subsets from
being regions, thus leading to a weaker structure. Some interesting properties
were proven in [5].

Proposition 2.3.2. Let A = (Q,E, T ) be a condition/event transition sys-
tem, then ∀r1, r2 ∈ R(A) :

1. r1 ∩ r2 = ∅ → r1 ∪ r2 ∈ R(A)

2. Q \ r1 ∈ R(A)

The result is analogous for elementary systems. As a consequence, regions
can be organised in partitions of the set of states.

Example 2.3.2. Consider the transition system of Figure 2.10. The regional
partition {{q1, q2}, {q5}, {q3, q4}} is made of disjoint unions of the one depicted
in the figure. They correspond to the same sequential component. The set
of regions {{q1, q3}, {q2, q4}, {q5}} forms another partition. It represents a
different sequential component. The partitions share the region {q5}. This
region is a synchronisation of the two sequential components. Intuitively, the
two sequential components must agree in order for e3 to fire.
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Hence, some regions might belong to several partition. The orthomodular
law establishes that, whenever the intersection of two regions r1, and r2 is a
region, then one can find a regional partition of the set of states such that r1

and r2 can be retrieved as unions of elements of the partition. This is taken
as the main intuitive idea behind orthomodular posets. When defined over a
power set, they can be seen as formalising interactions between partitions.

It is relevant to mention the great effort put by the community in under-
standing the nature of orthomodular posets [39, 37, 27, 18]. Although the
main motivation for this development has historically flown from physics, the
mathematical subject has become of interest in itself. The author of this work
wishes to highlight the contributions of G. Bruns, and J. Harding, among
whose work, [22, 35, 36] are particularly enlightening.

The power set of any set forms a Boolean algebra. The acclaimed result
from M. H. Stone, however, was the proof of the converse. Every Boolean
algebra, can be seen as the collection of subsets of some carrier X. It is
said that they admit a concrete representation. Extending the analogy with
quantum logics in this direction is not straightforward. Indeed, it was shown
that not all orthomodular posets can be seen as a collection of subsets [34].
The characterisation of this class is due to S. Gudder, and this subject will be
covered extensively in Chapter 4. As a matter of fact, the present work follows
this line of thought, and tackles the problem of whether a given quantum
logic admits a representation as the set of regions of some elementary (or
equivalently, condition/event) system.

The orthomodular poset that arises as the structure of regions gathers
information about the sequential components of the system. Indeed, when the
extension of two conditions of a net system are such that no regional partition
contains both, then the two conditions must belong to different sequential
components. The existence of a partition containing both extensions expresses
a dependency in the way these can be marked. The non-existence of such a
partition then imposes that the two conditions can be marked independently
from one another.

2.3.3 Parial Order of Subprocesses

Orthomodular posets also arise in the analysis of concurrency in processes. In
[9], the authors proposed an algebraic operation that allows to identify the
subprocesses, as subsets of a process, which are concurrent. When this is the
case, it is asserted that these parts of the process can run in parallel. One
can then identify all such subprocesses and endow them with a structure that
will carry information about their concurrency. The purpose of this section
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is to provide some intuition about this structure. The full formalisation, and
contribution regarding this matter, will be developed in the next chapter.

With this notion of subprocess, one can provide a structure, analogous to
that of regional posets. Subprocesses, seen as subsets of a process, can be
ordered by set inclusion. A form of negation can also be derived. In this case,
however, rather than corresponding to set complement, it will directly encode
causal independence, making the term complement or orthocomplement more
suitable than negation. In [10], it was shown that when a process is formalised
by the means of a causal net, the structure of its subprocesses forms an or-
thomodular partial order. As a matter of fact, in this case, meet and join
operations are everywhere well-defined, so the poset is actually a lattice.

Definition 2.3.9 (Orthomodular Lattice). An orthomodular lattice is an
orthomodular poset which is a lattice.

The intuition behind orthomodularity is, with this interpretation, very
different than in the case of regions. Indeed, since the orthocomplement oper-
ation is not interpreted as set complement, orthomodularity does not provide
partitions of the process into subprocesses, in the general case. Instead, given
a process, one usually interprets the lines of the underlying causal net, as
the fully sequential subprocesses it holds, and it is on the set of these lines
that one can see the partitions induced by orthomodularity. In this view,
one considers the set of lines that cross a given subprocess, those which have
non-empty intersection with it. The obtained orthomodular lattice provides
information on how the considered subprocesses partition the set of lines, and
the dependencies that hold among such partitions.

In this sense, the proposed algebraic operation will lead to a Boolean al-
gebra when applied on a process consisting of independent sequential subpro-
cesses which do not interact whatsoever. The weakening of a Boolean algebra
leading to an orthomodular lattice arises from the causal dependencies be-
tween the parts of the process which are allowed to run in parallel. Indeed,
when considering two elements of this orthomodular lattice as subprocesses,
the fact that they cannot partition the set of lines is due to the existence
of a line which crosses both of them. This expresses that there must be a
causal dependence between them. A set of subprocesses that arise from the
presented operation, will intersect disjoint sets of lines whenever they can be
distributed. These are the situations in which they can be implemented in
parallel.
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...
...

...

Figure 2.11: A causal net with three independent lines. It represents the pro-
cess of any net system consisting of three independent cyclic state machines.
Its lattice of subprocesses will form a Boolean algebra with three minimal ele-
ments. The dashed lines represent independence of subprocesses, they indicate
how the process can be distributed.

...
...

...

Figure 2.12: When the lines of a process synchronise, the lattice of subpro-
cesses ceases to be Boolean. The way the process can be distributed is more
complex.



Chapter 3

Process Distributability

As seen in Chapter 2, processes executed by elementary net systems are for-
malised by means of causal nets. In such models, one abstracts from the orders
in which concurrent actions occur along a sequence, since they are interpreted
as causally independent. As Petri net models, causal nets not only depict
occurrences of actions but also the conditions that lead from one to another,
and translate their direct causal dependency. Since all choices are resolved in
such a model, the underlying net presents no conflict, and one can distinguish
event occurrences from conditions structurally. Hence, the partial ordering of
elements of a causal net is sufficient to perform the structural analysis that
permits to identify subprocesses, as well as the way these can be distributed.

Subprocesses are singled out as subsets of elements of the causal net which
inherit its partial order. When subprocesses considered as a such subsets, are
contained in one another, the smaller is considered a subprocess of the larger.
In the construction in which these subprocesses are extracted, an additional
relation between them is obtained, orthogonality. When two subprocesses are
orthogonal, they are intuitively executable in parallel. The ordering of sub-
processes, together with this relation, provides them with a richer structure,
that admits a logical interpretation. It is in fact an orthomodular lattice.

In particular, such a lattice presents the property that it can be faithfully
represented by its set of minimal subprocesses, together with their orthogo-
nality relations. Minimal subprocesses are of particular interest, since they
constitute the pieces that can be run in parallel, in a setting of maximal
distribution. These subprocesses present the added advantage that they can
inherit the ordering of the process they were extracted from. This ordering
therefore expresses the causal relations between minimal subprocesses. The
lack of order relation among them coincides with their orthogonality relation.

51
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The set of minimal subprocesses, with the order relation inherited from their
containing process is shown to be an abstraction of it.

When structured in such a way, subprocesses carry all the information
regarding how they can be distributed, but also the causal dependencies that
bind them together. This new partial ordering of minimal subprocesses will
be shown to be interpretable as a causal net of its own, in which subprocesses
are identified with conditions expressing the proposition “the subprocess is in
execution”. On top of that, a means of retrieving their causal dependencies
as action occurrences will be provided.

3.1 Processes as Partial Orders

Partially ordered sets are a common characteristic in different models of true
concurrent processes, such as event structures [45, 62] or Mazurkiewicz traces
[42]. All these models share the fact that maximal totally ordered subsets (or
chains) represent sequential subprocesses, whereas maximal subsets of pair-
wise unordered elements (or antichains) can represent occurrences of global
states. Several subset operators have been defined on these structures. In
particular, Nielsen et al. have presented downwards closed subsets of event
structures, or configurations, as forming interesting spaces when ordered by
inclusion: domains [45, 62]. Intuitively, these configurations gather informa-
tion on the history of the subprocess leading to a particular set of events. In
this sense they can be understood as partial states, uniquely determined by
the past of a given subset, thus relying solely on causal dependence relations.
As a matter of fact, inclusion in a domain represents a chronological ordering
of possible observations. The closure operator studied in this chapter however,
evolves around concurrency relations and independence of subprocesses. Like
in domains, it provides a family of subsets, and endows it with a structure.
Nevertheless, unlike configurations, it presents a notion of complementation
determined by concurrency. Any element is by definition concurrent to all the
elements in its complement, and so it could not distinguish one of them from
another without a global clock. From its local point of view its whole com-
plement subset behaves as a single local state. In the structure obtained from
this closure operator, inclusion is not to be interpreted as a chronology, but
rather conveys the idea of a coarser point of view, or abstraction. Informally,
when considering that sequential subprocesses can only share information by
synchronising or splitting, then this operator determines which information
about the process is available locally.
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3.1.1 Causal nets and Processes

As introduced in Section 2.1.3, the chosen formalism to represent processes is
that provided in Petri net theory. In this way, a process can be seen as one
possible execution of an elementary system. The definitions in this section
are taken from [17], and adapted to cover only the simpler case of elementary
systems.

Throughout this section, N = (B,E,F ,m0) will denote an elementary net
system, N ′ = (B′, E′,F ′) a causal net, and (P,≤) the partial order derived
from it as P = B′ ∪ E′, and ≤ = F ′+

As seen in Section 2.1.3, causal nets are suitable for representing processes.
Not every such net, however, does in fact represent one. The notion of process
can hardly be considered without relating it to the system responsible for its
execution. This relation will be a requirement in the definition.

A process run by an elementary net system should start at the initial mark-
ing, and so the first restriction imposed on the causal nets, is their capacity
to represent it.

Definition 3.1.1 (Initial Cut). Let N ′ be a causal net, and (P,≤) the partial
order derived from it. An initial cut of either N ′, or P , is the set

min(P ) = {x ∈ P | ∀y ∈ P : y ≤ x→ x = y}

It is straightforward to verify that min(P ) is indeed a cut. A causal net
will need to have a B-cut as initial cut in order to represent an elementary
process.

Another requirement is that every element of the net must be reachable
from the initial marking in a finite number of steps. Not only must this
happen, but it must hold when restricted to any line of the process which
contains the element, and crosses the cut. Intuitively, every causal influence
of the initial cut on an arbitrary element, must be tractable in a finite number
of steps.

Definition 3.1.2 (Discrete with Respect to a Cut). Let (P,≤) be a poset,
and two elements x, y ∈ P . The interval between x, and y is defined as

[x, y] := {z ∈ P | x ≤ z and z ≤ y}

Note that [x, y] = ∅, unless x ≤ y.
Given two subsets S1 and S2 in P , the notion of interval generalises as

[S1, S2] :=
⋃
x∈S1

⋃
y∈S2

[x, y]
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Let L be the set of all the lines of P , and c a cut. The poset P is said to
be discrete with respect to c whenever

∀x ∈ P : ∃n ∈ N+ : ∀l ∈ L : |[c, x] ∩ l| < n and |[x, c] ∩ l| < n

These two structural properties make a poset suitable for representing a
process. In order to represent a process, however, it must represent the process
of some system, in this case elementary. The relation between the causal net
and the net system is formalised by a labelling function, that assigns to every
element of the causal net, the element of the system it is an occurrence of.

Definition 3.1.3 (Process). Let N = (B,E,F ,m0) be a contact-free elemen-
tary net system. Let N ′ = (B′, E′,F ′) be a causal net, and (P,≤) the poset
defined as P = B′ ∪E′ and ≤ = F ′+. Let λ : B′ ∪E′ → B ∪E be a labelling
function. A pair (N ′, λ) is called a process of N when the following conditions
are satisfied:

1. min(P ) ⊆ B′

2. P is discrete with respect to min(P )

3. λ(min(P )) = m0

4. λ(B′) ⊆ B, and λ(E′) ⊆ E

5. ∀x, y ∈ P : λ(x) = λ(y)→ x li y

6. ∀e ∈ E′ : λ(•e) = •λ(e) and λ(e•) = λ(e)•

The third condition requires that the initial cut of the net represents the
initial marking of the system. The fourth statement requires that events of
the causal net represent occurrences of events of the system, and analogously
for conditions. The fifth condition requires that different occurrences of the
same element of the system are not independent from each other. Indeed, in
an elementary system, each marking allows for one single firing of an event.
Therefore, two concurrent occurrences of the same event are forbidden. The
last requirement states that the labelling function must preserve the flow re-
lation. All direct causal influences of the system must be reported in the
process, and the process must not represent additional dependences.

Example 3.1.1. The causal N ′ of Figure 3.2 is labelled consistently with the
elementary net system N of Figure 3.1. It represents a process run by N .
The initial cut of N ′ is labelled with the initial marking of N . Lines in N ′
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b

¬b

e2e1

p1

p2

e3 e4

e5 e6

q1

q2

r1

r2

Figure 3.1: An elementary net system N modelling a cycle of one producer
and two consumers. Condition b models the situation when a given resource
generated by the producer has been delivered. Either of the two consumers
N({q1, q2}), or N({r1, r2}) can consume the resource. While no resource is
delivered, the consumers remain idle. The producer can not output new re-
sources while the previous one has not been consumed. This constraint is
represented by condition ¬b.

coincide with possible flows of tokens, they represent the flow of information
in the system.

The first occurrences of p1, b, q1, and r2 form a cut, they represent that the
corresponding marking on the net is reachable from the initial state. However,
the sequence (e2, e1, e4) is a firing sequence of the system, and so e1 could
unmark p1 before e4 marks q1. It is not guaranteed that such a marking is
ever visited.

The E-cut labelled with e1, e3, and e6 represents the concurrent occurrence
of the corresponding events.

Note that the first occurrences of p1,q1, b, and r1 form a B-cut. At the
corresponding marking, e5 is as enabled as e3. This is not represented in the
process, because the firing of e3 disables e5. The two events are in conflict,
and the process represents only one outcome of the corresponding choice. This
shows that the two consumers compete for the resource. In this particular exe-
cution only one of them ever consumes it. The other remains idle indefinitely.

Finally, note that without the condition ¬b, the system would present a
contact after the occurrence of e1 if neither e3 nor e5 have occurred. In this
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r2

r1

e6

...
...

...

Figure 3.2: A possible process N ′ run by the system of N of Figure 3.1

situation, the system could not fire e2, but this dependency would not be rep-
resented in the process.

It is to be noted that, in an elementary system, contacts are situations in
which a condition has a causal influence on one of its pre-events. This causal
dependence can not be represented by the causal net because it is oriented in
opposite direction than the flow relation.

These situations can easily be prevented by adding conditions to the net,
which do not alter its behaviour. This matter will be covered in the next first
section of the next chapter.

Remark 3.1.1. This chapter gives an interpretation of subsets of the net as
subprocesses. In Petri net theory, it is usually required that a subprocess is
in itself a process. In this work, the third axiom of Definition 3.1.3 is not
required. A subprocess will be a subnet of the causal net, such that, with the
labelling function of its containing process, all but the third axiom hold.
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Distributability of processes will be analysed, in the rest of this chapter,
on the base of the partial order derived from a causal net. The next section
will present the relevant properties of such posets.

3.1.2 Properties of Process Posets

Processes, are defined on the base of causal nets. In order to study how
processes can be distributed, this type of net will be the main model at
stake. However, results are presented in terms of the partial order derived
from it. The nature of the mathematical tools that will allow for analysis
of distributability, makes it is more practical to work with an order relation.
Nevertheless, the fact that the partial order derives from a causal net has
some implications that will be essential in the proofs of the contributions of
this work.

Definition 3.1.4 (Combinatorial Poset). Let (P,≤) be a partially ordered set.
It is said that (P,≤) is combinatorial whenever there exists a covering relation
≺ such that the order is its transitive and reflexive closure ≤ = (≺)?

The term combinatorial stands for the fact that a covering relation de-
scribes a directed graph. By construction, every poset derived from an occur-
rence net is combinatorial.

When the transitive closure of a net is a partial order, then it will certainly
be combinatorial. The relevant restriction, in this sense, is that the net forms
a partial order.

Causal nets are on top of that, conflict-free. This condition implies that
some configurations are forbidden.

Definition 3.1.5 (Forks and Joins). Let (P,≤) be a combinatorial poset, with
covering relation ≺. Three elements x, y, z ∈ P form a fork at x whenever
x ≺ y, x ≺ z, and y co z. Three x, y, z ∈ P form a join at x whenever y ≺ x,
z ≺ x, and y co z.

Clearly, in a causal net, forks o joins can only happen at events. Indeed a
fork (or join) at a condition would violated the fact that it can have only one
immediate successor (predecessor).

As a consequence, partial orders that arise from causal nets will satisfy
the following local property.

Definition 3.1.6 (N-dense Poset). A combinatorial poset (P,≤P ) is N-dense
iff ∀x, y, u, v ∈ P such that x ≤P y, x ≤P u, v ≤P y, x coP v, u coP v,
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P1

u

x v

y

P2

a1

u

x v

y

a2 a3

Figure 3.3: Two combinatorial posets P1 and P2 which are not N-dense. Ar-
rows represent ≺Pi , and dashed lines represent coPi , i ∈ {1, 2}. On the left,
P1 = {x, y, u, v} with ≤P1

= {(x, y), (x, u), (v, y)}. It is apparent that (x, v),
(u, y), (u, v) ∈ coP1 , as represented by the dashed lines.

and u coP y, there is an element a ∈ P satisfying a coP u, a coP v and
x ≤P a ≤P y.

Example 3.1.2. Figure 3.3 shows the following poset: P1 = {x, y, u, v} with
≤P1

= {(x, y), (x, u), (v, y)}. It is apparent that x coP1 v, u coP1 y and
u coP1 v. The poset P1 can not be interpreted as a causal net. It presents a
fork at x, and a join at y. According to conflict-freeness, both x and y should
be interpreted as events, but then x ≺P1 y violates the Petri net axiom that
the flow relation can only relate events to conditions, or conditions to events.
N-density requires the existence of an element a such that x ≺P1 a ≺P1 y.
When this element exists it can be interpreted as a condition.

The poset P1 of Figure 3.3 is common in the literature and often referred
to as the N Poset. It is, in particular, the paradigmatic poset that is not
series-parallel. A poset is called N-free when it does not contain P1 as a
subposet.

The poset associated with a causal net is trivially combinatorial, and N-
dense. These two properties will be fundamental in the development of the
results that follow. They will be sufficient to perform the analysis on dis-
tributability of the represented process. As a matter of fact, N-density is not
necessary. It will be shown that the results hold, for instance, in the poset P2

of Figure 3.3, although this poset is not N-dense. For the scope of this work, it
is satisfactory to be sure that these results can be applied to any poset which
represents a process. Note that N-dense posets may contain the N poset (P1)
as a subposet. Hence, N-density is a weaker notion than N-freeness, and the
class of N-dense posets is wider than that of series-parallel posets.
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It will be necessary, to provide interpretation to the presented results,
to assume that the poset representing a process displays a stronger form of
density, K-density. In general, and quite trivially, a line and a cut can intersect
in at most one element. K-density requires that they do in exactly one element,
meaning that each line must intersect every cut.

Definition 3.1.7 (K-density). A poset is K-dense1whenever for every line l,
and every cut c, it holds that l ∩ c 6= ∅.

K-density implies N-density. To see this, suppose that a poset (P,≤)
contains the N-poset P1 of figure 3.3 with x ≺P y. Then no line containing
x, and y, can intersect a cut containing u and v. It can be shown that if a
poset is N-dense, then it can only fail to be K-dense if it contains a cut of
infinite cardinality (see [17]). This, in turn, can only be interpreted, in the
elementary case, as process run by a system with either infinite conditions, or
infinite events. K-density is therefore considered a reasonable requirement.

3.1.3 Closure Operator based on Concurrency

This chapter is based on the results of [10]. In that work, the authors present
a closure operator on the subsets of a poset. This notion of closed set is based
on concurrency. Concurrency is defined on the elements of the poset, but it
can be extrapolated to its closed subsets. This relation on the closed subsets
of the poset expresses that they can be separated from one another. When
considered as subprocesses, they are allowed to run in parallel.

In order to do so, the first step is to identify which elements of the partial
order are concurrent to the same elements. To this aim, the concurrency
relation may be extended to the power set 2P = {S ⊆ P} of P as follows.

Definition 3.1.8 (Polarity Induced by co). For any subset S ⊆ P , define the
polarity induced by coP as

(·)′ : P(P ) −→ P(P )

S 7−→ S′ := {y ∈ P | ∀x ∈ S : x coP y}

This operator will henceforth be referred to as a polarity, and S′ as the polar
of S.

It is a well known result that applying such a polarity two times yields
a closure operator on P(P ). In fact, ((·)′, (·)′) is a Galois connection [18,
Ch.V§7].

1K holds for ‘Kombinatorisch’, K-dense was originally intended as combinatorially dense
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Definition 3.1.9 (Closure Induced by co). Let S ⊆ P , the closure induced
by coP is

(·)′′ : P(P ) −→ P(P )

S 7−→ S′′ := (S′)′

This operator is indeed:

1. extensive ∀S ∈ P(P ) : S ⊆ S′′

2. monotone ∀S1, S2 ∈ P(P ) : (S1 ⊆ S2 ⇒ S′′1 ⊆ S′′2 ), and

3. idempotent ∀S ∈ P(P ) : (S′′)′′ = S′′

From this point on, S′′ will be called the closure of S, and the space L(P ) =
{S′′ | S ∈ P(P )} of closed subsets of P will be studied.

The empty set ∅ and the full poset P are trivially closed, and polar to each
other. As for any structure defined on a power set, there is a natural ordering
of its elements induced by inclusion. In this way, a set precedes another if it is
contained in it. When ordered in such a way, L(P ) forms again a poset, and
as such it is common practice to represent it as a Hasse diagram.

Example 3.1.3. In Figure 3.4 one can see the closed sets of P1 from Figure
3.3. Since u coP1 v and u coP1 y, then {u}′ = {v, y}, and no other element
is concurrent to both v and y, so {u}′′ = {u}. Consider {x}′ = {v}, u coP1 v
implies that u ∈ {x}′′. In fact {x}′′ = {x, u}. L(P1) is represented as a Hasse
diagram.

It is a well known result [18, Ch.V§7] that, when considering the clo-
sure operator associated with a symmetric relation, the resulting collection
of closed sets forms a complete lattice. Furthermore, since the co relation
is also irreflexive, L(P ) is actually an orthocomplemented lattice or shortly,
ortholattice. As such, L(P ) is endowed with a set of operations related to the
order relation induced by inclusion.

It was furthermore shown in [10], that whenever the poset is N-dense, and
combinatorial then its associated lattice of closed sets satisfies the orthomod-
ular law. As a matter of fact, the converse also holds. Given a combinatorial
poset, it is N-dense whenever the described operator provides an orthomod-
ular lattice [12]. Hence, whenever a poset P has a subposet isomorphic to
P1 from figure 3.3 (p.58), then L(P ) will only be orthomodular if there is an
element a ∈ P such that x ≤P a, a ≤P y, and u coP a coP v. Such a property
is called N-density [17, Ch.2 §3].
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P1

x

yu

v

{u}′

{v}′

L(P1)

{v}′ = {x, u}

{u}

{v, y} = {u}′

{v}

∅

P1

Figure 3.4: Closure Operator induced by concurrency relation on P1 generates
L(P1). On the left: closed sets as subsets of P1. On the right: Hasse diagram
of L(P1).

In the next section, it will be show that N-density implies a weaker condi-
tion, which will be sufficient for the contributions of this chapter to hold.

3.2 Orthomodular Lattice of Concurrency Closure

Even though this closure operator was originally defined excluding conflict
situations [10], the authors then extended their results to include these [6].
In the same line of ideas, the results presented in this work do not consider
conflict, as they are intended to be considered further on. Also, this operator is
described in the frame of acyclic Petri nets, but the original authors generalise
the result to partial orders. One of their core contributions is the identification
of a local property of these partial orders, N-density, with a property of the
space of subsets obtained from the closure operator, orthomodularity

Analogously, the results of this paper are framed in terms of Petri nets, but
presented for more general partially ordered sets, so that the results could be
applied to other models of concurrent processes, such as the above mentioned.
In fact, instead of N-density and orthomodularity, here weaker notions are
considered, so that results are presented in a slightly more general form.

In this work, this closure operator is used for reducing a partial order.
The cases in which this reduction preserves the structure of closed sets are
characterised, and minimality of the obtained partial order is proven. Intu-
itively, the obtained partial order is an abstraction of the process, carrying
only the information which is available locally. In this sense, it is the skeleton
of the interactions between sequential subprocesses. Indeed, all the elements
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of the reduced partial order are involved either in a synchronisation, or in a
branching, or in both.

3.2.1 N-density, Orthomodularity, and Atomicity

The results of this section can be found in [1].
The study of lattices of closed sets presented in this work will focus on

particular elements of these structures. Atoms are the smallest non trivial
closed sets.

Definition 3.2.1 (Atom of a Lattice). An atom is a closed set which contains
no proper non-empty closed subset. Given L(P ), one may consider its set of
atoms:

A(P,≤) = AP := {A ⊆ P | A 6= ∅ ∧ ∀S ⊆ A : (S 6= ∅ ⇒ S′′ = A)}

In terms of lattices, an atom is an element such that each other element less
or equal than it is either the bottom element, or the atom itself:

∀a ∈ L(P ) : (a ∈ AP ⇔ a 6= ∅ ∧ (∀s ∈ L(P ) : (s ≤L(P ) a⇒ (s = ∅ ∨ s = a))))

A lattice is called atomic if every element is greater or equal to some atom:

L(P ) is atomic⇔ ∀s ∈ L(P ) : (∃a ∈ AP : a ≤L(P ) s)

In an atomic lattice, one can consider the set of atoms under any given ele-
ment:

∀s ∈ L(P ) : As := {a ∈ AP | a ≤L(P ) s}

An atomic lattice is said to be atomistic if every element can be expressed as
the join of the atoms under it:

L(P ) is atomistic ⇔ ∀s ∈ L(P ) : s =
∨
a∈As

L(P )a

Non-atomic lattices are those in which at least one closed set contains
an infinite sequence of closed sets such that each is properly contained in
the previous one. An atomistic lattice is one in which each closed set can
be uniquely characterised by the atoms contained in it. In an orthomodular
lattice, if a set properly contains another, then the former must intersect the
orthocomplement of the latter. Each orthomodular lattice is atomistic, and
every atomistic lattice must be atomic [39, Ch.3 §10] The following examples
should help clarify these notions.
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∅

Figure 3.5: On the left: Some closed sets of P2. On the right: Hasse diagram
of L(P2)

Example 3.2.1. Consider the poset P1 as previously defined. Figure 3.4
shows the atoms of L(P1): AP1 = {{u}, {v}}. Obviously, L(P1) is atomic.
However, {x, u} can not be distinguished from {u} in terms of atoms, so it

is not atomistic. Indeed A{x,u} = A{u} = {{u}}, so
∨L(P1)
a∈A{u} a = {u} =∨L(P1)

a∈A{x,u} a 6= {x, u}. Since it is not atomistic, neither is it orthomodular, and

in fact {u} ⊆ {x, u} but {u}′∩{x, u} = {v, y}∩{x, u} = ∅. On Figure 3.5 the
atoms of P2 are depicted, together with a couple of their complements. Clearly,
L(P2) is atomic. On the Hasse diagram of L(P2), all elements are above
different sets of atoms, hence it is atomistic. However, it is not orthomodular.
Indeed {u} is a closed set contained in {v}′, but {v}′∩{u}′ = ∅, so {u}∨L(P2)

({u}′ ∧L(P2) {v}′) = {u} ∨L(P2) ∅ = {u} 6= {v}′

Being orthomodular is a stronger notion than being atomistic. In both
cases, one can retrieve any element as the join of the atoms under it, but under
orthomodularity, it is sufficient to consider pairwise orthogonal elements. This
follows as a direct consequence of Axiom 4. of Definition 2.3.6, and is therefore
only stated as a remark.

Remark 3.2.1. Let L be an orthomodular lattice. For every element s ∈ L,
consider ↓{s}, and let c ⊆ ↓{s} be a set of pairwise orthogonal elements which
is maximal in ↓{s}. This reads as ∀x, y ∈ c : (x 6= y) → x ⊥L y, and
∀z /∈ c : (z 6≤ s) or (∃x ∈ c : z 6⊥L x). Then

s =
∨
x∈c

x
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In particular, c can be composed of atoms of L.

So an atomistic lattice requires all the atoms under an element to retrieve
it as their join, but in an orthomodular lattice it is sufficient to consider cliques
of orthogonality.

3.2.2 Inheritance of the Process Ordering

The results of this section can be found in [1].

This section is dedicated to showing that the order of a poset can be ex-
tended to the collection of its atomic closed sets. To this aim, some properties
of atoms, seen as subsets of the poset are studied.

As a first remark, note that all atoms are pairwise disjoint.

Proposition 3.2.1. ∀A1, A2 ∈ AP : (A1 ∩A2 6= ∅ ⇒ A1 = A2)

Proof. If A1 ∩ A2 6= ∅ then (A1 ∩ A2) ⊆ A1 implies that ∅ 6= (A1 ∩ A2)′′ ⊆
A′′1 = A1. Since A1 is an atom, it contains no proper closed subset. Hence
(A1 ∩A2)′′ = A1. Analogously, (A1 ∩A2)′′ = A2, so A1 = A2

Another interesting property of atoms is that all the elements inside one
of them relate identically to the elements outside of it, either by the order
relation, or the concurrency one. Such a property of subsets is rather common
in the literature, and referred to diversely according to the subject (See D-
autonomous sets defined on pre-orders in [43] for additional references). This
property is proven in Propositions 3.2.2 through 3.2.5. This will subsequently
allow for defining a consistent order on the set of atoms.

In the case of concurrency, the result is quite straightforward:

Proposition 3.2.2. Let A ∈ AP , x ∈ A, y ∈ P \ A : y coP x. Then ∀z ∈ A :
y coP z.

Proof. Suppose ∃z ∈ A : y liP z. Then y ∈ {x}′ \{z}′ ⇒ {x}′′ ⊆ {y}′∧{z}′′ 6⊆
{y}′. But x, z ∈ A⇒ {x}′′ = {z}′′ = A, which is a contradiction.

The following result will serve to prove the counterpart of Proposition 3.2.2
for the ordering relation.

Proposition 3.2.3. Closed sets are convex. Formally:

∀S ⊆ P, ∀x, y ∈ S′′ : (x ≤ z ≤ y)⇒ (z ∈ S′′)
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Proof. Note that {x, y}′′ ⊆ S′′ ∀x, y ∈ S′′. Let x ≤ z ≤ y, and suppose
∃v ∈ {x, y}′ such that z liP v. Then, by transitivity, z ≤ v ⇒ x ≤ v and
v ≤ z ⇒ v ≤ y. Hence, it must be ∀v ∈ {x, y}′ : z coP v. So z ∈ {x, y}′′ ⊆ S′′
.

With these results, it can be shown that if an element of an atom is ordered
before an element outside of it, then all the elements of this atom must be
ordered accordingly.

Proposition 3.2.4. Let A ∈ AP , x ∈ A, y ∈ P \ A. If x ≤P y, then for each
z ∈ A : z ≤P y.

Proof. Let z ∈ A, and suppose z coP y, then by Proposition 3.2.2 x coP y
which is impossible. So either z ≤P y or y ≤P z. Now suppose, y ≤P z.
Then, A being a closed set, by Proposition 3.2.3 it must be convex, so y ∈ A
contradicting the hypothesis. Hence ∀z ∈ A : z ≤P y.

An analogous proof leads to the following result.

Proposition 3.2.5. Let A ∈ AP , x ∈ A, y ∈ P \ A. If y ≤P x, then for each
z ∈ A : y ≤P z.

For the sake of clarity, these results are summarised as follows. Let A ∈
AP , y ∈ P \A:

1. (∃x ∈ A : x coP y)⇒ (∀z ∈ A : z coP y)

2. (∃x ∈ A : x ≤P y)⇒ (∀z ∈ A : z ≤P y)

3. (∃x ∈ A : y ≤P x)⇒ (∀z ∈ A : y ≤P z)

Under these conditions, ≤AP
may be defined as follows: Let A1, A2 ∈ AP .

Then A1 ≤AP
A2 :⇔: ∃x ∈ A1, ∃y ∈ A2 : x ≤P y. Then clearly A1 ≤AP

A2 ⇔
∀x ∈ A1, ∀y ∈ A2 : x ≤P y. Furthermore, A1 coAP

A2 ⇔ A1 ⊥P A2.

≤AP
is rather trivially an order on AP . It inherits reflexivity and transitiv-

ity from ≤P , and if it were not antisymmetric, neither would ≤P . As a matter
of fact, any choice function f , defined as follows, is an order embedding:

f : AP −→ P

A 7−→ f(A) := x ∈ A
(3.1)

And so, (AP ,≤AP
) can be embedded into (P,≤P ). Indeed, provided f exists,

its injectiveness comes as a consequence of atoms being pairwise disjoint (see
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Proposition 3.2.1). This justifies the idea that (AP ,≤AP
) is a reduced version

of (P,≤P ). Intuitively, the reduction can be seen as a collapsing of the atoms.
As the next section will show, atoms are sufficient to recover the lattice of
closed sets. On the other hand, Propositions 3.2.2 to 3.2.5 imply not only
that atoms are totally ordered subsets, but also that no branching occurs at
any of their elements. Indeed, no element of an atom has more than one
predecessor and one successor. In particular, if a line of a poset intersects an
atom, then the whole atom must be contained in the line.

Proposition 3.2.6. Let A ∈ AP , and l be a line of P such that l ∩ A 6= ∅,
then A ⊆ l.

Proof. Let x ∈ A ∩ l, and suppose ∃z ∈ A \ l. Maximality of l implies that
there must be a y ∈ l : z coP y. If y /∈ A, then x, z ∈ A with x liP y and
z coP y contradicts Proposition 3.2.2. It must be that y ∈ A. Since A is an
atom, in particular it must be the closure of all its elements, {x}′′ = {z}′′ and
so {x}′ = {z}′. But this is a contradiction, since z coP y → y ∈ {z}′, and
x liP y → y /∈ {x}′.

This should clarify that the inner structures of atoms provide no informa-
tion on the interactions between the different sequential subprocesses repre-
sented in the poset. Instead, all this information is condensed in their outer
structure: the reduced poset (AP ,≤AP

). For instance, a totally ordered set,
representing a single sequential process will consist of one single atom, and
its reduced version will then be a single isolated element. A set of n non
interacting sequential processes would consist of the corresponding n atoms,
leading to a reduced version of n pairwise concurrent elements. Naturally,
the structure of the reduced poset would grow more complex as sequential
processes interact, stepping away from these trivial examples.

3.2.3 Preservation of Concurrency

The results of this section can be found in [1].

This section will prove that the concurrency structure of (P,≤P ) is pre-
served in (AP ,≤AP

) by means of orthogonality, and under which conditions
this statement fully holds.

The results presented in this section rely heavily on the fact that an atom-
istic lattice is uniquely determined by its set of atoms, and their orthogonality
relation. This implies that L(AP ) and L(P ) are isomorphic. This will be
proved by showing that L(AP ) is always atomistic, and after inspecting the
orthogonality relation in both lattices, building the actual isomorphism.
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AP3

A2

A5A4

A3

A1

f
↪−−−−−→

P3

a2

a5
a4

a3

a1

A3

A2

A1

A5A4

Figure 3.6: On the left, AP3 = A(P3,≤P3), obtained from P3 on the right.
Consider f : AP3 −→ P3 such that f(Ai) = ai∀i ∈ 1, .., 5. The elements in
its image have been labelled showing the actual embedding of AP3 into P3.
Clearly, f both preserves and reflects concurrency. Note that since L(P3) is
atomistic, it is isomorphic to L(AP3).

The idea behind the following result arises from the observation that
∀A1, A2 ∈ AP : {A1} ⊥AP

{A2} ⇔ A1 coA A2 ⇔ A1 ⊥P A2, which can
in fact be extended to arbitrary subsets of AP .

Proposition 3.2.7. Let B1, B2 ⊆ AP . Then B1 ⊥AP
B2 ⇔ (

⋃
A∈B1

A) ⊥P
(
⋃
A∈B2

A)

Proof. B1 ⊥AP
B2 ⇔ B1 × B2 ⊆ coAP

⇔ ∀A1 ∈ B1,∀A2 ∈ B2 : A1 coAP

A2 ⇔ ∀A1 ∈ B1,∀A2 ∈ B2 : A1 ⊥P A2 ⇔ (
⋃
A∈B1

A) ⊥P (
⋃
A∈B2

A)

L(AP ) can now be defined in an analogous manner to L(P ), to the point
of showing that L(AP ) can be embedded into L(P ). The conditions under
which this embedding is actually an isomorphism will then be studied.

To this aim, the following two propositions show that L(AP ) is an atomistic
lattice.

Proposition 3.2.8. ∀A ∈ AP : {A} ∈ L(AP )

Proof. Suppose ∃A′ ∈ AP : A′ ∈ {A}′′. Then {A}′ ⊆ {A′}′, and clearly
A,A′ ⊆ P : A′ ⊆ (A′)′. So A′ = A′′′ = ((A′)′)′ ⊆ (A′)′ = A′′ = A, and
since atoms contain no proper closed subsets, it must be that either A′ = ∅ or
A′ = A.
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This trivially implies that L(AP ) is atomistic.

Proposition 3.2.9. L(AP ) is atomistic, formally:

∀B ∈ L(AP ) : B =
∨
A∈B
{A} = (

⋃
A∈B
{A})′′

Or equivalently: ∀B1, B2 ∈ L(AP ) :
({A ∈ A(AP ,≤AP

) | {A} ⊆ B1} = {A ∈ A(AP ,≤AP
) | {A} ⊆ B2}) ⇒ B1 =

B2

Proof. From Proposition 3.2.8, every element of AP constitutes a closed sin-
gleton, which can clearly be nothing but an atom. Obviously, no other subset
can be an atom, and as a matter of fact, two different closed sets will always
differ in at least one atom.

At this point, it is shown that L(AP ) can be embedded into L(P ). This
is achieved by defining a map between them, and showing that it is an order
homomorphism in Proposition 3.2.10, and that it is injective in Proposition
3.2.11.

Definition 3.2.2. The morphism φ will turn out to be an injective order
homomorphism

φ : L(AP ) −→ L(P )

B 7−→ φ(B) :=
∨
A∈B

A = (
⋃
A∈B

A)′′

Next proposition proves that φ preserves and reflects the order of the
corresponding lattices.

Proposition 3.2.10. ∀B1, B2 ∈ L(AP ) : B1 ≤L(AP ) B2 ⇔ φ(B1) ≤L(P )

φ(B2)

Proof. Let ∀i = 1, 2 : Si =
⋃
A∈Bi

{A} ⊆ P . Then clearly B1 ≤L(AP ) B2 ⇔
B1 ⊆ B2 ⇔ S1 ⊆ S2 ⇔ φ(B1) = S′′1 ⊆ S′′2 = φ(B2)⇔ φ(B1) ≤L(P ) φ(B2).

This implies that φ is an order homomorphism, which reflects order. So if
it were injective it would be an order embedding. This is confirmed by proving
the injectiveness of φ.

Proposition 3.2.11. Let B1, B2 ∈ L(AP ) such that φ(B1) = φ(B2), then
B1 = B2.
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P1 AP1
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A1

A2

L(AP1)

A′2 = A1 A2 = A′1

∅

AP1

φ
↪−−→

L(P1)

A′2

A1

A′1

A2

∅

P1

Figure 3.7: On the left, the poset P1, with its two only atoms drawn: A1 = {u}
and A2 = {v}. Clearly A1 coAP1

A2 so (AP1 ,≤AP1
) = ({A1, A2}, ∅). On

there, the corresponding lattice L(AP1), which is embeddable into L(P1), on
the right. Note that A2 ≤L(P1) A

′
1 ⇒ A2 ⊥L(P1) A1, so the embedding φ

preserves orthogonality.

Proof. Let B1 6= B2, and suppose, without loss of generality, ∃A ∈ B1 \B2 so
that B1 * B2. Then B1 �L(AP ) B2, hence by Proposition 3.2.10, φ(B1) �L(P )

φ(B2), so by reflexivity of ≤L(P ), φ(B1) 6= φ(B2).

Thus, φ−1 is a well defined function on the codomain of φ. As a matter of
fact, provided a closed set of the codomain, it simply returns the set formed
by the atoms under it : φ−1(S) = {A ∈ AP | A ≤L(P ) S}

It can now be positively stated that L(AP ) can be embedded into L(P ):

φ : L(AP ) ↪→ L(P )

The goal of this section, however, is to go further and have L(AP ) and L(P )
isomorphic, for which φ is required to be surjective. In general this is not the
case, as depicted in Figure 3.7. The fact preventing φ from being surjective,
seems to be that A′2 (respectively A′1) cannot be differentiated from A1 (A2)
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solely in terms of atoms. This observation leads naturally to the following
result:

Proposition 3.2.12. φ is surjective iff L(P ) is atomistic.

Proof. Clearly, if φ is surjective, every element S ∈ L(P ) is the image of some
B ∈ L(AP ) : φ(B) = S. Hence S =

∨
A∈B A =

∨
A∈AP :A≤L(P )S

A, and so

L(P ) must be atomistic. Conversely, if L(P ) is atomistic, then ∀S ∈ L(P ) :
S =

∨
A∈AP :A≤L(P )S

A, and so B = {A ∈ AP | A ≤L(P ) S} ∈ L(AP ) is such

that φ(B) = S.

Naturally, one would like to characterise the posets (P,≤) for which L(P ) is
atomistic, in this sense it seems clear that a necessary and sufficient condition
will be:

∀S ⊆ P : (∃A1 ⊆ P : A′′1 ( S′′)⇒ (∃A2 ⊆ P : A′′2 ( S′′ and A′′1 6= A′′2) (3.2)

Note that this condition is strictly weaker than N-density, which in turn is
weaker than N-freeness. For instance, poset P2 of Figures 3.3 and 3.5 satisfies
it, although it is not N-dense, (and therefore neither N-free). In particular,
this condition is satisfied by any partial order derived from a causal net. When
L(P ) is atomistic, φ is an order isomorphism. Furthermore, when this is the
case, Proposition 3.2.14 will prove that φ is even an orthocomplemented lattice
isomorphism, preserving not only order, but orthogonality as well. Proposi-
tions 3.2.15 and 3.2.16 will then show that φ preserves lattice operations.

In order to do this, the following technical result is required.

Proposition 3.2.13. If L(P ) is atomistic, then

∀S ∈ L(P ) : S′ = (
⋃

A∈AP :A⊥PS

A)′′

Proof. Clearly ∀A ∈ AP : A ⊥P S ⇒ A ⊆ S′, then
⋃
A∈AP :A⊥PS

A ⊆ S′, and
since S′ is a closed set, by monotonicity of the closure operator, it holds that
(
⋃
A∈AP :A⊥PS

A)′′ ⊆ S′.
Now suppose (

⋃
A∈AP :A⊥PS

A)′′ ( S′, since both sets are closed, and
L(P ) is atomistic, there must exist an atom A0 ∈ S′ \ (

⋃
A∈AP :A⊥PS

A)′′,
but A0 ∈ S′ ⇒ A0 ⊥P S, so A0 ∈

⋃
A∈AP :A⊥PS

A ⊆ (
⋃
A∈AP :A⊥PS

A)′′ which
is impossible.

The next proposition shows that φ preserves orthocomplementation.

Proposition 3.2.14. If L(P ) is atomistic then ∀B ∈ L(AP ) : φ(B′) = φ(B)′
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Proof. Let S =
⋃
A∈B{A} ⊆ P , and note that A ∈ B′ ⇔ A ⊥P S. Then

φ(B′) = (
⋃
A∈B′ A)′′ = (

⋃
A⊥PS

A)′′ = (S′)′′ = (S′′)′ = ((
⋃
A∈B A)′′)′ = φ(B)′.

Therefore, φ is an ortholattice isomorphism, hence L(P ) ' L(AP ). This
is confirmed by the two following results.

Proposition 3.2.15. ∀B1, B2 ∈ L(AP ) : φ(B1 ∨L(AP ) B2) = φ(B1) ∨L(P )

φ(B2)

Proof. At this point it is clear that, since L(AP ) is atomistic, ∀B1, B2 ∈
L(AP ) : φ(B1∨L(AP )B2) = φ(

∨L(AP )
A∈B1∪B2

{A}) =
∨L(P )
A∈B1∪B2

A =
∨L(P )
A∈B1

A∨L(P )∨L(P )
A∈B2

A = φ(B1) ∨L(P ) φ(B2).

The following result is however not as trivial, and requires L(P ) to be
atomistic as well.

Proposition 3.2.16. ∀B1, B2 ∈ L(AP ) : φ(B1 ∧L(AP ) B2) = φ(B1) ∧L(P )

φ(B2)

Proof. First, note that in an atomistic lattice L : x ∧L y =
∨L
a∈A

x∧Ly
a =∨L

a∈Ax∩Ay
a. So clearly, since both L(AP ) and L(P ) are atomistic, ∀B1, B2 ∈

L(AP ) : φ(B1∧L(AP )B2) = φ(
∨L(AP )
A∈B1∩B2

{A}) =
∨L(P )
A∈B1∩B2

A = (
∨L(P )
A∈B1

A)∧L(P )

(
∨L(P )
A∈B2

A) = φ(B1) ∧LP φ(B2).

3.3 Minimal Process representation

In this section, the characteristics of constructed poset of atoms will be anal-
ysed. A notion of process abstraction will be formalised, and it will be shown
that the partial order of atoms is the coarsest abstraction which preserves all
the concurrency of the process it is built on. This motivates the fact that this
representation depicts the information on how the process can be distributed.

3.3.1 Coarsest Process Abstraction

Suppose that the given poset is the specification of a concurrent process that
has to be distributed among a given set of active resources, or components.
Atomic closed sets represent ‘local’ subprocesses, they must be sequential. If
an element of an atom is assigned a given component, all the other elements
in the same atom will be required to belong to the same component. Suppose
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several atoms are assigned the same component, in this interpretation the sub-
process corresponding to the closure of their union must be entirely assigned
to the same component. Suppose the process is maximally distributed, in the
sense that two orthogonal atoms are always assigned different components.
Then the reduced poset provides a specification of the causal dependencies
among the subprocesses represented by the atoms, which can be interpreted
as the flow of information among the components of the system.

This motivates the idea that the reduced poset is an abstraction of the
process. In the literature there are many different notions of abstraction. Here
a formalisation is proposed, supported by the fact that the lines of the two
representations of the process are in bijection. In this sense, an abstraction
of a process will not only be an induced subposet, but it will be required
to represent, and distinguish all its sequential subprocesses. Note that the
following definition is not standard, it reflects the view of the author of this
work.

Definition 3.3.1 (Abstraction of a Poset). Let (P,≤), (P ′,≤′) be two posets,
and consider L, and L′, their respective sets of lines. (P ′,≤′) will be called
an abstraction of (P,≤) whenever (P ′,≤′) is an induced subposet of (P,≤),
L′ = {l ∩ P ′ | l ∈ L}, and is isomorphic to L.

With this definition, it can be shown, not only that the reduced poset is
an abstraction of the specified poset, but also the coarsest one. In order to do
so, however, the following results will consider only K-dense posets. First, it
is shown that every line of a K-dense poset intersects some atom.

Proposition 3.3.1. Let (P,≤) be a combinatorial K-dense poset, and l be
a line. Let C be an arbitrary cut in (AP ,≤AP

), namely a set of pairwise
orthogonal atoms, which is maximal. Then ∃a ∈ C : a ∩ l 6= ∅.

Proof. Assume there exists a choice function that associates to each a ∈ C,
an xa ∈ a. Then for each pair a, b ∈ C, it holds that xa coP xb. Hence,
the set c = {xa | a ∈ C} is a co-set. Suppose that c is not maximal, then
∃y ∈ P : (∀xa ∈ c : y coP xa), and so c ⊆ {y}′. In fact, out of Proposition
3.2.2, it must hold that (

⋃
a∈C a) ⊆ {y}′, but then {y}′′ ⊆ (

⋃
a∈C a)′. Since

{y}′′ ∈ L(P ), there must be some atom ay contained in it. This implies that
ay ⊆ C ′ which, in turn, imposes that ∀a ∈ c : ay ⊥L(P ) a, or equivalently
∀a ∈ c : ay coAP

a. This last statement contradicts maximality of C. Hence
c must be maximal, and so it is a cut. Out of K-density, l ∩ c 6= ∅, and so
finally ∃a ∈ C : l ∩ a 6= ∅.

It will be useful to consider the following technical result.
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Proposition 3.3.2. Let (P,≤) be a combinatorial and K-dense poset, let
x ∈ P , and l be a line of P such that x ∈ l. Then there is an atom a ∈ AP ,
such that a ⊆ l ∩ {x}′′.

Proof. Since L(P ) is orthomodular, then there must be a set Ax of pairwise
orthogonal atoms in A{x}′′ such that {x}′′ =

∨
a∈Ax

a. Ax is a co-set in AP , so
it can be extended to a cut C. Out of Proposition 3.3.1 there must be an a ∈ C
such that a∩ l 6= ∅. In fact, Proposition 3.2.6 shows that a ⊆ l. Now suppose
that a /∈ Ax, then since C is a cut, ∀b ∈ Ax : a ⊥AP

b, so ∀b ∈ Ax : b ≤L(P ) a
′,

and so must also their supremum {x}′′ =
∨
b∈Ax

b ≤L(P ) a
′. Hence, a ⊆ {x}′,

meaning that ∃y ∈ a : x coP y, but a ⊆ l implies x, y ∈ l, a contradiction.
Therefore it must be a ∈ Ax.

It will also be required to show that every two different lines are distin-
guished by a pair of atoms.

Proposition 3.3.3. Let (P,≤) be a combinatorial K-dense poset, and l1, l2 be
two distinct lines. Then ∃a1, a2 ∈ AP : a1∩l1 6= ∅ and a1∩l2 = ∅ and a2∩l1 =
∅ and a2 ∩ l2 6= ∅, and a1 ⊥L(P ) a2

Proof. l1 6= l2, so suppose, without loss of generality, that ∃x ∈ l1 \ l2. Clearly,
∃y ∈ l2 : y coP x, and obviously, it must satisfy that y /∈ l1. Now {y}′′ ⊥L(P )

{x}′′. Let Cy, and Cx be two maximal sets of pairwise orthogonal atoms,
contained respectively in {y}′′, and {x}′′. Then ∀ax ∈ Cx : ∀ay ∈ Cy :
ax ⊥L(P ) ay. Hence Cx ∪ Cy are a co-set in (AP ,≤AP

), and so there must be
a cut C containing it. From Proposition 3.3.1 there must be a1, a2 ∈ C, and
x1 ∈ a1, x2 ∈ a2 such that x1 ∈ l1 ∩ a1, and x2 ∈ l2 ∩ a2. Note that x1 ∈ l1
implies that x1 liP x. Since (P,≤) is K-dense, it is also N-dense, and so L(P )
is orthomodular. Cx is, among those contained in {x}′′, a maximal set of
pairwise orthogonal elements of L(P ). As a consequence, {x}′′ = (

⋃
a∈Cx

a)′′,
as stated in Remark 3.2.1. Suppose a1 ∈ C \ Cx, then it must hold that
∀a ∈ Cx : a1 ∈ C ′x, but then a1 ∈

⋂
a∈Cx

a′ = (
⋃
a∈Cx

a)′ = {x}′. So ∀z ∈
a1 : x coP z, and in particular x1 coP x, a c contradiction. Hence it must
be a1 ∈ Cx. A similar argument leads to a2 ∈ Cy. Hence, a1 ⊆ {x}′′, and
a2 ⊆ {y}′′. {x}′′ ⊥L(P ) {y}′′ implies that {x}′′ ∩ {y}′′ = ∅, and so a1 6= a2.
Furthermore, a2 ⊆ {y}′′ implies that {y}′ ⊆ a′2, and {x}′′ ⊥L(P ) {y}′′ implies
that {x}′′ ⊆ {y}′. Finally, a1 ⊆ {x}′′ ⊆ {y}′ ⊆ a′2, so a1 ⊥L(P ) a2.

These results show that the lattice of closed sets holds information about
the interactions between the sequential subprocesses. In some sense this infor-
mation is complementary to the ordering, which determines the inner structure
of these subprocesses.
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In particular, it can be shown that a K-dense poset, and its reduced poset
have the same set of lines.

Proposition 3.3.4. Let (P,≤) be a combinatorial and K-dense poset, and
consider (AP ,≤AP

). Let f : AP ↪→ P the embedding as in Equation (3.1),
and call P ′ = f(AP ) and consider L, and L′ the respective sets of lines of P ,
and AP . Then

π : L → L′

l 7→ f−1(l ∩ P ′)

is well defined and bijective.

Proof. First, note that as since f is an embedding, then f−1�P ′ is an isomor-
phism. From Proposition 3.3.1, every line l must intersect some atom, and
out of Proposition 3.2.6 that atom must be contained in l. Then clearly a ⊆ l
implies that f(a) ∈ l ∩ P ′, so that every line of P intersects P ′.

Note that, as an order embedding, f reflects the order. Then ∀l ∈ L, l∩P ′
is a li-set in P , and so f−1(l∩P ′) is a li-set in AP . Suppose it is not maximal,
then ∃a ∈ (AP \ f−1(l ∩ P ′)) : ∀x ∈ f−1(l ∩ P ′) : a liP x. Since, f also
preserves the order, it must be that f(a) liP f(x). But since l is maximal,
and f(a) /∈ l ∩ P , there must be an element y ∈ l : y coP f(a), in particular,
as a subset of P , {y}′′ ⊆ a′. Now out of Proposition 3.3.2 there is an atom b
such that b ⊆ {y}′′∩ l. Then b ∈ f−1(l∩P ′), and b ≤L(P ) a

′, which contradicts
that ∀x ∈ f−1(l ∩ P ′) : a liP x. Hence f−1(l ∩ P ′) is a line of (AP ,≤AP

), and
π maps lines to lines.

To see that π is surjective, note that f preserves the order, so for every line
lAP

in (AP ,≤AP
), f(lAP

) is a li-set of P . Any line lP that contains f(lAP
),

will provide π(lP ) = lAP
, and so π is surjective.

Finally to prove it is injective, consider two distinct lines l1, l2 ∈ L. Then
Proposition 3.3.3, provides two atoms a1, a2 ∈ AP : a1 ∩ l1 6= ∅ and a1 ∩ l2 =
∅ and a2 ∩ l1 = ∅ and a2 ∩ l2 6= ∅, and a1 ⊥L(P ) a2. Hence, as elements of AP ,
a1 coAP

a2. Then Proposition 3.2.6, a1 ⊆ l1, and a2 ⊆ l2, and so f(a1) ∈
l1 ∩ P ′, and f(a2) ∈ l2 ∩ P ′. Then a1 = f−1(f(a1)) ⊆ f−1(l1 ∩ P ′) = π(l1),
and a2 = f−1(f(a2)) ⊆ f−1(l2 ∩ P ′) = π(l2). From a1 coAP

a2 it follows that
a1 /∈ π(l2), and a2 /∈ π(l1), which concludes the proof.

This last result shows that, according to the provided definition, the re-
duced poset is in fact an abstraction.

At this point, it can be stated that (AP ,≤AP
) is the smallest poset em-

beddable into (P,≤P ) such that L(P ) ' L(AP ), provided L(P ) is atomistic.
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This notion of minimality is formalised as follows: Let (P ′,≤P ′) be an
arbitrary poset. If (P ′,≤P ′) can be embedded into (P,≤P ), and L(P ) '
L(P ′), then (AP ,≤AP

) can be embedded into (P ′,≤P ′). The following result
can be found in [1].

Theorem 3.3.1. Let (P,≤P ) and (P ′,≤P ′) be two posets such that L(P ) and
L(P ′) are atomistic and isomorphic, and there exists an order embedding g :
(P ′,≤P ′) ↪→ (P,≤P ). Let AP = A(P,≤P ), then (AP ,≤AP

) can be embedded
into (P ′,≤P ′).

Proof. Since both L(P ) and L(P ′) are atomistic, from Proposition 3.2.12 it
holds that L(AP ) ' L(P ) ' L(P ′) ' L(AP ′) = L(A(P ′,≤′)). Now out of
Propositions 3.2.8 and 3.2.9, and since g is an order embedding, there must
be an isomorphism φ : A(P,≤) → A(P ′,≤′). Consider a choice function
f : A(P ′,≤′) → (P ′,≤′) as defined in (3.1). Then clearly φ ◦ f : A(P,≤) →
(P ′,≤′) is an order embedding.

As a consequence of the last two results, it can be said that whenever a
poset is embeddable in another, and they have isomorphic closed set lattices,
then the first one is an abstraction of the other. Indeed, the last theorem
shows that they must have, up to isomorphism, the same reduced poset, and
both their sets of lines are in bijection with the set of lines of the reduced one.
Then their respective sets of lines must be in bijection as well.

3.3.2 Dedekind-McNeil Completion

The results of this section can be found in [1].

A poset can be reduced to a minimal form that preserves the lattice ob-
tained from the closure induced by coP . This minimality has some implica-
tions in terms of local structure, which shall be exploited to offer an interpre-
tation of the presented reduction.

Combinatorialness, and N-density are not sufficient for a partial order to
be a causal net. Under these conditions one could still be unable to find a
suitable bipartition of the elements.

However, the atoms of a poset, as defined in this work, structurally behave
like conditions in the following sense. Given a combinatorial and N-dense poset
(P,≤P ), the poset (AP ,≤AP

) resulting from reduction can be completed with
events, so as to obtain a causal net.

First note that, whenever ≤P is combinatorial, so must be ≤AP
. On the

other hand, reduction also preserves N-density.
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Proposition 3.3.5. Let (P,≤P ) be combinatorial, and N-dense. Then the
poset (AP ,≤AP

) is N-dense.

Proof. The proof is based on a result of [10] stating that if (P,≤P ) is N-dense
then L(P ) is orthomodular, and therefore atomistic [39]. Then by Propositions
3.2.12 and 3.2.14, L(AP ) ' L(P ) so that L(AP ) must also be orthomodular.
This in turn implies, as shown in [12], that if (AP ,≤AP

) is combinatorial, then
it must be N-dense.

It will henceforth be assumed that both (P,≤p), and (AP ,≤AP
) are com-

binatorial and N-dense.

In order to obtain the elements that will be interpretable as events, a
Dedekind-MacNeille completion is performed on
(AP ,≤AP

) (see for example [27, Ch7§36]). Some notation is required:

Definition 3.3.2 (Dedekind Mac-Neille Completion). Let (P,≤P ) be a poset,
consider, for each S ⊆ P :
The up-set of S: ↑∩ S := {x ∈ P | ∀s ∈ S : s ≤P x}
The down-set of S: ↓∩ S := {x ∈ P | ∀s ∈ S : x ≤P s}
Then (↓∩, ↑∩) forms a Galois connection.
The Dedekind-MacNeille completion of (P,≤P ) is DM(P ) := {S ⊆ P |
↓∩(↑∩ S) = S} with the order induced by inclusion.

The following statements are known results, the reader is referred to [27,
Ch7§36-44] for the full proofs. First note that (↑∩, ↓∩) is a Galois connec-
tion, hence ↓∩(↑∩ ·) is a closure operator. DM(P ) is a complete lattice, thus
justifying the name. It contains the intersection of any of its elements. The
empty set and P are trivially in DM(P ), and it is common practice not
to include them in DM(P ), as it will be the case in this work. On the
other hand, ↓∩(↑∩ ·) constitutes a closure operator, so that ∀S ⊆ P : S ⊆
↓∩(↑∩ S). On top of that, it holds that ∀x ∈ P : ↓∩(↑∩(↓∩{x})) = ↓∩{x}
hence ∀x ∈ P : ∃! ↓∩{x} ∈ DM(P ). This way, (P,≤) can be embedded
into (DM(P ),⊆) so that order is both preserved and reflected. Naturally,
coDM(P ):= {(s1, s2) ∈ DM(P ) | s1 6⊆ s2 and s2 6⊆ s1}.

In what follows, ≤DM(P ) will denote the order induced by inclusion on
DM(P ). Furthermore, for any combinatorial poset (P,≤P ), ≺P will denote
the immediate successor relation, as in Definition 3.1.4 (see p.57). In general,
x ≺P y iff x ≤P y and x 6= y and ∀z ∈ P : x ≤P z ≤P y → (z = x or z = y).
When P is combinatorial, then ≤P is the reflexive and transitive closure of
≺P .
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P3

AP3 DM(AP3)

Figure 3.8: From left to right: poset P3 of previous examples seen as a causal
net, its atomic reduction, and its completion.

It is worth noting that, in the non-trivial case, (AP ,≤AP
) has no maximal,

(nor minimal) element. Indeed, if there is an x ∈ AP such that ∀a ∈ AP :
x ≤AP

a ( a ≤AP
x ) then clearly x′ = ∅, so x = AP , and (AP ,≤AP

) =
({AP }, ∅).

In the following, it will be shown that DM(AP ) is a causal net. To this
aim, some notation will ease the reading. Let:

1. BN = {↓∩{a} | a ∈ AP } be the set of principal ideals, those elements of
DM(AP ) that can be identified with the ones of AP ;

2. EN = DM(AP ) \ {↓∩{a} | a ∈ AP } = DM(AP ) \ BN be the elements
introduced by the completion; and

3. N = (BN , EN ,≺DM(AP ))

The following two propositions prove, on one hand that the order on DM(AP )
is nowhere dense (i.e. ≤DM(AP )= (≺DM(AP ))

?); and on the other hand, that
it is bipartite, hence (DM(AP ),≺DM(AP )) ' N = (BN , EN ,≺DM(AP )) is an
occurrence net.

Proposition 3.3.6. Let a1, a2 ∈ AP : a1 ≺AP
a2. Then ∃!s ∈ DM(AP ) :

↓∩{a1} ( s ( ↓∩{a2}.

Proof. By Proposition 3.2.8, it holds that ∃a3, a4 ∈ AP such that a3 coAP
a1,

a3 6coAP
a2, a4 coAP

a2, and a4 6coAP
a1. Since a1 ≤AP

a2, it must be
a3 ≤AP

a2, and a1 ≤AP
a4. a3 coAP

a4 contradicts N-density of AP , and
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a4 ≤AP
a3 would imply a4 ≤AP

a2, so it must be that a3 ≤AP
a4. Then

{a2, a4} ⊆ ↑∩{a1, a3}, and since a4 coAP
a2, {a2, a4} ∩ ↓∩(↑∩{a1, a3}) = ∅.

Clearly neither ↓∩{a1} ⊆ ↓∩{a3} nor ↓∩{a3} ⊆ ↓∩{a1}, so s = ↓∩(↑∩{a1, a3})
satisfies ↓∩{a3}, ↓∩{a1} ( s ( ↓∩{a2}, ↓∩{a4}.

Now let s1, s2 ∈ DM(AP ) : ↓∩{a1} ( s1 ⊆ s2 ( ↓∩{a2}, and suppose
∃a5 ∈ s2 \s1 ⊆ ↓∩{a2}. Clearly, a5 /∈ ↓∩{a1}, and a1 ≤AP

a5 would contradict
a1 ≺AP

a2. Consider any a6 ∈ ↑∩ s1\↑∩{a5} ⊆ ↑∩{a1}. a6 ≤AP
a5 contradicts

a1 coAP
a5. Then again, a1 ≺AP

a2 implies that a6 6≤AP
a2, and a2 ≤AP

a6

would mean that a5 6coAP
a6. But then a1, a2, a5, a6 form a configuration

which contradicts N-density of AP . Then ↑∩ s1 \ ↑∩{a5} = ∅. So ↑∩ s1 ⊆
↑∩{a5} and then clearly a5 ∈ ↓∩{a5} ⊆ ↓∩ s1 = s1 which is absurd. Hence,
s1 = s2.

Proposition 3.3.7. Let S ∈ EN , and ai, af ∈ AP be such that ↓∩{ai} ⊆ S ⊆
↓∩{af}. Then ∃a, a′ ∈ AP such that a ≺AP

a′, and ↓∩{ai} ⊆ ↓∩{a} ⊆ S ⊆
↓∩{a′} ⊆ ↓∩{af}

Proof. Since AP is combinatorial, and ai ≤AP
af , there must exist a finite

sequence {aj}nj=1 such that ai = a1, af = an, and ∀1 ≤ k < n : ak ≺AP
ak+1.

Note that af ∈ S would mean that S = ↓∩{af} ∈ {↓∩{a} | a ∈ AP } = BN
which is absurd. On the other hand, ak0 ∈ S implies that ∀k ≤ k0 : ak ∈ S. So
{aj}nj=1∩S has a maximal element akm . Now suppose ∃as ∈ ↑∩ S\↑∩{am+1} ⊆
↑∩{am}. Then it must be as coAP

am+1. Now ∀a′s ∈ ↓∩{am+1}, either a′s ≤AP

am or a′s coAP
am. In the latter case, as 6≤AP

a′s, and a′s coAP
am would

contradict N-density of AP . As a consequence, ∀a′s ∈ ↓∩{am+1} : a′s ≤AP
as.

Therefore ↓∩ ↑∩ S = S ⊆ ↓∩{am+1}, and so ↓∩{am} ⊆ S ⊆ ↓∩{am+1}.

These results imply that DM(AP ) is combinatorial, and that ∀a1, a2 ∈
AP : a1 6≺DM(AP ) a2. Furthermore, suppose s1, s2 ∈ EN : s1 ≺DM(AP ) s2.
Then ∃a1 ∈ s2 \ s1 : s1 ( ↓∩{a1} ( s2 which is absurd. And so NAP

=
(BN , EN ,≺DM(AP )) is a Petri net, which is certainly acyclic. Furthermore,
for s ∈ EN either s = ∅, s = AP , or ∃a1, a2 ∈ AP such that ↓∩{a1} ≺DM(AP )

s ≺DM(AP ) ↓∩{a2} .

It is finally proven that N is a causal net. This is achieved by showing that
it is conflict-free, in other words, that all forks and joins happen at elements
of EN . Proposition 3.3.8 proves that no forks can happen at BN , whereas
Proposition 3.3.9 shows the respective result for joins.

Proposition 3.3.8. Let a ∈ AP , and s1, s2 ∈ EN such that ↓∩{a} ≺DM(AP )

s1, and ↓∩{a} ≺DM(AP ) s2. Then s1 = s2
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Proof. Clearly s2 ⊆ s1 would contradict a ≺DM(AP ) s1. In particular s1 6=
AP and s2 6= ∅ and by analogy s2 6= AP and s1 6= ∅. So there must be
a1, a2 ∈ AP : s1 ≺DM(AP ) ↓∩{a1} and s2 ≺DM(AP ) ↓∩{a2}. Then a ≺AP

a1

and a ≺AP
a2. Obviously a1 coAP

a2.

Suppose s1 6= s2 and, without loss of generality, let a3 ∈ s1 \ s2 ⊆ ↓∩{a1}.
Then a ≤AP

a3 implies that a 6≺AP
a1, and ↓∩{a} ⊆ s2 implies that a3 6≤AP

a.
So a co≤AP

a3. Now a2 6≤AP
a3 since a1 coAP

a2. Now suppose a3 ≤AP
a2.

Then a2 ∈ ↑∩({a3} ∪ s2), and so ↓∩{a} ( s2 ( ↓∩(↑∩({a3} ∪ s2)) ( ↓∩{a2},
thus contradicting Proposition 3.3.6. Therefore, the only possibility is that
a3 coAP

a2, and so a, a1, a2, a3 form a configuration which contradicts N-
density of AP . So it must be s1 = s2

Proposition 3.3.9. Let a ∈ AP , and s1, s2 ∈ EN such that s1 ≺DM(AP )

↓∩{a}, and s2 ≺DM(AP ) ↓∩{a}. Then s1 = s2

Proof. Just like in the previous proof, ∅ 6= s1 6= AP and ∅ 6= s1 6= AP , so
there must be a1, a2 ∈ AP : ↓∩{a1} ≺DM(AP ) s1 and ↓∩{a2} ≺DM(AP ) s2,
such that a1 ≺AP

a and a2 ≺AP
a. Note that a1 coAP

a2. Let a3 ∈ ↑∩{a1}.
Then either a ≤AP

a3 or a coAP
a3. Such an element must exist, since

a1, a ∈ AP , and by Proposition 3.2.8, there must be an a3 ∈ AP such that
a3 coAP

a, and a1 liAP
a3. Then clearly a1 ≤AP

a3. So a3 coAP
a2 would

contradict N-density of AP . Since a3 coAP
a, it holds that a2 ≤AP

a3. This
means ↑∩{a} ⊆ ↑∩{a1} ⊆ ↑∩{a2}. Analogously, ↑∩{a} ⊆ ↑∩{a2} ⊆ ↑∩{a1}.
Therefore, ↓∩{a1} ∪ ↓∩{a2} ⊆ ↓∩ ↑∩{a1, a2} ⊆ ↓∩{a}. Finally, by applying
Proposition 3.3.6 it must be that s1 = ↓∩ ↑∩{a1, a2} = s2.

So NAP
= (BN , EN ,≺DM(AP )) is a causal net.

These last results furthermore imply that L(DM(AP )) ' L(AP ).

Proposition 3.3.10. L(DM(AP )) ' L(AP )

Proof. Let s ∈ EN ,and a ∈ BN such that a ≺DM(AP ) s. Suppose ∃s′ coDM(AP )

s, then clearly s′ 6≤DM(AP ) a, and a ≤DM(AP ) s
′ would contradict Proposi-

tion 3.3.8. So s′ coDM(AP ) a, and then it must hold that ∀s ∈ EN : ∃a ∈
BN : s′ ⊆ a′, and so {a}′′ ⊆ {s}′′. Therefore, by Proposition 3.2.4, and since
∀a1, a2 ∈ AP : ↓∩{a1} ≤DM(AP ) ↓∩{a2} ⇔ a1 ≤AP

a2, ADM(AP ) ' AP .
Note that by Proposition 3.2.2, the ⊥ relation must be preserved. But this
means that, whenever AP is N-dense and therefore L(AP ) is atomistic, then
by Proposition 3.2.12, L(DM(AP )) ' L(AP ).
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3.3.3 Maximal Distribution, and Communication Protocol

When seen as subsets of P , the atoms of its lattice L(P ) are total orders. This
means that the elements of an atom are totally ordered, and must occur in
that particular order. As a consequence, when distributing the process, the
elements of an atom require a consistent measurement of time, which can be
achieved by allocating them to one single component of the system. Since they
are totally ordered, the elements of an atom have a single minimal element, and
a singe maximal element. These elements in turn, are the only ones in covering
relation with the rest of the process. Hence, when interpreting an atom as a
subprocess, it can only synchronise with the rest of the process through its
first, and last element. In the reduced poset, these totally ordered sequences
are collapsed to one single element, which gathers the interactions with the
rest of the system of their first, and last elements. Thus, the reduced poset
represents all the interactions between the fully sequential parts of the system,
and this is the reason why the two lattices are isomorphic. Furthermore, since
the two lattices are isomorphic, the poset composed of atomic closed sets has
the same set of lines as the poset it abstracts.

The fact that the lattice of closed sets gathers the information regarding
the interactions among subprocesses was already justified in [10], by showing
that the closure operator here presented is equivalent to another closure op-
erator, based on these interactions. This closure operator is defined on causal
nets. It will now be briefly presented.

Definition 3.3.3 (Causally Closed Set). Let N ′ = (B′, E′,F ′) be an interval-
finite causal net of finite degree. A subset C ⊂ B′ ∪ E′ is causally closed,
when it satisfies the following axioms.

1. ∀e ∈ E′ : •e ⊆ C → e ∈ C

2. ∀e ∈ E′ : e• ⊆ C → e ∈ C

3. ∀e ∈ E′ : e ∈ C → •e ∪ e• ⊆ C

4. ∀x, y ∈ C : x liN ′ y → [x, y] ⊆ C

It was proven in [10] that if the net is K-dense, then this closure operator
coincides with the one based on concurrency studied in this work.

Intuitively, a causally closed set can be obtained by interpreting the causal
net as a condition/event system. Suppose a set is composed of pairwise con-
current conditions. Its causal closure can be obtained as follows. Consider the
partial marking composed of these conditions. Note that this marking may
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not be a cut. Then the collection of reachable markings with the backward
and forward firing rule provides all the conditions in the closure. The fired
events are those included in the closure.

This construction admits the following interpretation. When observing a
partial state of the process, as a subset of conditions. Its causal closure is the
maximal subprocess that can be inferred from the observed information. In
order to acquire knowledge about the process beyond this subprocess requires
additional observations. In particular, in order to enlarge the obtained sub-
process, one must add a condition to the initial partial state. This condition
is concurrent to all the already known subprocess.

This supports the idea that the observation of a particular subprocess
provides no information on its polar. Elements of the polar always provide
additional information. This is expressed by the orthomodular law. In this
sense x ≤ y → y = x ∨ (y ∧ x′) is to be read as ‘If a subprocess is larger
than another, then all the observations required to retrieve the larger lie in
the polar of the smaller’.

Additionally, it was shown in [10] that under the same hypothesis, every
line crosses either a closed set, or its polar, but never both. This again,
supports the view, that information never flows between a subprocess and its
polar.

Atoms correspond to the subprocesses which can be reconstructed with
a minimal observation. And in fact, they can be interpreted, in the reduced
poset, as the observation in itself. In the reduced poset, observing a single
element provides no information about the rest of the process. This is to be
interpreted as the fact, that all the interactions in the process are depicted in
the reduced partial order.





Chapter 4

System Distributability

In analysing how processes can be distributed, the causal relations between
the occurrences of actions are exploited. However, the partial ordering of
these plays a crucial role, and the technique presented in the last chapter do
not transfer trivially to systems. Indeed, as representations of the computing
devices that run processes, the causal dependencies between the actions are
represented in a more complex fashion. The fact that system models depict
the actions themselves rather than their occurrences, weakens the partial or-
der relation binding them. The transitive closure of the direct dependencies
would lead to a relation of reachability rather than a partial order. However,
the closure operator defined on the last chapter relies on the lack of causal
dependences on the process model. This is interpreted as a lack of information
transfer between subprocesses, so that these can not observe the execution of
remote actions, or for instance their effect on the corresponding local states.

An analogous strategy for studying how to distribute a system consists
in relying on the notion of observable property, thus taking advantage of the
principle of locality. Indeed, elementary models allow for identification of
these properties with the local states of a system.

The elementary framework provides a richly developed theory for the study
of the relation of these local states, and their role in composing global states
and behaviour of the systems. In Chapter 2, the standard derivation of the
behaviour of a net system as a labelled transition system was presented. This
transition system is called the case graph of the net. By analysing this case
graph, one can deduce which subsets of states are the extension of some ob-
servable property, and hence, of some local state. Such local states might not
be explicitly represented in the net system. However, they would be redun-
dant, adding them to the system wouldn’t affect its behaviour. In this way,

83
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Petri Net Synthesis provides means to perform a completion of the net sys-
tem, in which all implicit places are represented. The original net system, and
its completion have then the same behaviour. The sequential components of
the system can be isolated with structural analysis on the completion. This
is commonly called a state machine decomposition. An elementary system
need not be state machine decomposable, however considering its completion
ensures that all the required local sates are explicit in the model, in order
to achieve this decomposition. Furthermore, the complete collection of local
states can be endowed with a rich structure. Such a structure admits a logical
interpretation when local states are considered as the observable properties
of the system. Indeed, when the extensions of such properties are ordered by
set inclusion, by interpreting set complement as logical negation, the resulting
partial order is orthomodular. This algebraic structure gathers the informa-
tion on how the system can be distributed, filtering out behavioural aspects
such as the relation between actions belonging to the same component. This
orthomodular partial order can be understood as a specification of the system
architecture available. Indeed, the specification of the properties that need to
be observable imposes restrictions on how actions can be distributed. For an
observer to determine if a given property holds, the set of global states that
compose its extension must be expressible in terms of the local states of one
single sequential component.

The orthomodular partial order of the observable properties of a system is
rich, faithfully representing the relations between local and global states. It is
also regular, it encodes the fact that collections of local states belong to the
same component. Under these conditions, an orthomodular structure carries
all the information on how local states can be distributed spatially, and how
global state compose from them. Not only can it express the set of available
global states of a given distribution of components, but it also represents the
interactions available for communication between localities. A set of available
actions, or events, can be derived from this specification, together with the
information regarding which sequential components each of them is involved
in. Channels of communication are distinguished from strictly local states,
and local actions can be distinguished from communication attempts. The
state of the art provides a formalisation of all available behaviour, given an
orthomodular poset specification. An elementary transition system can be
constructed which can run any possible process on the specified architecture,
it is thus called saturated. Indeed, it represents all possible global states and
actions one could feature, in order to make sure that the desired properties
can be observed. The saturated transition system contains, as subsystems,
all the elementary transition systems for which the specified properties are



85

indeed observable.

The saturated transition system is elementary, as such it is known to have
an orthomodular poset as structure for its observable properties. This poset,
however, need not coincide with the specified one, it is only known to contain
it as substructure. It is thus ensured that every specified property is indeed
observable in it, but it may present more synchronisations than allowed by the
specification. The fact that all specified properties are indeed observable is an
interesting feature, but one would further like to make sure that local states
can be distributed as specified by this structure. It has been conjectured that
this is the case whenever the orthomodular partial order arises as the set of
regions of an elementary transition system. This matter will be addressed in
Chapter 5. In the present chapter, however, a saturated transition system is
understood to be related to two different orthomular partial orders. One cor-
responds to the specification of the provided architecture, whereas the other
corresponds to the ordered set of its regions. The first one embeds into the
other, meaning that sequential components encoded in the first one will be
present in the second. These, however, could have been merged, or synchro-
nised. On the other hand, all concurrency depicted by the second, is certain
to arise from the first. In this way, the two orthomodular posets behave like
boundaries for the behaviour of the saturated transition system. All synchro-
nisations specified by the first one will be present in the transition system,
but its concurrent behaviour will be specified by the second.

Hence, in this chapter the way orthomodular partial orders express con-
currency is studied. Events are the key feature in this sense, capturing the
focus of the last section. It is shown that some events are sufficient to express
the belonging of local states to different sequential components. Thus, one
can obtain alternative transition systems from a given orthomodular poset
specification, such that the properties observable on them coincide with those
observable on the saturated version. Intuitively, the behaviour of these sys-
tems are bounded by the same orthomodular posets as the saturated transition
system. The considered events capture all the information regarding concur-
rency of the system, and are so sufficient to distribute it efficiently. These
events inherit features from the orthomodular poset they are built upon, and
can hence be endowed with a structure that allows to study their interactions,
and their involvement in the distributability of the systems they represent the
actions of.
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4.1 Observable Properties of Elementary Systems

The aim of this section is to formalise the notion of observable property of a
system. When modelled on labelled transition systems, properties are iden-
tified with their extensions, the states of the system at which they hold. A
property is considered observable when its truth value can be determined
from a single location. This notion is formalised using the theory of Petri net
synthesis.

4.1.1 Net Synthesis

In the seminal series of papers by Ehrenfeucht and Rozenberg regarding 2-
structures [30, 31], the authors characterised the class of labelled transition
systems which are the case graph of some elementary net system. They used
a slightly different, although equivalent, formalism than the one presented in
this work.

2-structures are directed graphs ([4]) equipped with an equivalence rela-
tion defined on the set of arcs. In relation to labelled transition systems, their
vertices are to be interpreted as states of the system, and the arcs as the tran-
sitions. The equivalence relation then encodes the labelling of the transitions.
Two arcs are considered equivalent when they carry the same label. This cor-
respondence transfers their characterisation results to the frame of elementary
systems.

The problem of characterising elementary transition system goes together
with the problem of, given a transition system, constructing the net system
that will have a case graph isomorphic to it. The solution to this problem was
already introduced in Section 2.2.2. In the present section, the construction
is presented in more detail, with the scope of motivating the interpretation of
regions as the extensions of the observable properties of the system.

Definition 4.1.1 (Saturated Net System). Let A = (Q,E, T, q0) be an ini-
tialised labelled transition system, as in Definition 2.2.7. Let R(A) be its set
of regions. Define F := {(r, e) ∈ R(A) × E | e ∈ r•} ∪ {(e, r) ∈ E × R(A) |
e ∈ •r}, and m0 := {r ∈ R(A) | q0 ∈ r}.

The saturated net system associated with A is the Petri net system N =
(R(A), E,F ,m0)

The following theorem gathers the results of elementary net synthesis.

Theorem 4.1.1. If A is an elementary transition system, then N , as in
Definition 4.1.1, is an elementary net system, and CG(N) ' A.
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∅

b1 b2 b3 b4 b5

b′1 b′2 b′3 b′4 b′5

Q

Figure 4.1: Hasse diagram representation of the regional poset corresponding
to the transition system of Figures 2.7 (p.36) and 2.10 (p.47).

b1

b2

b4

b5

b3

∅
e1 e2

e3

e4

Q

b′3

b′1

b′2

b′4

b′5

Figure 4.2: Saturated net system obtained by synthesis from the transition
system of Figure 2.7 (p.36). The conditions of the net correspond to the
regions of Figure 4.1.
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Example 4.1.1. Let A = (Q,E, T, q1) be the elementary transition of Figure
2.7 system such that Q = {q1, . . . , q5}, and E = {e1, . . . , e4}, with

T = {(q1, e1, q3), (q2, e1, q4),

(q1, e2, q2), (q3, e2, q4),

(q4, e3, q5), (q5, e4, q1)}

The set of regions is composed of ∅, b1 = {q1, q2}, b2 = {q3, q4}, b3 = {q5},
b4 = {q2, q4}, b5 = {q1, q3}, and their set complements. When these sets
are ordered by inclusion, one obtains the logic depicted in Figure 4.1. The
incidence with respect to the events of E is as follows.

•e1 = {b1, b′2}, e•1 = {b2, b′1}
•e2 = {b4, b′5}, e•2 = {b5, b′4}

•e3 = {b2, b5, b′3}, e•3 = {b3, b′2, b′5}
•e4 = {b3, b′1, b′4}, e•4 = {b1, b4, b3′}

In this way, one can synthesis the saturated net system of Figure 4.2. The
initial marking is given by all the regions which contain q1.

Note that, in the setting of Definition 4.1.1, a marking mq contains a
condition r, whenever the corresponding state q is contained in its extension.

By dropping the initial state, one can consider the condition/event case.

Theorem 4.1.2. Let A = (Q,E, T ) be a labelled transition system, Let R(A)
be its set of regions. Define F := {(r, e) ∈ R(A) × E | e ∈ r•} ∪ {(e, r) ∈
E ×R(A) | e ∈ •r}. To every q ∈ Q, associate the set of regions that contain
it mq := {r ∈ R(A) | q ∈ r}, and let M := {mq ⊆ R(A) | q ∈ Q}. If A is a
connected condition/event transition system, then N = (R(A), E,F ,M) is a
condition/event net system, and and CG(N) ' A.

Given a condition/event, or elementary transition system, its saturated net
system presents all conditions consistent with the specified behaviour. In the
saturated net system, the set of conditions is identified with the orthomdular
poset of regions, providing interesting interpretations to their interactions.

Proposition 4.1.1. Let A = (Q,E, T ) be a condition/event transition sys-
tem, and N = (R(A), E,F ,M) its saturated net system, as in Definition
4.1.1. Consider a collection R of pairwise disjoint regions. Then their union∨
R is a region, and

•(
∨
R) ⊆ (

⋃
r∈R

•r) and (
∨
R)• ⊆ (

⋃
r∈R

r•)
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∨
R is called an abstraction of R.

Proof. From the definition of the flow relation in Definition 4.1.1, an element
of •(

∨
R) must be an event e such that ∀(q1, e, q2) ∈ T : q1 /∈ (

∨
R) and q2 ∈

(
∨
R). Then, since (

∨
R) =

⋃
r∈R r, there must be a region r ∈ R such that

q2 ∈ r. Clearly q1 /∈ r, so it must be e ∈ •r. The result is analogous for
(
∨
R)•.

The abstraction of a collection of conditions is marked iff one of them is.
In the saturated net system, any collection of mutually exclusive conditions
has an abstraction.

This notion of abstraction can be defined in net systems in general, however
an arbitrary net system does not need to present an abstraction for each
mutually exclusive collection. The reason for the results of Theorems 4.1.1,and
4.1.2 can be explained in terms of separation axioms. Given an arbitrary
initialised transition system, the separation axioms induce a set of problems
that can be solved by sets of regions.

Definition 4.1.2 (Separation Problems, Separating Regions).
Let A = (Q,E, T, q0) be an initialised transition system. The elementary
separation axioms of Definition 2.2.6 (see p. 37) define a set of problems.

The state-state separation problems are based on the first axiom. One
problem is defined for every pair (q1, q2) ∈ Q×Q such that q1 6= q2. A region
r ∈ R(A) is said to solve the problem whenever (q1 ∈ r, and q2 /∈ r), or
(q2 ∈ r, and q1 /∈ r).

A state-event separation problem is defined for each pair (q, e) ∈ Q × E
such that q does not enable e. A region r ∈ R(A) is said to solve the problem
when r ∈ •e and q /∈ r.

If the regions in R(A) solve all these separation problems, then the elemen-
tary separation axioms are verified. Hence, if every state is reachable from q0,
the transition system is elementary.

When dropping the initial state, A = (Q,E, T ), one can consider the state-
state, and state-event separation problems, together with the set of problems
corresponding to the third axiom in Definition 2.2.6.

An event-state separation problem is given for each pair (e, q) ∈ E × Q
such that q does not backward-enable e. Then a region r ∈ R(A) is said to
solve the problem when r ∈ e•, and q /∈ r.

If the set of regions R(A) solves all these separation problems, then the
transition system is condition/event.
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Furthermore, a collection of regions R ∈ R(A) is called separating, or said
to separate the transition system, when it gathers enough regions to solve all
the separation problems.

A collection of regions which solve all separation problems is sufficient to
reproduce the behaviour of the system.

The following result can be found in [29]. It is here stated for condi-
tion/event systems, the result for the elementary case is analogous

Theorem 4.1.3. Let A = (Q,E, T ) be a labelled transition system. Let R(A)
be its set of regions, and let B ⊆ R(A) be a separating collection of regions.

Then B exists iff A is a condition/event transition system.

To every q ∈ Q, associate the set of regions that contain it mq := {r ∈
R(A) | q ∈ r}, and let M := {mq ⊆ R(A) | q ∈ Q}.
Define F := {(r, e) ∈ B × E | e ∈ r•} ∪ {(e, r) ∈ E × B | e ∈ •r}. If A is
a connected condition/event transition system, then N = (B,E,F ,M) is a
condition/event net system, and CG(N) ' A.

With this result, Theorems 4.1.1 and 4.1.2 can be restated as “The collec-
tion of all regions of an elementary (condition-event) transition system sepa-
rates it.”

The idea developed in this section is that the saturated net system de-
picts all the local states which are consistent with the specified behaviour.
Indeed, the set of regions contains the extension of all conditions which admit
a consistent flow relation with the events. According to Petri’s extensionality
principle, there can be only one condition with the flow relation described by
each region. Hence, any other condition would certainly affect the behaviour
of the system.

Note that, when a collection of regions B separates a system A, then any
collection B′ such that B ⊆ B′ is also separating. Given a separating collection
of regions B, consider the net system built from them, as in Theorem 4.1.3.
Then adding the condition associated to any region which is not present in
the collection will not alter the behaviour of the system. Such a condition is
said to be redundant with respect to B.

The saturated net system presents one solution to the synthesis problem.
This is sufficient to characterise the class of elementary transition, or condi-
tion/event systems. However, given a transition system A, other net systems
than the saturated one might have a case graph isomorphic to A.

Nevertheless, it is worth noting that another canonical representative of
this class can be constructed. The idea behind this alternative construction
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e1 e2
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Figure 4.3: Net system obtained as in Example 4.1.1 when considering only the
minimal regions b1, b2, b3, b4, b5. The case graph of this system is represented
in Figures 2.7 (p.36), and 2.10 (p.47).

is that a particular collection of regions is sufficient to satisfy the separation
axioms.

Definition 4.1.3 (Minimal Region). Let A be a labelled transition system,
and let R(A) be its set of regions. A region r ∈ R(A) is called minimal
whenever it does not contain any non-trivial region as a proper subset,

∀r′ ∈ R(A) : (r′ ⊆ r)→ (r = r′)

The set of minimal regions of A will be denoted Rmin(A).

The following result was proven in [5]. It is here presented for the condi-
tion/event case, but it transfers naturally to the elementary one.

Theorem 4.1.4 (Minimal Net System). Let A = (Q,E, T ) be a condition/event
transition system, Let R(A) be its set of regions, and Rmin(A) as in Definition
4.1.3, then Rmin(A) separates A.

Note that the term ‘minimal net system’ is motivated only by the fact that
it is built from the minimal regions of the transition system. It has, in general,
not been shown to be minimal with respect to a comparison relation on net
systems. However, it supports the view that the saturated net system, and
the minimal net system are two canonical solutions to the synthesis problem.
The following result is a corollary of Theorem 4.1.4



92 CHAPTER 4. SYSTEM DISTRIBUTABILITY

Corollary 4.1.1. Let A = (Q,E, T ) be a labelled transition system, Let R(A)
be its set of regions, and Rmin(A) as in Definition 4.1.3. Let B be any set of
regions which contains the minimal ones. Rmin(A) ⊆ B ⊆ R(A). Define
F := {(r, e) ∈ B ×E | e ∈ r•} ∪ {(e, r) ∈ E ×B | e ∈ •r}. If A is a connected
condition/event transition system, then N = (B,E,F , Q) is a condition/event
net system, and and CG(N) ' A.

4.1.2 Properties as Monitors

This section presents an application of the results of net synthesis, to support
the proposed interpretation of observable properties of the system, in terms
of region theory.

The setting will in this case assume that a Petri net system (either ele-
mentary or condition/event) is provided, and analyse the modifications that
can be applied to it without altering its behaviour. In particular, conditions
of a net system are interpreted as Boolean variables carrying the value of a
set of propositions of the system, which depend on the state the system is at.

The following result is a corollary of those of the last section. Again, the
result is provided for condition/event systems, but can be transferred naturally
to the elementary case.

Corollary 4.1.2. Let N = (B,E,F ,M) be a condition/event net system,
and CG(N) be its case graph. Consider RB = {ext b ⊆ M | b ∈ B} ⊆
R(CG(N)), the collection of extensions of the conditions of N . Let B′ be
a set of regions which contains it, RB ⊆ B′ ⊆ R(CG(N)). Define F ′ :=
{(r, e) ∈ B′×E | e ∈ r•}∪{(e, r) ∈ E×B′ | e ∈ •r}, then N ′ = (B′, E,F ′,M)
is a condition/event system, and CG(N ′) ' CG(N).

The introductory example 2.3 (see p. 22) is an application of this result.

Consider a property regarding states of the system. Such a property could
be expressed by propositions like “the system reached a deadlock”, or “the
system is able to provide service x”. It is common practice to identify this
kind of properties with the set of states at which they hold, as it is done, for
example, in Kripke structures (see for example [24]). The set of states at which
a property holds is called its extension. Note that through this identification,
two properties are considered equivalent when they hold at exactly the same
states. In the following, properties will be identified with their extensions.
Among the models considered in this work, labelled transition systems depict
the global states of the system, and so it is in these models that properties will
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be seen as subsets of states. In principle, any subset of states of the system
represents some property.

The question of whether a property is observable on the system will be
tackled thanks to the notion of monitor. Intuitively, a monitor for a given
property is the implementation of a Boolean variable which is true exactly at
the states in which the property holds. Monitors will be formalised, in this
work, as conditions of a net system. This notion of monitor is not a standard
one. The choice of the term represents the point of view of the author.

Definition 4.1.4 (Monitor of a Property). Let N = (B,E,F ,M) be a con-
dition/event net system, and let S ⊆ M be a property of the system. Then
bS ∈ B is a monitor for S whenever ext(bS) = S.

Of course, a net system may not have the condition that monitors a given
property. However, Theorem 4.1.2 provides that, when the property coincides
with a region, then the corresponding condition can be added to the net system
without altering its behaviour. In such a case, it is said that the property is
observable. Indeed, a property is considered observable when its truth value
can be tested without interfering with the system behaviour.

Theorem 4.1.2 states that every region is an observable property of the
system. In fact, all observable properties are regions. Whenever a property
is not a region, the corresponding monitor must interfere with the behaviour
of the system. Indeed, when a subset of states is not a region, it must violate
the uniform crossing property. Then there must be an event which does not
admit a consistent orientation with it. This brings the problem of defining
the flow relation accordingly. As a matter of fact, since the extension of a
condition of a net system is always a region of its case graph, a property can
only be monitored when it is a region. Given a net system, and a property
which is not a region of its case graph, then adding a condition to the net
system such that its extension is the property, implies that the case graph of
this augmented net system will present the property as a region. This in turn,
implies that the two case graphs are not isomorphic, and so the monitor for
the property interferes indeed with the behaviour of the system.

Example 4.1.2. Consider the synthesis of a net system from the transition
system in Figure 2.7, taking minimal regions as conditions, as in Figure 4.3.
Consider the property with extension {q1, q2, q4}. This subset is not a region
of the system, since one occurrence of e1 exits it, and another does not. Fig-
ure 4.4 shows an attempt to monitor the property on the system. By adding
this condition, the behaviour of the system is altered. In fact, it forces the
previously concurrent events e1, and e2 to occur in sequence.
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Figure 4.4: Net system obtained from the net system of Figure 4.3, by adding
a condition which is not a region.

Hence, regions of the case graph coincide with the observable properties
of the system. In the following section, it will be seen that the orthomodular
poset of regions allows to reason about these properties in logical terms.

4.1.3 Orthomodular Poset of Regions

This section gathers properties of regions. After being presented, they will
be summarised by stating a theorem from [7]. The reader is referred to that
work for the proofs. Throughout this section, A = (Q,E, T,M) will be either
an elementary or condition/event transition system.

Regions of a condition/event (or equivalently elementary) transition sys-
tem can be ordered by set inclusion, so that for any two regions r1, r2 ∈ R(A) :
r1 ≤ r2 ↔ r1 ⊆ r2. When seen as properties, r2 holds in every state in which
r1 holds, so this order can be seen as an implication. ≤ is quite trivially an
order relation, and so (R(A),≤) is a partial order.

This section will cover all the axioms of Definition 2.3.6, and show that
(R(A),≤) is orthomodular.

The negation of a proposition p, is that which holds precisely when p does
not. The corresponding properties must then be set complements.

It can be easily checked that r ∈ R(A) iff (Q \ r) ∈ R(A). This provides
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(R(A),≤) with a unary operation

(·)′ : R(A)→ R(A)

r 7→ Q \ r

Note that both ∅ and Q are regions, and clearly ∀r ∈ R(A) : ∅ ⊆ r and r ⊆ Q.
So (R(A),≤) is bounded, call 0 = ∅, and 1 = Q.

Furthermore, it holds that r ∩ (Q \ r) = ∅, so 0 is the only element which
satisfies both 0 ≤ a and 0 ≤ a′. Then a∧ a′ = 0. Analogously, r∪ (Q \ r) = Q
implies that a ∨ a′ = 1, and so (R(A),≤) is complemented.

Furthermore, (r′)′ = Q \ (Q \ r) = r, and r1 ≤ r′2 implies that r1 ∩ r2 = ∅,
and so that r2 ≤ r′1. Hence, (R(A),≤) is orthocomplemented.

The observation that, whenever two regions r1 and r2 are disjoint, then
their union is again a region, is less trivial to show. Intuitively, if none violates
the uniform crossing property, then neither does their union. However, the fact
that they are disjoint is crucial. In general unions of regions, and intersections
of regions may not be regions. The following is a well-known result [5],

Proposition 4.1.2. Let A = (Q,E, T ) be a condition/event transition sys-
tem. Let R(A) be its set of regions. Consider r1, r2 ∈ R(A). Then (r1 ∪ r2) ∈
R(A) iff (r1 ∩ r2) ∈ R(A)

The argument for proving Proposition 4.1.2, is that if the union of two
regions violates the uniform crossing property, then this violation must happen
to their intersection, and conversely. When regions are seen as properties of
the system, Proposition 4.1.2 can be read as ‘the disjunction of two observable
properties is observable if, and only if, their conjunction is as well’.

When r1 and r2 are orthogonal, they are disjoint, and the empty set being
a region, r1 ∨ r2 ∈ R(A) is well defined.

Note that this statement can be extended inductively to finite families of
pairwise orthogonal elements. Furthermore, when considering a finite tran-
sition system, the collection of its subsets will also be finite. Hence, every
countable family of regions will be finite. It can be stated that the union of
any countable family of pairwis disjoint regions is a region. When seen as
properties, the fact that they are disjoint means that none can hold when any
of the others does. They imply each other’s negation.

When properties mutually exclude each other, their pairwise intersection,
as regions, is empty, and corresponds to 0, the constantly false property. 0, as
a constant, is always observable. Analogously, 1, the constantly true property
is always observable with extension Q.
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Finally, it can be shown that if a region r1 is contained in another region
r2, then the relative complement r2 \ r1 is a region. Note that r1 and r′2 are
disjoint, so r1 ∨ r′2 is well defined. Since (R(A),≤) is orthocomplemented, so
must be its complement, and out of De Morgan’s laws (r1 ∨ r′2)′ = r2 ∧ r′1 is
well defined. But r2 \ r1 = r2 ∩ (Q \ r1) = r2 ∧ r′1 is the relative complement
of r1 in r2. Clearly, r1 and r2 \ r1 are disjoint so their union is a region,
in fact r2 = r1 ∪ (r2 \ r1). Finally, this last statement is equivalent to the
orthomodular law.

r1 ≤ r2 → r2 = r1 ∨ (r2 ∧ r′1)

The following theorem summarises these properties. The proof can be
found in [7]

Theorem 4.1.5. Let A be a condition/event transition system, and R(A) its
set of regions, and define ∀r ∈ R(A) : r′ := Q \ r. Then 〈R(A),⊆, (·)′, ∅, Q〉
is an orthomodular poset.

In what follows, when no confusion is possible, 〈R(A),⊆, (·)′, ∅, Q〉 will be
denoted simply by R(A).

The converse of Theorem 4.1.5, that every logic is isomorphic to the poset
of regions of some transition system does not hold. Chapter 5 will display a
collection of counter-examples. The full characterisation of the class of logics
which are isomorphic to some poset of regions is an open problem, for which
it is pertinent to identify properties which do not hold in orthomodular posets
in general, but do when they arise as collections of regions.

Definition 4.1.5 (Regional Logic). A logic L is called regional when there
exists either a condition/event, or elementary transition system A such that
L is isomorphic to R(A).

The role of regional partitions will be fundamental in the rest of this work.
These constitute the sequential components of the system.

Consider a condition/event transition system and its corresponding sat-
urated net system. The extensions of conditions can be seen on the transi-
tion system, and are regions. A collection of regions is disjoint whenever no
marking of the system selects more than one. In this case, the property cor-
responding to their disjunction is monitored by a condition of the saturated
net system, and so is its negation. In a collection of mutually exclusive con-
ditions, none can be marked without unmarking the other, and none can be
unmarked without marking another. Consider the union of all sets of their
pre- and post-events. The events in this union can never be concurrently en-
abled. Indeed, the firing of one of these would certainly alter the state of one
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of the conditions, disabling any event that would have been enabled. Hence,
these events, and conditions, must belong to the same sequential components.

Note that, out of orthomodularity, the complement of the disjoint union
of regions is a region, and so any collection of disjoint regions can be extended
to a partition. When seen as a set of conditions of the saturated net system, a
partition consisting of regions satisfies the requirements of Proposition 2.1.1.
Every reachable marking contains exactly one condition in the partition. As
a consequence, the subsystem they generate is a state machine.

This provides an interesting application of Corollary 4.1.2. Every condi-
tion/event (elementary) net system can be extended with conditions to a state
machine decomposable net system with the same behaviour.

4.2 Saturated Transition System

This section revises some properties of regional logics which do not hold in
general orthomodular posets, as proved in [7]. When these hold, a synthesis
procedure presented in [8] can generate a labelled transition system such that
the elements of the orthomodular posets can be identified with regions of the
system. This procedure will be presented at the end of the section.

4.2.1 Regularity and Sequential Components

This section presents a property satisfied by regional logics, which does not
hold in general. It allows to interpret the maximal Boolean sublogics of a
given logic as the sequential components of the corresponding system.

Let C ⊆ R(A) be a collection of pairwise disjoint regions, and suppose
there is a region r1 /∈ C properly contained in a region r2 ∈ C. Out of ortho-
modularity, r3 = r2 \ r1 ∈ R(A), and so C′ = (C \ {r2}) ∪ {r1, r3} is a disjoint
collection of regions.

This line of thought inspires the following definition.

Definition 4.2.1 (Refinement). Let X be an arbitrary set, let D ⊆ 2X . Con-
sider C1, C2 ⊆ D two collections of pairwise disjoint subsets. Then C1 is a
refinement of C2, whenever ∀c2 ∈ C2 : ∃C ⊆ C1 : c2 =

⋃
c∈C c. In this case C2

is said to be coarser than C1, and C1 is said to be finer than C2.

Two such collections C1, C2 ⊆ D are said to be consistent with respect to
D when they admit a common refinement C3 ⊆ D.

Refinement is quite trivially an order relation. Consistency is symmetric
and reflexive, but in general fails to be transitive.
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Figure 4.5: Some regions of the transitions system of Figure 2.7 (p.36). b1
and b3 are disjoint as subsets of states, so they are orthogonal elements of the
logic in Figure 4.1(p.87). On the other hand, b1 and b4 have a non-empty
intersection as subsets of states, and since b1 ∩ b4 = {q2} is not a region, b1
and b4 are incompatible elements.

Note that if D = R(A), each disjoint collection of regions consists of
conditions of the saturated net system which belong to the same sequential
components. When a disjoint collection C1 refines another C2, their sequential
components must be the same. To see this, note that the markings of the con-
ditions in C2 are abstractions of the ones in C1. Thus, out of Proposition 4.1.1,
all events neighbouring the conditions of C2 must be in the neighbourhood of
C1. This implies that whenever two disjoint collections are consistent (with
respect to R(A)) they must also belong to the same sequential components.

A special role, in a logic L, is played by compatible elements.

Definition 4.2.2 (Compatibility). Let L be a logic. Two elements x, y ∈
L are compatible, denoted x $ y if, and only if, there exist three mutually
orthogonal elements x̂, ŷ and z in L such that x = x̂ ∨ z and y = ŷ ∨ z.

When two elements x, y ∈ L are not compatible, they are said to be incom-
patible, denoted x 6$ y.

Compatibility is reflexive, and symmetric, but fails in general to be tran-
sitive. As its complement, incompatibility is irreflexive, and symmetric, but
in general not transitive.

Orthogonal elements are always compatible. If x ⊥ y just take x̂ = x,
ŷ = y, and z = 0. Ordered elements must be compatible as well. If x ≤ y, out
of orthomodularity, y ∧ x′ ∈ L, so put x̂ = x, z = 0, and ŷ = y ∧ x′. Cearly,
ŷ = y ∧ x′ ≤ x′ = x̂′, and so ŷ ⊥ x̂. Note that if two regions r1, r2 ∈ R(A) are
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compatible, then there are three disjoint regions r̂1, r̂2, and r3 ∈ R(A) such
that r1 = r̂1 ∪ r3 and r2 = r̂2 ∪ r3. Then clearly r3 = r1 ∩ r2. Conversely,
for any two regions satisfying r1 ∩ r2 ∈ R(A), the relative complements r̂1 =
r1 \ (r1 ∩ r2) ∈ R(A), and r̂2 = r2 \ (r1 ∩ r2) ∈ R(A) show that they are
compatible. Hence, two regions are compatible iff their intersection is a region.

Furthermore, for any two compatible regions r1, r2 ∈ R(A), the disjoint
collections {r1, r2\r1} and {r2, r1\r2} are both regional, and admit a common
regional refinement {r1 \ r2, r1 ∩ r2, r2 \ r1}, and so they are consistent. This
means, in particular, that there must be at least one sequential component of
the saturated net system which contains both r1 and r2 {r1 \r2, r1∩r2, r2 \r1}
is called an orthogonal covering of {r1, r2}.

Definition 4.2.3 (Orthogonal Covering, Compatible Set). Let L be a logic,
and let S be a finite subset of L. An orthogonal covering of S is a collection
F of pairwise orthogonal elements such that ∀x ∈ S : ∃G ⊆ F : x =

∨
G.

If S admits an orthogonal covering, it is called a compatible set.

Naturally one would expect every set of pairwise compatible elements to
be a compatible set. This is however not the case in general. In order for this
to happen, an additional axiom is to be considered.

Definition 4.2.4 (Regular Logic). ([51], definition 1.3.26) A logic L is called
regular if, for any set {x, y, z} ⊆ L of pairwise compatible elements, then
x $ (y ∨ z).

In regional terms, regularity is interpreted as follows. Consider any three
regions r1, r2, r3 ∈ R(A). If their pairwise intersections are in R(A), then
r1 ∩ (r2 ∪ r3) ∈ R(A).

The proof of the following proposition can be found in [51].

Proposition 4.2.1. A logic L is regular iff every set of pairwise compatible
elements is compatible.

In the terms of regions, compatible sets are a relevant notion regarding
the motivation of this work. Indeed, when interpreted as conditions of the
saturated net system, every region in a compatible set must belong to the
same sequential components as the one that contains its orthogonal covering.
A trivial consequence of this, is that every compatible set is contained in some
sequential component.

As a matter of fact, in a regional logic, every set of pairwise compatible
elements is a compatible set. The following result was shown in [7]
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Theorem 4.2.1. Every regional logic is regular.

As a consequence, every set of pairwise compatible regions is contained in
some sequential component.

At this point, it is worth noting that a collection of pairwise orthogonal
elements generates a Boolean algebra.

Proposition 4.2.2. ([51]) Let L be a logic, and let F be a collection of pair-
wise orthogonal elements. Then B(F ) := {

∨
S | S ⊆ F} is a Boolean algebra.

Furthermore, if
∨
F = 1, then B(F ) is a sublogic of L.

The proof shows that joins and meets are well defined among elements of
B(F ), and that they distribute over each other. The reader is referred to [51]
for the details. Naturally, every collection F of pairwise orthogonal elements
can be extended with f ′ = (

∨
F )′, such that elements of F ∪{f ′} are pairwise

orthogonal, and f ′∨(
∨
F ) = 1. Hence, every collection F generates a Boolean

sublogic of L.
The following result summarises this section.

Proposition 4.2.3. ([51]) A logic L is regular if and only if every pairwise
compatible subset of L admits an enlargement to a Boolean sublogic of L.

In terms of regions, when a set is contained in a Boolean sublogic, its
elements belong to a same sequential components of the saturated net system.
As a matter of fact, sequential components of the system are identified with
the maximal Boolean sublogics of its regional poset.

4.2.2 Richness and Concrete Representation

Not every logic is regional. As a matter of fact, a logic in general is not
representable as a collection of subsets. When it is, it is said to admit a
concrete representation.

Definition 4.2.5 (Concrete Logic). The couple (Ω,∆) composed by a set Ω
and a collection ∆ of subsets of Ω is a concrete logic if, and only if, the
following conditions are satisfied:

1. ∅ ∈ ∆;

2. A ∈ ∆ ⇒ Ω \A ∈ ∆;

3. if {Ai | i ∈ N} ⊆ ∆ is a countable family of mutually disjoint subsets of
Ω, then

⋃
i∈NAi ∈ ∆.
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For every concrete logic (Ω,∆), L = 〈∆,⊆, (·)′, ∅,Ω〉 is an orthomodular
poset. Ω is called the carrier set of L. Indeed, all the axioms in the Definition
2.3.6, of orthomodular posets are shown to hold, for example in [51]. In a con-
crete logic, ∅, and Ω play the role of least and greatest elements respectively.
Set complement behaves as an orthocomplement, and the orthomodular law
holds. When a logic L is isomorphic to a concrete logic (Ω,∆), it is said to ad-
mit a concrete representation. Clearly, every regional logic must be concrete.

Stone’s representation theorem for Boolean algebras [60] states that each
Boolean algebra is representable as a collection of subsets, with union, inter-
section, and set complement respectively standing for join, meet, and ortho-
complement. As a matter of fact in the finite case, every Boolean algebra is
isomorphic to the power set of the set of its atoms.

The analogous result for orthomodular partial order does not hold. Not
every logic is a concrete logic. Stanley Gudder provided a characterisation
of the logics which are isomorphic to a concrete logic, and the results can be
found in, for example [51]. This characterisation relies on the central notion
of state. Intuitively, states of the logic will compose the carrier set of its
concrete representation.

Definition 4.2.6 (Two-Valued State). A two-valued state, or simply state
on a logic L is a mapping s : L→ {0, 1} such that:

1. s(1) = 1;

2. ∀x, y ∈ L : x ⊥ y → s(x ∨ y) = s(x) + s(y)

An immediate consequence of the definition is that a state s preserves
order. Furthermore for any x ∈ L, and s ∈ S(L), since x ∨ x′ = 1, it must
follows that s(x) = 1 iff s(x′) = 0. States will often be identified with their
supports.

In [51] a distinction is made between states, that is mappings defined on
L whose co-domain is the interval [0, 1], and two-valued states as in definition
4.2.6 above. Every two-valued state is a state. The present work reports
exclusively two-valued states, and for simplicity, the term state will refer to a
two-valued state as in Definition 4.2.6.

Given a logic L, S(L) will denote the set of all (two-valued) states on L.
Given an element x ∈ L, the set of states that contain it will be denoted
Sx := {s ∈ S(L) | s(x) = 1}, and called its extension.

When a state is different from another, it always selects an element which
is not selected by the other.
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Proposition 4.2.4. Let L be a logic, and S(L) be its set of states. Consider
s1, s2 ∈ S(L), then

s1 6= s2 iff ∃r1 ∈ s1 \ s2 and ∃r2 ∈ s2 \ r1

Proof. Suppose s1 6= s2, then certainly either ∃r1 ∈ s1 \ s2, or r2 ∈ s2 \ r1.
Assume, without loss of generality, that ∃r ∈ s1 \ s2. Then r ∈ s1 → r′ /∈ s1,
and r /∈ s2 → r′ ∈ s2. So r′ ∈ s2 \ s1.

The converse is trivial.

The following properties of states can easily be derived from the definition.

Proposition 4.2.5 (Properties of two-valued states). Let L be a logic, and
consider s ∈ S(L). The following properties hold:

1. ∀x, y ∈ L : x ≤ y → (s(x) = 1→ s(y) = 1)

2. ∀x, y ∈ L : s(x ∨ y) = 0→ (s(x) = 0 ∧ s(y) = 0)

3. ∀x, y ∈ L : if x $ y then s(x ∨ y) = 1 → (s(x) = 1 ∧ s(y) = 0) or
(s(x) = 0 ∧ s(y) = 1).

As a consequence of these, the support supp(s) is upwards closed.

∀x ∈ supp(s) : ↑{x} ⊆ supp(s)

The support of a state is also weakly downwards directed

∀x, y ∈ supp(s) : (x $ y and x ∧ y 6= 0)→ x ∧ y ∈ supp(s)

In the following, the term state will be used either for states or their
supports. The notion of state becomes clear when considering regions.

Proposition 4.2.6. Let A = (Q,E, T ) be a transition system, and R(A) its
regional logic. Then for any state q ∈ Q, the collection Rq = {r ∈ R(A) | q ∈
r} is the support of a state.

Proof. Trivially, q ∈ Q, and so Q ∈ Rq. Given two regions r1, r2 ∈ R(A),
r1 ⊥ r2 → r1 ∩ r2 = ∅. Then q ∈ r1 → q /∈ r2, and q ∈ r2 → q /∈ r1. Clearly,
either q ∈ r1 or q ∈ r2 lead to q ∈ r1 ∪ r2. Finally, note that if q /∈ r1 and
q /∈ r2, then q /∈ r1 ∪ r2, which completes the proof.
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0

1

a1 b1 a4b4c1 c4d1 d3
c2 c3d2

a′1 b′1 a′4b′4c′1 c′4d′1 d′3c′2 c′3d′2

Figure 4.6: A logic with five Boolean sublogics. Each pattern of the form
{0, a1, b1, c1, a

′
1, b
′
1, c
′
1, 1} forms one of them. The support of a state is high-

lighted.

To every state of the system, there corresponds a state of the logic. States
of the logic are to be considered as the admissible markings of the correspond-
ing saturated net system. However, not every state of the logic is expressed as
a state of the system. Such a state might not be reachable with the provided
set of events E. In the condition/event case, consider the Petri net underlying
the saturated net system. A marking is considered admissible on the net,
when the resulting system is state machine decomposable. Indeed, different
markings may lead to different behaviours, and an admissible marking might
not be in the class defined by the condition/event transition system. However,
the reachability class of any admissible marking provides a case graph which
will be separated by the regions of the logic.

In general, given a condition/event transition system A = (Q,E, T ), and
its regional logic R(A), it holds that ∀r ∈ R(A) : r = Sr ∩Q.

In general, logics can have no state at all. Logics having “enough” states
in such a way that the order relation can be re-constructed by the evaluation
of the states are called rich.

Definition 4.2.7 (Rich Logic). Let L be a logic and x, y ∈ L. L is rich iff:

Sx ⊆ Sy → x ≤ y

Note that the Property 1. in Proposition 4.2.5 can be restated as
∀x, y ∈ L : x ≤ y → Sx ⊆ Sy, and holds in any logic. A logic is rich when the
converse also holds.
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Intuitively, a rich logic is one faithfully represented by its set of states.
And in fact, Gudder’s theorem shows that rich logics admit a concrete repre-
sentation.

Theorem 4.2.2. A logic L is isomorphic (as a logic) to a concrete logic if,
and only if, it is rich.

The proof of this theorem can be found, for example, in [51]. It uses the
fact that, if a logic L is rich, there is a duality between L and the set S(L):
each element in L is fully characterised by the set of states to which it belongs

Since regional logics are concrete, Theorem 4.2.2 implies that they must
be rich. To get some intuition about this fact, suppose that a condition/event
transition system A = (Q,E, T ) satisfies that to every state of its regional logic
there corresponds a reachable state of the system, namely ∀s ∈ S(R(A)) : ∃q ∈
Q : Rq = s. Then for every region r ∈ R(A), Sr = {Rq ∈ S(R(A)) | q ∈ r}.
Suppose that r1 ≤ r2, then r1 ⊆ r2, and ∀q ∈ r1 : q ∈ r2. Hence {Rq ∈
S(R(A)) | q ∈ r1} ⊆ {Rq ∈ S(R(A)) | q ∈ r2}, and so Sr1 ⊆ Sr2 .

4.2.3 Events as Local Transitions

In this section, representability of a logic as the regions of a transition system
is tackled. When the logic is rich, sets of states can be defined on the logic
so that elements of the logic can be retrieved as its subsets. However, as a
power set, the collection of all subsets of states would systematically provide a
Boolean algebra. The extension of elements of the logic can certainly be found
in such a collection. One would wish to impose that only the extensions of
elements of the logic can be found as regions of this space of states. In order
to do so, one should endow this space of states with labelled transitions, so
that the uniform crossing property forbids the existence of unwanted regions,
the ones which are not the extension of an element of the logic.

A straightforward approach is to consider all pairs of different states as
potential transitions, and determine which of them carry the same label. The
resulting transition system could be seen a complete directed graph with a
labelling function defined on the arcs. As such it will be called saturated. It
presents all the events consistent with the sequential components described
by the maximal Boolean algebras of the logic. It is now explained how one
can derive the labelling of transitions. The saturated transition system was
described in [8]. In that work, the authors followed a different nomenclature,
consistent with that of [37]. In particular, in [7], regular logics are there called
coherent, rich logics are called prime, and states are called prime filters. In
this work, the nomenclature is taken from [51].
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Consider a condition/event net system N = (B,E,F , Q), and its case
graph CG(N) = A = (Q,E, T ). In Section 4.2.2, it was seen that the set Rq
of regions containing a state q ∈ Q is a two-valued state of R(A).

Petri’s principle of extensionality [48] allows one to identify events with
their observable effect. Indeed, the net underlying N is simple. Hence, for
any pair of events e1, e2 ∈ E, if •e1 = •e2, and e•1 = e•2 it must be e1 = e2.
This allows for the identification of each event e ∈ E with its observable effect
〈•e, e•〉.

It was shown in Proposition 2.2.2, that ∀b ∈ B : •b = • ext(b) and b• =
ext(b)•. Now, consider NS = (R(A), E,F ′, Q), the saturated net system
associated with A. Definition 4.1.1 expresses F ′ as {(r, e) ∈ R(A) × E | e ∈
r•} ∪ {(e, r) ∈ E × R(A) | e ∈ •r} Then trivially, Proposition 2.2.2 gives
a one-one correspondence between the observable effect of an event, on the
saturated net system, and its incidence with respect to each of the regions.
Any occurrence of an event determines its observable effect. If (q1, e, q2) ∈ T
is a transition, then •e = Rq1 \Rq2 , and e• = Rq2 \Rq1 . Two transitions
carrying the same label, must have the same observable effect. It follows from
the definition of region that these differences are independent of the individual
occurrence of e in A. The proof of the following statement was already given
in [30, 31].

Proposition 4.2.7. Let A = (Q,E, T ) be a condition/event transition sys-
tem. If (q1, e, q2), (q′1, e, q

′
2) ∈ T , then Rq1 \Rq2 = Rq′1 \Rq′2 = •e, and

Rq2 \Rq1 = Rq′2 \Rq′1 = e•.

These determine the flow relation of the corresponding saturated net sys-
tem. This is consistent with the principle of locality, the effect of an event is
only observable locally.

This characterisation of events according to their incidence on the set of
regions (or equivalently their flow relation on the saturated net system) can
be extended to the whole set of regions, and used to determine the label of
the saturated transition system.

Definition 4.2.8 (Saturated Transition System). Let L be a rich and regular
logic. Let S(L) be its set of states. An event of L is the observable effect of
the transition from a state s1 ∈ S(L) to another s2 ∈ L.

[s1, s2] = 〈s1 \ s2, s2 \ s1〉

Note that whenever s1 = s2, the corresponding event e = 〈∅, ∅〉 has no ob-
servable effect. According to Petri’s principle of extensionality, this is not an
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s1
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s3

s4

s5

v2

v1
v2

v1

Figure 4.7: Saturated Transition System synthesised from the logic in Figure
4.1 (p.87). For clarity, not all transitions have been depicted: for each arc in
the figure, there is another one in the opposite direction. Also, only repeated
labels have been indicated.

event. The set of events of L is thus defined as

E(L) = {[s1, s2] | s1, s2 ∈ S(L), s1 6= s2}

The set of transitions of a logic is now naturally defined as

T (L) = {(s1, [s1, s2], s2) | s1, s2 ∈ S(L), s1 6= s2}

The saturated transition system associated with L is then defined as

A(L) = (S(L), E(L), T (L))

Example 4.2.1. The transition system partially depicted on Figure 4.7, is
the saturated transition system built from the logic on Figure 4.1 (p.87). s1 =
↑{b1, b5}, s2 = ↑{b1, b4}, s3 = ↑{b2, b5}, s4 = ↑{b2, b4}, and s5 = ↑{b3}. Note
that the symmetric differences involving s5 are all different, since it is the only
state containing b3. Analogously, 〈s1 \ s4, s4 \ s1〉 has only one occurrence,
as well as 〈s4 \ s1, s1 \ s4〉, 〈s2 \ s3, s3 \ s2〉, and 〈s3 \ s2, s2 \ s3〉. However,
〈s1 \s2, s2 \s1〉 = 〈s3 \s4, s4 \s3rlangle = v2, 〈s2 \s1, s1 \s2〉 = 〈s4 \s3, s3 \s4〉,
〈s1 \ s3, s3 \ s1〉 = 〈s2 \ s4, s4 \ s2〉 = v1, and 〈s3 \ s1, s1 \ s3〉 = 〈s4 \ s2, s2 \ s4〉.

Note that the logic that generates this transition system is the regional
logic of Example 4.1.1. It is worth noting, with respect to that example, that
si = Rqi, for i = 1, . . . , 5. Analogously, every element of the logic bi, provides
a region of this synthesised transition system as Sbi. In fact, the regional poset
of this system is isomorphic to the one on Figure 4.1.
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Note that two transitions carry the same label when they have the same
observable effect. As a consequence, the following result holds. The proof can
be found in [7].

Proposition 4.2.8. If ∃(s1, e, s2) ∈ T then s2 = (s1 \ •e) ∪ e•.

A transition is defined for every ordered pair of states, and so the under-
lying graph is complete, and strongly connected. Then any state is trivially
reachable from any other.

Proposition 4.2.9. Let L be a rich logic.
Then for any s0 ∈ S(L), A(L) = (S(L), E(L), T (L), s0) is an initialised tran-
sition system.

The proof of this statement is trivial. The following properties follow from
the construction.

Proposition 4.2.10. ∀s1, s2 ∈ S(L) :

1. s1 6= s2 → (∃r ∈ s1 \ s2 : s1 ∈ Sr and s2 /∈ Sr

2. ∀e ∈ E(L) : (s1, e, s2) /∈ T (L)→ ∃r ∈ •e : r /∈ s1

3. ∀e ∈ E(L) : (s1, e, s2) /∈ T (L)→ ∃r ∈ e• : r /∈ s2

Proof. Property 1 is a direct consequence of Proposition 4.2.4. Properties 2
and 3 follow from Proposition 4.2.8

As a consequence, L separates A(L), providing the following theorem [7].

Theorem 4.2.3. Let L be a rich and regular logic, then A(L) is a condi-
tion/event transition system

Note that, out of Proposition 4.2.9, this also implies that for any s0 ∈ S(L),
(S(L), E(L), T (L), s0) is an elementary transition system.

The remaining of this chapter will analyse this construction, and endow
E(L) with a partial group structure.
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4.3 Model Reduction

This section will present the contributions of this chapter. In this section,
the structure of the transition system synthesised from a logic is analysed.
Finite logic can be represented in terms of their atoms, and it is shown that
the saturated transition system is also described in this representation. This
is used to analyse the structure of its events, in order to identify concurrency
in terms of atoms of the logic. It is shown that a particular subset of events
is sufficient to describe the concurrent behaviour of the saturated transition
system.

4.3.1 Minimal Regions and Block Diagrams

Stone’s representation theorem states that the elements of a Boolean algebra
can be identified with particular subsets of its set of ultra filters. A filter is an
upwards closed, downwards directed subset of the Boolean algebra. A filter is
called ultrafilter when it is maximal.

In the case of orthomodular posets, Gudder’s representation expresses the
logic as a collection of subsets of its set of states. Unsurprisingly, when re-
stricting a state to a maximal Boolean subalgebra of the logic, one obtains an
ultrafilter. Note that a finite Boolean algebra is a particular case of ortho-
modular poset, and in such a situation, both representations coincide.

Atomic Boolean algebras are in particular atomistic, and their ultra filters
are the up-closures of their atoms. Hence, in the finite Boolean case, the set
of atoms can be taken as the carrier for representing the algebra.

In the case of logics, however, states represent a selection of atoms for
each maximal Boolean subalgebra, and the correspondence between states
and atoms does not hold.

The problem of representing an atomic orthomodular poset using its set of
atoms as a carrier, instead of its set of states, was tackled early in the theory
[33, 52]. D. Foulis and C. Randall greatly contributed to the development of
this theory by proposing the notion of manual, as an axiomatic formalisation
of the spaces suitable to represent the atoms of a quantum logic [53, 54, 55]. A
manual is a set endowed with a collection of its subsets which identify their be-
longing to the same maximal Boolean algebra. In his Ph.D. dissertation [26],
J. C. Dacey characterised the class of manuals which generate an orthomod-
ular poset, by requiring an additional axiom. However, this axiomatisation
only allowed for generating regular logics, called coherent in this field of re-
search. Alternative axiomatisations for these spaces followed, among which
it is worth noting orthogonality spaces [38] where an orthogonality relation is
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taken instead of the collection of subsets. Finally, a commonly used axioma-
tisation, is that of test spaces. With this axiomatisation non-regular logics
can be generated. Still regularity of the generated logic can be asserted by
requiring an additional axiom. The reading of [61] is recommended for a good
overview of the subject.

The present section explores this approach in order to represent the tran-
sition system synthesised from a logic, in terms of the atoms of the latter.
To this aim, the link between the two alternative representation theories is
explored.

The expressivity of atoms regarding the structure of an orthomodular lat-
tice was already explored, and exploited in Chapter 3. In the case of regional
structures, their relevance is justified by Theorem 4.1.4. Indeed, the atoms
of a regional logic are the minimal regions. They are sufficient to solve the
synthesis problem, and so one would expect that considering them should be
sufficient to accurately represent, and distinguish the sequential components
of the system.

An element of a quantum logic L is called an atom whenever it is minimal
for the partial order when one excludes 0. Let A(L) be the set of such ele-
ments. When restricted to atoms, the compatibility relation $ coincides with
orthogonality relation ⊥.

Proposition 4.3.1. Let L be an orthomodular poset, and let x, y ∈ A(L).
Then

x $ y ↔ x ⊥ y

Proof. From Definition 4.2.2, x $ y ↔ ∃x̂, ŷ, z ∈ L : x = x̂ ∨ z and y = ŷ ∨ z,
with x̂, ŷ and z pairwise orthogonal. If x ⊥ y just take x̂ = x, ŷ = y, and
z = 0. For the converse, note that since x, y ∈ A(L), the only possibilities are
x̂, z ∈ {x, 0}, and ŷ, z ∈ {y, 0}. Then z must be in {x, 0} ∩ {y, 0} = {0}, and
so x̂ = x, and ŷ = y, hence x ⊥ y.

As a consequence, the atoms of a maximal Boolean sublogic form a maxi-
mal clique of ⊥.

A compact graphical representation of finite logics can be obtained with a
technique due to Richard Greechie.

Remark 4.3.1. The set of elements L of a logic, or any of its subsets S,
together with a symmetric relation such as $, 6$, or ⊥ can be considered as an
undirected graph. All notions of graph theory as in [4] can then be applied.
For instance, a clique of a symmetric relation is any subset of L such that
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each pair of its elements is in R. Let S be clique of R, then it is maximal if
∀x /∈ S : (∃y ∈ S : x 6R y).

From point 3 in Definition 2.3.6, it is clear that any element of the logic
can be retrieved as the join of a subset of a clique of ⊥, and actually, the pair
(A(L),⊥�A(L)×A(L)) is sufficient to recover the whole structure of the logic.

The block diagram of a logic exploits this fact, and depicts only the atoms
of the logic. Instead of representing all orthogonality dependencies, maximal
cliques of ⊥ are represented by straight lines.

Remark 4.3.2. Technically, these straight lines represent the hyperedges, as-
sociated with the maximal cliques of ⊥, of the hypergraph whose vertices are
A(L) (see for example [4]).

In this way, the block diagram of a Boolean algebra will be composed
only by one maximal clique of ⊥ while at least two blocks are needed for
the representation of a non-Boolean logic L. A result will now be presented,
that will allow us to characterise the states of the logic on its block diagram.
Informally, this result states that a state must contain exactly one atom per
maximal Boolean sublogic. The formalisation of this calls for some notation.

Definition 4.3.1. Let C⊥(A(L)) be the set of maximal cliques of the ⊥ rela-
tion.
Let Cnc(A(L)) be the set of maximal cliques of 6$.
CL(A(L)) will denote the set of elements α ∈ Cnc(A(L)) such that ∀β ∈
C⊥(A(L)), |α ∩ β| = 1.

The next Theorem, summarises some theorems and lemmas published
in [7] In that work, they were presented for regular logic (there called co-
herent. The next statement generalises that result, in that regularity is not
required.

Theorem 4.3.1. Let 〈L,≤, (.)′, 0, 1〉 be a logic, A(L) its set of atoms, s ∈ SL
and CL(A(L)) as in definition 4.3.1, then (s∩A(L)) ∈ CL(A(L)). Moreover,
if α ∈ CL(A(L)) then ↑α is a state in L.

Proof. Note that $ ∩ (A(L) × A(L)) =⊥, and let β = s ∩ A(L), then x, y ∈
β ⇒ x 6$ y. Indeed, suppose x $ y, then x, y ∈ A(L) ⇒ x ⊥ y, and so by
definition of ⊥: x ≤ y′. Then by the orthomodular law y′ = x ∨ (y′ ∧ x′),
and so y′ ∈ s, hence y /∈ s, which contradicts the hypothesis. Thus, β is a
clique of 6$. It will now be show that ∀γ ∈ C⊥(A(L)) : |γ ∩ β| = 1, so let
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γ = {z1, z2, . . . , zn} ∈ C⊥(A(L)). Then zγ =
∨
i≤n zi is well defined. If zγ 6= 1,

then ∀i ≤ n : (zi ≤ zγ → (∃a ∈ A(L) : a ≤ z′γ ∧ a ⊥ zi)), contradicting
maximality of γ. Hence zγ = 1, and it must hold, from the definition of state,
that ∃!i ≤ n : s ∩ γ = {zi}. Now suppose ∃z ∈ A(L) \ β such that z 6$ x for
every x ∈ β. Since it is an atom, z /∈ s but z must be in some maximal clique
γ ∈ C⊥(A(L)). As it has just been proven, ∃ẑ ∈ β ∩ γ, so either ẑ = z or
ẑ ⊥ z, yielding a contradiction in both cases. So β ∈ CL(A(L)).

Let now α ∈ CL(A(L)), and let a ∈ α. Since 1 is, by definition, the greatest
element of L, certainly a ≤ 1. Now let {x1, x2, . . . , xn} be mutually orthogonal
elements of L, and let x =

∨
i≤n xi. Then certainly, ∀i ≤ n : xi ≤ x. Consider

xi, and let a ≤ xi be an atom, the orthomodular law provides xi = a∨(xi∧a′).
Put x1

i = xi ∧ a′, A1 = {a}. Now suppose Ak is a set of pairwise orthogonal
atoms a ≤ xi. Let xki = xi ∧ (

∧
a∈Ak a′), and suppose xi = (

∨
a∈Ak a) ∨ xki .

Then xki 6= 0 implies there is an atom ak ≤ xki . In particular ak ≤ xi, and
∀a ∈ Ak : ak ≤ a′. Put Ak+1 = Ak ∪ {ak}, then from the orthomodular law,
it follows that again that xki = ak ∨ (xki ∧ (ak)′) = ak ∨ xk+1

i . Furthermore,
xi = (

∨
a∈Ak a) ∨ xki = (

∨
a∈Ak+1 a) ∨ xk+1

i . Clearly, xk+1
i � xki , so L being

finite, there must exists an N ∈ N such that xNi = 0, then AN is a set
of pairwise orthogonal atoms, such that xi = (

∨
a∈AN a) ∨ 0 =

∨
a∈AN a.

And so, for each xi, there is a set Ai of pairwise orthogonal atoms such that
xi =

∨
a∈Ai

a. Now Let ai be an atom such that ai ≤ xi for some xi. It follows
that x′i ≤ a′i, then for any xj 6= xi, and for any atom aj under it, it holds
that aj ≤ xj ≤ x′i ≤ a′i. Hence,

⋃
i≤nAi is a set of pairwise orthogonal atoms,

and so there is a γ ∈ C⊥(A(L)) :
⋃
i≤nAi ⊆ γ. Put A0 = γ \

⋃
i≤nAi, since

x =
∨
a∈(

⋃
i≤n Ai)

a, maximality of γ gives x′ =
∨
a∈A0

a, put x′ = x0.

Clearly ∃!a0 ∈ α ∩ γ, so let i0 ≤ n : a0 ∈ Ai0 . Let j 6= i0, since ∀a ∈
Aj : a ≤ a′0, then xj = (

∨
a∈Aj

a) ≤ a′0, and so α ∈ Cnc(A(L)) implies

∀b ∈ α \ {a0} : b 6≤ xj . If i0 = 0 : a0 ≤ x′, otherwise a0 ≤ xi0 ≤ x.

Example 4.3.1. With reference to Figure 4.1 (see p.87)the states of L are:
↑{a, d}, ↑{a, e}, ↑{b, d}, ↑{b, e}, ↑{c}. A maximal clique of 6$ is not, in general,
sufficient for the definition of a state. The requirement, as in definition 4.3.1,
that each maximal clique of 6$ meets each maximal clique of ⊥ is essential.
With reference to Figure 4.9, the up-closure of the maximal clique {a1, b2, g1}
of 6$, ↑{a1, b2, g1} is not a state since an element from the block {c1, c2, c3} is
missing.

Example 4.3.2. The regional logic L of the transition system in Figure 4.8
is represented, as block diagram of its atoms. The minimal regions in L,
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Figure 4.8: A condition/event transition system. It is the case graph of the
net system of Figure 4.10, the block diagram of its logic is represented in
Figure 4.9 p.113

corresponding to the atoms, are: a2 = {2, 4, 6, 8}, a1 = {1, 3, 5, 7}, g1 =
{1, 2, 9, 11}, g2 = {3, 4, 10, 12}, b2 = {7, 8, 11, 12}, b1 = {5, 6, 9, 10}, c1 =
{9, 10, 11, 12}, c2 = {1, 2, 3, 4} and c3 = {5, 6, 7, 8}. Its representation as
Net System is in Figure 4.10 where only one representative of the class of
markings is drawn. This marking is composed by the regions c2 = {1, 2, 3, 4},
a1 = {1, 3, 5, 7} and g1 = {1, 2, 9, 11}.

A new result is now presented, that allows for characterising events on the
block diagram of L. It is a straightforward consequence of Theorem 4.3.1, and
will be useful in the following section.

The events of a logic L are fully characterised by the atoms in their neigh-
bourhoods. Recall that the neighbourhood of an event e is ν(e) = •e ∪ e•

Definition 4.3.2 (Atomic Neighbourhood). For each e ∈ E(L),
the atomic neighbourhood of e is: νA(e) = (•e ∩ A(L)) ∪ (e• ∩ A(L))

Lemma 4.3.1. Let e1, e2 ∈ E(L). If νA(e1) = νA(e2), then e1 = e2.
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Figure 4.9: The regional logic of
the transition system in Figure 4.8
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Figure 4.10: Net System represen-
tation for the Transition System
in Figure 4.8, the marking corre-
sponds to state 1

a1

b1

c1

d1

c2

d2

c3

d3

c4

b4

a4

Figure 4.11: A block diagram of the logic in Figure 4.6 (p.103). Each solid
segment is a block, the dashed line represent a clique α ∈ CL(A(L)) such that
its up-closure corresponds to the state in Figure 4.6.

Proof. Let e1 = 〈s1 \ s2, s2 \ s1〉. Choose x ∈ s1 \ s2, and suppose that x is
not an atom of L. Then there is at least one atom a of L in s1, with a < x.
From x /∈ s2, it follows that a /∈ s2. A symmetric argument applies to s2 \ s1,
hence e1 cannot be distinguished from e2 because of a non-atomic element in
their neighbourhoods.

With these results at hand, the structure of the transition system synthe-
sised from a logic can be analysed in terms of atoms.

4.3.2 Partial group of Events

The results of this section can be found in [15].
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The set of events of the saturated transition system contains the labels of
all possible transitions between states. This form of completeness, permits to
endow it with a richer structure. A composition operation is defined, based on
sequential composition. Since the saturated transition system is saturated of
events, this operation has associated notions of inverse, and neutral element.
This idea was already noted as a remark in [20] The neutral element will
just be e∅ := 〈∅, ∅〉 the empty event. This event should be considered only
for structural purposes. Intuitively, it would just leave any state unchanged;
hence no transition carries it as a label.

First the operation of sequential composition of two events is defined. The
resulting event will correspond to the consecutive occurrence of its operands.
The existence of this new event will depend, however, on the existence of a
state binding the operands in sequence. In this setting, events are defined over
a fixed structure of states, making the following a partial operation.

Let L be a regional logic.

Definition 4.3.3 (Sequentiable Events). Two events e1, e2 ∈ E(L) are said
to be sequentiable iff

∃s ∈ S(L) : e•1 ⊆ s ∧ •e2 ⊆ s (4.1)

If two events are sequentiable, their sequential composition is:

e1 ⊕ e2 = 〈(•e1 \ e•2) ∪ (•e2 \ e•1), (e•2 \ •e1) ∪ (e•1 \ •e2)〉
= 〈(•e1 ∪ •e2) \ (e•1 ∪ e•2), (e•1 ∪ e•2) \ (•e1 ∪ •e2)〉

The definition does not depend on the choice of s. Condition 4.1 requires
an occurrence of e1 to bring the system to a state which enables e2. The
following result exemplifies why this is required, and shows that e1 ⊕ e2

belongs to E(L).

Proposition 4.3.2. Let s0, s, s1 ∈ S(L) be three distinct states, and e1, e2 ∈ E
be events such that s0[e1〉s[e2〉s1. Then s0[e1 ⊕ e2〉s1

Proof. By definition of E, e1 = 〈s0 \ s, s \ s0〉, and e2 = 〈s \ s1, s1 \ s〉. Then
by definition of ⊕, e1 ⊕ e2 = 〈((s0 \ s) ∪ (s \ s1)) \ ((s \ s0) ∪ (s1 \ s)),
((s \ s0) ∪ (s1 \ s)) \ ((s0 \ s) ∪ (s \ s1))〉. Straightforward set operations then
lead to e1 ⊕ e2 = 〈s0 \ s1, s1 \ s0〉.

Associativity of the composition comes as a consequence of this last result.
The inverse of an event is now defined.
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Definition 4.3.4 (Inverse Event). Let e ∈ E : e = 〈•e, e•〉. Then e−1 =
〈e•, •e〉 is the inverse of e.

The transition system synthesised from a logic is saturated with events.
For any ordered pair of states, E contains an event which labels the corre-
sponding transition. Hence, as stated in the following proposition, any event
has an inverse.

Proposition 4.3.3. Let e ∈ E then e−1 ∈ E.

Proof. e ∈ E ⇒ ∃s, s′ ∈ SL : s[e〉s′. By definition, it holds that e = 〈s \
s′, s′ \ s〉. Now, ∃t ∈ T : t = (s′, [s′, s], s), and clearly, it will carry as a label
〈s′ \ s, s \ s′〉 = e−1 ∈ E.

The inverse is well defined for all event, and so is the composition e ⊕
e−1 = e−1 ⊕ e = e∅.

Whenever composition of two events is well defined, inversion behaves
accordingly, in the sense that (e1 ⊕ e2)−1 = e−1

2 ⊕ e−1
1 whenever they are

defined.
The sequential composition operation is, of course, not commutative in

general. Concurrency of two events can be formalised as the commutativity of
their sequential composition: the occurrence of any of them does not disable
the other.

Definition 4.3.5 (Independent Events on a Logic). Two events e1, e2 ∈ E
are called independent iff

νA(e1) ∩ νA(e2) = ∅

Note that this condition holds iff (•e1 ∪ e•1) ∩ (•e2 ∪ e•2) = ∅
They are called concurrent if they are independent, and there exists a state

that enables both of them:

∃s ∈ S(L) : •e1 ∪ •e2 ⊆ s ∧ (e•1 ∪ e•2) ∩ s = ∅

It follows from independence that, when two events are concurrent, their
composition becomes simply e1 ⊕ e2 = 〈•e1 ∪ •e2, e

•
1 ∪ e•2〉.

The next proposition shows that two events are concurrent if and only if
their composition is commutative and some state enables both of them. This
correspondence between concurrency among two events, and commutativity of
their composition accurately translates the idea that concurrent events form
diamonds in the saturated transition system. This fact is used to prove the
following result.
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Figure 4.12: Two diamonds

Proposition 4.3.4. Let e1, e2 ∈ E; then they are concurrent iff e1 ⊕ e2 and
e2 ⊕ e1 are well defined and equal, and there exists a state which enables both.

Proof. It is first proved that if e1 and e2 are concurrent, then their composition
is commutative. So let s, s1, s2, s

′ ∈ S(L) : s[e1〉s1 ∧ s1[e2〉s′ ∧ s[e2〉s2. The
firing rule yields s1 = (s\ •e1)∪ e•1, and s′ = (s1 \ •e2)∪ e•2, and it follows from
independence of e1 and e2 that s′ = (s\ (•e1∪ •e2))∪ (e•1∪e•2) = (s2 \ •e1)∪e•1.
Hence s2[e1〉s′.

For the converse, suppose s, s1, s2, s
′ ∈ S(L) : s[e1〉s1 ∧ s1[e2〉s′∧

s[e2〉s2 ∧ s2[e1〉s′. Assume, as a contradiction hypothesis that ∃a ∈ νA(e1) ∩
νA(e2) 6= ∅. There are four cases. If a ∈ •e1 ∩ •e2 then a /∈ s1 and so s1�

��[e2〉.
If a ∈ •e1 ∩ e•2 then a ∈ s2, and so s�

��[e2〉s2. Analogously a ∈ •e2 ∩ e•1 implies
that s�

��[e1〉s1. Finally, If a ∈ e•1 ∩ e•2 then s1�
��[e2〉.

The following example should clarify the last proof. The composition of
two concurrent events is a diagonal of the diamond they form. In the net
system interpretation, this corresponds to an event which has the same effect
as firing the operands simultaneously. This view justifies the term of step.

Example 4.3.3. In Figure 4.12 one can see that s1[e1〉s5[e2〉s2, and s1[e2〉s6[e1〉s2.
The fact that from s1 the system reaches s2 after firing e1 and e2 regardless
of the order of firing, implies that e1 ⊕ e2 = e2 ⊕ e1 = d.

An event is called a step if it is the diagonal of some diamond. Whenever
e1, e2 are concurrent events, e = e1 ⊕ e2 = e1 step e2, and say that e is the
step {e1, e2}. This composition operation will serve as a tool for analysing the
inner structure of events, seen as pairs of subsets of atoms.

4.3.3 Minimal Events

The results of this section can be found in [15].
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There is an essential difference between the non-commutative and the com-
mutative composition of events. Indeed, commutative composition provides
the diagonal of a diamond. Such a diagonal event should be distinguished
from other events. Provided that a system already depicts two concurrent
events, their step provides no additional information regarding concurrency,
or connectedness of the system. This section will be devoted to formalising,
and proving this last statement.

In order to do so, the structure of diamonds is studied, as seen in the
Greechie representation of the logic. In the following, states of the logic will
be considered as the cliques of incompatibility of the atoms which intersect
every block of the logic as in theorem 4.3.1. Events will therefore be seen as
the symmetric differences of these. For the basic notions on graph theory, see
[4].

Definition 4.3.6 (Induced Subgraph). Let G⊥(L) = (A(L),⊥�A(L)×A(L)) be
the Orthogonality Graph of a Regional Logic L. Given a subset of atoms
A ⊆ A(L), (A,⊥�A2) is called the subgraph of G⊥(L) induced by A.

Recall that each maximal clique of G⊥(L) corresponds to the set of atoms
of a block (maximal Boolean sublogic) of L.

A bipartite graph is a graph whose set of vertices can be partitioned in two
classes, such that no two vertices in the same class are bound by an edge (see
[4]). A state, seen as a subgraph of G⊥(L), has the property that no pair of
its vertices is in ⊥. It will be seen that this implies that, for each event e,
its set of pre-conditions and its set of post-condition, form a bipartite graph
(•e, e•), when considered as the subgraph of G⊥(L) induced by νA(e).

Proposition 4.3.5. Let e ∈ E, and G⊥(L) as in Definition 4.3.6. Then
(•e ∩ A(L), e• ∩ A(L)) is a bipartition of (νA(e),⊥�νA(e)2).

Proof. e ∈ E implies ∃s, s′ ∈ S(L) : s[e〉s′. Then •e ⊆ s and e• ⊆ s′.
•e ⊆ s⇒ ∀a1, a2 ∈ •e : a1, a2 ∈ s. From Theorem 4.3.1, it follows that a1 6$a2,
so in particular (a1, a2) /∈⊥. The result is analogous for e• and s′.

The converse, however, is not always the case. Here follows an example
of a logic, in which there is a bipartite subgraph of G⊥(L) which does not
correspond to an event.

Example 4.3.4. In Figure 4.9, consider ({a1, b1, g1, a2, b2, g2}) as an induced
subgraph. In this case, ({a1, b1, g1}, {a2, b2, g2}) forms a bipartition, but there
is no event e = 〈{a1, b1, g1}, {a2, b2, g2}〉, since no state enables it. Such a state



118 CHAPTER 4. SYSTEM DISTRIBUTABILITY

would be a maximal clique of 6$, but as seen in Example 4.3.2, {a1, b1, g1} does
not intersect every block of L, and is therefore not a state.

In the following, the properties of diamonds, as seen on G⊥(L), are studied.
The next result will exhibit a property that any pair of concurrent events must
satisfy.

Proposition 4.3.6. Let e1 and e2 be two concurrent events. Then ∀a1 ∈
•e1,∀a2 ∈ e•2 : a1 6$ a2, and symmetrically ∀a3 ∈ e•1,∀a4 ∈ •e2 : a3 6$ a4.

Proof. Since e1 and e2 are concurrent, they must form a diamond. Namely,
∃s, s1, s2, s

′ ∈ S(L) : s[e1〉s1[e2〉s′ ∧ s[e2〉s2[e1〉s′. Hence, e•1 ∪ •e2 ⊆ s1, and
e•2 ∪ •e1 ⊆ s2. Theorem 4.3.1 then yields the result.

This last result might become clearer when looking at a Greechie diagram.

Example 4.3.5. Consider the events e1 = 〈{a1}, {a2}〉, and e2 = 〈{b1}, {b2}〉
from Figure 4.9. They are both enabled at state s = {a1, b1, c3}. The existence
of the state s1 = {a2, b1, c3} implies that a2 ∈ e•1, and b1 ∈ •e2 satisfy a2 6$ b1.
Symmetrically, the state s2 = {a1, b2, c3} provides a1 6$ b2.

Now, the much stronger converse result shall be proven. Namely, it is
shown that given an event, seen as the bipartite induced subgraph of G⊥(L),
it can be determined whether it is the step of two concurrent events, and if
so, actually reconstruct the corresponding diamond.

Lemma 4.3.2. Connected components of the subgraph of G⊥(L) induced by
an event e, form a set of pairwise concurrent events, the step of which is e.

Proof. Let e ∈ E, and suppose that there is a partition {ai}i≤n of •e, and
a partition {bi}i≤n of e• such that ai ∪ bi are the connected components of
(νA(e),⊥�νA(e)2), for i ≤ n. Proceed by induction over the states. For the
base case, consider s, s′ ∈ S(L) : s[e〉s′. Now, let j ≤ n, then (s\aj)∪ bj must
be a clique of 6$, since otherwise there would be an r1 ∈

⋃
i 6=j ai and an r2 ∈ bj

such that r1 ⊥ r2, contradicting that aj ∪ bj is a connected component for ⊥.

Now suppose (s \ aj) ∪ bj is not a state. Then there must be a block B of
G⊥(L) such that ((s \ aj) ∪ bj) ∩ B = ∅. s ∈ S(L) implies that ∃r ∈ s ∩ B,
so it must be r ∈ aj . Analogously, s′ ∈ S(L) implies that ∃r′ ∈ s′ ∩ B, so it
must be r′ ∈

⋃
i 6=j bi. Clearly, r, r′ ∈ B → r $ r′, and •e ∩ e• = ∅ → r 6= r′, so

r ⊥ r′. This contradicts the fact that aj ∪ bj is a connected component. Then
sj = (s \ aj)∪ bj must be a state, and there must be an ej = 〈aj , bj〉 ∈ E such
that s[ej〉sj .
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Figure 4.13: The block diagram depicted in Figure 4.11 (p.113). Events are
seen as symmetric differences of the cliques of atoms that generate states as
their up-closures.

The induction step is absolutely analogous. One only needs to consider
the event e′j = 〈

⋃
i 6=j ai,

⋃
i 6=j bj〉, noting that sj[e

′
j〉s′.

The result holds for any choice of j ≤ n at any induction step, hence all
permutations of n provide a sequential decomposition of the event e. Note
that, by construction, and for any j ≤ n, the events ej are pairwise indepen-
dent, and the existence of the state s provides that they must be concurrent.
It should be clear that ∀j1 6= j2 : ej1 ⊕ ej2 = ej2 ⊕ ej1 ∈ E. It follows from
associativity of ⊕ that

⊕
i≤n ei = e.

This lemma represents the main technical contribution of this section, and
most of the results henceforth presented are consequences of it. Indeed, it is a
powerful tool which will permits to decompose events, as the step of a family
of pairwise concurrent events.

Example 4.3.6. With reference to Figure 4.13, the states are seen as the
cliques of atoms that generate them. The arrows represent an event labelling
the transition that goes from the state ↑{a1, c2, d3, b4} to the state
↑{b1, d2, d2, d3, b4}. It also labels, for example, the one that goes from state
↑{a1, c2, c4} to state ↑{b1, d2, d2, c4}. When the atomic neighbourhood of the
event is not connected for ⊥, it has two connected components {a1, b1}, and
{c2, d1, d2}. Then the two parts of the event corresponding to each component
can be fired independently, the events are concurrent.

In order to formalise the notion of minimality of the events which are no
further decomposable in this way, a partial order of events.

Definition 4.3.7 (Partial Order of Events). Let E be a set of events. Define
<⊆ E2 as ∀e1, e ∈ E : e1 < e iff ∃e2 ∈ E : e1 ⊕ e2 = e2 ⊕ e1 = e.

Proposition 4.3.7. (E,<) is a strict partial order
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Proof. < is irreflexive since, by convention, e∅ ∈ E is not considered. < is tran-
sitive, as a consequence of Proposition 4.3.6, and independence of concurrent
events. < is antisymmetric, since e1⊕e2 = e2⊕e1 = e, and e3⊕e = e⊕e3 = e1

imply that e1⊕e2⊕e3 = e1, and so e3 = e−1
2 . Hence s[e〉 implies that s[e2〉 and

s[e−1
2 〉, but then there must be an s′ ∈ S(L) : s′[e2〉s[e2〉, which contradicts

the separation axioms in Definition 2.2.8 (p.38).

An event is minimal if it is minimal with respect to this partial order.
From Lemma 4.3.2, it should be clear that an event is minimal if and only if
it is connected, as a bipartite induced subgraph of G⊥(L). The main result
presented in this section is that it is sufficient to consider minimal events
when synthesising a transition system, in order for it to be connected, but
also to depict all the concurrency encoded in the logic. This last notion will
be formalised by comparing the set of regions of such a transition system, and
that of the canonical synthesised system, which is saturated with events.

Definition 4.3.8. Call M ⊆ E the set of events which are minimal in (E,<).

It is first shown that M is sufficient to generate the regions of the transition
system synthesised from L. The idea is rather simple. When two concurrent
events are in E, then the separation axioms (see Definition 2.2.8 p.38) corre-
sponding to their step are redundant.

Definition 4.3.9. Let A = (Q,E, T ) be a transition system, and G ⊆ E be a
subset of events of A. Define TG as the set of all transitions of A labelled by
some element of G. Then

A \G = (Q,E \G,T \ TG)

Clearly, A \G is a, possibly non-connected, transition system.

Lemma 4.3.3. Let A = (Q,E, T ) be a condition/event transition system,
s0, s1, s2, s3 ∈ Q, and e1, e2, d ∈ E, such that s0[e1〉s1[e2〉s3, s0[e2〉s2[e1〉s3,
and s0[d〉s3. Then A and A \ {d} have the same set of regions.

Proof. Any region of A is also a region of A \ {d}, since the latter has been
obtained by removing an event. Suppose now that r is a region of A\{d}, but
not of A. This implies that there are two transitions in A, say (s1, d, s2) and
(s3, d, s4), with different crossing relations with respect to r. Suppose that
s1 ∈ r, s2, s3, s4 /∈ r (all other combinations can be dealt with in a similar
way). By hypothesis, •d = •e1 ∪ •e2, and d• = e•1 ∪ e•2. Hence, e1 and e2 are
enabled at s1 and at s3, and form two diamonds, as shown in Figure 4.12.



4.3. MODEL REDUCTION 121

Suppose that s5 is in r. Then, e1 is orthogonal to r, and e2 ∈ •r; but
this leads to a contradiction, since s7 /∈ r, and (s7, e2, s4) does not cross the
border of r. On the other hand, e5 /∈ r contradicts the hypothesis that s3 /∈ r,
because in this case e1 should leave r.

This last result implies, in particular, that minimal events convey all the
information regarding concurrency, all other events being steps of these. This
is formalised in the following theorem.

Theorem 4.3.2. Let L be a rich, and regular logic. Let A = (S(L), E, T )
be the saturated transition system synthesised from L. Let M be the set of
minimal events in (E,<). Then the Regional logic R(A) is isomorphic to
R((S(L),M, TM )).

Proof. The proof follows an induction over the set of states. Starting from A,
apply Lemma 4.3.3 to show that for any diagonal d, R(A) ' R(A \ {d}). In
the inductive step, the hypothesis will be that R(A\D) ' R(A), then for any
step d in E \ D, Lemma 4.3.3 provides R(A \ (D ∪ {d})) ' R(A). Clearly,
when D contains all the steps of E, then E \D = M .

Theorem 4.3.3. Let M be a set of minimal events in (E,<), and let TM be
the set of all transitions carrying some label in M , then the graph representa-
tion of the transition system (S(L),M, TM ) is connected.

Proof. By construction, the graph associated with the saturated synthesised
transition system (S(L), E, T ) is a complete graph. It is therefore connected.
Now let s, s′ ∈ S(L). The proof follows an induction. Suppose [s, s′] is not
a minimal event. Then Lemma 4.3.2 shows that ∃s1/2 ∈ S(L) : s[[s, s1/2]〉
s1/2[[s1/2, s

′]〉s′. For the inductive step, assume there is a path s[e1〉s1[e2〉 . . .
[ei〉si[ei+1〉s′. Now, from Lemma 4.3.2 it holds that ∀ej+1 /∈ M : ∃sj1/2 such
that sj[[sj , sj1/2]〉sj1/2[[sj1/2, sj+1]〉sj+1.

Clearly,s[e1〉s1[e2〉 . . . sj[[sj , sj1/2]〉sj1/2[[sj1/2, sj+1]〉sj+1 . . . [ei〉si[ei+1〉s′
is a path connecting s and s′. The induction will then end with a path
connecting s and s′ where all arcs correspond to minimal events.

A direct consequence of this last theorem, is that the transition system
built as the saturated transition system but depicting only minimal events
satisfies the first axiom of Definition 2.2.3.





Chapter 5

A Logic for Concurrent
Systems

Characterising the class of orthomodular partial orders that arise as the struc-
ture of observable properties of distributed systems is the main goal in this
line of research. The problem is of particular relevance for the purpose of this
work. When an orthomodular partial order is not suitable for representing
local states of a system, the transition system built from it might present less
concurrent behaviour than intended. In [7] the problem was state, of whether
given an orthomodular partial order, then its saturated transition system car-
ries a set of regions isomorphic to it, whenever it arises as the set of regions of
some elementary transition system. It could be said that such an orthomod-
ular partial order is stable under synthesis of a transition system. In such a
situation, the two orthomodular partial orders that specify the boundaries for
the behaviour of the saturated transition system turn out to be isomorphic.
Since the saturated transition system presents all the synchronisations speci-
fied by the logic it is built from, and its set of regions specify the concurrency
it carries, if the two were isomorphic they would fully characterise the way
it can be distributed. When an orthomodular poset is stable, its saturated
transition system, as well as the system of minimal events presented in the
last chapter, can be distributed precisely as specified by the partial order.

However, not all orthomodular posets are stable. In particular, if an or-
thomdular poset is not rich, then the synthesised transition system may not
have enough states to distinguish regions as subsets of these. If it is not regu-
lar, then the synchronisations specified by its orthogonality relation will force
the saturated system to have more sequential components than the ones spec-
ified by the order. The fact that all regional partial orders are rich derives

123
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from classical results in the theory. Order structures of elementary regions
were also shown to be regular and to satisfy the so called triple intersection
property. The conjecture about stability under synthesis turned into a prob-
lem of characterisation. Indeed, one searches for non-general properties of
orthomodular partial orders, which always hold when these arise as sets of
elementary regions. Ideally these properties would help to prove that ordered
sets of regions are stable under synthesis.

In particular, in [7] richness was exploited to show that to every element
of an orthomdular partial order, there corresponds a region of its saturated
transition system, providing an injection of the first structure into the partial
order of regions of the system, which preserves the order. From regularity,
it was also derived that the compatibility relation must be preserved by this
injection, making it an actual embedding. In this way, in order to prove the
conjecture, it would be sufficient to show that such an embedding is surjective,
thus providing the desired isomorphism. In other terms, one would like to
show that if an orthomodular partial order is stable under synthesis, then no
additional property than the specified is actually observable on the synthesised
system.

In this chapter, another property of orthomodular posets, named eti, is
presented. It follows from the idea that the incompatibility relation translates
concurrency on the system, and that this concurrency must be expressed by
events. After formalising this notion, it will be shown to hold on every regional
partial order. Furthermore, it is shown that with this additional condition, the
embedding between the two logics of the stability problem preserves incom-
patibility. Equivalently, such an embedding reflects compatibility, a condition
that ranks it up from simple embedding to strong embedding. Of course, not
every embedding is strong, but every isomorphism is. In this way, the class
of stable orthomodular partial orders is narrowed down by the eti property.
Indeed, every regional partial order satisfies it.

Intuitively, just like regularity forces the saturated transition system to
present the specified sequential components, eti imposes concurrency to be
present as specified by incompatibility. In particular, two incompatible re-
gions correspond to properties which are observable from different sequential
components. When the embedding preserves incompatibility, two elements of
a logic specified to be in distinct sequential components will comply with the
specification as regions of the saturated transition system. They would cor-
respond to properties observable from different localities. Thus, if eti holds
in the specification, incompatibility can be used to represent independence of
local states. The embedding being strong, this independence is ensured to
hold in the saturated transition system. As a consequence, minimal regions
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of the specification, remain minimal in the transition system. They properly
contain no new region. Still, it is not guaranteed that no spurious synchro-
nisations may arise. Incompatibility, as a binary relation only ensures that
pairwise independence is preserved by the system. In proving that no unspec-
ified property is observable in the saturated system, one would try to extend
these notions of incompatibility and independence to arbitrary subsets of re-
gions. However, the range of possible combinations of this binary relation
leaves the problem of fully characterising stable orthomodular posets out of
the scope of this work.

Stability is proved,in the last section of this chapter, for restricted classes of
logics, in which the incompatibility relations follows given patterns. It is first
shown for trivial relations of incompatibility. Indeed, an empty incompatibility
encodes the fact that the system should present no concurrency. It is further
shown, that the parallel composition specifications of sequential components
remains stable under synthesis. It finally proved for independent sequential
components synchronising only through the same single local state.

5.1 Stability of Regional Logics

In the present section, The problem of whether the embedding of a logic L
into the ordered set of regions of the transition system constructed from L
is an isomorphism is exposed. Some counter-examples are proposed for the
general case, and the problem is restated by requiring of L to be a regional
logic.

5.1.1 Non-Regional Orthomodular Posets

Given a logic L, one can build its saturated transition system A(L). One
can then obtain a new logic as R(A(L)). Just like a transition system is
isomorphic to the case graph of its saturated net system, one would expect L
to be isomorphic to R(A(L)); this is in general not the case.

It is conjectured that when a logic L arises a the set of regions of a con-
dition/event system, then it is isomorphic to R(A(L)). In fact, all known
examples of regional logics are isomorphic to the The present section displays
some examples in which the saturated transition system obtained from a logic
L does not have a regional logic isomorphic to L. This should provide some
intuition on how to search for axioms that should be satisfied by regional
logics, in order for isomorphism to exist.
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x0 x1 x2 x3

y0
y1

y2
y3

z0 z1 z2 z3

Figure 5.1: Block diagram representation of a logic with 3 maximal Boolean
algebras of 4 atoms interfacing with 4 Boolean algebras of 3 atoms.

Example 5.1.1. Consider the logic L represented in Figure 5.1. It has 7
blocks. The horizontal blocks are characterized by the letters xi, yi, zi, and
the vertical ones by the indices i ∈ {0, 1, 2, 3}. The states of this logic can be
identified on the block diagram by using Theorem 4.3.1. A state is determined
by its set of atoms. They are a collection of atoms α which intersects each block
at a singe element. Hence, α should contain enough atoms to represent every
letter, and every index. Let k1 ∈ {0, 1, 2, 3}, and suppose α ∩ {xi}i≤3 = xk1.
Then yk1 ⊥ xk1 → yk1 /∈ α, and analogously for zk1. So let k2 ∈ {0, 1, 2, 3} \
{k1}, and suppose α∩{yi}i≤3 = yk2. For each k3 ∈ {k1, k2}, either zk3 ⊥ xk1,
or zk3 ⊥ yk2, and so zk3 /∈ α. Then pick k3 ∈ {0, 1, 2, 3} \ {k1, k2}, and
suppose α ∩ {zi}i≤3 = zk3. The remaining index k4 ∈ {0, 1, 2, 3} \ {k1, k2, k3}
corresponds to a block, and so it must be α∩{xk4 , yk4, zk4} 6= ∅. But xk4 ⊥ xk1,
yk4 ⊥ yk2, and zk4 ⊥ zk3, and so α can not represent a state. In particular this
logic has no states. As a consequence A(L) = (∅, ∅, ∅) is the trivial transition
system, and its set of regions is R(A(L)) = {∅}. This degenerate case is,
according to the first axiom of Definition 2.3.6, not even a logic, although
some authors agree in including it in the class. In any case L 6' R(A(L)).

The last example showed a logic with no states, an extreme case of non
rich logic. Its concrete representation is degenerate, and justifies the necessity
of regional logics being rich.

The following example displays a non regular logic, with the aim of justi-
fying the regularity requirement for regional logics.

Example 5.1.2. Consider the set Ω = {i ∈ N | 1 ≤ k ≤ 8}. Let ∆ = {S ⊆ Ω |
∃k ∈ N : |S| = 2∗k} be the collection of subsets of Ω with even cardinality. The
pair (Ω,∆) is a concrete logic, therefore ∆ forms a rich logic. The axioms of
Definition 4.2.5 are easily verified to hold. This logic, however, is not regular.
Consider the elements a = {1, 2, 3, 4}, b = {1, 2, 5, 6}, and c = {1, 3, 5, 7} of ∆.
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They are pairwise compatible. Consider, for example a∩ b = {1, 2} ∈ ∆, then
the set {{3, 4}, {1, 2}, {5, 6}} is an orthogonal covering of {a, b}, and so a $ b.
Analogously, a$ c, and b$ c. If ∆ were regular it should be hold that a$ (b∨ c).
This is not the case, since b ∨ c = {1, 2, 3, 5, 6, 7}, and a ∩ (b ∨ c) = {1, 2, 3}
has odd cardinality, and is not an element of ∆. The set {a, b ∨ c} does not
admit an orthogonal covering, and so the logic fails to be regular. As a matter
of fact, there is no collection of pairwise orthogonal elements such that their
joins generate all three a, b, and c.

Now, one can still try to synthesise a transition system as described in the
last chapter. Since (Ω,∆) is a concrete logic, the set of states of ∆ is known
to be isomorphic to Ω. Let x, y ∈ Ω, and consider the corresponding states
of ∆. Out of Theorem 4.3.1, these are characterised by the atoms of their
support, and so it is sufficient to consider sx = {a ∈ A(∆) | x ∈ a}, and
sy = {a ∈ A(∆) | y ∈ a}. Note that the atoms of ∆ are the subsets of Ω
consisting of two elements, so sx \sy = sx \{x, y}. Suppose x′, y′ ∈ Ω are such
that sx′ \ sy′ = sx \ {x, y}. Clearly, they must be x′ = x and y′ = y. Hence
the transition (sx, 〈sx \ sy, sy \ sx〉, sy) ∈ T (∆) is the only one carrying this
label. Thus, all labels on the saturated transition system are different, and the
uniform crossing property imposes no constraints on the regions: R(A(∆)) =
2Ω, the Boolean algebra with 256 elements. In particular, all singletons are
regions, and ∆ 6= R(A(∆)). This logic is not stable.

Note that in this last example, the fact that the synthesis of a transition
system fails to provide a set of regions isomorphic to the logic does not depend
on the cardinality of the carrier. This motivates the following example.

Example 5.1.3. Consider the set Ω = {i ∈ N | 1 ≤ k ≤ 6}. Let ∆ =
{S ⊆ Ω | ∃k ∈ N : |S| = 2 ∗ k} be the collection of subsets of Ω with even
cardinality. Just like in Example 5.1.2, ∆ forms a rich logic. Note that, in
this case, the synthesis procedure is analogous to the one in that example, and
the saturated transition system built on ∆ will have no repeated labels. In this
case, as well, its set of regions will be the Boolean algebra of the parts of Ω,
2Ω = R(A(∆)) 6= ∆. ∆ is not stable.

However, in this case, ∆ is regular. To see this consider three pairwise
compatible elements a, b, and c of ∆. Then, in particular, there is an orthog-
onal covering {b̃, d, c̃} for {b, c}. Since (Ω,∆) is concrete, d = b∩ c must have
even cardinality or be ∅. The cardinality of d admits 4 values. If |d| = 6,
then clearly |b| = |d| = |c|, and so b = d = c = Ω, and so a ⊂ Ω implies that
a $ b ∨ c. If |d| = 4, Then either b = d, or c = d, since the only element of ∆
strictly greater than d is Ω. Suppose b = d, then b ∨ c = c, and so a $ b ∨ c.
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If |d| = 0, then b = b̃, and c = c̃, so b ⊥ c. Hence, b ∩ c = ∅ and since a $ b
and a $ c, a ∩ b ∈ ∆, and a ∩ c ∈ ∆. Therefore, a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)
must have even cardinality and a $ (b ∪ c). Now, suppose |d| = 2, and sup-
pose that a ∩ d has an odd cardinality. Then a $ b implies there must be an
x ∈ (b ∩ a) \ c, and analogously, a y ∈ (c ∩ a) \ b. Then both b and c have at
least a cardinality of |d|+1, and since they are in ∆, it follows that these must
be either 4 or 6. If c has cardinality 6, then b ≤ c, and so b = d, contradicting
that a $ b. If b has cardinality 6, then analogously, c = d is a contradiction.
So suppose that |b| = |c| = 4. Then |b∩ c| = 2 means that b∪ c = Ω, and then
|a| = |a ∩ b|+ |a ∩ c| − |a ∩ d| must be odd, contradicting a ∈ ∆.

Hence (Ω,∆) is regular.

This last example is the most relevant for the characterisation of regional
logics. It shows that being rich and regular is not sufficient to be regional,
and guides the research of properties of regional logics.

There is an apparent pattern in the last two examples, they are constructed
as the subsets of even cardinality of a set of even cardinality. Note that,
when one considers either the subsets of odd cardinality, or a carrier of odd
cardinality, the resulting construction fails to be a logic.

Suppose that the carrier Ω has an odd number of elements. Then consider-
ing subsets of even cardinality would contradict the second axiom of Definition
4.2.5. Indeed the resulting poset would not be complemented. In fact, suppose
that Ω has odd cardinality. In order for (Ω,∆) to be complemented, ∆ could
not consist of the subsets of Ω of even cardinality, but then the disjoint union
of two elements would not be part of ∆, thus contradicting the third axiom
of Definition 4.2.5.

Continuing with the pattern of the two last examples, it is natural to
consider the following example:

Example 5.1.4. Consider Ω = {1, 2, 3, 4}, and ∆ = {S ⊆ Ω | |S| = 2} ∪
{∅,Ω}, the collection of subsets of even cardinality in Ω. This logic is trivially
rich, and regular. Each element is only compatible with its complement and
the trivial elements. Hence, states are obtained by selecting one element of
each pair of complements, and Ω. Since there are three such pairs, there must
be 23 states.

Consider a region r ∈ R(A(∆)), and suppose it is not the extension of an
element of ∆. Then for each x ∈ ∆ there is either a state in r which does not
contain x, or a state containing x which is not in r. Let x ∈ ∆ and suppose
∃s1 ∈ Sx′ ∩r. Then, out of Theorem 4.3.1, s2 = ↑((s ∩ A(∆) \ x′) ∪ {x})
is a state, and [s1, s2] = 〈{x′}, {x}〉. This event has four instances on the
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transition system, one for each selection of atoms among the two remaining
pairs. Then r must contain the four states that enable it, which coincide with
the extension of x′. Furthermore, none of remaining states can belong to r,
since they backward enable [s1, s2]. Then r must coincide with the extension
of x′.

Now suppose there is a state s1 ∈ Sx which is not in r. Then s1 ∈ Sx ∩r′,
and the previous argument applies, so that r′ is the extension of x. Then
clearly, r = Sx′.

Hence, ∆ = R(A(∆)).

This last example shows that the family of concrete logics built as the
subsets of even cardinality of a set of even cardinality does not have a consis-
tent behaviour regarding the synthesis of transition systems. The logic of the
last example is regional, however, it is not representable as the regions of a
transition system which has Ω as set of states.

5.1.2 A Characterisation Problem

The following problems arise naturally.

1. Given a logic L, build the condition/event transition sys-
tem A(L), and consider its regional logic R(A(L)). Is R(A(L))
isomorphic to L?.

2. Given a condition/event transition system A0, construct
the saturated transition system associated with its regional logic
A(R(A0)). Is A(R(A0)) isomorphic to A0?

The second question is shown to have a negative answer in the general
case. The following example serves as the proof.

Example 5.1.5. Consider the condition/event transition system A = (Q,E, T )
shown in Figure 5.2. Its regions are the trivial ones, ∅ and Q, plus x =
{1, 2, 5}, y = {1, 2, 6}, z = {1, 3, 5}, w = {1, 3, 6} and the respective com-
plements {3, 4, 6} = ({1, 2, 5})′, {3, 4, 5} = ({1, 2, 6})′, {2, 4, 6} = ({1, 3, 5})′
and {2, 4, 5} = ({1, 3, 6})′. The corresponding concrete logic is represented
in Figure 5.2 and its states are formed by choosing exactly one element from
each complementary pair of disjoint non-trivial regions. Hence, there are six-
teen states. When constructing the saturated transition system from the logic
R(A) = (R(A),⊆, (.)′, ∅, Q), that six out of the sixteen states in S(R(A)) cor-
respond to the original states of A. However, for each state q ∈ Q, Rq is
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Figure 5.2: A condition/event transition system and its regional logic.

a state of R(A), and labelling of transitions is preserved on the synthesised
system. For example, 〈R1 \R2,R2 \R1〉 = 〈R3 \R4,R4 \R3〉 is the image of
b by the embedding A ↪→ A(R(A)).

Hence, in the general case a condition/event transition system is not iso-
morphic to the saturated transition system built from its regional logic. How-
ever, it has been shown to be a subsystem of it. Indeed, given a condi-
tion/event transition system A = (Q,E, T ), consider the mapping

ψ : Q→ S(R(A))

q 7→ Rq

Proposition 4.2.6 shows that ψ maps states to states, and is well defined. Fur-
thermore, it follows trivially from Axiom 1 of Definition 2.2.8 that it is injec-
tive. Now consider two transitions carrying the same label, (q1, e, q2), (q3, e, q4) ∈
T . Then Proposition 4.2.7 shows that [ψ(q1), ψ(q2)] = [Rq1 ,Rq2 ] = [Rq3 ,Rq4 ] =
[ψ(q3), ψ(q4)]. Hence, labels are preserved by ψ. To show that ψ can be ex-
tended to a morphism of transition systems remains out of the scope of this
work. The following result can be found in [7].

Theorem 5.1.1. Let A be a condition/event transition system. Then A em-
beds into A(R(A)).

In order for this embedding to be an isomorphism, A should be itself a
saturated transition system. Problem 2 can be restated by requiring that A
was built from a logic.

3. Given a logic L, is A(R(A(L))) isomorphic to A(L)?
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Naturally, this new problem reduces to Problem 1.

Conversely, the logic presented in the last section, in Example 5.1.3 is a
rich and regular logic which is not stable, and so Problem 1 should as well be
restated

4. Given a condition/event transition system A, isR(A(R(A)))
isomorphic to R(A)?

Clearly, the Problems 3 and 4 reduce to each other, if one further requires
that the logic L in Problem 3 is regional.

Nevertheless, given a rich logic L, it can be shown to embed in R(A(L)).
The mapping

φ : L→ R(A(L)) (5.1)

x 7→ Sx (5.2)

was shown to be an injective morphism in [7]. The proof is here reported
informally, and it is further proved that φ is an embedding.

It is first shown that Sx is a region of the saturated transition system. This
is so when all transitions carrying the same label have a consistent orientation
with respect to Sx. Let (s1, [s1, s2], s2), (s3, [s3, s4], s4) ∈ T (L) with [s1, s2] =
[s3, s4]. Suppose s1 ∈ Sx and s2 /∈ Sx. Then x ∈ s1 \ s2 = s3 \ s4, and so
s3 ∈ Sx, but s4 /∈ Sx. Analogously one gets that if s1 /∈ Sx and s2 ∈ Sx, then
s3 /∈ Sx, and s4 ∈ Sx. Finally, if either s1 ∈ Sx and s2 ∈ Sx, or s1 /∈ Sx and
s2 /∈ Sx, then it holds that x /∈ s1 \ s2 = s3 \ s4, and x /∈ s2 \ s1 = s4 \ s3.
In any case, it holds that x ∈ s3 → x ∈ s4 and x ∈ s4 → x ∈ s3. Then
s3 ∈ Sx ↔ s4 ∈ Sx. So Sx must be a region.

To see that φ is a morphism of logics, one must verify the axioms of
Definition 2.3.8 (p.45). The first axiom is trivial since no state contains 0.
This is clear from the first axiom in Definition 4.2.6 of state: s(1) = 1. Then
every state satisfies that s(1′) = s(0) = 0, and so S0 = ∅. The second axiom
to verify is Sx′ = S(L) \ Sx. Note that x ⊥ x′, and from the Definition 4.2.6
of state, ∀s ∈ S(L) : s(x) + s(x′) = s(x ∨ x′) = s(1) = 1. Then clearly, either
x ∈ s, or x′ ∈ s, but never both. Finally, the last axiom requires that, given a
collection of pairwise orthogonal elements, then the join of their images is the
image of their joins. To see this, first note that if x ⊥ y, then Sx ∩Sy = ∅.
Since states are upwards closed in L, it holds that any states containing x must
contain all the elements above it. Analogously ∀s ∈ Sy : ∀z ∈ ↑{y} : s(z) = 1.
Then the least upper bound of x and y is the smallest element x ∨ y such
that s(x) = 1 or s(y) = 1 implies s(x ∨ y) = 1, and so Sx ∪Sy ⊆ Sx∨y.
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Furthermore, let s(x ∨ y) = s(x) + s(y). It implies that either s(x) = 1 or
s(y) = 1, so Sx∨y ⊆ Sx ∪Sy.

The fact that φ is injective follows directly from the Definition 4.2.7 of rich
logic. Indeed, if Sx = Sy, then Sx ⊆ Sy, and Sx ⊆ Sy. Since L is rich, x ≤ y
and y ≤ x so x = y.

A consequence of this result is that φ is an injective morphism. The
following proposition shows that its inverse, restricted to its image, is also a
morphism. As a consequence, φ is an embedding.

Proposition 5.1.1. Let L be a rich and regular logic, and φ : L→ R(A(L))
be defined by φ(x) = Sx for every x ∈ L. Then ψ̃ ≡ φ−1 �φ(L) is a logic
morphism.

Proof. Clearly, ∀x ∈ L : ψ̃(Sx) = x. Now, since L is rich, the only element
whose associated set of states is the bottom element, hence ψ̃(∅) = 0. Also,
ψ̃(S(L) \ Sx) = ψ̃(Sx′) = x′, so it preserves orthocomplements. Finally, con-
sider two disjoint Sx,Sy. Then Sx ⊆ S(L) \ Sy = Sy′ , and since L is rich,
x ⊥ y. From point 2. in Definition 4.2.6 it stands that {s ∈ S(L) | s(x ∨ y) =
1} = {s ∈ S(L) | s(x) = 1} ∪ {s ∈ S(L) | s(y) = 1} = Sx ∪ Sy. Hence
ψ̃(Sx ∪ Sy) = x ∨ y.

Theorem 5.1.2. Let L be a logic, then

φ : L→ R(A(L))

x 7→ Sx

is an embedding of logics.

The missing part of the proof that φ is an isomorphism is its surjectiveness.
Note that, since the logic of Example 5.1.3 is not isomorphic to the set of
regions of its saturated transition system. Additional conditions are certainly
to be required on the logic. This chapter explores the properties of regional
logics, in search for a condition that would allow to solve Problem 4.

As a technical remark, the following lemma gives a sufficient condition for
the morphism φ to be surjective. It requires of a logic to be finite, which is
reasonable when considering the regions of finite transition systems.

Lemma 5.1.1. Let L be a rich and finite logic, and φ as in Equation (5.1).
Suppose that ∀r ∈ R(A(L)) \ {∅} : ∃x ∈ L \ {0} : φ(x) ⊆ r. Then φ is
surjective.
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Proof. The proof follows an induction. Let r = r0 ∈ R(A(L)). There is an
x1 ∈ L \ {0} : φ(x1) ⊆ r0. Since φ is rich, it maps regions to regions, and out
of orthomodularity of L , the relative complement of φ(x1) in r0 is a region,
put r1 = r0 \φ(x1) ∈ R(A(L)). Now suppose ri = r\(

⋃
j≤i φ(xj)) ∈ R(A(L)),

then ∃xi+1 ∈ L \ {0} : φ(xi+1) ⊆ ri. Again, ri+1 = ri \ φ(xi+1) ∈ R(A(L)),
and furthermore ri+1 = r \ (

⋃
j≤i+1 φ(xj)). Now ∀i ∈ N : xi 6= 0, and φ

being an injective morphism of logics, it must hold that φ(xi) 6= ∅. Hence
∀i ∈ N : ri+1 ( ri. Then, out of finiteness of L, S(L) must also be finite.
So there must be an n ∈ N such that rn = ∅, and rn−1 = φ(xn). Note that
∀i ≤ n : φ(xi) ⊆ r = r0, and so rn = r \ (

⋃
j≤n φ(xj)) = ∅ implies that

r =
⋃
j≤n φ(xj)

Finally, note that by construction, ∀i ≤ n : ∀j < i : φ(xi) ∩ φ(xj) =
∅. Thus, {φ(xi)}i≤n is a disjoint collection of regions of R(A(L)). Since
φ−1�φ(L) is a morphism, out of Proposition 2.3.1,it preserves orthogonality. It
follows that {xi}i≤n is collection of pairwise orthogonal elements of L, and so∨
i≤n xi ∈ L. Since φ is a morphism φ(

∨
i≤n xi) =

⋃
i≤n φ(xi) = r.

With this result, surjectiveness of φ would be proven by showing that φ
maps some non-trivial element inside every non-empty region.

5.2 ETI and Strong embedding

This section investigates properties of regional logics, which are not common
to all logics. Richness and regularity exclude counterexamples to the stability
conjecture. It is shown that in [11] that regional logics satisfy the properties
called tip. This section introduces a new property verified by all regional
logics, which is necessary for a logic to be stable. It can be used to determine
subsets of events which are sufficient for the synthesised transition system built
on a given logic to present the same regions as the saturated one. Finally, this
property is used to show that the embedding of a logic in the poset of regions
of its saturated transition system is strong.

5.2.1 Properties of Regional Logics

The results of this section can be found in [14], where the property eti was
introduced.

The property tip results from the translation in the abstract setting of
quantum logic of a property of regions of transition systems, named triple
intersection property and which is expressed by the following lemma, the proof
of which can be found in [11].
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Lemma 5.2.1. Let A be a condition/event transition system, and let a, b, c ∈
R(A) be such that: a ∩ b = b ∩ c = c ∩ a, then z = a ∩ b ∩ c ∈ R(A).

The triple intersection property (tip) for a logic L is then obtained by
considering for any element in L the set of two-valued states selecting that el-
ement, and from the fact that this set identifies a region of the condition/event
transition system A(L) synthesised from L.

Definition 5.2.1 (Triple Intersection Property). A logic L is tip if

∀a, b, c ∈ L : Sa ∩ Sb = Sb ∩ Sc = Sc ∩ Sa ⇒ ∃z ∈ L : Sz = Sa ∩ Sb ∩ Sc

A new property is investigated, called eti. As well as tip, also eti is
inspired by a property of regions. If q1, q2, q3, and q4 are distinct states, so
that (q1, e, q2), and (q3, e, q4) are two different transitions in a condition/event
transition system A = (Q,E, T ), then R(A) must contain two incompatible
regions, one containing q1 and q2 but not q3, the other containing q1 and q3

but not q2. Hence, events with multiple occurrences, and pairs of incompatible
regions are related. In this sense, the events of an abstract logic L are said
to testify incompatibility ; L is said to be eti if, for any pair of incompatible
regions, the set E(L) contains an element witnessing this incompatibility.

Definition 5.2.2 (Events Testify Incompatibility). A logic L is eti if ∀a, b ∈
L : a 6$ b ⇒

∃s1 ∈ Sa ∩ Sb, sa ∈ Sa ∩ Sb′ , sb ∈ Sb ∩ Sa′ , s0 ∈ Sa′ ∩ Sb′ : sa \ s1 = s0 \ sb

When L is eti, it is ensured that concurrency among any two regions is
described by incompatibility.

Example 5.2.1. An example of a concrete logic which is neither tip nor eti
is the logic of the subsets of even cardinality of {1, 2, 3, 4, 5, 6}, already seen
in Example 5.1.3 (p.127). This logic is regular and rich, but not regional as
discussed in [7]. In order to see that L is not tip, consider the elements in L :
{1, 2}, {1, 3}, {1, 4}, then S{1,2}∩S{1,3} = S{1,3}∩S{1,4} = S{1,4}∩S{1,2} = {δ1},
where δ1 is the two-valued state of L selecting all the elements containing 1.
It is then immediate to see that there is no z in L such that Sz = {δ1}. L is
not eti since the symmetric differences among the six states of the associated
transition systems are all different, and then it is not possible for a pair of
incompatible elements of L to find pairs of equal symmetric differences.
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Any regional logic is tip, as shown in [11]. Although it is not yet known
if the two properties, eti and tip, coincide, it can be proven that eti implies
tip.

Theorem 5.2.1. Let L be a eti logic. Then L is tip.

Proof. By contradiction, let L be eti and not tip. Not tip means: ∃a, b, c ∈
L : Sa ∩ Sb = Sb ∩ Sc = Sc ∩ Sa 6= ∅ and ∀z ∈ L : Sz 6= Sa ∩ Sb ∩ Sc. There
are two cases.

First case: a $ b. Then since Sa ∩Sb 6= ∅, a 6⊥ b and then there exist three
mutually orthogonal elements â, b̂ and x in L such that a = â∨x and b = b̂∨x.
This implies Sa to be the disjoint union of Sâ and Sx, and Sb to be the disjoint
union of Sb̂ and Sx, yielding the contradiction: ∃x : Sx = Sa ∩ Sb = Sc ∩ Sa.

Second case: a6$b. Then, since L is eti, there are four states: s1 ∈ Sa∩Sb,
sa ∈ Sa ∩ Sb′ , sb ∈ Sb ∩ Sa′ , s0 ∈ Sa′ ∩ Sb′ such that: sa \ s1 = s0 \ sb. Then
s1 ∈ Sa ∩ Sb implies s1 ∈ Sc. Since Sc is a region in R(A(L)), then either
sa ∈ Sc, or sb ∈ Sc. In any case this contradicts the hypothesis Sa ∩ Sb =
Sb ∩ Sc = Sc ∩ Sa.

It will now be shown, that all regional logics are eti.

Theorem 5.2.2. Let A = (Q,E, T ) be a generalised condition/event transi-
tion system. Then R(A) is eti.

Proof. Let a, b ∈ R(A) be such that a 6$ b. Since a ∩ b = ∅ would imply a⊥b,
and a ∩ b ∈ R(A) would mean a $ b, there must be an event e ∈ E, and two
transitions (s1, e, s2), (s3, e, s4) ∈ T such that one of them crosses the border
of a ∩ b, and the other does not. Suppose, without loss of generality, that
s1 ∈ a ∩ b, and s2 /∈ a ∩ b, then clearly either s2 ∈ a \ b or s2 ∈ b \ a. After
symmetry of 6$, the two must be equivalent, so assume the first case holds.
Clearly, (s1, e, s2) crosses the border of b, which is a region, hence it must be
that s3 ∈ b and s4 /∈ b. (s3, e, s4) does not cross the border of a ∩ b, so clearly
s3 ∈ b \ a, but neither does (s3, e, s4) cross the border of a, hence s4 /∈ a ∪ b.
Then s1 ∈ a∩ b, s2 ∈ a\ b, s3 ∈ b\a and s4 /∈ a∪ b, furthermore, e ∈ E implies
that s2 \ s1 = s4 \ s3.

5.2.2 D-completeness, and ETI-completeness

The results of this section can be found in [13]

This section explores how the property eti can be used in order to reduce
the set of events considered in the synthesis of a transition system from a
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logic. In order to do so, D(L) is defined as the set of 4-tuples of states of a
logic L which identify concurrency between potential events.

Definition 5.2.3. Let L be a logic.
D(L) = {(s1, s2, s3, s4) | si ∈ S(L) for i = 1, · · · , 4, s1 6= s2, s1 6= s3, s1 \ s2 =
s3 \ s4}.

As stated in the following Lemma, any 4-tuple in D(L) identifies three
other 4-tuples in D(L) which can be considered equivalent regarding incom-
patibility of regions.

Lemma 5.2.2. If (s1, s2, s3, s4) ∈ D(L),
then {(s2, s1, s4, s3), (s1, s3, s2, s4), (s3, s1, s4, s2)} ⊆ D(L),
and {(s3, s4, s1, s2), (s4, s3, s2, s1), (s2, s4, s1, s3), (s4, s2, s3, s1)} ⊆ D(L).

Proof. It is first proved that s1\s2 = s3\s4 and s1 6= s2 imply s2\s1 = s4\s3,
and s1 \ s3 = s2 \ s4, and s3 \ s1 = s4 \ s2. Any two-valued state s satisfies
s(a) = 1⇔ s(a′) = 0. Hence s1 \ s2 = s3 \ s4 implies s2 \ s1 = s4 \ s3.

It will now be proved that s1\s2 = s3\s4 and s1 6= s2 imply s1\s3 = s2\s4.
It will be shown that s1\s3 ⊆ s2\s4, the proof of the containment in the other
direction being analogous. From x ∈ s1 \ s3 and s1 \ s2 = s3 \ s4, it follows:
x /∈ s3, x /∈ s1 \ s2, and then x ∈ s2 ∩ s1 and from s2 \ s1 = s4 \ s3 also x /∈ s4,
i.e. : x ∈ s2 \ s4. Finally, by symmetry of the equality in s1 \ s2 = s3 \ s4,
one obtains (s1, s2, s3, s4) ∈ D(L)⇔ (s3, s4, s1, s2) ∈ D(L), which by analogy,
completes the proof for the four remaining cases.

The set D(L) contains all the configurations of the saturated net system
which translate incompatibility of L into concurrency of events. As such, they
allow for preservation of this incompatibility.

Consider the synthesis of a generalised condition/event transition system
A0 = (S(L), E0, T0), in which, although the sets of states of A(L) and A0

coincide, the set of events, as symmetric differences, is restricted: E0 ( E. It
is still required that all transitions in T (L) carrying a label in E0 to be present
in T0 ( T (L). This notion is formalised in the following definition.

Definition 5.2.4. Let A = (Q,E, T ), and A0 = (Q0, E0, T0) be two gener-
alised condition/event transition system. Let A0 ≺ A denote that: Q = Q0,
E0 ⊆ E, T0 ⊆ T and ∀e ∈ E0 : (s, e, t) ∈ T ⇒ (s, e, t) ∈ T0.

Under these assumptions, a sufficient condition on E0 can be presented for
A0 to carry the same information as A(L) regarding concurrency.
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However, according to the definition of region, an event e might prevent a
subset of states from being a region. So withdrawing an event from E might
allow for more regions, but never exclude an existing region. This idea is
formalised in the following lemma.

Lemma 5.2.3. Let L be a logic, and A := A(L) = (S(L), E(L), T (L)) its
saturated transition system. Let A0 ≺ A. Then R(A) ⊆ R(A0).

Proof. Let r ∈ R(A). Then each e ∈ E(L) crosses r uniformly. Since E0 ⊆
E(L), the same holds for each event in E0. Hence r is a region in A0.

The property the set of events E0 has to fulfil for R(A) = R(A0) to hold is
as follows. A set of events E0 is called D-complete if for any set of equivalent
4-tuples in D(L), there is at least a label in E0 corresponding to one of the
symmetric differences associated with those tuples.

Definition 5.2.5 (D-complete System). Let E(L) = {[s1, s2] | s1, s2 ∈ S(L), s1 6=
s2}. A set E0 ⊆ E(L) is D-complete if for any (s1, s2, s3, s4) ∈ D(L), it holds:

[s1, s2] ∈ E0 ∨ [s2, s1] ∈ E0 ∨ [s1, s3] ∈ E0 ∨ [s3, s1] ∈ E0.

Theorem 5.2.3. Let L be a logic, and A := A(L) = (S(L), E(L), T (L)) its
synthesised saturated transition system. Let A0 = (S(L), E0, T0) be a gen-
eralised condition/event transition system such that A0 ≺ A. If E0 is D-
complete, then R(A) = R(A0).

Proof. Lemma 5.2.3 already provided R(A) ⊆ R(A0). It now suffices to prove
R(A0) ⊆ R(A).

Let r be a region in A0, and suppose that it is not a region in A. Then
there is an event e ∈ E(L) which does not cross the border of r uniformly in
A. Without losing in generality, assume that there (1, e, 2), (3, e, 4) ∈ T (L),
with 1, 2, 3 ∈ r and 4 6∈ r. Then the four states 1, 2, 3, and 4 form a dia-
mond. Since E0 is D-complete, it contains e0 corresponding to a pair of par-
allel edges in (1, 2, 3, 4). So either {(1, e0, 2), (3, e0, 4)}, {(2, e0, 1), (4, e0, 3)},
{(1, e0, 3), (2, e0, 4)}, or {(3, e0, 1), (4, e0, 2)} ⊆ T0. In any of these cases, one
of the transitions crosses the border of r while the other does not, thus r can
neither be a region of A0. Note that, for any of the possible configurations in
which e prevents r from being a region in A, the four possibilities for e0 are
the same, and any of them still prevents r from being a region in A0.

A set of events E0 ⊆ E(L) is called eti-complete if for any pair a and b of
incompatible elements of L there is a label in E0, with at least two occurrences
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in T0, such that either it crosses a and is parallel to b, or it crosses b and is
parallel to a.

Definition 5.2.6 (eti-complete System). E0 ⊆ E is eti-complete if ∀a, b ∈
L : (a 6$ b)⇒
( ∃[si, sj ] ∈ E0,∃ s1 ∈ Sa ∩ Sb, sa ∈ Sa ∩ Sb′ , sb ∈ Sb ∩ Sa′ , s0 ∈ Sa′ ∩ Sb′ :
(sa, s1, s0, sb) ∈ D(L) and [si, sj ] = [sa, s1] ∨ [si, sj ] = [s1, sa] ∨ [si, sj ] =
[sb, s1] ∨ [si, sj ] = [s1, sb] ).

Clearly, if L is eti and a 6$ b, the existence of a 4-tuple of states in D(L)
with equal symmetric differences is provided. For eti-completeness, only one
corresponding event is required in E0.

If L is not eti, then there exists no E0 which is eti-complete, and then,
from the following proposition, there is no E0 which is D-complete.

Proposition 5.2.1. Let L be a eti logic. Let A := A(L) = (S(L), E(L), T (L))
be the corresponding saturated CE transition system, and A0 ≺ A be such that
E0 is D-complete. Then E0 is eti-complete.

Proof. Let a, b ∈ L : a6$b, since L is eti there must be s1 ∈ a∩b, s2 ∈ a\b, s3 ∈
b \ a and s4 /∈ a ∪ b such that s2 \ s1 = s4 \ s3. Clearly, (s1, s2, s3, s4) ∈
D(L), and since E0 is D-complete, there must be an event e0 ∈ E0, and
a couple of transitions in T0 among the following: {(s1, e0, s2), (s3, e0, s4)},
{(s2, e0, s1), (s4, e0, s3)}, {(s1, e0, s3), (s2, e0, s4)}, or {(s3, e0, s1), (s4, e0, s2)}.
Now, E0 ⊆ E(L), so in particular e0 ∈ E(L) implying, by Lemma 5.2.2,
that either s2 \ s1 = s4 \ s3 and s1 \ s2 = s3 \ s4, or s3 \ s1 = s4 \ s2 and
s1 \ s3 = s2 \ s4.

This exercise in restricting the set of events considered in the synthesis, in a
manner analogous to the one in Chapter 4, shows that the eti property should
be sufficient to convey the incompatiblity to the regions of its synthesised
transition system, through concurrency of the events of the latter.

5.2.3 Strong Embedding

The results of this section can be found in [14]
The setting of Section 5.1.2, is recalled. Let L be a rich logic, and consider

φ : L→ R(A(L))

x 7→ Sx

then φ is an embedding of logics.
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Now, φ being an embedding means that L and R(A(L)) would be isomor-
phic if φ was surjective. It has also been seen in the previous section that L
being eti is a necessary condition for that. It shall now be seen that if L is
eti, the embedding satisfies a stronger property, required (but not sufficient)
for φ to be an isomorphism.

It is well known that logic morphisms preserve order, orthogonality and
compatibility [51]. Since φ is an embedding it shall also reflect these relations.
However, in general, this is only true when considering them restricted to the
image φ(L). Indeed, if φ is an embedding then L is isomorphic to φ(L), but
the lack of surjectiveness might, in the general case, allow the images of two
incompatible elements to be compatible. The next example shall explain this
notion.

Example 5.2.2. Consider the logic L = {0, u, u′, v, v′, 1}, and the Boolean
logic B whose atoms are {a1, a2, a3, a4} (Figure 5.3). Then the mapping given
by φ(u) = a1 ∨ a2, φ(u′) = a3 ∨ a4, φ(v) = a1 ∨ a3, φ(v′) = a2 ∨ a4 is indeed
an embedding. Since (a1 ∨ a2)′ = a3 ∨ a4 and (a1 ∨ a3)′ = a2 ∨ a4, the sublogic
L1 = {0, a1 ∨ a2, a3 ∨ a4, a1 ∨ a3, a2 ∨ a4, 1} of B is isomorphic to L. However,
when considered in the whole of B, one can see that a1 is both a1 ≤ a1 ∨ a2

and a1 ≤ a1∨a3, with {a1, a2, a3} mutually orthogonal in B. Thus φ(u)$φ(v),
whereas u 6$ v. This does not prevent φ from being an embedding because, in
fact a1, a2, a3 /∈ L1.

This example should justify the following definition (see [51]).

Definition 5.2.7 (Strong Embedding). Let φ : L1 → L2 be an embedding
between logics. Then φ is said to be a strong embedding if

∀a, b ∈ L1 : a $ b⇔ φ(a) $ φ(b)

For instance, a logic with incompatible elements cannot embed strongly
into a Boolean logic.

The next result shows that a logic L being eti is a sufficient condition for
φ : L→ R(A(L)) to be a strong embedding.

Theorem 5.2.4. Let L be a rich and regular logic. If L is eti, then the
embedding φ : L→ R(A(L)) defined as φ(x) = Sx is strong.

Proof. Theorem 5.1.1 shows that φ preserves compatibility, it will therefore be
sufficient to prove that it also preserves incompatibility. So let a, b ∈ L satisfy
a 6$ b. Since L is eti, ∃s1 ∈ Sa ∩ Sb, sa ∈ Sa ∩ Sb′ , sb ∈ Sb ∩ Sa′ , s0 ∈ Sa′ ∩ Sb′ :
sa \ s1 = s0 \ sb. Then e = [s1, sa] ∈ E(L) will be a label in the saturated
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Figure 5.3: An example of embedding which is not strong.

transition system A(L), and the transitions (s1, e, sa), (sb, e, s0) ∈ T (L) will
prevent Sa ∩ Sb from being a region. Indeed, (s1, e, sa) crosses the border of
Sa∩Sb, whereas (sb, e, s0) does not. Since R(A(L)) is a concrete logic, it holds
that Sa = φ(a) 6$ φ(b) = Sb.

This result implies, in particular, that if new regions are produced by the
synthesis procedure, these cannot be contained in the image by φ of an atom.
Orthocomplementation implies therefore that they cannot contain the images
of coatoms (maximal elements except for the top). Thus, the possible lack of
surjectiveness of φ is narrowed down.

5.3 Stable Classes of Logics

In this section a few subclasses of concrete logics will be studied to show that
they are stable. The presented results can be found in [14].

5.3.1 Boolean Algebras

To start with the simplest example, let L be a finite Boolean logic with k
atoms. Then L is a regular rich logic, isomorphic to the power set of {1, · · · , k},
in which singletons correspond to atoms. L has exactly k states, each corre-
sponding to ↑{x}, where x is an atom of L.
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This implies that all the ordered symmetric differences between states dif-
fer in at least one atom, so that each transition in A(L) carries a unique label,
and all subsets of states are regions. Hence, L and R(A(L)) are isomorphic,
and L is stable.

5.3.2 {0, 1}-pasting

The next case under consideration is that of a logic obtained as the so-called
{0, 1}-pasting of two (or more) logics. In plain words, the {0, 1}-pasting of
L1 and L2 is the disjoint union of L1 and L2, but for identification of 01 with
02, and 11 with 12 (see Figure 5.5).

Definition 5.3.1 ({0-1}-Pasting of Logics). Let L1 and L2 be two disjoint
logics with 0i, 1i for i = 1, 2 the respective least and greatest elements. Define
on L1 ∪ L2 the equivalence relation

∼:= {(a, a) | a ∈ L1 ∪ L2} ∪ {(01, 02), (11, 12)}.

Then the {0-1}-pasting of L1 and L2, denoted by L1 ||L2 is given by the set
(L1∪L2)/∼, together with the partial order obtained as the union of the partial
orders of L1 and L2, up to ∼.

The {0-1}-pasting of L1 and L2 is again a logic ([51], Prop. 1.2.6). Without
loss of generality, in what follows the notation concerning the {0-1}-pasting
of L1 and L2 will be simplified by indicating by the same element 0 and,
respectively, 1 the bottom and top elements in both L1 and L2.

Remark 5.3.1. As a useful consequence, the set of states S(L1 ||L2) of
L1 ||L2, consists in sets obtained by taking the union s1 ∪ s2 for any pair
of states s1 ∈ S(L1) and s2 ∈ S(L2).

The {0, 1}-pasting of logics is related to a construction on transition sys-
tems. Given two transition systems, A1 and A2, with disjoint sets of events,
a new one can be built by putting them side-by-side and letting them work in
parallel. States of this new transition system are pairs of “local” states of the
two components. The result will be called the parallel product of A1 and A2,
and denote it by A1 ||A2.

Definition 5.3.2 (Parallel Composition of Systems). Let Ai = (Qi, Ei, Ti) be
a condition/event transition system for i = 1, 2, with E1 ∩ E2 = ∅. Define

A1 ||A2 = (Q1 ×Q2, E1 ∪ E2, T )
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Figure 5.4: Hasse diagram of a Boolean algebra with 6 atoms.
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Figure 5.5: {0, 1}-pasting of the logic in Figure 4.1, and a Boolean algebra
with 3 atoms.

where

T ={((q1, q2), e, (q′1, q2)) | (q1, e, q
′
1) ∈ T1, q2 ∈ Q2} ∪

{((q1, q2), e, (q1, q
′
2)) | (q2, e, q

′
2) ∈ T2, q1 ∈ Q1}

The next lemma shows that the parallel product of transition systems and
the {0, 1}-pasting of logics are strictly related.

Proposition 5.3.1. Let Ai = (Qi, Ei, Ti) be a condition/event transition sys-
tem for i = 1, 2, with E1 ∩ E2 = ∅. Then R(A1 ||A2) and R(A1) ||R(A2) are
isomorphic logics.

Proof. By construction, if there is a transition ((q1, q2), e, (q′1, q2)) in T, then,
for each q′2 in Q2, T contains a transition ((q1, q

′
2), e, (q′1, q

′
2)). Hence, for each

region r of A1, the set r×Q2 is a region of A1 ||A2, and, for each region r of A2,
the same holds for the set Q1×r. For any region r of A1 ||A2, the projection of
its states on the first component must be a region of A1 (and symmetrically for
the projection on the second component), because in any transition only one
of the two components of a state will change; hence, the full set of non-trivial
regions of A1 ||A2 is given by {r ×Q2 | r ∈ R(A1)} ∪ {Q1 × r | r ∈ R(A2)}.

Proposition 5.3.2. Let L1 and L2 be stable regional logics. Then L = L1 ||L2

is a stable regional logic.

Proof. By Theorem 4.2.2, L can be identified with the isomorphic concrete
logic where each x in L is represented by Sx. Then, as discussed in Sec-
tion 5.1.2, L ⊆ R(A(L)).
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Figure 5.6: A condition/event transition system such that its poset of regions
is the one depicted in Figure 5.5. It is the product of the condition/event
transition system of Figure 2.7 and a sequence of three states.

Remark 5.3.1 implies that

S(L) = {s1 ∪ s2 | s1 ∈ S(L1), s2 ∈ S(L2)}.

Since s1∩s2 = {1} for each choice of s1 and s2 above, S(L) can be represented
as as S(L1)× S(L2).

A transition system can now be defined on S(L), by taking a subset of
the events and transitions of the saturated transition system. The idea is to
choose only the “local” transitions, namely transitions that change only one
component of a state. Define

EM ={[(s1, s2), (s′1, s2)] | s1, s
′
1 ∈ S(L1), s2 ∈ S(L2)} ∪

{[(s1, s2), (s1, s
′
2)] | s1 ∈ S(L1), s2, s

′
2 ∈ S(L2)}

All the transitions corresponding to labels in E must be considered.

TM ={((s1, s2), [(s1, s2), (s′1, s2)], (s′1, s2)) | s1, s
′
1 ∈ S(L1), s2 ∈ S(L2)} ∪

{((s1, s2), [(s1, s2), (s1, s
′
2)], (s1, s

′
2)) | s1 ∈ S(L1), s2, s

′
2 ∈ S(L2)}.

The transition system AM (L) = (S(L), EM , TM ) is a restriction of A(L), as
such, its set of regions is a superset of R(A(L)).

On the other hand, AM is isomorphic to A(L1) || A(L2). Apply Proposi-
tion 5.3.1, and the hypothesis of stability of L1 and L2 to derive

R(AM (L)) = R(A(L1) || A(L2)) = R(A(L1)) ||R(A(L2)) = L1 ||L2 = L
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and
L ⊆ R(A(L)) ⊆ R(AM (L)) = L

so that L = R(A(L)), and L is stable.

The construction and the argument above can be generalised to the case
of the {0, 1}-pasting of K logics by noting that L1 ||L2 ||L3 is isomorphic to
L1 || (L2 ||L3).

5.3.3 Logics with Centers

Let us now suppose that L is a rich, regular quantum logic, which is the
union of Boolean algebras such that their pairwise intersections are all the
same Boolean algebra. More formally, L =

⋃
i≤nBi, where {Bi}i≤n is a finite

family of finite Boolean algebras, and there is a Boolean algebra B such that
∀i 6= j : Bi ∩ Bj = B. B corresponds to what is called the centre of L in
[51], it is a sublogic of any Bi. An example of such a logic with n = 2 and
B = {0, x, x′, 1} has been given in Figure 4.1 (p.87). The synthesis of its
saturated transition system was discussed in 4.2.1 and is depicted in Figure
4.7 (both p.106).

It is proved that such logics are stable, for which it is required that the
centre B contains at least an atom of L. This is, however, always the case, as
shown in the following lemma.

Lemma 5.3.1. Let {B}∪{Bi}i≤n be a finite family of finite Boolean algebras,
and L be a logic such that L =

⋃
i≤nBi, and ∀i 6= j : Bi∩Bj = B. Then there

is at least one atom of B which is an atom of L.

Proof. Note that by construction, each Bi is a maximal Boolean subalgebra
of L. Hence, for any xi ∈ Bi \ B, and xj ∈ Bj \ B : i 6= j ⇒ xi 6$ xj . The
proof proceeds by reductio ad absurdum, so suppose that no atom of B is an
atom of L. Let x be an atom of B, then neither x nor x′ are atoms of L.
Then ∃ x1 ∈ L \ B : x1 < x, (hence x′ < x′1). Suppose w.l.g. that x1 ∈ B1.
Since x1 /∈ B it holds that ∀j 6= 1 : x1 /∈ Bj , and so x′1 /∈ Bj . It holds, in
particular for j = 2. On the other hand, B ( B2 and x /∈ {0L, 1L} imply that
∃x2 ∈ B2 \ B : x $ x2, hence x2 /∈ B1. there are two cases. Either x ⊥ x2,
or ∃y2 ∈ B2 : y2 = x ∧ x2 with y2 6= 0B2 = 0L, and since x is an atom of
B: y2 /∈ B1. From x ⊥ x2, it follows that x2 ≤ x′ ≤ x′1, so in particular
x′1 $ x2, hence x1 $ x2, which is in contradiction with (x1 /∈ B2) ∧ (x2 /∈ B1).
If y2 = x ∧ x2, then x′ < x′1 and x′ < y′2 with x′1 ∈ B1 \ B and y′2 ∈ B2 \ B.
Since, by hypothesis, x′ is not an atom of L, there must be an atom y of L
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such that y < x′, and y /∈ B. Now, there must be some i such that y ∈ Bi \B.
If i = 1 then y /∈ B2, so y 6$ y′2, but y < y′2, which is a contradiction. If i 6= 1
then y /∈ B1, and inconsistency follows from y < x′1 and y 6$ x′1.

The following result can now be proved.

Proposition 5.3.3. Let {B} ∪ {Bi}i≤n be a finite family of finite Boolean
algebras,and L be a logic such that L =

⋃
i≤nBi, and ∀i 6= j : Bi ∩ Bj = B.

Then L is stable.

Proof. Let AL denote the atoms of L. Lemma 5.3.1 shows, that some atom
of B is in AL. Since ∀i ≤ n : B ⊆ Bi, any pair of atoms x ∈ B ∩ AL, y ∈ AL
are orthogonal. Hence, a state containing an atom of L belonging to B will
contain no other atom in L. This allows us to partition the states of L into
two classes. On one hand, the class SB of states that contain exactly one
atom x ∈ AL ∩B. Since the family {Bi \B} is pairwise disjoint, the class S of
remaining states will contain exactly one atom in each of the set differences
Bi \B.

Now, the carrier of A(L), is the disjoint union of S and SB: S(L) = S∪SB.
Denote the states in S by ↑{xi}i≤n where each xi is an atom of Bi, and the
states in SB by ↑{x} where x is an atom of both B and L.

Let EM(L) := {〈↑{x} \ ↑{y}, ↑{y} \ ↑{x}〉 | ∃i ≤ n : x, y ∈ Bi \ B are
atoms } be the set of events associated with local transitions among states
of S, and define TM(L) as the set of all transitions in A(L) with labels in
EM(L). Finally, define AM (L) = (S(L), EM(L), TM(L)). Clearly, AM (L) is
a generalised transition system, which is a restriction of A(L). In particular,
every region of A(L) is also a region of AM (L).

AM (L) is not connected because the states ↑{x} ∈ SB are all isolated.
Each transition in A(L) starting from, or leading to, any ↑{x} carries a

unique label, which has no other occurrence. Hence, the singleton formed by
this state is a region in A(L), as it is in AM (L). Furthermore, such singleton
is disjoint to any other minimal region A(L), and so the corresponding region
is orthogonal to all other atoms of R(A(L)). It therefore belongs to its centre.
In fact, all subsets of SB are regions of A(L), and as a power set, they form a
Boolean algebra.

Now, each transition t ∈ TM(L) corresponds to an ordered pair of states
of S. For each such transition t = (↑{xi}i≤n, e, ↑{yi}i≤n), there is an in-
dex i ≤ n such that ∀j 6= i : xj = yj . In this way, two transitions t =
(↑{xi}i≤n, e, ↑{yi}i≤n) and t̃ = (↑{ui}i≤n, e, ↑{vi}i≤n) carry the same label
e ∈ EM(L) if and only if there is an i ≤ n, such that xi = ui, yi = vi, and
∀j 6= i : xj = yj and uj = vj .
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For each j ≤ n, let Aj be the sequential transition system synthesised
from the Boolean algebra generated by the atoms of Bj \ B. Then EM(L)
prevents any subset of S, which is not the disjoint union of sets of the form
{↑{xi}} ×Πj 6=iAj from being a region.

In this way, there is a natural bijection from the atoms of L to the atoms
of R(A(L)), which maps the x ∈ B to the singletons {↑{x}}, and the xi ∈
Bi \ B to {↑{xi}} × Πj 6=iAj . Such a bijection preserves orthogonality and
incompatibility, so that the logics generated by these atoms are isomorphic.





Chapter 6

Conclusions and Further
Research

This work has tackled the problem of distributing systems and the processes
they execute. The adopted approach is characterized by the consideration of
observability as a central notion. Algebraic structures allowing to handle the
idea of consistent observations have been studied considering how they can be
applied to the models of either processes, or systems. The models at stake are
taken from Petri net theory, and among these, elementary and condition/event
systems are chosen. The reason for the choice of these models is that, as Petri
net models, they allow for an accurate analysis of concurrency. Moreover,
elementary and condition/event systems are suitable to handle the notion of
observation in logical terms.

In the case of processes, the notion of subprocess introduced in [10] al-
lows one to determine which parts of the process can indeed be executed
independently. This is done by assuming that the flow of information in the
process induces the causal dependence among the occurrences that compose
it. Then the causal independence can be interpreted as a lack of information
flow. Hence, an observer could not have access to the information about both
a subprocess, and the subprocesses which are causally independent from it.
These subprocesses are described as subsets of the partial order which rep-
resents the causal dependencies of the occurrences of elements of a system.
These subsets, when ordered by inclusion, form an orthomodular lattice.

The features of this structure have been exploited in order to define, for
each process, an abstraction of it. The elements of this abstraction are the
minimal subprocesses described in [10]. This abstraction is shown to accu-
rately represent the two main features regarding distributability. First, when
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two parts of the process can be executed independently from each other. This
possibility is represented in the abstraction. Hence, the abstraction determines
which elements of the process can be run remotely from each other. Second,
under the assumption that the system responsible for running a process does
not have unlimited resources, the abstraction depicts all the flow of informa-
tion among the parts of the process. In some sense, the abstraction isolates
the parts of the system which must be executed together, representing them
as single elements, and gathers the information about their independence, or
their interactions.

In order to analyse how a system can be distributed, the approach follows
that of [7], which evolves, again, around the notion of observability. It is not
studied how to distribute the system in space, by splitting its components in
disjoint parts. Instead, the performed analysis provides parts of the system
which can be observed from a given location. In this way, the notion of se-
quential component arises as including, not only a localised part of the system,
but also all its interactions with the rest of the system. It is assumed that
the actions performed by the system are only observable by means of their
effect on its states. The theory of Petri net synthesis technically motivates the
fact that only local states are observable. Furthermore, this theory allows to
show that all observable properties can be implemented as local states of the
system, they are identified with the regions of the transition system modelling
the behaviour of a net system. Regions, when ordered by set inclusion, form
an orthomodular poset, which represents the logical structure of the proper-
ties which are observable on the system. The idea that observations can only
be performed locally motivates the choice of this structure as a specification
of the sequential components of the system. In [7], it was shown how to build
a transition system from a given specification in these terms, and that the
regions of this system contain all the elements of the specification. Intuitively,
this second kind of synthesis produces the model of a system in which se-
quential components are specified by the orthomodular poset. It is not shown
however, that no more sequential components than the ones specified arise in
the system.

The contribution of this work in this line of research has been of two
types. First, the transition system synthesised from an orthomodular poset
has been provided a structure, which binds the specification of the sequential
components of the system with the concurrency it depicts. This structure
provides mathematical tools to analyse how the information about the allowed
observations on the system induces concurrency on it. This has provided
insight on the problem of characterising the class of orthomodular posets which
are suitable specifications of the sequential components. Although the full
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characterisation remains a long term objective, the class has been restricted
by a property named eti (Events Testify Incompatibility).

It is shown that this property is sufficient to guarantee that pairwise inde-
pendent observations will correspond to local states which are implementable
remotely from one another. Since global states of the system will be composed
of groups of such local states, the full characterisation then reduces to scaling
this pairwise correspondence to the global states of the system.

The orthomodular lattices that arise in the study of non-sequential pro-
cesses are a subclass of orthomodular posets. Since orthomodular posets arise
in the study of distributed systems, as the structure of elementary regions of
transition systems, it is natural to wonder about their correspondence.

An interesting aspect of this consideration is that they display concurrency
dually. Orthomodular posets are, in general, characterised by the notions of
orthogonality and incompatibility.

In the case of systems, orthogonality translates mutual exclusion of ob-
servations. Two observations are orthogonal when they imply each other’s
negation. Observations are identified with potential local states of the sys-
tem. When considering all possible behaviour in a system, two local states
can only be mutually exclusive if they belong to the same component, they
depend on each other. In the case of processes, however, orthogonality ex-
presses the exact opposite, that two occurrences are independent from each
other. There is no flow of information among orthogonal parts of the process,
and so intuitively, these can be run from different locations. Consider the
maximal sets of pairwise orthogonal minimal elements. They generate the
Boolean sublogics of the orthomodular poset. These represent, in the case of
systems, a sequential component. In the case of processes, they represent the
occurrence of an element in each of them.

Dually, by selecting a minimal element in each sequential component of a
system, one obtains a global state of the system. Such a collection of minimal
elements represents the local states that compose the global one. The local
states in such a collection are, in particular, pairwise incompatible. Incompati-
bility in this sense translates the belonging to different sequential components.
Two incompatible elements of the orthomodular poset obtained from a system
are local states that can evolve independently from each other. Incompati-
bility, in the lattice obtained from a process is to be interpreted as causal
dependence. And in fact, the selection of one minimal element from each
Boolean algebra produces a line on the underlying partial order, a maximal
sequential subprocess. Naturally, such a line corresponds to a part of the pro-
cess that is required to happen in a given order. The duality between the two
orthomodular posets that arise when analysing concurrency in processes and
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systems motivates the study of this correspondence. In this line of research,
the main challenge is to make the two models comparable. Indeed, since one
is described on processes, and the other on systems, it is natural to try to
transport them in both directions. In trying to transport the orthomodular
lattice defined on processes to the systems that execute them, the first issue
one faces is the multiplicity of the processes a system can run. In general, to
one system there might correspond several processes, and hence several differ-
ent orthomoduar lattices. This question was already tackled in [6], where the
closure operator is extended to unfoldings. Unfoldings are compact represen-
tations of all the processes a system can run. However, the problem of going
from the set of occurrences of elements of a system to the system itself is not
trivial, and in particular, in the process, orthomodularity is lost.

The problem of transporting the orthomodular poset of local states of a
system to the framework of processes is not less challenging. Indeed, this
model represents which local states belong to the same sequential component,
but carries no information about the orientation of their causal dependences.
In this line, an appropriate approach to try to transport the orthomodular
poset of regions to the realm of processes would be to investigate the possible
orderings admitted among sets of pairwise orthogonal elements. In this line,
it seems that some results from graph theory could be applied, to be noted in
particular, the work on comparability graphs of, for example [43]. However,
such an ordering does not seem possible in general in orthmodular posets, and
so these results would depend on properties particular to regional structures.
This consideration calls for the full characterisation of the class of the latter.

Naturally, this characterisation problem is the most relevant continuation
of the present work. Regarding this line of research, it is to be noted that with
the results provided in this work, the characterisation reduces to extending
the correspondence between concurrency of events, and incompatibility of local
states from pairs of elements to full global states. The way local states compose
global states, however, strongly depends on the instance of orthomodular poset
under consideration, and the possible combinations grow very fast, even on
small models. It would be suitable to identify a property of regional partial
orders, that would narrow down the possibilities. Such a property would
be, in some sense, complementary to the one presented in this work, in fully
characterising the class of regional logics.

Finally, another open line of research is investigating the composition of
regional logics. As specifications of the sequential components of the system,
the modes of communication of the latter are specified by the way they overlap.
It would be interesting to define an operation which, given the specifications
of the structure of sequential components of the system, and a specification
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of an interface, merges them into one single model that would represent the
two parts interacting as specified. Regarding such a composition, the main
advantage of the approach followed in this work, is that the components of
the system, and the modes of interaction, admit a formalisation in the same
terms, thus reducing such a composition to the composition of two models with
respect to a third, all three formalised with the same mathematical apparatus.
Such a construction is well known in the literature, as amalgam. To this aim,
two approaches seem equally promising. The first one involves representability
of orthomodular posets as subsets of their sets of states. This relates it closely
to the composition of systems. The second would exploit representability in
terms of atoms, thus relating it closely to the theory of test spaces. In both
cases, the main challenge is to show that the result of such a composition
operation lies in the same class of models as its operands. This is known
not to be the case in general, and intuitively this means that not every such
composition would result in a regional poset.
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