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Abstract

Monitoring techniques can extract accurate data about the behavior of soft-
ware systems. When used in the field, they can reveal how applications
behave in real-world contexts and how programs are actually exercised by
their users. However, the collection, processing, and distribution of field
data must be done seamlessly and unobtrusively while users interact with
their applications.

To limit the intrusiveness of field monitoring a common approach is
to reduce the amount of collected data (e.g., to rare events and to crash
dumps), which, however, may severely affect the effectiveness of the tech-
niques that exploit field data.

This Ph.D. thesis investigates the trade-off between field monitoring
and the degradation of the user experience in interactive applications, that
is, applications that require user inputs to continue its operations. In
particular, we identified two big challenges: to understand how the user
perceives monitoring overhead and to study how to collect data in a non-
intrusive way without losing too much information.

In brief, we provide three main contributions. In the first place, we
present an empirical study aimed at quantifying if and to what extent the
monitoring overhead introduced in an interactive application is perceived
by users. The reported results can be exploited to carefully design analy-
sis procedures running in the field. In particular, we realized that users
do not perceive significant differences for an overhead of 80% and seldom
perceived an overhead of 140%.

Secondly, we introduce a monitoring framework for deriving comprehen-
sive runtime data without affecting the quality of the user experience. The
technique produces a finite state automaton that shows possible usages of
the application from the events observed in the field. From the model, it
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is also possible to extract accurate and comprehensive traces that could be
used to support various tasks, such as debugging, field failures reproduc-
tion and profiling.

Finally, we present a strategy to further reduce the impact of monitor-
ing by limiting the activity performed in parallel with users’ operations:
the strategy delays the saving of events to idle phases of the application
to reduce the impact on the user experience. The approach considerably
decreases the impact of monitoring on user operations producing highly
accurate traces.

The results obtained in this Ph.D. thesis can enable a range of testing
and analysis solutions that extensively exploit field data.
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Chapter 1

Practical Field Monitoring

The presentation of this chapter is organized as follows. Section 1.1 presents
the key role played by field monitoring to support software testing and anal-
ysis. Section 1.2 discusses the open challenges in field monitoring. Section
1.3 discusses the relation between field monitoring and user experience.
Section 1.4 presents the main contributions of this Ph.D. thesis work and
the organization of this document.

1.1 Monitoring Software in the Field

In order to give a better understanding about monitoring software in the
field we first need to give a formal definition of what a monitor is within
the context of this Ph.D. thesis: according to WordNet1, 6th interpreta-
tion, a monitor is a piece of electronic equipment that keeps track of the
operation of a system continuously and warns of trouble. This definition
remarks the fact that a monitor should capture and observe events, but
also must process the information acquired by the piece of software/hard-
ware. The Runtime Verification (RV) community conceives a monitor as
a piece of software/hardware that observes some behavior and checks its
correctness with respect to some property [6]. Differently, in the Software
Engineering community, a monitor is a piece of software that dynamically
collects information about a program’s behavior, but do not performs any
active control to search for problems [10]. In this Ph.D. thesis we adopt the
definition according to the Software Engineering community, however, the

1https://wordnet.princeton.edu
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findings of this work and the proposed solutions might very useful for the
RV community as well.

Fully assessing the robustness of software applications in-house is in-
feasible, especially if we consider the huge variety of hardly predictable
stimuli, environment and configurations that applications must handle in
the field.

Field monitoring techniques are useful because they can extract accu-
rate data about the behavior of software systems. When used in the field,
they can reveal how applications behave in real-world environments and
how programs are actually used by their users, capturing scenarios and
configurations relevant to practitioners, and how failures manifest and im-
pact user activity [31].

It is also well known that modern approaches to software development
consider the distinction between design-time and run-time as less and less
obvious [5]. For instance, DevOps extensively uses automation and mon-
itoring tools to reduce the gap between development and operation [69],
while several analysis solutions exploit the operational environment as a
testbed to analyze and test software [3, 32, 37].

The importance of observing the software when running in the field
has been already well recognized by industry and academia. For instance,
the video streaming company Netflix [55] has reported that its system has
grown so much that performing realistic testing in-house is nearly impos-
sible, so it has started testing and collecting data directly in the field, using
fault-injection and monitoring [8].

Indeed quality control activities such as testing [32, 31, 56] cannot be
limited to in-house verification and validation but must cross organization
boundaries spanning the field. Not only testing techniques are used in the
field. But other functionalities, such as crash reporting [24, 51, 20], are
extensively present in commercial and open source software.

Bug isolation techniques may also greatly benefit from the volume of
data that can be automatically extracted from the field [48, 40]. For in-
stance, field data may help profiling applications [27], improving code cov-
erage [60, 67], discovering and reproducing failures [41, 15], supporting
debugging tasks [61] and controlling software evolution [65].

Not only software engineering techniques take advantage of field data,
also runtime verification approaches exploit the collected data on the end-
user environment to verify the correctness of the runtime behavior of the
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system with respect to some property [34, 6].
However when the application is interactive, since monitoring might

need significant storage and computational resources, it may interfere with
users activities degrading the quality of the user experience [63, 18]. While
simple crash reporting requires taking a snapshot of the system at the time
of the crash [24, 51, 20] other solutions require monitoring applications
more extensively.

For instance, collecting the sequences of function calls produced by a
monitored system, and shipping the recorded information to developers
are activities that interfere with regular executions. Indeed, they might
introduce an annoying overhead and cause unacceptable slowdowns. Since
preventing any interference with the user activity is a mandatory require-
ment, for both real applications and research tools to be exploited by real
end users, monitoring techniques should address the challenge of collecting
field data by reducing the amount of collect data.

1.2 Field Monitoring Challenges

Actual techniques address the challenge of decreasing monitoring overhead
by limiting the amount of information we might obtain from remote in-
stances.

For instance, the set of collected events can be reduced in several ways:
(1) can be limited arbitrarily by selecting a part of the system to be ana-
lyzed considerably reducing the necessary instrumentation [67, 2, 64, 42].
(2) Can be also distributed among multiple instances of a same applica-
tion running on different machines, where each instance will be in charge
of monitoring a different aspect of the analysis [10, 65]. (3) Can be deter-
mined probabilistically, where each instrumentation point runs only with
a certain probability [7, 40, 14, 48]. (4) Can be limited by optimizing the
placement of instrumentation in field executions [60, 53]. (5) And it can be
also limited by collecting bursts of events, instead of monitoring full execu-
tions [35, 59].

In the runtime verification process the efficiency and unobtrusiveness
of collecting data from field is a fundamental stage. By definition monitors
should keep overhead low [6], especially when monitors are required to
be executed in parallel with the system under analysis (e.g., online and
synchronous monitors).
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The problem of cost-effectively monitoring field data might be further
complicated by the cost of saving the individual events. Most of the tech-
niques cited above focus on tracing simple information, such as the name of
an invoked method, but there is little research about cost-effectively tracing
expensive events, such as the value of data structures and the state of the
application, which may require saving runtime information about several
objects and variables.

The main objective of this Ph.D. work is to cost-effectively collect field data,
which may include expensive information for some of the collected events,
without affecting the end user experience.

1.3 On the Perception of the Monitoring Over-
head

It is clear that running analysis activities (e.g., profiling, testing, and pro-
gram analysis) in parallel with user activities may annoy users [63]. Since
the available resources are shared between all processes running in a same
environment, the analysis processes may introduce slowdowns in the user
processes, negatively affecting their experience. This is particularly true
for interactive applications, that is, applications that continuously interact
with users. Addressing the intrusiveness of monitoring implies getting a
better and deeper understanding of when users get annoyed due to moni-
toring overhead.

There exist studies about the absolute perception of time [46, 70], about
the capability to perceive small deviations in durations [46], and studies in-
vestigating the impact of slowdowns in specific situations, especially while
browsing the Web [38, 54]. Unfortunately, little is known about the actual
perception of any slowdown introduced in a program, and thus embedding
analysis strategies in software programs without annoying the users can
be challenging.

Identifying to what extent users may recognize slowdowns is extremely
important because it can be used to quantify the amount of resources that
can be consumed by any additional analysis process embedded in a program
running in the field.
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1.4 Main Contributions of this Thesis

This Ph.D. thesis provides three main contributions:

1. A study of the impact of the overhead on the user experience

This Ph.D. thesis presents an empirical study specifically aimed at
quantifying if and to what extent the overhead introduced in an inter-
active application is perceived by users. Since a user might execute
different kinds of operations of different complexity and different du-
ration while the system is slowed down, ranging from opening a menu
to submitting a complex query, we expect that the perception of the
overhead may depend on the nature of the operation that is executed
and on its context.

For this reason, we consider multiple categories of operations and se-
quences of operations executed in different order, investigating how
both factors may influence the perception of monitoring overhead (Chap-
ter 2).

2. A strategy to sample executions to avoid exposing users to sig-
nificant overhead

In this Ph.D. work we present a monitoring framework that can derive
comprehensive runtime data without affecting the quality of the user
experience.

Instead of limiting the size and number of events observed from the
field, the idea is to vary the timing of monitoring. For example, a
monitor might be turned on and off several times during the program
execution in order to collect pieces of traces, that might be merged
in a second step to produce more complete knowledge about software
behavior.

We thus collect bursts of executions, that is, partial traces with no in-
ternal gaps, annotated with state information that captures the state
of the monitored application at the beginning and end of the burst.

Although bursts include only partial information about a monitored
execution, they are complete when restricted to their time interval
(i.e., every monitored event produced by the application after the first
event of the trace fragment and before the last event of the trace frag-
ment also occurs in the burst).
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These bursts can be simply obtained by activating and deactivating a
monitor that records every relevant event. Since the monitor is used
intermittently, its impact on the user experience is limited.

The different collected bursts will be used to produce a Finite State
Automaton that shows how the monitored application has been used
in the field.

Since this approach, namely Controlled Burst Recording, does not
record full executions we might loss the full ordering of field events,
but still a good representation of the behavior of the application can
be given.

We assess our approach in a restricted, although common, scenario,
that is, recording the sequence of function calls produced by an appli-
cation, annotated with parameters and state information.

Many techniques exploit this type of field data, such as techniques for
reproducing failures [41], profiling users [27], Finite State Automa-
ton synthesis from traces [50], and controlling software evolution [65]
(Chapter 3).

3. A strategy to effectively save the captured data

Since field monitoring may slowdown the reactiveness of an interac-
tive application, our idea is to delay some operations of the monitoring
process to idle time to not impact directly on the user experience.

Since the process of saving the collected data to a persistent mem-
ory could be extremely expensive, the idle state of an application can
be exploited to decrease the probability of generating excessive lev-
els of overhead whenever the user is interacting with the monitored
application. With this third contribution, we are recording very lim-
ited amount of information in parallel with user activity and further
decreasing the impact on the user experience.

Since this approach is based on postponing the time when data is
saved, it may present the risk of losing data. However, the empir-
ical results show that the problem is relatively frequent and it can
be a reasonable penalty to pay compared to the benefit of recording
applications in the field (Chapter 4).
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Chapter 2

A User Study About the
Impact of the Overhead on
the Users

This chapter presents an empirical study specifically aimed at quantifying
if and to what extent the overhead introduced in an interactive application is
perceived by users. Since a user might execute different kinds of operations
of different complexity and different duration while the system is slowed
down, ranging from opening a menu to submitting a complex query, we
expect that the perception of the overhead may depend on the nature of the
operation that is executed and on its context. For this reason, we consider
multiple categories of operations and sequences of operations executed in
different order, investigating how both factors may influence the perception
of the overhead.

The presentation of the study is organized as follows. Section 2.1 presents
the categorization of the operations that we used in our study. Section 2.2
presents a preliminary study we conduct to investigate the possible over-
head levels to use in the actual experiment. Sections 2.3 and 2.4 present
the setting and the design of our experiment, respectively. Sections 2.5 and
2.6 discuss the obtained results and findings. Finally, Section 2.7 presents
some final considerations about the user study.
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2.1 Operation Categories: Perception of De-
layed System Response Time

The study we carried out in this chapter places in the Human Computer
Interaction area, in particular it focuses on the system response time [72,
71, 70] and its evaluation from the end-user point of view [23, 46, 13, 54,
57, 52, 38]. Even though in Chapter 5 we give more details about these
concepts, we anticipate that our study as far as we could find in the litera-
ture, it is the first one set up in this way, that is understanding the users’
reaction to the delay of the single actions in the system response time.

How the overhead is perceived is likely to be dependent on the kind of
operation that is affected by the overhead. For instance, users may perceive
differently a delay on the opening of a menu compared to a delay on the
processing time of a complex query. For this reason we explicitly considered
the type of operation as a factor in the study.

To classify operations we relied on existing studies from the human
computer interaction community. In particular, there are some interest-
ing studies [70, 71, 72] that correlate the nature of the operation to its
expected system response time (SRT), that is, the time elapsed between
the user request and the response of the application. These studies classify
operations in four categories with minor differences on the quantification
of the SRT associated with each category. For the purpose of our study,
we used the categorization defined by Seow [70] because he designed his
study considering the interaction between the users and the computer as
a conversation, that is consistent with the behavior of interactive software
applications like the ones we considered.

We thus used the following categories:

• Instantaneous: these are the most simple operations that can be per-
formed on an application, such as entering inputs or navigating through-
out menus (SRT: 200ms at most).

• Immediate: these are operations that are expected to generate acknowl-
edgments or very simple outputs (SRT: 1s at most).

• Continuous: these are operations that are requested to produce results
within a short time frame to not interrupt the dialog with the user (SRT:
5s at most).
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• Captive: these are operations requiring some relevant processing for
which users will wait for results, but will also give up if a response is
not produced within a certain time (SRT: 10s at most).

This categorization is complete for our purpose because interactive ap-
plications seldom have operations requiring more than 10s to be completed
and this is also true in our study.

2.2 Preliminary Study

We are interested in investigating how the overhead can affect the user
experience.

As stated before, the impact on the user experience can directly depend
on the kind operation that users perform. However, the particular over-
head level introduced by a certain monitor can also be a determinant factor
and thus, it could be interesting to understand how progressively slowing
down a system may affect the user experience. We propose to investigate
the correlation between the different overhead levels and the user experi-
ence through a preliminary study. The overhead levels will be useful for
the human-subjects study presented in the Section 2.3.

For this preliminary study we selected seven widely used interactive
programs of different sizes and complexity: MS Excel 2016, MS Outlook
2016, Notepad++ 6.9.2, Paint.NET 4.0.12, Winzip 20.5, and Adobe Reader
DC 2015. The monitoring activity consisted in collecting sequences of func-
tion calls from the different applications, in particular we instrumented the
software using a probe implemented with the Intel Pin Binary Instrumen-
tation tool [39]. The probe can be configured to use buffers of different sizes
to store data in memory before flushing data into a file.

To run each application, we have implemented Sikulix [36] test cases
that can be automatically executed to cover a typical usage scenario.

Each test case includes from 11 to 32 user actions, with a mean of 16
user actions per test. To assess the impact of the monitor, we measured
the overhead and we estimated its effect on the user experience. To accu-
rately investigate both factors, we collected data at the granularity of the
individual actions performed in the tests. That is, if a test case executes
actions a1 . . . an, we collect data about the overhead and its impact on the
user experience for each action ai with i = 1 . . . n.
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We collected data for both the application without the probe and the
application instrumented with our probe configured with buffers of differ-
ent sizes: 0MB (data is Immediately flushed to disk), 1MB, 25MB, 50MB,
75MB, 100MB, and 200MB. Experiments have been executed on a Windows
7 - 32bit machine equipped with 4GB of RAM. Each test has been repeated
5 times and mean values have been used to mitigate any effect due to the
non-determinism of the execution environment. Overall, we collected near
4,000 samples about the execution time of the actions.

While the overhead can be measured as the additional time consumed
by an application due to the presence of the monitor, it is important to
discuss how we estimated the effect of the monitor on the user experience.

In principle, assessing if a given overhead may or may not annoy users
requires direct user involvement. However, since the aim of this prelimi-
nary study is to get an intuition about the different overhead classes that
we could use in the human-subjects study, we thus rely directly in the
Seow’s System Response Categorization (i.e., Instantaneous, Immediate,
Continuous and Captive categories).

We attribute categories to actions based on their execution time when
no overhead is introduced in the system. We use the lower limit of each
category to this end. For instance, actions that take at most 100ms are
classified as Instantaneous, while actions that take more than 100ms but
less than 1s are classified as Immediate.

Figure 2.1: Actions classifications: on the left, to classify actions with no overhead,
on the right when monitoring is on. Blue for Instantaneous, black for Immediate.

We thus estimated the expected impact of the overhead on the user ex-
perience by measuring the number of slow actions, that is, the actions that
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exceed the upper limit of the response time for their category once affected
by the overhead. According to this classification, we assumed that the re-
sponse time of an action is acceptable by users as long as it is below the
upper limit of the category the action belongs to. Thus, an overhead that
increases the response time of an action without exceeding the upper limit
of the category (e.g., an Instantaneous action that takes less than 200ms

once affected by the overhead) would be hardly noticeable by users. On
the contrary, if the overhead increases the response time of an action above
the upper limit of the category (e.g., an Instantaneous action that takes
more than 200ms once affected by the overhead), the execution time of the
action would likely violate the user expectation, and the slowdown would
be recognizable by the users. Figure 2.1 shows the previous example of
classification.

2.2.1 Results of the Preliminary Study

In this section, we report the results that we obtained in our preliminary
study.

Figure 2.2: Percentage of slow actions for different overhead intervals.

We compute the percentage of slow actions distinguishing among In-
stantaneous, Immediate and Continuous actions. We plot these percent-
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ages in Figure 2.2, considering overhead intervals that produce similar re-
sults. We also indicate the overall percentage of slow actions in each over-
head interval. We do not plot the results for Captive actions because we had
only few actions belonging to this category in the tests, thus the collected
data are insufficient to produce relevant insights. However, the Captive
actions have been included in the computation of the overall percentage of
slow actions for each overhead interval.

We can first observe that an overhead up to 30% never caused a notice-
able slowdown for any kind of action. This result is partially in contrast
with the intuition that only a very small overhead could be tolerated in the
field.

An overhead in the range 30− 80% makes only a few actions exceed the
maximum response time for their category. In particular, only Continuous
actions show slowdowns that are likely to be perceived by users, while the
overall percentage of slow actions is low. This suggests that simple com-
putations can be safely monitored compared to complex operations, which
require more attention.

An overhead in the range 80−180% turns 13% of the actions into slow ac-
tions in average. Almost all categories of actions are affected, again with a
greater potential impact on the most complex operations. Higher overhead
values (> 180%) turns 20% into slow actions. Note that the plot reports a
significant effect on the Instantaneous actions only when the overhead is
greater than 600%. This is probably due to the simplicity of the actions,
which are still fast even for high percentage overhead.

These results show that a non trivial overhead (e.g., up to 30%) can
likely be introduced in the field with little impact on the users. This result
is coherent with the study described in [46], which shows that users are
usually unable to identify time variations smaller than 20%.

In a nutshell, through the study we identified different intervals of over-
head, where each interval has a certain effect on the perception of actions
of the System Response Time Categorization.

2.3 Experiment Setting

Based on the operation categories and, the overhead values analyzed in
the previous sections, we now present the human-subjects study aimed to
understand how the different overhead levels and the order of actions of
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the system response time may impact the user experience.
In this section, we provide detailed information about the experiment

goals, experimental subjects and research questions, according to Juristo
and Moreno [44]. The next sections discuss the specific design that we
adopted.

2.3.1 Goal and Research Questions

The goal of this experiment is to evaluate if and when users perceive delays
in the SRT for different operation categories, as discussed in Section 2.1.
The study is conducted under the perspective of software developers and
designers interested in investigating how much overhead can be introduced
in the applications without annoying users. This quantification is useful to
design appropriate monitoring, analysis and testing procedures running in
the field.

In particular, our study is driven by two research questions.

RQ1: Which overhead level may affect the user experience?
This research question investigates if and when users recognize the

overhead that affects a software application.
RQ2: Can the order of execution of the functionalities offered by an ap-

plication affect the user experience?
This research question investigates whether the perception of the over-

head depends on the order of execution of the functionalities.

2.3.2 Hypotheses, Factors and Treatment Levels

To answer RQ1, we analyze how users respond to different levels of over-
head considering multiple types of operations.

We use the overhead values from the preliminary study presented in
Section 2.2. Although the results were obtained without involving human
subjects in the experiment, the study identifies 30% and 80% as interest-
ing overhead values that may produce different reactions by users. Since
Killeen and Weiss [46] states that users are usually unable to identify time
variations smaller than 20%, we rather use 20% instead of 30% to be more
aligned with the literature.

To have an additional point of reference we also consider an overhead
of 140%, and we include the value 0% in the study to have a baseline to
compare to.
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To cover different types of operations, we selected the four categories of
operations described in Section 2.1.

RQ1 generates multiple null hypotheses to be tested: HXY : users tol-
erate equally all overheads when introduced into different operation cate-
gories. While the alternative hypotheses are: HXY :users do not equally tol-
erate all overheads when introduced into different operation categories. The
values of Overheads (X) and Operation Categories (Y ) are
{0%, 20%, 80%, 140%} and {Instantaneous, Immediate, Continuous and Cap-
tive}, respectively.

To answer RQ2 we considered how the order of execution of different
functionalities may affect the perception of time. For instance, running a
functionality that takes time followed by a functionality that terminates
quickly may make the execution of the latter functionality to appear faster
than it is in reality, and this may also affect the perception of the overhead.

Since the execution of a non-trivial functionality typically requires the
user to perform a task consisting of a sequence of simple operations (e.g.,
to browse across windows) followed by an expensive operation, we studied
this dependency in the context of short tasks ending with the execution of a
meaningful functionality. Based on Seow’s categorization (see Section 2.1),
this implies working with tasks composed of Instantaneous and Immediate
operations ending with either a Continuous or Captive operation.

The null hypothesis tested to address RQ2 is: H0 :The order of execution
of tasks ending with Continuous and Captive operations does not influence
the user perception of time. While the alternative hypothesis is: H1 :The
order of execution of tasks ending with Continuous and Captive operations
influences the user perception of time.

In addition to the factors discussed so far, the outcome of the experiment
may depend on the specific tasks that are executed during the experimental
sessions. For this reason, we also include the concrete task that is executed
as a factor.

Table 2.1 summarizes the considered factors and treatment levels.

2.3.3 Response Variables and Metrics

The response variable represents the effect of the different factors involved
in the experiment [44]. Both research questions RQ1 and RQ2 require a
variable that can measure the user experience as response variable [44].
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Table 2.1: Factors and Treatment Levels

Factors Treatment Levels
Overhead level 0%, 20%, 80%, 140%
Operation Category Instantaneous, Immediate, Continuous, Captive
Task Order Continuous-Captive, Captive-Continuous
Concrete Task The specific tasks used in the study

We choose the response time as the variable to measure our research
questions, since we are going to introduce slowdowns that affect directly
the system response time. As we are analyzing how users perceive this
property, we call it Perceived Response Time (PRT).

We measure PRT using a Likert scale, where participants can express
their perception with respect to the system response time. This scale goes
from “Too slow” to “Too fast” divided in five levels, with the third level cor-
responding to “Normal”. To be sure that participants are able to evaluate
if the application is responding differently, they should be aware of “which
the normality is”: for this reason, as described better later on, we selected
an application used by the subjects during their academic course, so that
they all have a reference SRT.

The response variable is measured after executing a task with the sub-
ject program, so that the users can actually express their opinion about the
system they just interacted with.

2.3.4 Experimental subjects

The subjects of the experiment are bachelor students of the first year of
Computer Science degree at the University of Milan-Bicocca. To replicate
the case of a user who interacts with a known application affected by over-
head, we selected Eclipse, since it is the IDE regularly used by the subjects
during their classes.

We recruited a total of 48 students who completed a demographic ques-
tionnaire before of the actual experiment. Table 2.2 shows some character-
istics and background of the participants.

Eclipse experience indicates the number of students who have already
worked with Eclipse IDE, and specifically with the version we used for the
experiment (Eclipse Mars). Note that almost the entire population of stu-
dents have used Eclipse. The size of the developed project indicates the
kind of projects students have already developed. All of them developed
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Table 2.2: Students’ background and characteristics.

Eclipse experience Eclipse Eclipse Mars
Number of students 47 31
Size of developed
project (# classes) 0 1-10 11-30 30-50 50-100 >100

Number of students 0 0 32 15 1 0

Figure 2.3: Experiment overview

projects with tens of classes, denoting some familiarity with the Java lan-
guage.

The average age of the participants is 20.8 years and most of them de-
clared to have more than 10 years of experience using interactive applica-
tions. According to these characteristics, the subjects can be considered to
be representative of a population of young but experienced users of inter-
active software applications.

2.4 Experiment Design

Figure 2.3 shows the high-level structure of our experiment. Each partici-
pant interacts with an application performing some tasks. The application
used by the participant is instrumented to respond according to configured
overhead level (0% in the case of the control group). Once a task is com-
pleted, the participant evaluates the quality of the interaction in terms of
the experienced SRT.

This high-level procedure can be instantiated in multiple ways. In the
next sections we describe the full design and discuss why it is clearly infea-
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sible to be adopted: then we describe the limitations to control the factors
and their combinations until reaching the final adopted design.

2.4.1 Full Design

When defining the tasks that the subjects should complete, if we limit the
design to tasks with one operation per SRT category (i.e., tasks with four
operations), we should in principle consider enough tasks to cover every
combination of SRT categories and order of operations inside the task, that
is, 4! = 24 possible tasks: this is prohibitive for multiple reasons. Using
24 tasks implies planning for very long laboratory sessions where a same
subject has to complete a large number of operations, with the major risk of
collecting inaccurate data once the level of attention starts dropping down.
Alternatively, the tasks can be split among subjects, but this requires re-
cruiting a very large number of participants to obtain statistically signifi-
cant results.

Moreover, each task can be instantiated with multiple concrete tasks
(for example, Eclipse implements multiple Continuous operations). Consid-
ering multiple ways of mapping an operation of a given SRT category into
a concrete operation (that is, mapping a task into a concrete one), would
make the overall set of concrete tasks to be used for the experiment to
growth further. It is thus mandatory to work with a small set of tasks, so
that the activity of the subjects involved in the experiment will be limited
in time.

Besides studying the impact of a certain level of overhead on the user
experience, it would be interesting to analyze the effect of variations on
this factor, that is, considering the order of the overhead values a subject
is exposed to as a factor. Since we consider 4 possible overhead values, all
the possible overhead orders over a sequence of four operations is a set of
44 = 256 combinations. Again, this number of combinations is impossible
to study in practice.

In the next section, we present the design decisions we made to obtain
a workable design.
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2.4.2 Design Decisions

Limiting categories order within a task

Not all combinations of operations are relevant in practice. Users typically
interact with applications by executing an initial sequence of short oper-
ations, such as clicking on menu items and browsing between windows,
to reach a functionality of interest, followed by the execution of the tar-
get functionality, which is often a rather expensive operation. It is thus
important to consider tasks composed of fast operations at the beginning
and a slow operation at the end. This is also consistent with our practical
experience on the definition of tasks in Eclipse where it was almost impos-
sible to reach an expensive operation (a Continuous or Captive operation)
without first executing a sequence of fast operations (an Instantaneous or
Immediate operation) from any state of the system.

These considerations led us to define two main types of tasks to be used
for our study. A task with some short operations at the beginning (both
Instantaneous and Immediate) and a Continuous operation at the end, and
another task also with short operations at the beginning but a Captive op-
eration at the end. The number of short operations depends on the activity
that must be performed to reach the functionality executed at the end of
task.

Limiting task instances

The two types of tasks that we identified can be mapped into many concrete
tasks by choosing different concrete operations of the right SRT category
each time. To keep the study small, while considering more than one option
for each SRT category, we consider two concrete tasks for each type of task,
obtaining four concrete tasks.

Fixing overhead order within a task

Our tasks are composed of few operations executed sequentially, with a
total duration of approximatively 10 seconds. While considering how sub-
jects react to dynamically changing values of the overhead is interesting,
it makes little sense to consider this in the scope of so short tasks. We
thus decided to focus the study on the perception of a constant percentage
of the overhead in the context of short tasks, leaving the investigation of
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how a dynamically changing overhead may influence the user experience
for future work.

Limiting task order

As discussed in Section 2.3.2, we are mainly interested in studying the
effect of the order of execution of Tasks with Continuous and Captive op-
erations on the perception of the overhead. Since we have four concrete
tasks, two with Continuous operations and two with Captive operations,
we can think of many different ways of arranging these four tasks one af-
ter the other. However, since the main focus is studying the switch from
a Continuous to a Captive operation and vice versa, we focus on two main
task orders: executing the tasks with Captive operations first and Contin-
uous operations next, and vice versa. Furthermore, since the focus is on
the switch from the task with the Captive operation to the task with the
Continuous operation and vice versa, we do not consider multiple orders
within the sequence of tasks of the same type, that is, we consider a same
order for the two tasks with the Captive operations and a same order for
the two tasks with the Continuous operations.

Fixing overhead order between tasks

To study overhead order, each subject has necessarily to execute multiple
tasks. In principle, each task could be exposed to a different overhead.
However, considering different overhead orders across tasks, in addition
to producing an infeasible set of overhead orders to be studied, would in-
terfere with one of the objectives of the experiment that is studying the
effect of moving from tasks with more expensive functionalities (Captive)
to less expensive functionalities (Continuous) and vice versa. In fact, when
switching from a task to another, in addition to changing the category of
the last operation that is executed, we would also change the overhead. For
this reason, we keep the overhead constant for all the tasks executed by a
same subject.

2.4.3 The Final Design

Based on the objective of the study and the design decisions discussed in
Section 2.4.2, we have clear constraints on the experiment. In particular,
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the study has to cover:

1. Four overhead values

2. Four standard SRT Categories

3. Two types of tasks (quick operations followed by a Continuous operation
and quick operations followed by a Captive operation)

4. Two task instances per task

5. Two task orders (Executing two tasks ending with a Captive operation
followed by two tasks ending with a Continuous operation, and vice
versa)

Table 2.3: Adopted design and setup.

Applied OHTask Order 0% 20% 80% 140%

Tasks with Continuous, then Tasks with Captive G1 G3 G5 G7
Tasks with Captive, then Tasks with Continuous G2 G4 G6 G8

The resulting design is shown in Table 2.3. The subjects are distributed
in eight groups G1-G8: groups G1, G3, G5, G7 first perform the two tasks
terminating with a Continuous operation and then the two tasks termi-
nating with a Captive operation, while groups G2, G4, G6 and G8 do the
opposite. This allows to study the impact of task order on the perception of
the overhead. In addition to Continuous and Captive operations, the tasks
include enough Instantaneous and Immediate operations (see description
of the tasks in next subsection) to cover all combinations of SRT and over-
head.

Each group works with a same overhead value for all the performed
tasks. Since the design is Between Overhead Values, that is, each group
will perform all the tasks (and consequently all the categories) with the
same overhead, we might confuse the effect of the overhead with the effect
of the group. To mitigate this risk we assigned people to groups randomly,
avoiding any bias in the definition of the groups.

2.4.4 Experimental Objects

The experimental objects are the tasks that the subjects perform during
the experiment, reflecting some of the different treatments proposed in the
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design [44]. In our case, the experimental objects are the four concrete
tasks that the participants to the experiment have to perform in different
order.

To design these four tasks, we first identified the operations imple-
mented in Eclipse that are either Continuous or Captive according to Seow’s
classification, and we also identified the shortest sequence of operations
that must be performed to reach the identified operation and run it. Among
these tasks, we finally selected the cases with the most balanced presence
of operations of the other categories. In the ideal case, we would like to
have one Instantaneous and one Immediate operation in each task. How-
ever, this was not always possible, and we had to tolerate the presence of
two Instantaneous operations in two tasks.

The resulting four tasks are defined as follows:

• Task1 - Clean&Build: click on Project menu and wait for the sub menu
being visualized (Instantaneous), click on Clean and open the dialog win-
dow (Immediate), and click on Ok to start the Clean&Build operation,
and wait for the progress window to be automatically closed (Captive)

• Task2 - Search: open the search window by clicking on the keyboard Ctrl
+ H (Immediate), click on Java Search tab (Instantaneous), enter the
string C* (Instantaneous), and click on Ok to start the search and wait
for the automatic closing of the dialog window (Captive)

• Task3 - Type Hierarchy: enlarge the project tree with a double click
(Instantaneous), select the src package with one click (Immediate), and
press F4 to start the creation of the Type Hierarchy (Continuous)

• Task4: Sort Members: click on the arrow near the name of the project to
expand its structure (Instantaneous), select the working package with a
click (Immediate), click on the Source menu (Instantaneous), and click on
Sort Members and wait for the end of the sorting operation (Continuous)

The total set of operations executed by performing the four tasks are
six Instantaneous operations, four Immediate operations, two Continuous
operations, and two Captive operations.

2.4.5 Experiment Procedure

The experimental procedure resembles the general structure represented
in Figure 2.3 and the detailed design shown in Table 2.3. In particular,
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all the participants to the study have been invited to join an experimental
session in a lab that we prepared for the purpose of the experiment. To
have a balanced number of people in each group, we asked the students
to subscribe for the experimental session in advance. We then randomly
distributed the students among the 8 groups to have 6 people per group.

The lab session started with a profiling questionnaire, whose main re-
sults are reported in Table 2.2. We then passed an instruction sheet giving
general information about the structure of the experiment and a general
description of the tasks that will be performed with Eclipse. Each partici-
pant performed the four tasks presented in Section 2.4.4 but in a different
order (tasks 3, 4, 1, 2 for the odd groups and tasks 1, 2, 3, 4 for the even
groups) and exposed to different overhead (see Table 2.3). Subjects were
not told about the specific aim of the experiment, nor about the fact that
tasks had overheads.

Each participant incrementally accessed the four sheets describing the
specific tasks to be performed with Eclipse, that is, the sheet with the de-
scription of the next task was accessible only once the previous task has
been completed. Each task is carefully described with text and screen-shots
to avoid any misunderstanding. Once a task is completed and before mov-
ing to the next task, the participant evaluated the perceived response time
of each operation that has been executed according to five possible levels:
“Too slow”, “Slower than Normal”, “Normal”, “Faster than Normal”, “Too
Fast”.

The subjects finally compiled an exit questionnaire to check whether the
performed operations were clearly explained.

To expose each instance of Eclipse to the right overhead, we used As-
pectJ and Equinox Weaving [26] to inject an aspect that altered the SRT of
each executed operation based on the group of the participant.

2.4.6 Data Analysis

There is controversy about the correctness of analyzing data measured in
Likert scale with parametric tests, as it is an ordinal scale [68]. However,
recent studies show that they are sufficiently robust [58]. There are two
options for analyzing a repeated measures design: a repeated measures
ANOVA and a mixed linear procedure. We cannot use a repeated measures
ANOVA because it requires all the tasks to have one operation for each SRT
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category, which is not the case in our design. We thus used a mixed linear
procedure.

A mixed linear procedure can deal with SRT Categories not being rep-
resented in all the tasks (Continuous operations in Tasks 1 and 2, and
Captive operations in Tasks 3 and 4), but it cannot deal with multiple oper-
ations of the same SRT category in the same task, as happening for Instan-
taneous operations in Task 2 and 4. So, we ran two analyses using either
the first or the second Instantaneous operation (only for tasks with mul-
tiple operations of the same SRT category), and we obtained exactly the
same significant interactions in both cases: we thus considered the first
operation only, discarding the second one.

When applying the mixed linear procedure, we examined six models: a
random effects model with no repeated measures, in which we represent
the grouping variable, in this case the subjects, as a random effect; and re-
peated measures models with the repeated effect Task and Operation Cat-
egory, where we explored five different types of covariance: Identity, Com-
pounded Symmetry, Diagonal, AR(1), Unstructured. We chose the model
that best fits our data, as described later on.

The mixed model requires that the residuals are approximately normal
distributed. The Kolmogorov-Smirnov and Shapiro-Wilk tests cannot be
used due to our sample size: with large sample sizes (> 100), they eas-
ily get significant results for small deviations from normality. Therefore,
a significant test does not necessarily tell us whether the deviation from
normality is enough to bias any statistical procedures that we apply to the
data [30]. So, we check normality with probability plots: if the residuals
of the model fit the normal line, we can proceed assuming that the error
terms are normally distributed.

The normal probability plot of the full factorial model (all four main ef-
fects plus all possible two, three, and four-way interactions) revealed severe
normality issues.

In complex models with several factors and interactions, it has been
observed that the normality issues can be corrected by removing some of
the higher-order interactions. In this case, we decided to remove the fourth-
order interaction, and to analyze data using a fractional factorial model.

We compared the considered over mentioned six models using the Akaike
Information Criterion (AIC), which is an estimator of the relative quality of
a statistic model for a given set of data. In particular, AIC is a measure of
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fit that penalizes models for having additional variables [30]. Smaller AIC
values indicate a better fit: we observe that the repeated-measures model
with unstructured covariance is the model with lowest AIC, and thus the
best model.

Figure 2.4: Normality plot for fractional model

We also checked the normality of the residuals for the selected model.
The corresponding plot is shown in Figure 2.4, and we can see that residu-
als show a good fit to the normal line. Although the fitting is not perfect, it
is adequate since the statistical test we are using is robust to slight devia-
tions from normality [33].

We thus finally selected the repeated-measures model with unstructured
covariance.

Besides analyzing the significance, we would like to study the exist-
ing strength (usually called effect size) between the given treatments. We
measure the strength of a correlation using the Spearman’s ρ index, which
returns a value between 0 and 1: values between 0 − 0.1 indicate a negli-
gible strength, values between 0.1 − 0.3 indicate a small strength, values
between 0.3 − 0.5 indicate a medium strength, and values greater than 0.5

indicate a high strength [16].
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2.5 Experiment Results

Figure 2.5 shows how the participants have classified the SRT of each cat-
egory of operation when exposed to different overhead levels. It is possible
to visually notice how the SRT is generally perceived as normal for all the
categories and overhead levels, with the exception of Captive operations
that are classified as slower than normal already when they are exposed to
no overhead, and their perceived SRT decreases for higher overhead levels.

Figure 2.5: Mean PRT of each operation in each Task for different overhead levels

We analyzed this visual trend and the rest of the factors controlled in
our experiment distinguishing statistically significant effects and their ef-
fect size. We used IBM SPSS Version 24 [19] for the analysis of the data.

Table 2.4 shows the significance (column p-value) of each factor and
their interactions (column Source).

The rows in gray correspond to interactions or main effects that are not
significant (according to a significance level equals to 0.05).

The table must be read from high-order interactions (i.e., the three-way
interactions reported at the top of the table) to low-order interactions (i.e.,
the main effects reported at the bottom of the table). When a n-way in-
teraction is included into a higher-order interaction, the n-way interaction
can be ignored since it is subsumed by the higher-order interaction. In our
case, we have three interactions (two three-way interactions and one two-
way interaction) that subsume all the other interactions and effects. We
indicated them in bold.
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Table 2.4: Type III Tests of Fixed Effects

Source p-value
Overhead * Task * Task Order 0.008
Overhead * Task * Operation Category 0.018
Overhead * Task Order * Operation Category 0.161
Task * Task Order * Operation Category 0.201
Task Order * Operation Category 0.005
Task * Operation Category 0.003
Task * Task Order 0.008
Overhead * Operation Category 0.195
Overhead * Task Order 0.003
Overhead * Task 0.000
Operation Category 0.000
Task Order 0.022
Task 0.001
Overhead 0.306

Table 2.4 shows that: (Int-1) the combination of the Overhead, the
specific Task that is executed and the Task Order; (Int-2) the Overhead,
the specific Task that is performed and the Operation Category; (Int-3)
the combination of the Task Order and of the Operation Category of the
operations that are executed, have an influence on the perceived response
time. In this section, we refer to these significant interactions to present
the specific cases that produce a significant effect on the response variable
together with their strength, referring to the two research questions that
we investigate with our study.

2.5.1 RQ1 - Impact of Overhead Levels

Captive Operations Are Particularly Sensitive to Overhead

Operations that require users to wait for the result are particularly critical
and must be exposed to overhead carefully. In our experiments, this was
true for Captive operations. Table 2.5 reports the cases where the operation
is significant in the interaction between tasks, operations categories and
overhead values (Int-2).

Figure 2.6 shows how operations from different tasks have been clas-
sified by users restricted to significant cases. Even when not affected by
any overhead (yellow square), users classified the SRT of Captive opera-
tions below normal. This differs significantly from the evaluation of the
other operations, such as the Instantaneous operations in task 1 and both
Instantaneous and Immediate operations in task 2, classified as normal.
We remind that Captive operations are present in tasks 1 and 2 only. This
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Table 2.5: Results interaction Task, Operation Category, and OH by comparing
different Operation Categories.

Task OH(%) Op. Category (i) Op. Category (j) Sig. Spearman’s ρ
1 0 Instantaneous Captive 0.020 0.187
1 80 Instantaneous Captive 0.000 0.093
1 80 Immediate Captive 0.000 0.057
1 140 Instantaneous Captive 0.000 0.322
1 140 Immediate Captive 0.000 0.000
2 0 Instantaneous Captive 0.013 0.134
2 0 Immediate Captive 0.028 0.289
2 140 Immediate Captive 0.028 0.331
3 0 Immediate Instantaneous 0.000 0.541

reveals a slightly bad attitude of the users in dealing with operations that
naturally require more than 5 seconds to complete.

Figure 2.6: Interaction between Operation Category and OH for Task 1 and 2.

This difficulty in accepting that complex operations require some time
to complete increases when a significant overhead is introduced. In fact,
when the overhead is 80% (red circle) and 140% (green triangle), Captive
operations are reported to be “Slower than normal”, while Instantaneous
and Immediate operations in tasks 1 and 2 remain normal. Although not
every combination of Captive operations, tasks, and overhead value is sig-
nificant, there is evidence that the overhead must be introduced carefully
on Captive operations because the user is reluctant to accept functionalities
that require more than 5 seconds to compute, even if this cost is justified.
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Table 2.6: Results interaction Task, Operation Category, and OH by comparing
different OH levels.

Task Op. Category OH% (i) OH% (j) Sig. Spearman’s ρ
3 Immediate 80 140 0.045 0.460
4 Immediate 0 140 0.025 0.408

Immediate Operations Are Sometime Sensitive to Overhead

We analyzed how users react to different overhead levels for the operations
belonging to the various categories and tasks (Int-2). Figure 2.7 shows
how users perceived a different SRT for the Immediate operations present
in tasks 3 and 4 once exposed to an overhead of 140% (Table 2.6 reports
the significant cases). Although Immediate operations typically consist of
navigation actions, the users perceived the presence of an overhead when
their SRT is more than doubled, while it was not the case for the other
operation categories. We interpret this as a sign that introducing overhead
in navigation actions can be done safely only up to a certain level, otherwise
the decreased responsiveness of the application may annoy users.

Figure 2.7: Interaction between Operation Category and Task for different OHs.

The Specific Nature of an Operation Matters

Our study shows that there are specific situations that may break general
rules, and thus the specific nature of the executed operation is often rele-
vant.
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For example, the SRT of the Instantaneous and Immediate operations
in task 3 has been perceived differently even when the operations are not
exposed to an overhead (see Table 2.5, last row). We attribute this behav-
ior to the nature of the operation. The Instantaneous operation in task 3
corresponds to double-clicking on the Project menu, and finishes when the
user sees the project tree expanded. The Immediate operation corresponds
to clicking on the folder name that the user wants to analyze. In this case
the operation finishes when the folder appears highlighted, which might be
sometime difficult to recognize.

Users Hardly Perceive Important Overhead Levels if Introduced
for a Limited Time

This is probably the most relevant result. Out of the many cases where the
SRT was increased with an overhead up to 140%, only in few cases the users
perceived an increased SRT. The statistical analysis revealed that only for
two Immediate operations exposed to 140% overhead users reported a sig-
nificant difference in the perception of the SRT (see Table 2.6). In addition
to this specific case, there is a general negative attitude with Captive op-
erations that is present already when there is no overhead, as illustrated
in Figure 2.5. In all the other cases, the users evaluated the operations as
running normally.

This suggests that, contrarily to the common belief that even little over-
head may annoy users, in reality users seldom detect overhead up to 140%,
as long as it is introduced for a limited number of operations. Indeed, our
experiment considers tasks of up to 4 operations with only one operation
causing a significant computation. We do not know how users would react
to the same overhead level if preserved for a higher number of operations.

2.5.2 RQ2 - Order of Operations

The Context Influences the Perceived SRT

In the context of RQ2, we studied if the order of execution of Tasks ending
with Continuous and Captive operations, which generally correspond to
the execution of application domain functionalities, might have an impact
on the PRT. The analysis of the interactions that include the Task Order
as a factor (Int-1 and Int-3) revealed multiple cases where the order
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of execution of Continuous and Captive operations has an impact on the
perceived SRT. In particular, the interaction between the Operation Cate-
gory and the Task Order (Int-3) is significant for Continuous operations
(p-value = 0.003, ρ = 0.062). Although the strength is negligible, we quickly
present this result because it is confirmed, with higher strength, for other
operations and tasks as discussed later.

Figure 2.8: Interaction between Operation Category and Task Order

Figure 2.8 shows how Tasks ending with Continuous and Captive op-
erations can be perceived differently if executed before or after the task
including the operation of the other kind. In particular, a Continuous op-
eration is perceived faster if executed after a task ended with a Captive
operation (second box) rather then before (first box).

That is, the execution of a long operation generates a pessimistic expec-
tation for the future, resulting in an optimistic perception of the response
time if the functionality that is later executed is faster than the previous
one. Although the effect has not been reported as significant, Captive op-
erations are also perceived better if executed before a task ended with a
Continuous operation (fourth box) rather than before (third box).

When considering the impact of Task Order on the three-way interac-
tion Int-1, we found that the PRT is affected by the order of execution
of the tasks in the following significant cases, also reported in Table 2.7:
i) task 1 when the overhead is 0% and in Task 2 when the overhead is
20%, with negligible strength; ii) task 4 when the overhead is 20%, with
small strength; iii) tasks 3 and 4 when the overhead is 80%, with small
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and medium strength, respectively; iv) task 3 when the overhead is 140%,
with medium strength.

Table 2.7: Results interaction Overhead, Task, and Task Order.

Task OH(%) T. Order(i) T. Order(j) Sig. Spearman’s ρ
1 0 Cont. then Capt. Capt. then Cont. 0.005 0.002
2 20 Capt. then Cont. Cont. then Capt. 0.001 0.093
3 80 Capt. then Cont. Cont. then Capt. 0.004 0.294
3 140 Cont. then Capt. Capt. then Cont. 0.041 0.408
4 20 Capt. then Cont. Cont. then Capt. 0.004 0.211
4 80 Capt. then Cont. Cont. then Capt. 0.004 0.394

These results show that in several practical cases the perception of the
SRT depends on the context, regardless of the overhead.

How users perceive the SRT in the cases with non-negligible strength is
graphically illustrated in Figure 2.9.

Figure 2.9: Significant Interactions between Task, Task Order, and Overhead

We can notice how the first operation that is executed (e.g., a Captive
operation) systematically influences the long lasting operation executed in
the following task (e.g., a Continuous operation) setting up an expectation
that can be satisfied or violated depending on the specific order of execution.
There is an exception for Task 3 with 140% overhead, where the evidence
goes in the opposite direction. This is likely due to users who might be
so annoyed by the bad responsiveness of the system that they run out of
patience once exposed to two Captive operations with an overhead of 140%.
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At this point, they might not be willing to accept any other long lasting
operation, such as a Continuous operation with 140% overhead, regardless
of its context of execution.

These results suggest that any overhead should be wisely introduced
taking the context into account. For instance, if a Captive operation is
followed by a Continuous operation, the user might be more likely to accept
a higher overhead on the Continuous operation, as long as the overhead is
not too high, because the Captive operation influenced the expectation of
the user. Vice versa, if the order of the two operations is exchanged, the
user might be unlikely to accept any overhead on the Captive operation
executed after the Continuous one.

2.5.3 Threats to validity

We now discuss the threats to the validity of our study.

The main threat to Conclusion Validity concerns the possible lack of
causality for the significant relationships that have been identified. To mit-
igate this risk we considered the strength of the reported evidence in the
discussion of the results. Moreover, to mitigate the risk that an interference
is produced by the organization in groups of the participants, we assigned
people to groups randomly.

The main threats to Construct Validity concern the way the overhead
has been introduced in the software and the clarity of the tasks performed
by the subjects. We controlled the overhead introduced in the software by
carefully designing the aspects based on the performance of the machines
in the lab used for the experiment. Note that all the machines have exactly
the same hardware and software. We tested the consistency of the behavior
of our software on every machine of the lab. We also asked the participants
to indicate if the activity they performed was clear in the exit questionnaire:
96.3% of the answers were positive and only 3.7% of the participants found
some unclear aspects. We can thus assume that the values collected for the
response variable were accurate.

The Internal Validity threats have been addressed in Section 2.4 with
the careful discussion of the design decisions that motivated our final de-
sign.

The main threat to the External Validity is the representativeness of the
participants and the application we used. The students we recruited acted
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as regular computer users, so their student status is not likely to represent
a threat on the external validity of the experiment. On the other hand, it is
known that the perception of time can be different for young people, adults,
and elderly people [23]. Our study is thus representative of the perception
of young people, and we cannot generalize to other classes of users.

We studied the perceived SRT for interactive applications (e.g., Eclipse)
covering multiple categories of operations. While the results are informa-
tive on how the overhead is perceived for computer applications, they are
not guaranteed to hold for Web applications, where the network may play
a relevant role on the SRT, and mobile applications, where the different
hardware and interaction modalities may have an impact. Additional stud-
ies are necessary to extend our findings to these other domains.

2.6 Findings

In this section we summarize the our main findings and discuss their im-
pact on analysis strategies working in the field.

Users are unlikely to recognize important overhead levels if in-
troduced for a limited number of interactions. Indeed users have
been able to perceive the variations in the SRT in a few cases only. This
implies that applications can be safely slowed down for as much as 80%
and often up to 140% of their regular SRT to support analyses running
in the field. This however can be done for interactions of limited length
(3 or 4 operations). We do not know if this overhead can be maintained
longer without having the users noticing it. This result opens to the design
of families of monitoring and analysis solutions that can opportunistically
consume significant resources for a limited amount of time.

Users might be quite sensitive to the overhead introduced in
long lasting operations. Users have been reported to be quite sensitive
to Captive operations, even when they are not exposed to any overhead.
This introduces a significant risk of annoying the user if the operation that
is slowed down requires between 5 and 10 seconds to complete. As a con-
sequence, monitoring and analysis solutions working in the field would be
better if activated selectively, avoiding to overlap with captive operations as
much as possible.

Significantly reducing the reactiveness of the system may im-
pact on the perceived SRT. In case of 140% overhead, users perceived

47



for some of the Immediate operations a reduced SRT. This means that nav-
igation and browsing operations, which can be normally completed quickly,
can be exposed to relevant overhead levels (e.g., 80%) but might be prob-
lematic if exposed to higher levels (e.g., 140%). Again, this calls for the
design of monitoring and analysis solutions working in the field that can be
selectively activated based on the nature of the operation.

The context of execution impacts on the perceived SRT. Based on
our study, the recent history of execution influences the perceived SRT. In
particular, we study this phenomenon for the operations that correspond
to domain functionalities and we discovered that Continuous operations
are perceived as faster if executed after Captive operations, that is, if ex-
ecuted after a slower operation, while not exposed to excessive overhead
levels (e.g., 140%). This introduces the challenge of having monitoring and
analysis strategies that keep track of the recent history of the execution and
exploit the context to opportunistically increase or reduce their activity.

The specific nature of an operation matters. There are of course
exceptions to these general good practices inferred from our study. This
means that any activity running in parallel with an application should be
carefully validated and refined to consider the specific characteristics of the
application.

2.7 Discussion

Development and operation are nowadays tightly integrated phases that
are sometime hard to distinguish one from the other. The operational en-
vironment is not only designed to provide services to users but is also con-
ceived as a monitoring, analysis and testing platform that can generate
valuable data about the quality of the application [69, 40, 48, 5, 27, 60, 41,
15].

So far the research focused on how to enrich the operational environ-
ment paying limited attention on how the generated overhead may impact
on the user experience. In this chapter we presented an empirical study
about how users perceive delay introduced in the applications that they
use. The main findings we distilled from this experience can be useful to
design and tune solutions that operate in the field. For instance, we discov-
ered that users did not perceive significant differences for an overhead of
80% and seldom perceived an overhead of 140%, that users are more sen-
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sitive to delays experienced on operations of specific categories, and that
the operations that have been recently executed may influence the user
perception.

Even though our results were obtained for understanding the impact
of monitoring overhead on the user experience, the results and findings
exposed in this chapter could be also used for understanding the impact
of any response delay in interactive applications, even if the delay is not
related to the monitoring overhead.

Particularly, these findings will be useful for the design and implemen-
tation of the monitoring strategies presented in Chapter 3 and 4. Since
monitors should not impact on the user experience while running in the
field, it is thus very important to guarantee that the overhead introduced
for each type of action respects the guidelines discovered in this human-
subjects study.
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Chapter 3

Controlled Burst
Recording

This chapter presents Controlled Burst Recording, a sampling technique for
monitoring applications and for inferring knowledge from field executions
with little impact on the user experience. This solution has been designed
based on the results obtained with the user study we conducted for under-
standing the impact of monitoring on the user experience. This chapter
presents also an empirical evaluation carried out on a real world applica-
tion for assessing the efficiency and the quality of the approach, compared
to other sampling-based techniques.

The presentation of the chapter is organized as follows. Section 3.1
presents an overview of the technique. Section 3.2 presents the Controlled
Burst Recording Framework and its different steps. Section 3.3 presents
the empirical validation we conducted to assess our technique. Finally,
Sections 3.4 and 3.5 discuss the obtained results and findings respectively.

3.1 Inferring Knowledge from Field Executions

Controlled Burst Recording, or CBR for short, is a technique to collect par-
tial traces from the field. These traces could be used to produce a com-
prehensive knowledge about how an object-oriented application is used by
different users in a wide range of possible scenarios and configurations.
In general, our goal is to efficiently monitor interactive applications, that
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is, applications that continuously interact with users. Since CBR is user-
oriented we aim to monitor traces that start and finish with a user interac-
tion.

Sampling-based techniques are useful to lower the monitoring over-
head, since the amount of samples gathered from field are strongly reduced
in a probabilistic way. In literature, sampling techniques have been widely
used for isolating bugs [48, 40], runtime verification [7, 43, 4] and bursty
monitors [35] (as described in Chapter 5).

CBR has been designed based on the results obtained in the user stud-
ies presented in Chapter 2. Interestingly, we discovered that users hardly
perceive important overhead levels if introduced for a limited time (see Sec-
tion 2.5.1), in particular, we observed that even for overhead levels of 140%
users struggle to recognize variations in the system response time with the
exception of some long lasting operations.

CBR leverages these results: since a significant overhead can often be
tolerated by users, traces of non-trivial length might be feasibly collected
from the field, but at the same time, since the impact of the monitoring
activity changes with the operation that is executed, monitoring must be
cleverly limited to prevent the introduction of an excessive overhead for
specific operations.

Given EV as the set of every possible event that can be produced by a
monitored application, a trace T = 〈e1, e2, ..., en〉, with ei ∈ EV, i = 1 . . . n is
an ordered sequence of events observed in the field.

In order to obtain a comprehensive information about the sequentiality
of the traces, we might collect state information at the moment the execu-
tion traces are collected in the field.

All this knowledge can be represented as a Finite State Automaton,
or FSA for short, where the states represent the state of the monitored
application and the transitions represent how the state of the application
changes as a consequence of the execution of a user operation.

Since several monitoring techniques in the literature collect method
calls, eventually annotated with parameters or state information [61, 41,
42, 59, 17], we also focus on the collection of this data type.

In a nutshell, Controlled Burst Recording is an approach that combines
chunks of execution recorded at different times to produce insights about
the field behavior of the application. With this approach we might loss full
ordering of the events in the FSA model, but since we are going to record
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partial traces at different times of the execution we expect not to impact on
the user experience.

In the following section, we present an overview of Controlled Burst
Recording and the main steps of the approach.

3.1.1 Overview of the Technique
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Classes 
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Figure 3.1: Overview of Controlled Burst Recording approach.

Figure 3.1 shows the steps that must be performed to apply CBR.
To start, practitioners indicate to CBR the components they would like

to monitor in the field. To extract data from the chosen components, CBR
identifies all the classes that may influence the usage of the components
(step 1).

This analysis is done by first selecting a subset of the system (e.g., com-
ponent) that has been defined as the monitoring goal and then by retrieving
all the relevant classes and their respective methods that exist inside the
selected component, which is the result of step 1.
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Given that CBR has been designed to sample executions from the field,
in order to decrease monitoring overhead, we can use program state infor-
mation to give a temporal context to the different traces by calculating the
state of the program before and after the set of events observed in the field.

This state information should be accurate enough to recognize differ-
ent application states between user inputs, and inexpensive enough to be
obtained at runtime so it does not add too much monitoring overhead.

One way to represent the state of an application is to consider the set
of values of all the variables at a certain moment t during the execution.
Certainly, acquiring this information is too expensive to be done at run-
time. An efficient way to perform this operation, is to subset the number of
variables and the amount of information CBR should save for each variable
while monitoring.

In the Function Extraction step (see Section 3.2.2), CBR analyzes the
relevant classes to distill the knowledge about the functions that may influ-
ence their execution, and thus influence the interaction with the monitored
components. In particular, CBR identifies a set of functions to be used to
derive an abstract representation of the current state: we call the set of
functions the Abstraction Functions, or AF for short.

The most intuitive way to derive the AF, is to extract from the appli-
cation’s code the functions that the application uses to define its execution
path according to the runtime value of the variables. CBR will only con-
sider those functions that helps to differentiate efficiently between differ-
ent states at runtime.

For instance, let us assume that the monitored components control the
interaction with the file system: if a method write may actually write to
a variable file only if its boolean variable open, which represents if the
file has been already open or not, is true, the Function Extraction step
would output the function file.open == true to indicate that the eval-
uation of this function may influence the interaction with the monitored
components. In general, the AF can capture important state information
that could be useful to understand how the application under monitoring
changes its state according to user inputs.

The AF are systematically applied to concrete states of the application
to produce an abstract representation of the program state to which they
were applied: these representations are called Abstract Program States, or
APS for short.
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The AF should have a proper balance in the abstraction level: too con-
crete functions can have bad implications, for instance checking all the field
values of the program variables would be too expensive to be assessed at
runtime (performance). On the other side, too abstract functions could gen-
erate poor program states that are not useful to distinguish different states
of the application while running in the field (precision).

After having defined the AF through an automatic extraction process
(see Section 3.2.2), the monitor is then assembled: the monitoring compo-
nent consists of the State Monitor and the Event Monitor. The State Mon-
itor produces concrete values of the AF at the beginning and at the end of
each stream of events, and the Event Monitor collects the events associated
with the component under monitoring.

To start using the State Monitor, we need to pass through a Train-
ing Phase (step 3) to produce the optimal set of functions for estimating
a proper representation of the state of the program. These steps are de-
scribed in details in Section 3.2.3.

Then, in the field, CBR uses the Abstraction Functions to produce a
compact and relevant representation of the state of the program, immedi-
ately before and after a stream of events is recorded (step 4).

A burst is a stream of consecutive events collected in the field enriched
with the state information at the beginning and at the end of each user
action. In particular, a burst B is given by a tuple B = 〈label, S1 T S2〉,
where label is the user action represented in B, S1 and S2 are two APS
produced by the AF and the trace T is the sequence of events collected in
the field.

Since CBR is implemented as a sampling technique, the different bursts
are collected probabilistically by turning on and off the monitor while run-
ning in the field.

The evaluation of the Abstraction Functions to a concrete state of the
program during runtime (i.e., the APS) is used within bursts to represent
the state of the application at a certain point of the execution.

The collected bursts are then analyzed offline. The APS at the beginning
and at the end of each burst abstractly represent the state of the system at
the time the trace was recorded. Since a program state directly depends
on the conditions actually computed by the program while interacting with
the monitored components, the APS is representative of how the execution
may proceed, specifically in terms of the interaction with the monitored

55



components.

In principle, a set of bursts might be used to form a Finite State Au-
tomaton, to show real uses of the application (step 5), where the edges of
the FSA represent the different user actions and the nodes represent the
possible program states. Finite state automaton-based abstractions of soft-
ware behavior are popular since they can be used as the basis for automated
verification and validation techniques [75], such as detection of anomalous
behaviors, protocol verification, testing, among others.

The literature on synthesizing FSAs that describe the behavior of a sys-
tem is vast, some particularly relevant works include Wil van der Aalst’s
[74] book, entirely devoted to mining processes from observed data. Also,
Lorenzoli et al. [50] worked on GK-Tail, a technique for automatically gen-
erating extended finite state machines from interaction traces. The tech-
nique focuses on the relations between constraints on data values on com-
ponent interactions, retrieving more accurate models for analysis and test-
ing techniques. In the same direction, Krka et al. [47] developed a FSA
inference technique that uses not only execution traces but also program
invariants in order to obtain relevant internal state information of the pro-
gram variables and to produce more reliable models. Recently, Walkinshaw
et al. [76] proposed an approach for inferring extended FSAs from software
executions, this work focuses on addressing the non-determinism and the
inflexibility problem of automatically generated FSAs.

Usually the functions that represent the values of the states of a FSA
are obtained automatically (e.g., Daikon [28]) or manually (e.g., written by
practitioners). Controlled Burst Recording introduces a new strategy for
function extraction that is based on the actual software source code and
should produce more precise and personalized FSA models.

To create the FSA, we merge the different bursts collected in the field
that have a common state, intuitively a burst that ends with a certain state
can be concatenated with a burst that starts with the same abstract pro-
gram state, because it represents two consecutive actions performed by the
user in the application.

The main reason for generating these FSA is representing the possible
executions of an application, which may be useful to analyze the scenarios
that may occur in the field.
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3.2 Controlled Burst Recording Framework

The most important activity performed by CBR is the identification of the
functions that are later used to represent the Abstract Program State, that
is, a compact and abstract representation of the state at the time the col-
lection of a burst is started or stopped.

In this section, we use a small example to present the different steps of
Controlled Burst Recording Framework.

Consider a Java program that includes the Cart class (see Listing 3.1),
which represents a shopping cart of an online store. The Cart class imple-
ments four different methods and the Product inner class: the addItem

method adds a Product object to the shopping cart, which is represented
by an array of Product type, the emptyCart method empties the shopping
cart, the calculateTotal method estimates the total price of all the prod-
ucts in the cart and the applyDiscount method applies a discount to the
total price.

Let us assume that we want to collect data about how a certain program
uses the Cart class, focusing on the sequences of method calls produced
by the program. Capturing every call to every method of the Cart class
might be expensive for operations that extensively use the public methods
implemented by the Cart class.

1 public class Cart {
2
3 static int PRICE = 1000;
4 static double DISCOUNT = 0.8;
5 static double TAX_PERCENTAGE = 0.22;
6 static int CART_SIZE = 30;
7
8 Product[] products;
9 int nProducts = 0;

10 double total = 0;
11
12 public void addItem(Product product) {
13 if (nProducts == 0) {
14 products = new Product[CART_SIZE];
15 }
16 products[nProducts] = product;
17 nProducts++;
18 }
19
20 public void emptyCart() {
21 if (nProducts > 0)
22 products = new Product[CART_SIZE];
23 }
24
25 public void applyDiscount() {
26 for (int i = 0; i < nProducts; i++)
27 if (products[i].value < PRICE)
28 return;
29 total = total * DISCOUNT;
30 }
31
32 public double calculateTotal() {
33 for (Product p : products) {
34 double pTaxes = 0;
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35 if (p.taxFree)
36 pTaxes = 0;
37 else
38 pTaxes = p.value * TAX_PERCENTAGE;
39 total = total + p.value + pTaxes;
40 }
41 return total;
42 }
43
44 public class Product {
45 int value;
46 boolean taxFree;
47 }
48
49 }

Listing 3.1: Shopping Cart Class

3.2.1 Step 1: Classes Identification

The Classes Identification step produces the set of classes that directly or
indirectly determine the sequence of invocations to the methods in the
monitored component. To derive the set of classes, practitioners need to
indicate the component(s) of interest within the application under moni-
toring. Since one of the goals of CBR is to generate as little monitoring
overhead as possible, it is important to include under the monitoring objec-
tive only those classes that are directly involved within the functionalities
being monitored.

The set of classes is determined statically by extracting from the moni-
tored component all the classes that exist inside the program. Then, with
the help of WALA [22] static analysis tool, CBR constructs the Class Hi-
erarchy of the program under monitoring and extracts all the classes that
match the scope of the monitoring.

Later, we save the meta-data of all methods existing inside the classes
we already gathered through the Class Hierarchy.

In our example, we are interested in understanding the behavior of the
class Cart, so CBR considers the Cart and its Product inner class for the
analysis.

3.2.2 Step 2: Function Extraction

CBR uses the classes produced during the step 1 to extract the Abstrac-
tion Functions that represent how the value of the state variables that
may influence the execution of the monitored program. These functions are
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exploited at runtime to record state information efficiently, that is, repre-
senting the state of the application with a proper abstraction level so we
avoid performance and precision issues as stated in Section 3.1.1.

The Abstraction Functions computed by the monitored program, and in
particular the ones computed in the relevant classes, are a set of functions
that can be naturally exploited to define an efficient abstraction strategy
that can be applied at runtime to generate the program state.

Application

Component 1

Component 2

Component 3

Abstract 
Functions 

 F = {f1,f2,…,fn}

Function 
Extraction

fn(t) = {T,F,U}f1 

f2 

fn 

(Symbolic Execution)

Figure 3.2: Function Extraction process.

To extract the Abstraction Functions from the code (see Figure 3.2), we
symbolically execute each method in each selected class and use the path
conditions resulting from the analysis of each method as functions for state
abstraction. A path condition is a condition on the state variables of a pro-
gram, and the Abstraction Functions are the application of these conditions
to the program state.

We use the JBSE [11] symbolic executor to compute the Abstraction
Functions from the relevant classes, bounding the exploration of loops.

Note that a path condition represents how the inputs to a method, that
is, the values of the parameters and the values of state variables, relate to
the execution of a specific path inside the method. Path conditions are a
good abstraction because they show how applications use inputs and state
variables.

For instance, the Abstraction Functions could be composed by a partic-
ular function that checks if the number of products in a shopping cart is
greater than zero to decide how to use the shopping cart, in this case it
would be enough to record whether the condition nrProducts > 0 is true
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or not when saving state information, with no need of recording the ac-
tual number of products, which would be irrelevant to determine how the
execution may proceed.

The Abstraction Functions capture relevant state properties and rep-
resent the different execution paths, that in turn may produce different
sequences of invocations to the monitored classes. Each evaluation of these
functions at runtime produces the program state of the application.

From our Cart class example, the resulting Abstraction Functions in-
clude the following functions for each method:
1 Function 1
2 /* corresponds to the if condition in line 13, false case */
3
4 Cart.nProducts != 0 && Cart.products.length >= 0
5
6 Function 2
7 /* corresponds to line 14 */
8
9 Cart.nProducts == 0 && Cart.CART_SIZE >= 0 && Cart.nProducts < Cart.CART_SIZE

10
11 Function 3
12 /* corresponds to line 14 */
13
14 Cart.nProducts == 0 && Cart.CART_SIZE >= 0 && Cart.nProducts >= Cart.CART_SIZE
15
16 Function 4
17 /* corresponds to the if condition in line 13, true case */
18
19 Cart.nProducts == 0 && Cart.products.length == 0

Listing 3.2: Functions for method addItem

1 Function 1
2 /* corresponds to the condition for entering into the for loop in line 26,

false case */
3
4 Cart.nProducts > 0 && Cart.products.length > 0
5
6 Function 2
7 /* corresponds to the condition for entering into the for loop in line 26,

true case */
8
9 Cart.nProducts > 0 && Cart.products.length == 0

10
11 Function 3
12 /* corresponds to the if condition in line 27, false case */
13
14 Cart.nProducts > 0 && Cart.products.length > 0 && Cart.products.[0].value >=

Cart.PRICE
15
16 Function 4
17 /* corresponds to the if condition in line 27, true case */
18
19 Cart.nProducts > 0 && Cart.products.length > 0 && Cart.products.[0].value <

Cart.PRICE

Listing 3.3: Functions for method applyDiscount

1 Function 1
2 /* corresponds to line 35 when taxFree is true */
3
4 Cart.products.length > 0 && Cart.products.[0].taxFree == true
5
6 Function 2
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7 /* corresponds to line 37 when taxFree is false */
8
9 Cart.products.length > 0 && Cart.products.[0].taxFree == false

10
11 Function 3
12 /* corresponds to the condition for entering into the for loop in line 33,

true case */
13
14 Cart.products.length > 0
15
16 Function 4
17 /* corresponds to the condition for entering into the for loop in line 33,

false case */
18
19 Cart.products.length == 0

Listing 3.4: Functions for method calculateTotal

1 Function 1
2 /* corresponds to the if condition in line 21, false case */
3
4 Cart.nProducts <= 0
5
6 Function 2
7 /* corresponds to if condition in line 21, true case */
8
9 Cart.nProducts > 0 && Cart.CART_SIZE >= 0

Listing 3.5: Functions for method emptyCart

Applying the Abstraction Functions to a certain program state produces
a compact vector of ternary values: the size of the vector depends on the
number of functions that are evaluated and the values are the result of the
evaluation of a function to the current program state. The result of the
evaluation of a function can be True (T), False (F), and Unknown (U). The
vector of ternary values is called the Abstract Program State.

A single function evaluates to true if the values of the program vari-
ables at the time the function is evaluated satisfy the function. Similarly,
a function evaluates to false if the values of the program variables at the
time the function is evaluated do not satisfy the function. If some of the el-
ements that appear in a function cannot be evaluated, for instance because
an object with an attribute that should be considered in the evaluation of a
function is null or even non existing, the function evaluates to unknown.

From our example, the Function 1 in Listing 3.2 for the method addItem:

Cart.nProducts != 0 && Cart.products.length >= 0

evaluates to true when there is more than one Product in the shopping
cart, while it evaluates to false if the shopping cart is empty. Finally, it
evaluates to unknown if the Cart object is not available.

In the other hand, for example the Function 4 in Listing 3.3 for the
method applyDiscount :
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Cart.nProducts > 0 && Cart.products.length > 0 &&

Cart.products.[0].value < Cart.PRICE

evaluates to true when the cart is not empty, and the price of the first
Product in the cart is higher than the PRICE constant, evaluates to false
whether the cart is empty or the price of the first Product is lower than
the PRICE value, and evaluates to unknown when the object Cart does not
exist in memory.

When the program under monitoring is executed, CBR produces a num-
ber of bursts consisting of an evaluation of the extracted functions on the
state of the program, a sequence of events (each event is a method invoca-
tion), and again an evaluation of the functions on the state of the program.

The organization state - burst - state is useful, because allows
CBR to understand the sequentiality of bursts. Since the states give infor-
mation about the current program state, it is possible to correlate different
bursts collected at different times and compare their states’ values, to ob-
tain a more comprehensive knowledge rather than considering only one
burst.

Considering the previous example of the program exploiting the Cart

class, a burst of its execution could take the form:

(U, U, F, T) addItem(product) calculateTotal() ...emptyCart() (T,

T, F, T)

where the part between parentheses is the Abstract Program State,
which includes the evaluation of every function identified in the function
extraction analysis (T, F, U stand for true, false, and unknown, respec-
tively), and the sequence of labels between the two instances of the Abstract
Program State is the sequence of events collected at runtime.

Considering the initial Abstract Program State (i.e., the first APS of the
burst), let us assume that the first value refers to the mentioned Function
1 on the method addItem: the U in the program state means that, when
the monitor started that trace recording, that function was evaluated as
unknown, while at the end of the trace it turned to be true.

3.2.3 Step 3: Training Phase

The symbolic executor produces a large number of path conditions since it
tries to assess every possible execution path for every method under anal-
ysis. Including all path conditions to represent the AFs is not practical,
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since evaluating a high number of functions at every user interaction might
introduce infeasible levels of overhead, and thus affecting the user experi-
ence. For this reason, we need to filter out the path conditions produced by
the symbolic executor to reach a good compromise between the accuracy of
the state information that is traced and the cost of producing such a state
information.

From the original set of path conditions, we are interested in those giv-
ing unique information about the behavior of the application, that is, in-
formation that is not subsumed by the information checked by other func-
tions. To find the optimal set of conditions, we need to go through a training
phase that consists in empirically finding all the AFs that are useful for dis-
tinguishing the different logical states of the program as identified by the
functions themselves. In other words, we run the application with a moni-
tor that assesses the complete set of AFs returned by the symbolic executor
to obtain the most representative result for the AF.

In this training phase, we evaluate the AF for every method call per-
formed by the application, to clearly distinguish all different Abstract Pro-
gram States at runtime.

For each user execution l we generate a matrix El
iJ , with i = 1 . . . kl

being i a sample observed in the field with kl being the number of samples
observed in the l-th execution, and J = 1 . . . naf being J the abstraction
functions under observation and naf the total number of AFs. For instance,
in Figure 3.3 we show two examples of executions, with naf = 7, collected
in the field: Execution 1 (E1) with k1 = 3 and Execution 2 (E2) with k2 = 2.

Sample AF1 AF2 AF3 AF4 AF5 AF6 AF7
1 U U T U U U F
2 U F T T F F F
3 U F T T F F F

Sample AF1 AF2 AF3 AF4 AF5 AF6 AF7
1 U F T T F F T
2 U F T U T F T

Execution 1

Execution 2

Figure 3.3: Example of two executions collected in the field.
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After collecting information for each execution, we organize the several
{E1

ij , E
2
ij , . . . , E

L
ij} with L the total number of executions, into a matrix Mij ,

where i (rows) ranges from 1 to the sum of all samples
∑L

l=1 kl gathered at
runtime, while j (columns) goes from 1 to naf . The matrix Mij is obtained
as M = {E1 � E2 � . . . � EL}, where the � operator represents the vertical
concatenation of the El

iJ matrices. For instance, considering E1 and E2 the
executions of our example, the operation E1 �E2 would generate the matrix
presented in Figure 3.4.

Sample AF1 AF2 AF3 AF4 AF5 AF6 AF7
1 U U T U U U F

2 U F T T F F F

3 U F T T F F F

4 U F T T F F T

5 U F T U T F T

Figure 3.4: Vertical concatenation of executions E1 and E2.

During the filtering process, we can apply four type of operations to the
matrix M in order to remove samples or AFs. Particularly, we identify four
operations: Duplicated Sample, Non-Discriminating Abstraction Function,
Equivalent Abstraction Function and the Redundant Abstraction Function
operation. In Figure 3.5 we show an example of the filtering process and
its several steps until we arrive to the reduced matrix, the example starts
with the matrix generated in Figure 3.4.

Duplicated Sample is the case in which two samples obtained the same
value for all the AFs. Formally, two samples MI1j and MI2j are duplicated
if MI1j = MI2j for all j = 1 . . . N .

In our example, in the first matrix we identified Duplicated Samples, in
fact Sample 2 and Sample 3 are identical S2 = S3 = {U,F, T, T, F, F, F}, in
general we remove the second occurrence of a repeated column/row, so in
this case we remove Sample 3.

Non-Discriminating Abstraction Function are those abstraction func-
tions that do not change their values throughout the different samples and
thus are not useful to distinguish the program states at runtime. More for-
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Sample AF1 AF2 AF3 AF4 AF5 AF6 AF7
1 U U T U U U F

2 U F T T F F F

3 U F T T F F F

4 U F T T F F T

5 U F T U T F T

Sample AF1 AF2 AF3 AF4 AF5 AF6 AF7

1 U U T U U U F

2 U F T T F F F

4 U F T T F F T

5 U F T U T F T

Sample AF2 AF4 AF5 AF6 AF7

1 U U U U F

2 F T F F F

4 F T F F T

5 F U T F T

Sample AF2 AF4 AF5 AF7

1 U U U F

2 F T F F

4 F T F T

5 F U T T

Equivalent Abstraction Function

Non-Discriminating Abstraction FunctionDuplicated Sample

Redundant Abstraction Function

Final Matrix

Sample AF5 AF7

1 U F

2 F F

4 F T

5 T T

Equivalent 
row/column

Figure 3.5: Example of filtering process of AF.

mally, an abstraction function afJ is non-discriminating if M1J = M2J =

. . . = MIJ

In the second matrix, it is possible to recognize two Non-Discriminating
Abstraction Functions, in this case AF1 and AF3, because they always gen-
erated the values U and T , respectively.

Equivalent Abstraction Function is the case in which there are two ab-
straction functions always produce the same set of abstract values. More
formally, two functions afI and afJ are equivalent if their columns MiI and
MiJ are the same, that is, MiI = MiJ for all i = 1...M .

In the example, it is possible to recognize two equivalent abstraction
function, since the abstraction function values represented in column AF6
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are already present in column AF2 (AF2 = AF6 = {U,F, F, F}), in this case
we remove column AF6.

Finally, the Redundant Abstraction Function reduction is a heuristic
step that aims to remove those AFs that are not useful for identifying
unique program states. The reduction procedure works by removing one
abstraction function at a time and checking if the function was necessary
to distinguish a unique program state. The procedure consists of removing
one column j of the matrix M and applying the Duplicated Sample proce-
dure: if the number of rows of the new matrix is equivalent to the original
matrix M , it means that the removed abstraction function j is not useful for
recognizing a unique program state, otherwise, if the number of rows of the
new matrix is less than the matrix M it means that the removed abstrac-
tion function is actually useful and we then reincorporate it to the matrix
M .

In our example, CBR attempts first to remove the column AF2. Since
AF2 is not useful, AF2 is removed. Along with column AF2, CBR also re-
moves AF4.

CBR performs these operations iteratively until it arrives to a minimal
representation of the executions with respect to the different AFs given
by the symbolic executor: in this example the minimal set is composed by
abstraction functions AF5, AF7 and executions 1, 2, 4 and 5. These AF are
used to generate a monitor that is able to collect bursts during program
executions.

3.2.4 Step 4: Bursts Collection

One possible way to decrease the overall monitoring overhead in the field
is to collect data in a probabilistic way, that is, to record information about
an event only under a certain probability.

From our human-subjects study presented in Chapter 2, we discovered
that for a few actions it is actually possible to monitor applications in the
field without impacting the user experience. So it makes sense to collect
data occasionally when a user performs an action. Also, the monitoring of
each burst starts by recording as soon as the user interacts with the appli-
cation and it stops when the software finishes processing the user request.

The collection of bursts is done probabilistically: since the technique
traces bursts of the execution signed with program state information, we
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are not forced to record sequentially all bursts that occur in the field, that
would correspond to continuously collect all the program execution inter-
fering with the user activities. The program state information helps us
to acquire a logical order of the different independent bursts collected at
different times during different executions under monitoring.

The sampling probability of CBR will be then estimated experimentally,
testing with different probabilities to search for the best cost-benefit com-
promise in terms of quality of the solution.

Let Abstraction be the AF that applied to a certain concrete state S of a
program produces an Abstract Program State Sa = Abstraction(S).

Following our example, some of the recorded bursts may for example
look like:

(U, F) cart.applyDiscount() cart.calculateTotal() ...(F, F)

When the action pay total is performed, CBR saves the APS (U,F ) plus
the target methods of the analysis, then CBR saves again a new represen-
tation of the APS equal to (F, F ).

3.2.5 Step 5: FSA Synthesis and Traces Simulation

At this point, we already gathered several independent bursts from the
field, where each burst explains the effect of each user action on the pro-
gram state. The issue is that each burst by itself provides partial informa-
tion about a full execution. To overcome this issue, CBR puts together all
the bursts in a common structure.

The right structure to assemble the different bursts is a Finite State
Automaton: in fact, a FSA is a natural representation for traces with states
and transitions. In our case, the FSA will show how the application’s state
changes according to different users’ inputs.

To decide how to synthesize the FSA, CBR exploits state information
contained in the different bursts. That is, if a burst B1 ends with an ab-
stract program state S2 that matches the abstract program state S1 re-
ported at the beginning of another burst B2, then the two bursts B1 and B2

can be concatenated by a node containing the state information in common
between both bursts.

The Finite State Automaton is a tuple G = (S,M, s0, sF ), where S is a
finite non-empty set of nodes representing the different APS identified at
the beginning and at the end of each burst, M is a finite set of transitions
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between states in S representing the different user inputs monitored at
runtime, s0 ∈ S is the initial state, and sF ⊂ S is the set of final states.

So, for each monitored burst B = 〈label, S1 T S2〉, CBR creates a transi-
tion m ∈ M starting from state S1 to S2 with a specific label and a trace T .
Since it is totally possible that different users perform the same action in
different scenarios, CBR enriches the transition m with more traces T .

The procedure of concatenating bursts is done iteratively for all bursts
collected in the field. Certainly, as more bursts are used to create the graph,
an increased number of program behaviors will be represented in it.

To simulate possible traces of the application we again exploit state in-
formation. Since we already built the FSA as the tuple G = (S,M, s0, sF ),
the procedure is straightforward: consider two transitions m1,m2 ∈M con-
nected by a common state S1 ∈ S, CBR generates a new burst B′ with (1)
the initial state Si of transition m1, (2) a new trace T ′ made by the concate-
nation of the trace T1 from m1 with the trace T2 from m2 and (3) the final
state Sf of transition m2. The new burst B′ = 〈label, Si T

′ Sf 〉 contains the
simulated trace represented by T ′.

The idea is to repeat this process until a larger trace is created.

a1:clickOnAddItem

U U U F F F

a2:clickOnPay

Burst 1 

cart.addItem(product1)


…

Burst 2 

cart.applyDiscount()


cart.calculateTotal()


…

Figure 3.6: Example of simulation of traces.

In Figure 3.6, for our example we have two transitions: actions clickOn-
AddItem and clickOnPay, that have in common the APS (U, F). In this
case, we might concatenate Bursts 1 and 2 and produce the following trace:

(U, U) cart.addItem(product1) ...cart.applyDiscount()

cart.calculateTotal() ...(F, F)

The generated traces could represent possible behaviors of the appli-
cation, nevertheless if the quality of the model is not good, the procedure
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could derived unfeasible traces. This aspect will be covered in the next
section.

In a nutshell, CBR provides useful information at two different levels:
(1) shows how the application is used in the field (FSA) and (2) through the
traces simulated by the FSA shows different possible uses of the component
under monitoring.

CBR model validity

For evaluating the validity of the CBR model we consider two aspects: pre-
cision and trace-level recall of the traces generated by CBR.

The building process and the semantics of the FSA has a direct relation-
ship with the precision of the technique. In some cases, it is possible that
the generated traces are behaviors that do not occur in the field, which is
the reason why we need to assess the precision of the generated FSA.

Particularly, to evaluate precision we check if the traces produced by
the FSA model are possible outcomes of the application, in other words, we
check if the derived traces from the FSA model exists in the original trace.

The precision is evaluated first locally (i.e., node precision) and then
globally (i.e., overall node precision), in other words, we first assess if the
local decisions taken in each node of the FSA are right. The assumption
is that if on average the local decisions taken for each node are right, so
the decisions taken globally by an execution derived from the model is also
probably right.

U T F F T T F T U U U

A1

A2 A3

B1
B2 B3

Figure 3.7: FSA node with state information and incoming and outgoing transi-
tions.

To assess node precision, for each node present in the FSA model we
check that every possible sequence is a possible program behavior or not.
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For example, for the node in Figure 3.7 we first generate all the possible
combinations of sequence of actions, that is, A1 → B1, A1 → B2, . . . , A3 →
B3, then we verify if the traces produced by these sequences are present in
the reworded traces, that is, traces recorded with a monitor that collects all
the events sequentially.

The node precision for a particular node i is estimated with the following
formula:

Precision(nodei) =
CSi

TSi
(3.1)

where CSi is the amount of correct sequences for the node i and TSi is
the total of possible combinations of sequences for the node i. The overall
node precision is obtained by estimating the mean node precision of the
FSA model, for simplicity in the rest of the document we refer to overall
node precision simply as precision.

PS1

PS2

PS3

PS4

a1

a2

a3
   methodA(P1) 
   methodB(P1)

   methodC()

   …

   …

   …

   …

   …

   methodA(P1)

Accepted by 
the FSA?

Estimate 
Recall

   methodA(P1)

   methodA(P1)

   methodB(P1)

   methodA(P1) 
   methodB(P1)

   methodC()

   …

   …

   …

   …

   …

   methodA(P1)

Produce 
incremental 

traces

Original Trace

Figure 3.8: Recall validation process.

The trace-level recall is assessed by estimating how complete are the
traces generated by the technique with respect to the original trace. In the
rest of the document we refer to trace-level recall simply as recall.

In particular, we incrementally consider the single events contained in
the original trace, checking if the incremental trace is accepted by the FSA
(see Figure 3.8). We thus estimate the recall of the longest trace accepted
by the FSA model.

Particularly, the recall for a trace j is estimated with the following for-
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mula:

Recall(tracej) =
Ej

EOj
(3.2)

where Ej is the number of events contained in the generated trace j,
and EOj is the number of events in the original trace representing the
execution of trace j.

Finite State Automaton Example

Since the final step of the technique consists in generating a FSA and then
producing simulations of possible field executions, we show an example of
a possible FSA and how we assess the validity of the model.

Consider the GUI application for the shopping cart example of the previ-
ous sections that enables users to perform operations such as: adding items
to the shopping cart, paying for all the items in the cart and starting a new
session (emptying the shopping cart). If we monitor this application using
CBR with the Abstraction Functions derived in the previous steps, we can
for example collect the following bursts during an user execution (we show
only methods related to the Cart class):

1 PS_0: (U, U)
2 ...
3 M: addItem(Product)
4 P: Product = [id:1, type:’chair’]
5 ...
6 PS_1: (U, F)

Listing 3.6: Burst 1: clickOnAddItem

1 PS_1: (U, F)
2 ...
3 M: addItem(Product)
4 P: Product = [id:5, type:’desk’]
5 ...
6 PS_1: (U, F)

Listing 3.7: Burst 2: clickOnAddItem

1 PS_1: (U, F)
2 ...
3 M: applyDiscount()
4 ...
5 M: calculateTotal()
6 ...
7 PS_2: (T, T)

Listing 3.8: Burst 3: clickOnPay
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1 PS_2: (T, T)
2 ...
3 M: emptyCart()
4 ...
5 PS_0: (U, U)

Listing 3.9: Burst 4: clickOnStartNewSession

1 PS_1: (U, F)
2 ...
3 M: emptyCart()
4 ...
5 PS_0: (U, U)

Listing 3.10: Burst 5: clickOnStartNewSession

Figure 3.9: Example of resulting FSA

By following the procedure for joining the collected bursts in a FSA, we
could obtain the model shown in Figure 3.9.
1 ...
2 M: addItem(Product)
3 P: Product = [id:1, type:’chair’]
4 ...
5 M: addItem(Product)
6 P: Product = [id:5, type:’pencil’]
7 ...
8 M: addItem(Product)
9 P: Product = [id:10, type:’glass’]

10 ...
11 M: applyDiscount()
12 ...
13 M: calculateTotal()
14 ...
15 M: emptyCart()
16 ...

Listing 3.11: Trace 1
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1 ...
2 M: addItem(Product)
3 P: Product = [id:1, type:’chair’]
4 ...
5 M: emptyCart()
6 ...
7 M: addItem(Product)
8 P: Product = [id:15, type:’desk’]
9 ...

10 M: applyDiscount()
11 ...
12 M: calculateTotal()
13 ...
14 M: emptyCart()
15 ...

Listing 3.12: Trace 2

1 ...
2 M: addItem(Product)
3 P: Product = [id:1, type:’chair’]
4 ...
5 M: addItem(Product)
6 P: Product = [id:5, type:’pencil’]
7 ...
8 M: addItem(Product)
9 P: Product = [id:10, type:’glass’]

10 ...
11 M: applyDiscount()
12 ...
13 M: calculateTotal()
14 ...

Listing 3.13: Trace 3

We assess the validity of the model against traces 1, 2 and 3, repre-
sented respectively in Listings 3.11, 3.12 and 3.13. These traces has been
observed by a monitor that collects all the events in the field, so we high-
light only the methods related to the Cart class.

As described previously, to assess the validity of the model we first need
to evaluate the precision of the FSA. We use Equation 3.1 to estimate
the precision for nodes PS_0, PS_1 and PS_2 in the FSA. In particular,
we check that all possible traces combination from nodes actually exist in
traces 1, 2 or 3.

Table 3.1: Precision for each node in the FSA

Node Node precision
PS_0 100%
PS_1 100%
PS_2 100%

The reported precision for each node is shown in Table 3.1. The average
precision of the FSA is 100%.
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We then use Equation 3.2 to evaluate the recall of the traces produced
through the FSA. In other words, make sure that traces 1, 2 and 3 are a
possible outcome of the model.

Table 3.2: Recall of each trace generated by the FSA

Trace Recall
Trace1 100%
Trace2 100%
Trace3 100%

The recall of each trace is reported in Table 3.2. The average recall of
the traces produced from the FSA is 100%.

Considering the values we achieved for precision and recall, we conclude
that the FSA presented in Figure 3.9 will produce trustful traces of high
quality for the example.

However, if CBR would identified a clickOnAddItem action with a tran-
sition going from node PS_2 to PS_0, the node precision of node PS_2 would
be dropped to 50%, since the sequence of actions clickOnPay followed by
clickOnAddItem was never observed in the field.

3.3 Empirical Validation

This Section presents the empirical validation we conducted for Controlled
Burst Recording, in order to assess the quality of the solution with respect
to the performance, recall and precision in comparison to sampling tech-
niques. We provide information about the details of the experiments, the
investigated aspects and the results we obtained for CBR.

3.3.1 Goal and Research Questions

The goal of the experiment is to evaluate the performance, the precision
and the recall of the traces produced by Controlled Burst Recording, by
comparing results with different approaches present in the literature.

With this experiment we aim to answer the following research ques-
tions:

• RQ1: What is the overhead introduced by Controlled Burst
Recording? In this research question, we measure the performance
of our technique with respect to other sampling techniques.
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• RQ2: What is the precision of the model generated by Con-
trolled Burst Recording? In this research question, we measure
the precision of the FSA model with respect to the traces collected
with monitoring.

• RQ3: What is the recall of the traces produced by Controlled
Burst Recording? In this research question, we measure the recall
of the technique with respect to the monitored traces.

3.3.2 Experiment Design

   methodA(P1) 
  methodB(P1)

  methodC()

PS1

PS2

PS3

PS4

PS5

a4

a3 a2

a5a6

a1

    
   methodA(P1) 
   …

   …

   …

   …

   …

   …

   …

   …

   methodN(Pn)


Original Trace

Sampling Monitor P: 5% & 10%:  
method calls and parameters

CBR Monitor: 
method calls and parameters

Returned InformationMethodology

(a) (a)

(b) (b)

Time 
Performance

Recall

Metrics

Precision

Figure 3.10: Controlled Burst Recording Validation.

Figure 3.10 shows the high-level work-flow of the experiment. The main
idea of the experiment is to compare CBR to other sampling techniques,
with respect to the performance, precision and recall of the technique itself.
The monitoring objective is to collect the method calls related to a certain
execution, including the runtime value of the parameters associated to each
method call.

Sampling monitors have been used widely for monitoring applications in
the field [40, 49, 43, 4]: this type of monitors decrease the overall monitor-
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ing overhead by observing events only under a certain probability. When
analyzing interactive applications, each time the user interacts with the
application the sampling monitor records with a certain probability. When
the monitor is activated, it registers a defined amount of events.

For the experimentation, we implemented two sampling monitors, one
with a sampling probability of 5% and a second one with a 10% of probabil-
ity. Both sampling monitors trace a fixed number of events, in this case we
fixed the amount to 30 events per trace: a similar configuration setup has
been used in [35] for a sampling monitor.

For assessing the performance we measure execution times of a pro-
gram being monitored with the three approaches compared to a program
execution without any monitoring. The granularity of the monitoring is
the single user action, that is to say measuring the execution time from the
moment the user interacts with the application to the moment the program
has finished processing the user request and gives a feedback to the user.
Since we care about how monitoring impacts on different functionalities,
we analyze overhead with respect to the different categories of operations
of the system response time categorization (see Chapter 2).

To address the validity of the CBR model we consider the procedure
specified in Section 3.2.5: we assess precision by applying Equation 3.1 to
every single node of the FSA produced from the traces generated during the
experimentation. Instead, we assess recall by estimating how complete are
the traces generated by each approach with respect to the original traces, in
particular, we use Equation 3.2 to calculate the Recall indicator of a certain
trace.

3.3.3 Experimental Subject

To empirically answer the research questions, we use Controlled Burst
Recording to monitor ArgoUML [73]. ArgoUML is a UML diagramming
application written in Java (389,952 lines of code): within the features of
ArgoUML is possible to design Use Case, Class, Sequence, Collaboration,
State-chart, Activity and Deployment diagrams. We selected ArgoUML be-
cause is a representative program of the target applications we are study-
ing here: an user-interactive software application of medium-big size.

We considered the package org.argouml.uml.diagram.activity as the
target of monitoring, in particular, this package manages all the function-
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alities related to the design and management of activity diagrams in Ar-
goUML. We chose this package since activity diagrams are a very common
way to represent behavioral information about software systems, so it is
easy to make examples of this type of diagrams.

Definition of the Abstract Program State

To define the Abstract Program State we start by doing static analysis of
the component to be analyzed: Table 3.3 offers some information about
this process. To start, static analysis process discovered 16 classes and 199
methods inside component org.argouml.uml.diagram.activity, then the
discovered methods are used as inputs to the symbolic executor, which pro-
cesses each method and produce the corresponding abstraction functions.
The symbolic executor produced 5,732 abstraction functions.

Table 3.3: Monitoring Target and Symbolic Execution Outcome

Monitoring Target org.argouml.uml.diagram.activity

Packages Analyzed
org.argouml.uml.diagram.activity

org.argouml.uml.diagram.activity.layout

org.argouml.uml.diagram.activity.ui

Classes Analyzed 16
Methods Analyzed 199
Abstraction Functions 5,732

In order to recreate proper executions of ArgoUML we have written 30
automatically executable test cases that encode typical usage scenarios for
org.argouml.uml.diagram.activity component: each test case consists
in simulating the drawing of one activity diagram on the application (e.g.
diagrams such as Figure 3.11). These 30 test cases are used along the
calibration and experimentation process. To avoid non-determinism and
for reproducibility of the test cases we implemented them with the Sikulix
[36] capture and replay tool.

To train and produce the optimal representation of the program state,
we run the application with the monitor using the original 5,732 abstrac-
tion functions. Once we execute the 30 test cases, we produce a single
log file with all the possible program states detected across the simula-
tions. As specified in Section 3.2.3, our technique filters out all the Non-
Discriminating, Equivalent and Redundant Abstraction Functions.

The result of the filtering process is shown in Table 3.4: the procedure
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Figure 3.11: Activity Diagram example in ArgoUML

Table 3.4: Details from the abstraction function filtering process.

Number of Abstraction Functions
Original Set from JBSE 5,732
Non-Discriminating Abstraction Function 1,631
Equivalent Abstraction Function 2,646
Redundant Abstraction Function 1,298
Filtered Set 157

filtered out 5,575 functions, leaving 157 AF as the optimal representation
for APS. In particular, the Non-Discriminating Abstraction Functions were
1,631, the Equivalent Abstraction Functions were 2,646 and the Redundant
Abstraction Functions were 1,298.

3.4 Results

In this section we present the results of the experiment we conducted to
validate Controlled Burst Recording. All the experiments were executed on
a computer running macOS version 10.13.6 with a 3.1 GHz Intel Core i7
processor and 16 GB of RAM.

The following sections describe the results obtained to answer to the
different research questions.
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3.4.1 Performance Results

To answer the research question RQ1: What is the overhead intro-
duced by Controlled Burst Recording? we assessed the impact of the
monitors, specifically we measured the overhead by comparing the execu-
tion times of the monitored version with those without monitoring. Then,
we ran our set of 30 test cases, each test has been repeated 3 times and
mean values have been used to mitigate any effect due to the non-determinism
of the execution environment. Overall, we collected near 3,459 samples
about the execution time of actions.

In addition to measuring execution times, we collect the execution traces
that will be useful for answering the research questions RQ2 and RQ3.

Since this work is focused on understanding the impact of the monitor-
ing on the user experience, we classify user actions according to its system
response time category, in particular we used the categorization presented
in Chapter 2 (i.e., Instantaneous, Immediate, Continuous and Captive ac-
tions). Along the 30 test cases, we identified 915 actions of the Instanta-
neous category, 25 actions from the Immediate category and 213 actions
from the Continuous category. Given the nature of the functionalities we
tested, we did not identify Captive actions.

Table 3.5: Performance results with respect to system response time categories.

Monitoring Overhead [%]
Monitoring Technique Instantaneous Immediate Continuous
CBR 123.78 40.70 0.71
Sampling 1 (P: 10%) 17.03 4.65 1.37
Sampling 2 (P: 5%) 7.12 2.88 0.28

The results for performance can be found in Table 3.5: specifically, we
present overhead data for the different monitors used in the experimenta-
tion with respect to the different system response time categories.

In the table, CBR represents Controlled Burst Recording, Sampling 1
the monitor that traces in a sampling way with 10% probability and Sam-
pling 2 the monitor that samples with 5% probability.

The first thing we can notice is that for the actions categories that em-
ploy less than one second, i.e., Instantaneous and Immediate actions, CBR
introduces considerable more overhead than the other techniques, 123.78%
of CBR compared to 17.03% of Sampling 1, 7.12% of Sampling 2 for Instan-
taneous actions, or the 40.70% of CBR compared to the 4.65% and 2.88% of
Sampling 1 and 2 respectively for Immediate actions.
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The increased overhead for actions < 1 second is explained by the fact
that CBR, besides tracing events, needs to evaluate 157 conditions at the
beginning and at the end of each action, plus the fact that Instantaneous
and Immediate actions are volatile and very sensitive to any additional
time.

The second thing we notice is that contrary to Instantaneous and Imme-
diate actions, CBR performs equally for actions> 1 second (i.e., Continuous
actions), in fact CBR introduced 0.71% of overhead, which is similar to the
performance of Sampling 1 (1.37%) and Sampling 2 (0.28%). Since these ac-
tions are less volatile, the task of evaluating program state does not impact
on the final overhead.

However, from our human-subject studies results (see Section 2.5) we
discovered that users do not perceive high monitoring overhead levels for
Instantaneous actions, and that users perceive a degradation of the system
response time only at 140% for Immediate actions, meaning that in prac-
tice, users would not perceive monitoring overhead when Controlled Burst
Recording is activated.

Moreover, Sampling 1 and 2 techniques are not useful for simulating
possible executions from the field, since they are observing only small per-
centages from the execution and do not provide contextual information,
while CBR is capable of representing comprehensive behaviors from the
traces signed with program state information.

3.4.2 Precision Results

For answering the research question RQ2: What is the precision of the
model generated by Controlled Burst Recording? we measured the
precision of each node when simulating possible traces from the FSA gen-
erated by Controlled Burst Recording.

We show results only for CBR, since it is the only technique in this work
that simulates possible execution traces, meaning that the precision of the
traces recorded by sampling monitors is 100%.

Table 3.6 and Figure 3.12 show information about precision of CBR
given the sampling probability and the amount of runs of the application.

As explained in Section 3.2.4, CBR works in a probabilistic way, mean-
ing that the monitoring of each interaction between the user and the ap-
plication occurs only under a certain probability. If CBR is deployed to
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Table 3.6: Precision results for Controlled Burst Recording.

1 run 5 runs 10 runs 15 runs 20 runs
P [%] Precision [%] Precision [%] Precision [%] Precision [%] Precision [%]
5 0 66.67 68.42 70.21 68.11
10 50.00 68.42 63.39 72.51 74.22
15 100 70.73 72.36 76.62 78.83
20 66.00 65.24 79.98 77.80 79.70
25 55.35 66.67 80.27 79.97 80.43
30 47.83 72.10 81.15 80.34 80.55
35 38.89 79.61 80.83 81.22 80.25
40 72.73 75.89 79.84 80.52 81.02
45 64.62 79.95 80.55 80.62 79.88
50 72.92 80.89 80.75 80.57 81.12
55 65.87 80.16 80.66 80.62 80.39
60 65.88 80.00 80.29 81.17 80.20
65 66.82 80.98 80.52 80.43 79.92
70 71.55 80.38 80.57 80.66 80.34
75 78.14 80.41 80.89 80.75 80.48
80 74.44 80.43 80.48 81.23 80.56
85 75.23 81.23 81.07 80.48 80.41
90 78.69 80.98 80.66 79.98 80.70
95 79.52 80.70 80.75 81.02 80.49
100 80.71 80.70 80.70 80.66 81.21

monitor data with a probability lower than 100%, it is necessary to run
several times the same functionality in order to observe the whole behav-
ior in the field. Since in practice a program is executed several times in
different instances, we would observe several repeated observations of the
same functionality throughout the monitoring process, and by increasing
the number of runs of the monitor fewer samples will be needed in order to
derive accurate results.

In Table 3.6 we present how the overall precision changes according to
the number of observed runs of the application, in this case, we experi-
mented with 1, 5, 10, 15 and 20 runs.

First, we observe that the maximum precision of the technique is around
81%, this means that for every node in the FSA, 81% of the possible com-
binations of bursts are a feasible behavior of the application, while the re-
maining 19% are traces that we never observed in the traces recorded when
activating CBR all the times.

However, not all the 19% are unfeasible traces: a subset of the traces
represented by the remaining 19% could still be possible behaviors of the
software (e.g., we do not developed all the necessary test cases to cover the
remaining 19%).

Second, we note that with 5 runs of the application we achieve the max-
imum of the precision for our technique with a sampling probability of 50%.
Instead, when considering 10, 15 or even 20 runs, the maximum precision
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Table 3.7: Recall results for Controlled Burst Recording.

1 run 5 runs 10 runs 15 runs 20 runs
P [%] RB [%] RE [%] RB [%] RE [%] RB [%] RE [%] RB [%] RE [%] RB [%] RE [%]
5 4.68 3.95 9.70 8.99 13.53 12.18 16.66 16.58 22.62 20.78
10 5.41 4.78 13.06 11.50 21.82 21.25 28.48 28.30 38.47 41.32
15 7.24 6.13 18.34 16.61 31.57 32.34 47.33 47.91 61.56 63.85
20 8.53 5.83 22.86 21.93 42.17 43.43 63.36 64.35 84.64 86.36
25 9.37 7.36 29.16 27.73 49.41 51.47 75.33 78.44 95.93 96.97
30 11.74 10.20 32.25 33.05 67.65 70.82 92.02 92.14 96.89 96.89
35 11.46 9.71 39.47 42.39 86.66 88.36 100 100 100 100
40 14.32 12.21 42.65 44.97 84.80 85.45 100 100 100 100
45 15.12 11.34 67.06 68.73 98.70 98.75 100 100 100 100
50 15.59 14.31 61.44 62.82 98.70 99.19 100 100 100 100
55 17.56 17.44 87.95 88.89 98.59 99.14 100 100 100 100
60 19.29 19.55 77.51 78.87 100 100 100 100 100 100
65 23.89 23.60 90.84 91.05 100 100 100 100 100 100
70 26.21 25.84 98.78 99.01 100 100 100 100 100 100
75 28.31 27.08 98.99 99.23 100 100 100 100 100 100
80 31.80 33.93 100 100 100 100 100 100 100 100
85 31.80 33.93 100 100 100 100 100 100 100 100
90 36.60 39.44 100 100 100 100 100 100 100 100
95 57.47 59.96 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100

can be achieved with a 25% sampling probability, which seems to be the
more balanced result for all measurements.

Nevertheless, considering 5, 10, 15 or 20 runs are a very small num-
ber of executions in comparison to running the application thousands of
times across the several instances in the field. Hence, taking into account
thousands of samples for a same user action would allow us to considerably
reduce the CBR sampling probability.

3.4.3 Recall Results

In this section, we present results for the research question RQ3: What is
the recall of the traces produced by Controlled Burst Recording?.
As stated in Section 3.3.2, to estimate the recall we measure the percent-
age covered by traces obtained with each monitor in comparison to those
obtained with CBR monitor activated all the time.

For Controlled Burst Recording we present both in Table 3.7 and Figure
3.13 the recall of the technique according to the sampling probability and
how it changes according to the number of runs of the application. The
recall is presented in two measures, the RB and RE indicators: the RB
indicator shows the recall percentage with respect to the number of bursts
that can be identified within the original traces in comparison to the sim-
ulated trace. Instead, the RE indicator shows the recall percentage with
respect to the number of events that can be identified in the original traces
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Figure 3.12: Precision results with respect to different runs of the application.

in comparison to the trace simulated by the FSA.

We notice that considering only one run of the application we only achieve
100% recall with sampling strategy at 100%, which means having the mon-
itor always on. When we decrease the sampling probability to 90%, the
recall of the technique decreases rapidly to 36%.

Given that we are considering only one run, it is very likely that our
FSA is missing several transitions and thus producing very short and in-
complete traces. In fact, when considering 5 runs of the application it is
possible to achieve a good recall percentage with 65% of sampling probabil-
ity.

Now, if we consider 10 runs of the application we obtain approximately
90% of recall at a 45% of sampling probability. Going further, for 20 runs
of the applications we already obtain a good recall level for 25%. Which is
also a similar result obtained for precision in Section 3.4.2.

On the other side, for sampling monitors we obtained a recall value of
4.15%, with a maximum recall of 7.77%, meaning that the traces collected
by this approach contains on average 4.15% events from the total events
contained in the traces obtained when activating CBR all the times.
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Figure 3.13: Recall results with respect to different runs of the application.

3.5 Discussion

We have carried out an experimental evaluation for assessing the quality
of CBR in terms of monitoring performance with respect to other two sam-
pling approaches.

Since CBR works in a probabilistic way and does not trace full execu-
tions, we also assessed the precision and the recall of the traces simulated
by CBR, to understand the usefulness of the sampling approach in an at-
tempt to decrease monitoring overhead and to reduce the impact on the
user environment.

When assessing performance, we discovered that the monitoring over-
head introduced by CBR with respect to other sampling approaches was
higher for user actions employing less than one second, and similar for
those user actions employing more than one second.

However, by considering our earlier results obtained in Chapter 2 about
the impact of monitoring overhead on the user experience, we conclude that
CBR would not be perceived by users, since the overhead introduced by the
technique is always lower than 140%, which is the limit for tolerating mon-
itoring overhead in the users’ environment, while allowing the technique
to obtain traces with enriched information for generating more comprehen-
sive knowledge of the application usage.

About the quality of the traces produced by CBR, we discovered that the
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precision of the simulations we produced were 81% with respect to the orig-
inal traces. Unfortunately, our experimentation was not enough to prove if
the remaining 19% were actually infeasible behaviors or they were simply
unobserved behaviors of the application.

On the other side, CBR was able to simulate traces that were 100% com-
plete with respect to the original traces. A very different result compared
to the 4% recall obtained by the other sampling approaches.

Nevertheless, we noticed that by using a sampling rate fixed to 25% was
possible for CBR to reproduce safe traces that represent reliable behaviors
of field executions. We are also aware that by increasing the amount of
users, that is, increasing the monitored executions, we might considerably
decrease the sampling rate to make CBR a less expensive solution.

We also discovered the importance of adding state information to traces:
as a matter of fact by using the CBR monitoring approach we were able
to observe complete user executions, while other sampling approaches not
employing state information only observed small percentages of the user
execution.

In the overall, CBR is a good monitoring approach that can be used
for constructing and simulating knowledge from field executions without
impacting on the user experience.
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Chapter 4

Delayed Saving

This chapter presents Delayed Saving, a technique for delaying the sav-
ing of events to file during field monitoring. Even though Delayed Saving
should not be mandatorily used, it is very useful when used to avoid mon-
itoring to interfere with the user experience. This chapter presents also
an empirical evaluation carried out on a real world application for assess-
ing the efficiency and the quality of the approach, compared to immediate
recording.

The presentation of the chapter is organized as follows. Section 4.1
overview the Delayed Saving technique. Section 4.2 discusses the parame-
ters that may influence the behavior of the technique. Section 4.3 presents
the Delayed Saving process and its steps. Section 4.4 presents the empir-
ical validation we conducted to assess our technique. Finally, Sections 4.5
and 4.6 discuss the obtained results and findings, respectively.

4.1 Prioritizing User Interactions

We already discussed how monitors slow down the performance of appli-
cations. We also acknowledge that the interaction of users with software
applications is the most critical aspect of monitoring, since, in some cases,
users are very sensitive to delays that may occur in the system response
time, according to the results reported in Chapter 2. Consequently, a mon-
itoring strategy should limit the activity performed in parallel with users
operations, in order to reduce its impact on the user experience.

In interactive applications it is possible to distinguish two different
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phases of the interaction between the user and the application: working
time and idle time. Working time is the interval of time from the time the
user produced an input for the application and to the time the application
responds to that input. On the contrary, idle time is the time from a re-
sponse to the next user input.

Saving data during the monitoring phase could be extremely expensive.
To initially quantify the impact of the process that saves data to a file com-
pared to saving data in memory, we implemented a small program in Java
that creates objects of the java.awt.Point class and saves them follow-
ing two different procedures: (a) the first procedure saves the objects in a
collection of type java.util.ArrayList, while (b) the second procedure
saves the created objects directly to a file (in this case we use the toString
method to generate the information to be saved for each object). We made
six different executions, making some variations in the amount of objects
created (see Table 4.1), and the amount of information we save through the
toString method. In particular, we measured the time consumption for
both procedures to assess the impact of saving data in a file in comparison
to saving data to the memory. The outcome of this small experimentation
is shown in Table 4.1 and in Figure 4.1.

Table 4.1: Time performance comparison when saving to memory/file.

Example toString
modified?

Number of
created
objects

Time required
to save data
in mem. [s]

Time required
to save data
in file [s]

Time rate between
both saving methods

1 No 107 0.26 9.52 37×
2 No 2.5× 107 0.69 27.27 39×
3 No 5× 107 1.47 48.39 33×
4 Yes 107 0.25 11.25 45×
5 Yes 2.5× 107 0.71 28.23 40×
6 Yes 5× 107 6.36 322.06 51×

We can notice that the time employed to save the objects to file is huge
in comparison to saving data to the memory. Since directly saving the col-
lected data is extremely expensive, it might be a good approach to postpone
the storing of the events to phases in which the application is in idle state,
in other words, when it is not being actively used by users. We expect that
by limiting the amount of resources used simultaneously with user oper-
ations we can decrease the impact of monitoring overhead on the system
response time.

The CPU usage level could be an useful indicator to recognize if the
application is under heavy use or not, since its values relate proportionally
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Figure 4.1: Time performance comparison when saving to memory/file.

with the amount of processing requested by a certain running application.
So, among the different resources on a computer, we rely on the CPU to
determine when the application moves from working to idle state.

In Figure 4.2 we introduce an example of the CPU usage level of the exe-
cution of a certain application over time. While the execution goes forward,
it is possible to identify periods in which the CPU usage is high, because
the application is processing user requests, and others where the CPU us-
age is almost negligible, since the application has finished processing user
requests.

In the same figure, we show the CPU usage level for the same execution
with monitoring added, represented by the dotted line. In this case the
monitor works by intercepting all user events and saving them directly to
files: from now on this monitoring strategy will be known as the Direct
Saving monitor.

From Figure 4.2 we can distinguish a working phase, represented by the
gray area, in which any additional processing time might have an impact
on the system response time, and a idle phase, represented by the white
area, a period in which the user does not actually interact with the appli-
cation, the program has finished processing the user request and the user
preparing for the next interaction.

Our idea is to propose a monitoring strategy with delayed saving of the
events observed in the field that could behave similarly to the dashed line
in Figure 4.2. Particularly, we note that this strategy would reduce the
impact on the system response time by shifting the load of storing events
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Figure 4.2: Comparison of performances for different monitoring approaches.

to file to the idle phases of the execution. Since the application is using
few resources, the load of saving data to file is likely to not be perceived by
users. This monitoring strategy is called Delayed Saving, or DS for short.

While the application is being monitored, the intercepted events are
saved on a buffer, and then recorded in files only when an idle phase is
detected. In the buffer DS saves an identifier for the event (i.e., the method
call) and the references to the objects passed as parameters. The actual
values of the parameters are retrieved only when the application comes
back to an idle state.

However, this strategy could represent a risk for the accuracy of data:
in the moment DS actually saves the data to files from the buffer, the data
associated with the event (i.e., the objects passed as parameters) could (1)
have changed or (2) have been removed from the memory.

Still, if the percentage of saved data that differs from the data recorded
with Direct Saving is low, then the problem might be negligible with respect
to the opportunity of monitoring applications with low impact on the user
experience.

Delayed Saving recognizes the passage from the working state to the
idle state using a CPU usage level threshold, that is, if the CPU usage
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level goes below the threshold this means that the application is in an idle
phase. On the contrary, Delayed Saving identifies a working phase each
time a new user request is detected (e.g., the user clicks on a button) to be
reasonably sure that we are not interfering with the user experience.

Using a very low threshold allows to minimize the probability of inter-
fering with the user experience. In this way, the most expensive monitoring
activities would be performed only when the application is under light use.

4.2 Delayed Saving Parameters

The impact of Delayed Saving on the system response time depends directly
on the efficiency of the technique to identify idle states of the application: in
this section we explain the set of parameters that impact on the capability
of the technique to determine the state of the application under monitor-
ing. Especially, we identified the CPU Usage Percentage, the Sampling
Frequency of the CPU and the Threshold Level of the CPU.

4.2.1 CPU Usage Percentage

The CPU Time is the time taken by the CPU to execute instructions related
to a process. The CPU Time does not include the time spent waiting for I/O
operations nor the execution of other processes [66]. In general, the CPU
Time is obtained as the sum of the User Time and the System Time.

The User Time is the time that the CPU spends in executing the oper-
ations related to a certain program. Instead, the System Time is the time
taken by the CPU to elaborate operations related to the operative system
triggered by a certain program.

The CPU usage percentage of a program during an interval [t1, t2] can
be determined as follows:

cpuUsage =
cpuT ime2 − cpuT ime1

t2 − t1
× 100 (4.1)

Where cpuT imet is the observed CPU time in at instant of time t. Thus,
CPU Usage Percentage ranges from 0% to 100% per number of cores. In
our case, it ranges from 0% to 600% because we use a machine with 6 cores
for the experiments.

91



4.2.2 Sampling Frequency of the CPU

The second parameter of Delayed Saving is the Sampling Frequency of the
CPU, that is the frequency DS checks the CPU value to distinguish idle and
working phases. As a general rule, if we increase the sampling frequency
we also increase accuracy in determining the program behavior, and as a
result the monitor is activated with higher precision.

On one side, if the sampling frequency is too high there exist the risk
that the procedure itself to reveal the state of the CPU value introduces a
harmful overhead into the user experience.

On the other side, if the sampling frequency is too low there exist the
risk that the revealed behavior is not consistent with the real behavior
of the application observed in the field. The main drawback is that the
monitor might be activated at the wrong time, and therefore impacting
negatively on the user experience.

There is a trade-off between low and high values of the sampling fre-
quency, since a high frequencies can lead Delayed Saving to more precise
results, but with higher levels of overheads, and too low frequencies may
lead Delayed Saving to low overhead levels, but also less precise results.

4.2.3 Threshold level of the CPU

The third parameter is the value of the threshold that we use to determine
an idle phase during runtime.

Using a very low threshold allows to minimize the probability of inter-
fering with the user experience. In fact, in this case, the most expensive
monitoring activities would be performed only when the program is actu-
ally doing very little or no work.

On one side, there is a risk that the process of emptying the buffer never
gets activated, since the use of the CPU by the program could remain in
most cases always higher than the threshold level. On the other side, a
too high threshold level would allow to immediately save the information
of the status of the program, but it would increase the risk of annoying the
user. For these reasons, a fine tuning on each application under monitoring
is required to select the correct threshold to be used.

Equivalent to other parameters, it is necessary to establish a fair com-
promise between the level of accuracy of the saved information and the
possible overhead introduced by the technique itself.
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4.3 The Delayed Saving Process
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Figure 4.3: Delayed Saving Process

In this section, we present the process behind the Delayed Saving tech-
nique. The process is composed of three steps shown in Figure 4.3: the
Monitor Generation, the Training and the Field Monitoring step.

4.3.1 Step 1: Monitor Generation

The first step of Delayed Saving Process consists of specifying the moni-
toring target. As monitoring targets, it is possible to consider packages,
components or set of classes of the application under monitoring.

The current implementation of Delayed Saving is based on Aspect-Oriented
Programming [45], that is basically a programming paradigm for modular-
izing cross-cutting concerns. It does so by adding additional behavior to
existing code, an advice, without modifying the code itself, while separately
specifying which code is modified via pointcuts specification.

We exploit Aspect-Oriented Programming to define rules that enable
the Delayed Saving monitor to intercept all the events, in this case method
calls, related to the component selected as a target.
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4.3.2 Step 2: Training

The second step is about training and calibrating the technique. Especially,
Delayed Saving needs to find the right threshold level of the CPU for the
application under monitoring. Choosing the right threshold for deciding
whether to activate or not DS is one of the most sensitive aspect of this
technique, since a poorly chosen threshold may lead to elevated overhead
values. We propose two approaches for empirically choosing the monitoring
threshold value: the Timing Classification and the Behavioral Classifica-
tion.

The Timing Classification approach treats the problem of searching the
right threshold value as an optimization problem, in which we maximize
the amount of CPU sample values classified correctly, according to whether
they occurred in working or idle phase.

Instead, the Behavioral Classification searches the right threshold value
by representing the ideal behavior of a monitor into a string, and then
searching for the threshold that represents the most similar string com-
pared to the ideal one. In other words, this procedure looks for the threshold
that makes DS to be activated correctly only when the application is in idle
phase.

Since each approach studies a different aspect of the behavior of the
application under monitoring, we decide to study both before choosing the
right threshold value.

Below, we give specific details about each training procedure for choos-
ing the threshold level of the CPU.

Timing Classification

The Timing Classification is an approach for defining the right CPU thresh-
old value that helps our technique to decide whether to activate or not the
delayed saving of the events.

The approach focuses on classifying the different CPU samples as cor-
rectly or incorrectly classified: if a CPU sample is classified as a sample
that belongs to an idle phase, but in reality the sample was taken when the
application was processing user requests then the sample is incorrectly
classified, oppositely if the application was actually doing nothing and
waiting for a new user input then the sample is correctly classified.

This optimization problem aims to find the threshold value that maxi-
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mizes the amount of correctly classified values. It works by systemati-
cally proving different threshold values in an incremental way (e.g., cover-
ing the range 0 − 600%) until it finds the optimal CPU threshold level for
the application under analysis.

The Timing Classification optimization problem receives as parameters
the sets of CPU samples idle and working: (1) the set of idle CPU samples
are obtained by running the application without any monitoring, and it
represents the ideal CPU usage level when the application is not process-
ing user requests, they are recorded between the end and the beginning
of two actions. (2) The set of working CPU samples are obtained by run-
ning the application with the Direct Saving monitor, and it represents the
CPU usage level that is annoying for users, these CPU values are recorded
between the beginning and the end of an action.

The sets of CPU samples idle and working should be collected by per-
forming representative usages of the application, that is, consistent usages
in line with those performed in the field.
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Figure 4.4: Timing Classification problem.

The procedure establishes a threshold value to begin with, then picks
up a CPU sample from the idle/working set and according to its CPU us-
age level and the selected threshold value, the CPU sample is classified as
idle or working. Since we already know if the CPU sample was obtained
in idle or working phase, we can assess whether is correctly or incorrectly
classified.

We introduce four indicators to quantify the occurrences of each type
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of CPU sample (see Figure 4.4): we call iPos to the number of correctly
classified CPU samples taken from the original idle set and iNeg to the
number of incorrectly classified samples. Similarly, we call wPos to the
number of CPU samples from the working set classified correctly, and wNeg
to the number of CPU samples from the working set classified incorrectly.

The Timing Classification percentage for a certain threshold value is
estimated by the following formula:

timingClass(idle, working) =

(
iPos

iPos+ iNeg
× wPos

wPos+ wNeg

)
× 100

The procedure is repeated with a different threshold value until it finds
the optimal threshold for the application under monitoring.

Behavioral Classification

The Behavioral Classification is another approach for defining the right
CPU threshold to be used at runtime. While the Timing Classification fo-
cuses on the timing of the CPU sampling and the correctness of the classi-
fication of these samples, the Behavioral Classification works by selecting
the CPU threshold value according to the behavior of the monitor with re-
spect to the idle and working phases. In particular, the aim of this proce-
dure is to find the CPU threshold that could represent the ideal behavior
of a monitored application, that is, activating the delayed saving of the
events only when the application is in idle phase (i.e., the real behavior
is the one we actually recognize from a monitor using a certain threshold
level).

An option to represent the behavior of a monitored application is to use
strings. For example, assume having a sequence of two CPU samples as-
sociated to a working phase and then four CPU samples associated to an
idle phase, the ideal behavior of the monitor should be 001111, where 0
indicates the monitor is not saving events to file based on the value of the
current sample, while 1 indicates the monitor is writing events to file.

The idea of this step is to search for the CPU threshold values that
produces the most similar behaviors between the ideal sequence and the
observed one. The procedure receives as parameters the sets of CPU sam-
ples idle and working, the semantic and the procedure to obtain these sets
is almost similar to the one presented in Section 4.3.2, the only difference
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is that the working set is recorded without any monitoring, because we are
looking for the ideal behavior that should have the monitor when working
in the field.

The equation we use to estimate the similarity between both behaviors
is the following one:

behavioralClass(idle, working) =
1

2
×
(
iEqual

iLength
+

wEqual

wLength

)
Where iEqual is the number of equivalent characters associated to the

idle phase when comparing the real behavior with the ideal one, iLength is
the total number of characters during the idle phase. wEqual is the number
of equivalent characters associated to the working phase when contrasting
the two strings, and finally wLength is the total number of characters re-
lated to the working phase. The maximum value we can obtain for behav-
ioralClass is 1 and represents a total similarity between the case observed
in the field and the ideal one. Oppositely, a value of 0 represents no likeness
between both them.

For instance, let the string 111000111011 be the ideal behavior of the
monitor, and 100010110101 the behavior observed during monitoring for a
threshold value thi. In this case, the behavioralClass is 0.5 since iEqual = 4,
iLength = 8, wEqual = 2 and wLength = 4.

The main challenge of Delayed Saving is the precision of the collected
data, either in terms of missing data (references that do not longer exist
in memory) or unsound data (data that has changed its value between the
time of collection and the time data is saved).

4.3.3 Step 3: Field Monitoring

We deploy the application under monitoring with Delayed Saving incor-
porated, now with the ability of determining when the application passes
from a working to an idle phase.

The main mechanism of Delayed Saving is based on the introduction of
a buffer component for saving temporarily the events intercepted by the
monitor, as shown in Figure 4.5.

Contrary to a monitor that stores the events immediately, all the events
are first saved in the buffer and then, when the monitor detects an idle
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Figure 4.5: Using Delayed Saving in the field.

state of the application, the monitor starts emptying the buffer and saving
each event to a permanent memory.

The ability of the monitor to empty the buffer is directly related to user
interactions, meaning that if a user input is detected during monitoring,
the buffer emptying process comes blocked until a new idle state is ac-
quired.

We consider the monitoring of tracing method calls and the runtime
value of its parameters.

In this case, in the buffer DS saves the method call and references to the
objects passed as parameters (i.e. complementary data). The actual values
of the parameters are retrieved only when the application is in idle state.

4.4 Empirical Validation

This section presents the empirical evaluation we performed to assess De-
layed Saving, with respect to Direct Saving monitoring approach.

We provide information about the details of the experiments, the re-
search questions and the results we obtained for Delayed Saving.
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4.4.1 Goal and Research Questions

With this experimental evaluation we aim to answer the following research
questions:

• RQ1: Does Delayed Saving introduce a smaller overhead com-
pared to Direct Saving? In this research question, we measure the
performance of our technique with respect to a technique that does
not delay the saving of the events to file.

• RQ2: Is the data collected by Delayed Saving accurate? With
this research question we aim to investigate if the traces produced by
Delayed Saving are reliable from practitioners point of view.

4.4.2 Experiment Design

The main idea of the experiment is to contrast Delayed Saving with Direct
Saving, which traces and records events at the time they occur. We make a
comparison between both techniques with respect to the performance and
quality of data.

For assessing performance, we measure execution time of a program
monitored with both approaches compared to a program executed without
monitoring. The overhead is measured with respect to the user actions,
meaning that the measure starts with the user interaction and ends when
the program has finished processing the request.

Consistently with the experimentation in Chapter 3, we analyze the
overhead with respect to the different categories of operations of the system
response time categorization (see Section 3.3.2).

To determine the difference between the data obtained with Delayed
Saving and Direct Saving, we defined three indicators for assessing data
quality: Recorded, Missing and Unsound. Recorded indicates the per-
centage of data collected with Delayed Saving that is in common with the
data collected through Direct Saving. The Missing indicator measures the
percentage of data that is lost when monitoring with Delayed, in compar-
ison to Direct Saving. Finally, Unsound measures the percentage of data
monitored with Delayed that has been modified in comparison to the traces
monitored with Direct Saving.

The monitoring objective for both monitors is to collect the method calls
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related to a certain execution, including the runtime value of the parame-
ters associated with each method call.

We have seen that the usefulness of field data on post-deployment anal-
yses depends on the level of detail of data [41]. Therefore, we decided to
implement Delayed Saving with the ability to trace three different levels
of collected data with respect to the referenced objects in the single events.
The three levels are: the Objects, the Objects + Attributes and the Objects
+ Attributes Recursively.

Person  
 

int age  
Car car

Car  
 

String brand  
String color  

Transmission trans

Transmission 
 

String type  
int nrGears

Objects level

Person = [age: 39; car = Car]

Objects + Attributes level

Person = [age: 39; car = [brand = Fiat; color = white; trans = Transmission]]

Objects + Attributes Recursively level

Person = [age: 39; car = [brand = Fiat; color = white;  
trans = [type = manual; nrGears = 5]]]

Figure 4.6: Example of DS traces.

In Figure 4.6 we present an example of the traces produced by Delayed
Saving for each level. Let the classes Person, Car and Transmission be
part of the domain of a certain application. If the Delayed Saving monitor
trace an event that relates to an object of type Person, then we might
expect three different outputs according to the level of collected data. For
instance, if we are in the Objects level, then the trace contains attributes
information only of the original object of type Person.

Later, in the Objects + Attributes level Delayed Saving saves the values
of the car attribute, since the idea of this level is to trace information about
the attributes of the objects in Objects level.

The last level, the Objects + Attributes Recursively level, goes a step
forward and traces information about the attributes of the attributes of
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the objects in the Objects + Attributes level. If our object car contains an
attribute of Transmission type, we should trace the value of the attributes
of this particular object.

As explained in Section 4.2.2, to assess the sampling frequency that
ensures the best cost-benefit relation between performance and quality of
data, we experiment three distinct sampling rates: 20, 200 and 1000 mil-
liseconds.

4.4.3 Experimental Subject

To answer the research questions, we use the Eclipse IDE [24] as subject of
the experimentation. We considered the JDT Plugin as the target of mon-
itoring, in particular, this plugin provides all the necessary tools for Java
development. It adds a Java project nature and Java perspective to the
Eclipse Workbench as well as a number of views, editors, wizards, builders,
and code merging and refactoring tools.

We have written an automatically executable test case that encodes a
typical usage scenario for Eclipse, representing common activities for Java
developers such as instantiating new classes, performing searches, cleaning
and refactoring of code within the IDE.

In particular, the test case consists of the creation of a new Java Project
with three classes. Then, for some of the classes are generated automat-
ically getters, setters, constructor, toString method, and main method.
Next, two searches are performed inside the project, together with the
refactoring and cleaning functionality. Finally, it generates the documen-
tation of the project along with a last refactoring which is a modification of
the project’s name.

To avoid non-determinism and for reproducibility of the test case we
implemented it with the Sikulix [36] capture and replay tool.

4.4.4 Training Step

Since Delayed Saving is a technique whose performance depends on the
selected threshold level of the CPU, we apply the training step explained
in Section 4.3.2, that is, to use the Timing Classification and Behavioral
Classification procedures for finding the right threshold value.
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Using the Timing Classification Procedure

Table 4.2: Selection of optimal threshold level of the CPU using timing classification
procedure.

Phase Size Mean Median 1st Quartile 3rd Quartile Upper Whisker
Idle 71,236 45.07% 10.74% 0.00% 67.22% 168.04%
Working 1,944 166.00% 150.07% 97.95% 241.23% 441.71%

First, we attempt to find the right threshold value applying the Timing
Classification procedure explained in Section 4.3.2. To use this optimiza-
tion procedure we need both set of CPU samples for the working and the
idle phases. To obtain these sets, we ran the test case and classified the
samples depending if they were obtained during the execution of a func-
tionality (working) or if they were obtained when no functionality was be-
ing executed on the application (idle). In Table 4.2 we report some descrip-
tive data about each sample group, in particular we report 71,236 samples
for the idle phase with a mean value of 45.07%, and 1,944 samples for the
working phase with a mean value of 166.00%.

Figure 4.7: Threshold selection using the Timing Classification procedure.

Then, to find the right value we tested 600 threshold values going from
0% to 600%. In Figure 4.7, we show the different optimization values we
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found for the threshold values of the CPU. Additionally, we show with a
red line the value that maximizes the amount of correctly classified val-
ues for the corresponding threshold, especially we observe that the highest
optimization value is 62.78% that reflects on a threshold value of 71%.

Using the Behavioral Classification Procedure

Table 4.3: Selection of optimal threshold level of the CPU using Behavioral Classi-
fication procedure.

Iteration Threshold Optimization
Execution 1 69 74.27%
Execution 2 66 74.09%
Execution 3 66 74.10%
Execution 4 71 73.89%
Execution 5 81 73.95%

As explained in Section 4.3.2, this approach is based on the representa-
tion of an execution of a monitored program as a string, said string contains
the information about the status of the monitor. The idea is to find the
threshold value that maximizes the similarity between the ideal behavior
of a monitor and the string produced according to the selected threshold
value.

In Table 4.3 we show for each execution of the task the threshold value
that optimized the string similarity. Especially, we report a mean threshold
value of 71% with a 62.78% of optimization.

Since both procedures, Timing and Behavioral Classification, deliver a
similar result, we proceed to use the 71% as the calibrated threshold value
for the CPU to use in our experimental setup.

4.5 Results

In this Section we present the results of the experiment we conducted to
evaluate Delayed Saving. All the experiments were executed on a computer
running macOS version 10.12.6 with a 2.7 GHz Intel Core i5 processor and
16 GB of RAM.

103



4.5.1 Performance Results

To answer the research question RQ1: Does Delayed Saving introduce
a smaller overhead compared to Direct Saving? we assessed the im-
pact of both monitors in terms of the introduced monitoring overhead, in
particular we measured the overhead introduced by each approach com-
pared to the program executed without monitors. We ran our test case five
times and estimate mean values to mitigate any effect due to non-expected
variations of the execution time within the execution environment.

Overall, we gathered near 780 samples through the five executions of
the test case for each setup. Additionally, we also saved the execution traces
that will be useful for answering the research question RQ2.

As we did in Chapters 2 and 3 we classified user actions according to its
system response time category, i.e. Instantaneous, Immediate, Continuous
and Captive actions. We distinguished 35 Instantaneous, 12 Immediate
and 1 Continuous actions. During the experimentation we did not identify
Captive actions.

Below, we present the performance results for both monitoring approaches
with respect to the different system response time categories. We divide re-
sults also according to the level of collected data.

Figure 4.8: Performance results for Objects level.

For the Objects level, shown in Figure 4.8, the first thing we notice is
that Delayed Saving improves considerably the performance over Direct
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Saving with respect to actions that employs less than 1 second in the SRT
Category, in particular we observe an improvement of approximately 32%
for Instantaneous actions and a 15% for Immediate actions.

The second noticeable fact is that for actions taking longer than 1 sec-
ond, or Continuous actions, the performance is almost comparable between
Delayed Saving and Direct Saving.

When it comes to the sampling rate, we noticed that for Instantaneous
actions the lowest overhead was introduced at 200 milliseconds (0.94%).
We observed a similar behavior for Immediate actions (0.15% of overhead
at 200 milliseconds) and for Continuous actions (-4.16% of overhead at that
frequency).

We noticed negative monitoring overhead values for Continuous actions,
the reason of these values might be related to the fact that there is only one
action for this category, we would need to identify more Continuous actions
to make these results more stable.

For this level, the traces were of approximately 300 MB each.

Figure 4.9: Performance results for Objects + Attributes level.

The performance results for the Objects + Attributes level (see Figure
4.9) shows that Delayed introduced again a noticeable improvement with
respect to the Direct Saving technique. The improvement for Instantaneous
actions was about 71%, for Immediate actions was 68%, and for Continuous
actions was around 5%. On the overall for this level, the best performance
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observed for the sampling rate was obtained again for 200 milliseconds.
In this level, the traces were of approximately 700 MB each.

Figure 4.10: Performance results for Objects + Attributes Recursively level.

In the Objects + Attributes Recursively level (Figure 4.10) we again ob-
serve a big difference between Direct Saving and Delayed Saving results.
In particular, for Instantaneous and Immediate actions we observe a differ-
ence of approximately > 180% between both approaches, instead for Con-
tinuous actions we noticed a difference of about 2% between Direct Sav-
ing and Delayed approaches. Regarding the sampling rate, with exception
of Immediate actions, we obtained the best performance when monitoring
with 1000 millisecond sampling rate, for Immediate actions the best per-
formance was with 200 milliseconds (0.93%).

For this level, the traces were of approximately 3 GB each.
About the optimal choice of the sampling rate for performance, we can

conclude that it does not depend on the amount of collected data during
monitoring. In all three levels the optimal choice was 200 milliseconds,
only with the exception of Instantaneous actions for the deepest level. For
the Objects level, the 200 milliseconds configuration had an improvement of
approximately 10% for Instantaneous and Immediate actions with respect
to the 20 milliseconds setup. Then, for the Objects + Attributes level the
200 milliseconds approach had a 10% of performance improvement with
respect to the 20 milliseconds setup of Immediate actions. Finally, in the
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Objects + Attributes Recursively level the 200 milliseconds configuration
had a 15% improvement with respect to the 20 milliseconds approach for
Immediate actions.

4.5.2 Quality of Data Results

For answering the research question RQ2: Is the data collected by De-
layed Saving accurate? we measured the three indicators for data qual-
ity: Recorded, Missing and Unsound. We divide results according to the
level of collected data.

Figure 4.11: Quality traces comparison for Objects level.

When considering the Objects level (see Figure 4.11), we notice that
results do not vary too much between the different sampling frequencies,
whether for Recorded, Missing and Unsound indicators. However, we ob-
serve a high percentage of Recorded data (greater than 90%) and a very low
percentage of Missing and Unsound data (less than 10%). Meaning that the
traces captured by Delayed Saving are accurate, even when data related to
events are saved in a second step.

When analyzing the second level, or the Objects + Attributes level in
Figure 4.12, the first thing we note is that the level of Recorded drops
quickly from 90% to approximately 80%. And that Missing and Unsound
increases approximately 15% and 12% with respect to the Objects level.

Then in the third level, or the Objects + Attributes Recursively level in
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Figure 4.12: Quality traces comparison for Objects + Attributes level.

Figure 4.13: Quality traces comparison for Objects + Attributes Recursively level.

Figure 4.13, we notice that again results do not change much between the
different sampling frequencies of the CPU, but that in general indicators
remain on average pretty similar to the Objects + Attributes level.

Regarding the sampling frequency and the different levels of collected
data, we can say that results are pretty similar. The only exception is when
considering the Objects + Attributes level. In this case, the best results
were obtained considering a sampling frequency of 20 milliseconds, while
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the worst results were obtained when we sampled the CPU each 1000 mil-
liseconds.

In general, we notice that the Unsound indicator increases as the level
of collected data goes deeper, this is an expected result, since considering
a deeper level of data means more details about a certain object, and more
data that needs to be compared.

4.6 Discussion

We performed an experimental evaluation for evaluating the quality of De-
layed Saving in terms of monitoring performance with respect to Direct
Saving.

When assessing performance, we discovered that the monitoring over-
head introduced by Delayed Saving was in all cases better than Direct Sav-
ing. In particular, we observed an improvement for Instantaneous actions
of 36%, 71% and 213% for each level of collected data, respectively. Then, for
Immediate actions we observed an improvement of 34%, 75% and 272% for
the three levels of level of data collection. Finally, for Continuous actions
we observed a slight improvement of 4%, 6% and 7% for the three levels of
collected data, respectively.

Given that Delayed Saving works by delaying the recording of the ob-
jects related to the monitored events, it is possible that the data associated
with the object might have changed its value or just being removed from
the memory. This was the reason to also study the accuracy of the traces
produced by Delayed Saving.

The quality of data produced by Delayed Saving depends directly on the
level of precision of data collected from field, we discovered that the accu-
racy of the technique was approximately 92%, 77% and 79% respectively
for each level of collected data. Additionally, we found that the percentage
of unsound data was 3%, 15% and 20% for each level respectively. Even
though we are considerably increasing the amount of collected data from
level Objects + Attributes (∼ 700 MB) to level Objects + Attributes Recur-
sively (∼ 3 GB), the accuracy of the technique remains unchanged, stabi-
lizing near 77%. The imprecision we observed in the experimental results
might not be tolerated by all the techniques working with field data, but it
could probably be accepted by techniques that work on static models and
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mining techniques, where absolute precision is not the most important as-
pect.

In the overall, DS presents a good compromise between performance
and quality of data: on the one hand, the results suggest that strategy
succeeds to decrease the monitoring overhead with respect to the actions of
the system response time categories, on the other hand the results suggest
a good quality of data since the percentage of saved data with Delayed
Saving that differs from data recorded with Direct Saving is low. Delayed
Saving could be useful for practitioners at the time of choosing a monitoring
technique for analyzing instances running in the field.
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Chapter 5

Software Monitoring

In this chapter, we frame our work in the context of related areas.
In particular, Section 5.1 discusses how this thesis relates to other stud-

ies about the perception of the system response time, and Section 5.2 dis-
cusses how this Ph.D. work relates to existing approaches to field monitor-
ing and analysis.

5.1 Perception of the System Response Time

When performing analysis activities (e.g., profiling, testing, program anal-
ysis, among others) in the field, we are actually modifying the system re-
sponse time of user interactions. Since the resources on a computer ma-
chine are shared between all processes, the analysis processes may intro-
duce slowdowns to user processes, affecting the overall user experience.

Investigating how the overhead introduced by monitoring may affects
the user experience implies understanding how users perceive the system
response time (i.e., which is the expectation that a user has regarding the
response time of a certain action) and how they react to variations in the
reactivity of the system.

In computer science and Human Computer Interaction literature, or
HCI for short, there are two main studies regarding the system response
time and its evaluation by the end user, the one by Shneiderman ([71, 72],
1987 and 2009) and the one by Seow ([70], 2008). In the first one, the evalu-
ation of the foreseen SRT is task oriented, so, for simple tasks (mainly typ-
ing and moving the mouse), the system must respond essentially as quickly
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as possible, while as task complexity increases, users should better toler-
ate the delay in system response. So, the complexity of the task rules in
determining the appropriate range of system response times.

In the second classification for the SRT, Seow proposed that interactions
with a computer can be assigned to categories based on user expectancies,
in a “conversation like” interaction. So, considering what the user is asking
the system (the requested action), he will likely tolerate different SRT.

Anyway, the resulting classifications are quite similar, as shown in Ta-
ble 5.1: since the Shneiderman is a little more recent (2009), it reflects the
improvements in computer performances (converted in a quite less tolerant
expected response time), but mainly the categories are the same four.

Table 5.1: Shneiderman’s and Seow’s SRT categorization

Shneiderman Seow
Task SRT Category SRT
Typing, mouse movement 50 - 150 ms Instantaneous 100 - 200 ms
Simple frequent tasks 1 s Immediate 0.5 - 1 s
Common tasks 2 - 4 s Continuous 2 - 5 s
Complex tasks 8 - 12 s Captive 7 - 10 s

Nevertheless, these two classifications of the SRT both show limitations:
the Seow one is no longer updated with respect to new hardware evolutions
and user capabilities (so, the expected time could not be so reliable), and
furthermore it is not always simple to classify an action (and again, we
cannot be sure that the user is completely aware of the complexity of the
action), while the Shneiderman one does not clearly state how to define the
task complexity (and anyway, it suffers of the same time estimation of the
Seow’s one, since it was updated ten years ago).

About the perception of the SRT, there are multiple studies in the con-
text of the research in HCI and Psychology. For instance, the perception
of time is a complex subject of study in psychology and several researchers
investigated it.

Relevant to our experiment, Duncan et al. [23] studied how the percep-
tion of time changes with age discovering that young people, adults and
elderly people perceive time differently.

This is why we selected subjects of similar age. Our study is thus repre-
sentative of how young people perceive the overhead, but we do not know
if the obtained results are valid for adults and elderly people.
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In the HCI area, there are a number of studies about the satisfaction of
the user concerning the SRT of an application.

For instance, an interesting result from the HCI ([46]), performed in
1987 but still valid (since it was a study of the human physical ability to
estimate weight), shows that users are unlikely to be able to identify time
variations inferior to 20% of the original value: this information could be
useful to forecast if the user will tolerate the delay or not, if in the 20%
range.

Then, Ceaparu et al. [13] studied how interactions with a personal com-
puter may cause frustration. In the experiment, users were asked to de-
scribe, in written form, frustrating experiences with computers. The par-
ticipants of the experiment declared that applications not responding in an
appropriate amount of time and Web pages taking long time to process to
be the main sources of frustration in the computer interaction. Although
this experiment is different in both the design and the aim from ours, the
results show that SRT delays (e.g., a less responsive Web browser) might
be the cause of a bad user experience.

Some studies stressed the tolerance of the users in specific settings. For
example, Nah et al. [54] investigated how long users are willing to wait
for a Web page to be downloaded. Results show that users start noticing
the slowdowns after 2 seconds delays and that do not tolerate a slow down
of more than 15 seconds. A threshold of 15 seconds has been reported as
the maximum that can be tolerated before perceiving an interruption in a
conversation with an application also in other studies [57, 52].

The study conducted by Hoxmeier and Di Cesare [38] is similar to ours,
both in the settings (100 subjects performing tasks on applications with
different slowdowns) and in aims (to evaluate the user appreciation and
perception of web applications in terms of ease of use and satisfaction expe-
riencing different slowdowns). The experiment presents some differences
with our study, mainly in the variables: (1) we are focused on studying
the user tolerance of different overheads with respect to the the four types
of operations, so we added a controlled overhead to each single operation,
while in that study a fixed time overhead (3, 6, 9 and 12 seconds) is imposed
every time a user move from a page to another (so, single operation versus
moving through applications pages, fixed overhead versus percentage over-
head on expected SRT) (2) we use the Seow’s classification, while in that
study authors refer to Shneiderman [71], (3) we focus on desktop applica-
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tion, known to subjects, while in that study authors uses Web applications
developed ad-hoc.

Their results show that 12 seconds seem to be the limit for the user
tolerance, and that a linear relationship exists between response time and
user satisfaction. This is partially coherent with our results, but they must
be analyzed and compared considering the differences in the settings, and
above all in the different expected time performances, since the study was
conducted in year 2,000 over web applications, and the speed of computers
and above all of the Internet connections is completely different today, so,
the expected system response time is completely different too.

While these findings are interesting, they focus on complementary as-
pects compared to our experiment. In fact, we are not interested in identi-
fying the maximum overhead that a user can tolerate, but we are interested
in the overhead that users cannot event recognize. In other words, we are
not interested in stressing up to the limit the users, but rather to seam-
lessly introduce analysis and monitoring routines in software applications.
Moreover, our study covers different classes of operations, including opera-
tions to move across windows and menus and also the execution of domain
functionalities, instead of focusing on specific operations (e.g., transitions
between Web pages).

5.2 Field Monitoring

Monitoring a software consists of dynamically collecting information about
its behavior. The problem of monitoring can be divided in two sub-problems:
(1) obtaining data from executions and (2) defining the scope of monitoring.

Tackling the first problem is purely technical and consists of adding
probes into programs to gather the data. Adding probes is not a challenge
and a number of techniques can be used to add probes manually, stati-
cally or dynamically. Manual addition of probes consists of implementing
the tracing code, e.g., using logging technology [1, 62]. Static instrumen-
tation techniques automatically modify the software source or binary code
by adding probes in the places specified by developers [39, 25]. Dynamic
instrumentation is the same than static instrumentation, but probes are
placed into applications at load-time [25].

The second problem is conceptual and focuses on the choice of the ele-
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ments to be monitored. Techniques working on this topic are known as field
monitoring and analysis solutions, and can significantly improve verifica-
tion and validation methods since they can work with production data and
can exploit the knowledge of the real interaction patterns between users
and applications [40, 48, 27, 60, 37, 67, 41, 15]. Although these solutions
can be beneficial for the quality of the software, they may degrade the per-
formance of the applications and consequently may affect the quality of the
user experience if not carefully designed.

In general, techniques that exploit and collect field data have been widely
studied, and many approaches have been reported in literature.

For instance, Delgado et al. [20] developed a taxonomy to analyze and
differentiate monitoring tools that focus on identifying field failures. The
taxonomy categorizes field monitoring research by classifying contributions
according to the elements that are considered essential for building a mon-
itoring system, such as the monitoring mechanism that supervises the pro-
gram’s execution and the event handlers that intercept and save data from
field. Under this taxonomy, our tool CBR can be classified as a monitor
with: automatic monitoring points (i.e., dynamic probes placement), inline
placement (i.e., that is embedded in the target code), software platform (i.e.,
that uses code to observe and analyze the values of monitored variables)
and single process implementation (i.e., that the monitor executes in the
same process as the target program).

The problem of field monitoring can be further defined in the following
way: given EV as the set of every possible event that can be produced by
a monitored application, a field execution E = 〈e1, e2, ..., en〉, with ei ∈ EV,
i = 1 . . . n is an ordered sequence of events. Depending on the objective of
the monitoring activity, we can identify a set of relevant events that must
be collected. We represent this set of interesting events (i.e., monitoring
objective) as O = {o1, o2, ..., om} ⊆ EV.

Given a field execution E and a monitoring objective O, the set of events
that are ideally captured is defined as

TO(E) =< ē1, ē2, ..., ēk >, where:

1. TO(E) is a subsequence of E, that is, TO(E) can be obtained from E by
deleting a possibly empty set of events (soundness);

2. all the relevant events are recorded, that is, if an event in O occurs in
E, it also occurs in TO(E) (completeness);
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3. only the events from O occurs in TO(E) (succinctness).

Our work focuses particularly on the cost-effectiveness of monitoring,
aimed to collect field data in a non-intrusive way without losing relevant
information. In this line, some techniques have been specifically designed
to limit the monitoring overhead introduced in the target application. Cur-
rent approaches dealing with effective field monitoring can be classified in
three mainstreams: Distributive Monitoring, Probabilistic Monitoring and
State-Based Monitoring.

Below, we give a description for each field monitoring approach, and a
comparison with our work.

5.2.1 Distributive Monitoring

Distributive Monitoring is an approach that takes the monitoring objective
O = {o1, o2, ..., om} and assign a subset S ⊂ O to different computers, in a
way that the union of all subsets S satisfies the original monitoring objec-
tive O. This strategy decreases monitoring overhead because it limits the
amount of behaviors observed on a certain computer.

This technique has been developed by Orso et al. [65, 10] with their tool
Gamma System which divides a monitoring task into a set of subtasks and
assigns them to individual instances of the software to be monitored, in or-
der to minimize runtime overhead. Additionally, the technique optimizes
the placement of probes across several instances for further overhead re-
duction.

The data collected in each instance across the field is independent from
other locations, and thus is extremely hard to reconstruct field executions
and having more comprehensive information about the application from the
individual traces. Contrarily, CBR collects traces from different locations
and summarizes field data into a comprehensive knowledge such as a Finite
State Automaton, exploiting a representation of the program state that can
be used to merge independently collected traces.

A similar approach that exploits this concept is the one by Briola et al.
[12], which implements a framework for distributed runtime verification
of Multi-Agent Systems (MAS). The approach is mainly in charge of moni-
toring interaction protocols in JADE MASs [9] by transforming agent mes-
sages into Prolog programs and predicates suitable for runtime verification.
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In the same direction, Ferrando et al. [29] worked on an algorithm for de-
centralizing the monitoring in MASs. Since having one centralized monitor
in growing MAS systems may not scale well, especially when considering
complex systems, Ferrando et al. proposed to distribute and simplify the
load of monitoring by partitioning the agents in several groups with one
monitor per partition. The partitioning system guarantees that distributed
monitoring detects all the protocol violations such as a centralized monitor-
ing system would.

5.2.2 Probabilistic Monitoring

The second stream is Probabilistic Monitoring, which lowers the overhead
by monitoring each instrumentation point with a certain probability, thus
collecting random subsets of traces. This means that from the set of rel-
evant events O1, . . . Ok, each event Om is observed only with a probability
P ∈ [0, 1] .

Liblit et al. [48] have taken advantage of Probabilistic Monitoring in
particular to isolate bugs by profiling a large, distributed user community
and using logistic regression to find the important predicates (a logical ex-
pression that evaluates to true or false that directs the execution path) that
could be the faulty one.

In the same way, Jin et al. [40] presented a monitoring framework called
Cooperative Crug (Concurrency Bugs) Isolation to diagnose production run
failures caused by concurrency bugs: the framework introduces the neces-
sary instrumentation to check whether accesses to a memory location were
made by the same thread or by different threads. Moreover, the tool relies
on sampling to keep the overhead low as our tool CBR does, the results of
the study shows that the CCI framework incurs only in 2−7% of monitoring
overhead. This technique is focused in observing very specific concurrency
problems such as races and atomicity violations, and especially is not in-
tended for collecting comprehensive information about full executions, con-
trarily as CBR does through the generation of traces from the FSA model.

A work similar to Probabilistic Monitoring, but with a different domain
(Runtime Verification), is the one of Bartocci et al. [7]: they presented
Adaptive Runtime Verification, a monitoring tool that controls the overhead
by enabling and disabling runtime verification of events according to over-
head target levels. This framework determines statistically the probability
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of an application property (based on observable actions of the monitored
system) of being violated, and based on this number a higher or lower level
of overhead for that property is assigned. When is not possible to verify
a certain property (e.g., due to a high overhead level) the framework esti-
mates the probability that a property will be satisfied, instead of monitor-
ing the actual property, and thus reducing the load of runtime verification.

Runtime Verification approaches mostly assume the existence of com-
plete execution traces, but often systems produce incomplete traces due
to the use of Probabilistic Monitoring. For this reason some researchers
have been working on techniques for the runtime verification of incomplete
traces [43, 4]. On the one hand, Joshi et al. [43] have been developing an al-
gorithm that identifies whether a certain property can be soundly checked
in the presence of a partial trace: if the property can not be analyzed with
the available data, the algorithm waits until there are enough samples from
the field. In the other hand, Babaee et al. [4] worked on a prediction model
to detect satisfaction or violation of a property based on incomplete execu-
tions basically, if a property can not be satisfied, the monitor estimates the
probability of that property being satisfied based on the possible execution
paths of the application according to the actual state.

Another type of Probabilistic Monitors is Bursty Monitors, an approach
developed by Hirzel et al. in [35]. Bursty Monitors are known for collect-
ing subsequences of events with ad-hoc strategies to construct a temporal
program profile.

The strategy implemented by Bursty Monitors is the closest to our ap-
proach Controlled Burst Recording, because the monitoring procedure can
be reduced to collect streams of consecutive events at runtime, instead of
tracing full executions. The main differences with our approach are related
to the fact that (1) the reconstruction of streams are made at two different
levels: CBR is user-interaction oriented, while Bursty Monitors are proce-
dure oriented, and (2) Bursty Monitors does not take in consideration the
impact of the monitor on user operations, contrarily to the Controlled Burst
Recording framework. We already discussed in Chapter 2 how users are
more sensitive to delays experienced on operations of specific categories,
so in general the monitoring overhead should be always considered with
respect to the system response time classification.

In general, Probabilistic Monitoring is designed to collect partial infor-
mation about the execution, while in this Ph.D. thesis we focus on the re-
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construction of fairly larger traces.

5.2.3 State-Based Monitoring

The program state PS of a certain application on a instant t can be defined
as PS(t) = {pv1, pv2, . . . , pvr}, where pvr represents the runtime value of a
program variable on a moment t.

State-Based Monitoring approaches focuses on using a small subset of
program variables pv to represent a program state while the application is
running in the field. These techniques are often used either for replaying
field executions or for trace analysis (e.g., debugging).

For instance, Orso et al. [64] worked on a technique for a selective cap-
ture and replay of program executions. This technique allows to select a
subsystem of interest, capture at runtime all the interactions of the appli-
cations with its subsystem and then replay the recorded interactions in a
controlled environment. For each interaction of the application, the tech-
nique captures a minimal subset of the application’s state and environment
required to replay the execution.

Similar to Controlled Burst Recording, this framework exploits the idea
of tracing just the entities defined inside the subsystem, that is, defining
a monitoring scope in order to lower the overhead introduced by monitor-
ing. However, this framework is designed to be used for analyzing partial
executions instead of complete executions, as we do.

Diep et al. [21] presented a technique for analyzing traces produced
by field applications, in particular to identify and delete irrelevant events
from traces that do not offer interesting information for offline analyses.

Before deploying the application, practitioners select a subset of pro-
gram variables to be used to represent the program state PS, then while
the application is running in the field, the state of these variables is regu-
larly saved before and after each monitored event.

In a second step (i.e., offline time), the technique divides the full trace in
several pieces using the variables state as splitting points. After this oper-
ation, the technique deletes all the events that do not change the program
state, and those events that whose occurrence can be re-ordered without
affecting the program state, leaving in the trace only the most relevant
information for understanding the program behavior.

Contrary to CBR, this technique does not take into account the monitor-
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ing overhead introduced by the action of saving regularly state information,
besides the fact that the representation of PS is done manually in compar-
ison to CBR that performs this operation in a automated way.
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Chapter 6

Summary of
Contributions and Open
Research Directions

Fully assessing the correctness of software applications in-house is infea-
sible. Indeed a number of relevant cases are missed by verification and
validation procedures due to lack of resources or the impossibility to repli-
cate the scenarios that occur in the field. It is thus extremely important
to be able to continue the validation activity in the field while applications
are operational.

Monitoring and validation activities inevitably consume resources and,
depending on their extensiveness, may significantly slow down software
systems, interfering with the user activity. There is thus a challenging
trade-off between monitoring and validation applications in their opera-
tional environment and preventing any degradation of the user experience.
The lack of studies about when users perceive an overhead introduced in
an application makes extremely difficult to fine tune techniques working in
the field.

In a nutshell, this Ph.D. thesis presents two main challenges: (1) to
study how the user perceives monitoring overhead and, (2) to investigate
how to collect data in a non-intrusive way, without losing too much infor-
mation.

To tackle challenge (1) this thesis work presents an empirical study
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aimed at quantifying if and to what extent the overhead introduced in an
interactive application is perceived by users. This study considers multiple
categories of operations and sequences of operations executed in different
order, investigating how both factors may influence the perception of mon-
itoring overhead.

For assessing challenge (2), this thesis presents two different frame-
works: first, a framework that collects data for short periods and extracts
knowledge from field executions, and second, a framework that focuses on
tracing users executions without actually interfering with them.

Both frameworks focuses in collecting expensive information from the
field, without impacting on the user experience. We additionally carried
out experimental evaluations to assess the performance of the techniques
with respect to the system response time and the accuracy of the traces
produced by both approaches.

6.1 Contributions

This thesis advances the state of the art of field monitoring of interactive
applications by:

• Presenting an empirical study with human subject studies about how
users perceive monitoring overhead. The study produced interesting
findings that can be exploited to carefully design analysis procedures
running in the field. We discovered that users did not perceive sig-
nificant differences for an overhead of 80% and seldom perceived an
overhead of 140%, that users are more sensitive to delays experienced
on operations of specific categories, and that the execution of a long
operation generates a pessimistic expectation for the future, resulting
in an optimistic perception of the response time if the functionality
that is later executed is faster than the previous one.

• Proposing a technique for extracting knowledge about field executions
with little impact on the user experience [59, 17]. The technique gen-
erates a finite state automaton that models the relationships between
events observed in the field and the different program states of the ap-
plication. From the model it is possible to extract accurate and com-
prehensive traces that could be useful for post-deployment analysis
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such as debugging, field failures reproduction, protocol verification,
among others.

• Describing a technique for delaying the saving of events to file during
field monitoring. The technique performs monitoring by limiting the
activity performed in parallel with users operations: the approach
considerably decreases the impact of monitoring on user operations
and produces traces of high accuracy.

6.2 Open Research Directions

What concerns the human-subject studies about the impact of overhead on
user experience, future work may concern considering different type of par-
ticipants such as people of all ages or people with different levels of experi-
ence with interactive applications. Moreover, the addition of longer tasks to
the experimentation with variable levels of overhead could be considered.

Regarding techniques extracting knowledge from field executions, we
could consider studying new refinement procedures during the generation
of the Abstraction Functions, in order to reach higher levels of accuracy in
the traces produced by the Finite State Automaton.

For techniques delaying the saving of the events collected at runtime,
future research may consider developing a procedure for monitoring com-
pletely accurate traces by implementing a mechanism that keeps track of
the objects that are about to change during the execution.

Even though the monitoring approaches presented in this thesis work
are designed with the aim of capture and observe events from instances
running in the field with low overhead, Runtime Verification approaches
could greatly benefit of Controlled Burst Recording and Delayed Saving
techniques, since they provide a base architecture for broad spectrum mon-
itoring that could be used also for verifying properties at runtime.
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