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Chapter 1

Introduction

Portfolio selection is a classical topic in mathematical finance since the seminal
work of Markowitz (1952), that introduced the classical mean/variance framework,
later generalized to the so called mean/risk models. To this aim, several risk mea-
sures have been studied and compared from different point of views: their theo-
retical properties, their robustness, the complexity of the corresponding portfolio
problem, their empirical performance on real data. There is a general agreement
that a “good” risk measure should satisfy the axioms of coherence, introduced by
Artzner et al. (1999). Acerbi and Tasche (2002a) even stated:

“To avoid confusion, if a measure is not coherent we just choose not
to call it a risk measure at all.”

Computational issues are also extremely relevant from a practical point of
view, since rebalancing a portfolio is an operation that in some cases is done
even several times a day. For this reason, portfolio selection is preferable to be
a Linear Programming Problem or at least a convex optimization problem, in
order to assure the convergence of the algorithms used by the numerical solvers.
Indeed if the problem is not convex, not only his computational cost may be
extremely high, but also the solutions provided by the solver algorithms could be
local minima and not global. For a recent review of the main LP solvable models
for portfolio optimization we refer to Mansini et al. (2003a), Mansini et al. (2003b)
Mansini et al. (2014).

A risk measure that is coherent and gives rise to an LP minimization problem
when applied on discrete scenarios is the CVaR, as it has been shown by Rockafel-
lar and Uryasev (2000). CVaR became extremely popular, especially since when
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CHAPTER 1. INTRODUCTION 4

Basel Committee on Banking Supervision (2012) changed the standard regulatory
risk measure from Value at Risk to CVaR.

Another family of risk measures that has become quite popular in the recent
literature is the expectiles. Expectiles have been introduced in the statistical
literature by Newey and Powell (1987) as an asymmetric generalization of the
mean, and it has been recently shown by several authors that they are also coherent
risk measures. Moreover, it has been proved (see Ziegel (2016), Delbaen et al.
(2015), Bellini and Bignozzi (2015)) that they are the only coherent risk measure
that satisfy the so-called elicitability property, that gives a natural scoring function
for backtesting purposes.

This thesis explores the use of expectiles and of related risk measures in port-
folio optimization. More precisely, we introduce the concept of Expectile Value at
Risk (EVaR), and consider mean/risk models of the mean/EVaR type. We show
that they also can be recast as LP problems, and we provide numerical examples
both on real and simulated data, following the pattern that Bertsimas et al. (2004)
used for an analogous study with CVaR.

Further, we consider portfolio optimization with the interexpectile difference
as an objective, a novel variability measure introduced in Bellini et al. (2017) for
measuring implied volatility from option prices, and compare it with the most well
known interquantile difference.

A robust version of the problem of EVaR minimization is also provided, fol-
lowing the pattern of Zhu and Fukushima (2009).

Finally, starting from the work of Maillard et al. (2010) and all the following
works on the equally-weighted risk contributions (see e.g. Cesarone and Colucci
(2017) and Cesarone and Tardella (2017)), we investigate empirically equally-
weighted risk contributions portfolios using the EVaR as risk measure.

The thesis is structured as follows.
In Chapter 2 we review the main theoretical concepts needed to introduce

expectiles and EVaR. We start from the definition of monetary risk measure that
can be found e.g. in Föllmer and Schied (2010) and we recall the definitions
of convex and coherent risk measures from the axiomatic point of view or from
their acceptance sets. We remind their most important properties and their Dual
Representation. Moreover we talk about differentiability of risk measures due to
its importance in the definition of equally-weighted risk contributions portfolios.
Finally we recall the notion of Deviation Risk Measure.
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In Chapter 3 we introduce expectiles as defined by Newey and Powell (1987)
and we report the main results related to them (see e.g. Delbaen (2013), Bellini
et al. (2014), Bellini and Bignozzi (2015)).

In Chapter 4 we recall the most important mean-risk models and we present
the classical mean-risk problem using EVaR as risk measure to minimize. Starting
from the dual representation of EVaR we show that this is an LP solvable problem.
We also provide numerical examples using simulated and historical data.

In Chapter 5 we discuss about Interexpectile Difference as the analogous of the
interquantile difference. We show that the relative mean-risk model optimization
this is again an LP problem: we still perform numerical examples using simulated
and historical data.

In Chapter 6 following the approach of Zhu and Fukushima (2009) we define a
Robust version of EVaR, supposing that the random variable which describes the
possible outcome of the portfolio belongs to a certain class of probability density
functions. Then we perform tests using this risk measure.

Finally in Chapter 7 we recall the notion of equally-weighted risk contribu-
tions portfolio as presented in Maillard et al. (2010) and we extend this method
to the case of EVaR. In the end we compare numerically equally-weighted risk
contributions portfolios using different risk measures.



Chapter 2

Risk measures and deviation
measures

〈RM〉

2.1 Monetary, Convex and Coherent Risk Mea-
sures

We recall the definition of monetary risk measures that can be found e.g. in
Föllmer and Schied (2010) and Föllmer and Weber (2015). As usual, let (Ω,F ,P)
be a probability space, and let X be a linear space of functions X : Ω → R con-
taining the constants; in finance, for instance, Ω represents possible “states of the
world” and X is a random variable which could be the value of an asset or a
portfolio.

Definition 1. A monetary risk measure is a map ρ : X → R∪{+∞} that satisfies
the following properties:

Normalization ρ(0) = 0

Translation invariance if a ∈ R and X ∈ X , then ρ(X + a) = ρ(X)− a

Monotonicity if X1, X2 ∈ X and X1 6 X2, then ρ(X2) 6 ρ(X1).

A monetary risk measure ρ is said to be a convex risk measure if it satisfies also:

Convexity for each X1, X2 ∈ X and λ ∈ [0, 1], it holds that

ρ(λX1 + (1− λ)X2) 6 λρ(X1) + (1− λ)ρ(X2).

6
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These properties have natural financial interpretations. The property of Nor-
malization means that the risk of holding nothing is equal to 0. The property of
Translation invariance, also called cash additivity, means that if we add an amount
of cash a to a position X, then the risk decreases by a; in this case ρ(X) may be
interpreted as a capital requirement, i.e. the amount of cash to be added to a
position X in order to make it acceptable from the point of view of a regulator.
The Monotonicity property says that that if a position X1 has less value than X2,
then the risk of holding it is higher. Finally Convexity represents the fact that the
risk of a diversified portfolio should be less than the corresponding average of the
risks of the single assets.

The first axiomatization of risk measures has been given in Artzner et al.
(1999), that introduced the concept of coherent risk measure defining a set of
desirable properties that a “good” risk measure should have. Coherent risk mea-
sures are monetary risk measures that satisfy also the subadditivity and positive
homogeneity properties:

〈coherentRM〉
Definition 2. A monetary risk measure is said to be coherent if it satisfies also
the following properties:

Subadditivity for each X1, X2 ∈ X , then ρ(X1 +X2) 6 ρ(X1) +ρ(X2)

Positive homogeneity if a > 0 and X ∈ X , then ρ(aX) = aρ(X).

A coherent risk measure is always convex; more precisely, the link between
subadditivity, convexity and positive homogeneity is given by the following (see
e.g. Föllmer and Schied (2010)).

Proposition 3. Let ρ be a risk measure, ρ : X → R ∪ {+∞}, with ρ(0) = 0.
Then:

a) Subadditivity + Positive homogeneity ⇒ Convexity;

b) Positive homogeneity + Convexity ⇒ subadditivity;

c) Subadditivity + Convexity ⇒ Positive homogeneity.

Proof. a) Subadditivity + Positive homogeneity ⇒ Convexity

ρ(λX + (1− λ)Y ) 6 ρ(λX) + ρ((1− λ)Y ) = λρ(X) + (1− λ)ρ(Y )

The first inequality is true due to subadditivity, the second inequality is true
from positive homogeneity.
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b) Positive homogeneity + Convexity ⇒ Subadditivity

ρ(X + Y ) = ρ
(

2
(1

2X + 1
2Y

))
= 2ρ

((1
2X + 1

2Y
))

6 2
(1

2ρ(X) + 1
2ρ(Y )

)
= ρ(X) + ρ(Y )

The second equality is true due to positive homogeneity and the inequality
is true due to convexity.

c) Subadditivity + Convexity ⇒ Positive homogeneity
Notice first that for α 6 1, from convexity and the fact that ρ(0) = 0, it
follows that

ρ(αX) = ρ(αX + (1− α)0) 6 αρ(X) + (1− α)ρ(0) = αρ(X). (2.1) eqnsopra

Let now α > 1 and let α = bαc+ (α− bαc), where b·c is the floor function.
We have

ρ(αX) = ρ((bαc+ (α− bαc))X) 6 ρ(bαcX) + ρ((α− bαc)X)

6 bαcρ(X) + (α− bαc)ρ(X) = αρ(X), (2.2) eqnrhosub2

where the first inequality follows from subadditivity, the second inequality
follows from the fact that by subadditivity ρ(nX) 6 nρ(X) and by (2.1),
since α− bαc 6 1. It follows that ρ(αX) 6 αρ(X), for each α > 0.

In order to prove the opposite inequality notice that for each α > 0

ρ(X) = ρ
(
α

1
α
X
)
6

1
α
ρ(αX) ⇒ ρ(αX) > αρ(X) (2.3) eqnrhosub

Equations (2.2) and (2.3) together imply that ρ(αX) = αρ(X) for each
α > 0 that is the positive homogeneity property.

2.1.1 Acceptance sets

Given a monetary risk measure ρ : X → R, its acceptance set Aρ is given by:

Aρ := {X ∈ X |ρ(X) 6 0}.
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The acceptance set of a risk measure represents the set of positions that have non-
positive risk, and hence are termed acceptable. Similarly, given an acceptance set
A, we can associate to it a monetary risk measure ρA as follows:

ρA(X) := inf{m ∈ R|X +m ∈ A}.

The properties of ρ and Aρ are strictly linked. Indeed:
〈propArho〉Proposition 4. Let ρ be a risk measure and let Aρ be its acceptance set. Then:

a) ρ is translation invariant if and only if ρ = ρAρ.

b) If ρ is monotone then Aρ is a monotone set, in the sense that

X > Y, Y ∈ A ⇒ X ∈ A.

c) If ρ is positive homogeneous then Aρ is a cone.

d) If ρ is convex then Aρ is convex.

Proof. a) ρ is translation invariant if and only if ρ = ρAρ .
By definition of Aρ, we have that:

ρAρ(X) = inf{m ∈ R|X +m ∈ Aρ} = inf{m ∈ R|ρ(X +m) ≤ 0}

By the property of translation invariance

inf{m ∈ R|ρ(X +m) ≤ 0} = inf{m ∈ R|ρ(X) 6 m}

and clearly
inf{m ∈ R|ρ(X) 6 m} = ρ(X).

b) If ρ is monotone then Aρ is a monotone set.
Let X > Y and Y ∈ Aρ. By the monotonicity of ρ we have that ρ(X) 6

ρ(Y ). Since ρ(Y ) 6 0 because it belongs to Aρ, it follows that ρ(X) 6 0
and X ∈ Aρ

c) If ρ is positive homogeneous then Aρ is a cone.
We must prove that if X ∈ Aρ and λ > 0 then λX ∈ Aρ. By positive
homogeneity we have that

ρ(λX) = λρ(X) ≤ 0

so λX ∈ Aρ and consequently Aρ is a cone.
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d) If ρ is a convex map then Aρ is convex.
We must prove that if X, Y ∈ Aρ and λ ∈ [0, 1] then λX + (1− λ)Y ∈ Aρ.
By the convexity of ρ we can write

ρ(λX + (1− λ)Y ) 6 λρ(X) + (1− λ)ρ(Y ).

Since X, Y ∈ Aρ and λ ∈ [0, 1] we have that

λρ(X) + (1− λ)ρ(Y ) ≤ 0

which ends the proof.

Similarly there is a relationship between the properties of the acceptance set
A and the properties of the risk measure ρA.

Proposition 5. Let A be an acceptance set and let ρA be the corresponding risk
measure, then

a) ρA is translation invariant.

b) If A is a monotone set then ρA is a monotone.

c) If A is a cone then ρA is positive homogeneous .

d) If A is convex then ρA is a convex.

Proof. See e.g. Föllmer and Schied (2004).

Proposition 4 says that if ρ is translation invariant, then ρ = ρAρ . There is an
analogous result for AρA . Recall that a set A ∈ X is said to be closed from above
if for each sequence Xn ↓ X with Xn ∈ A, it holds that X ∈ A. We have the
following:

Proposition 6. Let A be an acceptance set monotone and closed from above.
Then A = AρA.
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2.1.2 Dual Representations of Risk Measures

A fundamental result in the axiomatic theory of risk measures is the so called
dual representation. Roughly, it states that every coherent risk measure is equal
to a worst case expectation over a set of probability measures called generalized
scenarios. We give a precise statement for risk measures on L∞. In order to
formulate it properly, we recall two very important continuity properties known
as the Fatou property and the Lebesgue property. The Lebesgue property is a
stronger continuity requirement than the Fatou property.

Definition 7. A risk measure ρ : L∞ → R is said to have the Fatou property if

‖Xn‖∞ 6 k, Xn → X a.s.⇒ ρ(X) 6 lim inf ρ(Xn).

It is said to have the Lebesgue property if

‖Xn‖∞ 6 k, Xn → X a.s.⇒ lim
n→+∞

ρ(Xn) = ρ(X).

Theorem 8. Let ρ : L∞ → R be a coherent risk measure satisfying Fatou property.
Then there exists a set of probability measuresM, with

M⊂ Q := {Q probability measures on (Ω,F)|Q� P},

such that
ρ(X) = sup

Q∈M
{EQ[−X]}.

If moreover ρ satisfies the Lebesgue property, then

ρ(X) = max
Q∈M
{EQ[−X]}.

Recall that Q � P means that Q is absolutely continuous with respect to P,
i.e. that for every measurable set A, P(A) = 0 implies Q(A) = 0.

2.2 Value at Risk and Conditional Value at Risk

The most studied and discussed risk measures in the financial literature are the
Value at Risk and the Conditional Value at Risk, briefly VaR and CVaR. There
are several papers that compare these two risk measures from different points of
views and explain in details their properties. Among them, we recall Linsmeier
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and Pearson (2000) who analyzed in detail the VaR and the methodologies to
evaluate it, Rockafellar and Uryasev (2000) who showed how the problem of min-
imizing the CVaR of a portfolio on discrete scenarios can be recast as a Linear
Programming problem, and Pflug (2000) who summarized the properties of these
two risk measures and studied in details the structure of the portfolio optimization
problem. In the following we recall their definitions.

Definition 9. Let X be a random variable on (Ω,F ,P) with distribution function

FX(t) := P(X 6 t).

For α ∈ (0, 1), the left and right α-quantiles of X are defined respectively by:

q−α (X) := inf{x ∈ R : FX(x) > α},

q+
α (X) := sup{x ∈ R : FX(x) 6 α}.

For continuous distribution functions, that are the most relevant in financial
applications, it holds that q−α (X) = q+

α (X). Since the random variable X represent
the value of a position, the loss tail corresponds to low values of α, typically
α = 0.05 or α = 0.01. Value at Risk is usually defined as the negative of the right
quantile:

Definition 10. Let X be a random variable and let α ∈ (0, 1). Then

V aRα(X) := −q+
α (X).

It is easy to see that the acceptance set of V aRα is the following:

AV aRα = {X ∈ L0(Ω,F ,P)|P(X < 0) 6 α}.

A position is thus acceptable for V aRα if the probability of a loss is less than
a prespecified (low) level α. In other words, V aRα(X) can be defined as the
minimum amount of capital that has to be added to a position X in order to
make the probability of a loss less than α. Indeed, we can check:

inf{m ∈ R|X +m ∈ AV aRα} = inf{m ∈ R|P(X +m < 0) 6 α)} =

inf{m ∈ R|P(X < −m) 6 α)} = − sup{m ∈ R|P(X < m) 6 α)} =

− sup{m ∈ R|P(X 6 m) 6 α) = −q+
α (X).
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From the properties of quantiles, it follows that V aRα satisfies the aforemen-
tioned properties of Normalization, Translation invariance, Monotonicity and Pos-
itive homogeneity. As it is well known, the main drawback of V aRα is that it does
not satisfy the Subadditivity property and the Convexity property. That is one of
the reasons why VaR is criticized in finance: diversification does not decrease its
value, and may increase it.

The Conditional Value at Risk (CVaR), also known as Expected Shortfall
or Tail Mean, intuitively represents a mean of the α worst case scenarios, with
changed sign. It can be defined as follows:

Definition 11. Let X be a L1 random variable and let α ∈ (0, 1]. Then

CV aRα(X) := − 1
α

∫ α

0
q−β (X) dβ = − 1

α

∫ α

0
q+
β (X) dβ = 1

α

∫ α

0
V aRγ(X) dγ.

It is well known that CVaR satisfies the properties of Normalization, Transla-
tion invariance, Monotonicity, Positive homogeneity and Subadditivity, and hence
is a coherent risk measure (see e.g. Pflug (2000) and Acerbi and Tasche (2002b)).
Rockafellar and Uryasev (2000) showed that the CVaR can be computed as the
optimal value of a simple minimization problem:

CV aRα(X) := inf
{
α + 1

1− αE[X − a]+, a ∈ R
}
,

where [x]+ = max(x, 0).

2.3 Continuity and Differentiability of Convex
Risk Measures

In this section we focus our attention on the continuity and differentiability prop-
erties of risk measures. We refers to Ruszczynski and Shapiro (2006), where they
studied various notions of differentiability for convex risk functions.
Recall that the domain of ρ is defined as dom(ρ) := {X ∈ X |ρ(X) ≤ +∞} and
that a risk measure ρ is said to be proper if ρ(X) > −∞ for all X ∈ X and
dom ρ 6= ∅.

Proposition 12. Let ρ be a proper and convex risk measure and int(dom ρ) be
the interior of the domain of ρ. If ρ is bounded from above on a neighborhood of
some point X ∈ X , then ρ is continuous on int(dom ρ).
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Definition 13. A linear functional l : X → R is called an algebraic subgradient
of ρ at X ∈ dom ρ if

ρ(X) > ρ(X) + l(X −X), ∀X ∈ X . (2.4) defnsub

The set of all subgradients l which satisfy 2.4 is called the subdifferential of ρ at
X, and is denoted by ∂ρ(X).

Definition 14. The directional derivative function δ(·) := ρ′(X, ·) is

ρ′(X,X) := lim
t↓0

ρ(X + tX)− ρ(X)
t

.

Proposition 15. Suppose that X is a Banach lattice and ρ : X → R is a proper
convex risk measure, then ρ(·) is continuous and subdifferentiable on int(dom ρ).

If we consider the Banach space X := Lp(Ω,F ,P), with p ∈ [1,+∞) and dual
Y := Lq(Ω,F ,P), with 1

p
+ 1

q
= 1, we have that X is also a Banach lattice, so

any proper convex risk measure ρ : X → R is continuous and subdifferentiable
on the interior of its domain. Moreover, if we consider a point X ∈ dom(ρ), by
the definition of subgradient we have that the probability measure P belongs to
the subdifferential if and only if ρ?(P) = 〈P, X〉 − ρ(X), where ρ? : Y → R is the
convex conjugate of ρ

ρ?(Y ) = sup
X∈X
{〈Y,X〉 − ρ(X)} .

Since ρ satisfies the hypothesis of the Fenchel-Moreau theorem (see e.g. Borwein
and Lewis (2006)), we have that ρ = ρ?? and

∂ρ??(X) = arg max
P∈dom(ρ?)

{
〈P, X〉 − ρ(X)

}
.

Hence, if ρ is a lower semicontinuous convex risk measure, then

∂ρ(X) = ∂ρ??(X) = arg max
P∈dom(ρ?)

〈P, X〉.

Moreover, if ρ is subdifferentiable at X and ρ′(X, ·) is lower semicontinuous at 0,
then

ρ′(X,X) = sup
P∈∂ρ(X)

〈P, X〉, X ∈ X .

Recall the definition of Hadamard directional differentiability and the definition of
Gâteaux directional differentiability:
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Definition 16. A function ρ : Lp → Lq is said to be Hadamard directionally
differentiable at X ∈ Lp on the direction X ′ ∈ LP if there exist a function
ρ′(X, ·) : Lp → Lq such that

ρ′(X,X) = lim
t↓0, X′→X

ρ(X + tX ′)− ρ(X)
t

.

for all sequences X ′ → X.

Definition 17. A function ρ is said to be Gâteaux differentiable at X if ρ is
directionally differentiable at X and ρ′(X, ·) is linear continuous, i.e., there exists
an element ∇ρ(X) ∈ Y such that

ρ′(X, ·) = 〈∇ρ(X), X〉, ∀X ∈ X .

These two definitions of differentiability are related, in fact if the Hadamard
directional derivative exists, then the Gâteaux derivative exists and the two deriva-
tives coincide (see e.g. Shapiro (1991)). Hence, Hadamard directional differentia-
bility induces continuity of the directional derivative function ρ′(X, ·).
It follows that if X is a Banach space and ρ is continuous at X, then ρ is Gâteaux
differentiable at X if and only if ∂ρ(X) is a singleton, and in this case we have
that ∂ρ(X) = ∇ρ(X).
For further clarification we refer to Ruszczynski and Shapiro (2006) and Rockafel-
lar (1974).

Following Ruszczynski and Shapiro (2006), we now demonstrate that the Con-
ditional Value at Risk is Hadamard differentiable.
Consider the space X = L1(Ω,F ,P) and its dual space Y = L∞(Ω,F ,P), the dual
representation of CV aRα (see e.g. Föllmer and Schied (2004)) is

CV aRα(X) = sup
Y ∈Uα
〈Y,X〉 (2.5) eqCVAR

where
Uα :=

{
Y ∈ Y s.t. E[Y ] = 1, Y ∈ [0, α−1], P-a.e.

}
.

Then the subdifferential is defined as

∂CV aRα(X) = argmax
Y ∈Uα
〈Y,X〉

= argmax
Y ∈Y

{
〈Y,X〉 s.t. E[Y ] = 1, Y ∈ [0, α−1], a.s.

}
.
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Relaxing the constraint E[Y ] = 1, the Lagrangean of the problem (2.5) is:

L(Y, λ;X) = 〈Y,X〉+ λ(1− E[Y ])

= 〈Y,X〉+ λ− 〈λ, Y 〉

= 〈Y,X − λ〉+ λ

Introducing the dual function of the Lagrangean d(λ) we can write

d(λ) = sup
Y ∈[0,α−1]

L(Y, λ)

= sup
Y ∈[0,α−1]

〈Y,X − λ〉+ λ

= sup
Y ∈[0,α−1]

∫
Ω
Y (X − λ)dP + λ,

Clearly the supremum is attained for Y = α−11[X−λ>0], and in this case

d(λ) = α−1E[X − λ]+ + λ.

The dual problem of 2.5 is found by minimizing the dual function, hence

inf
λ∈R

α−1E[X − λ]+ + λ.

Since the set of minimizers is a bounded set, we have strong duality, so

CV aRα = inf
λ∈R

α−1E[X − λ]+ + λ.

If we define λ as
λ = inf{λ s.t. FX(λ) ≥ 1− α},

where FX is the cumulative density function of the random variable X, we have
that Y ∈ ∂CV aRα if and only if

E[Y ] = 1

X > λ =⇒ Y = α−1

X < λ =⇒ Y = 0

X = λ =⇒ Y ∈ [0, α−1]. (2.6) system

It follows that ∂CV aRα is a singleton, which implies that CV aRα is Hadamard
differentiable, if and only if (2.6) has a unique solution.
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So we have that Y = ∂CV aRα when one of the following statement is true:

P(X = λ) = 0

P(X < λ) = α

P(X > λ) = 1− α,

and in this case
CV aR′α(X) = 〈∂CV aRα(X), X〉.

2.4 Deviation Risk Measures

As we have seen in the previous sections, coherent risk measures may be inter-
preted as minimum capital requirements, i.e. they are the minimum amount of
capital that has to be added to a position in order to make it acceptable. The
ordinary variability measures of the statistical literature such as the variance and
the standard deviation do not belong to this class, because they do not satisfy the
Translation invariance property. Rockafellar et al. (2006) proposed an axiomatic
definition of deviation risk measures by replacing the axiom of Translation invari-
ance with a natural axiom that they called Shift invariance.

Definition 18. Let X ⊆ L0(Ω,F ,P). A map D : X → [0,+∞] is a deviation risk
measure if satisfies the following properties:

Shift-invariance If X ∈ X and c ∈ R, then D(X + c) = D(X)

Positive homogeneity If X ∈ X and λ > 0, then D(λX) = λD(X)

Subadditivity If X1, X2 ∈ X , then D(X1 +X2) 6 D(X1) +D(X2)

Positivity If X ∈ X , then D(X) > 0 and D(X) = 0 if and only
if X = c a.s.

Standard deviation is an example of a deviation risk measure, while the inter-
quantile differences is not because it does not satisfy the subadditivity. Other
important examples of deviation risk measure are:

- Mean absolute deviation, defined by MAD(X) := E[|X − E[X]|]
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- Range-based deviations, given by

D−(X) := E[X]− inf(X) or D+(X) := sup(X) + E[X]

- CVaR deviation, defined as CV aR∆
α := CV aRα(X − E[X]).

More generally, Rockafellar et al. (2006) noticed that if ρ is a coherent risk measure,
then the quantity

D(X) := ρ(X) + E[X] = ρ(X − E[X])

is a deviation risk measure.



Chapter 3

Expectiles and EVaR

〈EVaR〉Expectiles have been first introduced in the statistical literature by Newey and
Powell (1987), as an asymmetric version of the least squares regression. For τ ∈
(0, 1), they introduced the loss function (see Fig. 3.1)

ρτ (x) = τx2
+ + (1− τ)x2

−,

where x+ = max(x, 0) and x− = (−x)+. For X ∈ L2, they defined the expectiles
eτ (X) as follows:

eτ (X) = argmin
x∈R

E[ρτ (X − x)]

that can be explicitly written as

eτ (X) = argmin
x∈R

{
τE

[
(X − x)2

+

]
+ (1− τ)E

[
(X − x)2

−

]}
. (3.1) defexpectile

Expectiles are thus a straightforward one-parameter asymmetric generalization of
the mean, that arises when τ = 1/2, since obviously

e1/2(X) = argmin
x∈R

{
1/2E

[
(X − x)2

+

]
+ 1/2E

[
(X − x)2

−

]}
= argmin

x∈R
E
[
(X − x)2

]
= E[X].

If τ > 1/2 the lose function gives more weights to the right tail of the distribution
and consequently eτ (X) > E[X], the opposit situation arises if τ < 1/2.
The present definition has the drawback of being well-posed only for square-
integrable random variables; in order to define expectiles for each X ∈ L1, Newey
and Powell (1987) adopted the following slightly modified definition:

eτ (X) = argmin
x∈R

E[ρτ (X − x)− ρτ (X)].

19
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Notice that the additional term ρτ (X) does not contain x and has the only effect
of making the objective function in the definition finite for each X ∈ L1.
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Figure 3.1: Expectile loss functions ρτ for different values of τ .
〈UtilityfunctionExpectile〉

3.1 Properties of Expectiles

Newey and Powell (1987) proved the following properties:

Theorem 19. Let be X ∈ L1 and τ ∈ (0, 1). Then:

a) eτ (X) is the solution of the equation

x− E[X] = 2τ − 1
1− τ

∫ ∞
x

(y − x)dFX(y); (3.2) foc0

a) as a function of τ , eτ : (0, 1)→ R is strictly increasing;

a) if E = (essinf X, esssupX) then eτ (X) : (0, 1)→ E;

a) if X̃ = sX + t, with s > 0, then eτ (X̃) = seτ (X) + t;

a) if FX is continuously differentiable, then eτ is continuously differentiable,
and for y 6= E[X] and τ such that y = eτ(X),

FX(y) = lim
y→E[X]

−
y − E[X] + τ(1− 2τ) · deτ (X)

dτ

∣∣∣
τ=τ

(1− 2τ)2 · deτ (X)
dτ

∣∣∣
τ=τ



CHAPTER 3. EXPECTILES AND EVAR 21

From property d) we have that expectiles are location and scale invariant.
Item a) shows that expectiles may equivalently be defined by means of the first
order condition (3.2), that adimits several equivalent formulations. For the sake
of completeness we provide a direct proof of a).

Let X ∈ L1 and let

f(X, x) := τE
[
(X − x)2

+

]
+ (1− τ)E

[
(X − x)2

−

]
.

The function f is convex in x, continuous and differentiable, as a consequence of
the dominated convergence theorem. By definition, the expectile is given by

eτ (X) = argmin
x∈R

{
τE

[
(X − x)2

+

]
+ (1− τ)E

[
(X − x)2

−

]}
and it must satisfy

df(X, x)
dx

∣∣∣∣∣
x=eτ (X)

= 0.

Hence
d

dx

(
τE

[
(X − x)2

+

]
+ (1− τ)E

[
(X − x)2

−

])∣∣∣∣∣
x=eτ (X)

= 0,

and interchanging the derivative with the expectation by the dominated conver-
gence theorem we get

d

dx

(
τE

[
(X − x)2

+

])∣∣∣∣∣
x=eτ (X)

+ d

dx

(
(1− τ)E

[
(X − x)2

−

])∣∣∣∣∣
x=eτ (X)

= 0,

τE

 d

dx

(
(X − x)2

+

)∣∣∣∣∣
x=eτ (X)

+ (1− τ)E
 d

dx

(
(X − x)2

−

)∣∣∣∣∣
x=eτ (X)

 = 0,

that gives the first order condition in the simplest form

τE [(X − eτ (X))+] = (1− τ)E [(X − eτ (X))−] . (3.3) foc

Notice that Equation (3.3) has always exactly one solution; it is actually an al-
ternative definition of eτ . For τ = 1/2, we recover the definition of the mean as
the value for which the expectation of the right excess given by E[(X − E[X])+]
is equal to the expectation of the left excess, given by E[(X −E[X])−]. Rewriting
the first order condition (3.3) as follows

E [(X − eτ (X))+]
E [(X − eτ (X))−] = 1− τ

τ
,
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we see that the expectile eτ is that quantity that sets the gain-loss ratio in the left
hand side equal to the prespecified constant (1− τ)/τ .

Another interesting interpretation of expectiles can be seen by considering the
following piecewise linear utility function:

uτ (x) =

τx if x ≥ 0

(1− τ)x if x < 0
.

Notice that uτ is strictly increasing, concave for τ < 1/2 and convex for τ > 1/2.
It is easy to check that eτ satisfies the equation

E[uτ (X − eτ (X))] = 0.

Indeed,

E[uτ (X − eτ (X))] = E[τ(X − eτ (X))+ − (1− τ)(X − eτ (X))−] =

= τE [(X − eτ (X))+]− (1− τ)E [(X − eτ (X))−] =

= 0

by the first order condition. So eτ (X) can be seen as a zero utility premium or
a shortfall risk measure with respect to the utility function uτ ; in literature the
theory of zero utility premia have been studied for instance in Rolski et al. (2008)).

Expectiles are thus strictly related to the piecewise linear expected utility.
However, these objects should not be confused. The following example shows a
situation in which the two criteria give opposite orderings.

Example 20. Let consider the following lotteries

A =

1 with probability 0.5

3 with probability 0.5
and B =

0 with probability 0.05

2 with probability 0.95

Then considering the first order condition

0.25 · 0.5 · (3− e0.25(A)) = 0.75 · 0.5 · (e0.25(A)− 1) ⇒ e0.25(A) = 1.5

0.25 · 0.95 · (2− e0.25(B)) = 0.75 · 0.05 · (e0.25(B)) ⇒ e0.25(B) = 1.72

So the expected utility is

Uτ (A) = 0.5 · 0.25 · 3 + 0.5 · 0.75 · 1
2 = 0.38

Uτ (B) = 0.95 · 0.25 · 2 + 0.05 · 0.75 · 0
2 = 0.23
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So the expectile is higher for the lottery B, but the expected utility of A is higher:
optimizing expectiles and expected utility provides different results. The same con-
clusion can be achieved by considering the gain-loss ratio: take for instance the
following lotteries

C =

−1 with probability 0.3

1 with probability 0.7
and D =

−1 with probability 0.5

2 with probability 0.5

again the lottery chosen by minimizing the gain loss ratio is different from the
lottery chosen by maximizing the expectile.

It is worth noting the analogy between expectiles and the usual quantiles, that
may be equivalently defined by means of the following optimization problem:

[q−α (X), q+
α (X)] = argmin

x∈R
{αE [(X − x)+] + (1− α)E [(X − x)−]} .

Both expectiles and the usual quantiles are special cases of the so called gener-
alized quantiles or M-quantiles (see e.g. Breckling and Chambers (1988)), defined
as follows:

Definition 21. Let Φ1 and Φ2 be convex loss functions with Φi(0) = 0 and let
X ∈ L∞. The generalized quantile q̃τ is

q̃τ (X) = argmin
x∈R
{τE [Φ1((X − x)+)] + (1− τ)E [Φ2((X − x)−)]} .

The expectile is therefore the generalized quantile with Φ1(x) = Φ2(x) = x2.
In Bellini and Di Bernardino (2017) there is a comparison between expectiles

and quantiles curves for the most common distribution: in Fig. 3.2 we report the
cases of the most common distributions. In general the expectiles are closer to
the center of the distribution than the corresponding quantiles and the two curves
typically intersect in a single point.
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Figure 3.2: Comparison of the quantiles and expectiles curves for different distri-
butions.

〈exp_quant〉

Further properties of the expectiles (see e.g. Bellini et al. (2014)) are recalled
in the next Proposition.

Proposition 22. Let X, Y be random variables in L1 and let τ ∈ (0, 1)

a) If X >FSD Y then eτ (X) > eτ (Y ); if moreover P(X > Y ) > 0, then
eτ (X) > eτ (Y )
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a) If τ 6 1
2 , then eτ (X + Y ) > eτ (X) + eτ (Y ); if τ > 1

2 , then eτ (X + Y ) 6

eτ (X) + eτ (Y )

a) eτ (X) = −e1−τ (−X).

Property a) shows that the expectiles are strictly monotonic with respect to
the first order stochastic dominance 6FSD; property b) is extremely relevant from
a financial point of view, since it shows that for τ > 1/2 expectiles have the funda-
mental subadditivity property; finally, property c) is a symmetry property. Notice
that neither of the three properties is satisfied by usual quantiles.

Moreover, as pointed out by many authors, the expectile is the unique risk
measure that is coherent and elicitable (see e.g. Gneiting (2011), Ziegel (2016),
Bellini and Bignozzi (2015), Delbaen et al. (2015)).
For the sake of completeness we report the definition of scoring function and
elicitable functional.

Definition 23. A function S : R2 → [0,+∞) is said to be scoring function if for
every x, y ∈ R:

a) S(x, y) ≥ 0 and S(x, y) = 0 if and only if x = y

a) S(x, y) is increasing in x for x > y and decreasing for x < y

a) S(x, y) is continuous in x

Definition 24. Let T : M→ 2R be a possibly set-valued functional, where 2R is
the power set of R. T is elicitable relatively to the classM if there exist a scoring
function S : R2 → [0,+∞) such that∫

S(x, y)dF (y) < +∞ ∀x ∈ R, ∀F ∈M

T (F ) = argminx
∫
S(x, y)dF (y), ∀F ∈M.

In this case we say that the scoring function S is strictly consistent with T .

The elicitablity of expectiles derives directly from their definition, with the
consistent scoring function

S(x, y) = ρτ (y − x) = τ(y − x)2
+ + (1− τ)(y − x)2

−.

See Bellini et al. (2017) for examples and applications of scoring functions for
backtesting.
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3.2 Expectile Value at Risk

Recall from the previous sections that V aRα is defined by

V aRα(X) = −q+
α (X).

By paralleling this definition, we introduce the Expectile Value at Risk (EVaR).

Definition 25. Let X be a random variable in L1 and let τ ∈ (0, 1/2]. We define

EV aRτ (X) = −eτ (X).

The requirement τ 6 1/2 is motivated by the fact that in this case eτ is
superadditive and hence, as a consequence, EV aRτ (X) is subadditive. Notice also
that from the symmetry property of expectiles described in the previous section
it holds that

EV aRτ (X) = −eτ (X) = e1−τ (−X),

so EVaR may be equivalently defined as an high expectile of the losses.
From the properties of expectiles it follows immediately that, for τ 6 1/2,

EV aRτ (X) is a coherent risk measure.

Proposition 26. Let X and Y be random variables in L1, and let τ ∈ (0, 1/2].
Then

Translation Invariance EV aRτ (X + a) = EV aRτ (X)− a, ∀a ∈ R

Positive Homogeneity EV aRτ (λX) = λEV aRτ (X), ∀λ > 0

Monotonicity if X 6 Y almost surely, then EV aRτ (X) > EV aRτ (Y )

Subadditivity EV aRτ (X + Y ) 6 EV aRτ (X) + EV aRτ (Y ).

In order to better understand the financial meaning of EV aRτ , we study its
acceptance set, defined as usual by

AEV aRτ = {X ∈ L1|EV aRτ (X) 6 0} = {X ∈ L1|eτ (X) > 0}.

From the first order condition it follows immediately that

eτ (X) > 0 ⇐⇒ τE[X+]− (1− τ)E[X−] > 0,
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that implies that
X ∈ AEV aRτ ⇐⇒

E[X+]
E[X−] >

1− τ
τ

.

A position is thus acceptable for EV aRτ if and only if its gain loss ratio is bigger
than a prespecified value (1− τ)/τ , that depends on the level τ . Notice that since
τ 6 1/2 it follows that (1− τ)/τ > 1.

3.2.1 Dual Representation of EVaR and CVaR

The dual representation of EV aRτ has been derived in Bellini et al. (2014).

Proposition 27. Let X ∈ L1, τ ∈ (0, 1/2] and EV aRτ (X). Then

EV aRτ (X) = max
ϕ∈Mβ

E[−Xϕ], (3.4) DualEVaR

where β = (1− τ)/τ and

Mβ =
{
ϕ ∈ L∞(Ω, F, P ), ϕ > 0, E[ϕ] = 1, ess sup(ϕ)

ess inf(ϕ) 6 β

}
.

It is interesting to compare the set of probability measuresMβ with the cor-
responding sets of CV aRα, in fact his dual representation is

CV aRα(X) = max
ϕ∈Uα

E[−Xϕ],

where
Uα :=

{
ϕ ∈ L∞ s.t. E[ϕ] = 1, ϕ ∈ [0, α−1], P-a.e.

}
.

While the densities ϕ ∈ Uα are bounded by the constraint ϕ ∈ [0, α−1], in the case
of EV aRτ we have a constraint that depends on the ratio between the essential
supremum and the essential infimum of ϕ.
Moreover, the constraint E[ϕ] = 1 implies that

1
β
6 ess inf(ϕ) 6 1 6 ess sup(ϕ) 6 β.

Another interesting comparison can be done with the Bilateral Conditional Value
at Risk of levels γ, δ introduced by Pflug and Ruszczynski (2004).

Definition 28. Let X be a L1 random variable and let 0 6 γ 6 1 6 δ. Then

BCV aRγ,δ(X) := max
ϕ∈Mγ,δ

E[−Xϕ]

with
Mγ,δ := {ϕ ∈ L∞ s.t. E[ϕ] = 1, ϕ ∈ [γ, δ], P-a.e.} .
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In Fig. 3.3 are represented the constraints of the sets Uα,Mγ,δ andMβ: clearly
we have that

Mβ =
⋃

γ∈[1/β,1]
Mγ,βγ,

thus
EV aRτ (X) = max

ϕ∈
⋃

γ∈[1/β,1]
Mγ,βγ

E[−Xϕ] = max
γ∈[1/β,1]

BCV aRγ,βγ.
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Figure 3.3: Representation of the domain of the sets of probability measures of
the CVaR, BCVaR and EVaR

〈setsprob〉

In their work, Pflug and Ruszczynski (2004) showed also that

BCV aRγ,δ(X) = (1− γ)CV aR 1−γ
δ−γ

(X) + γE[−X],

and consequently,

BCV aRγ,βγ(X) = (1− γ)CV aR 1−γ
βγ−γ

(X) + γE[−X],
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finally, substituting z = 1−γ
γ(β−1) , we have that

EV aRτ (X) = max
z∈[0,1]

{
z(β − 1)

1 + z(β − 1)CV aRz(X) + 1
1 + z(β − 1)E[−X]

}
.

In conclusion we think that EVaR deserves to be discussed in detail because
of its extremely interesting theoretical properties: indeed EVaR is a coherent and
elicitable risk measure which take into account the whole distribution and not only
the left tail. Comparing EVaR with the most common risk measures we notice
that: CVaR is a coherent risk measure but lacks of elicitability and considers only
the left tail of the distribution; VaR is an elicitable risk measure but lacks of
coherency and considers only a percentile of the distribution; variance considers
the whole distribution but lacks of coherency and elicitability.
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Mean-EVAR Optimal Portfolios

〈capME〉
4.1 Mean-risk models

〈capME1〉
In the work of Markowitz (1952) the aim is to build a portfolio which minimizes
the standard deviation and maximizes the expected return: mathematically, let
J = {1, . . . ,m} be the investment universe and rj the random return of asset
j ∈ J . The expected return is given by µj = E[rj] and the related covariance
matrix is given by C = [Ci,j]i,j=1,...,m = [E[(ri − µi)(rj − µj)]]i,j=1,...,m.
In this thesis, instead of working with returns, we prefer to adopt logreturns: from
a computational point of view, the difference between using logreturns instead of
returns is negligible when using daily or weekly data. From a statistical point
of view logreturns are preferable to returns because they satisfy the property of
additivity. Here and thereafter we adopt the notation r for logreturns.
Moreover consider w = (w1, . . . , wm) ∈ Π with eTw = 1 as the portfolio weights
of the investment, with Π defining the feasible set of possible portfolios, excluding
short-selling: more precisely Π is supposed to be a set of feasible linear inequalities
with non-negative variables. Hence the portfolio logreturn is given by µ(w) =∑m
j=1 µjwj.

The portfolio optimization problem can be modeled as the following parametric
optimization problem:

minw∈ΠwCw
T

µ(w) > µ0 (4.1) markQP

30
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or equivalently

max µ(w)

wCwT 6 var0

w ∈ Π

with parameters µ0 and var0.
This is a quadratic programming problem which nowadays is easy to solve: varying
the parameter µ0 from minj µj to maxj µj (or equivalently varying var0 from
minj var(rj) to maxj var(rj)) and solving (4.1) we obtain the optimal portfolios.
Despite the Markowitz portfolio has a relatively easy formulation, there are some
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Figure 4.1: Example of optimal portfolios
〈effron〉

limitations. First of all, if we extend the set of the possible portfolios Π adding
for example integrality or cardinality constraints (see e.g. Chang et al. (2000) and
Cesarone et al. (2013)), the complexity of the problem increases and a quadratic
objective function performs much worse than a linear objective function, in terms
of computational costs and precision of the solution. Moreover the Markowitz
model is not in general consistent with the Second Degree Stochastic Dominance,
see e.g. Ogryczak and Ruszczynski (1999), because the solution of the problem
(4.1) may not be consistent with the risk aversion axioms (Artzner et al. (1999)):

Definition 29. A risk measure ρ is consistent with the Second Degree Stochastic



CHAPTER 4. MEAN-EVAR OPTIMAL PORTFOLIOS 32

Dominance if given two distribution X and Y with X ≥SSD Y , then

µ(X)− ρ(X) > µ(Y )− ρ(Y )

.

This can be illustrated by means of the following simple example proposed by
Mansini et al. (2014).

〈example2〉Example 30. Let us consider two portfolios A and B with the following logreturn
distributions

rA =

1 with probability 1

0 otherwise
rB =

3 with probability 0.5

5 with probability 0.5

Clearly the portfolio A is dominated by the portfolio B but they are both optimal
portfolios because µ(A) − var(A) = 1 and µ(B) − var(B) = 1. In general the
Second Degree Stochastic Dominance is not consistent with anyone of the mean-
risk models that use a dispersion risk measure.

These are some of the reasons why many authors started looking for LP models
with alternative risk measures which satisfy consistency with respect to Second
Degree Stochastic Dominance (see e.g. Konno and Yamazaki (1991), Yitzhaki
(1982), Rockafellar and Uryasev (2000), Ogryczak and Śliwiński (2011)).
Generalizing the problem in (4.1), a mean-risk problem for a risk measure ρ : Π→
R ∪ {+∞} is a bicriteria optimization problem given by:

max
w∈Π

[µ(w),−ρ(w)] (4.2) bicriteria

A feasible portfolio w0 ∈ Π is called an efficient solution of problem (4.2) if @w ∈ Π
such that µ(w) > µ(x0) and ρ(w) 6 ρ(w0) with at least one inequalities strict.
In general it is possible to find the set of efficient solutions specifying a lower
bound for µ(w):

min
w∈Π

ρ(w)

µ(w) > µ0

or equivalently specifying an upper bound for ρ(w):

max
w∈Π

µ(w)

ρ(w) 6 ρ0.
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Considering µ0 (or ρ0) as a parameter we obtain the set of solutions which solve
the problem (4.2). Moreover, if ρ(w) is a convex function, then the solutions of the
bicriteria optimization problem (4.2) lays on a convex line called optimal portfolios
frontier (Fig. 4.1).
From a practical point of view, the lower part of the optimal portfolio frontier
it is not taken into consideration because it is dominated by the upper part also
known as efficient frontier : generally for every portfolio that lays the lower part,
there exists a portfolio with the same risk but higher expected logreturn that lays
on the higher part. In this work we consider the entire frontier because from a
mathematical point of view it is also interesting to investigate the shape of the
lower part of the optimal portfolio frontier.

4.2 LP portfolio optimization problems

In order to solve the bicriteria optimization problem in (4.2)

max
w∈Π

[µ(w),−ρ(w)] ,

it is necessary to know the logreturns’ distributions and the related functions µ(·)
and ρ(·), which in general are unknown quantities.
A common approach is to rely on historical data in order to provide an estimation
of µ and ρ. For instance, considering the Markowitz portfolio problem in (4.1)

min
w∈Π

wCwT

µ(w) > µ0 (4.3) markQ2

we evaluate µ(w) and C as the sample mean of the portfolio logreturn and the
sample covariance matrix of the historical logreturns. Thus, supposing that the
historical logreturn of the asset j is described by a discrete random variable rj
with P(rj = rjt) = pt, we can write

µ̂j =
T∑
t=1

rjtpt and µ̂(w) = 1
J

J∑
j=1

wjµ̂j.

Similarly the sample covariance matrix Ĉ = [cij] is given by

cij = 1
T − 1

T∑
t=1

(rjt − µ̂j)(rit − µ̂i),
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and the Markowitz portfolio problem in (4.3) become

min
w∈Π

wĈwT

µ̂(w) > µ0.

In this work we assume that the i.i.d assumption on the logreturns holds, for al-
ternative methods we refer to Kempf and Memmel (2006), Lai et al. (2011) and
Ledoit and Wolf (2003).

We now present some of the risk measures whose relative mean-risk problem is a
LP problem. We refer to Mansini et al. (2014) for a recent detailed review on LP
portfolio problems.
As above, let us suppose that the random variables rj are discrete with P(rj =
rjt) = pt.
Yitzhaki (1982) in his work introduced a mean-risk model using the Gini’s mean
difference

Γ(rj) = 1
2

T∑
t1=1

T∑
t2=1
|rjt1 − rjt2| pt1pt2 .

Hence the Gini’s mean difference for a portfolio composed of the assets is

Γ(w) =
J∑
j=1

wjΓ(rj) = 1
2

J∑
j=1

T∑
t1=1

T∑
t2=1
|rjt1 − rjt2 | pt1pt2wj

Then the mean-risk problem associated to the Gini’s mean difference is

min
w∈Π

Γ(w) s.t. = min
w∈Π

1
2

J∑
j=1

T∑
t1=1

T∑
t2=1
|rjt1 − rjt2| pt1pt2wj s.t.

µ(w) > µ0
J∑
j=1

T∑
t=1

wjrjtpt > µ0 (4.4) GiniLP

As pointed out by Yitzhaki (1982), the Gini’s mean difference is consistent with
the Second Degree Stochastic Dominance and moreover the problem (4.4) is LP
solvable.
Another mean-risk model which is consistent with the Second Degree Stochastic
Dominance and is LP solvable is based on the mean absolute deviation

δ(x) = E[|x− E[x]|].
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Konno and Yamazaki (1991) wrote the corresponding mean-risk model as

min
w∈Π

T∑
t=1

∣∣∣∣∣∣
J∑
j=1

(rjt − µ(rj))wj

∣∣∣∣∣∣ pt s.t.

J∑
j=1

T∑
t=1

wjrjtpt > µ0,

that can be written as the following LP problem:

min
w∈Π

T∑
t=1

ytpt s.t.

yt +
J∑
j=1

(rjt − µ(rj))wj > 0, t = 1, . . . , T

yt −
J∑
j=1

(rjt − µ(rj))wj > 0, t = 1, . . . , T

J∑
j=1

T∑
t=1

wjrjtpt > µ0. (4.5) madLP

According to Yitzhaki (1982) and Konno and Yamazaki (1991), the mean-risk
models in (4.4) and (4.5) are comparable with the mean-variance model, and they
can be used as an alternative to the classic Markowitz’s model with the benefit of
dealing with an LP instead of a QP-problem.
In recent years, after the Basel II agreements (which in 2015 evolved into Basel
III), the work of Rockafellar and Uryasev (2000) has become extremely important
because they found that the mean-risk problem minimizing the CVaR is also an
LP problem:

min
γ∈R, zt≥0, w∈Π

γ + 1
(1− α)T

T∑
t=1

zt s.t.

J∑
j=1

E[rjt]wj > µ0

zt >
J∑
j=1

wjrjt − γ, t = 1, . . . , T,

where α is the level of the CV aR, γ is the value of the CV aRα, µ0 is the threshold
on the expected portfolio logreturn and zt are artificial variables.



CHAPTER 4. MEAN-EVAR OPTIMAL PORTFOLIOS 36

4.3 LP formulation of mean-EVaR portfolio prob-
lems

In this section we study the mean-EVaR portfolio problems and we write it as a
LP problem. We can find analogous studies in recent papers of Jakobsons (2016a)
and Jakobsons (2016b).

Let X be a random variable. Starting from the dual representation of the
EVaR in (3.4) we want to solve:

EV aRτ (X) := max
ϕ∈Mβ

Ep[−Xψ] (4.6) EVaRproblem

where

Mβ =
{
ϕ ∈ L∞(Ω,F ,P), ϕ ≥ 0, E[ϕ] = 1, ess sup(ϕ)

ess inf(ϕ) 6 β

}
.

If X is a discrete random variable with P(X = xi) = pi,∀i = 1, . . . , n, we have
that:

Mβ =
{
f ∈ Rn, fi > 0,

n∑
i=1

fipi = 1, fi 6 βfj, ∀i 6= j

}
.

So the problem in (4.6) becomes:

EV aRα(X) =



sup
fi

n∑
i=1
−xifipi s.t.

n∑
i=1

fipi = 1

fi − βfj 6 0, ∀i 6= j

fi > 0, ∀i = 1, . . . , n.

(4.7) dual_discrete

We observe that this is a LP problem with n variables and n(n−1)+1 constraints:
that is problematic for random variables with a large number of possible outcomes,
since the number of constraints grows quadratically in n.
Considering the quantity m = mini fi, the constraint fi − βfj 6 0 holds ∀i 6= j

and in particular for fj = m, so we have that

{fi − βfj 6 0, ∀i 6= j} ≡ {m 6 fi 6 βm, ∀i = 1, . . . , n},
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hence the problem (4.7) is equivalent to the following:

EV aRα(X) =



sup
fi

n∑
i=1
−xifipi s.t.

n∑
i=1

fipi = 1

m 6 fi 6 βm, ∀i, ∀i = 1, . . . , n
m > 0, fi > 0, ∀i = 1, . . . , n.

(4.8) dual_discrete2

This LP problem has only n+1 variables and 2n+1 constraints, so the number of
constraints grow only linearly with respect to n. Moreover we have that the dual
of the LP problem in (4.8) is

EV aRτ (X) =



min
ui,vi

y s.t.

piy − ui + vi > −pixi ∀i
n∑
i=1

ui − β
n∑
i=1

vi > 0

ui, vi,> 0, ∀i = 1, . . . , n

(4.9) LPdual

Suppose now that the outcomes of the random variable X are portfolio lo-
greturns, so X = Rw, where R is the matrix of the historical logreturns and
w = (w1, . . . , wd) is the vector of portfolio weights. Finding the portfolio which
minimize the EV aRτ requires finding w such that

w = argmin
w
EV aRτ (Rw) s.t.∑

w = 1,

with possible additional portfolio constraints such as cardinality contstraints, in-
tegrality constraints, ... Considering the dual formulation in (4.9), we have that:

w = argmin
wj

min
ui,vi

y s.t.∑d
j=1wj = 1 piy − ui + vi > −pi(Rw)i ∀i

portfolio constraints
n∑
i=1

ui − β
n∑
i=1

vi > 0

ui, vi,> 0, ∀i = 1, . . . , n
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Grouping the two minimization problem, we finally obtain

min
ui,vi,wj

y s.t.

piy − ui + vi > pi(Rw)i ∀i
n∑
i=1

ui − β
n∑
i=1

vi > 0

ui, vi > 0, ∀i = 1, . . . , n
m∑
j=1

wj = 1 (4.10) EVARLP

No Shortselling wj > 0 ∀j = 1, . . . ,m
Optimal Portfolios

m∑
i=1

wiE[ri] = µp

...

 =⇒ Additional Portfolio Constraints
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4.4 Numerical examples

In the first part of this section we consider optimal portfolios on simulated data,
while in the second part we consider real data: our purpose is to compare the
portfolio problem using the EV aRτ as risk measure with the usual risk measures
used in literature.
All the experiments are performed using MatLab and the optimization problems
are solved with the functions linprog, quadprog and fmincon. The solutions to
Linear and Quadratic Programming problems are checked with GAMS (General
Algebraic Modeling System).

4.4.1 Simulated data
〈numEVAR〉

We first consider three assets A, B and C described by standard normal distribu-
tions without correlation. In this case clearly the distribution of the three assets
is exchangeable, and for symmetry reasons the optimal portfolio under any co-
herent risk measure coincides with the equally weighted portfolio (wA, wB, wC) =
(1/3, 1/3, 1/3). In order to assess the variability of the optimal portfolio, we
simulate samples of length T = 20, 50, 100 from the aforementioned normal distri-
bution, and compute the distribution of minimal EV aRτ portfolios for τ ranging
from 1% to 20%. In this experiment our aim is to observe the variability of the
weight of optimal portfolios considering different values of τ and sample sizes.
In order to have convexity of the EVaR, τ must be in (0, 1/2]: we focus on the
interval (0, 0.2] because for value of τ close to 1/2, the EV aRτ loose its meaning
as risk measure by the fact that EV aR1/2(·) = −e1/2(·) = −E[·], and the related
mean-risk optimization problem becomes

max
w∈Π

[µ(w),−ρ(w)]

with −ρ(w) ≈ µ(w).
Moreover, considering the sample size, we expect that increasing the possible

scenarios T , the variability should decrease. We then focus on the case T = 100
that we believe might be a realistic value by practical portfolio optimization.

The results are reported in Fig. 4.3; the three lines in each subpanel correspond
to the 10th percentile, the median and the 90th percentile of the portfolio weights.
For the sake of completeness we compare with the corresponding percentiles of the
Markowitz portfolios.
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In Fig. 4.4 we compare the distribution of the optimal portfolios originated by the
minimization of the variance, of CV aR0.05, and of EV aR0.05 and EV aR0.20, with
a sample size T = 100.

In Fig. 4.5 and 4.6 we perform the same experiments of Fig. 4.3 and 4.4 but
considering the cases of correlated standard normal marginals. We use the follow-
ing correlation matrices:

Σ+ =


1 0.3 0.5

0.3 1 0.7
0.5 0.7 1

 , Σ− =


1 −0.3 0.5
−0.3 1 −0.7
0.5 −0.7 1

 (4.11) corrmat

From theory, considering symmetric distributions with or without correlation,
we do not expect substantial differences between minimizing EVaR and CVaR: for
this reason we now consider a portfolio composed by two normal distributions and
a reflected gamma distribution with probability density function

f(x; k, θ, µ, σ) = −x
k−1e−

x
θ

θkΓ(k) · σ + µ,

where µ and σ are the mean and the standard deviation of the distribution, and

Γ(k) =
∫ ∞

0
yk−1e−tdt.

In order to highlight the differences between CVaR minimization and EVaR
minimization, we set the parameters of the distributions to ensure that the Values
at Risk at level α = 0.05 coincides and the left tails are similar.
In this way we expect that

CV aR0.05(N (µN , σN )) ≈ CV aR0.05(Γ(k, θ, µΓ, σΓ)),

hence theoretically the CVaR minimization should give the same weight to the
three asset while the EVaR minimization should prefer the assets with a fatter
right tail.
In particular we set

Asset A ∼ N (µN , σN ), with µN = 0, σN = 2.25
Asset B ∼ N (µN , σN ), with µN = 0, σN = 2.25
Asset C ∼ −Γ(k, θ, µΓ, σΓ), with k = 5, θ = 1, µΓ = −0.912, σΓ = 1.5

(4.12) parameters
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In Fig. 4.2 we report the normal distribution and the reflected gamma distribution
with the parameters in (4.12), and consequently we have

CV aR0.05(N (µN , σN )) = −0.465,
CV aR0.05(Γ(k, θ, µΓ, σΓ)) = −0.547,
V aR0.05(N (µN , σN )) = V aR0.05(−Γ(k, θ, µΓ, σΓ)) = −3.710.

In Fig. 4.7 and 4.8 we perform the experiment on a portfolio composed by assets
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Figure 4.2: Probability functions and left tail detail
〈pdf〉

with distribution defined in eq. (4.12) and finally in Fig. 4.9 and 4.10 we introduce
correlation among the assets: A, B and C will have correlation matrices Σ+ and
Σ−.

Our aim is to reproduce the experiments performed by Bertsimas et al. (2004)
in order to understand how the level of τ impacts on variability and make a pre-
liminary study on the behavior of the EV aRτ varying the parameters and the
models.
Since there is an extensive body of financial literature based on the CVaR, we
want to take as an example the first test on it and compare them with the EVaR
in order make a preliminary analysis.
In their work Bertsimas et al. (2004) did an analysis of the CVaR comparing to
others well known risk measures: with the method proposed by Rockafellar et al.
(2006) evaluating the mean-CVaR portfolio problem is reduced to a LP problem,
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this is one of the reasons why we perform the same test considering the fact that
also the mean-EVaR portfolio problem is LP.

In Fig. 4.3, 4.5, 4.7 and 4.9 we can observe that in most of the cases, the
minimum of the distance between the 10th percentile and the 90th percentile is
often reached in a neighborhood of τ = 0.05 and the maximum is reached for
τ = 0.2. Thus we study in details how are composed the portfolios minimizing
EV aR0.05 and EV aR0.2: for completeness we evaluate also the minimum variance
portfolio and the portfolio obtained minimizing the CV aR0.05 (Fig. 4.4, 4.6, 4.8
and 4.10).
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Figure 4.3: Variability of the weights of minimum EV aRτ portfolios for τ =
0.01, . . . , 0.2 on simulated uncorrelated standard normal data. The red lines in-
dicate respectively the 90th percentile, the median and the 10th percentile of the
portfolio weights. The blue lines represent the same quantities for a minimal
variance portfolio.

〈fig1〉
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Figure 4.4: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 4.3 with 1000 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.

〈fig2〉

As we expect form theory we can observe that, in the standard normal case
with uncorrelated data (Fig. 4.4) the cloud of points evaluated minimizing the
EV aR0.05 has the same shape of the one evaluated minimizing the CV aR0.05. The
cloud of points evaluated minimizing the EV aR0.2 has the same shape but has
more dispersion.

We now consider three asset with correlation matrices Σ+ and Σ−: in the
first case all the asset has positive correlation, in particular

ρA,B = 0, 3 ρA,C = 0, 7 ρB,C = 0, 5

Hence we expect that the resulting portfolio should have more weight on assets A
and B at the expense of C.
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Figure 4.5: Variability of the weights of minimum EV aRτ portfolios for τ =
0.01, . . . , 0.2 on simulated correlated standard normal data of length T =
20, 50, 100: the correlation is given by the matrices (4.11) The red lines indicate
respectively the 90th percentile, the median and the 10th percentile of the portfo-
lio weights. The blue lines represent the same quantities for a minimal variance
portfolio.
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Figure 4.6: Scatter plot and histogram of the weights of the assets A and B,
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In the second case some asset has negative correlation, in particular

ρA,B = −0, 3 ρA,C = −0, 7 ρB,C = 0, 5

Hence we expect that the resulting portfolio should have more weight on assets B
and C at the expense of A.
Observing the results introducing correlation among the asset logreturns (Fig. 4.5
and 4.6) we can observe that:

- considering the correlation matrix Σ+ the shapes of the clouds of points in
the scatter plots gather on the diagonal, which means that buying the third
asset does not decrease the level of the risk;

- considering the correlation matrix Σ− the shapes of the clouds of points in
the scatter plots gather on the vertical axis, which means that buying the
first asset does not decrease the level of the risk.

Comparing the EV aRτ and CV aRα portfolios, we can infer similar conclusion to
the uncorrelated case. Thus we can assume that, introducing a correlation through
the data, evaluating the weights minimizing the EV aR0.05 has no significant dif-
ferences from evaluating the weights minimizing the CV aR0.05.
As we expected from theory, when the asset has symmetric distributions with
or without correlation, minimizing EV aRτ gives similar results to minimizing
CV aRα.

We now consider uncorrelated assets’ distributions as described in Eq. 4.12,
i.e.: asset A and B have a normal distribution with parameters µN = 0, σN = 2.25
and asset C has a reflected gamma distribution with parameters k = 5, θ =
1, µΓ = −0.912, σΓ = 1.5.

As we expect from theory, in Fig. 4.7 we can observe that in general the weight
of the asset C is lower with respect to the Markowitz case and, increasing the value
of τ , the value of it decreases: this phenomenon is due to the fact that, by definition
of the expectile in 3.1

EV aRτ = −eτ (X) = − argmin
x∈R

{
τE

[
(X − x)2

+

]
+ (1− τ)E

[
(X − x)2

−

]}
,

increasing τ , we prefer distribution with a fatter right tail.
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Figure 4.7: Variability of the weights of minimum EV aRτ portfolios for τ =
0.01, . . . , 0.2 on simulated uncorrelated data of length T = 20, 50, 100: the assets’
distributions are described in Eq. 4.12. The red lines indicate respectively the
90th percentile, the median and the 10th percentile of the portfolio weights. The
blue lines represent the same quantities for a minimal variance portfolio.

〈fig5〉

Furthermore considering the stability of the algorithm, again the variability of
the weights decreases when the sample size increases.

In Fig. 4.8, focusing on the case T = 100, we can observe that the scatter plot
evaluated minimizing the CV aR0.05 differs from the scatter plot evaluated mini-
mizing EV aR0.05: in fact in the second case the cloud of points is shifted towards
the diagonal, this means that evaluating the portfolio’s weights in this way, assets’
distributions with a fatter right tail are preferred.

From the financial point of view, considering the density functions of the as-
sets (Fig. 4.2) assets A and B are preferable to asset C because, having the same
left tail (equal losses), they have a greater mean and a fatter right tail (greater
profits).
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Figure 4.8: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 4.7 with 1000 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.

〈fig6〉

We now study the case of a portfolio composed by asset A and B with normal
distribution and asset C with a reflected gamma distribution: furthermore we in-
troduces the correlation matrices Σ+ and Σ− (Eq. 4.11).

The results (Fig. 4.9 and 4.10) are similar with respect to the uncorrelated
case, moreover trend of giving the most of the weight to asset A and B is high-
lighted even more.

Comparing the Markowitz’s portfolio and the CVaR0.05 portfolio with the
EVaRτ ones we have opposite results both with positive and negative correla-
tion: in the first case the histograms shows that Markowitz and CVaR prefer asset
C (the bins lays on the first part of x axis), while EVaR avoid it (the bins lays on
the diagonal); in the second case Markowitz and CVaR prefer assets B and C (the
bins lays on the middle of y axis), while EVaR diversifies more shifting the bins
to the center of the graph.

Considering the stability of the algorithm, again the variability of the portfolio
weights decreases when the sample size increases.
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Figure 4.9: Variability of the weights of minimum EV aRτ portfolios for τ =
0.01, . . . , 0.2 on simulated correlated data of length T = 20, 50, 100: the assets’
distributions are described in eq. 4.12. The red lines indicate respectively the 90th

percentile, the median and the 10th percentile of the portfolio weights. The blue
lines represent the same quantities for a minimal variance portfolio.

〈fig6a〉
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Figure 4.10: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 4.7 with 1000 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.
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4.4.2 Historical Data
〈histEVaR〉

In this section we consider the logreturns of the companies that constitute the
S&P 500 index in two different periods: January 2011 - December 2013 and Jan-
uary 2014 - December 2016. We want to evaluate the set of optimal portfolios
composed of the first five assets ordered by their weight in the S&P 500 index
(Apple Inc., Microsoft Corporation, Exxon Mobil Corporation, Amazon.com Inc.
and JPMorgan Chase & Co).
In the experiments we compare the optimal portfolios generated with the Markowitz
portfolio theory, the mean-CV aRα analysis and the mean-EV aRτ analysis: for the
sake of completeness we evaluate also the equally weighted portfolio.
In order to make the CV aRα comparable with the EV aRτ , we consider α =0.01,
0.05, 0.1, 0.15, 0.2, 0.25, we evaluate the CV aRα of a standard normal distribution
using the closed formula

CV aRα(N (0, 1)) = − 1
α
φ(Φ−1(α)),

and we find the τ that matches EV aRτ (N (0, 1)) with CV aRα(N (0, 1)) using the
first order condition (3.3). In the case of the standard normal we have that

(1− τ)
∫ c

−∞
Φ(s)ds = τ

∫ ∞
c

(1− Φ(s))ds,

where c = EV aRτ (N (0, 1)) = CV aRα(N (0, 1)).
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Figure 4.11: Relation between α and τ when the equation EV aRτ (N (0, 1)) =
CV aRα(N (0, 1)) holds.
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In particular we will consider the values in Tab. 4.1:

α 0.01 0.05 0.1 0.15 0.2 0.25
τ 0.0004 0.0035 0.0089 0.0161 0.0249 0.0354
c -2.6652 -2.0627 -1.7550 -1.5544 -1.3998 -1.2711

Table 4.1: Correspondence between values of α and τ
〈alphatau〉

First we evaluate the optimal portfolios’ frontiers evaluated considering the
whole dataset over the two periods. Afterwards we make an out-of -sample analy-
sis considering a rolling window of length 100 days giving equal probability 1/100
to the possible outcomes: every day the portfolio is rebalanced following the rules
of Markowitz portfolio theory, mean-CV aR0.2 analysis, mean-EV aR0.05 analysis
and equally weighted portfolio, then empirical distribution of the portfolios’ logre-
turns is evaluated. Similar experiments are performed for a portfolio composed
of the first 250 assets ordered by their weight in the S&P 500 index (see Tab. 4.2).

In Fig. 4.12 the asset prices of the title taken into account are showed, in
Tab. 4.3 and 4.4 the statistics of the daily logreturns in the two different periods
are reported.
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Figure 4.12: Asset prices of the first 5 asset of S&P 500 in the periods Jan11-Dec13
and Jan14-Dec16

〈AssetPrice〉
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Symbol Weight Symbol Weight Symbol Weight Symbol Weight Symbol Weight
AAPL 3,56 URI 0,42 BK 0,24 PCG 0,16 AAL 0,12
MSFT 2,51 CVS 0,41 SO 0,24 ECL 0,16 AVB 0,12
XOM 1,71 AVGO 0,41 MON 0,24 KR 0,16 EIX 0,12
AMZN 1,63 SBUX 0,41 PRU 0,23 CCI 0,16 FISV 0,12
FB 1,58 PCLN 0,4 BLK 0,23 DE 0,16 BAX 0,12
JPM 1,57 QCOM 0,39 FDX 0,23 AEP 0,16 ILMN 0,12
BRK-B 1,57 LLY 0,38 PYPL 0,23 LYB 0,16 PPL 0,12
JNJ 1,56 TXN 0,38 D 0,23 HUM 0,15 HCN 0,12
GE 1,32 COST 0,38 AMT 0,23 VLO 0,15 PCAR 0,12
WFC 1,29 TWX 0,37 CSX 0,23 AON 0,15 CCL 0,12
T 1,28 NKE 0,37 ADP 0,22 APD 0,15 CMI 0,12
GOOGL 1,24 UNH 0,37 KMB 0,22 MCK 0,15 WMB 0,12
GOOG 1,21 ABT 0,37 RTN 0,22 ALL 0,15 YUM 0,12
PG 1,19 ACN 0,37 KMI 0,22 SE 0,15 ADI 0,12
BAC 1,18 WBA 0,36 COF 0,22 SYF 0,14 ZBH 0,12
CVX 1,07 CHTR 0,35 ANTM 0,21 STI 0,14 DVN 0,12
VZ 1 MDLZ 0,35 AET 0,21 WM 0,14 ED 0,11
PFE 0,99 DOW 0,34 ESRX 0,21 AFL 0,14 WDC 0,11
CMCSA 0,9 DD 0,33 NOC 0,21 STT 0,14 EQR 0,11
MRK 0,89 LMT 0,33 CME 0,2 INTU 0,14 NWL 0,11
HD 0,85 MS 0,33 ITW 0,2 ALXN 0,14 VRTX 0,11
INTC 0,85 LOW 0,32 HPE 0,2 MAR 0,14 VTR 0,11
C 0,82 AIG 0,32 EMR 0,2 ZTS 0,14 PEG 0,11
DIS 0,81 NVDA 0,32 YHOO 0,2 STZ 0,14 APA 0,11
KO 0,81 NFLX 0,31 JCI 0,2 ISRG 0,14 PGR 0,11
V 0,8 COP 0,31 SYK 0,19 ATVI 0,14 AZO 0,11
PM 0,8 CB 0,31 AMAT 0,19 EQIX 0,14 IP 0,11
CSCO 0,79 TMO 0,31 APC 0,19 ROST 0,14 UAL 0,11
IBM 0,77 AXP 0,3 CI 0,19 DFS 0,14 APH 0,11
UTX 0,77 PNC 0,3 BBT 0,19 REGN 0,14 XEL 0,11
PEP 0,76 CL 0,3 BDX 0,19 TEL 0,13 IR 0,1
MO 0,71 BIIB 0,3 TGT 0,19 HPQ 0,13 CXO 0,1
AMGN 0,63 NEE 0,29 GIS 0,19 FIS 0,13 FCX 0,1
ORCL 0,61 ADBE 0,29 MMC 0,18 PPG 0,13 ROP 0,1
SLB 0,57 MET 0,29 DAL 0,18 ORLY 0,13 DLPH 0,1
MMM 0,54 EOG 0,29 NSC 0,18 SYY 0,13 BXP 0,1
MDT 0,52 SPG 0,29 PSX 0,18 MPC 0,13 DG 0,1
WMT 0,52 CAT 0,28 CTSH 0,18 PLD 0,13 OMC 0,1
MCD 0,52 DUK 0,27 EBAY 0,17 SRE 0,13 FITB 0,1
MA 0,51 KHC 0,27 BSX 0,17 MTB 0,13 PH 0,1
ABBV 0,5 OXY 0,26 ICE 0,17 BHI 0,13 NEM 0,1
BA 0,47 GD 0,26 TRV 0,17 MU 0,13 AMP 0,1
AGN 0,46 CRM 0,26 LUV 0,17 ADM 0,13 ROK 0,1
HON 0,46 DHR 0,26 SPGI 0,17 GLW 0,13 KEY 0,1
CELG 0,46 RAI 0,25 PX 0,17 CBS 0,13 EW 0,1
GS 0,45 TJX 0,25 PSA 0,16 CAH 0,13 NUE 0,1
UNP 0,45 HAL 0,25 PXD 0,16 EA 0,13 K 0,1
GILD 0,44 GM 0,25 EXC 0,16 WY 0,12 TSN 0,1
BMY 0,43 SCHW 0,24 ETN 0,16 SHW 0,12 CFG 0,1
USB 0,43 F 0,24 FOXA 0,16 HCA 0,12 LRCX 0,1

Table 4.2: First 250 asset of S&P 500 and their weight on January 2017
〈weightsp〉
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AAPL MSFT XOM AMZN JPM
Min -1.319e-01 -1.210e-01 -6.388e-02 -1.353e-01 -9.888e-02
Max 8.502e-02 7.033e-02 5.087e-02 1.462e-01 8.101e-02
Mean 9.426e-04 5.804e-04 6.791e-04 1.313e-03 5.627e-04
Std 1.725e-02 1.432e-02 1.144e-02 2.036e-02 1.914e-02
Skew -3.983e-01 -4.113e-01 -2.516e-01 2.038e-01 -1.369e-01
Kurt 8.463 1.049e+01 6.376 9.703 6.211

Table 4.3: Daily Logreturn during the period January 2011 - December 2013
〈tablestat1〉

AAPL MSFT XOM AMZN FB
Min -8.330e-02 -9.710e-02 -4.843e-02 -1.165e-01 -7.187e-02
Max 7.879e-02 9.941e-02 5.369e-02 1.322e-01 1.443e-01
Mean 7.361e-04 8.548e-04 1.091e-04 1.087e-03 1.278e-03
Std 1.516e-02 1.490e-02 1.192e-02 1.972e-02 1.955e-02
Skew -2.187e-01 3.070e-01 5.055e-02 2.407e-01 5.987e-01
Kurt 6.821 1.089e+01 5.586 1.245e+01 9.297

Table 4.4: Daily Logreturn during the period January 2014 - December 2016
〈tablestat2〉

In Fig. 4.13 and 4.14 it is shown the comparison between the optimal portfolios
of the different methods varying α and the respective τ : the portfolio is composed
of the first five assets considering the historical distribution of the logreturns from
January 2011 to December 2013 and from January 2014 to December 2016 respec-
tively.
In Fig. 4.15 and 4.16 is represented the portfolio weights of the the optimal portfo-
lios frontier, α is set to 0.2, so the respective τ is 0.025. The analysis is performed
again in the periods from January 2011 to December 2013 and from January 2014
to December 2016 respectively.

As we expect, the optimal portfolios frontier is convex in all the cases and there
are not substantial differences between the CV aRα case and the EV aRτ case by
the fact that the distribution of the assets has low skewness.
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Figure 4.13: Optimal portfolios evaluated with the Markowitz model, the mean-
CV aRα analysis and the mean-EV aRτ analysis for different values of α and τ

during the period January 2011 December 2013.
〈fig7〉
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Figure 4.14: Optimal portfolios evaluated with the Markowitz model, the mean-
CV aRα analysis and the mean-EV aRτ analysis for different values of α and τ

during the period January 2014 December 2016.
〈fig7a〉
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Figure 4.15: Portfolio weights of the optimal portfolios evaluated in the different
methods during the period January 2011 December 2013.
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Figure 4.16: Portfolio weights of the optimal portfolios evaluated in the different
methods during the period January 2014 December 2016.
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Let us consider again the portfolio composed by 5 assets. Each day we compute
the realized logreturn of the mean-risk portfolio evaluated the day before. We
consider variance, CV aR0.2, EV aR0.05 as risk measures and we compare them
with the realization of the equally weighted portfolio.
In order to concentrate ourselves on the upper part of the efficient frontier, in
addition to a non negativity constraint on the portfolio weights, we added a lower
bound on expected logreturn. Each day, in accord with the formulation in equation
(4.3), we impose:

µ(wi) > 1
5 min

j
E[rij] + 4

5 max
j

E[rij]

wi > 0, (4.13) constr1

where E[rij] is the mean of the logreturns of the asset j evaluated in the rolling
window prior to the day i.
The constraint in 4.13 is motivated be the fact usually, in portfolio optimization,
we want a minimum logreturn threshold in order to make a profit, in particular
we are interested in the high part of the optimal portfolio keeping an acceptable
risk (see e.g. Fig 4.17).
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Figure 4.17: Region of target portfolio
〈targetport〉



CHAPTER 4. MEAN-EVAR OPTIMAL PORTFOLIOS 58

1st January 2011 - 31th December 2013
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Figure 4.18: Empirical distribution of the 5-asset-portfolio logreturns computed
out-of-sample with the rolling window approach over the period Jan11-Dec13: the
probability and cumulative density function are smoothed by normal kernels.

〈1511-13〉

Markowitz CVaR EVaR Eq. Weighted
Min -6.164e-02 -7.828e-02 -7.726e-02 -6.244e-02
Max 5.427e-02 5.458e-02 5.664e-02 5.046e-02
Mean 6.329e-04 6.202e-04 6.033e-04 6.788e-04
Std 1.210e-02 1.246e-02 1.251e-02 1.192e-02
Skew -1.678e-01 -2.395e-01 -1.928e-01 -2.494e-01
Kurt 5.962 6.964 6.882 5.680

Table 4.5: Statistics of the 5-asset portfolio logreturn distributions over the period
January 2014 - December 2016

〈tablestat3〉
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1st January 2014 - 31th December 2016
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Figure 4.19: Empirical distribution of the 5-asset-portfolio logreturns computed
out-of-sample with the rolling window approach over the period Jan14-Dec16: the
probability and cumulative density function are smoothed by normal kernels.

〈1514-16〉

Markowitz CVaR EVaR Eq. Weighted
Min -6.214e-02 -7.443e-02 -8.023e-02 -4.958e-02
Max 6.270e-02 6.968e-02 7.858e-02 5.675e-02
Mean 5.715e-04 5.600e-04 5.983e-04 6.280e-04
Std 1.319e-02 1.357e-02 1.364e-02 1.150e-02
Skew -2.254e-01 -1.700e-01 -1.14804e-01 -3.00056e-03
Kurt 5.968 7.968 8.622 5.719

Table 4.6: Statistics of the 5-asset portfolio logreturn distributions over the period
January 2011 - December 2013

〈tablestat4〉
In Fig. 4.18 and 4.19 the empirical distribution of the out-of-sample portfolios’
logreturns is represented, and in Tab. 4.5 and 4.6 the extrema and the moments
of the distributions are evaluated.
We can observe that the portfolio which minimize the EVaR has performance
comparable to the other methods.

In the next experiment we perform a portfolio optimization over a large portfo-
lio in order to assess the stability of the algorithm with a large number of variables
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and constraints. Considering a portfolio composed by the first 250 asset of the
S&P 500 ordered by their weight, over a rolling window of 100 days, the LP
problem in (4.10)

min
ui,vi,wj

y s.t.

piy − ui + vi > pi(Rw)i ∀i
n∑
i=1

ui − β
n∑
i=1

vi > 0

ui, vi > 0, ∀i = 1, . . . , n
m∑
j=1

wj = 1

m∑
i=1

wiE[ri] = µp

wj > 0 ∀j = 1, . . . ,m

is composed by 451 variables, 101 inequality constraints, 2 equality constraints
and 250 lower bounds on the variables.

In Fig. 4.20 and 4.21 are shown the comparison between the optimal portfolio’s
frontiers of the different methods varying α and the respective τ : the portfolio is
composed of the first 250 assets considering the historical distribution of the logre-
turns from January 2011 to December 2013 and from January 2014 to December
2016.
In Fig. 4.22 and 4.23 the empirical distribution of the out-of-sample portfolios’
logreturns are represented and in Tab. 4.7 and 4.8 the extrema and the moments
of the distributions are evaluated.

Again, the optimal portfolios frontier is convex in all the cases and there are
not substantial differences between the CV aRα case and the EV aRτ case: hence
our method can be used also for large portfolio problems.
Moreover we can observe that, considering large portfolios, the EV aR method
has best performance considering the realized logreturn: another matter should be
done for the case of equally weighted portfolio because it is strictly path dependent
and does not consider any constraints on risk.
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Figure 4.20: Optimal portfolio’s frontiers of the portfolios composed of the first
250 assets of the S&P 500 evaluated with the Markowitz portfolio theory, the
mean-CV aRα analysis and the mean-EV aRτ analysis for different values of α and
τ over the period Jan2011-Dec2013.

〈fig10〉
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Figure 4.21: Optimal portfolio’s frontiers of the portfolios composed of the first
250 assets of the S&P 500 evaluated with the Markowitz portfolio theory, the
mean-CV aRα analysis and the mean-EV aRτ analysis for different values of α and
τ over the period Jan2014-Dec2016.

〈fig10a〉



CHAPTER 4. MEAN-EVAR OPTIMAL PORTFOLIOS 62
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Figure 4.22: Empirical distribution of the 250-asset-portfolio logreturns computed
out-of-sample for the period Jan11-Dec13: the probability and cumulative density
function are smoothed by normal kernels.

〈125011-13〉

Markowitz CVaR EVaR Eq. Weighted
Min -5.813e-02 -5.759e-02 -5.882e-02 -7.208e-02
Max 6.010e-02 6.432e-02 7.234e-02 5.109e-02
Mean 2.239e-04 4.394e-04 4.560e-04 6.836e-04
Std 1.298e-02 1.267e-02 1.295e-02 1.100e-02
Skew -2.551e-01 -1.796e-02 -8.106e-02 -5.835e-01
Kurt 5.306 5.824 6.062 8.416

Table 4.7: Statistics of the 255-asset portfolio logreturn distributions over the
period January 2011 - December 2013

〈tablestat5〉
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1st January 2014 - 31th December 2016
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Figure 4.23: Empirical distribution of the 250-asset-portfolio logreturns computed
out-of-sample for the period Jan14-Dec16: the probability and cumulative density
function are smoothed by normal kernels.

〈125014-16〉

Markowitz CVaR EVaR Eq. Weighted
Min -6.272e-02 -5.684e-02 -6.462e-02 -4.216e-02
Max 5.338e-02 4.939e-02 4.452e-02 3.503e-02
Mean 3.058e-04 3.627e-04 3.930e-04 4.118e-04
Std 1.140e-02 1.151e-02 1.162e-02 8.810e-03
Skew -4.386e-01 -5.22420e-01 -6.00888e-01 -4.358e-01
Kurt 7.183 6.497 6.499 5.137

Table 4.8: Statistics of the 255-asset portfolio logreturn distributions over the
period January 2014 - December 2016

〈tablestat6〉
Summarizing, we introduced the Expectile Value at Risk at level τ as a new

risk measure and we proved that finding the portfolio which minimize the EV aRτ

is a linear programming problem with 2n+ d+ 1 variables and n+ 1 constraints,
where n is the length of the dataset and d is the number of the assets.

During the simulation we evinced that the EVaRτ behaves similarly to the
CVaRα when we consider symmetric distributions: on the other hand, consider-
ing distributions with the same left tail but different right tail, CVaRα does not
distinguish the distribution focusing only on the left tail while EVaRτ prefers dis-
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tribution with a greater right tail.
In the out-of-sample tests we did not find substantial differences in using

EV aRτ , CV aRα and variance as quantities to minimize in order to allocate small
portfolios: the distributions of the assets are too similar to notice a difference.
Considering large portfolios the mean-EV aRτ approach seems to have better per-
formances, in fact we have a greater realized logreturn with a comparable variance.



Chapter 5

Interexpectile Difference as
Deviation Measure

〈interexpectile〉
In the recent paper by Bellini et al. (2018), it has been suggested that the in-
terexpectile difference might be an interesting measure of variability. Indeed, in
comparison with the very well known interquartile or more generally interquan-
tile differences, it has the additional property of being consistent with respect to
the convex order (also known as Second Order Stochastic Dominance with equal
means), which is a highly desirable property for a deviation measure as we pointed
out in Example 30 at Section 4.1.

〈interexp〉
Definition 31. We define

∆τ = e1−τ (X)− eτ (X) = e1−τ (X) + e1−τ (−X) = −eτ (−X)− eτ (X),

for X ∈ L1 and τ ∈ (0, 1/2).

The following properties can be proved straightforwardly from the correspond-
ing properties of expectiles (see Bellini et al. (2017))

Proposition 32. Let X ∈ L1, τ ∈ (0, 1/2) and ∆τ as in (31). Then:

a) ∆τ (X) > 0 and ∆τ (X) = 0 if and only if X = c P-a.s.

b) ∆τ (X) = ∆τ (−X)

c) ∆τ (X) is strictly increasing and continuous in τ

d) ∆τ (X) → 0+ for τ → 1/2− and ∆τ (X) → ess sup(X) − ess inf(X) for
τ → 0+

65
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e) ∆τ (X + h) = ∆τ (X), for h ∈ R

f) ∆τ (λX) = λ∆τ (X), for λ > 0

g) ∆τ (X + Y ) 6 ∆τ (X) + ∆τ (Y )

h) X 6cx Y ⇒ ∆τ (X) 6 ∆τ (Y ),

where 6cx denotes the usual convex order.

Recalling that EV aRτ (X) = maxϕ∈Mτ E[−Xϕ], we can write

∆τ (X) = −eτ (−X)− eτ (X) = EV aRτ (−X) + EV aRτ (X)

= max
ϕ∈Mτ

E[Xϕ] + max
ϕ∈Mτ

E[−Xϕ], (5.1) deltatau

Mτ =
{
ϕ ∈ L∞, ϕ > 0 a.s., E[ϕ] = 1, ess supϕ

ess inf ϕ 6
1− τ
τ

}
.

5.1 Linear Programming Formulation

By discretizing the maximization problem in (5.1) and assuming that X is a dis-
crete random variable with P(X = xi) = pi for i = 1, . . . , n, we obtain:

∆τ (X) =



max
fi,m

n∑
i=1

xifipi s.t.
n∑
i=1

fipi = 1

m 6 fi 6 βm, ∀i
m > 0, fi > 0, ∀i = 1, . . . , n

+

max
fi,m

n∑
i=1
−xifipi s.t.

n∑
i=1

fipi = 1

m 6 fi 6 βm, ∀i
m > 0, fi > 0, ∀i = 1, . . . , n


The corresponding dual is:

∆τ (X) =



min
ui,vi

y s.t.

piy − ui + vi > −pixi ∀i
n∑
i=1

ui − β
n∑
i=1

vi > 0

ui, vi > 0, ∀i = 1, . . . , n

+

min
ui,vi

y s.t.

piy − ui + vi > pixi ∀i
n∑
i=1

ui − β
n∑
i=1

vi > 0

ui, vi > 0, ∀i = 1, . . . , n


Grouping the minimum functions and renaming (y, u, v) = (y1, u1, v1) in the
first minimization problem and (y, u, v) = (y2, u2, v2) in the second one, we
obtain that the Interexpectiles Difference of a discrete random variable X is given
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by:
∆τ = min

ui,vi
y1 + y2 s.t.

p1
i y

1 − u1
i + v1

i > −p1
ixi ∀i

n∑
i=1

u1
i − β

n∑
i=1

v1
i > 0

p2
i y

2 − u2
i + v2

i > p2
ixi ∀i

n∑
i=1

u2
i − β

n∑
i=1

v2
i > 0

u1
i , v

1
i , u

2
i , v

2
i > 0, ∀i = 1, . . . , n

(5.2) DeltaTau

5.1.1 Portfolio Problem

Suppose now that the outcomes of the random variable X are portfolio logreturns,
so we have that X = Rw, where R is the matrix of the historical logreturn and
w = (w1, . . . , wm) are the weights. Finding the portfolio which minimize the ∆τ

means finding w such that

w = argmin
w

∆τ (Rw) s.t.∑
w = 1

portfolio constraints

The problem in (5.2) becomes

w = argmin
wj
{min
ui,vi

y1 + y2} s.t.

p1
i y

1 − u1
i + v1

i > −pi(Rw)i ∀i = 1, . . . , n
n∑
i=1

u1
i − β

n∑
i=1

v1
i > 0

p2
i y

2 − u2
i + v2

i > pi(Rw)i ∀i = 1, . . . , n
n∑
i=1

u2
i − β

n∑
i=1

v2
i > 0

u1
i , v

1
i , u

2
i , v

2
i > 0, ∀i = 1, . . . , n

m∑
j=1

wj = 1

Shortselling wj > 0 ∀j = 1, . . . ,m
Efficient Frontier

m∑
i=1

wiE[ri] = µp


=⇒ Portfolio Constraints
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5.2 Numerical Examples

In the first part of this section we consider optimal portfolios on simulated data:
our purpose is to compare the portfolio problem using the ∆τ as risk measure with
the usual risk measures used in literature. In the second part of the section we
test the method on historical data.
All the experiments are performed using MatLab and the optimization problems
are solved with the functions linprog, quadprog and fmincon. The solutions to
Linear and Quadratic Programming problems are checked with GAMS (General
Algebraic Modeling System).

5.2.1 Simulated Data

As toy problem we consider again the pattern of section 4.4.1, i.e. a portfolio
composed of three assets varying the distributions and the correlations matrix. In
the first example we suppose that the logreturn of three assets A, B and, C are
described by uncorrelated normal distributions: in order to assess the variability of
the optimal portfolio, we simulate samples of length T = 20, 50, 100 and compute
the distribution of minimal ∆τ portfolios for τ ranging from 5% to 45%. The
results are reported in Fig. 5.1; the three lines correspond, respectively from top
to bottom, to the 10th percentile, the median and the 90th percentile of the portfolio
weights.
If iqr0.25 is the well-known interquartile range, we will consider its generalization
i.e. the interquantile range of level alpha defined as iqrα = q1−α − qα. Since
minimizing iqrα is a NLP problem, in order to find a solution we used MatLab
fmincon with objective function

prctile(x,1-alpha)-prctile(x,alpha).

In Fig. 5.2 we compare the portfolios originated by the minimization of variance,
CVaR0.20, iqr0.25 and ∆0.25 through the scatter plot of the weights of A and B and
the relative histogram (the weight of C is given by 1− wA − wB).
In Fig. 5.3 and 5.4 we introduce correlation among the assets: A, B and C are
described by correlated normal distribution with correlation matrix

Σ+ =


1 0.3 0.5

0.3 1 0.7
0.5 0.7 1

 Σ− =


1 −0.3 0.5
−0.3 1 −0.7
0.5 −0.7 1

 (5.3) ?corrmat2?
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Again in Fig. 5.5 and 5.6 we consider uncorrelated asymmetric distributions of the
following types: asset A and B have a normal distribution, asset C has a reflected
standardized gamma distribution.
The parameters of the distributions are the same as eq. 4.12 i.e.:

Asset A ∼ N (µN , σN ), with µN = 0, σN = 2.25
Asset B ∼ N (µN , σN ), with µN = 0, σN = 2.25
Asset C ∼ −Γ(k, θ, µΓ, σΓ), with k = 5, θ = 1, µΓ = −0.912, σΓ = 1.5

As in section 4.4.1, the assets have a similar left tail with equal VaR0.05 but dif-
ferent right tail (Fig. 4.2).
Finally in Fig. 5.7 and 5.8 we introduce correlation among the asset: we perform
tests with correlation matrices Σ+ and Σ−.

As in section 4.4.1, we want to reproduce the experiment performed by Bert-
simas et al. (2004) in order to study how the portfolio change with respect to the
level τ and to compare the resalts with other well-known variability risk measures
such as variance and interquantile difference.
In Fig. 5.1, 5.3, 5.5 and 5.7 we can observe that in all cases the variability of
the portfolio is similar to the portfolio found minimizing variance, so we do not
expect substantial differences in the portfolio weights varying τ or considering the
Markowitz portfolio.
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Figure 5.1: Variability of the weights of minimum ∆τ portfolios for τ =
0.05, . . . , 0.45 on simulated uncorrelated standard normal data of length T =
20, 50, 100. The red lines indicate respectively the 90th percentile, the median
and the 10th percentile of the portfolio weights. The blue lines represent the same
quantities for a minimal variance portfolio.

〈3N-uncorr〉
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In Fig. 5.2, 5.4, 5.6 and 5.8 we compare the portfolio found minimizing vari-
ance, minimizing interquartile range, minimizing EV aR0.05 and minimizing ∆0.25.

In the uncorrelated normal case (Fig. 5.2) we can observe that the dispersion
of the cloud of points of ∆0.25 case is again comparable with the variance case
and has less variability than the EV aR0.05 and iqr0.25 cases. Despite the high
dispersion, the portfolio evaluated minimizing iqr0.25 is more concentrated to the
center of the distribution.
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Figure 5.2: Scatter plot and histogram of the weights of the assets A and B, the
weight of C is given by the relation ∑ωi = 1, the pattern is the same of Fig. 5.1
with T = 100. The red points represent the theoretical value of the portfolio
weights given by the minimal variance portfolio.

〈3N-uncorr_hist〉

Introducing correlation among the asset logreturns, in Fig. 5.3 we can observe
that the ∆τ minimization behaves again as the variance minimization: varying
τ and the sample size, the 10th percentiles, the 90th percentiles and the medians
almost coincide.
Hence, when we consider correlated normal distributions, minimizing ∆τ gives
results extremely similar to the Markowitz portfolio.
Finally, considering the sample size, the variability decreases for higher value of
T , so the algorithm seems pretty stable.
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Figure 5.3: Variability of the weights of minimum ∆τ portfolios for τ =
0.05, . . . , 0.45 on simulated correlated standard normal data of length T =
20, 50, 100. The red lines indicate respectively the 90th percentile, the median
and the 10th percentile of the portfolio weights. The blue lines represent the same
quantities for a minimal variance portfolio.
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Figure 5.4: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 5.3 with 1000 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.
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Considering τ = 0.25 and comparing ∆0.25 with variance, EV aR0.05 and iqr0.25

(Fig. 5.4) we can observe that:

- when we consider the correlation matrix Σ+ in the EV aR0.05 case the cloud
of points lays mostly on the diagonal, on the contrary minimizing the in-
terquartile range we find portfolios that are close to the center of the graph
or that gives all the weight to a single asset;

- when we consider the correlation matrix Σ− variance, ∆τ and the EV aR0.05

behave similarly indeed the cloud of points lays mostly on the y-axis giv-
ing weight to asset B and C avoiding A, on the contrary minimizing the
interquartile range we find again portfolios that are close to center of the
graph.

Observing the histogram of the portfolio generated minimizing the variance, we
evince that it is very similar to the histogram of the portfolio generated minimiz-
ing ∆τ .

Minimizing iqr0.25 is another matter entirely: negative correlation seems not to af-
fect the portfolio composition, while positive correlation produces some portfolios
with all the weight concentrated in a single asset.
These phenomena can be explained by the lack of the subadditivity property of
iqr0.25, so diversification does not necessary decrease the risk.

Let now consider uncorrelated asymmetrical distributions (Fig. 4.2): asset A
and B again have a normal distribution with µN = 0 and σN = 2.25, asset C has
a reflected Γ distribution with parameters k = 5, θ = 1, µΓ = −0.912, σΓ = 1.5.
In Fig. 5.5 we can observe the same results obtained in the standard normal case
with and without correlation, i.e.:

- the 10th percentiles, the 90th percentiles and the medians almost coincide in
all the cases;

- the portfolio composition remain unchanged varying τ ;

- the variability of the portfolio decrease when the sample size increase.



CHAPTER 5. INTEREXPECTILE DIFFERENCE 75

0.2 0.4

0

0.5

1

Asset A: T=20

0.2 0.4

0

0.5

1

Asset B: T=20

0.2 0.4

0

0.5

1

Asset C: T=20

0.2 0.4

0

0.5

1

Asset A: T=50

0.2 0.4

0

0.5

1

Asset B: T=50

0.2 0.4

0

0.5

1

Asset C: T=50

0.2 0.4

0

0.5

1

Asset A: T=100

0.2 0.4

0

0.5

1

Asset B: T=100

Distribution: N-N-Gamma without correlation

0.2 0.4

0

0.5

1

Asset C: T=100

Figure 5.5: Variability of the weights of minimum ∆τ portfolios for τ =
0.05, . . . , 0.45 on simulated uncorrelated data of length T = 20, 50, 100: the assets’
distributions are described in Eq. 4.12. The red lines indicate respectively the 90th

percentile, the median and the 10th percentile of the portfolio weights. The blue
lines represent the same quantities for a minimal variance portfolio.
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From Fig. 5.6 we can observe that the histogram generated minimizing ∆0.25

is again very similar to the histogram generated minimizing variance and differs
from the histogram generated minimizing EV aR0.05 which gather on the diagonal.
The case of iqr0.25 does not differ from the standard normal case.

Finally, we introduce correlation among the data: we consider again sepa-
rately the correlation matrices Σ+ and Σ−. In Fig. 5.7 we observe again that the
portfolios generated minimizing ∆τ and variance are extremely similar, that vary-
ing τ the portfolio composition does not change and that the variability decreases
when the sample size increase.
Considering τ = 0.25 and comparing ∆0.25 with variance, EV aR0.05 and iqr0.25

(Fig. 5.8) we can observe that:
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Figure 5.6: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 5.5 with 1000 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.
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- when Σ+ is considered, minimizing EV aR0.05 the cloud of points lays mostly
on the diagonal, minimizing variance and ∆τ we find portfolios that lays on
the x-axis;

- when Σ− is considered, minimizing EV aR0.05 we find portfolios that are
coser to the center of the graph, minimizing variance and in ∆τ the cloud of
points lays mostly on the on the y-axis.

The portfolio found minimizing iqr0.25 again does not differ from the correlated
normal case.

In conclusion, considering all the asset’s distributions presented in this section,
we observe that the portfolios generated minimizing ∆τ are extremely similar
to the portfolios generated minimizing variance. As we expected from theory,
minimizing ∆τ consists in minimizing the quantity −eτ (−X) − eτ (X), hence we
are minimizing the risk measure both the gain and the loss of the distribution,
which is very similar to minimizing variance. Furthermore since minimizing ∆τ

is a LP problem, when we consider large portfolios our method is preferable to
minimizing variance from a computational point of view.
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Figure 5.7: Variability of the weights of minimum ∆τ portfolios for τ =
0.05, . . . , 0.45 on simulated correlated data of length T = 20, 50, 100 with cor-
relation matrices Σ+ and Σ−: the assets’ distributions are described in Eq. 4.12.
The red lines indicate respectively the 90th percentile, the median and the 10th

percentile of the portfolio weights. The blue lines represent the same quantities
for a minimal variance portfolio.
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Figure 5.8: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 5.7 with 1000 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.
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5.2.2 Historical Data
〈histInterexpectile〉

In this section we perform tests on ∆τ using the same dataset of section 4.4.2, i.e.
using the logreturns of the companies that constitute the S&P 500 index in two
different periods: January 2011 - December 2013 and January 2014 - December
2016.
First we evaluate the optimal portfolios’ frontiers evaluated considering the whole
dataset over the two periods. Afterwards, we make an out-of -sample analysis
considering a rolling window of length 100 days, giving equal probability 1/100 to
each possible outcome. Every day the portfolio is rebalanced following the rules of
Markowitz portfolio theory, mean-iqr0.25 analysis, mean-∆0.25 analysis and com-
paring them with the equally weighted portfolio. Afterwards the empirical distri-
bution of the portfolios’ logreturns is evaluated.

In Fig. 5.9 and 5.10 the comparison between the optimal portfolios’ frontiers
evaluates with the different methods are presented: the portfolio is composed
again of the first five assets of the S&P 500 ordered by their weight in the index
(Apple Inc., Microsoft Corporation, Exxon Mobil Corporation, Amazon.com Inc.
and JPMorgan Chase & Co) considering the historical distribution of the logre-
turns from 1st January 2011 to 31th December 2013 and 1st January 2014 to 31th

December 2016 respectively.
As we expect, the efficient frontier is not convex in the case of the iqrα because

it is not a coherent risk measure due to the lack of subadditivity, on the contrary
the efficient frontiers of the mean-∆τ portfolios are convex for all levels of τ .

In Fig. 5.11 and 5.12 the portfolio weights of the efficient frontiers are repre-
sented, α is set to 0.2, so the respective τ is 0.025: the graphic of the mean-∆0.025

portfolio weights is again similar to graphic of the Markowitz portfolio weights,
while minimizing iqr0.25 the portfolio composition is not regular with respect to
the different values of the expected logreturn of the portfolio.
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Figure 5.9: Optimal portfolios evaluated with the Markowitz model, the mean-
iqrα analysis and the mean-∆τ analysis for different values of α and τ during the
period January 2011 December 2013.
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Figure 5.10: Optimal portfolios evaluated with the Markowitz model, the mean-
iqrα analysis and the mean-∆τ analysis for different values of α and τ during the
period January 2014 December 2016.
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Figure 5.11: Portfolio weights of the optimal portfolios evaluated in the different
methods during the period January 2011 December 2013.
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Figure 5.12: Portfolio weights of the optimal portfolios evaluated in the different
methods during the period January 2014 December 2016.
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In Fig. 5.13 and 5.14 the empirical distribution of the out-of-sample portfolios’
logreturns is represented, and in Tab. 5.1 and 5.2 the extrema and the moments
of the distributions are evaluated.

In this analysis we consider again two different periods: from 1st January 2011
to 31th December 2013 and from 1st January 2014 to 31th December 2016.

Each day we compute the realized logreturn of the mean-risk portfolio evalu-
ated the day before. We consider variance, iqr0.25, ∆0.25 as risk measures and we
compare the relative portfolios with the the equally weighted portfolio.

In order to concentrate ourselves on the upper part of the efficient frontier,
as we did in Section 4.4.2 we added a lower bound on the expected logreturn in
addition to a non-negativity constraint. So each day we solve the LP problem

min
w∈Π

ρ(wi) s.t.

µ(wi) > 1
5 min

j
E[rij] + 4

5 max
j

E[rij]

wi > 0, (5.4) constr2

where wi are the portfolio weights evaluated in the rolling window prior to the
day i and E[rij] is the mean of the logreturns of the asset j evaluated in the rolling
window prior to the day i.

The constraint in eq. 5.4 is arbitrary: we imposed it to investigate the high
region of the optimal portfolios’ frontier (see Fig. 4.17): from a financial point of
view, we are minimizing the risk of portfolio with high performances.

Looking at Tab. 5.1 and 5.2 we can observe that the portfolio which mini-
mize ∆τ has performance comparable with the Markowitz portfolio in fact the
relative empirical distributions are very similar: the mean-iqr0.25 portfolio is an-
other matter, it has the best realized logreturn but also the greatest standard
deviation.
The tests performed on historical data confirm what we expected from theory,
i.e., minimizing ∆τ seems to be a viable alternative to the Markowitz portfolio
considering the fact that the first is a LP problem, on the contrary the second is
a QP problem.
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Figure 5.13: Empirical distribution of the 5-asset-portfolio logreturns computed
out-of-sample with the rolling window approach over the period Jan11-Dec13: the
probability and cumulative density function are smoothed by normal kernels.
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Markowitz iqr0.25 ∆τ Eq. Weighted
Min -5.08e-02 -6.30e-02 -5.12e-02 -6.24e-02
Max 4.76e-02 5.13e-02 4.68e-02 5.04e-02
Mean 6.77e-04 7.50e-04 6.62e-04 6.78e-04
Std 1.12e-02 1.25e-02 1.13e-02 1.19e-02
Skew -1.48e-01 -2.89e-01 -1.43e-01 -2.49e-01
Kurt 5.38 5.15 5.53 5.68

Table 5.1: Statistics of the 5-asset portfolio logreturn distributions over the period
January 2011 - December 2013

〈tablestat21〉
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Figure 5.14: Empirical distribution of the 5-asset-portfolio logreturns computed
out-of-sample with the rolling window approach over the period Jan14-Dec16: the
probability and cumulative density function are smoothed by normal kernels.

〈2514-16〉

Markowitz iqr0.25 ∆τ Eq. Weighted
Min -5.63e-02 -5.41e-02 -5.38e-02 -4.95e-02
Max 6.01e-02 6.13e-02 6.27e-02 5.67e-02
Mean 5.55e-04 7.52e-04 5.01e-04 6.28e-04
Std 1.19e-02 1.26e-02 1.20e-02 1.15e-02
Skew -1.68e-01 -8.92e-02 -8.23e-02 -3.00e-03
Kurt 5.79 5.72 6.06 5.71

Table 5.2: Statistics of the 5-asset portfolio logreturn distributions over the period
January 2014 - December 2016

〈tablestat22〉
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In the following experiment we will consider a portfolio composed by the first
250 asset of S&P 500 ordered by their weight in the index: what we want to test
is the stability of the algorithm for large portfolios.
In Fig. 5.15 it is shown the comparison between the efficient frontiers of the dif-
ferent methods varying α and the respective τ : the portfolio is composed of the
first 250 assets considering the historical distribution of the logreturns from 1st

January 2012 to 31th December 2016.
Again, the efficient frontier is not convex in the case of the iqrα.

In Fig. 5.17 and 5.18 the empirical distribution of the out-of-sample portfolios’
logreturns are represented and in Tab. 5.3 and 5.4, the extrema and the moments
of the distributions are evaluated.

Considering large portfolio, minimizing ∆τ gives again results comparable with
the Markowitz portfolio: the empirical distribution and the statistics are similar.
Our algorithm works also with large portfolios and gives again the results expected
from theory: from a computational point of view minimizing ∆τ is preferable to
minimizing variance dealing with a LP problem and not with a QP problem.

Minimizing iqr0.25 gives portfolios with higher realized logreturns but on the
other hand also the variance is higher. Further analysis should be performed on
this risk measure but it is not the aim of this work.
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Figure 5.15: Optimal portfolios, composed of the first 250 assets of the S&P 500,
evaluated with the Markowitz portfolio theory, the mean-iqrα analysis and the
mean-∆τ analysis for different values of α and τ during the period January 2011
December 2013.
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Figure 5.16: Optimal portfolios, composed of the first 250 assets of the S&P 500,
evaluated with the Markowitz portfolio theory, the mean-iqrα analysis and the
mean-∆τ analysis for different values of α and τ during the period January 2014
December 2016.
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Figure 5.17: Empirical distribution of the 250-asset-portfolio logreturns computed
out-of-sample for the period Jan11-Dec13: the probability and cumulative density
function are smoothed by normal kernels.

〈225011-13〉

Markowitz iqr0.25 ∆τ Eq. Weighted
Min -4.22e-02 -9.67e-02 -4.12e-02 -7.20e-02
Max 3.16e-02 1.09e-01 3.54e-02 5.10e-02
Mean 4.79e-04 8.98e-04 6.07e-04 6.83e-04
Std 9.56e-03 1.53e-02 9.45e-03 1.10e-02
Skew -4.47e-01 2.19e-01 -4.42e-01 -5.83e-01
Kurt 4.94 10.199 5.06 8.41

Table 5.3: Statistics of the 250-asset portfolio logreturn distributions over the
period January 2014 - December 2016

〈tablestat23〉



CHAPTER 5. INTEREXPECTILE DIFFERENCE 88

1st January 2014 - 31th December 2016

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

10

20

30

40

50

60

70
Empirical PDF of the Portfolio Logreturns

Markowitz

IQR

Eq. Weighted

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF of the Portfolio Logreturns

Markowitz

IQR

Eq. Weighted

Figure 5.18: Empirical distribution of the 250-asset-portfolio logreturns computed
out-of-sample for the period Jan14-Dec16: the probability and cumulative density
function are smoothed by normal kernels.

〈225014-16〉

Markowitz iqr0.25 ∆τ Eq. Weighted
Min -4.42e-02 -7.28e-02 -4.23e-02 -4.21e-02
Max 2.95e-02 4.86e-02 3.36e-02 3.50e-02
Mean 2.44e-04 5.09e-04 2.61e-04 4.11e-04
Std 8.64e-03 1.23e-02 8.79e-03 8.81e-03
Skew -5.90e-01 -5.78e-01 -5.91e-01 -4.35e-01
Kurt 5.20 6.38 5.15 5.13

Table 5.4: Statistics of the 250-asset portfolio logreturn distributions over the
period January 2014 - December 2016

〈tablestat24〉



Chapter 6

Robust Optimization of
Expectiles with a worst-case
approach

〈capmeanWEVaR〉
6.1 Robust Risk Measures

In modern empirical portfolio theory assets are sometimes supposed to follow
discrete distributions defined by historical data: in fact if r1, . . . , rt are the last t
logreturns of a certain asset X, in general it is assumed that

P(X = ri) = pi, i = 1, . . . , T.

with ∑i pi = 1.
pi represents the frequency of the event ri and in general is chosen to be 1/T .
This assumption is very convenient due to its simplicity, but on the other hand
it does not take into account features strictly related to the market, such as the
leverage or the model uncertainty.
In recent years, several authors paid more attention to the robustification of a
risk measures: Ben-Tal et al. (2000) formulated the Robust Counterpart approach
and illustrated it through multi-stage asset allocation problem; Lobo and Boyd
(2000), Costa and Paiva (2002), Goldfarb and Iyengar (2003) gave a robust version
of the Markowitz portfolio problem; Zhu and Fukushima (2009) investigated the
worst-case CVaR.
Robustification of a risk measure means adding uncertainty to the distribution

89
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considering a perturbation of the probability pi of the events X = xi.

Definition 33. Let ρ : X → R be a risk measure and P a class of probability
measure. The worst-case ρ is defined as:

ρW (X) := sup
P∈P

ρ(X), X ∈ X

Zhu and Fukushima (2009) showed that the robustification preserves the prop-
erty of coherence. Indeed:

Proposition 34. If ρ is a coherent risk measure under a probability measure P,
then the corresponding ρW associated to a class of probability measure P remains
a coherent risk measure.

Proof. We will prove that all properties in Definition 2 are satisfied.

subadditivity If X, Y ∈ X , then

ρW (X + Y ) = sup
P∈P

ρ(X + Y )

≤ sup
P∈P

[ρ(X) + ρ(Y )]

≤ sup
P∈P

ρ(X) + sup
P∈P

ρ(Y )

= ρW (X) + ρW (Y )

Positive homogeneity If a > 0 and X ∈ X , then

ρW (aX) = sup
P∈P

ρ(aX) = sup
P∈P

aρ(X) = a sup
P∈P

ρ(X) = aρW (X)

Translation invariance If a ∈ R and X ∈ X , then

ρW (X + a) = sup
P∈P

ρ(X + a) = sup
P∈P

[ρ(X)− a] = sup
P∈P

ρ(X)− a = ρW (X)− a

Monotonicity If X, Y ∈ X and X 6 Y for each event ω ∈ Ω, then ρ(X) > ρ(Y )
for any probability measure P ∈ P , which implies

ρW (X) = sup
P∈P

ρ(X) > sup
P∈P

ρ(Y ) = ρW (Y ).
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The problem is now to properly define P in order to add uncertainty to the
distribution: as pointed out by many authors, the uncertainty can be added in
different ways (see e.g. Costa and Paiva (2002), Goldfarb and Iyengar (2003),
Halldórsson and Tütüncü (2003) and El Ghaoui et al. (2003)).
In this work we will focus on box uncertainty: the class of probability measure P
is defined as

P := {pi : pi = p0
i + ηi,

∑
i

ηi = 0, ηi 6 ηi 6 ηi} (6.1) Box

where ηi and ηi are given constants and p0
i is the nominal probability for the event

X = ri that represents the most likely distribution. The condition ∑
i ηi = 0

ensures that the elements belonging P are probability distributions.
As pointed out by Tütüncü and Koenig (2004) and Bertsimas et al. (2011), there
are three main class of uncertainty sets:

- Box Uncertainty: the set of probability measure is defined in eq. 6.1;

- Ellipsoidal Uncertainty: the set of probability measure is defined as

P := {p ∈ RN : p = p0 + Aη, eTAη = 0, p0 + Aη > 0,
√
ηTη 6 1}; (6.2) ellun

- Tail Uncertainty: the set of probability measure is defined as

P := {p ∈ RN : p =
N∑
i=1

ηipi,
N∑
i=1

ηi = 1, ηi 6
1

N(1− α) , i = 1, . . . , N}.

(6.3) tailun

In this chapter a robust version of the Expectile Value-at-Risk is provided: we
consider Box Uncertainty because it is the easiest to implement both from a theo-
retical and a computational points of view, since the set of constraints in eq. (6.1)
is linear. The method can be trivially extended to Ellipsoidal Uncertainty and
Tail Uncertainty simply changing the constraints concerning the set of probability
measure: from a computational point of view, the resulting optimization problems
are more complex because the constraints added are not linear anymore.
Thus, instead of assuming that the distribution is known, we suppose that the den-
sity function belong to a set P of distributions, as described by Zhu and Fukushima
(2009).
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6.2 Formulation

Definition 35. The Robust Expectile Value-at-Risk (WEVaR) for a fixed event
x ∈ X with respect to P is defined as

WEV aRτ (X) := sup
p∈P

EV aRτ (X).

Considering the dual representation of the EVaR (3.4) we have that:

WEV aRτ (X) := sup
p∈P

EV aRτ (X) = sup
p∈P

max
ϕ∈Mβ

Ep[−Xψ]

= sup
(p,ϕ)∈MP

β

Ep[−xψ], (6.4) DualWEVaR

where

Mβ =
{
ϕ ∈ L∞(Ω,F ,P), ϕ ≥ 0, E[ϕ] = 1, ess sup(ϕ)

ess inf(ϕ) 6 β

}
,

MP
β =

{
(p, ϕ) ∈ P × L∞(Ω,F ,P), ϕ ≥ 0, Ep[ϕ] = 1, ess sup(ϕ)

ess inf(ϕ) 6 β

}

with β = 1− τ
τ

.

We now suppose that X follows a discrete distribution, introducing a box un-
certainty on the distribution (see Halldórsson and Tütüncü (2003)), the set P
becomes

P :=
{
p ∈ Rn,

n∑
i=1

pi = 1, p 6 pi 6 p ∀i, with 0 < p < p < 1
}
.

Hence we can discretize the equation (6.4) introducing the box uncertainty, so we
obtain:

WEV aRτ (X) = max
pi,fi

n∑
i=1
−xifipi s.t. (6.5) DWEVaR

n∑
i=1

fipi = 1

fi 6 βfj, ∀i 6= j
n∑
i=1

pi = 1,

p 6 pi 6 p, fi > 0, ∀i = 1, . . . , n.

This is a quadratic problem with quadratic constraints, which is not easy to handle
with standards optimization solvers.
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The box uncertainty is given by the constraints ∑n
i=1 pi = 1 and p 6 pi 6 p: in

order to adapt the method to ellipsoidal uncertainty and tail uncertainty we can
easily substitute these constraints towards complying with sets in eq. 6.2 or 6.3.
We now focus on rewriting the problem: adding again the extra decision variablem
we substitute the set of constraints {fi−βfj 6 0, ∀i 6= j} with {m 6 fi 6 βm, ∀i}
and imposing ηi = fipi, the equation (6.5) becomes:

WEV aRτ (X) = max
ηi,m,pi

n∑
i=1
−xiηi s.t.

n∑
i=1

ηi = 1

pim 6 ηi 6 βpim, ∀i = 1, . . . , n
n∑
i=1

pi = 1,

p 6 pi 6 p, m > 0, ηi > 0, ∀i = 1, . . . , n.

The problem has now a linear objective function and 2n quadratic constraints
given by pim 6 ηi 6 βpim, ∀i = 1, . . . , n.

6.3 Portfolio Problem

Suppose now that the set of the scenarios X are portfolio logreturns, so we
have that X = Rw, where R is the matrix of the historical logreturn and w =
(w1, . . . , wm) are the weights. Finding the portfolio which minimize theWEV aRτ

means finding w such that,

w = argmin
w
WEV aRτ (Rw) s.t

m∑
j=1

wj = 1,

wj ≥ 0, ∀j = 1, . . . ,m. (6.6) eqport
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Therefore the global minimum WEVaR is given by

WEV aRτ (R) = min
w

max
ηi,m,pi

n∑
i=1
−(Rw)iηi s.t.

m∑
j=1

wj = 1
n∑
i=1

ηi = 1

wj ≥ 0. pim 6 ηi 6 βpim, ∀i = 1, . . . , n
n∑
i=1

pi = 1,

p 6 pi 6 p, m > 0, ηi > 0, ∀i = 1, . . . , n.(6.7) DEVaR2

Observing that the objective function φ(w, η) is quadratic but φ(w, ·) is linear in
w and φ(·, η) is linear in η, we can apply the minmax theorem in Fan (1953).

〈minmax〉Theorem 36. Suppose that X and Y are nonempty compact convex set in Rn

and Rm, respectively, and the function φ(x, y) is convex in x for any given y, and
concave in y for any given x. Then we have

min
x∈X

max
y∈Y

φ(x, y) = max
y∈Y

min
x∈X

φ(x, y).

Applying the theorem 36 to eq. (6.7) we obtain

WEV aRτ (R) = max
ηi,m,pi

min
w

n∑
i=1
−(Rw)iηi s.t.

n∑
i=1

ηi = 1
m∑
j=1

wj = 1,

pim 6 ηi 6 βpim, wj ≥ 0, ∀j = 1, . . . ,m.
n∑
i=1

pi = 1,

p 6 pi 6 p, m > 0, ηi > 0 (6.8) DEVaR3

For every fixed η, the problem

min
w

n∑
i=1
−(Rw)iηi s.t.

m∑
j=1

wj = 1

wj ≥ 0, ∀j = 1, . . . ,m.
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is a linear programming problem, so we can evaluate the dual:

PRIMAL DUAL

min
w

n∑
i=1
−(Rw)iηi s.t. max

ω
ω s.t.

m∑
j=1

wj = 1, ω 6 −(η′R)j, ∀j = 1, . . . ,m,

wj ≥ 0, ∀j = 1, . . . ,m, ω > 0. (6.9) Dual

Combining equation (6.8) and the dual formulation in (6.9) we obtain a maxi-
mization problem of a maximization problem, that can be written as:

WEV aRτ (R) = max
ηi,m,pi,ω

ω s.t.
n∑
i=1

ηi = 1

pim 6 ηi 6 βpim,
n∑
i=1

pi = 1,

ω 6 −(η′R)j, ∀j = 1, . . . ,m.

p 6 pi 6 p, ηi > 0, ∀i = 1, . . . , n

m > 0, ω > 0. (6.10) DEVaR7

6.3.1 Efficient Frontier

In order to evaluate the efficient frontier which minimize the robust expectile
value-at-risk it is necessary to add the constraint on the expected logreturn of the
portfolio to the equation (6.6):

w = argmin
w
WEV aRτ (Rw) s.t

m∑
j=1

wj = 1,

m∑
j=1

wjµj = µ,

wj ≥ 0, ∀j = 1, . . . ,m,
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where µi is the mean of the logreturn of the i-th asset, and µ is an arbitrary
constant. Therefore we have

WEV aRτ (R, µ) = min
w

max
ηi,m,pi

n∑
i=1
−(Rw)iηi s.t.

m∑
j=1

wj = 1
n∑
i=1

ηi = 1

m∑
j=1

wjµj = µ, pim 6 ηi 6 βpim, ∀i = 1, . . . , n

wj ≥ 0.
n∑
i=1

pi = 1,

p 6 pi 6 p, m > 0, ηi > 0, ∀i = 1, . . . , n.

Applying again theorem 36, it is possible to swap the min function with the max
function:

WEV aRτ (R, µ) = max
ηi,m,pi

min
w

n∑
i=1
−(Rw)iηi s.t.

n∑
i=1

ηi = 1
m∑
j=1

wj = 1,

pim 6 ηi 6 βpim,
m∑
j=1

wjµj = µ,

n∑
i=1

pi = 1, wj ≥ 0, ∀j = 1, . . . ,m.

p 6 pi 6 p, m > 0, ηi > 0 (6.11) DEVaR6

Proceeding as in equation (6.8) it is possible to evaluate the dual of min LP
problem:

PRIMAL DUAL

min
w

n∑
i=1
−(Rw)iηi s.t. max

ω
ω1 + µω2 s.t.

m∑
j=1

wj = 1, ω1 + µjω2 6 −(η′R)j, ∀j = 1, . . . ,m,

m∑
j=1

wjµj = µ, ω1 > 0, ω2 > 0.

wj ≥ 0, ∀j = 1, . . . ,m, (6.12) Dual2
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Combining equation (6.11) and the dual formulation in (6.12) we obtain

WEV aRτ (R, µ) = max
ηi,m,pi,ωk

ω1 + µω2 s.t.
n∑
i=1

ηi = 1

pim 6 ηi 6 βpim,
n∑
i=1

pi = 1,

ω1 + µjω2 6 −(η′R)j, ∀j = 1, . . . ,m.

p 6 pi 6 p, ηi > 0, ∀i = 1, . . . , n

m > 0, ω1 > 0, ω2 ≥ 0.
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6.4 Numerical Examples

In the first part of this section we consider optimal portfolios on simulated data:
our purpose is to compare the portfolio problem using WEV aRτ as risk measure
with the portfolio which minimize EV aRτ . In the second part of the section we
test the method on historical data.
All the experiments are performed using MatLab and the optimization problems
are solved with the functions linprog, quadprog and fmincon. The solutions to
Linear and Quadratic Programming problems are checked with GAMS (General
Algebraic Modeling System).

6.4.1 Simulated Data

As toy problem we consider again the pattern of section 4.4.1, that is a portfolio
composed of three assets varying the distributions and the correlations.
We perform only 100 simulations because the problem described in equation (6.10)
is non linear and consequently has an high computational cost.
In the first example we suppose that the logreturn of three assets A, B and, C are
described by uncorrelated normal distributions: in order to assess the variability of
the optimal portfolio, we simulate samples of length T = 20, 50, 100 and compute
the distribution of minimal WEV aRτ portfolios for τ ranging from 5% to 45%.
The results are reported in Fig. 6.1; the three lines correspond, respectively from
top to bottom, to the 10th percentile, the median and the 90th percentile of the
portfolio weights.
We perform experiments similar to the ones presented by Bertsimas et al. (2004)
in order to study the variability of the portfolio with respect to τ and the length
of the historical sample.
In Fig. 6.2 we compare the portfolios originated by the minimization of EVaRτ

and WEVaRτ , through the scatter plot of the weights of A and B and the relative
histogram (the weight of C is given by 1− wA − wB).

In Fig. 6.3, 6.4 we perform two experiments introducing correlation among the
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assets: A, B and C are described by normal distribution with correlation matrices

Σ+ =


1 0.3 0.5

0.3 1 0.7
0.5 0.7 1

 , Σ− =


1 −0.3 0.5
−0.3 1 −0.7
0.5 −0.7 1


Again in Fig. 6.5 and 6.6 we consider uncorrelated asymmetric distributions of
the following types: asset A and B has a standard normal distribution, asset C
has a reflected gamma distribution (Fig. 4.2).
The parameters of the distributions are set as in eq. 4.12, i.e.

Asset A ∼ N (µN , σN ), with µN = 0, σN = 2.25
Asset B ∼ N (µN , σN ), with µN = 0, σN = 2.25
Asset C ∼ −Γ(k, θ, µΓ, σΓ), with k = 5, θ = 1, µΓ = −0.912, σΓ = 1.5

(6.13) parameters4

With this frame the three assets have the same left tail, but significantly different
right tail.

Finally in Fig. 6.7 and 6.8 we introduce correlation among the assets: A, B
and C have first correlation matrix Σ+ and then correlation matrix Σ−.
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Figure 6.1: Variability of the weights of the portfolios found minimizingWEV aRτ

for τ = 0.01, . . . , 0.2. The red lines indicate respectively the 90th percentile,
the median and the 10th percentile of the portfolio weights. The blue lines and
the green lines represent respectively the same quantities for a minimal variance
portfolio and a minimal EV aRτ portfolio.

〈Wnuncorrber〉
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In Fig. 6.1, 6.3, 6.5 and 6.7 we compare the portfolio compositions of the port-
folios found minimizingWEV aRτ and EV aRτ for different values of τ . In most of
the cases, the 10th percentile and the 90th percentile lines (red) of the WEV aRτ

are closer to the medians than the respectively lines (green) of the EV aRτ . More-
over in both cases the minimum of the distance between the 10th percentile and
the 90th percentile is often reached in a neighborhood of τ = 0.05 and the max-
imum is reached for τ = 0.2. Thus we study in details how are composed the
portfolios found minimizing WEV aR0.05 and WEV aR0.2 comparing them with
the portfolios found minimizing EV aR0.05 and EV aR0.2 (Fig. 6.2, 6.4, 6.6 and
6.8).
Lookin at the figures from left to right, we can see that the variability decreases for
increasing value of T , hence for longer historical dataset we find portfolios more
accurate.

Considering the uncorrelated standard normal case (Fig. 6.2) the cloud of
points the minimizing WEV aRτ has the same shape of the one evaluated min-
imizing the EV aRτ . The only difference is that the robust case seems to have
slightly less dispersion than the EV aRτ case.
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Figure 6.2: Scatter plot and histogram of the weights of the assets A and B, the
weight of C is given by the relation ∑ωi = 1, the pattern is the same of Fig. 6.1.
The red points represent the theoretical value of the minimal variance portfolio.

〈Wnuncorr〉
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Figure 6.3: Variability of the weights of portfolios found minimizing WEV aRτ

for τ = 0.01, . . . , 0.2 on simulated correlated standard normal data of length T =
20, 50, 100. The red lines indicate respectively the 90th percentile, the median and
the 10th percentile of the portfolio weights. The blue lines and the green lines
represent respectively the same quantities for a minimal variance portfolio and a
minimal EV aRτ portfolio.

〈Wncorrber〉
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Figure 6.4: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 6.3 with 100 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.

〈Wncorr〉
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Introducing correlation among the asset logreturns (Fig. 6.3 and 6.4) we can
observe that in all cases the shapes of the clouds of ponits in the scatter plots
again gather on the diagonal when the correlation matrix is Σ+, on the contrary
considering correlation matrix Σ− the resulting portfolio is composed prevalently
by assets B and C. In all cases evaluating the weights minimizing the WEV aRτ

has no significant differences from evaluating the weights minimizing the EV aRτ ,
but again the robust case seems to have slightly less dispersion than the EV aRτ

case.
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Figure 6.5: Variability of the weights of the portfolios found minimizingWEV aRτ

for τ = 0.01, . . . , 0.2 on simulated uncorrelated data of length T = 20, 50, 100:
the asset A and B come from a normal distribution, C come from a reflected Γ
distribution. The red lines indicate respectively the 90th percentile, the median
and the 10th percentile of the portfolio weights. The blue lines and the green lines
represent respectively the same quantities for a minimal variance portfolio and a
minimal EV aRτ portfolio.

〈WNGGuncorrber〉

Let now consider uncorrelated asymmetric distributions: assets A and B has a
normal distribution, asset C has a reflected Γ distribution. The parameters that
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identify the distributions are listed in eq. 6.13: the distributions have approx-
imately the same left tail but significantly different right tail. The results are
reported in Fig. 6.5 and 6.6.
As in the previous examples evaluating the weights minimizing the WEV aRτ has
no significant differences from evaluating the weights minimizing the EV aRτ , but
the robust case seems to have slightly less dispersion than the EV aRτ case.
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Figure 6.6: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 6.5 with 100 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.
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In conclusion, introducing correlation among the skewed data, in Fig. 6.7 and
6.8 we can observe the same behavior seen in the previous examples: the robust
case seems to have slightly less dispersion than the EV aRτ case.
Consequently there is a tradeoff between choosing a radically more complex NLP
problem to reduce slightly the variability of the portfolio and choosing a signifi-
cantly easier LP problem with little more variability.
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Figure 6.7: Variability of the weights of the portfolios found minimizingWEV aRτ

for τ = 0.01, . . . , 0.2 on simulated correlated data with correlation matrices Σ+

and Σ−: assets A and B come from normal distributions, asset C comes from a
reflected Γ distribution. The red lines indicate respectively the 90th percentile,
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Figure 6.8: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 6.7 with 100 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.
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6.4.2 Historical Data

In this section we perform tests on WEV aRτ using the same dataset of section
4.4.2, i.e. using the logreturns of the companies that constitute the S&P 500
index.
In our analysis we consider two different periods: January 2011 - December 2013
and January 2014 - December 2016.

First we evaluate the optimal portfolios’ frontiers evaluated considering the
whole dataset over the two periods.
Afterwards, we make an out-of -sample analysis considering a rolling window of
length 100 days giving equal probability 1/100 to the possible outcomes: every
day the portfolio is rebalanced following the rules of Markowitz portfolio theory,
mean-EV aR0.05 analysis, mean-WEV aR0.05 analysis. For the sake of complete-
ness we compare the results with the equally weighted portfolio.
In particular we evaluate the empirical distribution of the realized logreturns and
the relative statistics.
Similar experiments are performed for a portfolio composed of the first 250 assets
of the S&P 500 in order to asses the stability of the algorithm with large portfolios.

In Fig. 6.9 and 6.10 we present the comparison between the optimal portfolios’
frontiers of the different methods varying τ : the portfolio is composed again of the
first five assets of S&P 500 ordered by their weight in the index (Apple Inc., Mi-
crosoft Corporation, Exxon Mobil Corporation, Amazon.com Inc. and JPMorgan
Chase & Co). We evaluate the frontiers considering the historical logreturns over
the two different periods. As we expect, the optimal portfolios’ frontiers are con-
vex in all the cases and there are not substantial differences between the EV aRτ

case and his robust version.
In Fig. 6.11 and 6.12 the portfolio weights of the optimal portfolios’ frontiers

are represented, τ is set to 0.025: as we expect from theory, the graphic of the
mean-EV aR0.025 portfolio weights is quite similar to graphic of the relative robust
version, mean-WEV aRτ portfolio seems to diversify more buying some asset of
JPMorgan Chase & Co and Microsoft.
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Figure 6.9: Optimal portfolios’ frontiers evaluated with the Markowitz portfolio
theory, the mean-WEV aRτ analysis and the mean-EV aRτ analysis for different
values of α and τ during the period January 2011 December 2013.
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Figure 6.10: Optimal portfolios’ frontiers evaluated with the Markowitz portfolio
theory, the mean-WEV aRτ analysis and the mean-EV aRτ analysis for different
values of α and τ during the period January 2014 - December 2016.
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Figure 6.11: Portfolio weights of the optimal portfolios evaluated in the different
methods during the period January 2011 - December 2013.
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Figure 6.12: Portfolio weights of the optimal portfolios evaluated in the different
methods during the period January 2014 - December 2016.
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In Fig. 6.13 and 6.14 the empirical distribution of the out-of-sample portfolios’
logreturns is represented, and in Tab. 6.1 and 6.2 the extrema and the moments
of the distributions are evaluated.

Each day we compute the realized logreturn of the mean-risk portfolio evalu-
ated the day before. We consider variance, EV aR0.05, WEV aR0.05 as risk mea-
sures and we compare them with the realization of the equally weighted portfolio.
In order to focus on the upper part of the efficient frontier, in addition the non
negativity constraint on the portfolio weights, we added again the same lower
bound on expected logreturn as in Sections 4.4.2 and 5.2.2.
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Figure 6.13: Empirical distribution of the 5-asset-portfolio logreturns computed
out-of-sample for the period Jan11-Dec13.

〈4511-13〉

Markowitz WEVaR EVaR Eq. Weighted
Min -5.08e-02 -5.39e-02 -5.36e-02 -6.24e-02
Max 4.76e-02 4.90e-02 5.00e-02 5.04e-02
Mean 6.77e-04 5.85e-04 6.26e-04 6.78e-04
Std 1.12e-02 1.15e-02 1.15e-02 1.19e-02
Skew -1.48e-01 -1.48e-01 -1.68e-01 -2.49e-01
Kurt 5.38 5.52 5.60 5.68

Table 6.1: Statistics of the 5-asset portfolio logreturn distributions over the period
January 2011 - December 2013
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〈tablestat41〉

1st January 2014 - 31th December 2016
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Figure 6.14: Empirical distribution of the 5-asset-portfolio logreturns computed
out-of-sample for the period Jan14-Dec16.

〈4514-16〉

Markowitz WEVaR EVaR Eq. Weighted
Min -5.63e-02 -6.56e-02 -6.86e-02 -4.95e-02
Max 6.01e-02 6.19e-02 6.33e-02 5.67e-02
Mean 5.55e-04 6.05e-04 6.09e-04 6.28e-04
Std 1.19e-02 1.20e-02 1.21e-02 1.15e-02
Skew -1.68e-01 -9.57e-02 -5.86e-02 -3.00e-03
Kurt 5.79 6.72 7.40 5.71

Table 6.2: Statistics of the 5-asset portfolio logreturn distributions over the period
January 2014 - December 2016

〈tablestat42〉
Looking at the empirical distributions we do not notice substantial differences
among the different cases, the portfolio which minimize WEV aR0.05 has perfor-
mances comparable with the Markowitz portfolio and the mean-EV aR0.05 portfo-
lio: the statistics reported in Tab. 6.1 and 6.2 are comparable.

Let now consider large portfolio. In Fig. 6.15 we present the comparison be-
tween the optimal portfolios’ frontiers of the different methods varying τ : the
portfolio is composed of the first 250 assets considering the historical distribution
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of the logreturns from 1st January 2012 to 31th December 2016.
The efficient frontier in the WEV aRτ is not convex for all τ due to numerical is-
sue: the problem is NLP with 751 variables and 501 constraints and the optimizer
may find local minima especially when τ is small.
In Fig. 6.17 and 6.18 the empirical distribution of the out-of-sample portfolios’
logreturns are represented and in the Tab. 6.3 and 6.4, the extrema and the mo-
ments of the distributions are evaluated.

Looking at Fig. 6.17 and 6.18 we notice that minimizing WEV aRτ we find
empirical distribution with higher variance, and considering the moments of the
distributions of the realized logreturns of large portfolios we can observe that min-
imizing WEV aRτ we obtain discordant results.

We conclude that the proposed method applied to large portfolio is not stable.
The problem should be rewritten in an easier way reducing the number of variables
and constraints and trying to avoid as more as possible the number of nonlinear
constraints. In future studies we will try to analyze more in detail this issue.
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Figure 6.15: Optimal portfolios’ frontiers evaluated with the Markowitz portfolio
theory, the mean-WEV aRτ analysis and the mean-EV aRτ analysis for different
values of α and τ during the period January 2011 - December 2013.
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Figure 6.16: Optimal portfolios’ frontiers evaluated with the Markowitz portfolio
theory, the mean-WEV aRτ analysis and the mean-EV aRτ analysis for different
values of α and τ during the period January 2014 - December 2016.
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Figure 6.17: Empirical distribution of the 250-asset-portfolio logreturns computed
out-of-sample for the period Jan11-Dec13.

〈425011-13〉

Markowitz WEVaR EVaR Eq. Weighted
Min -4.34e-02 -7.04e-02 -4.31e-02 -7.20e-02
Max 3.16e-02 6.13196e-02 3.59116e-02 5.10979e-02
Mean 4.64e-04 3.78e-04 5.64e-04 6.83e-04
Std 9.53e-03 1.32e-02 9.69e-03 1.10e-02
Skew -4.50e-01 -2.53e-01 -3.55e-01 -5.83e-01
Kurt 5.00 7.08 5.14 8.41

Table 6.3: Statistics of the 250-asset portfolio logreturn distributions over the
period January 2011 - December 2013.

〈tablestat43〉
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Figure 6.18: Empirical distribution of the 250-asset-portfolio logreturns computed
out-of-sample for the period Jan14-Dec16.

〈425014-16〉

Markowitz WEVaR EVaR Eq. Weighted
Min -4.30e-02 -4.63e-02 -4.52e-02 -4.21e-02
Max 2.94e-02 5.31e-02 2.50e-02 3.50e-02
Mean 2.24e-04 7.39e-04 4.06e-04 4.11e-04
Std 8.65e-03 1.05e-02 9.05e-03 8.81e-03
Skew -5.97e-01 -2.61e-01 -6.13e-01 -4.35e-01
Kurt 5.10 5.33 4.93 5.13

Table 6.4: Statistics of the 250-asset portfolio logreturn distributions over the
period January 2014 - December 2016.

〈tablestat44〉



Chapter 7

Risk Parity Portfolios with
Expectiles

〈capriskparity〉
7.1 Risk Parity

In recent years, the theory of risk parity has prompted interest due to the necessity
for the institutional investors to dealing with “risk budgeting”, that is the analysis
in term of risk contributions instead of the usual mean-risk analysis. The basic
idea is to build a portfolio in which every title contributes with the same amount
of risk to the global risk of the portfolio. In the work of Maillard et al. (2010) it is
presented the construction of a portfolio in which every component gives the same
marginal volatility contribution to the total risk.

Definition 37. Let J = {1, . . . ,m} be the set of assets taken into account for a
possible investment and rj the random variable which describes the logreturn of the
asset j ∈ J , the expected logreturn is given by µj = E[rj] and the related covariance
matrix is given by Σ = [σi,j]i,j=1,...,m = [E[(ri − µi)(rj − µj)]]i,j=1,...,m.
Let σ(w) =

√
wTΣw =

√∑
i,j wiwjσi,j be the standard deviation of the portfolio

with weights w = w1, . . . , wm.
Marginal risk contributions, are defined as

∂wjσ(w) = ∂σ(w)
∂wj

= wj(Σw)j
σ(w) . (7.1) marginalP

Thus, the equally-weighted risk contribution (ERC) portfolio must satisfy:

wi∂wiσ(w) = wj∂wjσ(w), ∀i, j = 1, . . . ,m. (7.2) propERC

117
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that is the marginal risk contribution of an asset times his weight must be equal
to a constant. Thus the ERC portfolio can be found solving

w? = argmin
m∑
i=1

m∑
j=1

(∂wiσ(w)− ∂wjσ(w))2 s.t.

m∑
i=1

wi = 1

wi ≥ 0.

Considering eq. (7.1), this problem is equivalent to solve

w? = argmin
m∑
i=1

m∑
j=1

(wi(Σw)i − wj(Σw)j)2 s.t.

m∑
i=1

wi = 1

wi ≥ 0. (7.3) RP

The existence of the ERC portfolio is ensured only when the value of the objec-
tive function in (7.3) evaluated in w? is equal to 0, which implies that wi(Σw)i =
wj(Σw)j for all i, j.
An alternative approach of finding the ERC portfolio consists in solving the fol-
lowing optimization problem:

y? = argmin
√
ytΣy s.t.

m∑
i=1

ln(yi) > c

yi > 0 ∀i = 1, . . . ,m, (7.4) RPlog

where c is an arbitrary constant. The ERC portfolio is given by the normalization
of the solution y?:

w?i = y?i∑m
j=1 y

?
j

.

In fact if we compute the Lagrangean of the problem (7.4), we obtain:

l(y;λ, λc) =
√
yTΣy − λTy − λc

(
m∑
i=1

ln(yi)− c
)
.

The solution y? must satisfy the first-order condition and the Kuhn-Tucker con-
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ditions, i.e. 
∂yil(y;λ, λc) = ∂yiσ(y)− λi − λc

yi
= 0, ∀i = 1, . . . ,m

λiyi = 0, ∀i = 1, . . . ,m

λc (∑m
i=1 ln(yi)− c) = 0

(7.5) eqnlag

Since yi must be positive, we have that λi = 0. Moreover the constraint∑m
i=1 ln(yi) =

c is reached, in fact otherwise λc = 0, that cannot be true because it should imply:

∂yil(y; 0, 0) = ∂yiσ(y) = 0 ⇒ yi(Σy)i = 0 ⇒ yi = 0,

which is impossible.
Hence, from (7.5) we have that

∂yil(y; 0, λc) = ∂yiσ(y)− λc
yi

= 0 ⇒ yi∂yiσ(y) = λc ∀i = 1, . . . ,m.

which is the the property (7.2) of the ERC portfolio.

7.1.1 Risk Parity for differentiable Risk Measures

Immediately after the publication of Maillard et al. (2010), many authors extended
it using other risks measure: Stefanovits (2010) introduced the ERC portfolio
using Value-at-Risk and Conditional Value-at-Risk as risk measures, Cesarone
and Colucci (2017) rewrote the problem of the ERC portfolio using CVaR using
the formulation of Rockafellar and Uryasev (2000).
More generally, the risk parity pattern can be extended to any differentiable risk
measure:

Definition 38. Let J = {1, . . . ,m} be the set of assets taken into account for a
possible investment and rj the random variable which describes the logreturn of the
asset j ∈ J , w = w1, . . . , wm the weights of the portfolio and ρ(w) a differentiable
risk measure.
Marginal risk contributions, ∂wjρ(w), are defined as

∂wjρ(w) = ∂ρ(w)
∂wj

.

Hence the ERC portfolio must satisfy the property

wi∂wiρ(w) = wj∂wjρ(w) ∀i, j = 1, . . . ,m ⇒ wj∂wjρ(w) = λ.
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Generalizing 7.4 we have that the ERC portfolio related to the risk measure ρ is
given by

w?i = y?i∑m
j=1 y

?
j

, (7.6) wstar

where y? is the solution of the problem

y? = argmin ρ(y) s.t.
m∑
i=1

ln(yi) > c

yi > 0 ∀i = 1, . . . ,m. (7.7) RPlog2

In fact if we compute the Lagrangean of the problem (7.7) we have that:

l(y;λ, λc) = ρ(y)− λTy − λc
(

m∑
i=1

ln(yi)− c
)
.

The solution y? must satisfy the first-order condition and the Kuhn-Tucker con-
ditions, i.e. 

∂yil(y;λ, λc) = ∂yiρ(y)− λi − λc
yi

= 0, ∀i = 1, . . . ,m

λiyi = 0, ∀i = 1, . . . ,m

λc (∑m
i=1 ln(yi)− c) = 0

As for the case of the variance we have that yi > 0 and λi = 0 for all i, moreover
the constraint ∑m

i=1 ln(yi) = c is reached, in fact by contradiction if we consider
the second equation of the Kuhn-Tucker conditions we have that

m∑
i=1

ln(yi) > c ⇒ λc = 0.

Thus

∂yil(y; 0, 0) = ∂yiρ(y) = 0, ∀i = 1, . . . ,m ⇒ ρ(y) = c, c ∈ R, ∀y ∈ Rm,

which is absurd by the definition of risk measure.
So we have that

∂yil(y; 0, λc) = ∂yiρ(y)− λc
yi

= 0, ⇒ yi∂yiρ(y) = λc ∀i = 1, . . . ,m.
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7.1.2 Risk Parity for Conditional Value-at-Risk

In Cesarone and Colucci (2017) it is studied the ERC portfolio using CVaR. If we
consider formulation in (7.6) and (7.7), we have that the ERC portfolio is found
by solving

w?i = y?i∑m
j=1 y

?
j

,

where y? is the solution of the problem

y? = argminCV aRα(y) s.t.
m∑
i=1

ln(yi) > c

yi > 0 ∀i = 1, . . . ,m. (7.8) RPCVaR

Considering the formulation of the mean-CVaR problem in Rockafellar and Urya-
sev (2000) we have that the CVaRα of a portfolio w = (w1, . . . , wm), given the
logreturns rjt of the assets j = 1, . . . ,m in the time t = 1, . . . , T , is given by :

CV aRα(w) = min ζ + 1
α

1
T

T∑
t=1

dt s.t.

dt >
m∑
j=1
−rjtwj − ζ, t = 1, . . . , T

dt > 0, t = 1, . . . , T,

ζ ∈ R (7.9) CVaRrocka

Hence substituting (7.9) in (7.8) we obtain:

y? = argmin ζ + 1
α

1
T

T∑
t=1

dt s.t.

dt >
m∑
j=1
−rjtyj − ζ, t = 1, . . . , T

m∑
i=1

ln(yi) > c

dt > 0, t = 1, . . . , T,

ζ ∈ R

yi > 0 ∀i = 1, . . . ,m.

In the next section we are going to study the equally risk contribution portfolio
using the Expectile Value-at-Risk as risk measure: following the idea of Maillard
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et al. (2010), the aim consists in finding the portfolio in which all the components
give the same marginal EVaRτ contribution to the global risk of the portfolio.

7.2 Formulation

Considering the formulation in (7.6) and (7.7), the ERC portfolio using the EVaRτ

as risk measure is given by:
w?i = y?i∑m

j=1 y
?
j

,

where y? is the solution of the problem

y? = argminEV aRτ (y) s.t.
m∑
i=1

ln(yi) > c

yi > 0 ∀i = 1, . . . ,m.

Considering the dual formulation of EVaR in (3.4), we have that:

y? = argmin maxE[−yϕ] s.t.
m∑
i=1

ln(yi) > c ϕ ∈Mτ

yi > 0 ∀i = 1, . . . ,m.

where
Mτ =

{
ϕ ∈ L∞, ϕ > 0 a.s., E[ϕ] = 1, ess supϕ

ess inf ϕ 6
1− τ
τ

}
Hence in the discrete case:

y? = argmin max
T∑
t=1
−ftpt(Ry)t s.t.

m∑
i=1

ln(yi) > c
T∑
t=1

ftpt = 1

yi > 0 ∀i = 1, . . . ,m m 6 ft 6 βm, ∀t

m ≥ 0, ft ≥ 0 ∀t
(7.10) RPEVaR3

where R ∈ RT×m is the matrix of the historical logreturns of the m assets, β =
(1− τ)/τ and pt is the probability associated to the tth scenario.
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We can observe that

max
T∑
t=1
−ftpt(Ry)t s.t.

T∑
t=1

ftpt = 1

m 6 ft 6 βm, ∀t

m ≥ 0, ft ≥ 0∀t

is a linear programming problem with parameter y, hence is dual is:

min
ut,vt

ξ s.t.

ptξ − ut + vt > −pt(Ry)t ∀t
T∑
t=1

ut − β
n∑
t=1

vt > 0

ut, vt,> 0, ∀t = 1, . . . , T

Hence the problem (7.10) becomes

y? = argmin ξ

ptξ − ut + vt > −pt(Ry)t ∀t
T∑
t=1

ut − β
n∑
t=1

vt > 0

m∑
i=1

ln(yi) > c

yi ≥ 0, ∀i = 1, . . . ,m

ut, vt,> 0, ∀t = 1, . . . , T
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7.3 Numerical Examples

In the first part of this section we consider optimal portfolios on simulated data:
our purpose is to compare the equally-weighted risk contribution portfolio using
different risk measures including EV aRτ . In the second part of the section we test
the method on historical data.
All the experiments are performed using MatLab and the optimization problems
are solved with the functions linprog, quadprog and fmincon. The solutions to
Linear and Quadratic Programming problems are checked with GAMS (General
Algebraic Modeling System).

7.3.1 Simulated Data

As in the sections 4.4.1, we first consider three assets A, B and C with a standard
normal distributions without correlation. In order to assess the variability of
the optimal portfolio, we simulate samples of lenght T = 20, 50, 100, from the
aforementioned normal distribution, and compute the portfolio in which every
component give the same marginal EV aRτ contribution to the risk for τ ranging
from 1% to 20%. The results are reported in Fig. 7.1, 7.3, 7.5 and 7.7; the
three lines in each subpanel correspond, respectively from top to bottom, to the
10th percentile, the median and the 90th percentile of the portfolio weights. In
Fig. 7.2 we compare the distribution of the optimal portfolios originated by the
minimization of the variance and the ERC portfolios based on variance, EV aR0.05

and EV aR0.20. In Fig. 7.3 and 7.4 we show two examples of correlated standard
normal marginals, with correlation matrices

Σ+ =


1 0.3 0.5

0.3 1 0.7
0.5 0.7 1

 and Σ− =


1 −0.3 0.5
−0.3 1 −0.7
0.5 −0.7 1

 .
In Fig. 7.5 and 7.6 we consider uncorrelated asymmetric distributions of the

following types: assets A and B have normal distributions, asset C has a reflected
Γ distribution.
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The parameters of the distributions are set as in the previous chapters, i.e.

Asset A ∼ N (µN , σN ), with µN = 0, σN = 2.25
Asset B ∼ N (µN , σN ), with µN = 0, σN = 2.25
Asset C ∼ −Γ(k, θ, µΓ, σΓ), with k = 5, θ = 1, µΓ = −0.912, σΓ = 1.5

(7.11) parameters3

In this way we have similar left tails but significantly different right tails (we refer
to Fig. 4.2).

Finally in Fig. 7.5 and 7.6 we introduce correlation among the assets: we
consider two cases in which A, B and C have correlation matrices Σ+ and Σ−
respectively.

In Fig. 7.1, 7.3, 7.5 and 7.7 we compare the composition of the ERC port-
folio using the EV aRτ as risk measure for different values of τ with the ERC
using the variance as risk measure.
The distance between the 10th percentile and the 90th percentile is approximately
constant in all cases for all values of τ and it is smaller than the Markowitz case
(see Fig. 4.3 for a comparison). The distance between the 10th percentile and the
90th percentile in the risk parity portfolio with variance is the smallest in all cases.
Moreover in all cases for greater values of the sample size T we have smaller vari-
ability, assuring the stability of the algorithm.
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Figure 7.1: Variability of the weights of the ERC portfolios based on EV aRτ ,
for τ = 0.01, . . . , 0.2. The data are simulated and come from correlated standard
normal distribution of length T = 20, 50, 100. The red lines indicate respectively
the 90th percentile, the median and the 10th percentile of the portfolio weights.
The blue lines represent the same quantities for a minimal variance portfolio.

〈RP_nuncorrbertzimas〉
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Figure 7.2: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 7.1 with 100 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.

〈RP_nuncorrPW〉

In Fig. 7.2, 7.4, 7.6, and 7.8 we compare the compositions of the Markowitz
portfolio and the ERC portfolio using variance, CV aR0.05 and EV aR0.05 as risk
measures.

Considering the uncorrelated standard normal case (Fig. 7.2) the cloud of
points has the same shape different dispersion: the ERC portfolio using vari-
ance is the closest to the center of the distribution, while in the other cases we
cannot notice substantial differences. Considering the RP-EVaR0.05, it seems to
have less dispersion than RP-CVaR0.05.

Introducing correlation between the data (Fig. 7.3 and 7.4) we can observe that
the risk parity approach has less dispersion than the Markowitz approach and the
portfolio composition is closer to the center of the graphs, giving approximately
the same weight to the three assets.
Considering the RP-EVaR0.05, it seems to have again less dispersion than RP-
CVaR0.05 both with correlation matrices Σ+ and Σ−.
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Figure 7.3: Variability of the weights of the ERC portfolios based on EV aRτ , for
τ = 0.01, . . . , 0.2. The data are simulated and come from uncorrelated standard
normal distribution of length T = 20, 50, 100. The red lines indicate respectively
the 90th percentile, the median and the 10th percentile of the portfolio weights.
The blue lines represent the same quantities for a the risk parity based on variance
portfolio.
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Figure 7.4: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 7.3 with 100 simulations. The red points represent the theoretical value of
the portfolio weights given by the minimal variance portfolio.
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Let now consider uncorrelated asymmetric distributions of the following types:
assets A and B have normal distributions, asset C has a reflected Γ distribution,
the parameters that describe the distribution are listed in eq. 7.11.

The results are reported in Fig. 7.5 and 7.6: first, in Fig. 7.5 we notice that
the greater is the value of τ , the more asset C is penalized.
While in the Markowitz and in the risk parity with variance cases the clouds
of points in the scatter plot are centered in the theoretical value. Considering
CV aR0.05 as risk measure, the clouds of points gather on the diagonal, to the
detriment of the asset C: considering and EV aR0.05 as risk measure this phe-
nomenon is more pronounced, with this method assets which are described by
distribution with thin right tail are penalized.
The dispersion in the CV aR0.05 and EV aR0.05 cases is comparable, smaller than
the Markowitz case and greater than the ERC portfolio based on variance.
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Figure 7.5: Variability of the weights of the ERC portfolios based on EV aRτ , for
τ = 0.01, . . . , 0.2. Asset A and B have normal distributions, asset C has reflected a
Γ distribution. The red lines indicate the 90th percentile, the median and the 10th

percentile of the portfolio weights.The blue lines represent the same quantities for
a the risk parity based on variance portfolio.
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Figure 7.6: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 7.5 with 1000 simulations. The red points represent the theoretical value of
the Markowitz portfolio weights

〈RP_ngguncorrPW〉

In conclusion, introducing correlation among the asymmetric data, in Fig. 7.7
and 7.8 we can observe that the results analogous to the uncorrelated case both
considering correlation matrices Σ+ and Σ−: first, in Fig. 7.7 we notice that the
greater is the value of τ , the more asset C is penalized.

Moreover looking at Fig. 7.8, the portfolio composition in the risk parity ap-
proach is closer to the center of the graph, giving approximatively equal weight
to the three assets. Considering CV aR0.05 as risk measure, the clouds of points
gather on the diagonal, to the detriment of the asset C: considering and EV aR0.05

as risk measure this phenomenon is more pronounced, with this method assets
which are described by distribution with thin right tail are penalized.

As we expected from theory, with symmetric distribution we do not notice
substantial differences among the proposed methods, while considering asymmet-
ric distributions the EVaR approach allocates more risk to asset with thin right
tail.
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Figure 7.7: Variability of the weights of the ERC portfolios based on EV aRτ ,
for τ = 0.01, . . . , 0.2. Assets A and B have normal distributions, asset C has a
reflected Γ distribution. The red lines indicate the 90th percentile, the median
and the 10th percentile of the portfolio weights. The blue lines represent the same
quantities for a the risk parity based on variance portfolio.
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Figure 7.8: Scatter plot and histogram of the weights of the assets A and B,
the weight of C is given by the relation ∑

ωi = 1, the pattern is the same of
Fig. 7.5 with 1000 simulations. The red points represent the theoretical value of
the Markowitz portfolio weights
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7.3.2 Historical Data

In this section we perform tests on the ERC portfolios using the same dataset
of section 4.4.2, i.e. using the logreturns of the companies that constitute the
S&P 500 index.In our analysis we consider two different periods: January 2011 -
December 2013 and January 2014 - December 2016.

As before, we make an out-of -sample analysis considering a rolling window of
length 100 days with equal weights: every day the portfolio is rebalanced following
the risk parity approach based on variance, CV aR0.2, EV aR0.05. Then empirical
distribution of the portfolios’ logreturns is evaluated and compared to the equally
weighted portfolio. Similar experiments are performed for a portfolio composed of
250 assets of the S&P 500.

In Fig. 7.9 and 7.10 the empirical distribution of the out-of-sample portfolios’
logreturns is represented, and in the Tab. 7.1 and 7.2 the extrema and the mo-
ments of the distributions are evaluated.
The portfolio is composed again of the first five assets of S&P 500 ordered by their
weight in the index (Apple Inc., Microsoft Corporation, Exxon Mobil Corporation,
Amazon.com Inc. and JPMorgan Chase & Co).
Each day we compute the realized logreturn of the ERC portfolios evaluated the
day before.

As we expect from theory, since the distribution of the assets is almost sym-
metric, in all cases the methods are comparable and there are not substantial
differences on the choice of the risk measure to use in the equally-weighted risk
contribution portfolio.
Let now consider a portfolio composed the first 250 assets of S&P 500 ordered by
their weight in the index. In Fig. 7.11 and 7.12 the empirical distribution of the
out-of-sample portfolios’ logreturns are represented and in Tab. 7.3 and 7.4, the
extrema and the moments of the distributions are evaluated.

Considering the moments of the distributions of the logreturns of large port-
folios we can observe there are not substantial differences in the performances of
the portfolios. Again, when considering symmetric distributions, the methods are
comparable and there are not substantial differences on the choice of the risk mea-
sure to use in the equally-weighted risk contribution portfolio.
From a computational point of view, the algorithm proposed to evaluate the ERC
portfolio based on EVaRτ works also with large portfolios.
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Figure 7.9: Empirical distribution of the 5-asset-portfolio logreturns computed
out-of-sample with the rolling window approach over the period Jan11-Dec13: the
probability and cumulative density function are smoothed by normal kernels.

〈3511-13〉

RP Variance RP CVaR RP EVaR Eq. Weighted
Min -6.59e-02 -6.14e-02 -6.16e-02 -6.24e-02
Max 4.82e-02 4.94e-02 4.92e-02 5.04e-02
Mean 6.71e-04 6.80e-04 6.64e-04 6.78e-04
Std 1.14e-02 1.14e-02 1.15e-02 1.19e-02
Skew -3.29e-01 -2.90e-01 -2.93e-01 -2.49e-01
Kurt 6.19 5.90 5.86 5.68

Table 7.1: Statistics of the 5-asset portfolio logreturn distributions over the period
January 2011 - December 2013

〈tablestat31〉
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Figure 7.10: Empirical distribution of the 5-asset-portfolio logreturns computed
out-of-sample with the rolling window approach over the period Jan14-Dec16: the
probability and cumulative density function are smoothed by normal kernels.

〈3514-16〉

RP Variance RP CVaR RP EVaR Eq. Weighted
Min -4.76e-02 -4.79e-02 -4.76e-02 -4.95e-02
Max 5.59e-02 5.73e-02 5.70e-02 5.67e-02
Mean 5.39e-04 5.64e-04 5.51e-04 6.28e-04
Std 1.08e-02 1.09e-02 1.07e-02 1.15e-02
Skew -9.21e-03 -1.54e-02 -4.47e-02 -3.00e-03
Kurt 5.99 6.18 6.04 5.71

Table 7.2: Statistics of the 5-asset portfolio logreturn distributions over the period
January 2011 - December 2013

〈tablestat32〉
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Figure 7.11: Empirical distribution of the 250-asset-portfolio logreturns computed
out-of-sample with the rolling window approach over the period Jan11-Dec13: the
probability and cumulative density function are smoothed by normal kernels.

〈325011-13〉

RP Variance RP CVaR RP EVaR Eq. Weighted
Min -6.58e-02 -6.42e-02 -6.38e-02 -7.20e-02
Max 4.56e-02 4.48e-02 4.43e-02 5.10e-02
Mean 6.97e-04 6.86e-04 6.67e-04 6.83e-04
Std 9.76e-03 9.61e-03 9.57e-03 1.10e-02
Skew -6.31e-01 -6.15e-01 -6.06e-01 -5.83e-01
Kurt 8.86 8.69 8.57 8.41

Table 7.3: Statistics of the 250-asset portfolio logreturn distributions over the
period January 2011 - December 2013

〈tablestat33〉
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Figure 7.12: Empirical distribution of the 250-asset-portfolio logreturns computed
out-of-sample with the rolling window approach over the period Jan14-Dec16: the
probability and cumulative density function are smoothed by normal kernels.

〈325014-16〉

RP Variance RP CVaR RP EVaR Eq. Weighted
Min -4.22e-02 -4.21e-02 -4.21e-02 -4.21e-02
Max 3.36e-02 3.38e-02 3.38e-02 3.50e-02
Mean 3.81e-04 3.83e-04 3.78e-04 4.11e-04
Std 8.09e-03 7.98e-03 7.99e-03 8.81e-03
Skew -3.93e-01 -4.16e-01 -4.58e-01 -4.35e-01
Kurt 5.18 5.19 5.22 5.13

Table 7.4: Statistics of the 250-asset portfolio logreturn distributions over the
period January 2011 - December 2013

〈tablestat34〉



Chapter 8

Conclusions

We introduced the mean-risk problem using EVaR and interexpectile differences,
and we found that they can be written as linear programming problems. More-
over, considering the theories on portfolio selection based on worst-case scenarios
and risk parity, we studied the corresponding EVaR formulations.

Performing tests on simulated data we evinced what we expected from theory:
EVaRτ portfolio optimization gives analogous results as classical risk measures
when considering symmetric distributions. On the contrary, considering asym-
metric distributions, EVaRτ portfolio optimization takes into account the whole
distribution preferring the one with fatter right tail.

In Tab. 8.1 we summarize all the experiments done with historical data and
compare the methods used. We can observe that considering small portfolios, we
have not substantial differences using the various methods: the portfolio found
minimizing the iqr seems to be the one which performs better.

On the contrary, if we consider large portfolios, the mean-EVaR portfolio opti-
mization seems to be preferable to the mean-CVaR portfolio optimization and the
Markowitz portfolio: using EVaR as risk measure, the mean of the distribution
of portfolio logreturns is greater and the variance is lower comparing with CVaR
and Markowitz.

The equally-weighted risk contributions portfolios have not evident differences
either considering the outcomes and the variances.

When considering the case of WEVaR optimization, we run into computational
problems for a large investment universe, in fact we found that the efficient frontier
that theoretically should be convex due to the coherency of WEVaR, in practice it
is not. In future researches we are going to find if there is the possibility to refor-
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mulate the problem in a simpler way in order to avoid computational problems.
The portfolio which minimize iqr0.25 is again the one which perform best, but

on the other hand it has also the largest variance. In literature, this risk measure
has not been discussed in detail as VaR or CVaR: considering our experiments
on iqr0.25, we think that this risk measure, or more in general the interquantile
difference, deserve more attention.

5-asset portfolio 250-asset portfolio
mean std mean std

Markowitz 2011-2013 6.32e-04 1.21e-02 4.64e-04 9.53e-03
2014-2016 5.55e-04 1.19e-02 2.24e-04 8.65e-03

Eq. Weightd 2011-2013 6.78e-04 1.19e-02 6.83e-04 1.10e-02
2014-2016 6.28e-04 1.15e-02 4.11e-04 8.81e-03

CV aR0.2 2011-2013 6.20e-04 1.24e-02 4.39e-04 1.26e-02
2014-2016 5.60e-04 1.35e-02 3.62e-04 1.15e-02

EV aR0.05 2011-2013 6.03e-04 1.25e-02 5.64e-04 9.69e-03
2014-2016 6.09e-04 1.21e-02 4.06e-04 9.05e-03

WEV aR0.05 2011-2013 5.85e-04 1.15e-02 3.78e-04 1.32e-02
2014-2016 6.05e-04 1.20e-02 7.39e-04 1.05e-02

RP Variance 2011-2013 6.71e-04 1.14e-02 6.97e-04 9.7e-03
2014-2016 5.39e-04 1.08e-02 3.81e-04 8.094e-03

RP CV aR0.2 2011-2013 6.80e-04 1.14e-02 6.86e-04 9.61e-03
2014-2016 5.64e-04 1.09e-02 3.83e-04 7.98e-03

RP EV aR0.05 2011-2013 6.64e-04 1.15e-02 6.67e-04 9.57e-03
2014-2016 5.51e-04 1.07e-02 3.78e-04 7.99e-03

∆0.25 2011-2013 6.62e-04 1.13e-02 6.07e-04 9.45e-03
2014-2016 5.01e-04 1.20e-02 2.61e-04 8.79e-03

iqr0.25 2011-2013 7.50e-04 1.25e-02 8.98e-04 1.53e-02
2014-2016 7.52e-04 1.26e-02 5.09e-04 1.23e-02

Table 8.1: Statistics the logreturns of the portfolios evaluated in the different
methods

〈tableconclusion〉
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