
SCUOLA DI DOTTORATO

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Dipartimento di / Department of

 Informatica Sistemistica e Comunicazione

Dottorato di Ricerca in / PhD program Computer Science Ciclo / Cycle XXX

Deep Learning for Feature Representation in

Natural Language Processing

Cognome / Surname Nozza Nome / Name Debora

Matricola / Registration number 717156

Tutore / Tutor: Prof. Giuseppe Vizzari

Cotutore / Co-tutor: Dr. Elisabetta Fersini

Supervisor: Prof. Enza Messina

Coordinatore / Coordinator: Prof. Stefania Bandini

 ANNO ACCADEMICO / ACADEMIC YEAR 2016/2017

To my parents and grandparents

Abstract

The huge amount of textual user-generated content on the Web has incredibly grown in the last

decade, creating new relevant opportunities for different real-world applications and domains.

To overcome the difficulties of dealing with this large volume of unstructured data, the research

field of Natural Language Processing has provided efficient solutions developing computational

models able to understand and interpret human natural language without any (or almost any)

human intervention. This field has gained in further computational efficiency and performance

from the advent of the recent Machine Learning research lines concerned with Deep Learn-

ing. In particular, this thesis focuses on a specific class of Deep Learning models devoted to

learning high-level and meaningful representations of input data in unsupervised settings, by

computing multiple non-linear transformations of increasing complexity and abstraction. In-

deed, learning expressive representations from the data is a crucial step in Natural Language

Processing, because it involves the transformation from discrete symbols (e.g. characters) to

a machine-readable representation as real-valued vectors, which should encode semantic and

syntactic meanings of the language units.

The first research direction of this thesis is aimed at giving evidence that enhancing Natural Lan-

guage Processing models with representations obtained by unsupervised Deep Learning mod-

els can significantly improve the computational abilities of making sense of large volume of

user-generated text. In particular, this thesis addresses tasks that were considered crucial for

understanding what the text is talking about, by extracting and disambiguating the named enti-

ties (Named Entity Recognition and Linking), and which opinion the user is expressing, dealing

also with irony (Sentiment Analysis and Irony Detection). For each task, this thesis proposes

a novel Natural Language Processing model enhanced by the data representation obtained by

Deep Learning.

As second research direction, this thesis investigates the development of a novel Deep Learning

model for learning a meaningful textual representation taking into account the relational struc-

ture underlying user-generated content. The inferred representation comprises both textual and

relational information. Once the data representation is obtained, it could be exploited by off-the-

shelf Machine Learning algorithms in order to perform different Natural Language Processing

tasks.

As conclusion, the experimental investigations reveal that models able to incorporate high-level

i

features, obtained by Deep Learning, show significant performance and improved generalization

abilities. Further improvements can be also achieved by models able to take into account the

relational information in addition to the textual content.

Publications

Journal

D. Nozza, E. Fersini, E. Messina (2018). “CAGE: Constrained deep Attributed Graph Embed-

dings”. Information Sciences (Submitted).

E. Fersini, P. Manchanda, E. Messina, D. Nozza, M. Palmonari (2018). “LearningToAdapt with

Word Embeddings: Domain Adaptation of Named Entity Recognition Systems”. Information

Processing and Management (Submitted).

Conferences

F. Bianchi, M. Palmonari and D. Nozza (2018). “Towards Encoding Time in Text-Based Entity

Embeddings”. Proceedings of the 17th International Semantic Web Conference. (To appear)

E. Fersini, P. Manchanda, E. Messina, D. Nozza, M. Palmonari (2018). “Adapting Named

Entity Types to New Ontologies in a Microblogging Environment”. Proceedings of the 31st

International Conference on Industrial, Engineering & Other Applications of Applied Intelligent

Systems.

D. Nozza, F. Ristagno, M. Palmonari, E. Fersini, P. Manchanda, E. Messina (2017). “TWINE:

A real-time system for TWeet analysis via INformation Extraction”. In Proceedings of the

Software Demonstrations at the 15th Conference of the European Chapter of the Association for

Computational Linguistics (pp. 25-28). Association for Computational Linguistics.

iii

Contents iv

D. Nozza, E. Fersini, E. Messina (2017). “A Multi-View Sentiment Corpus”. In Proceedings of

the 15th Conference of the European Chapter of the Association for Computational Linguistics:

Volume 1, Long Papers (Vol. 1, pp. 273-280). Association for Computational Linguistics.

P. Manchanda, E. Fersini, D. Nozza, E. Messina, M. Palmonari (2017). “Towards Adaptation of

Named Entity Classification”. In Proceedings of the 32nd ACM Symposium on Applied Com-

puting (pp. 155-157). ACM.

F. M. Cecchini, E. Fersini, P. Manchanda, E. Messina, D. Nozza, M. Palmonari, C. Sas (2016).

“UNIMIB@NEEL-IT: Named Entity Recognition and Linking of Italian Tweets”. In Proceed-

ings of the 3rd Italian Conference on Computational Linguistics. CEUR-WS.

D. Nozza, E. Fersini, E. Messina (2016). “Unsupervised Irony Detection: A Probabilistic Model

with Word Embeddings”. In Proceedings of the 8th International Joint Conference on Knowl-

edge Discovery, Knowledge Engineering and Knowledge Management (pp. 68-76). SciTePress.

(Best Paper Award)

D. Nozza, E. Fersini, E. Messina (2016). “Deep Learning and Ensemble Methods for Domain

Adaptation”. In Proceedings of the 28th IEEE International Conference on Tools with Artificial

Intelligence (pp. 184-189). IEEE.

D. Nozza, D. Maccagnola, V. Guigue, E. Messina and P. Gallinari (2014). “A latent represen-

tation model for sentiment analysis in heterogeneous social networks”. In Proceedings of the

12th International Conference on Software Engineering and Formal Methods (pp. 201-213).

Springer International Publishing.

Contents

Abstract i

Publications iii

Contents iv

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Thesis contribution and organization . 3

2 Natural Language Processing 4
2.1 Challenges . 5
2.2 Language Feature Representation . 8

2.2.1 Term Presence and Frequency . 8
2.2.2 Words and n-grams . 9
2.2.3 Complex Linguistic Descriptors . 9
2.2.4 Distributional features . 10

3 Deep Learning Background 12
3.1 Challenges motivating Deep Learning . 14
3.2 Artificial Neural Networks . 16
3.3 Neural Network Architectures . 17

3.3.1 Single-Layer Feedforward Network 17
3.3.2 Multi-Layer Feedforward Network . 18
3.3.3 Recurrent Neural Network . 19

3.4 Activation Functions . 20
3.5 Learning method . 21

3.5.1 Objective functions . 22
3.5.1.1 Loss functions . 23
3.5.1.2 Regularization . 24

3.5.2 Training algorithm . 25
3.5.3 Optimization algorithms . 26

3.5.3.1 Gradient descent . 26
3.5.3.2 Stochastic gradient descent 27
3.5.3.3 Stochastic gradient descent with Momentum 27

v

Contents vi

3.5.3.4 Stochastic gradient descent with Nesterov Momentum 28
3.5.3.5 AdaGrad . 30
3.5.3.6 RMSProp . 31
3.5.3.7 Adam . 31
3.5.3.8 Adadelta . 33

4 Deep Learning Architectures for Textual Feature Representation 34
4.1 Neural Networks Language Model . 36

4.1.1 Neural Probabilistic Language Model 38
4.1.2 Collobert and Weston . 41
4.1.3 Word2vec . 41

4.2 Auto-encoder . 43
4.2.1 Stacked Auto-encoder . 45
4.2.2 Regularized Auto-encoder . 46
4.2.3 Sparse Auto-encoder . 46

4.2.3.1 k-sparse Auto-encoder . 47
4.2.4 Denoising Auto-encoder . 47

4.2.4.1 Marginalized Stacked Denoising Auto-encoder 48
4.2.5 k-Competitive Auto-encoder . 49

5 Deep Learning Representation for Making Sense of User-Generated Content 51
5.1 Named Entity Recognition and Classification 54

5.1.1 Word Embeddings Representation for Learning to Adapt Entity Classi-
fication . 57
5.1.1.1 Adaptation Model: Learning to Adapt with Word Embeddings 59
5.1.1.2 Experimental Settings . 61
5.1.1.3 Experimental Results . 66
5.1.1.4 Related Works . 73

5.2 Named Entity Linking . 74
5.2.1 Word Embeddings for Named Entity Linking 75

5.2.1.1 Representation and Linking model 77
5.2.1.2 Experimental Settings . 78
5.2.1.3 Experimental Results . 80
5.2.1.4 Related Works . 85

5.3 Sentiment Analysis . 87
5.3.1 Deep Learning Representation and Ensemble Learning methods for Do-

main Adaptation in Sentiment Classification 88
5.3.1.1 Deep Learning Representation and Ensemble Learning model 89
5.3.1.2 Experimental Settings . 90
5.3.1.3 Experimental Results . 93
5.3.1.4 Related Works . 96

5.4 Irony Detection . 97
5.4.1 A Probabilistic Model with Word Embeddings for Unsupervised Irony

Detection . 98
5.4.1.1 Unsupervised Topic-Irony Model 98
5.4.1.2 Experimental Settings . 101
5.4.1.3 Experimental Results . 102

Contents vii

5.4.1.4 Topic Detection results . 106
5.4.1.5 Related Works . 108

6 Enhancing Textual Feature Representation including Relational Information 110
6.1 Related Works . 112
6.2 Deep Attributed Graph Embeddings Model 114

6.2.1 Problem Definition and Motivation 114
6.2.2 Constrained Deep Attributed Graph Embeddings Model 117

6.2.2.1 Auto-encoder . 118
6.2.2.2 Textual Attribute Embedding Model 118
6.2.2.3 Structural Graph Embedding Model 119
6.2.2.4 Optimization problem . 120
6.2.2.5 Toy Example . 122

6.3 Experimental Settings . 122
6.3.1 Dataset . 124
6.3.2 Compared Models . 124
6.3.3 Evaluation Framework . 125

6.4 Experimental Results . 126

7 Conclusion and Future Works 130

A TWINE: A real-time system for TWeet analysis via INformation Extraction 133
A.1 Introduction . 133
A.2 TWINE system . 134

A.2.1 System Architecture . 134
A.2.2 User Interface . 137

A.3 Conclusion . 138

B Additional Results for LearningToAdapt model 139

Bibliography 145

List of Figures

2.1 Example of a distributional representation. 10

3.1 Venn diagram of Deep Learning context. 14

3.2 Flowchart of Deep Learning context. 14

3.3 Neuron model. 17

3.4 Single-Layer Feedforward Network. 18

3.5 Multi-Layer Feedforward Network. 19

3.6 Recurrent Neural Network. 20

3.7 Comparison between linear and nonlinear transformations. 21

3.8 Activation functions. 22

3.9 Comparison between the gradient descent with and without momentum. 28

4.1 Neural language model proposed by Bengio et al. [1]. 39

4.2 CBOW and Skip-gram architectures [2]. 42

4.3 Auto-encoder architecture. 44

4.4 Stacked Auto-encoder architecture. 45

5.1 Example of the process of making sense of user-generated content. 52

5.2 Proposed framework. 52

5.3 Manual mappings between two generic ontologies. 57

5.4 Graphical example of L2A. 60

viii

List of Tables ix

5.5 Example of a sentence processed by Named Entity Linking. 75

5.6 Example of Named Entity Linking similarity computation. 76

5.7 Pipeline of the proposed Named Entity Linking framework. 78

5.8 Accuracy of ensemble methods based on Decision Tree. 92

5.9 Accuracy of ensemble methods based on Support Vector Machines. 93

5.10 Transfer losses on the Amazon benchmark of 4 domains: Kitchen (K), Electron-

ics (E), DVDs (D) and Books (B). 94

5.11 Transfer ratio on the Amazon benchmark. 95

5.12 The in-domain ratio versus transfer ratio. 95

5.13 Graphical representation of the proposed Topic-Irony Model. 100

5.14 Comparison of TIM and TIM+WE with supervised state of the art methods on

the imbalanced dataset. 105

6.1 Graphical example of an attributed graph. 114

6.2 Selection of nodes used for explaining, first-order and second-order attribute

proximity. 116

6.3 Graphical representation of the Constrained deep Attributed Graph Embedding

model (CAGE). 117

A.1 TWINE system overview. 134

A.2 TWINE system architecture. 135

A.3 TWINE Map View snapshot. 135

A.4 TWINE List View snapshot. 136

List of Tables

5.1 Different commercial and academic Named Entity Recognition and Classifica-

tion systems with their corresponding Generic Types. 55

5.2 Type Distribution (%) according to Ritter Ontology (OS). 63

5.3 Type Distribution (%) according to Microposts Ontology (OT). 63

5.4 Accuracy performance of L2A model considering Word Embeddings feature

space. 67

5.5 Class-Wise Accuracy Contribution (%) on #Micropost2015 of L2A model con-

sidering Word Embeddings feature space (XE and XP_E). 68

5.6 Class-Wise Accuracy Contribution (%) on #Micropost2016 of L2A model con-

sidering Word Embeddings feature space (XE and XP_E). 68

5.7 Precision, Recall, F-Measure and STMM on #Micropost2015 of L2A model

considering Word Embeddings feature space (XE and XP_E). 69

5.8 Precision, Recall, F-Measure and STMM on #Micropost2016 of L2A model

considering Word Embeddings feature space (XE and XP_E). 69

5.9 Class-Wise Accuracy contribution (%) on #Micropost2015 of L2A model and

baselines. 69

5.10 Class-Wise Accuracy contribution (%) on #Micropost2016 of L2A model and

baselines. 69

5.11 Precision, Recall, F-Measure and STMM on #Micropost2015 of L2A model and

baselines. 70

5.12 Precision, Recall, F-Measure and STMM on #Micropost2016 of L2A model and

baselines. 70

x

List of Tables xi

5.13 Capabilities performance measures on #Micropost2015 of L2A model and base-

lines. 72

5.14 Capabilities performance measures on #Micropost2016 of L2A model and base-

lines. 72

5.15 Datasets statistics. 81

5.16 Results for #Micropost2015 without preprocessing. 82

5.17 Results for #Micropost2016 without preprocessing. 82

5.18 Results for NEEL-IT 2016 without preprocessing. 82

5.19 Results for #Micropost2015 with preprocessing. 82

5.20 Results for #Micropost2016 with preprocessing. 83

5.21 Results for NEEL-IT 2016 with preprocessing. 83

5.22 Results for #Micropost2015 with preprocessing and considering entity types. . 83

5.23 Results for #Micropost2016 with preprocessing and considering entity types. . 83

5.24 Results for NEEL-IT 2016 with preprocessing and considering entity types. . . 83

5.25 Comparison for #Micropost2015 sorted by F-measure. 85

5.26 Comparison for #Micropost2016 sorted by F-measure. 85

5.27 Comparison for NEEL-IT 2016. 85

5.28 Accuracy of the baseline and gold standard. 91

5.29 Results compared to a supervised state of the art method for each binary prob-

lem (O). 102

5.30 Results of the proposed models (TIM and TIM+WE) for each binary problem

(O) distinguishing between ironic (+) and not ironic (-). 103

5.31 Results in terms of F-Measure of the proposed models (TIM and TIM+WE)

against state of the art approaches. 103

5.32 Results of the proposed models (TIM and TIM+WE) for each binary problem

(S) distinguishing between ironic (+) and not ironic (-). 104

5.33 Results of the proposed models (TIM and TIM+WE) on the imbalanced dataset

(O) distinguishing between ironic (+) and not ironic (-). 106

List of Tables xii

5.34 Results of the proposed models (TIM and TIM+WE) on the imbalanced dataset

(S) distinguishing between ironic (+) and not ironic (-). 106

5.35 Topic-related words are reported in bold, while the irony-related ones are un-

derlined. These results are related to TIM in the original scenario (O) and the

balanced settings. 107

5.36 Topic-related words are reported in bold, while the irony-related ones are under-

lined. These results are related to TIM+WE in the simulated scenario (S) and

the balanced settings. 108

6.1 Toy example showing the impact of different proximity measures. 123

6.2 Comparison of CAGE vs S models on DBLP using 50% of labeled data. 126

6.3 Comparison of CAGE vs S models on CiteSeer-M10 using 50% of labeled data. 126

6.4 Comparison of CAGE vs T and S+T models on DBLP using 50% of labeled data. 127

6.5 Comparison of CAGE vs T and S+T models on CiteSeer-M10 using 50% of

labeled data. 127

6.6 Comparison of CAGE vs S models in terms of F-measuremicro on DBLP using

different % of labeled data. 128

6.7 Comparison of CAGE vs S models in terms of F-measuremicro on CiteSeer-M10

using different % of labeled data. 128

6.8 Comparison of CAGE vs T and S+T models in terms of F-measuremicro on DBLP

using different % of labeled data. 129

6.9 Comparison of CAGE vs T and S+Tmodels in terms of F-measuremicro on CiteSeer-

M10 using different % of labeled data. 129

B.1 Accuracy performance on #Micropost2015 and #Micropost2016 Test set con-

sidering Word Embeddings feature space. 139

B.2 Class-Wise Accuracy Contribution (%) on #Micropost2015 Test set considering

Word Embeddings feature space (XE and XP_E). 140

B.3 Class-Wise Accuracy Contribution (%) on #Micropost2016 Test set considering

Word Embeddings feature space (XE and XP_E). 140

B.4 Precision, Recall, F-Measure and STMM on #Micropost2015 Test set consider-

ing Word Embeddings feature space (XE and XP_E). 140

List of Tables xiii

B.5 Precision, Recall, F-Measure and STMM on #Micropost2016 Test set consider-

ing Word Embeddings feature space (XE and XP_E). 140

B.6 Class-Wise Accuracy Contribution (%) on #Micropost2015 Test set of L2A

model and baselines. 141

B.7 Class-Wise Accuracy Contribution (%) on #Micropost2016 Test set of L2A

model and baselines. 141

B.8 Precision, Recall, F-Measure and STMM on #Micropost2015 Test set of L2A

model and baselines. 141

B.9 Precision, Recall, F-Measure and STMM on #Micropost2016 Test set of L2A

model and baselines. 141

B.10 Capabilities performance measures on #Micropost2015 Test set of L2A model

and baselines. 141

B.11 Capabilities performance measures on #Micropost2016 Test set of L2A model

and baselines. 141

B.12 Accuracy performance on #Micropost2015 and #Micropost2016 Dev set con-

sidering Word Embeddings feature space. 142

B.13 Class Wise Accuracy Contribution (%) on #Micropost2015 Dev set considering

Word Embeddings feature space (XE and XP_E). 142

B.14 Class Wise Accuracy Contribution (%) on #Micropost2015 Dev set considering

Word Embeddings feature space (XE and XP_E). 142

B.15 Class Wise Accuracy Contribution (%) on #Micropost2015 Dev set of L2A

model and baselines. 143

B.16 Class Wise Accuracy Contribution (%) on #Micropost2016 Dev set of L2A

model and baselines. 143

B.17 Precision, Recall, F-Measure and STMM on #Micropost2015 Dev set consider-

ing Word Embeddings feature space (XE and XP_E). 143

B.18 Precision, Recall, F-Measure and STMM on #Micropost2016 Dev set consider-

ing Word Embeddings feature space (XE and XP_E). 143

B.19 Precision, Recall, F-Measure and STMM on #Micropost2015 Dev set of L2A

model and baselines. 143

List of Tables xiv

B.20 Precision, Recall, F-Measure and STMM on #Micropost2016 Dev set of L2A

model and baselines. 143

B.21 Capabilities performance measures on #Micropost2015 Dev set of L2A model

and baselines.. 144

B.22 Capabilities performance measures on #Micropost2016 Dev set of L2A model

and baselines. 144

Chapter 1

Introduction

With the continuous and fast evolution of the Internet and the advent of Social Web, or Web 2.0,

the amount of unstructured textual data produced by the social interactions between people has

become an immense hidden treasure of knowledge. It has been estimated that unstructured data,

which come in the textual form of logs, emails, social media content, and customer comments,

represents the 80% of the available data of the world. This means that, more often than not,

we know little about data, causing people, organizations and institutions to lack of potentially

highly valuable information.

Besides the problem of managing large volume of heterogeneous data, that cannot be performed

by a human, the process of understanding and extracting meaningful information from natural

language text is an extremely complex and difficult task. Each day we solve ambiguities, we in-

fer intentions or emotions not explicitly stated, and we correct grammar mistakes without being

consciously aware. Teaching computers to perform these tasks, even imperfectly, would deeply

influence our lives: companies would improve their consumer satisfaction and engagement,

doctors would provide more leading-edge and accurate treatments in a faster way, intelligence

analysts would detect and monitor suspicious conversations easier, people in general would be

able to obtain more interesting and engaging information when searching for restaurants or hol-

iday destinations.

Natural Language Processing (NLP), which is the research field concerned with the process

of understanding and interpreting human natural language, can contribute to these challenging

goals. The major difficulties lie in the fact that human language is ambiguous, highly variable

and constantly changing and evolving. Moreover, natural language is expressed in the form

of discrete symbols, e.g. characters, that combined together can denote objects, concepts and

actions. However, the mental representation that two words evoke in our mind has nothing to do

with the symbols used to represent them, e.g. “beach” and “sun” do not have any common letter

while their concepts are related.

1

Chapter 1. Introduction 2

A crucial step in Natural Language Processing, and in Machine Learning in general, is to find

the right technique to represent the text in a form that machines can understand. The input

representation can considerably influence the performance of Machine Learning models, in par-

ticular for NLP tasks, depending on its ability to disentangle and discover explanatory factors of

variations behind the data given as input. Representation Learning has become an important

research field aimed at learning transformations of data in order to simplify the extraction of

useful information when building classifiers. In the last ten years, this task became even more

important with the advent of Deep Learning. In Natural Language Processing, Deep Learn-

ing has provided efficient and performing computational models able to obtain a high-level and

meaningful representation of the data by learning to represent knowledge as a nested hierarchy

composed of multiple nonlinear transformations of increasing complexity and abstraction. The

main advantage of Deep Learning for textual representation regards its ability to map discrete

symbols, such as characters or words, to continuous real-valued vectors which encode semantic

and syntactical meanings of the corresponding language units. An additional benefit of Deep

Learning is that it is able to efficiently take advantage of large amount of unlabeled data for

obtaining meaningful and abstract representations. This is particularly useful in the context

of Web 2.0, where the huge amount of user-generated content exponentially increases everyday,

generating the need of Machine Learning models, named unsupervised, able to extract valuable

knowledge from data that have not been manually annotated.

While a consistent part of these user-generated content is created by individuals, the great ma-

jority is developed through collaborative efforts of multiple users (e.g. by commenting and

sharing). This information takes the structure of an attributed graph, where the users with

their generated content and interactions among users can be seen as nodes with attributes and

edges respectively. In this context, this structure can be a great source of information, providing

insights that are not possible to extract focusing only on the textual data, e.g. two users may

show that they have similar opinions by commenting each other posts or by performing some

approval interactions (e.g. like or share). In this context, most of the state of the art works are

aimed at efficiently learning good representations for either textual or relational information. In

particular, Representation Learning models have been defined for dealing only with text, dis-

regarding the relational structure, or on the other side they have been developed for tackling

relationships without taking into account the textual content.

However, jointly considering textual and relational information can provide effective improve-

ments on Natural Language Processing tasks.

Chapter 1. Introduction 3

1.1 Thesis contribution and organization

The main problem addressed in this thesis is concerned with the extraction of meaningful infor-

mation from user-generated content available on Social Media, exploiting high-level representa-

tions of text and relational structure. In order to address this issue, two main contributions have

been provided.

First, this thesis gives evidence that joining the strength of Natural Language Processing and

Deep Learning can contribute to the extraction of a meaningful text representation for different

goals. With the aim of making sense of user-generated content, the investigated problems lead

to better understand what the text is talking about, by extracting and disambiguating the named

entities (Named Entity Recognition and Linking), and which opinion the user is expressing,

dealing also with irony (Sentiment Analysis and Irony Detection).

Secondly, this thesis investigates the development of a novel Deep Learning model for learning

meaningful textual representations considering an underlying relational structure. Once the rep-

resentation is obtained, it could be exploited by off-the-shelf Machine Learning algorithms in

order to perform different text classification tasks.

The thesis is organized as follows. In Chapter 2, a brief overview to the field of Natural Lan-

guage Processing is presented where particular attention has been given to the current challenges

on interpreting and understanding natural language text generated via Web 2.0 channels. Chap-

ter 3 provides the background needed for the understanding of Deep Learning models, starting

from the neural network architectures to the learning methods. Among all the Deep Learning

approaches, this thesis focuses on a specific segment regarding unsupervised models for textual

Representation Learning. Chapter 4 presents how to learn representations of textual data with

unsupervised models (neural network language models and Auto-encoders). In Chapter 5, the

first contributions related to the task of making sense of user-generated content is presented.

Chapter 6 introduces the second contribution on Representation Learning considering both tex-

tual and relational information. Finally, in Chapter 7 several conclusions are derived and some

future works are highlighted.

Chapter 2

Natural Language Processing

Since the beginning of the Digital Age, that started with the advent of World Wide Web and

later on exploded with Web 2.0 or Social Web, the amount of digital data created and consumed

has exponentially grown, reaching around 2800 Zettabyte distributed worldwide. It has been

estimated that the majority of this huge amount of data comes from unstructured sources,

as the impact of Social Media provided the users new time-efficient and interactive ways to

communicate their ideas and opinions in disparate heterogeneous forms.

Among all these precious and valuable data, commonly known as user-generated content,
only a small percentage is explored for obtaining its analytical value, despite nowadays it is

in order for companies and institutions to ensure maximum profits and efficiency. The limited

exploitation of the user-generated content resides on one side on the huge amount of data, too

large to be handled by humans, and on the other side on the hidden semantics conveyed by the

text, that is still a challenge for computational machines.

To this extent, different scientific communities (i.e. linguistics, psycholinguistics, computa-

tional linguistics, philosophy, statistics, and computer science) have contributed to the field of

Natural Language Processing (NLP), with the aim of obtaining computational models able to

understand and interpret human natural language. The research areas in this field can be roughly

distinguished in [3]:

• Text-oriented: information extraction, text summarization, machine translation, etc.;

• Dialogue-oriented: learning systems, question answering systems, etc.;

• Speech-oriented: speech recognition, speech segmentation, etc..

This thesis focuses on the first research area, meaning that the input data are assumed to be in

textual form.

4

Chapter 2. Natural Language Processing 5

In [4], Jurafsky and Martin distinguished Natural Language Processing from other data process-

ing systems because of the requirement to employ a knowledge of language. Considering, for

example, the sentence:

I didn’t enjoy the final GOT’s episode, it was boring.

As first concern, NLP system should have the knowledge of morphology, the way words break

down into component parts that carry meanings. In the sentence, it is important to understand

contractions as didn’t and to recognize that GOT’s is a genitive. Then, the syntactical knowledge

helps to understand the structure of the sentence (e.g. the word GOT can be identified as proper

noun and not as auxiliary verb by considering the preceding adjective word final). In order to

understand the meaning of the example sentence, NLP systems should know something about

lexical semantics, the meaning of the words (e.g. GOT) as well as compositional semantics
(e.g. the connection between GOT and episode or the meaning of using the adjective final

related to episode). A pragmatic knowledge is needed when it can be relevant to understand

the intention of the user. As in the example, it seems that the user is expressing a personal

sentiment about the episode and suggesting an interchange of opinions. Moreover, a discourse
knowledge is required in order to have some insights about linguistic units larger than a single

utterance. The second part of the example sentence contains the pronoun it, that it is not trivially

attributable to the other words. The next Section will first present the main challenges that

researchers in the field of Natural Language Processing have to deal with since it represents a

difficult and largely unsolved task. Then, Section 2.2 will be devoted to detail how textual data

should be represented in order to be machine-readable and subsequently processed.

2.1 Challenges

Natural Language Processing is quickly evolving and the Deep Learning revolution has brought

to light systems able to reproduce similar results to the ones obtained by humans. However, rep-

resenting and understanding natural language is a very challenging problem and computational

approaches are still a long way off to find effective and efficient solutions. Following, the main

characteristic challenges on understanding and producing natural language text using computers

are provided.

Word distribution An interesting property of the distribution of words in a text was described

in [5], where the authors analysed the text of Mark Twain’s Tom Sawyer and showed that, while

the most common words accounted for slightly over half of the words in the text, there was a

significant number (the other half) of the words that appeared only once in the corpus. This

Chapter 2. Natural Language Processing 6

means that the distribution of word frequency of occurrence in a text follows the Zipf’s law [5]:

f ∝
1
r
. (2.1)

where f is the frequency of the word and r is its position in the list of words sorted in descending

order by their frequency. Therefore, there will be few very common words, a middling num-

ber of medium frequency words and many low-frequency words. As a result, training data will

include a sufficient number of examples only for a restricted number of words, while the infor-

mation available for the others will be exceedingly sparse. Consequently, it is hard to predict

the behavior of words that are never or barely ever observed in the corpus. As the size of the

data increases, the size of vocabulary increases. This means that, independently of the size of

the training data, there will always be rare words difficult to analyse.

Word representation As introduced in Chapter 1, natural language text is expressed in the

form of discrete symbols (e.g. characters) that combined together can denote concepts, objects

and actions. While for colors it is possible to provide a mathematical representation and conse-

quently to compute mathematical operations, such as the difference, for words it is not possible

to apply the same reasoning, as there is not a simple operation that can provide the difference be-

tween the words “pink” and “red” without using a large lookup table or a dictionary [6]. Chapter

4 will present several Deep Learning approaches that provide efficient and effective solutions to

this problem.

Ambiguity The biggest challenge in NLP involves the ambiguity problem. For natural lan-

guage text, ambiguity can be referred at multiple levels: word sense, word category, syntactic

structure, and semantic scope. Considering one of the most used example sentence I made her

duck, Jurafsky and Martin [4] provided several possible meanings, each of which solves ambi-

guities at a different level:

1. I cooked waterfowl for her.

2. I cooked waterfowl belonging to her.

3. I created the (plaster?) duck she owns.

4. I caused her to quickly lower her head or body.

5. I waved my magic wand and turned her into undifferentiated waterfowl.

As a first consideration about ambiguity, the words duck and her are morphologically and syn-

tactically ambiguous. Additionally, the verb make is semantically (it can mean create or cook)

Chapter 2. Natural Language Processing 7

and syntactically (it can be a transitive or intransitive verb) ambiguous. Thus, from this exam-

ple it is possible to comprehend the difficulties that a computation machine can encounter on

fully understanding and disambiguating natural language text, since it is a complex problem for

humans too.

Language of Web 2.0 With the exponential growth of Social Media and Web 2.0 in general,

the language register is substantially changed from well-formed documents to colloquial text.

Consequently, there are still several open issues to properly tackle the real nature of these com-

munications [7]:

• Social Context: The register on Web 2.0 is strongly related to the authors and media

used. The textual contents are written from users of all ages, genders, culture orientations

and nationalities (although English is the dominant language, as in every web-domain

[8]). Therefore, these distinctive features can strongly influence the meaning and the use

of specific language forms, arising additional issues related to the adaptation to different

social contexts.

• Short and Noisy Content: Communications on social media platforms typically consist

of very short text, where the users tend to convey complex meanings in few words or sym-

bols. This short nature has led to the frequent use of abbreviations (e.g. 2morrw), slang

(e.g. LOL) and to the presence of a lot of grammar, syntactic and semantic errors, because

the users often write very quickly. In general, the adopted language is similar to an oral

and informal discussion, where it is not important to re-read and control the written sen-

tences. The need of a short and incisive way to communicate has brought to the increasing

use of visual language, the so-called emojis, as a standard for online communication [9].

It has been estimated that emojis cover over 10% of Twitter posts and over 50% of tex-

tual content on Instagram [10]. As outlined in [11], there are many possible challenging

investigations on these visual features that would lead to an increasing understanding of

social media communication and human-computer interaction. It is important to consider

individual and communicative contexts for the computational modeling of the emojis, as

it has been shown that people do not interpret them in the same way [12] and that their

role is closely related to the context where they appear [13]. Other interesting issues re-

gard the use of multimodal [14] and multilanguage approaches [11] that will considerably

improve the global interpretation of emojis.

• Dynamics: Social Media are characterized by strong temporal dynamics that are com-

monly related to the continuous evolution of trending topics. The largely popular ex-

pressions used in social media platforms to track these topics are hashtags, a particular

form of tag marked with a # symbol that includes one or more concatenated words. Al-

though hashtags are most commonly recognized as topic-markers [15], different studies

Chapter 2. Natural Language Processing 8

proved that these symbols are more versatile from a linguistic point of view, resulting in

a pragmatic function used to create and feed the evolution of communities [16, 17] and to

support the visibility or participation to social causes [18, 19]. Currently, it is an interest-

ing research direction to understand how hashtags can be used to search for information,

track conversations and summarize the dynamics of discussions over time.

2.2 Language Feature Representation

Since Machine Learning approaches became the most adopted methods for understanding and

interpreting text expressed in natural language, the way in which the data are represented should

adapt to the conventions required by these computational methods. Many Machine Learning

and Deep Learning approaches require the input data to be expressed as real-valued vectors, in

order to compute mathematical functions and transformations. Therefore, the first step before

applying these methods is to convert a natural language text to its vector representation, that is

a major challenge per se, given the symbolic and discrete nature of language [6]. The mapping

from textual to real-valued representation is called feature extraction or feature representation,

where each feature is a measurable property that can be observed.

The process of extracting the set of features from the input data is called feature engineering

and, as a crucial step, it can strongly influence the performance of Machine Learning models.

Deep Learning methods alleviate this responsibility by providing end-to-end systems that are

able to elaborate more meaningful representations and perform Machine Learning tasks all at

once, as it will be presented in Chapter 3.

In the next sections, several feature representation techniques are presented and detailed.

2.2.1 Term Presence and Frequency

Traditionally, the input text (sentence, paragraph, or documents) is represented as a feature vec-

tor wherein the entries correspond to individual terms. In NLP, the most common feature rep-

resentation is called bag-of-words (BOW): a binary-valued feature vectors in which the entries

indicate whether an individual word occurs (value 1) or not (value 0).

One of the most immediate drawbacks of this representation consists on considering each word

as equally important, while it may be useful to weigh the words that are more frequent. Consider

a document d ∈ D as composition of words w. The feature representation that reflects this need

is called Term Frequency (TF) which is the raw frequency of a term w in a document d and

can be defined as TF(w,d) = #w∈d
|d| where |d| is the number of words in the document. While the

Chapter 2. Natural Language Processing 9

frequency is a good estimate of the word importance, it should be noted that there are usually

common words that have a high count but do not carry any meaning (e.g. determiners and

prepositions as a, in, to, or words that are strongly related to the document’s topic as ball or

team in a football match report). For obtaining the best trade-off, the term frequency is usually

weighted by a term called Inverse Document Frequency, IDF(w,D) = log |D|
|dw∈d | . Finally, the

TF-IDF measure can be expressed as:

TF-IDF(w,d,D) = TF(w,d)× IDF(w,D)

2.2.2 Words and n-grams

Another level of interest for feature representation regards the choice of considering words or

consecutive pairs or triples of words, so-called bigrams or trigrams. More generally, a feature

representation composed of n consecutive words is called n-gram.

For n = 1 the feature is called unigram. For n > 1 the feature codes a list of consecutive words,

n = 2 is called bigram, n = 3 trigram and so on. Whether higher-order n-grams are useful fea-

tures compared to unigrams appears to be a matter of some debate. However, a crucial problem

with n-grams is the combinatorial complexity of the dictionary construction, which increases

exponentially with n. Even if the increasing dimensionality carries more useful information, it

inevitably introduces considerable noise. The growth of available data implies then more diffi-

culties, because of the introduced noise and the necessity of additional memory resources. It is

important to notice that, while n-grams with n = 4 or n = 5 are sometimes used for letters, they

are rarely used for words due to the increasing sparseness.

2.2.3 Complex Linguistic Descriptors

Since language is characterized by many other aspects beyond the directly observable presence

or frequency of words, there have also been studies on incorporating more complex descriptors

within the feature set. The most common set of descriptors regards word classes, or part-of-
speech tags (POS). Their aim is to define the grammatical/lexical class of a word in a sentence

(nouns, adjectives, adverbs, etc.). Considering these complex linguistic descriptors can provide

benefits on different NLP tasks [20, 21]. It has also been studied the semantic role of a word,

i.e. the underlying relationship of a word with the main verb in a clause (e.g. agent, instrument,

goal). These relations between constituents can be valuable, for example, for identifying the

arguments in a sentence. When the input data is a sentence, it is also possible to consider its

dependency tree, which expresses the dependency between words in the sentence by child-

parent relationships of nodes. Since each node corresponding to a word is connected by a

Chapter 2. Natural Language Processing 10

FIGURE 2.1: Example of a distributional representation as dense real-valued vectors and its
graphical projection.

branch, a dependency subtree is able to give richer syntactic information. Considering the word

dependencies can be very helpful, for example, for machine translation tasks.[22]

2.2.4 Distributional features

Since one of the main challenges in Natural Language Processing is related to the symbolic

and discrete nature of text, several studies have been performed in order to address this issue

and in particular to reflect the meaning of words according to the context where they appear. A

fundamental contribution in the state of the art was proposed by Firth [23] and Harris [24], where

the distributional hypothesis of language has been presented. According to this hypothesis,

words that occur in the same contexts tend to have similar meanings. For instance, the words

sun and beach are more likely to have a more similar meaning with respect to the word artichoke

that it is commonly used in a completely different context.

Over the years, two main research directions have been investigated to model the distributional

hypothesis of language: (1) clustering-based methods, where similar words are assigned to

the same cluster and each word is then represented by its cluster membership [25, 26], (2)

embedding-based methods, or Word Embeddings, which represent each word as a real-valued

vector such that similar words (words appearing in the same context) have similar vectors

[27, 28].

Figure 2.1 summarizes an example of distributional features that can be obtained by an em-

bedding method. On the left side, an example of the dense real-valued vectors are reported,

while the chart on the right side represents their graphical projection. As presented, similar

words tend to be mapped next to each other (sea and beach) and distant from unrelated words

(artichoke).

Given the impressive results and remarkable properties, Word Embeddings are the most popular

approach in Deep Learning for NLP. For this reason, these methods are the most investigated

Chapter 2. Natural Language Processing 11

approach in this thesis and their principles and architectures will be explained more in details in

Chapter 4.

Chapter 3

Deep Learning Background

The question “can machines think?” is a philosophical dilemma that has existed for decades.

Beyond the fascinating conceptual issue, the answer can have a strong impact on our daily lives.

To many, the ability of computers to process language as skillfully as we humans do, will signal

the arrival of truly intelligent machines. The basis of this belief is the fact that the effective use

of language is intertwined with our general cognitive abilities [4].

In 1956, a new field related to the building and understanding of intelligent entities was born

under the name of Artificial Intelligence (AI) [29]. This field is constantly and actively growing

and changing, involving numerous applications and many challenges, such as understanding

speech or images, write poetry, and diagnose diseases. While the main goal of AI is to conceive

intelligent machines able to perceive, understand and predict a complicated and boundless world,

AI studies have been mostly performed in relatively sterile and controlled environments. From

its earliest days, AI was very successful in solving problems that can be intellectually difficult

for human beings but relatively straightforward for machines, i.e. problems that can be described

by mathematical rules. The most representative event realization of this statement happened in

1997 when an AI system beat the reigning world champion at chess under tournament regulation,

a game with very formal rules.

Indeed, the true challenge for AI is to perform, or approximate, tasks that are very intuitive

for humans but require a huge amount of knowledge about the world that cannot be formally

described. Each day, we recognize objects and people’s identities, we understand words and

intentions from a speech, and we correct grammar mistakes without being consciously aware.

The issue regards to the complexity on how to represent and incorporate this subjective informal

knowledge into artificial intelligent systems.

The first forms of investigation into AI, called knowledge-based systems, reside on the explicit

representation of the knowledge in the form of words and symbols. The machine expresses

12

Chapter 3. Deep Learning Background 13

information and reasons in terms of rules or cases. Despite the early successes, most of the

human intelligence has remain difficult to represent [30], revealing the need of AI systems able

to build up their own knowledge model, based on observations and experience. These systems

are known as Machine Learning models. Using this approach, machines can perform tasks and

make decisions by learning from past experience as humans do, e.g. they can recognize faces in

images, they can infer the emotion beyond a text or a speech, etc.

However, the performance of these Machine Learning algorithms heavily depends on the repre-

sentation of the data given as input. Each piece of information included in the representation is

known as a feature. Indeed, the Machine Learning models strongly depend on how features are

selected and engineered.

One solution to the problem of choosing the right set of features is to use Machine Learning

to learn a suitable feature representation, this approach is known as Representation Learning.

Representation Learning methods aim at efficiently obtaining good representations that allow AI

systems to rapidly adapt to new tasks and improving performance with respect to hand-crafted

features.

According to Yoshua Bengio and Vincent [31], the main goal of data representation, or algo-

rithms for Representation Learning, is to identify and disentangle the underlying explanatory

factors hidden in the observed data. In [32], factors are defined as separate sources of influence

that are often not quantities that can be directly observed, but unobservable objects or forces that

influence the observable quantities. These factors can be viewed as concepts or abstractions that

help us make sense of the rich variability in the data. For example, the concept of word gender is

a factor of variation underlying words, e.g. “man”-“woman”, “uncle”-“aunt” or “king”-“queen”.

Identifying these latent factors is a crucial issue for AI systems because they fully influence the

observed data in a covert way. For instance, when extracting the users’ opinion from a text,

understanding that the adjectives “malfunctioning” and “reliable” for kitchen appliances have

the same polarity of “boring” and “hilarious” respectively for DVDs can provide very power-

ful models. For the same task, it is crucial to interpret words respect to their contexts, e.g. an

“unpredictable book” is a book that keeps its readers interested, while an “unpredictable car”

suggests a car that has unexpected and dangerous behaviors.

The extraction of these hidden factors from raw data can be very complex. Their identification

seems to be possible only using sophisticated, nearly human-level understanding processes of

the data. Deep Learning solves this central problem in Representation Learning by introducing

representations that are expressed in terms of other, simpler representations. It achieves great

power and flexibility by learning to represent the world as a nested hierarchy, where higher level,

more abstract concepts, can be learned from the lower level ones. Hence, Deep Learning helps

to disentangle these abstractions and efficiently extracts the right set of features that are useful

Chapter 3. Deep Learning Background 14

FIGURE 3.1: Venn diagram showing the relationships between different AI disciplines. Each
section of the Venn diagram includes an example of an AI technology [32].

FIGURE 3.2: Flowcharts showing the relationships between different
AI disciplines [32].

for improving performance. Figures 3.1 and 3.2 represent the diagrams proposed by Yann Le-

Cun and Hinton [32] that provide an effective visual representation and summarization of the

relationships between AI, Machine Learning, Representation Learning, and Deep Learning.

3.1 Challenges motivating Deep Learning

While Deep Learning dates back to the 1950s, this field has gained a lot of attention and pop-

ularity only in the last ten years. The motivations behind this renascence were firstly presented

by Geoffrey Hinton in a talk, called “Deep Learning”, to the Royal Society in 2016. Following,

Chapter 3. Deep Learning Background 15

this section investigates the factors that disruptively changed the perspectives and interests in

this field.

Data availability Considering the evolution of the Internet and the recent increasing digitiza-

tion of the society, the number of online users and the content that they generate is exploding.

This has lead to a proliferation of large resources that considerably help the learning phase of

Deep Learning models. While huge datasets are one of the key factors of the success of the

current Deep Learning approaches, it is often not possible to perform supervised classification

tasks because of the enormous human effort of data labeling. In this context, interesting studies

have been proposed in order to take advantage of unlabeled examples when small training sets

are available [33, 34] or to perform unsupervised learning [35–37].

Computational power Deep Learning algorithms need a considerable computational power

(both memory and processor) to efficiently run for solving several tasks such as Natural Lan-

guage Processing and image object recognition. Differently from the 1950s, researchers and

people in general have the possibility to access to more powerful computational resources. In

particular, the exploitation of GPU computing arises after NVIDIA released the high-level lan-

guage CUDA in 2006. GPUs provided many orders of magnitude of computing power more than

CPUs, they perform matrix operations for back-propagation more efficiently and they make use

of massively parallel graphics processors to accelerate computations.

Improved learning algorithms In 2006, Geoffrey E. Hinton and Teh [38] and Bengio et al.

[39] published breakthrough works on a faster learning algorithm for neural networks. They

proposed a greedy layer-wise unsupervised pretraining followed by a supervised fine-tuning.

Each layer is pretrained with an unsupervised learning algorithm, learning a nonlinear transfor-

mation of its input (the output of the previous layer) that captures its main underlying variations

[40].

Beyond this breakthrough approach, novel training improvements have been proposed in the

last few years for solving problems better and providing improved performance: more efficient

activation functions (Sec. 3.4), regularization techniques able to prevent overfitting (Sec. 3.5.1)

and more robust optimizers (Sec. 3.5.3).

Real-world impact Another key success factor of Deep Learning regards the impressive ad-

vancement in various tasks such as object recognition [41], pedestrian detection [42], speech

recognition [43, 44], robotics [45], machine translation [46, 47], etc.

Chapter 3. Deep Learning Background 16

Deep Learning algorithms gained popularity as massively used by many world’s largest tech-

nology companies including Google, Microsoft, Facebook, IBM, Apple, and NVIDIA Corpo-

ration. Moreover, the software infrastructure have strongly influenced the advancement in this

field: Theano [48, 49], Torch [50], Caffe [51], TensorFlow [52], etc.

As final analysis, Deep Learning is providing innovative, efficient and technical advanced solu-

tions for several problems and domains.

None of that would have been possible without the advancement in the fundamental model

family of neural networks. Indeed, the next sections give an introduction of Artificial Neural

Networks (Sec. 3.2) and the most popular employed architectures to design them (Sec. 3.3).

Afterwards, the basic operations of artificial neurons and the commonly adopted training meth-

ods are described in Section 3.4 and 3.5 respectively.

3.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are the most dominant model family in Deep Learning.

An Artificial Neural Network is an information-processing system developed as generalizations

of mathematical models of neural biology. In this system, the neuron (Figure 3.3) is the funda-

mental unit block to process information and it is composed of several elements:

• The input nodes are associated to elements of the input signal expressed as n-dimensional

vector x ∈ Rn.

• The signal flows over the connection links, or synapses. Each link has an associated

weight, which typically multiplies the transmitted signal. The set of weights is defined as

a real-valued vector w ∈ Rn, that includes negative as well as positive values.

• A supplementary signal, called bias, is added to the input. This parameter b ∈ R, that is

generally permanently set to 1, is important because it can increase or lower the neuron

value, a crucial effect during the learning phase.

• The adder component computes a weighted sum of all the input signals, weighted by the

respective connection strength. In addition to summing, the adder component can select

the minimum, maximum, majority, product or several normalizing algorithms.

• Finally, each neuron applies an activation function a : R→ R, usually nonlinear, to the

input weighted sum to determine the final output signal ŷ:

ŷ = a

(
n

∑
i=1

wixi +b

)
= a(Wx+b) (3.1)

Chapter 3. Deep Learning Background 17

FIGURE 3.3: Model of a neuron.

The activation function can also scale the output or control its value via thresholds.

To summarize, an ANN is a network of artificial neurons, which receive an input, change their

internal state according to the input, and produce an output with respect to the activation func-

tion. An ANN is composed by the connection of artificial neurons, denoting a directed and

weighted graph, where the nodes are the neurons and the weights’ edges are the connection

links between neurons. The weights are randomly initialized and adjusted during the learning

phase.

In the next sections, several building blocks of Artificial Neural Networks are presented: the

architecture that defines the inter-connection between neurons, the activation functions, and the

learning method to determine the connection weights.

3.3 Neural Network Architectures

A key design consideration for neural networks lies in determining their architecture, i.e. the

overall structure of the network. For convenience, most neural networks are organized into

groups of units called layers. Within each layer, neurons usually have the same activation func-

tion and the same pattern of connections to other neurons. The network can be either fully

connected when every node in each layer is connected to every node in the adjacent forward

layer, or partially connected, when some connections are missing from the network.

Indeed, the design choices concern the dimensions and amount of layers and how they are con-

nected to each other.

3.3.1 Single-Layer Feedforward Network

The simplest form of a layered network, called single-layer feedforward network, has one layer

of connection weights. The designation “single-layer” refers to the presence of only one layer

Chapter 3. Deep Learning Background 18

FIGURE 3.4: Single-layer feedforward network where the input and output layers are com-
posed of five and two nodes respectively.

of computational nodes, i.e. the output neurons. While the term “feedforward” is related to

the direction of the information flow from the input to the output layer and not vice-versa. The

involved neuron group units are the input layer that receives the signals, and the output layer

that computes and transforms the input signal. Figure 3.4 illustrates the typical single-layer

feedforward network where the input layer is fully-connected with the output one.

Denoting h as the activation of a layer, it is possible to define a single-layer feedforward network

as:

h = a(Wx+b) (3.2)

where, in this case, h refers only to the output layer because no computations are performed in

the input layer.

3.3.2 Multi-Layer Feedforward Network

When more complicated input transformations should be expressed, several layers can be in-

troduced in the network resulting in an architecture called multi-layer feedforward network.

Differently from the previous one, this network has one or more hidden layers or activation

layers between the input and the output. By the introduction of these hidden layers, the network

is enabled to extract latent factors of variations from its input. Moreover, the network acquires

the ability to capture a global perspective despite its local connectivity, due to the additional set

of synaptic connections and the increased neural interactions [53].

According to this architecture, the input signal vector is fed to the input layer, consequently

the computational nodes of the second layer (i.e., the first hidden layer) provide the activation

Chapter 3. Deep Learning Background 19

pattern onto the input layer nodes. Then, the output signals of the second layer are used as inputs

to the third one, and so on for the rest of the network. The nodes of a layer receive as input signal

the output signals of the preceding layer only. The final output signals of the last layer constitute

the response of the network to the first (input) layer. The architectural graph in Figure 3.5 shows

the layout of a fully-connected multi-layer feedforward network with one hidden layer.

FIGURE 3.5: Multi-layer feedforward network where the input, hidden and output layers are
composed of five, three and two nodes respectively. In this example, the number of hidden

neurons is less than the number of input neurons, but the opposite situation is also possible.

A multi-layer feedforward network can be formally defined as a stack of u hidden layers charac-

terized by a weight matrix W ∈ Ru×n and a bias vector b ∈ Ru. The complete set of parameters

for the neural network can be defined as θ = (W,b). To include multiple layers in the model, it

is possible to rewrite Equation 3.2 as follows:

h0 = a0(Wx+b0)

hl = al(Whl−1 +bl)
(3.3)

where the subscript l corresponds to the sequence position of the layer in the network, starting at

l = 1. The parameter set θ refers to the parameters of network, while θl is the specific parameter

set of the l-th layer hl .

3.3.3 Recurrent Neural Network

A recurrent neural network [54] differs from a feedforward neural network for the presence of

at least one feedback loop. The feedback connections are used to feed back the output of the

model into itself. This kind of neural network are specialized for processing a sequence of values

x(1), . . . ,x(n). The intuition behind the transition from multi-layer network to recurrent network

is the idea of sharing parameters across different parts of the model, in this case across several

Chapter 3. Deep Learning Background 20

FIGURE 3.6: Recurrent neural network model.

time steps. Figure 3.6 shows the architecture of a recurrent neural network, where feedback

connections are originated from hidden neurons as well as from the output neurons.

More details for a formal definition of recurrent networks are provided in [32].

3.4 Activation Functions

The basic operation of an artificial neuron involves summing its weighted input signals and

applying an activation function. Typically, the same activation function is used for all neurons

within each layer in the network. For more realistic results, nonlinear activation functions are

commonly applied. These nonlinear transformations can considerably help when the input data

are not linearly separable in the input space, providing a new representation space in which the

transformed data can be linearly separated.

Figure 3.7 shows a simple example on a dataset composed of two curves on a plane referred to

two different classes (blue and red). The simplest configuration of a one-layer neural network

(Fig. 3.7(a)) will trivially classify the input space with a linear separation line. Interestingly,

the addition of a hidden layer, that computes nonlinear functions, transforms the input signal

generating a linearly separable space (Fig. 3.7(b)). Indeed, the resulting model is able to capture

nonlinear relationships between the input and the output data, helping to discover latent factors

in the data.

A crucial property of the activation functions is that they must be differential and therefore

continuous. This property is necessary to enable the error correction during the training phase.

In particular, the computation of the derivative is needed during the gradient-based optimization

learning process, as it will be detailed in Section 3.5. In Figure 3.8, the most adopted activation

functions in neural networks are listed.

Chapter 3. Deep Learning Background 21

(a) Linear transformation

(b) Nonlinear transformation

FIGURE 3.7: Comparison between linear and nonlinear transformations.
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

For neural networks, the rectified linear activation function (ReLU) [55, 56] is generally recom-

mended because it is usually more efficient than other traditional activation functions such as

sigmoid or tanh. While the transformations applied by ReLU are nonlinear, it can be represented

by a piecewise linear function with two linear pieces. This property will consequently lead to

a lower computation complexity of the training algorithm and higher generalization abilities of

the Artificial Neural Networks. It will also help to solve the problem of vanishing gradient,

i.e. value exceedingly close to 0, which causes instability. Figure 3.8 shows two extensions of

ReLU: the parameterised rectified linear activation function (PReLU) [57] that adaptively learns

the parameters of the rectifiers, and the exponential linear units (ELU) [58] which aims to make

the mean activations closer to zero speeding up the learning. In 2000, Dugas et al. [59] intro-

duced a smooth version of the rectifier, called Softplus. Despite this function is differentiable

everywhere, Glorot et al. [56] proved that the use of rectifier linear units leads to better results

and more intuitive hidden transformations.

3.5 Learning method

As it was presented so far, neural networks are models able to disentangle latent factors of input

data, by means of an architecture composed of several fully-connected nonlinear transformations

layers. The introduction of these additional hidden layers motivates the neurons to represent

even more abstract and ultimately unintelligible concepts. The neural networks models will then

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Chapter 3. Deep Learning Background 22

FIGURE 3.8: List of activation functions and their derivatives
(https://en.wikipedia.org/wiki/Activation_function).

be very hard to interpret. For this reason, Deep Learning is often associated with the term “black

box” model, where it is not possible to see the inner computations or they are not examined but

just executed. Another problem related to complexity consists of the increasing dimension of

the search space, that grows exponentially with the number of activation layers. This motivates

the learning process to be more complex and computationally expensive.

This section outlines the commonly adopted objective functions, the most used training algo-

rithm for neural networks, back-propagation, and the most popular optimization algorithms

adopted to solve the afore-mentioned issues.

3.5.1 Objective functions

Most Machine Learning models, and Deep Learning algorithms too, involve an optimization

phase. Generally, optimization refers to the task of either minimizing or maximizing some

function L(θ). Usually, an optimization problem seeks to minimize the objective function,

taking the name to loss function, cost function or error function. In case of maximization, it

suffices to minimize −L(θ).

The objective function L(θ) typically returns a metric that quantifies the distance between the

neural network output ŷ computed by passing the input data through the nonlinear transforma-

tion layers and the expected response y, usually provided by the training data. The aim of the

optimization process is to find the best set of parameters θ that minimizes this distance.

https://en.wikipedia.org/wiki/Activation_function

Chapter 3. Deep Learning Background 23

As follows, the case of a supervised problem is used as a concrete example for giving a more

formal explanation. Given a training set of n instances (x,y), where x are the input data and

y the corresponding labels, a per-instance loss function L, a parameterized function fθ(x) that

denotes the neural network model which returns the output ŷ, the corpus-wide loss function can

be computed as the average loss over all the training instances:

L(θ) = 1
n

n

∑
i=1

L(fθ(xi),yi) (3.4)

As previously stated, the principal component that determines the loss value is the parameter

set. The aim of the training process is then to find the parameters θ that minimize the value of

L:

θ̂ = argmin
θ

L(θ) = argmin
θ

1
n

n

∑
i=1

L(fθ(xi),yi) (3.5)

When performing optimization over the training set, the computed loss tends to be very specific

for the given dataset and consequently not sufficiently generalizable for new unknown inputs.

To overcome this issue, called overfitting, it is possible to employ regularization methods [60],

which aim to smoothly restrict the loss function reducing the error on new data, possibly at the

expense of increased training error. Essentially, a regularization term R(θ), balanced by the

hyperparameter λ, is added to the objective function in order to minimize the complexity of the

parameters:

L(θ) =

Loss︷ ︸︸ ︷

1
n

n

∑
i=1

L(fθ(xi),yi)+

Regularization︷ ︸︸ ︷
λR(θ)

 (3.6)

Several loss functions and regularization methods have been proposed and their combination

can lead to different learning algorithms. Following, this section introduces the most commonly

employed loss functions and regularization techniques.

3.5.1.1 Loss functions

The most widely adopted loss functions used for training Artificial Neural Networks for NLP

tasks are presented in the following. For each input instance xi, the per-instance loss function L

is expressed in terms of the label yi and the neural network prediction fθ(xi) = ŷi.

Mean Squared Error (MSE) requires as output real values yi ∈ R. The prediction error is

squared and averaged over all the training set instances, as shown in the following equation:

LMSE(ŷi,yi) =
1
n

n

∑
i=1

(yi− ŷi)
2 (3.7)

Chapter 3. Deep Learning Background 24

The main drawback of this loss is that it often leads to poor results when used with gradient-

based optimization [60].

Hinge loss is the loss function usually adopted for binary classification problems yi ∈{−1,+1}.
The classification is correct if the predicted ŷi and the output yi share the same sign, meaning

that ŷi yi > 0. The hinge loss is defined as:

Lhinge(ŷi,yi) = max(0,1− ŷi yi) (3.8)

The loss value is 0 if the network output and the desired output share the same sign. Eventually,

the hinge loss can be extended for multi-classification purposes [61].

Log loss displays a similar convergence rate to the hinge loss function and it is continuous.

This loss can be seen as a soft variation of the hinge loss:

Llog(ŷi,yi) = log(1+ e−ŷi yi) (3.9)

Binary cross-entropy loss [62] is usually adopted for binary classification with conditional

probability outputs. The cross-entropy loss is defined as:

Lcross−entropy(ŷi,yi) =−yi log ŷi− (1− yi) log(1− ŷi) (3.10)

This loss is convex and closely related to the Kullback-Leibler divergence [63] between the

empirical distribution and the predicted distribution.

3.5.1.2 Regularization

As presented in Equation 3.6, the regularization term takes as input the neural network parame-

ters and returns a score representing their complexity. The aim of the training algorithm is then

to both minimize the loss function and the complexity of the parameters. The hyperparameter

λ ∈ [0, inf) weights the relative contribution of the regularization term: a large value favors sim-

ple models to a lower loss, while a low value increases the importance of having the minimum

loss at the cost of a higher complexity. Usually, a regularizerRmeasures the parameter matrices

norms and aims to return solutions with low norms. As in the state of the art, this thesis applies

regularization only to the weight matrix W and leaves the biases b unregularized. This decision

is due to the fact that biases typically require less data to fit accurately than the weights and their

regularization can introduce a significant amount of underfitting [56].

The most commonly adopted regularizers are presented as follows.

Chapter 3. Deep Learning Background 25

L2 regularization [64], also called as weight decay or ridge regression, is one of the simplest

parameter norm penalty. This regularization term can be written as the sum of squares of the

network weights:

RL2(W) =||W ||22= ∑
i, j
(Wi j)

2 (3.11)

It should be noted that L2 regularizers are severely penalized for high values of parameter

weights, but once the values are close enough to zero, their effect becomes imperceptible [6].

L1 regularization [65], commonly known as lasso, is written as the sum of absolute values of

the network weights:

RL1(W) =||W ||1= ∑
i, j
|Wi j | (3.12)

Differently from L2, L1 regularization term is particularly recommended for sparse solutions,

i.e. models where many parameters have an optimal value of zero.

Elastic net [66] is the combination of L1 and L2 regularizers:

Relastic net(W) = λ1RL1(W)+λ2RL2(W) (3.13)

where the hyperparameters λ1 and λ2 control the contribution of the two regularization terms.

Dropout [67, 68] is a regularization technique proposed for addressing the problem of over-

fitting in deep neural networks. The core idea is to randomly drop units (and their connections)

from the neural network during the training phase. The learned model will then significantly

reduce the generalization error compared to the other regularization methods. Although the

use of dropout regularization generally causes a higher computational training time because of

slow convergence, this method has the advantage of generally leading to significantly improved

results.

3.5.2 Training algorithm

A highly popular method for training neural networks is the back-propagation algorithm [69–

71]. The training process consists of two phases that perform different computations by passing

through the network into two different directions: a forward phase and a backward phase.

In the forward pass, the input signal x is propagated through the network layers until it reaches

the output. During this phase, the weights of the connection links between neurons are fixed.

The output ŷ computed by the last layer of the neural network is then compared with the desired

Chapter 3. Deep Learning Background 26

response y using a loss function (Sec. 3.5.1), the resulting value is used as error signal in the

backward pass. This error signal is propagated into the network layer-by-layer, in the opposite

direction of the input: from the last to the first layer. The weights of the connection links are

then adjusted in order to minimize the error, so that the network output would become more

similar to the desired response. The computations of the adjustments for the output layer are

straightforward, but they become much more challenging for the hidden layers.

More technically, the back-propagation algorithm calculates the gradient of the loss function for

each layer in an iterative way, by using the chain-rule of derivatives. The gradient is then fed

to the optimization method which uses it to update the weights of the artificial neurons, in an

attempt to minimize the loss function. The optimization algorithms actively adopted for training

neural network models are presented in the next section.

3.5.3 Optimization algorithms

The most difficult optimization problem in neural networks regards the training. Even the train-

ing of a single instance can take days or months of time on hundreds of machines. Given the

importance of this problem, several specialized optimization techniques have been proposed in

order to solve the issues of increasing complexity and computational costs.

The most effective modern optimization algorithms are based on gradient descent and include

Stochastic Gradient Descent, AdaGrad, RMSProp, Adam and Adadelta, eventually associated

with momentum or Nesterov momentum.

3.5.3.1 Gradient descent

Gradient descent is the core gradient-based optimization algorithm for training neural net-

works. This method can be easily applied, especially for convex functions, to compute the min-

imum of the objective function L(θ) (Eq. 3.4). At each step of the iterative process, the model

parameters θ are updated in the direction of the gradient of the objective function. Indeed, the

update step presented in Equation 3.4 is:

θ← θ−η∇θ

(
1
n

n

∑
i=1

L(fθ(xi),yi)

)
(3.14)

where η is the learning rate, i.e. a hyperparameter that controls how much the training algorithm

is adjusting the weights of the neural network with respect to the loss gradient.

The update procedure in Equation 3.14 takes into consideration the sum of the gradients of the

loss function computed over the n instances of the training set, this approach is known as batch

Chapter 3. Deep Learning Background 27

learning. Although batch gradient descent has shown impressive convergence property, it is

rarely used because of the enormous computational cost for large datasets. A solution to tackle

this issue is to compute the gradient over a small sample of mb training instances, assuming

that all samples are independent and identically distributed. When mb = 1, the algorithm is

called online gradient descent, while for mb > 1 the algorithm is called minibatch gradient

descent [72].

3.5.3.2 Stochastic gradient descent

Stochastic gradient descent (SGD) [73, 74] is a stochastic approximation of the gradient de-

scent optimization, which follows an iterative procedure for minimizing the objective function.

The SGD method is presented in Algorithm 1.

Algorithm 1 Stochastic gradient descent
1: Require: Learning rate η

2: Require: Initial set of parameters θ

3: while Stopping criterion not met do
4: Sample a minibatch of mb examples from the training set {xi, ...,xmb}.
5: Set g = 0
6: for i = 1 to mb do
7: Compute gradient estimate:

g← g+∇θL(fθ (xi) ,yi) .

8: end for
9: Apply update: θ← θ−ηg

10: end while

Given a learning rate η and an initial set of parameters θ, the algorithm computes the gradient of

the loss function with respect to the parameters over a minibatch of mb instances. The parameters

θ are subsequently updated and moved in the opposite direction of the gradient, scaled by the

hyperparameter η.

SGD guarantees to converge at a global optimum when the function is convex and the learning

rate is properly instantiated. When the function is non-convex, that is the case of multi-layer

neural networks, SGD proved to be robust and to perform well although it does not guarantee

the global optimum detection [6].

3.5.3.3 Stochastic gradient descent with Momentum

The learning stage with stochastic gradient descent can sometimes be highly time-consuming.

An effective approach for speeding up the training process is the momentum method [75]. Its

Chapter 3. Deep Learning Background 28

(a) SGD without momentum (b) SGD with momentum

FIGURE 3.9: Comparison between the gradient descent with and without momentum. The
momentum gradient path (red line) clearly provides a faster and less oscillating convergence to

the optimum with respect to the common gradient descent path (black line) [32].

core principle, beyond the optimization process, is inspired by a physical interpretation. The

momentum algorithm accumulates an exponentially decaying moving average of past gradients

and continues to move in their direction [32] (Fig. 3.9). As effect of its application, the opti-

mization will accelerate along the dimensions where the gradient points in the same direction

and will decelerate along the dimensions in which the gradient trajectory is unstable, resulting

in a faster convergence and reduced oscillation.

Formally, the momentum algorithm introduces the velocity variable v, that denotes the direction

and speed at which the parameters move through the parameter space. It is possible to think

of the optimization algorithm as the process of simulating the parameter vectors rolling on the

landscape with a certain velocity. In the momentum update, the parameter ρ ∈ [0,1) will denote

how quickly the gradient will exponentially decay:

v← ρv−η∇θ

(
1
n

n

∑
i=1

L(fθ(xi),yi)

)
θ← θ+ v

(3.15)

The SGD algorithm with momentum is described in Algorithm 2.

The momentum can provide significant improvements over SGD, especially in terms of compu-

tational time. With this simple method, it is possible to speed up the training phase avoiding the

unstable oscillatory effect caused by setting high values of learning rates.

3.5.3.4 Stochastic gradient descent with Nesterov Momentum

In 2013, Sutskever et al. [76] proposed an improvement of the momentum method, called Nes-
terov momentum, inspired by Nesterov’s accelerated gradient method [77]. Differently from

Chapter 3. Deep Learning Background 29

Algorithm 2 Stochastic gradient descent with momentum
1: Require: Learning rate η, momentum parameter ρ

2: Require: Initial set of parameters θ

3: while Stopping criterion not met do
4: Sample a minibatch of mb examples from the training set {x1, ...,xmb}.
5: Set g = 0
6: for i = 1 to mb do
7: Compute gradient estimate:

g← g+∇θL(fθ (xi) ,yi) .

8: end for
9: Compute gradient estimate: v← ρv−ηg

10: Apply update: θ← θ+ v
11: end while

the standard momentum approach, it evaluates the gradient after the velocity is applied. This

sort of correction prevents the model from proceeding too fast and increasing the responsiveness.

The resulting update step is defined as follows:

v← ρv−η∇θ

(
1
n

n

∑
i=1

L(fθ(xi +ρv),yi)

)
θ← θ+ v

(3.16)

The SGD algorithm with Nesterov momentum is presented in Algorithm 3.

Algorithm 3 Stochastic gradient descent with Nesterov momentum
1: Require: Learning rate η, momentum parameter ρ

2: Require: Initial set of parameters θ, initial velocity v
3: while Stopping criterion not met do
4: Sample a minibatch of mb examples from the training set {xi, ...,xmb}
5: Apply intermediate update: θ← θ+ρv
6: Set g = 0
7: for i = 1 to mb do
8: Compute gradient estimate (at intermediate point):

g← g+∇θL(fθ (xi) ,yi) .

9: end for
10: Compute gradient estimate: v← ρv−ηg
11: Apply update: θ← θ+ v
12: end while

While the Nesterov momentum have proved to improve the rate of convergence for convex batch

gradient loss functions, it does not guarantee the same behavior for stochastic gradient descent

models.

Chapter 3. Deep Learning Background 30

3.5.3.5 AdaGrad

The previous sections (Sec. 3.5.3.3 and 3.5.3.4) presented two different techniques for adapting

the update procedure during the gradient computation and consequently speed up the computa-

tional time. Following the same concept of adaptation, several methods have been proposed to

provide better learning rates during the training phase.

Adagrad [78] was the first adaptive gradient descent model to be proposed in the state of the

art for learning rates. It performs learning rate updates depending on the parameters: the more

the parameters are frequent, the larger the learning rate update will be, and vice-versa. The

algorithm, presented in Algorithm 8.4, adapts the learning rates by scaling them inversely pro-

portional to the square root of the sum of all of their historical squared values. The update rule

is defined as:

ϕ← ϕ+g2

θ← θ− η
√

ϕ
g

(3.17)

Differently from the previously presented gradient-optimization approaches, Adagrad consid-

ers a different learning rate for each step. Indeed, the update procedures in Algorithm 4 are

performed element-wise.

Algorithm 4 AdaGrad
1: Require: Global learning rate η

2: Require: Initial set of parameters θ

3: Initialize gradient accumulation variable ϕ = 0
4: while Stopping criterion not met do
5: Sample a minibatch of mb examples from the training set {x1, ...,xmb}
6: Apply intermediate update: θ← θ+ρv
7: Set g = 0
8: for i = 1 to mb do
9: Compute gradient:

g← g+∇θL(fθ (xi) ,yi) .

10: end for
11: Accumulate gradient: ϕ← ϕ+g2 (square is applied element-wise)
12: Compute gradient estimate: ∆θ←− η√

ϕ
g (1√

ϕ
is applied element-wise)

13: Apply update: θ← θ+∆θ

14: end while

Adagrad shows interesting results for convex optimization problems. However, it has been em-

pirically demonstrated that, for non-convex problems as deep neural networks, the accumulation

of squared gradients can result in a premature and excessive decrease of the effective learning

rate [56].

Chapter 3. Deep Learning Background 31

3.5.3.6 RMSProp

The main weakness of Adagrad is the accumulation of squared gradients, that keeps growing

during the training phase. This behavior can lead the learning rate to assume infinitesimal values,

at which point the algorithm is no longer able to acquire additional knowledge [72].

Tieleman and Hinton [79] proposed the RMSProp method to solve this issue and consequently

perform better on non-convex optimization problems as deep neural network. The key strategy

is to use an exponentially decaying average to discard historical values from the extreme past.

The RMSProp algorithm, shown in Algorithm 5, introduces the hyperparameter ρ responsible

of the length scale of the moving average. The update procedure will change as follows:

ϕ← ρϕ+(1−ρ)g2

θ← θ− η
√

ϕ
g

(3.18)

Algorithm 5 RMSprop
1: Require: Global learning rate η, decay rate ρ

2: Require: Initial set of parameters θ

3: Initialize accumulation variable ϕ = 0
4: while Stopping criterion not met do
5: Sample a minibatch of mb examples from the training set {x1, ...,xmb}
6: Set g = 0
7: for i = 1 to mb do
8: Compute gradient:

g← g+∇θL(fθ (xi) ,yi) .

9: end for
10: Accumulate gradient: ϕ← ρϕ+(1−ρ)g2

11: Compute parameter update: ∆θ←− η√
ϕ

g (1√
ϕ

is applied element-wise)
12: Apply update: θ← θ+∆θ

13: end while

RMSProp is one of the most effective gradient-based optimization algorithms for deep neural

networks.

3.5.3.7 Adam

An additional method for computing adaptive learning rates for each parameter is called Adap-

tive Moment Estimation (Adam) [80]. This method can be viewed as a combination of RM-

SProp and momentum, where the exponentially decaying average is computed both on the past

gradients (s) and their squares (r). Hence, s is the estimation of the first moment (mean) of the

Chapter 3. Deep Learning Background 32

gradients and r estimates the second moment (uncentered variance) of the gradients:

τ← ρ1τ+(1−ρ1)g

ϕ← ρ2ϕ+(1−ρ2)g2
(3.19)

where ρ1 and ρ2 are decay rates. Since τ and ϕ are initialized equal to 0, their values can be

biased towards 0 especially during the initial training phase. For this reason, Adam algorithm

comprehends a bias-correction of the estimates:

τ̂← τ

1−ρ1

ϕ̂← ϕ

1−ρ2

(3.20)

After the computation of the bias-corrected first and second moments, the update procedure is

derived as follows:

θ← θ− ητ̂√
ϕ̂+ ε

g (3.21)

where ε is an infinitesimal constant that avoids division by zero.

The Adam method (Algorithm 6) results as a robust response to the choice of hyperparameters,

preventing from high biases.

Algorithm 6 Adam
1: Require: Step size η

2: Require: Decay rates ρ1 and ρ2, constant ε

3: Require: Initial set of parameters θ

4: Initialize 1st and 2nd moment variables τ = 0,ϕ = 0
5: Initialize timestep t = 0
6: while Stopping criterion not met do
7: Sample a minibatch of mb examples from the training set {x1, ...,xmb}
8: Set g = 0
9: for i = 1 to mb do

10: Compute gradient:
g← g+∇θL(fθ (xi) ,yi) .

11: end for
12: t← t +1
13: Get biased first moment: τ← ρ1τ+(1−ρ1)g
14: Get biased second moment: ϕ← ρ2τ+(1−ρ2)g2

15: Compute biased-corrected first moment: τ̂← τ

1−ρt
1

16: Compute biased-corrected second moment: ϕ̂← ϕ

1−ρt
2

17: Compute update: ∆θ←− ητ̂√
ϕ̂+ε

g (operation applied element-wise)

18: Apply update: θ← θ+∆θ

19: end while

Chapter 3. Deep Learning Background 33

3.5.3.8 Adadelta

In 2012, Zeiler [81] proposed an extension of the Adagrad model, called Adadelta. As first

improvement, Adadelta solves the issue of continual decay of learning rates throughout the

training phase. As RMSProp, it considers a fixed window of accumulated past gradients instead

of all the historical gradient values, resulting in a better local estimate of the gradient (Eq. 3.18).

One of the main drawbacks of the afore-mentioned gradient descent model is the need for a

manually selected global learning rate. As it is possible to see from Algorithm 7, Adadelta

overcomes this requirement by replacing the learning rate η with the root mean squared error of

parameter updates:

τ← ρθ+(1−ρ)(∆θ)2

θ← θ−
√

τ+ ε√
ϕ+ ε

g
(3.22)

Algorithm 7 AdaDelta
1: Require: Decay rate ρ, constant ε

2: Require: Initial set of parameters θ

3: Initialize accumulation variables τ = 0,ϕ = 0
4: while Stopping criterion not met do
5: Sample a minibatch of mb examples from the training set {x1, ...,xmb}
6: Set g = 0
7: for i = 1 to mb do
8: Compute gradient:

g← g+∇θL(fθ (xi) ,yi) .

9: end for
10: Accumulate gradient: ϕ← ρϕ+(1−ρ)g2

11: Compute update: ∆θ←−
√

τ+ε√
ϕ+ε

g (operation applied element-wise)

12: Accumulate update: τ← ρθ+(1−ρ)(∆θ)2

13: Apply update: θ← θ+∆θ

14: end while

Adadelta appears robust to a wide variety of configuration choices, such as model architectures,

input data types and nonlinearities, demonstrating a good predisposition to be used as optimiza-

tion algorithm for training neural networks.

Chapter 4

Deep Learning Architectures for
Textual Feature Representation

As presented in previous Chapters 2 and 3, Deep Learning models have become incredibly

popular in Natural Language Processing, mainly because of their remarkable results in this field

and their ability to obtain meaningful distributional representations from symbolic and discrete

language units.

This thesis focuses on a specific segment of the research lines in Deep Learning: unsupervised
models for textual Representation Learning. The motivations beyond this decision have been

briefly mentioned in the previous chapters and can be summarized into three aspects presented

as follows.

Unsupervised models As highlighted by the historical trends, people are witnessing a new

digital era where user-generated content is produced in abundance over disparate Social Media

channels. Leveraging this information can be of a great value for companies and institutions.

Indeed, there is the need of Machine Learning models, named unsupervised, able to extract

valuable knowledge from data that have not been manually annotated (a time and effort con-

suming task that became impossible with the exponential increase of available data). Deep

Learning provides several models that can efficiently take advantage of this large amount of

data to identify and disentangle their underlying explanatory factors.

Representation Learning The choice of the right set of features used to represent the data is

a crucial part of every Machine Learning process, as it can strongly influence the performance

both in terms of time and accuracy. Involving human experts in this process is not always effi-

cient due to the time-consuming effort and because sometimes the real explanatory features of

34

Chapter 4. Deep Learning Architectures for Textual Feature Representation 35

the data cannot be easily identified. Among the various techniques of learning representations,

Deep Learning methods proved to be particularly capable of obtaining high-level meaningful

representations of the data by learning multiple nonlinear transformations of increasing com-

plexity and abstraction. Beyond the classification performance, the representations obtained

with Deep Learning proved to be also able to improve the generalization abilities of Machine

Learning models, by providing better results also on unseen data not present in the training set.

Textual Distributed Representation The symbolic and discrete nature of natural language

has led to great difficulties in obtaining a valid representation of textual data for solving Machine

Learning problems. Since a mathematical representation cannot be directly inferred, several

feature extraction procedures have been proposed. In the recent state of the art, the neural

network based approaches are the most prominent solution for obtaining a low dimensional

meaningful representation of words, or language units in general. The produced embeddings are

then able to capture the semantic and syntactical meaning of language into their representation,

resulting in better performance for several NLP tasks.

This chapter aims to present the two main methodological trends for learning how to represent

textual data with unsupervised models. Section 4.1 introduces neural networks language mod-
els, along with the most popular Word Embeddings algorithms. These algorithms are neural

network based models used to map words from a vocabulary to the corresponding vectors of real

numbers. They have been widely studied to overcome the issue of natural language discreteness

and sparsity, and also to obtain a representation easily manageable by any Machine Learning

model. Although the most popular approach for Word Embeddings proposed in [2] does not

have the salient characteristic of Deep Learning architectures (i.e. complexity, nonlinearity and

multi-level), it is commonly associated with this class of models because it does actually have

the Deep Learning intellectual heritage. The greatest insight about the experiment in [2] lies on

the result that the authors have discovered that the simplest model returned the most robust and

unexpectedly sensible results among many different complex and deep neural network models.

Section 4.2 details the most adopted Deep Learning models for unsupervised Representation

Learning, i.e. Auto-encoders. These models act as feature learning methods by learning to

copy its input to its output. The hidden layer between the input and output layers will then

represent the latent factor of the data, as a dimensional reduction method. This representation

has proved to facilitate the classification, visualization, communication and storage of data [82].

In the last years, successful results have been achieved in a variety of applications, one of which

is Natural Language Processing [83–85].

Chapter 4. Deep Learning Architectures for Textual Feature Representation 36

4.1 Neural Networks Language Model

The most popular contributions of Deep Learning in Natural Language Processing concern lan-
guage modeling (LM). The aim of this task is to assign a probability to any arbitrary sequence

of words or other linguistic symbols (e.g., letters, parts of speech, etc.). Beyond the probability

of a sequence of words, language models can also infer the likelihood of a given word to follow

a sequence of words. Although the performance of LM is still far from the human-level ones,

language models are often an important subprocess of many successful applications, such as text

information retrieval, document classification, statistical machine translation, etc. [86].

Formally, Goldberg [6] defined the task of language modeling as the problem to assign a prob-

ability to any sequence of words w1:T , defined as P(w1:T). Using the chain-rule of probability,

this can be written as:

P(w1:T) = P(w1)P(w2 | w1)P(w3 | w1:2)P(w4 | w1:3) . . .P(wn | w1:T−1) (4.1)

or it can be more concisely expressed as:

P(w1:T) =
n

∏
t=1

P(wt | w1:t−1) (4.2)

where wt is the t-th word. Essentially, a statistical language model can be represented by the

conditional probability of the next word given all the previous ones [1]. When building LM, the

difficulty on modeling entire sentences can be considerably reduced by exploiting the markov-

assumption, which states that closer words in the word sequence are statistically more depen-

dent, by the assumption that the future is independent of the past given the present.

More formally, a k-th order markov-assumption assumes that the next word in a sequence de-

pends only on the last k−1 words:

P(wt | w1:t−1)≈ P(wt | wt−k+1:t−1). (4.3)

The estimate of the probability of a sentence then becomes:

P(w1:T) =
T

∏
t=1

P(wt | wt−k+1:t−1) (4.4)

where wt−k+1, . . . ,w0 are defined to be special padding symbols.

The k-th order markov assumption is the dominant approach for language modeling because

it can produce good results for relatively small values of k. This thesis, and this chapter in

particular, discusses k-th order language models.

Chapter 4. Deep Learning Architectures for Textual Feature Representation 37

Before discussing the currently most adopted neural network based language models (NNLMs),

it is worthwhile to introduce the traditional frequentist-based approaches and to motivate the

reason of their recent overtake.

Traditional approaches Traditional techniques for estimating LM parameters are based on

corpus count. Assuming a k-order markov property, such as P(wt = w∗ | w1:t−1) ≈ P(wt =

w∗ | wt−k+1:t−1). The aim of LM is to estimate the likelihood of a given word w∗ to follow

a sequence of words, i.e. P(wt = w∗ | wt−k+1:t−1). Let #wi: j be the count of the sequence of

words wi: j = (wi,wi+1, . . . ,w j−1,w j) in a corpus. The maximum likelihood estimate (MLE) of

P(wt = w∗ | wt−k+1:t−1) can be written as:

PMLE(wt = w∗ | wt−k+1:t−1) =
#wt−k+1:t

#wt−k+1:t−1
(4.5)

When the training data is not representative of the whole possible events, it can happen that an

event wt−k+1:t is never observed in the corpus (wt−k+1:t = 0), and consequently its probability

will be 0. This will cause a domino effect, i.e. the entire corpus will assume 0 as probability

value, because of the multiplicative nature of the sentence probability calculation.

A solution to the sparsity problem is provided by smoothing techniques. The simplest idea is to

add a smoothing quantity to the counts in order to ensure a probability greater than 0 for every

event. This approach is called add-α smoothing [87, 88] and can be formalized as:

Padd−α(wt = w∗ | wt−k+1:t−1)
#wt−k+1:t +α

#wt−k+1:t−1 +α |V |
(4.6)

where |V | is the vocabulary size and 0 < α≤ 1 is the smoothing parameter.

Despite researchers have contributed with several improved extensions of add-α smoothing

[89, 90], this class of approaches has different important drawbacks. Smoothed MLE mod-

els cannot easily deal with long-range dependencies, because the introduction of larger k-grams

significantly increases the model sparsity and also the time and space complexity. As more im-

portant issue, MLE-based language models are not able to generalize over different contexts or

domains. For example, as outlined in [6], observing black car and blue car in the training data

does not influence the estimates of red car if it has not been seen before.

In spite of their well-known weaknesses, these traditional methods remained the dominant ap-

proaches in the state of the art until the advent of neural networks and Deep Learning, which

provided better language models over several standard benchmark tasks [2, 91].

Neural Network Language Models Since 2010, Deep Learning provided new solutions for

solving the inherent problems of traditional approaches. With this new trend of models, it is

Chapter 4. Deep Learning Architectures for Textual Feature Representation 38

possible to efficiently consider longer dependencies with only a linear increase in the number of

parameters and better deal with unseen events.

Bengio et al. [1] summarized the core idea of neural networks language models (NNLMs) as

follows:

1. a distributed word feature vector or Word Embeddings (a real-valued vector in Rm) is

associated with each word in the vocabulary,

2. the joint probability function of word sequences is expressed in terms of the feature vectors

of these words in the sequence, and

3. the Word Embeddings and the probability function parameters are learned simultaneously.

After the learning phase, the word feature vector obtained by NNLMs will reflect the whole

aspects of the associated word, e.g. conceptual, semantic, syntactic. Its dimension is usually

much smaller than the actual size of the vocabulary, resulting in what is commonly known as

low-dimensional embeddings. Moreover, as the name neural networks language model reminds,

the probability function, i.e. the product of conditional probabilities of the next word given the

previous ones (Eq. 4.4), is estimated by a multi-layer neural network.

By performing these operations, NNLMs are then able to successfully generalize between dif-

ferent contexts. The core idea, inspired by the distributional hypothesis [24], is that words that

appear in a similar context should have a similar vector representations. As a practical implica-

tion, by observing, for example, that the words blue, green, red, black, etc. appear in a similar

context, the NNLM will associate them similar Word Embeddings. Therefore, NNLM is able to

generalize from “blue car” to “red car” also if the event “red car” was never observed.

This approach is different from the popular state of the art models as Brown Clustering [25] or

Latent Semantic Indexing [92] because (1) the features composing Word Embeddings are not

deterministic, but rather real values that combined as vectors better reflect similarities between

words and (2) the learning process is aimed at maximizing the probability distribution of word

sequences instead of co-occurrences [1].

4.1.1 Neural Probabilistic Language Model

The fundamental neural network model described in this section has been proposed by Bengio

et al. [1].

Given a training set as a sequence w1, . . . ,wT of words wt ∈V , where the vocabulary V is a large

but finite set. The objective is to learn a language model f (wt , . . . ,wt−k+1) = P(wt | w1:t−1),

Chapter 4. Deep Learning Architectures for Textual Feature Representation 39

FIGURE 4.1: Neural language model proposed by Bengio et al. [1].

that can provide good estimates even without sample instances. The only constraint of the

probabilistic LM is that the sum of the probabilities of a given sentence that ends with different

words should sum to 1, that is for any choice of w1:t−1, ∑w∗∈V f (w∗,wt−1, . . . ,wt−k+1) = 1, with

f > 0. The model of the joint probability of word sequences can be then obtained by the product

of these conditional probabilities.

The function f (wt , . . . ,wt−k+1) = P(wt | w1:t−1) can be separately examined in two parts:

• The Word Embeddings are expressed as a mapping C that associatea to each word in the

vocabulary w∗ ∈V a real vector C(w∗) ∈ Rm.

• The probability function is defined as a function g(·) that maps a sequence of Word Em-

beddings (C(wt−1), . . . ,C(wt−k+1)) to a conditional probability distribution over words

in the vocabulary V with the aim of predicting the next word wt . This distribution can

be practically seen as a vector where each element estimates the probability P(wt = w∗ |
w1:t−1) over different w∗:

f (w∗,wt−1, . . . ,wt−k+1) = g(C(w∗),C(wt), . . . ,C(wt−k+1)) (4.7)

Chapter 4. Deep Learning Architectures for Textual Feature Representation 40

The function g can be expressed as a neural network model (Fig. 4.1), following the notions

provided in Chapter 3:

x = [C(wt−1), . . . ,C(wt−k+1)]

h1 = tanh(W1x+b1)

ŷ = LM(w1:T) = softmax(W2h1 +b2)

(4.8)

where C,W1,W2,b1 and b2 are the model parameters and tanh and so f tmax are the activation

functions used in the neural probabilistic language model proposed in [1].

The aim is to obtain the parameter set θ = (C,W1,W2,b1,b2) that maximizes the objective

function, which in this case is the penalized log-likelihood:

LNNLM(θ) =
1
T

T

∑
t=1

log fθ(wt ,wt−1, . . . ,wt−k+1)+λR(θ) (4.9)

whereR(θ) is the regularization term and λ is the hyperparameter balancing the contribution of

the regularization.

The neural model proposed by Bengio et al. [1] provided several important advantages that

helped them to be considered the state of the art reference for language modeling.

Beyond the overcoming results, the afore-presented model is able to linearly scale with the

size of vocabulary |V | and also with k, allowing the model to efficiently learn from larger cor-

pora and considering longer word dependencies. As for neural network models, the nonlinear

transformations permit the presented model to disentangle the factors of variation of the input

data. Finally, unseen words or sequences of words are a minor problem because of the good

generalization abilities of the model across contexts and domains. This can sometimes be a

disadvantage with respect to traditional methods, as it is not always true that similar words can

be replaced in any context, although it is often the case. An example, following the previous

ones, can be the probability assigned to the sequence of words “purple horse”, which can result

as highly probable because of the similarity of “purple” with other words such as “black” or

“brown”.

These remarkable properties, together with the unsupervised nature of the NNLM proposed by

Bengio et al. were the main reasons why several successful methods took inspiration from it: the

Collobert and Weston algorithm [27] and the Word2vec algorithms [2, 28]. These approaches

are discussed in the next sections.

Chapter 4. Deep Learning Architectures for Textual Feature Representation 41

4.1.2 Collobert and Weston

In 2008, Collobert and Weston [27] developed a unified architecture able to generalize among

several NLP tasks, based on neural networks language models. They improved the model in-

troduced by Bengio et al. at two levels. First, they took advantage of the whole word context

by considering the window surrounding a word (i.e. P(wt | wt−2,wt−1,wt+1,wt+2)), instead of

analysing only the k-gram on its left (i.e. P(wt | wt−1,wt−2,wt−3,wt−4)). Second, they changed

the objective function by moving to a two-class classification task: if the word in the middle of

the input window is related to its context or not. Following the revised task goal, the training

data are then composed by positive examples, a sequence of words in the corpus, and by neg-

ative examples, whereby the middle word of a sequence is replaced by a random word. This

simple change avoids computationally expensive normalization that is mandatory for probabili-

ties prediction tasks.

More formally, given a target word w∗ and its context c1:k, after applying the mapping C for

obtaining the Word Embeddings, the model aims to predict a score s(w∗,c1:k) of the word-

context pairs. This problem can be expressed as a neural network model as follows:

x = [C(w∗),C(c1), . . . ,C(ck)]

ŷ = s(w∗,c1:k) = g(Wx+b).
(4.10)

Since the model is related to a classification task, the loss function corresponds to the misclassi-

fication error:

LCW (w∗,c,w′) = max(0,1− (s(w∗,c1:k)− s(w′,c1:k))), (4.11)

where w′ is a random word. This loss is then computed for each word-context pair, sampling

a random word w′ for each step. As the NNLM presented in the previous section, the aim is

to find the best parameter set θ = (C,θNN) that minimizes the misclassification error over the

training set.

The word feature vectors, or Word Embeddings, obtained by the training procedure of the Col-

lobert and Weston’s NNLM provided impressive results. For this reason, this work established

Word Embeddings as a powerful tool for NLP tasks, leading to a proliferation of studies in this

field.

4.1.3 Word2vec

The widely popularization of Word Embeddings was arguably due to Mikolov et al. [2, 28]

that positively revolutionized the NNLM research with the introduction of Word2vec model.

The main reason for the disruptive advent of Word2vec regards the fact that previous works

Chapter 4. Deep Learning Architectures for Textual Feature Representation 42

FIGURE 4.2: CBOW architecture on the left and Skip-gram architecture on the right [2].

were significantly more computationally expensive during the training phase. Word2vec model

comprises two different model architectures (Figure 4.2) for learning distributed representations

of words. The proposed models were constructed in order to try to minimize computational

complexity. In the literature, Deep Learning has attracted a lot of attention because of its ability

to capture nonlinear transformations of input data, via the composition of concepts of increasing

complexity. Against the trends, Mikolov et al. decided to explore simpler models that might not

be able to represent the data as precisely as deep neural networks, but can possibly be trained on

much more data efficiently.

Continuous Bag-of-Words Model The first proposed architecture is called Continuous Bag-

of-Words model (CBOW) and it aims to compute the conditional probability of a target word

given the context words surrounding it, across a window of size k, as in [27]. The name of

the model is due to the fact that, unlike the standard bag-of-words model, it uses a continuous

distributed representation of the context. CBOW is implemented as a fully connected neural

network with only one hidden layer. Differently from standard NNLMs, the nonlinear hidden

layer is removed and the projection layer is shared for all the words. More formally, given a

sequence of words w1:t , the objective is to maximize the average log probability [28]:

LCBOW =
1
T

T

∑
t=1

∑
−k≤ j≤k, j 6=0

logP(wt | wt+ j) (4.12)

where k is the size of the context window. As in traditional language models, the inclusion of

longer dependencies (high value of k) can provide better results, at the expenses of a higher

complexity.

Chapter 4. Deep Learning Architectures for Textual Feature Representation 43

Continuous Skip-gram Model The second architecture is similar to CBOW but with a com-

pletely opposite objective. Skip-gram model aims to predict the surrounding context words

given the central target word [93]. Essentially, this model assumes that the elements in the con-

text are independent from each other, treating them as different contexts. Despite this strong

assumption, it has been proved that this architecture can be very effective and it has been suc-

cessfully used [6].

As CBOW, the Skip-gram model objective function can be written as:

LSkip−gram =
1
T

T

∑
t=1

∑
−k≤ j≤k, j 6=0

logP(wt+ j | wt) (4.13)

where k is the size of the context window.

Optimization objectives The last layer of Word2vec architectures is characterized by the

computation of softmax functions, unfortunately this requires the normalization of word vec-

tor probabilities for each target word, that is computationally prohibitive in most real-world

applications. For this reason, two different optimization objectives have been proposed in [28]:

Hierarchical Softmax and Negative-Sampling.

Hierarchical Softmax [94] is a computationally efficient approximation of the full softmax func-

tion computed in Word2vec. This method makes use of a binary tree for structuring the softmax

computations, where the probability of each word is computed as the product of branch selection

decisions. The efficiency is obtained when computing the probability of a single word, because,

instead of evaluating W output nodes, it is possible to evaluate only log2(W) nodes.

The second optimization approach is Negative Sampling, which is an approximation of Noise

Contrastive Estimation [95]. Similar to the Collobert and Weston [27] model, the aim is to

correctly classify word-context pairs from random-generated ones. The training process is then

performed by approximating the normalization in the denominator of the softmax, resulting in

increasing computational efficiency.

4.2 Auto-encoder

Auto-encoders have attracted a lot of attention in recent years as a building block of Deep

Learning. As efficient unsupervised models for Representation Learning, Auto-encoders be-

came very popular also because of the incredibly large amount of unlabeled data that emerged

from the World Wide Web. The core component is a neural network that tries to reconstruct its

input at the output layer.

Chapter 4. Deep Learning Architectures for Textual Feature Representation 44

FIGURE 4.3: Auto-encoder architecture.

An Auto-encoder initially consists of a feature-extracting function in a specific parameterized

closed form, called encoder, denoted as fθ that allows the straightforward and efficient com-

putation of a feature vector h = fθ(x) from an input x. For each instance xi from a set of data

X = {x1, . . . ,xn}, the encoder function is defined as:

hi = fθ(xi) (4.14)

where hi will be the feature vector representation that codes the input xi.

The other crucial component is the decoder function, which is a closed form parameterized

function gθ that maps the feature space back into input space, producing a reconstruction x̂:

x̂ = gθ(h) (4.15)

The general structure of Auto-encoders is illustrated in Figure 4.3. The Auto-encoder training

process consists in finding the parameter set θ that minimizes the reconstruction error:

LAE(θ) =
1
n

n

∑
i=1

L
(

xi,gθ(fθ(xi))
)

(4.16)

where xi is a training example. Error minimization is usually carried out by stochastic gradient

descent methods.

Chapter 4. Deep Learning Architectures for Textual Feature Representation 45

Indeed, Auto-encoders can be expressed as a multi-layer neural network:

h = fθ(x) = a f (Wx+b f)

x̂ = gθ(h) = ag(W′h+bg)
(4.17)

where a f and ag are the encoder and decoder activation functions (typically sigmoid or hyper-

bolic tangent for nonlinearity, or the identity function if staying linear). The set of parameters is

θ =
{

W,b f ,W′,bg
}

where b f and bg are called encoder and decoder bias vectors, and W and

W′ are the encoder and decoder weight matrices. The choice of the activation functions and the

loss function largely depends on the input domain nature.

4.2.1 Stacked Auto-encoder

(a) Separate view

(b) Joint view

FIGURE 4.4: Stacked Auto-encoder architecture with 2 hidden layers.

As the multi-layer feedforward architecture presented in Section 3.3.2, also the Auto-encoder

models can be stacked to produce the so-called stacked Auto-encoder. The main difference

consists on which layer is given as input to the next stacked model: in a multi-layer feedforward

neural network the output of each layer is given as input to the next one, while stacked Auto-

encoders passes as input the hidden layer.

Chapter 4. Deep Learning Architectures for Textual Feature Representation 46

The stacking procedure of a 2-layers stacked Auto-encoder is shown in Figure 4.4. The first

Auto-encoder is constructed as presented in the previous section, i.e. the input x is encoded

in the hidden layer h1 and then decoded for its reconstruction. Then, the activation features

h1 are given as input to the second Auto-encoder for obtaining a secondary level of features

h2 (Fig. 4.4(a)). Finally, the layers can be combined together (Fig. 4.4(b)) to form a stacked

Auto-encoder with 2 hidden layers.

Each of the Auto-encoder variations that will be presented in the next sections can be used as

core layers for a stacked implementation.

4.2.2 Regularized Auto-encoder

While the idea to copy the input to the output may appear pointless, the true value is in the

hidden layers between the input and its reconstruction.

A common approach for obtaining meaningful feature representation, as any dimensionality

reduction technique, is to use a bottleneck, i.e. to constrain the hidden layer h to have a lower

dimension than the input x. In this case, the Auto-encoder takes the name of undercomplete
Auto-encoder. Reducing the dimension of the hidden layer forces to prioritize the aspects of the

input that should be copied, resulting in a more useful representation and better generalization

abilities over new data. Another interesting approach is the overcomplete Auto-encoder, where

the hidden layer dimension is greater than the input data size.

Both of these two variations can encounter a critical problem. When too much capacity is given

to the encoder and decoder functions, the copying task can be perfectly performed without hav-

ing extracted any meaningful information about the distribution of the data. For this reason,

alternative regularized Auto-encoders have been proposed to solve this issue by constraining

the learning process. The idea is to use a loss function to stimulate the learning of other prop-

erties besides the reconstruction ability. Possible properties can be representation sparseness

and noise robustness as presented in the next sections. In conclusion, regularized Auto-encoders

are models that are able to learn meaningful representations of the input data, even if the model

capacity is high enough to learn a trivial identity function.

4.2.3 Sparse Auto-encoder

A sparse Auto-encoder (SAE) [96, 97] is a form of regularized Auto-encoder that considers a

sparsity penalty Ω(h) on the code layer h in addition to the reconstruction error:

LSAE(θ) =
1
n

n

∑
i=1

L
(

xi,gθ(fθ(xi))
)
+Ω(h) (4.18)

Chapter 4. Deep Learning Architectures for Textual Feature Representation 47

With this constraint, most of the hidden neurons will tend to produce very small activations,

allowing the use of a large number of hidden units.

4.2.3.1 k-sparse Auto-encoder

Although sparse Auto-encoders have shown significant improvements in the state of the art,

these methods are sometimes not guaranteed to produce sparse representations for each input.

Indeed, Makhzani and Frey [98] proposed a fast and efficient improvement of sparse Auto-

encoder. This model, called k-sparse Auto-encoder (KsAE), is basically an Auto-encoder

where only the k highest activities in the hidden layers are kept.

During the feedforward phase, after computing the hidden layer h, the k largest hidden units

are kept and the others are set to zero. This results in a vector of activities with the support

set defined as Γ = suppk(h). This selection step acts as a regularizer that prevents the use of

an excessively large number of hidden units when reconstructing the input. At testing time,

instead of using the k largest neurons as features, Makhzani and Frey considered the αk largest

hidden units, where α≥ 1 is selected using validation data, as soft assignments resulted in better

classification performance. Algorithm 8 summarizes the fundamental steps.

Algorithm 8 k-sparse Auto-encoder

1: Perform the feedforward phase and compute h = a f (Wx+b f).
2: Find the k largest activations of h and set the rest to zero.

h(Γ)c = 0 where Γ = suppk(h).

3: Compute the reconstruction error using the sparsified h.

LKsAE(θ) =
1
n

n

∑
i=1

L(xi,gθ(h)).

4: Backpropagate the error through the k largest activations defined by Γ and iterate.

Inference
5: Encode input data h = a f (Wx+b f).

Find its αk largest activations and set the rest to zero

h(Γ)c = 0 where Γ = suppαk(h).

4.2.4 Denoising Auto-encoder

Another regularization approach for avoiding the learning of the identity function is provided

by denoising Auto-encoders (DAE) [35]. In this case, the model learns a reconstructed input

Chapter 4. Deep Learning Architectures for Textual Feature Representation 48

corrupted by a form of noise. This denoising-based approach is motivated by the following two

assumptions:

• a higher level representation is expected to be robust under corruptions of the input data;

• a model able to correctly perform the denoising task should extract much more informa-

tive features.

Formally, the objective function optimized by a DAE is:

LDAE(θ) =
1
n

n

∑
i=1

L
(

xi,gθ(fθ(x̃i))
)
, (4.19)

where x̃ is a corrupted copy of x. Indeed, in order to learn the copying function, denoising Auto-

encoders must undo this corruption. State of the art studies demonstrate that corruption levels

generate much better features, resulting in improved classification.

4.2.4.1 Marginalized Stacked Denoising Auto-encoder

Vincent et al. [37] proposed a novel stacked version of denoising Auto-encoders, called Stacked
Denoising Auto-encoder (SDA). This layered version of the model essentially works as pre-

sented in Section 4.2.1, where each denoising Auto-encoder layer takes as input the encoded

output provided by the previous one.

In order to reduce the high computational cost of SDA, the authors in [36] further developed

a variant called marginalized Stacked Denoising Auto-encoder (mSDA). mSDA is able to

preserve the strong feature learning capabilities of SDA while providing several speed-ups, i.e.

fewer meta-parameters, faster model-selection and layer-wise convexity.

Given an input X = {x1, . . . ,xn} and its corrupted version X̃ = {x̃1, . . . , x̃n}, where the features

of the input space Rd are randomly removed with a given probability p. The main goal is

to reconstruct the corrupted input with a linear mapping W : Rm → Rm, that minimizes the

objective function:

LmSDA(W) =
1
n

n

∑
i=1

L(xi,Wx̃i), (4.20)

where in [36], the squared reconstruction loss is used as per-instance loss function L. The solu-

tion of Equation (4.20) can be expressed as the closed-form solution for ordinary least squares

[99]:

W = PQ−1 (4.21)

Chapter 4. Deep Learning Architectures for Textual Feature Representation 49

where Q = X̃X̃> and P = XX̃>. When the denoising transformation of W is computed, it would

be ideal to consider all possible corruptions of all possible inputs. As n becomes very large, the

matrices P and Q converge to their expected values E[Q] and E[P] by the weak law of large

numbers. In the limit case, where n→ ∞, it is possible to derive their expectations and express

the corresponding mapping for W in closed form as:

W = E[P]E[Q]−1 (4.22)

The marginalized stacked denoising Auto-encoder is composed of m closed-form denoising

layers.

4.2.5 k-Competitive Auto-encoder

Although all the afore-mentioned Auto-encoder models proved to be effective for Natural Lan-

guage Processing tasks, they might incur in the problem of learning trivial representations. The

motivations behind this issue are related to the intrinsic characteristics of natural language text

(Sec. 2.1): large vocabulary and sparseness. While the vocabulary can comprise millions of

words, the commonly used representations are usually characterized by only a small percent-

age of non-zero entries (2%). Moreover, the word distribution is not the same as any given

data. Natural language text follows the Zipf’s law distribution, which means that most of the

occurrences is related to low-frequency words. Indeed, Chen and Zaki [100] proposed a novel

k-competitive Auto-encoder for text (KATE) able to better deal with all the difficulties brought

by natural language. The core idea consists of competitive learning among the neurons of the

Auto-encoder.

In the feedforward phase, only the most competitive k neurons of each layer are considered and

those k “winners” further incorporate the aggregate activation potential of the remaining inactive

neurons. This reallocation process is defined as k-competitive layer. In this way, each hidden

neuron of each layer will become specialized in recognizing specific data patterns. After the

model is trained, each hidden neuron is distinct from the others and no competition is needed at

inference time. The main steps of the method are described in Algorithm 9.

The KATE model is specifically implemented with a f as tanh function and ag as sigmoid func-

tion. Denoting x̂ the output of the model, i.e. x̂i = gθ(fθ(xi)), the per-instance loss function L is

associated to the binary cross-entropy:

L(xi, x̂i) =−[xi log(x̂i)+(1− xi) log(1− x̂i)]. (4.23)

Chapter 4. Deep Learning Architectures for Textual Feature Representation 50

Algorithm 9 k-Competitive Auto-encoder

Training
1: Perform the feedforward phase and compute h = a f (Wx+b f).
2: Apply the k-competition ĥ = k-competitive layer(h).
3: Compute the reconstruction error:

LKAT E(θ) =
1
n

n

∑
i=1

L(xi,gθ(ĥ)).

4: Backpropagate the error and iterate.

Inference
5: Encode input data h = a f (Wx+b f).

As it can be noted, the KATE model operations are very similar to the k-sparse algorithm (Sec.

4.2.3.1). However, they differ in two aspects: KsAE forces sparsity both in training and testing

time, while KATE focuses on specializing each neuron during the training phase and does not

perform any competition in testing; KsAE suffers from the problem of “dead” neurons for low

values of k that can generate problems during back-propagation, KATE, instead, does not face

this issue because it does not involve any zero-value assignments.

As a recently proposed method, KATE has shown very impressive results on a variety of meth-

ods on many different NLP tasks, demonstrating the ability to learn semantically meaningful

representations of words, documents and topics.

Chapter 5

Deep Learning Representation for
Making Sense of User-Generated
Content

With the advent of Social Media, people saw new and more engaging opportunities for inter-

acting and communicating. The study presented in [101] posits different motivations that can

bring anyone to relate with user-generated content: by consuming, by participating, and by pro-

ducing. Consuming takes place by watching, reading, or viewing contents for entertainment

or for obtaining information such as opinions. Participation includes social interactions (user-

to-user) and community development (user-to-content), for example by the actions of posting

a comment, sharing a content, or approving the post of another user. Finally, producing im-

plies the actual personal content production by an individual, usually for self-expression and

self-actualization. With this background in mind, the big potential that making sense of user-
generated content can provide for supporting information interpretation and decision making

over large-scale, dynamic media streams is only remotely conceivable[102].

The crucial steps for making sense of user-generated content are the identification on what the

text is talking about, by extracting and disambiguating the named entities involved (e.g. with

respect to DBpedia), and the understanding of the opinion that the user is expressing about these

entities, also dealing with irony. This is an attractive problem given the great challenges that

dealing with large amount of unstructured textual data raise (Sec. 2.1) and, at the same time, it

is a major opportunity for individuals, companies and institutions.

An example of the process of making sense of user-generated content is given in Figure 5.1

where the reference text is a message posted on a social media platform and states “@Em-

maWatson no1 can play hermione better than u”. The main difficulties in analyzing this sen-

tence, which is a typical social media content, are clearly evident, even at first sight. First,

51

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 52

FIGURE 5.1: Example of the process of making sense of user-generated content.

FIGURE 5.2: Proposed framework.

abbreviations and ambiguities can strongly interfere with the correct meaning understanding.

While it is easier to conceive that u refers to the pronoun you, associating the abbreviation no1

to the word no one instead of number one is more challenging . If one has no knowledge about

the domain context of this sentence, as it is the case of a computational machine, the word

hermione can assume uncounted meanings, especially if associated to the verb play, e.g. the

title of a song, a board game, or a character in a movie. Beyond the language issues, a system

should also consider the explicit symbols that appear in a text and can be platform-dependent, as

hashtags and mentions. For example, by tracing back the mention @EmmaWatson to the user,

it is possible to retrieve that, as a verified account, the user is related to an authentic person of

public interest, resulting in an easier linking of the mere word with the person in the real world.

In order to address these challenges on making sense of user-generated content, this chapter pro-

poses novel Natural Language Processing approaches exploiting innovative Deep Learning
Representation models as depicted in Figure 5.2.

The first step consists of identifying named entities in a given text and of classifying them in a

pre-defined domain ontology such as persons, organizations, locations. This process is known as

Named Entity Recognition and Classification (NER) and it is fundamental for understanding

which entities are involved in a text. Regarding the previous example, finding that @EmmaWat-

son is an entity of type Person, combined with the information that hermione is an entity of type

Character, can have a strong impact on framing this sentence in the domain context of movies.

The subsequent task is called Named Entity Linking (NEL), i.e. the disambiguation of the

identified named entities by associating them to unambiguous units, as for example resources in

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 53

a Knowledge Base. As shown in Figure 5.1, a good NEL system should be able to link the entity

mention @EmmaWatson to the actress named Emma Watson, and the mention hermione to the

character that she interpreted in the Harry Potter movies. The ability of correctly linking men-

tions to unambiguous resources in a Knowledge Base can be of great importance, for example,

when searching for information about a product or a person, it is not desirable to obtain results

that are not related to the searched query (e.g. the company Ford is not interested in retrieving

messages about the actor Harrison Ford).

One of the most investigated tasks, because of the great value for companies, is Sentiment Anal-
ysis. This task permits to understand the opinion polarity that the user is expressing in a text,

usually specified in three classes: positive, negative and neutral. The given example is a case

of a positive sentence with respect to the actress Emma Watson, as it expresses a compliment

to her acting performance. The task of predicting the sentiment of users has become inevitably

important for real-world applications, as social media platforms are viewed as new channels for

marketing and for fostering trust of potential customers [103]. Beyond the mere commercial ap-

plications, analysis of social media messages can provide important insights in several domains,

such as election results [104], political movements [105], and health issues [106].

When dealing with the sentiment polarity of a sentence, the most challenging factor is the pres-

ence of figurative language such as irony, or sarcasm [107, 108]. For this reason, the investigated

framework includes the task of Irony Detection, in order to further improve and eventually re-

fine the polarity of the opinion. The major implication of irony, or sarcasm, regards the fact

that its presence (that can be expressed by just a word or a symbol) can completely revert the

message polarity. For example, by adding the hashtag word #mostannoyingcharacter at the end

of the sentence, the sentiment polarity would become negative. A more impressive example is

when an ironic message expresses a negative opinion using only positive words, e.g. “It seems

like I have to study on my vacation. That’s great. Awesome. And oh, so very fun.”.

In summary, by incorporating the Deep Learning high-level representation into the Natural Lan-

guage Processing models, this thesis aims at improving the generalization abilities of the models

underlying the afore-mentioned tasks by leveraging the large amount of unlabeled data over a

wide variety of domains and to increase the sensibility of these models about the perception of

the words as expression of multiple properties and not as flat and discrete symbols.

Following, Section 5.1 proposes a novel approach for adapting the classification of NER sys-

tems to a new ontology over generic types without the need of a slow re-training of the model.

Then, Section 5.2 presents an unsupervised model for Named Entity Linking exploiting a novel

heterogeneous representation space characterized by more meaningful similarity measures be-

tween words and named entities obtained by Word Embeddings. Section 5.3 addresses the

problem of Sentiment Analysis by combining Deep Learning and Ensemble Learning where

little or no training data is available in the studied domain, that nowadays is a common problem

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 54

given the great discrepancy between manually labeled data and available ones. Finally, Sec-

tion 5.4 investigates the problem of Irony Detection, since it is one of the most challenging and

critical steps towards the correct classification of the polarity sentiment of a text, especially if

it has been created in a Social Media environment. The presented novel unsupervised irony

detection model is then able to generalize across different domains, with the contribution of

Word Embeddings representation, and to leverage the unlabeled data in an unsupervised way,

by exploiting an unsupervised probabilistic model.

5.1 Named Entity Recognition and Classification

Named Entity Recognition and Classification is one of the key Information Extraction (IE) tasks,

which is concerned with identifying entity mentions, which are text fragment(s) denoting real-

world objects, from unstructured text and classifying them according to a given domain classifi-

cation hierarchy/ontology. Extracting valuable information from user-generated content in the

form of entities mentions, events and relations is of utmost significance for knowledge discovery

from natural language text.

Given the example sentence of Figure 5.1,

“@EmmaWatson no1 can play hermione better than u”,

the process of named entity recognition will indentify the named entities as:

“[@EmmaWatson] no1 can play [hermione] better than u”.

Consequently, the named entity classification process will assign a class to the entity mentions:

“[@EmmaWatson]Person no1 can play [hermione]Character better than u”.

In the last years, several research studies towards Information Extraction have been proposed,

giving leeway to the emergence of numerous academic and commercial NER systems. In Ta-

ble 5.1, several available NER systems have been listed together with their associated generic

ontologies, i.e. ontologies aimed at capturing general knowledge about the world by providing

basic notions and concepts for things [113] .

Although all the reported NER systems make use of generic ontologies, from Table 5.1 it is

evident that there are considerable differences among them. This is motivated by the fact that,

because of varying application scenarios and/or requirements, different NER systems use dif-

ferent entity classification schemas/ontologies to classify the discovered entity mentions into

entity types. From the generic ontologies listed in Table 5.1, it is possible to derive several

considerations:

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 55

TABLE 5.1: Different commercial and academic Named Entity Recognition and Classification
systems with their corresponding Generic Types.

NER System Website Generic Ontology
OSU Twitter NLP
Tools [109]

https://github.com/aritter/twitter nlp/ Band, Company, Facility, Geo-Location, Movie, Other, Person, Product, Sport-
steam, TVshow

NERD [110] http://nerd.eurecom.fr/ Thing, Amount, Animal, Event, Function, Location, Organization, Person, Product,
Time

Standford NER [111] https://nlp.stanford.edu/software/CRF-
NER.shtml

Person, Organization, Money, Percent, Location, Date, Time

DBpedia Spotlight
[112]

https://www.dbpedia-spotlight.org/ Thing, CreativeWork, Event, Language, Organization, Person, Place, Product, Un-
known

Dandelion API https://dandelion.eu/ Person, Works, Organisations, Places, Events, Concepts
Google Cloud Natural
Language

https://cloud.google.com/natural-
language/

Person, Consumer Good, Organization, Event, Location, Other

IBM Natural Language
Understanding

https://www.ibm.com/watson/services/
natural-language-understanding/

Anatomy, Award, Broadcaster, Company, Crime, Drug, EmailAddress, Facility, Ge-
ographicFeature, HealthCondition, Hashtag, IPAddress, JobTitle, Location, Movie,
MusicGroup, NaturalEvent, Organization, Person, PrintMedia, Quantity, Sport,
SportingEvent, TelevisionShow, TwitterHandle, Vehicle

Ambiverse https://www.ambiverse.com/natural-
language-understanding-api/

Person, Location, Organization, Event, Artifact, Other, Unknown

Bitext https://www.bitext.com/ Person name, Car license plate, Place, Phone number, Email address, Compa-
ny/Brand, Organization, URL, IP address, Date, Hour, Money, Address, Twitter
hashtag, Twitter user, Other alphanumeric, Generic

MeaningCloud https://www.meaningcloud.com/ Event, ID, Living Thing, Location, Numex, Organization, Person, Process, Product,
Timex, Unit, Other

Ingen.io https://ingen.io/ Person, Organization, Location, Geo Political Entity, Misc, Event, Structure, Cate-
gory, Lang, Artwork

Rosette R© https://www.rosette.com/ Location, Organization, Person, Product, Title, Nationality, Religion, Identifier,
Temporal

Thomson Reuters Open
CalaisTM

http://www.opencalais.com/ Company, Person, Geography, Industry Classifications, Topics, Social Tags, Facts,
Events

• Only the type Person is equivalently reported in all the generic ontologies;

• There are few types (e.g. Location) that are present in all the ontologies but with different

associated names (e.g. Location / Geo-Location / Place / Geography);

• Several types (e.g. Product) are equivalently used by few NER systems, while in others

they are either not present, attributable to other corresponding types (e.g. Thing / Artifact

/ Artwork / etc.) or partitioned in multiple types (e.g. Movie, TelevisionShow, Vehicle,

etc.);

• Since each generic ontology is composed of different types, the Other (or Unkown) type

can assume disparate meanings depending on the other types involved.

• It is also notable the use of types that are particularly related to a language register, such

as Hashtag, Twitter user or IP address.

Indeed, comparisons and integrations of NER systems become complex even for human experts

without considering each single entity mention case.

As stated in [114], NER models can be roughly distinguished on two main approaches: (i) su-

pervised Machine Learning models trained on large manually-labeled corpora [111]; and (ii)

knowledge-based methods [110, 112]. However, both approaches suffer from two main limita-

tions:

1. The amount of available data for accurately training a NER system according to a given

target ontology can be limited, due to the costly and time-consuming labeling activity.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 56

Many NER systems based on Machine Learning (e.g. Conditional Random Fields [115]

and Labeled LDA [116]) assume that the training and test data must be represented in the

same feature space and have the same underlying distribution. However, when a NER

system needs to be adapted to a different domain ontology, this assumption may not hold.

Since the target data are characterized by a different representation space and follow a

different data distribution with respect to the source data, the lack of a training set can be

a problem. This scenario is perfectly depicted in the #Microposts2015 Challenge [117],

where the number of training instances (∼ 3,500) are not sufficient for inducing a NER

system that is able to generalize unseen data.

2. Beyond the Machine Learning approaches, the task of Named Entity Recognition and

Classification can be also performed by exploiting Knowledge Bases (KBs). In [118],

Knowledge Bases, also referred as Knowledge Graphs, are defined as large networks of

entities, their semantic types, properties, and relationships between entities. In this case,

the list of all possible entity mention are extracted from a KB and the identification of

these entities in a given text is performed by looking for matching parts. However, differ-

ent NER systems can refer to different KBs (e.g. Wikipedia, DBpedia, Freebase, etc.) that

are not guaranteed to be available and accessible at any time. For example, the system

proposed by Ritter et al. [109] trains a Labeled LDA model using Freebase as underly-

ing ontology, which was shut down in 2014. Moreover, the dimension of KBs increases

rapidly due to new upcoming entities that users generate every day. In this case, it could

be also expensive to frequently update the exploited knowledge.

In order to solve the problem of comparisons and integrations of NER systems, together with

the challenges of the Named Entity Recognition and Classification task especially for user-

generated content, the next sections will present a novel method discussed in [119, 120], called

Learning To Adapt (L2A). The proposed approach is intended to adapt the entity classification

of generic types on user-generated content to a given generic target ontology1. By performing

this operation, not only the model will adapt to a new ontology without the need of the slow

task of retrieving and injecting external knowledge, but it will be also able to correctly map

entity mentions that have been misclassified from the source NER system, for example because

of the ambiguity. The concrete improvement of L2A consists of the use of Word Embeddings
representation as input to the adaptation model. Involving Word Embeddings results in bet-

ter classification performance, as the word vector representation includes several properties of

the word (semantic, syntactic, etc.) that can help in dealing with non-local dependencies and

ambiguity.

1In the following, generic ontologies are simply referred as ontologies.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 57

5.1.1 Word Embeddings Representation for Learning to Adapt Entity Classifica-
tion

As Natural Language Processing in general (Sec. 2.1), the main challenge of Named Entity

Recognition and Classification models applied to user-generated content regards the noisy and

dynamic nature of the Web 2.0 language. While excellent accuracy performance have been

obtained on well-formed text, the state of the art studies on ill-formed text, such as microblog

posts, do still need strong improvements [121].

In addition to the intrinsic language difficulty of entity recognition and classification, it is often

the case that different NER systems use different ontologies for entity classification, although it

can commonly happen that a system using one source ontology may need to be adapted to the

use of a different target ontology according to application requirements.

FIGURE 5.3: Manual mappings between two generic ontologies.

A first investigation aimed at dealing with this issue has been presented in [110], where a manual

mapping between generic ontologies has been defined. As represented in Figure 5.3, a manual

mapping is a deterministic mapping from the source ontology types to the target ontology types

manually defined by a human expert. Although this study represents a first step towards the

definition of cross-ontology NER systems, there is still the need of automatic mapping methods

that can be used for dealing with any ontologies without the need of human intervention. In

order to enable automatic mappings, some open problems need to be accurately addressed:

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 58

1. Mention Misclassification: Entity mentions are often misclassified by supervised NER

systems mainly because of two different reasons: (i) the training set is composed of very

few instances, and (ii) the training set is characterized by an imbalanced distribution over

the ontology types. Consider, for instance, the entity mention Black Sea (a water body,

i.e., a location) which has been erroneously recognized as Band in the source ontology,

and should be mapped to Location in the target ontology. Given a deterministic manual

mapping - as the one reported in Figure 5.3 - the mention will instead be mapped to the

wrong entity type (Organization).

2. Type Uncertainty: There are also cases in which the type of an identified entity mention

may be particularly uncertain, since a mention may have subtly different meanings in the

real world. In this case, the decision of determining its type becomes difficult.

While well-structured text provides meaningful insights into the contextual usage of a

mention, there can still be cases where it is difficult for an entity recognition system to

correctly classify a mention. Consider, for instance, the entity mention Starbucks in a

well-structured document snippet:

“It now takes 300 stars to reach gold level status at Starbucks, which means

spending approximately ...”

A NER system could be uncertain about the type to be associated with Starbucks, because

it could be equally probable to classify the entity mention in the source ontology as a

Geo-Location (a particular Starbucks shop), or a Company (the Starbucks company). This

uncertainty needs to be solved for determining the correct type in the target ontology.

3. Fork Mappings: There are cases, which have been named as fork mappings, where

mentions classified as member of one type in the source ontology could be cast into one

among two (or more) different types in the target ontology. Currently, this investigation

identifies three cases of fork mappings (as seen in Figure 5.3):

� the mapping of the type Person in the source ontology to the types Person or Char-

acter in the target ontology,

� the mapping of the type Other in the source ontology to the types Thing or Event in

the target ontology,

� the mapping of the type Facility in the source ontology to the types Thing, Event or

Location in the target ontology,

In order to tackle the above-mentioned issues arising when it is intended to adapt a NER system

trained on a source generic ontology to a given target one, this thesis presents a novel approach

called Learning To Adapt (L2A), where named entities are represented by exploiting Word

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 59

Embeddings for obtaining a richer semantic input space. The use of a distributional represen-

tation is motivated by the intuition that, among all the implicit aspects of a word, Word Em-

beddings will also be able to reflect the ontology type, as entities of the same type are expected

to appear in similar context. Although the proposed approach for mapping entity types from a

source to a target ontology has been tested on microblog posts, it can be applied to a variety of

different textual formats.

The subsequent sections are organized as follows. Section 5.1.1.1 introduces the proposed so-

lution, named Learning To Adapt with Word Embeddings representation. An overview of the

evaluation datasets and the results of the conducted analysis are presented in Sections 5.1.1.2

and 5.1.1.3. Results have revealed three main findings: (1) L2A is able not only to adapt an

existing NER to a new target ontology, but it also enables the correction of misclassified enti-

ties as well as entities involved in type uncertainty and fork mappings; (2) Word Embeddings

provide a remarkable improvement on the adaptation performance, (3) L2A outperforms not

only the state of the art manual mapping approach but also two additional baselines based on

probabilistic sampling. Finally, Section 5.1.1.4 presents some related work.

5.1.1.1 Adaptation Model: Learning to Adapt with Word Embeddings

The problem of adapting the types of entity mentions from a source ontology to the types in

a target ontology can be viewed as a Machine Learning problem. In particular, given a set of

entity mentions identified by a NER model originally trained in a source ontology, the main goal

is to learn how to map the source type probability distribution to the target one.

More precisely, let RS be a NER model trained on a set ΩS = {s1,s2, ...,sns} of entity mentions

annotated according to a source ontology OS. Let ΩT = {t1, t2, ..., tnt} be a set of entity mentions

that needs to be automatically labeled according to a target ontology OT , by using a NER model

RS previously trained on ΩS. Then, the labeling of ΩT using RS can be viewed as a transfer

learning problem [33]. In particular, the main goal is to learn a target predictive function f (·) in

ΩT using some knowledge both in the source ontology S and the target ontology T .

More formally, let P(ΩT ,OS) be the distribution in the source ontology used to label an entity

mention ti ∈ ΩT with the most probable type y∗S ∈ OS according to RS and let E : ΩT → Rm be

the function that maps the entity mention ti ∈ΩT to a m-dimensional embedding representation.

The input space of the investigated adaptation problem is defined as XP_E =P(ΩT ,OS)
_E(ΩT),

where _ is the concatenation symbol. Thus, the input space is the concatenation of the proba-

bility distribution in the source ontology and the embedded representation related to the entity

mention ti ∈ ΩT . Let yT ∈ OT be the type in the target ontology that adaptation model should

discover. Now, the adaptation of a source type yS (of a given entity mention) to a target type

yT can be modeled as a learning problem aimed at seeking a function φ : XP_E → yT over the

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 60

hypothesis space Φ. In our case, it is convenient to represent φ as a function f : XP_E×yT →R
such that:

g(P(ti,yS)
_E(ti)) = arg max

yT∈OT
f
(
(P(ti,yS)

_E(ti)),yT

)
(5.1)

In order to solve this learning problem, it is necessary to create an input space representing each

entity mention ti that can be used for learning how to map the predicted source type yS ∈ OS to

the target type yT ∈OT . As formally introduced, the input space XP_E for each entity mention ti
corresponds to the union of the explicit distribution given by RS, P(ti,yS), and its embedded rep-

resentation E(ti). The output space denotes the most probable type yt ∈ OT . Using a model that

is able to estimate a posterior distribution of yT , we can therefore estimate the type distribution

P(ΩT ,OT) in the target ontology. A graphical example of the proposed approach is reported in

Figure 5.4.

FIGURE 5.4: Graphical example of L2A.

The aim of L2A is then to learn the function f that is able to correctly label an entity mention

ti ∈ΩT according to the prediction P(ti,yS) given by a NER model previously trained on ΩS and

its embedding representation E(ti). To accomplish this task, any Machine Learning algorithm

can be adopted. This thesis investigates the most popular ones, i.e. Naı̈ve Bayes (NB), Support

Vector Machines (SVM), Decision Trees (DT), K-Nearest Neighbor (KNN), Bayesian Networks

(BN), Multi-Layer Perceptron (MLP) and Multinomial Logistic Regression (MLR).

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 61

5.1.1.2 Experimental Settings

This section presents the investigated datasets and the comparative baselines used to evaluate

the proposed approach. Then, different evaluation performance measures have been explored to

validate the ability of L2A to perform the adaptation problem by assessing several configura-

tions.

Word Embeddings The additional input information provided by the embedding representa-

tion of the entity mention can strongly influence the performance of the adaptation model. The

expected improvement is strictly related to the increased semantically meaning of the input rep-

resentation. As presented in Chapter 4, the core idea behind Word Embeddings is that words that

appear in similar contexts should have similar vector representations. The proposed approach is

motivated by the intuition that, among all the implicit aspects of the word, Word Embeddings

will reflect also the ontology type property. It is, in fact, intuitive to think that words of type

Person, for instance, are used in the same context, and the same for all the involved ontology

types.

Since the amount of available data is not enough for obtaining a sufficiently trained Word Em-

beddings model, this investigation considers two different pretrained models for mapping enti-

ties to real-valued vectors:

• Wiki2Vec model: these Word Embeddings have been obtained by training the Skip-gram

model (Sec. 4.1.3) over a Wikipedia dump, a more detailed description of this process is

given in Section 5.2.1.2.

• GoogleNews model: Google News is the first corpus subjected to the learning of Word2vec

models [2]. This corpus is composed of 100 billion words. The model is available on-

line2 and it contains 300-dimensional vectors for 3 million words and phrases trained by

CBOW model with negative sampling (as presented in Section 4.1.3).

Another important issue to consider is the one related to multi-word entities, i.e. entity mentions

composed by two or more words, such as Emma Watson, Paris Hilton or University of Milano-

Bicocca. Following the definition given in Section 4.1, a Word Embeddings model is defined

as a mapping C : V → Rm that associates to each word in the vocabulary w∗ ∈ V a real vector

C(w∗) ∈ Rm. Indeed, given an entity mention ti composed by several words ti = {wi
1, . . . ,w

i
n},

the function E can be written as the aggregation of the mapping C over all the words wi
j:

E(ti) = •(wi
1, . . . ,w

i
n), (5.2)

2https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 62

where • is the aggregation function. This is a common approach addressed in several state of

the art studies [122–124]. Beyond the commonly investigated aggregation functions max, min

and mean, the first aggregation that corresponds to take the Word Embeddings of the first word

only has been also evaluated (eventually considered as the one carrying the type information,

e.g. University of Milano-Bicocca). Note that, when an entity mention is formed by a single

word, the function E will behave exactly as the original mapping C.

Dataset To perform an experimental analysis of the proposed approach, two benchmark datasets

of microblog posts have been considered as ground truth (GT), these data have been made

available for the Named Entity Recognition and Linking Challenges for #Microposts2015 [117]

and #Microposts2016 [125] Workshops. In particular, the datasets used as reference for the

evaluation is the training set provided by the challenges (additional results on Test and Dev

set are provided in Appendix B). These ground truths are composed of 3,498 and 6,025 posts,

respectively, with a total of 4,016 and 8,664 entity mentions in each of them. Beyond Word Em-

beddings, the input space has been derived using the state of the art Ritter system T-NER [109],

specifically conceived for dealing with user-generated content. In particular, T-NER makes use

of Labeled LDA [116] to derive P(ΩT ,OS), one of the components of the L2A input space.

T-NER is trained using an underlying source ontology OS (known as Ritter Ontology) to finally

derive a NER model RS.

Ritter Ontology (OS): Band, Company, Facility, Geo-Location, Movie, Other, Person, Product,

Sportsteam, TVshow.

Once the entity types are recognized by RS and classified according to OS, they need to be

mapped to the entity types available in the target ontology (known as Microposts Ontology) OT .

Microposts Ontology (OT): Character, Event, Location, Person, Product, Organization, Thing.

T-NER identifies a total of 2,535 and 4,394 entity mentions from the #Microposts2015 and

#Microposts2016 datasets respectively. In order to create the input space for the proposed L2A

model, it is necessary to create a training set, where, for each entity mention identified by T-

NER, the probability distribution P(ΩT ,OS), the embedded representation E(ΩT), the source

type yS ∈ OS and the target type yT ∈ OT should be derived . While the probability distribution

and the source type are explicitly provided by the T-NER system, the target type needs to be

specified. However, when selecting a target type, it should be taken into account that an entity

mention recognized by T-NER could be wrongly segmented, and some tokens of multi-word

entity can be classified as non-entity or a single-word entity can be coupled with some adjoining

words and therefore wrongly segmented as a multi-word entity. Two examples are reported

below.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 63

“The [Empire State]Geo−Location [Building]Other is amazing!”.

“[Paris Hilton will]Person be in Venice next week!”.

To finally induce the L2A model, a training set, each for #Microposts2015 and #Microposts2016

has been automatically constructed by exploiting a string similarity measure (i.e., edit distance)

which captures only the perfect matches between the mentions identified by T-NER and the men-

tions in the Microposts ground truth datasets. This means that, for each tweet in the Microposts

datasets (gold standards), it has been associated each entity mention ti(T-NER) given by T-NER

with the most similar entity mention t j(GT) in the ground truth. A couple < ti,yT > is added

to the training set if and only if there is a perfect match between the entity mentions ti(T-NER)

and t j(GT), where yT is the correct type for that mention in the target ontology (made available

from the ground truth). This automatic procedure for generating the training sets used as input

by the L2A model is applicable and replicable on any labeled benchmark.

As a result, the training sets for #Microposts2015 and #Microposts2016 are composed of 1,660

and 3,003 training instances, respectively. Tables 5.2 and 5.3 show the distribution of ontology

types in the obtained training set, respectively referring to the Ritter Ontology (OS) and Mi-

croposts Ontology (OT). It is worthy to notice that the distribution is strongly imbalanced, as

real-world user-generated content are. While Person and Location (or Geo-Location) are clearly

the dominant ontology types, other classes are barely present (e.g. Character, Event, TVshow,

Movie).

TABLE 5.2: Type Distribution (%) according to Ritter Ontology (OS).

#Microposts2015 #Microposts2016
Band 3.19 3.26

Company 8.86 6.99
Facility 1.99 2.53
Geo-Loc 28.86 33.17

Movie 1.87 1.86
Other 11.93 12.32
Person 35.24 33.97

Product 3.67 2.86
Sportsteam 3.07 2.16

TVshow 1.33 0.87

TABLE 5.3: Type Distribution (%) according to Microposts Ontology (OT).

#Microposts2015 #Microposts2016
Character 1.27 1.00

Event 1.75 3.83
Location 30.60 37.63

Organization 24.82 19.85
Person 31.69 29.57

Product 7.53 5.83
Thing 2.35 2.30

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 64

Baselines In order to compare the proposed approach with a reference, three Baseline models

have been defined:

• Baseline-Deterministic (BL-D): it considers the manual mapping between OS and OT

shown in Figure 5.3;

• Baseline-Probabilistic (BL-P1): it extends the previous baseline in order to deal with fork

mappings in a non-deterministic way. In particular, for those mentions in OS that can be

classified in more than one type in OT , the target type has been sampled according to the

a priori distribution of mappings in the training set (e.g. 30% of Person entity mentions

in OS are classified as Character and 70% as Person in OT).

• Baseline-Probabilistic (BL-P2): A major downside of using the deterministic manual

mapping (BL-D) is that since it directly depends on the output of the T-NER system,

it will never be able to correct the target type of the mentions which have been incorrectly

classified by T-NER. For this reason, an additional probabilistic baseline (BL-P2) has

been introduced. For each mention, given the associated source type yS ∈ OS, the target

type yT has been sampled from the distribution P(OT |yS ∈ OS) estimated on the training

set.

Performance Measures In order to evaluate the different model configurations and to com-

pare them with the afore-mentioned baselines, several state of the art performance measures

have been considered.

For evaluating the classification, the terms true positives (TP), true negatives (TN), false pos-

itives (FP), and false negatives (FN) compare the instances classified by the model with the

ground truth. The terms positive and negative refer to the classifier’s prediction, while true and

false refer to the comparison with the ground truth.

• Accuracy: it represents the number of correctly labeled named entities over the total num-

ber of instances. This value is defined between 0 and 1.

Accuracy =
TP+TN

TP+FP+TN+FN
(5.3)

• Precision: it represents the number of positive predictions divided by the total number of

positively class values predicted. This value is defined between 0 and 1.

Precision =
TP

TP+FP
(5.4)

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 65

• Recall: it represents the number of positive predictions divided by the number of positive

class values in the dataset. This value is defined between 0 and 1.

Recall =
TP

TP+FN
(5.5)

• F-measure: it is the harmonic mean of the Precision and the Recall. This thesis considers

the F1-metric which weights Recall and Precision equally. It is defined between 0 and 1.

F-measure = 2 · Precision ·Recall
Precision+Recall

(5.6)

• Accuracy Contribution: represents the number of correctly labeled named entities, classi-

fied as a specific class yT over the total number of instances of the ontology type yT .

Accuracy(yT) =
instances correctly classified as yT

instances correctly of type yT
(5.7)

In the following approach, Precision, Recall and F-measure can be strongly influenced by the

imbalanced distribution of the data over the ontology types (Tab. 5.2 and 5.3). For this rea-

son, the overall performance measures of a multi-class classification problem can be computed

by two different types of average, macro-average and micro-average [126]. Macro-averaged

measures give equal weight to each class, regardless of its frequency. Consequently, it is more

influenced by the classifier’s performance on rare categories. Micro-averaged measures weight

each class with respect to its number of instances. It tends to be dominated by the classifier’s

performance on common categories.

Using the same formalism of [127], M is the number of classes; TPi (True Positives) is the

number of documents assigned correctly to class i; FPi (False Positives) is the number of doc-

uments that do not belong to class i but are assigned to class i incorrectly by the classifier; and

FNi (False Negatives) is the number of documents that are not assigned to class i by the classi-

fier but which actually belong to class i. Following, the micro- and macro-averaged version of

Precision, Recall and F-measure are reported:

• Precision:

Precisionmicro =
∑

M
i=1 TPi

∑
M
i=1(TPi +FPi)

(5.8) Precisionmacro =
1
M

M

∑
i=1

TPi

TPi +FPi
(5.9)

• Recall:

Recallmicro =
∑

M
i=1 TPi

∑
M
i=1(TPi +FNi)

(5.10) Recallmacro =
1
M

M

∑
i=1

TPi

TPi +FNi
(5.11)

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 66

• F-measure:

F-measuremicro = 2 · Precisionmicro ·Recallmicro

Precisionmicro +Recallmicro
(5.12)

F-measuremicro = 2 · Precisionmacro ·Recallmacro

Precisionmacro +Recallmacro
(5.13)

In the following sections, given the highly imbalanced distribution (Tables 5.2 and 5.3), Preci-
sion, Recall and F-measure are shown in their micro-averaged version. It is important to note

that the state of the art performance measure usually computed for evaluating NER systems,

called Strong Typed Mention Match (STMM), is defined as the micro-averaged F-measure.

Moreover, the macro-averaged F-measure has been also reported for the sake of completeness.

Experimental Settings Concerning the experimental evaluation, a 10-folds cross validation

has been performed. To compare L2A with the baseline models both on #Microposts2015 and

#Microposts2016, Precisionmicro, Recallmicro, F-measuremicro and F-measuremacro have been

used for comparing the types predicted by L2A with the real types available in the ground

truth. In order to evaluate the contribution of the different components of the input space,

several configurations have been explored: the probability distribution in the source ontology

XP = P(ΩT ,OS), the embedded representation XE = E(ΩT) and the joint input space XP_E =

P(ΩT ,OS)
_E(ΩT). Concerning the models used to train L2A, i.e. Naı̈ve Bayes (NB), Support

Vector Machines (SVM), Decision Trees (DT), K-Nearest Neighbor (KNN), Bayesian Networks

(BN), Multi-Layer Perceptron (MLP) and Multinomial Logistic Regression (MLR), no parame-

ter optimization has been performed3.

5.1.1.3 Experimental Results

In this section, several computational experiments are presented in order to show the relevance

of the proposed approach for the afore-mentioned datasets. As first concern, the best config-

urations of L2A that consider the Word Embeddings feature space (XE and XP_E) have been

studied. Then, the selected results have been evaluated with respect to the baselines and the

Machine Learning models trained over the source ontology probability distribution (XP).

In order to investigate the advantages of considering the Word Embeddings feature space, Table

5.4 reports the results in terms of Accuracy obtained on both datasets for all the chosen Machine

Learning models, aggregation functions and pretrained Word Embeddings models, highlighting

the best results for each dataset.
3The experiments have been conducted using default parameters of models implemented in WEKA:

www.cs.waikato.ac.nz/ml/weka/

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 67

TABLE 5.4: Accuracy performance of L2A model considering Word Embeddings feature
space. For each dataset, the best results are reported in bold.

#Microposts2015 #Microposts2016
XE XP_E XE XP_E

Wiki2Vec GoogleNews Wiki2Vec GoogleNews Wiki2Vec GoogleNews Wiki2Vec GoogleNews

BN

mean 0.61 0.60 0.76 0.76 0.70 0.73 0.71 0.74
max 0.58 0.58 0.73 0.74 0.71 0.74 0.72 0.75
min 0.58 0.59 0.73 0.75 0.71 0.75 0.72 0.76
first 0.60 0.59 0.74 0.73 0.69 0.72 0.70 0.73

DT

mean 0.51 0.54 0.75 0.74 0.70 0.71 0.77 0.78
max 0.54 0.55 0.72 0.73 0.71 0.71 0.78 0.78
min 0.52 0.55 0.75 0.74 0.68 0.69 0.78 0.77
first 0.51 0.55 0.72 0.73 0.68 0.71 0.77 0.78

KNN

mean 0.58 0.60 0.75 0.79 0.80 0.82 0.81 0.83
max 0.59 0.60 0.75 0.78 0.79 0.81 0.80 0.82
min 0.59 0.61 0.75 0.79 0.78 0.81 0.80 0.83
first 0.57 0.59 0.72 0.76 0.73 0.77 0.79 0.81

MLR

mean 0.58 0.54 0.75 0.75 0.83 0.78 0.77 0.78
max 0.59 0.54 0.74 0.73 0.77 0.78 0.78 0.77
min 0.59 0.53 0.76 0.74 0.81 0.78 0.77 0.77
first 0.57 0.55 0.72 0.71 0.80 0.76 0.78 0.76

MLP

mean 0.63 0.64 0.82 0.84 0.85 0.85 0.86 0.85
max 0.63 0.64 0.82 0.83 0.85 0.85 0.85 0.86
min 0.63 0.64 0.82 0.83 0.85 0.85 0.86 0.85
first 0.61 0.62 0.81 0.80 0.81 0.81 0.84 0.83

NB

mean 0.61 0.60 0.76 0.76 0.72 0.72 0.74 0.75
max 0.58 0.58 0.73 0.74 0.73 0.74 0.75 0.77
min 0.58 0.60 0.73 0.75 0.73 0.74 0.74 0.77
first 0.60 0.59 0.74 0.74 0.72 0.73 0.74 0.75

SVM

mean 0.63 0.65 0.84 0.85 0.84 0.84 0.86 0.86
max 0.63 0.65 0.84 0.84 0.85 0.85 0.86 0.86
min 0.62 0.63 0.84 0.84 0.85 0.85 0.86 0.86
first 0.61 0.64 0.82 0.81 0.81 0.81 0.83 0.83

From Table 5.4, it is possible to draw a variety of conclusions as follows:

• Considering the joint input space XP_E leads to better results as opposed to considering

only the embedded representation (XE) of the entity words. Although the probability

distribution vector covers only the 2% of the complete feature space, when combined

with the embedded representation, it brings a great improvement in the classification.

This means that considering the Word Embeddings representation only does not provide

sufficient information for correctly mapped entity mentions.

• SVM and MLP proved to be the best models for dealing with the real-valued vectors of

Word Embeddings, while Decision Tree is observed to exhibit the worst performance.

This is likely due to the feature space nature, since the former models are best known for

treating large real-valued vectors.

• While it is difficult to decide the best performing aggregation method among mean, max

and min, it is clear that taking the representation of the first word of an entity mention

(when dealing with mentions composed of multiple words) leads to a limited view of the

underlying meaning of the entity mention and consequently to lower performance in terms

of Accuracy.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 68

• Finally, GoogleNews pretrained model performs better than the Wiki2Vec one. This can

be due to the different nature and size of training data for these models.

TABLE 5.5: Class-Wise Accuracy Contribution (%) on #Micropost2015 of L2A model consid-
ering Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E

Character 0.48 0.54 0.48 0.48 0.42 0.54 0.54 0.48 0.60 0.48 0.48 0.48
Event 0.60 1.14 0.48 0.96 0.42 0.72 0.66 1.14 0.36 0.90 0.36 0.78

Location 21.81 27.23 21.93 27.11 22.17 27.23 22.11 27.59 22.41 27.47 22.05 27.59
Organization 13.86 18.73 14.04 18.92 13.98 19.22 13.61 19.58 14.28 19.34 12.83 19.22

Person 22.83 29.94 22.35 29.58 22.35 29.22 23.86 29.88 22.83 29.4 23.49 29.58
Product 3.19 4.76 3.25 4.52 3.25 4.28 3.43 4.82 3.19 4.82 3.19 4.58
Thing 0.90 1.63 1.08 1.75 1.08 1.63 1.02 1.63 0.96 1.63 1.02 1.57

Overall 63.67 83.98 63.61 83.31 63.67 82.83 65.24 85.12 64.64 84.04 63.43 83.8

TABLE 5.6: Class-Wise Accuracy Contribution (%) on #Micropost2016 of L2A model consid-
ering Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E

Character 0.37 0.37 0.30 0.33 0.30 0.37 0.33 0.30 0.27 0.33 0.33 0.30
Event 3.16 3.06 3.10 3.03 3.06 3.03 3.20 3.26 3.13 3.13 3.10 3.16

Location 34.13 34.37 34.53 34.67 34.43 34.63 34.47 34.87 35.06 35.06 35.03 35.00
Organization 14.85 14.65 14.99 15.02 14.62 14.59 13.79 14.82 13.89 14.72 14.19 14.69

Person 27.57 27.74 27.47 27.51 27.54 27.67 27.41 27.91 27.47 27.64 27.27 27.84
Product 2.93 3.20 3.06 3.13 2.86 3.10 2.83 2.96 3.20 3.33 2.80 2.90
Thing 1.70 1.70 1.83 1.83 1.86 1.70 1.73 1.83 1.80 1.76 1.80 1.80

Overall 84.72 85.08 85.28 85.51 84.68 85.08 83.75 85.95 84.82 85.98 84.52 85.68

In order to report a more compact representation of all the experimental results, in Tables 5.5

and 5.6 only the best performing configurations for L2A are given. In particular, SVM and MLP

have been selected as Machine Learning models, mean, max and min as aggregation methods

and GoogleNews pretrained model as Word Embeddings representation. For each type, the high-

est result has been highlighted in bold.

As it is possible to perceive from both tables, Support Vector Machines drive to better results,

by reaching the highest values of the overall Accuracy. While for #Microposts2015 the preva-

lence of the mean aggregation function is evident, the results on #Microposts2016 are less clear.

However, by jointly considering the two datasets, the choice of using SVM as Machine Learn-

ing model and mean as aggregation function results as the best performing adaptation model in

terms of Accuracy.

Since Accuracy is a too much punctual measure for evaluating the performance of a Machine

Learning classifier, it is important to consider also other measures for a wide and complete

overview. As presented in the previous section, Precisionmicro, Recallmicro, F-measuremicro and

F-measuremacro (Tables 5.7 and 5.8) give a more extensive idea considering also the issues of

multi-class classification and imbalanced class distribution. By looking at these measures, the

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 69

TABLE 5.7: Precision, Recall, F-Measure and STMM on #Micropost2015 of L2A model con-
sidering Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E

Precisionmicro 0.63 0.84 0.63 0.83 0.64 0.83 0.65 0.85 0.64 0.84 0.63 0.84
Recallmicro 0.64 0.84 0.64 0.83 0.64 0.83 0.65 0.85 0.65 0.84 0.63 0.84

F-measuremicro 0.63 0.84 0.63 0.83 0.63 0.83 0.65 0.85 0.64 0.84 0.63 0.84
F-measuremacro 0.54 0.74 0.54 0.73 0.54 0.70 0.57 0.75 0.54 0.73 0.52 0.71

TABLE 5.8: Precision, Recall, F-Measure and STMM on #Micropost2016 of L2A model con-
sidering Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E XE XP_E

Precisionmicro 0.84 0.85 0.85 0.85 0.84 0.85 0.83 0.85 0.84 0.86 0.84 0.85
Recallmicro 0.85 0.85 0.85 0.86 0.85 0.85 0.84 0.86 0.85 0.86 0.85 0.86

F-measuremicro 0.84 0.85 0.85 0.85 0.84 0.85 0.83 0.86 0.84 0.86 0.84 0.85
F-measuremacro 0.75 0.74 0.75 0.74 0.73 0.74 0.73 0.75 0.74 0.75 0.74 0.74

TABLE 5.9: Class-Wise Accuracy contribution (%) on #Micropost2015 of L2A model and
baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XE) SVMmean (XP_E)
Character 0.00 0.96 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.48
Event 0.00 1.14 0.30 1.20 1.20 0.00 0.00 0.00 0.06 0.54 0.66 1.14
Location 24.76 26.69 20.72 26.45 26.45 26.20 27.71 26.27 27.59 27.41 22.11 27.59
Organization 11.63 11.63 11.02 15.24 15.30 17.71 17.59 17.65 17.47 17.11 13.61 19.58
Person 27.29 27.29 22.11 25.30 25.30 27.47 27.05 26.99 26.99 26.75 23.86 29.88
Product 2.35 2.35 1.57 1.02 1.02 2.05 2.71 1.99 2.11 2.35 3.43 4.82
Thing 0.66 0.66 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.63 1.02
Overall 66.69 70.72 57.77 69.22 69.28 73.43 75.06 72.89 74.22 74.16 65.24 85.12

TABLE 5.10: Class-Wise Accuracy contribution (%) on #Micropost2016 of L2A model and
baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XE) SVMmean (XP_E)
Character 0.00 0.63 0.27 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.33 0.30
Event 0.00 2.70 1.76 2.26 0.20 0.67 1.53 0.63 2.26 2.30 3.20 3.26
Location 29.77 32.77 27.34 32.93 34.43 32.13 33.97 31.90 33.63 33.83 34.47 34.87
Organization 8.72 8.72 8.23 11.92 11.29 13.22 11.92 13.55 13.32 13.39 13.79 14.82
Person 25.31 25.31 20.38 23.34 25.94 25.34 26.04 24.98 25.37 24.94 27.41 27.91
Product 2.00 2.00 1.23 1.47 0.13 1.80 1.67 1.96 1.90 1.96 2.83 2.96
Thing 0.50 0.50 1.76 0.10 0.13 0.00 0.03 0.00 0.13 0.30 1.73 1.83
Overall 66.30 72.63 60.97 72.03 72.13 73.16 75.16 73.03 76.66 76.72 83.75 85.95

supremacy of SVM model is even more unequivocal. Moreover, using the mean aggregation

function leads to the best results for both datasets, except for the Precisionmicro of #Microp-

ost2016 (by only 1 point percentage). These results have further motivated the choice of SVM-

mean as the best performing model considering Word Embeddings representation.

Following these considerations, the next evaluation step refers to the comparison of L2A, con-

sidering the best model configuration (i.e. SVM as Machine Learning model, mean as aggrega-

tor method and GoogleNews pretrained model as Word Embeddings model), with the baselines

and all the considered Machine Learning models on the probability distribution in the source

ontology (Tables 5.9 and 5.10).

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 70

TABLE 5.11: Precision, Recall, F-Measure and STMM on #Micropost2015 of L2A model and
baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XE) SVMmean (XP_E)
Precisionmicro 0.73 0.77 0.78 0.75 0.75 0.69 0.70 0.69 0.71 0.71 0.65 0.85
Recallmicro 0.67 0.71 0.58 0.69 0.69 0.73 0.75 0.73 0.74 0.74 0.65 0.85
F-measuremicro 0.68 0.72 0.65 0.70 0.70 0.71 0.73 0.70 0.72 0.72 0.65 0.85
F-measuremacro 0.38 0.62 0.46 0.38 0.39 0.38 0.40 0.38 0.42 0.43 0.57 0.75

TABLE 5.12: Precision, Recall, F-Measure and STMM on #Micropost2016 of L2A model and
baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XE) SVMmean (XP_E)
Precisionmicro 0.72 0.78 0.79 0.73 0.72 0.71 0.72 0.71 0.75 0.75 0.84 0.86
Recallmicro 0.66 0.73 0.61 0.72 0.72 0.73 0.75 0.73 0.77 0.77 0.85 0.86
F-measuremicro 0.68 0.74 0.68 0.72 0.72 0.71 0.73 0.71 0.75 0.75 0.84 0.86
F-measuremacro 0.37 0.61 0.49 0.44 0.44 0.42 0.45 0.42 0.50 0.51 0.74 0.75

It can be easily noticed that all the L2A configurations are able to achieve good adaptation per-

formance in terms of global Accuracy. Lower Accuracy contributions by L2A can be observed

for the entity types Character and Thing. This can be caused by the low number of training

instances available for Character (1.27% in #Microposts2015 and 0.99% in #Microposts2016

dataset) and for Thing (2.35% in #Microposts2015 and 2.30% in #Microposts2016 dataset) that

does not allow any algorithm to provide remarkable contributions to the total Accuracy.

Except for few cases in #Microposts2015, the consideration of a joint input space XP_E leads

to the best Accuracy results, further demonstrating that taking into account the probability dis-

tribution and the Word Embeddings representation is the winning strategy for the investigated

adaptation problem. This behavior can be motivated by the fact that, while the embedded repre-

sentation is capable of extracting underlying factors of the named entities, these are not sufficient

on their own, but they can bring a great advantage on enhancing the mere probability distribution

vector, resulting in significantly better performance.

Analyzing the adaptation results of L2A from a qualitative point of view, it is interesting to

highlight that the model is able to correctly re-classify the target types of entity mentions that

have been misclassified, i.e. those mentions which would have been cast to incorrect target types

due to wrong predictions given by the T-NER system. For example, “iPhone” was classified as

a Company by T-NER (which would lead to the type Organization using manual mappings),

while L2A correctly re-classifies this entity mention as a Product. As another example, “Ron

Weasley” (a character in Harry Potter movies/books) was misclassified as Band by T-NER,

while L2A correctly re-classifies it as a Character. In the latter case, L2A was able to assign

the correct type among the two possible types defined according to fork mappings. Although

there are very few instances in the training sets for the target types Character and Event and the

performance of L2A is not very high are terms of Accuracy contribution, the proposed approach

seems to be promising.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 71

Tables 5.11 and 5.12 compare the performance of the proposed approach with respect to dif-

ferent input space configurations with the baselines in terms of Precisionmicro, Recallmicro,

F-measuremicro and F-measuremacro.

As expected, the deterministic baseline (BL-D) achieves good performance in terms of

Precisionmicro, but low results of Recallmicro. In fact, BL-D is accurate when labeling men-

tions thanks to the deterministic mapping, at the expenses of Recallmicro. Also in this case, it

can be easily noted that using SVM over the joint input space XP_E significantly outperforms

the baselines and the other L2A configurations both for the #Microposts2015 and #Microp-

osts2016 datasets. These experiments show that the proposed approach provides significant

results with respect to all the considered performance measures and obtains a balanced contri-

bution of Precisionmicro and Recallmicro. Moreover, L2A drastically improves the Recallmicro

measure. This is likely due to its ability to learn how to map the initial hypothesis given by

T-NER to a new target type, adapting type mentions that were previously misclassified.

Capabilities Evaluation Beyond the classic performance evaluation measures, several capa-

bilities have been measured with respect to the three issues stated in Section 5.1.1, i.e. mention

misclassification, type uncertainty and fork mapping. These capability measures are described

as follows:

1. Mention Misclassifications Correctly Mapped (MMCM): this measure indicates the

percentage of entity mentions that T-NER has wrongly classified and L2A is able to cor-

rectly map according to the target ontology. For the considered experimental set, in the

training sets for #Micropost2015 and #Micropost2016, T-NER has wrongly classified 524

and 921 entity mentions respectively.

2. Type Uncertainty Correctly Mapped (TUCM): this measure denotes the percentage of

uncertain entity mentions that L2A correctly maps in the target ontology. To compute this

measure, a mention ti has been defined as an uncertain mention when it has a low gap

between probability distribution over different types. More formally, ti is considered as

uncertain if:

P(ti,yTj)−P(ti,yTk)≤ αU ∀ j 6= k (5.14)

where αU is a parameter that has been experimentally determined as equal to 0.2. The

number of mentions that have been recognized as uncertain in the training sets are 59 for

#Micropost2015 and 109 for #Micropost2016.

3. Fork Mappings Correctly Resolved (FMCR): this measure represents the percentage

of mentions of a type defined as fork mappings (i.e. Event, Location, and Character) that

have been correctly classified by L2A. According to the training sets, the number of men-

tions that fall under this category is 50 for #Micropost2015 and 145 for #Micropost2016.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 72

TABLE 5.13: Capabilities performance measures on #Micropost2015 of L2A model and base-
lines.

Baselines L2A
Entity Type BL-P1 BL-P2 MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XP_E)
MMCM 2.67 19.00 35.88 25.57 36.07 34.92 64.50
TUCM 15.25 27.29 57.63 42.37 45.76 45.76 76.27
FMCR 25.96 22.10 26.19 25.00 28.57 40.48 63.10

TABLE 5.14: Capabilities performance measures on #Micropost2016 of L2A model and base-
lines.

Baselines L2A
Entity Type BL-P1 BL-P2 MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XP_E)
MMCM 4.67 18.26 32.03 24.00 40.50 39.52 64.71
TUCM 14.68 24.53 53.21 31.19 56.88 52.29 76.15
FMCR 34.00 32.17 48.67 28.52 57.41 58.94 78.33

The results are shown in Tables 5.13 and 5.14, where the most successful models have been

considered. Among the baselines, the deterministic one (BL-D) has been discarded because its

capability performance always amount to zero scores since it mimics a fixed manual mapping

a priori defined. This means that if an entity mention is incorrectly classified in the source

ontology, it will always be mapped to the corresponding (incorrect) class in the target ontology.

For instance, if the mention “Paris” is incorrectly classified by T-NER as Movie (whereas its

correct type is Location), BL-D will map Paris to Product, providing no improvement for the

MMCM capability. The same reasoning is applicable also for TUCM and FMCR capabilities.

The first consideration that can be derived from the capabilities performance results is that,

once again, SVM over the joint space is performing considerably better for all the considered

measures. Secondly, it can also be observed that, in most cases, the results on #Microposts2015

set are worse than the ones on #Microposts2016. This is due to the fact that the number of

entity mentions available for training L2A in the #Microposts2016 are about twice as much than

in #Microposts2015 (as stated in Section 5.1.1.2). In other words, the higher the number of

mentions that L2A can use to learn the correct mappings, the better the capabilities will be.

Furthermore, in order to better understand the poor results of FMCR, a detailed investigation has

been conducted on the predictions of the Machine Learning models. For #Microposts2015, the

number of mentions involved in a fork mapping is 50 (21 for the entity type Character and 29 for

the entity type Event). Given the low frequency of these entity types in the dataset (note that the

entity types Location, Person and Organization are composed of more than 400 instances each),

it is very difficult for a Machine Learning algorithm to learn how to recognize their presence.

On the other hand, in #Microposts2016, there are 145 entities involved in a fork mapping: 30

entities are Character and 115 Event. The results in terms of FMCR are promising but, following

the previous intuition, the performance increase is mainly due to correctly classified instances

for the entity type Event, while only a few instances of the type Character have been correctly

identified.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 73

From the presented results it is possible to conclude that the use of Word Embeddings can

strongly improve the performance, both in terms of traditional measures and capabilities, on

the task of adapting trained NER systems to new ontologies. The best adaptation abilities have

been obtained by jointly consider as input space the Word Embeddings of the named entities and

the probability distribution over the source ontology, and by using Support Vector Machines as

Machine Learning classifier. As future works, it would be interesting to specifically train Word

Embeddings models on corpora where the ontology type class is provided for the named entities,

for example by exploiting the Wikipedia pages structure. Moreover, additional experiments over

different and more specialized corpora (e.g. medical) are planned.

5.1.1.4 Related Works

To the best of our knowledge, this is the first work aimed at addressing the problem of automat-

ically adapting entity mention types given by a NER system, trained on a source ontology, to

comply to a new ontology. Manual mappings have been used to bridge the gap between NER

systems using different ontologies [110]. When many-to-one mappings are used, which means

that one source type is mapped to at most one target type, and when the source classification is

reasonably accurate, manual mappings may achieve a good performance. However, in contexts

such as microblogging platforms, where generic ontologies are used for the classification and

pretrained NER systems are affected by the dynamics of new upcoming entities, these mappings

have several limitations (as discussed in the previous sections).

The problem of adapting NER models has been recently investigated in the context of formal

text [128, 129]. While the proposed model aims to adapt two different generic ontologies that

can be used independently from the domain (given their generic nature), several state of the

art approaches have been introduced to adapt NER models trained on specific ontologies to

adapt to new domains. Arnold et al. [130] proposed an approach for domain adaptation able

to learn a domain-independent NER base model, which can be adapted to specific domains.

Furthermore, in [131] the authors presented a NER rule-based language which is further used

for building domain-specific rule-based NER systems. A recent transfer-learning based method

has been proposed in [114] for adapting a NER system from a source (medicine) domain to a

target domain by using a linear chain CRF model which learns domain-specific patterns based

on the correlations between the source and target entity types.

Another difference from these studies regards the considered environment, as they do not tackle

the problem in a microblogging context where the language used by the users can vary signifi-

cantly and new entities can emerge frequently.

Finally, marginally related to the presented investigation, it is possible to find Machine Learn-

ing methods applied to Ontology Matching [132–134] in literature. Textual annotation and

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 74

re-classification statistics have been also proposed in [135] in order to semantically interpret

class-to-class ontology mappings. However, these approaches have been based on collecting

feedback on class-to-class mappings in order to improve ontology alignments.

5.2 Named Entity Linking

A follow-up step to Named Entity Recognition and Classification is Named-Entity Linking
(NEL), which is the task of determining the identity of entities mentioned in a textual document.

Sometimes is also called Named-Entity Disambiguation or Named-Entity Normalization.

This task can be of great importance in many fields: it can be used by search engines for disam-

biguating multiple-meanings entities in indexed documents or for improving queries precision,

as named entities are averagely present in 70% of cases [136]. NEL systems can also be used in

combination with other Natural Language Processing systems, such as Sentiment Analysis, for

the generation of additional knowledge to describe users preferences towards companies, politi-

cians, and so on. Since NEL systems should cover the widest possible number and variations

of named entities, several studies investigate user-generated content as source data, in particular

messages originated from users in micro-blogging platforms such as Twitter. Due to its dynamic

and informal nature, Twitter provides its users an easy way to express themselves and commu-

nicate thoughts and opinions in a highly colloquial way. This, in addition to the limitation of

characters, induces the users to use abbreviations, slangs, and made-up words increasing the

difficulty in recognizing and disambiguating the involved named entities.

The common NEL process typically requires annotating a potentially ambiguous entity mention

with a link to global identifiers with unambiguous denotation, such as Uniform Resource Identi-

fier (URI) in Knowledge Bases, describing the entity. Popular choices for the KB is Wikipedia,

in which each page is considered as a named entity, or DBpedia, which is used as structured

background knowledge in many NEL systems. An example of a sentence processed for the

Named Entity Linking task is shown in Figure 5.5. In this example, the mention @EmmaWat-

son is correctly linked to the actress. A more difficult case regards the word hermione as it can

assume very different meanings, e.g. the name of an autobiographical novel, a common given

name or the character of the movie Harry Potter.

Beyond the issues previously introduced for NER, an additional problem is represented by the

fact that the same entity could have multiple surface forms. An example could be the named

entity USA also referred as America, US, United State of America, and United States. It is also

important to consider that some words recognized by NER systems might not have a corre-

sponding description in the KB, these words are referred as Out of Vocabulary (OOV) words.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 75

These problems need to be addressed by any NEL as they are very common and could decrease

the overall performance.

FIGURE 5.5: Example of a sentence processed by Named Entity Linking.

The next section introduces the proposed unsupervised Named Entity Linking system for user-

generated content. The core advancement of the model concerns the use of Word Embeddings

models to obtain a common representation space for both words and named entities. The major-

ity of the state of the art solutions makes use of similarity measures based on the occurrence or

frequencies of words (e.g. hamming distance, character Dice score, etc.) to find, for each named

entity, the correspondent resource in the Knowledge Base. Differently, the use of Word Em-

beddings representation will provide more meaningful high-level similarity relations between

named entities and entries in the Knowledge Base, resulting in expected increased results and

coverage.

5.2.1 Word Embeddings for Named Entity Linking

The most challenging factor typically faced when performing the Named Entity Linking task

over user-generated content is related to the language of Web 2.0. While good results have

been obtained on news articles or other well-written contents [137, 138], the achievement of

equally accurate results for social media content is still a long way off [139]. However, the rich

information provided by these data sources has received a lot of attention, driving both industrial

and scientific community to develop automatic Information Extraction process.

This section introduces the model proposed in [140] for the exploitation of Named Entity Link-

ing task in a micro-blogging environment. The proposed approach makes use of Word Em-

beddings models to produce a dense real-valued representation of words and KB resources,

improving the semantic similarity of the input and desired output of NEL systems. Moreover,

the proposed methodology has been integrated in a real-time system for the analysis of user-

generated content. This system is described in Appendix A.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 76

Most of the approaches in literature are based on surface form similarity between the words

composing named entities and the unambiguous units identified as KB resources. However,

these solutions are subjected to errors when dealing with microblogs posts, which are richly

characterized by misspelling, abbreviations, and other noisy forms of text. Using the joint repre-

sentation obtained with Word Embeddings models, the similarity measure will gain on semantic

expressiveness resulting in a more accurate discrimination of the entities. Let us consider the

(a) Bag-of-words representation.

(b) Word Embeddings representation.

FIGURE 5.6: Example of Named Entity Linking similarity computation.

tweet “@EmmaWatson no1 can play hermione better than u” and in particular the case of link-

ing the entity mention “hermione”. This ambiguous named entity can be disambiguated and

consequently associated with several possible unambiguous entity candidates (e.g. with respect

to DBpedia), comprising the correct one related to the character of Hermione Granger. Figure

5.6 reports two possible scheme representations, one using the common text representation bag-

of-words and the other using the more meaningful textual distributional representation of Word

Embeddings. The numbers in the boxes represent the numerical vector representation associated

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 77

with the text, i.e. the tweet text on the left and the textual description of the candidate KB re-

sources on the right. The use of bag-of-words representation has been reported in Figure 5.6(a),

highlighting in light blue the presence (1) of the word “hermione” in each box. It is possible to

note that the bag-of-words representation is very sparse, resulting in a noisy similarity measure

which corresponds to 0.00021 with respect to the correct KB resource. Otherwise, the repre-

sentation derived from Word Embeddings models (Fig. 5.6(b)) permits to correctly rank as first

the correct KB resource (Hermione Granger) with a similarity score of 0.535, as it provides a

metric that better expresses the semantic properties for words and entities and consequently the

similarity between them.

Following, the proposed model for the exploitation of Word Embeddings representation is de-

scribed in Section 5.2.1.1. Then, Section 5.2.1.2 describes the developed framework, giving an

overview of all the module components. The evaluation results on three benchmark datasets are

reported in Section 5.2.1.3. Finally, Section 5.2.1.4 provides an overview of the state of the art

approaches.

5.2.1.1 Representation and Linking model

The task of Named Entity Linking (NEL) is defined as associating an entity mention ti ∈ ΩT ,

where ti = {wi
1, . . . ,w

i
n}, with an appropriate KB candidate resource k j from a set of candidate

resources K = {k1,k2, · · · ,knk}.

The main contribution consists in creating a Word Embeddings model that is able to learn a

heterogeneous representation space where similarities between KB resources and words can be

compared. In particular, given a Word Embeddings training set composed of a large but finite

set of words denoting a vocabulary V and the set ΩE of KB resources, the Word Embeddings

model can be expressed as a mapping function C′ : Γ→ Rm with Γ =V ∪ΩE . In this way, the

embedding function will be trained on a heterogeneous space of KB resources and words, by

ensuring the possibility of inferring the embedded representation from the same model. More

details about the training data of Word Embeddings are given in Section 5.2.1.3.

Given an entity ti and a KB resource k j, the similarity function sC can be written as:

sC(ti,k j) = sim(C′(ti),C′(k j)), (5.15)

where sim, in this study, corresponds to the cosine similarity.

Given an entity ti, the candidate resource set K is created by taking the top-nk KB resources k j

ranked by the similarity score sC(ti,k j). The predicted KB resource k∗ is then the k j with the

highest similarity score. If K is an empty set, ti is considered as a NIL entity.

It is worthy to consider the case of multi-word named entities, i.e. entities composed by two

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 78

or more words, defined as ti = {wi
1, . . . ,w

i
n}. Since words can be considered as point in an m-

dimensional feature space, the top-nk similar KB resources will be the set K that minimizes the

distance between k j and all the entity mention words.

5.2.1.2 Experimental Settings

FIGURE 5.7: Pipeline of the proposed Named Entity Linking framework.

For performing the experiments, the system proposed in Figure 5.7 has been implemented ,

starting from the input named entities (extracted by a NER system from user-generated content)

to the output (KB resources). Following, each module of the pipeline is described for a broader

understanding.

Model Training In order to obtain a Word Embeddings model able to map both words and

KB resources in the same representation space, its training process has been performed over a

corpus that comprises both of them. For this reason, the most recent dump of Wikipedia (at the

time of writing) has been considered as the training set. The structure of a Wikipedia article

fits well the model’s needs since an entity can be directly associated with the corresponding

Wikipedia article title. The following snippet reports a sentence from the Wikipedia page of

Harry Potter and the Philosopher’s Stone related to the character of Hermione Granger.

“... he quickly befriends fellow first-year Ronald Weasley and Hermione Granger ...”

In this sentence it is possible to identify two named entities (Ronald Weasley and Hermione

Granger) that, thanks to the favorable article structure, are represented as a link to

their Wikipedia articles which corresponds to https://en.wikipedia.org/wiki/Ron Weasley and

https://en.wikipedia.org/wiki/Hermione Granger respectively. The training corpus is then

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 79

obtained by merging and processing all the Wikipedia articles by specifically identify-

ing each KB resources with the tag “KB ID/” that corresponds to the article links (e.g.

“KB ID/Hermione Granger”). After this process, the previous sentence will result as:

“... he quickly befriends fellow first-year KB ID/Ron Weasley and

KB ID/Hermione Granger ...”

Then, the Skip-Gram model detailed in Section 4.1.3 has been used as effective Word Embed-

dings model for learning the function C′ : Γ→ Rm.

Given a sequence s1, . . . ,snT containing words and KB resources, the objective function of the

Skip-gram model is defined as:

LSkip−gram =
1

nT

T

∑
i=1

∑
−k≤ j≤k, j 6=0

logP(si+ j | si) (5.16)

where si ∈ {s1, . . . ,sT} and nT is the sequence length.

Given the large amount of data comprised in the Wikipedia dump, the processing and the learn-

ing process of the Skip-Gram model have been performed using the efficient Wiki2Vec tool

[141], a software developed using Scala, Hadoop, and Spark that processes a large amount of

text and makes it usable for our requirements. Regarding the Knowledge Base choices, it is

important to mention that, given the large amount of publicly available information particularly

suitable for the proposed model, Wikipedia has been used for training the Word Embeddings

model. Analogously to what has been done in numerous studies and organized challenges in

the state of the art [117, 125], DBpedia has been used as structured background knowledge for

the the Named Entity Linking process. Nevertheless, since DBpedia is a a large-scale Knowl-

edge Base built by extracting structured data from Wikipedia [142], there is a correspondence

between the entities included in these two KBs.

Preprocessing Since the input entity mention is originated from a microblog post, it is ex-

pected to increase the number of correctly linked named entities by performing textual prepro-

cessing because of its noisy nature. Common preprocessing involves capitalization solving and

typographical error correction, such as missing spaces or wrong word separators. Moreover, for

improving the retrieval performance, some query expansion techniques have been adopted, i.e.

appending the “KB ID/” token before the named entity.

Candidates Generation, Ranking and NIL Prediction As presented in Section 5.2.1.1, the

candidate generation process is performed by computing a similarity measure between the entity

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 80

mention ti and all the words or resources present in the Word Embeddings training set. As for

any NNLM, the fundamental property is that semantically similar words have a similar vector

representation. Given an entity mention ti, the model returns the candidate resource set K com-

posed of the top-nk similar KB resources or words ranked by the similarity measure sC, from

which only the KB resources k j are extracted.

The candidate resource set can be further reduced by considering the ontology type initially

inferred by a given NER model. In particular, this reduction has been performed by considering

only the KB resources k j that have the same ontology type of the named entity ti. While the

ontology type of k j can be obtained by querying the Knowledge Base, the one of ti can be

inferred with a given NER model4.

Finally, the candidate k∗ that has the highest similarity score compared to the entity ti is selected

as the predicted KB resource.

In the proposed system, an entity mention ti has been considered as a NIL entity, if either the

similarity between ti and the predicted resource k∗ is lower than a threshold or ti is not present

in the Word Embeddings training set.

5.2.1.3 Experimental Results

This section discusses the datasets and the performance measures involved in the evaluation of

the proposed NEL system.

Datasets The datasets adopted for the system evaluation are the same as the ones used in

Section 5.1.1.2, i.e. #Microposts2015 and #Microposts2016 datasets divulgated by the Making

Sense of Microposts challenge [117]. Moreover, a dataset of Twitter posts in the Italian lan-

guage, as promoted by the NEEL-IT challenge organized by EVALITA [143], has been also

considered. In this study, all the datasets provided by the challenges (i.e. Training, Test, Dev)

have been used to perform the evaluation.

In Table 5.15, several statistics for both English and Italian micropost challenge datasets are

reported. The tables contain the total number of entities, the number of linkable entities, and the

number of NIL entities.

Performance Measures The performance measures commonly used to evaluate NER systems

have the same terminology as the ones presented for Named Entity Classification task but with

4In the experimental investigation, the considered NER model is the one proposed by Ritter et al. [109], which
has been specifically designed for dealing with user-generated content.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 81

TABLE 5.15: Datasets statistics.

#Micropost2015 #Micropost2016

Entities # Linkable
Entities

NIL Entities # Entities # Linkable
Entities

NIL Entities

Training 4016 3565 451 8665 6374 2291
Dev 790 428 362 338 253 85
Test 3860 2382 1478 1022 738 284

EVALITA NEEL-IT 2016

Num Entities Linkable Entities NIL Entities

Training 787 520 267
Test 357 226 131

a slightly different meaning. NEL systems are evaluated using Strong Link Match (SLM) [117].

Given the ground truth (GT), a pair < ti,k
j
i > can be considered as:

• True Positive (TP): if the system correctly recognizes the link of the entity.

• False Positive (FP): if the link recognized by the system is different by the one in the GS.

• True Negative (TN): if the link is not recognized by the system and in the GS. In this case

the link is NIL.

• False Negative (FN): if the system recognizes the entity, but the entity is not recognized

by the GS. In other words, the system returns NIL but the GT has a link.

Using these definitions, the following performance for the SLM score, i.e. Precision, Recall

and F-measure, can be defined as presented in Section 5.1.1.2 by Equations (5.3) – (5.6). In

addition, NEL systems usually measure the NIL Score, as the equivalent to the Recall for the

NIL labeled entities.

Experimental Evaluation In this section, the results achieved by the proposed approach are

introduced, analyzed and presented showing the impact of the different pipeline components

on the performance measures. In particular, the system has been investigated by considering

three different configurations: without preprocessing, with preprocessing and by including the

ontology type into the candidate generation process.

Finally, a comparison with the available state of the art approaches is discussed.

Results In Tables 5.16, 5.17, and 5.18, the results of the proposed approach without prepro-

cessing for both English and Italian challenges are shown. As it is possible to notice, the results

are promising, achieving an overall F-measure of 40%.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 82

TABLE 5.16: Results for #Micropost2015 without preprocessing.

SLM scores for #Micropost2015

Precision Recall F-measure NIL Score

Training 0.4604 0.5186 0.4877 0.7472
Dev 0.2265 0.4182 0.2939 0.8895
Test 0.3370 0.5417 0.4168 0.8748

TABLE 5.17: Results for #Micropost2016 without preprocessing.

SLM scores for #Micropost2016

Precision Recall F-measure NIL Score

Training 0.3840 0.5221 0.4425 0.8520
Dev 0.3461 0.4624 0.3959 0.8235
Test 0.2563 0.3550 0.2977 0.8380

TABLE 5.18: Results for NEEL-IT 2016 without preprocessing.

SLM scores for EVALITA NEEL-IT 2016

Precision Recall F-measure NIL Score

Training 0.2477 0.3750 0.2983 0.6779
Test 0.2380 0.3761 0.2915 0.5954

In order to deal with the variety of problems related to the language register of Web 2.0, the

preprocessing step has been performed. The results are reported in Tables 5.19 and 5.20.

As expected, all the performance measures have been increased of 10%-15% with respect to

previous experimental settings. An example of correctly linked entity mention after prepro-

cessing is “f1”: in the baseline experiment it has been labeled with the wrong link “dbpe-

dia.org/resource/Family 1”, while, if properly capitalized in “F1”, the result is the correct link

“dbpedia.org/resource/Formula One”. Another example for the Italian dataset (Table 5.21) re-

gards the entity “FEDEZ”, an Italian singer, that has been linked to a NIL entity in the baseline.

By performing the capitalization resolution, the model is able to correctly link the entity to

“dbpedia.org/resource/Fedez”.

In spite of the overall performance improvements, for some entities, the preprocessing module

associates erroneous links that were correctly given by the baseline method. An example is the

entity “repubblicait”, from Italian tweets, which is the account of an Italian newspaper called

“La Repubblica”, that after the preprocessing step is determined as NIL.

TABLE 5.19: Results for #Micropost2015 with preprocessing.

SLM scores for #Micropost2015

Precision Recall F-measure NIL Score

Training 0.53 0.60 0.56 0.72
Dev 0.28 0.53 0.37 0.87
Test 0.40 0.65 0.50 0.86

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 83

TABLE 5.20: Results for #Micropost2016 with preprocessing.

SLM scores for #Micropost2016

Precision Recall F-measure NIL Score

Training 0.45 0.61 0.52 0.84
Dev 0.53 0.71 0.61 0.78
Test 0.43 0.59 0.50 0.82

TABLE 5.21: Results for NEEL-IT 2016 with preprocessing.

SLM scores for EVALITA NEEL-IT 2016

Precision Recall F-measure NIL Score

Training 0.3100 0.4692 0.3733 0.6479
Test 0.2689 0.4247 0.3293 0.6183

Another investigated experimental setting consists of considering the ontology type of the entity

mention in the candidate generation process, taking advantage of the preprocessing step. The

ontology type can be obtained by performing a type classification with a Named Entity Recog-

nition and Classification method. It is expected that considering the ontology type of entity

will help the linking process. For instance, given the entity mention “Paris”, the corresponding

inferred type Person will contribute to link “Paris” to the celebrity Paris Hilton, instead of the

France capital. The achieved results are shown in Tables 5.22, 5.23, and 5.24.

TABLE 5.22: Results for #Micropost2015 with preprocessing and considering entity types.

SLM scores for #Micropost2015

Precision Recall F-measure NIL Score

Training 0.5333 0.6008 0.5650 0.7184
Dev 0.2860 0.5280 0.3711 0.8729
Test 0.4015 0.6507 0.4966 0.8626

TABLE 5.23: Results for #Micropost2016 with preprocessing and considering entity types.

SLM scores for #Micropost2016

Precision Recall F-measure NIL Score

Training 0.4520 0.6145 0.5209 0.8358
Dev 0.5355 0.7154 0.6125 0.7764
Test 0.4015 0.6507 0.4966 0.8626

TABLE 5.24: Results for NEEL-IT 2016 with preprocessing and considering entity types.

SLM scores for EVALITA NEEL-IT 2016

Precision Recall F-measure NIL Score

Training 0.3672 0.5557 0.4422 0.6479
Test 0.3165 0.5000 0.3876 0.6183

Differently from the expectations, with the introduction of the entity types, the performance

have barely improved with respect to the configuration with only preprocessing (Tables 5.19,

5.20 and 5.21). From a practical point of view, this behavior can be justified by the fact that the

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 84

candidate resources k j of an entity mention ti are mostly related to the same ontology class, do

not providing any additional discriminative information, e.g. the most similar entities to a birth

name will very likely be of type Person.

A small improvement in terms of F-measure can be observed when the candidate list is com-

posed of resources with different ontology types. An example is the entity mention “In-

terstellar”: the first match of the system based only on the preprocessing step is “dbpe-

dia.org/resource/Interstellar travel”, while including the entity type Product gives the correct

resource “dbpedia.org/resource/Interstellar (film)”.

State of the art comparison This section presents a comparison between the proposed NEL

system and the current state of the art solutions. Tables 5.25 and 5.26 report a comparison of

the proposed approach with the state of the art (only those approaches providing individual re-

sults for the specific NEL task have been considered). From the results, it is possible to notice

that the proposed system (UNIMIB-WE) has comparable performance to the top performant

systems proposed at #Micropost challenges. In the #Micropost2015 challenge UNIMIB-WE

places in the third position, close to the solution proposed by Acubelab [144] in second place.

In the 2016 edition, UNIMIB-WE achieves the second place, with 60% of F-measure. The main

reason why the proposed system is overcome by KEA [145] regards the specific optimization

that this model has performed on the challenge dataset, in fact this domain-specific optimization

process induced an increase of 40% in terms of F-measure compared to the not optimized ver-

sion. Similarly, the Ousia [146] model beyond the exploitation of an ad-hoc acronym expansion

dictionary, is a supervised learning approach.

In spite of the better-achieved results, these models have the main problem of limited generaliza-

tion abilities and the need of a manually label dataset, which is very expensive in terms of human

effort. Differently, the proposed NEL system does not need any supervision or labeled dataset

and, given the wider range of named entities that can cover, it provides good generalization

abilities to other domains.

Also for the EVALITA NEEL-IT challenge, Table 5.27 reports the results related to the partic-

ipants that provided the specific NEL performance. Regarding the comparison with the model

proposed in [147], UNIMIB-WE obtains similar performance in terms of F-measure, but they

differ in terms of Precision and Recall. UNIMIB-WE is less precise, but it has a higher Recall.

The same performance gap occurs when comparing with the sisinflab’s solution [148], in this

case, the higher Precision is due to the combined three different approaches they used in the

NEL system. They use DBpedia Spotlight for span and URI detection, DBpedia lookup for URI

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 85

generation given a keyword, and a Word Embeddings model trained over tweets with a URI gen-

erator. Both of these solutions use an ensemble of state of the art techniques, this gives them the

ability to overcome the problems of individual methods and achieve better overall performance.

TABLE 5.25: Comparison for #Micropost2015 sorted by F-measure.

#Micropost2015 Test set

Team Name Reference F-measure

Ousia [146] 0.7620
Acubelab [144] 0.5230

UNIMIB-WE [140] 0.5059
UNIBA [149] 0.4640

TABLE 5.26: Comparison for #Micropost2016 sorted by F-measure.

#Micropost2016 Dev set

Team Name Reference Precision Recall F-measure

KEA [145] 0.6670 0.8620 0.7520
UNIMIB-WE [140] 0.5295 0.7075 0.6057

MIT Lincoln Lab [150] 0.7990 0.4180 0.5490
Kanopy4Tweets [151] 0.4910 0.3240 0.3900

TABLE 5.27: Comparison for NEEL-IT 2016.

EVALITA NEEL-IT

Team Name Reference Precision Recall F-measure

FBK-NLP (train) [147] 0.5980 0.4540 0.5160
UNIMIB-WE (train) [140] 0.4231 0.6403 0.5095

UNIMIB-WE (test) [140] 0.3529 0.5575 0.4322
sisinflab (test) [148] 0.5770 0.2800 0.3800

As a conclusion, it is possible to state that the results obtained by the proposed model are very

promising, given the highly challenging environment of user-generated content over microblog-

ging platforms. This supports the evidence of Word Embeddings as providers of semantically

meaningful word representation. The model would certainly gain with the addition of a super-

vision procedure able to learn which module should be used with respect to the similarity score.

For instance, if the similarity score between “dbpedia.org/resource/La Repubblica (quotidiano)”

and “repubblicait” is higher than the one to “RepubblicaIT”, the capitalization module would

not be activated.

5.2.1.4 Related Works

The survey presented in [152] distinguishes the Named Entity Linking task in three different

steps:

• Candidate Entity Generation, which is aimed at extracting for each entity mention a set of

candidates resources;

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 86

• Candidate Entity Ranking, focused on finding the most likely link among the candidate

resources for the entity mention.

• Unlinkable Mention Prediction, which has the goal of predicting those mentions that can-

not be associated with any resource in the KB. This step corresponds to what has been

called so far as NIL prediction.

Candidate Entity Generation The candidate generation step is a critical subprocess for the

success of any NEL system. According to experiments conducted by Hachey et al. [153], a more

precise candidate generator can also imply improved linking performance.

In the literature, candidate generation techniques can be mainly distinguished in Name Dictio-

nary and Search Engine based methods. The former consists in constructing a dictionary-based

structure where one or more KB resources are associated with a given named entity (dictionary

key) based on some useful features available in the KB, such as redirect pages, disambiguation

pages, bold phrases, etc. [154–156]. Given an entity mention extracted from text, the set of its

candidate entities is obtained by using exact matching or partial matching with the correspond-

ing dictionary keys [145]. An alternative solution for Candidate Entity Generation is represented

by Search Engine based techniques, which make use of Web search engines for retrieving the

list of candidate resources associated with an entity mention [157–159].

Candidate Entity Ranking After the candidates’ extraction, the list of candidates should be

ranked in order to extract the most probable one. Most of the approaches are mainly based on

Machine Learning algorithms for learning how to rank the candidate entites [149, 160–162].

These approaches usually consider several features related to the named entity or the KB entry,

such as entity popularity, the ontology type extracted by NER systems and vector-based repre-

sentation of the context surrounding the named entity. Beyond Machine Learning models, it has

also been proved that the combination of different features can be useful for ranking the mention

candidates [163].

Unlinkable Mention Prediction An entity mention does not always have a corresponding

entity in the KB, therefore systems have to deal with the problem of predicting NIL entities

(unlinkable mentions). Some approaches [160] use a simple heuristic to predict unlinkable

entity mentions. If it is not possible to retrieve any candidate for an entity mention, then the

entity mention is unlinkable. Many NEL systems are based on a threshold method to predict the

unlinkable entity mention [164–169] . In these systems, each ranked candidate is associated to

a score and if the score is lower than a given threshold, then the entity mention is considered

a NIL. The NIL prediction can be also accomplished using approaches based on supervised

Machine Learning, such as binary classification techniques [154, 170].

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 87

As stated above, the candidate generation is a crucial part for any NEL task. The process of

generating the candidate resource set for a given entity mention is usually obtained by exact

or partial matching between the entity mention and the labels of all the resources in the KB.

However, these approaches can be error-prone, especially when dealing with microblog posts

that are rich in misspellings, abbreviations, nicknames and other noisy forms of text. In order

to deal with these issues, the proposed NEL approach has been defined to exploit a similarity

measure between the high-level representation of entity mentions and KB resources. These

meaningful and dense representation of entity mentions and KB resources has been obtained by

taking advantage of one of the most widely used neural network language models, i.e. Word

Embeddings [2], described in Section 4.1.

5.3 Sentiment Analysis

Sentiment Analysis (SA) is the research field which focuses on analyzing people’s opinions,

sentiments, evaluations, expectations, behaviors and emotions related to entities like products,

services, organizations, individuals, problems, events and their aspects [20].

As Social Media platforms have become a form of electronic word-of-mouth for sharing the

afore-mentioned different facets of user opinions, researchers from academia and companies

started to exploit them in order to extract innovative insights and to obtain a competitive advan-

tages for business [171]. As the definition of SA suggests, mining opinions about specific enti-

ties can be of great importance, broadening its impact beyond its traditional application [103].

For example, a company or a public figure, such as a politician, can be interest in knowing the

people’s opinion about its/his/her public image. It is then desirable that one would be able to

retrieve only specific messages, e.g. the Ford company would not be interested in messages

about the actor Harrison Ford, in the same way Obama would like to know the opinion about

the 44th President of the United States and not about his wife Michelle Obama.

Traditional approaches usually investigate the sentiment analysis problem as a supervised po-

larity classification task, where polarity refers to the commonly adopted definition of sentiment

as positive, negative or neutral. However, adopting supervised approaches for Social Media

user-generated content has to deal with several issues related to languages and domains. Since

the adopted writing style on Web 2.0 platforms is challenging and dynamic, it would be very

difficult to find manually labeled datasets constantly updated for referring to new sentiment ter-

minologies and implications. For example, the occurrence of an event can completely change

the language and the polarity of words, e.g. a scandal in politics. Another issue concerns the

generalization abilities, as supervised models are highly domain-dependent and usually achieve

poor performance over other domains [172]. Each domain can be characterized by specific

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 88

polarity-driven words that do not appear in other domains or have a different polarity orienta-

tion. For example, the word “unpredictable” can have a positive orientation if related to a book,

while it has a negative connotation if related to a car, as an “unpredictable car” suggests a vehicle

that has unexpected and dangerous behaviors. Therefore, a Machine Learning model trained to

classify the sentiment polarity on the textual reviews of Books may tend to erroneously classify

the sentiment of reviews regarding Cars.

This thesis presents an approach, introduced in [173], that addresses the problem of domain
adaptation for sentiment classification by combining Deep Learning and Ensemble Learn-
ing methods. While Deep Learning allows us to acquire a cross-domain high-level feature repre-

sentation, Ensemble Learning methods permits to reduce the cross-domain generalization error.

As presented in Chapter 3, the peculiarity of Deep Learning, and Representation Learning in

general, is its ability to identify and disentangle the underlying explanatory factors hidden in the

observed data. This property is crucial for increasing the generalization abilities, that in this

case corresponds to the ability to interpret words in their domain context. Indeed, in the pro-

posed approach, a Deep Learning architecture is used in order to extract the vector representa-

tion of natural language text. Then, since in Natural Language Processing there is no agreement

on which Machine Learning model is the best one for addressing the sentiment analysis task,

ensemble methods have been adopted for the classification purposes.

5.3.1 Deep Learning Representation and Ensemble Learning methods for Do-
main Adaptation in Sentiment Classification

The problem of domain adaptation is particularly relevant in Sentiment Analysis where one

has to make predictions on examples in a new domain with little or no available labeled data.

This is a common situation for user-generated content, where the amount of data is too large

to be manually handled. Consider for example a situation in which some product reviews are

available in one domain (e.g. Kitchen appliances), but the task is to predict user opinions on

products from a different domain (e.g. DVD). This implies that the feature (word) distribution

of the training set can be different from the feature distribution of the testing set. For instance,

the word “flat” can be considered differently in the context of Books or Electronics: a book

can be characterized by a “flat storyline”, while a “flat screen” is an electronic device. Domain

adaptation techniques are therefore applied to leverage the data available in the source domain

to improve the Accuracy of the model when testing in the target domain.

In order to deal with the problem related to different words distribution among source and tar-

get domains, Deep Learning and Ensemble Learning are combined to address the problem of

domain adaptation for Sentiment Analysis. In particular, the scenario where the testing target

domain is completely unlabeled has been considered.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 89

The following sections are organized as follows. Section 5.3.1.1 presents the proposed model.

Section 5.3.1.2 describes the experimental settings, detailing the evaluated dataset, the compared

models and the performance measures. Then, Section 5.3.1.3 shows the obtained experimental

results and comparison. Finally, Section 5.3.1.4 discusses some related works.

5.3.1.1 Deep Learning Representation and Ensemble Learning model

The domain adaptation problem arises when training instances are provided only for a source

domain S and not for a target domain T . The learning problem consists then in finding a func-

tion f that is able to transfer the knowledge from S to T .

In the proposed framework, the data have been treated as unlabeled (for both the source and

target dataset) in order to learn a common feature representation (meaningful across both do-

mains). Once the high-level representation has been obtained, Ensemble Learning models are

used for accomplishing the sentiment classification task.

Deep Learning In the recent literature, there has been an increasing number of investigations

on Deep Learning architectures for domain adaptation purposes. In this context, a particular

class of Artificial Neural Network, called Auto-encoder, plays a fundamental role for creating a

good representation across domains (Sec. 4.2).

The proposed framework makes use of the marginalized Stacked Denoising Auto-encoder
(mSDA) [36], presented in Section 5.3.1.1. This model has been chosen due to its abilities to

preserve the strong feature learning capabilities of SDA [37], while providing several gains in

terms of efficiency.

Ensemble Learning In Machine Learning, most of the domain adaptation approaches are

based on the classical statistical inference paradigm, where a single model (over a set of hy-

potheses) is selected to learn from the training data in the source domain and to make predic-

tions on the target domain data. This may lead to over-confident inferences and decisions that

do not take into account the inherent uncertainty of the natural language. Instead, the idea be-

hind an ensemble mechanism is to exploit the characteristics of several independent models by

combining them in order to achieve higher performance. When combining multiple independent

and diverse decisions, where each one is at least as accurate as random guessing, the effect of

random errors is reduced, resulting in a reinforcement of correct decisions [174]. To achieve

a good ensemble, two necessary conditions should be satisfied: Accuracy and prediction di-

versity. The strength of this technique in NLP tasks has been proved by several studies in the

literature [175–177].

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 90

In order to investigate the role of Ensemble Learning with respect to domain adaptation prob-

lems, several ensemble methods have been analyzed.

Concerning the paradigm “same learner type, different samples of source training data”, the

following ensemble models have been considered:

• Bagging [178]. Bagging is aimed at bootstrapping replicas of the training set to discrim-

inate the learner. Different training data subsets are randomly drawn (with replacement)

from the training dataset in the source domain, to finally induce several learners of the

same type.

• Boosting [179]. Boosting incrementally builds an ensemble by training each new model

to emphasize those instances of the source domain that the previous models have misclas-

sified.

• Random SubSpace [180]. The learner is trained on randomly chosen subspaces of the

original input space, then the relative outputs are combined.

Regarding the paradigm “different learner types, same sample of source training data”, the

most popular ensemble method has been considered:

• Simple Voting [181]. Simple Voting is characterized by a set of different learners induced

on the same training data.

All these models classify the target instances by considering the vote of each learner as equally

important and determine the final label by selecting the most popular prediction.

5.3.1.2 Experimental Settings

Dataset The proposed work evaluates the contribution of Deep Learning and Ensemble Learn-

ing methods for predicting the sentiment while investigating domain adaptation issues. The

benchmark dataset, called Amazon reviews1 [182], contains more than 340,000 reviews from

25 different types of products from Amazon.com. Following the convention of Glorot et al.

[85], the binary classification problem has been investigated to distinguish positive reviews (i.e.

reviews with a rate greater than 3) from negative ones (i.e. reviews with a rate lower than 3).

As in the work of Blitzer et al. [182], the experiments have been conducted by starting from

a bag-of-words representation characterized by the 5,000 most frequent terms of unigrams and

bigrams extracted from the text reviews.

To counter the effect of class- and size-imbalance, and to ensure a fair comparison with the state

of the art approaches, a more controlled and smaller dataset has been used. The final dataset

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 91

used for the experimental comparison contains reviews of four domains: books (B), DVDs

(D), electronics (E), and kitchen appliances (K). Each domain contains 2,000 labeled instances,

perfectly balanced between positive and negative reviews, and a large amount of unlabeled data.

Compared Models The baseline is a reference model trained on the bag-of-words space of

the source data and tested on the target data (without adaptation). In the following, the baseline

model is denoted with Baseline(learner), e.g. Baseline(SVM), which means that the Machine

Learning model between the brackets is the reference model. This baseline is useful for evalu-

ating the improvement of applying domain adaptation on models that are trained and tested on

different domains. Moreover, in order to evaluate if acquiring knowledge from other domains

can provide advantages, a linear Support Vector Machine (SVM) trained and tested on the bag-

of-words features of the same domain have been considered for comparison. This model has

been denoted as gold standard.

Table 5.28 reports the performance in terms of Accuracy of the gold standard model and the

Baseline(SVM) model. The first column lists the source domains (reporting the initials) and the

first row the target domains. Each cell (i, j) corresponds to the Accuracy of the model trained on

the source domain data (row i) and tested on the target domain data (column j). Since the gold

standard model is trained and tested on the same domain, the grey cells on the diagonal report

its performance. Hence, the remaining cells contain the results of the Baseline(SVM).

TABLE 5.28: Accuracy of the baseline and gold standard. Results achieved by the gold stan-
dard are reported in the diagonal, while the performance of the Baseline(SVM) are given in the

remaining cells.

B D E K
B→ 0.784 0.753 0.736 0.751
D→ 0.737 0.784 0.701 0.732
E→ 0.671 0.682 0.836 0.822
K→ 0.701 0.721 0.807 0.860

Regarding the Ensemble Learning methods, several learners have been considered: Naı̈ve Bayes

(NB) [183], Support Vector Machine (SVM) [184] , Voted Perceptron (VP) [185], Decision Tree

(DT) [186], Logistic Regression (LR) [187], K-Nearest Neighbor (KNN) [188] and Random

Forest (RF) [189]. All the considered ensemble methods, i.e. Bagging, Boosting, Random Sub-

space Method and Simple Voting, have been derived by taking advantage of the most promising

Deep Learning model (i.e. mSDA).

In order to compare the proposed framework, several state of the art models are considered, i.e.

Blitzer et al. [190], Glorot et al. [85] and Chen et al. [36].
1The dataset is available at https://www.cs.jhu.edu/˜mdredze/datasets/sentiment/

https://www.cs.jhu.edu/~mdredze/datasets/sentiment/

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 92

FIGURE 5.8: Accuracy of ensemble methods based on Decision Tree (DT).

Performance Measures The performance evaluation measures used in this Section are based

on the classification error defined as:

classification error =
FP+FN

TP+FP+TN+FN
(5.17)

It is now possible to estimate the following state of the art error metrics originally introduced in

[85] as:

• transfer error e(S,T), i.e. the classification error of a model trained on the source domain

S and tested on the target domain T ;

• in-domain error e(T,T), i.e. the classification error of a model trained and tested on the

target domain T ;

• gold standard error eg(T,T), i.e. the error obtained by the gold standard (linear SVM

trained and tested on the raw features of the target domain T);

Given the above-mentioned metrics, the following performance measures have been used for the

domain adaptation issue:

• Transfer loss: it denotes the difference between the transfer error and the gold standard

error, i.e.:

Ltransfer = e(S,T)− eg(T,T)

The lower the transfer loss is, the better the domain adaptation is.

• Transfer ratio: it represents the average proportion between the transfer error and the

gold standard error, i.e.:

Q =
1

#(S,T) ∑
(S,T)
S 6=T

e(S,T)
eg(T,T)

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 93

FIGURE 5.9: Accuracy of ensemble methods based on Support Vector Machines (SVM).

where #(S,T) denotes the number of source-target couples, such that S 6= T . Similarly to

transfer loss, a lower transfer ratio implies better domain adaptation abilities.

• In-domain ratio: the domain adaptation method adopted in this work creates a new fea-

ture representation for all the domains, including the source. Therefore, in-domain errors

of such methods are different from those of the gold standard. To this purpose, in-domain

ratio measures the average value of the rates between the in-domain error of a model and

the in-domain error of the gold standard, i.e.

I =
1
|T| ∑

T∈T

e(T,T)
eg(T,T)

where T denote the set of target domains.

Additionally to the domain adaptation evaluation measures, Accuracy (Eq. 5.3) has been com-

puted for understanding the prediction abilities of the ensemble models. Concerning the testing

policy, a 5-folds cross-validation has been performed.

5.3.1.3 Experimental Results

The first analysis relates to the contribution and comparison of ensemble methods. The per-

formance of the investigated ensemble paradigms, i.e. “same learner type, different samples

of source training data” and “different learner types, same sample of source training data”,

has been reported in Figures 5.8 and 5.9. In particular,the results of two meaningful learners

have been reported: DT is representative of all the classifiers (similar results have been obtained

by NB, VP, LR, KNN and RF), while SVM has shown outperforming results compared to the

others. The reasons may be related to the Machine Learning model interpretation of the input

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 94

FIGURE 5.10: Transfer losses on the Amazon benchmark of 4 domains: Kitchen (K), Elec-
tronics (E), DVDs (D) and Books (B).

space, since SVM has proved to remarkably deal with real-valued vectors, that is the repre-

sentation commonly obtained with Deep Learning. To support this statement, SVM is the best

performing model also for the evaluation of the proposed Word Embeddings based Learning To

Adapt method (Sec. 5.1.1.3).

The performance is presented in terms of Accuracy for Bagging, Boosting and Random Sub-

Space grounded on Decision Tree and Support Vector Machines, trained on the mSDA repre-

sentation (mSDA+ensemble). Similarly, the performance of Simple Voting trained on mSDA

feature space has been reported (mSDA+SV). For a further comparison, the baseline and the

single learner trained on the mSDA feature space have been also reported (i.e. mSDA+DT in

Figure 5.8 and mSDA+SVM in Figure 5.9).

As a general remark, it is possible to highlight that all the ensemble methods guarantee signif-

icant improvements compared to the single learner trained on the raw features (baseline) and

on the mSDA representation (mSDA+learner). An additional consideration relates to the com-

parison among the different ensemble paradigms. For all the source-target couples, mSDA+SV

outperforms all the other ensemble methods showing that learning heterogeneous models on the

same representation is better than learning one single model on different samples of the same

training data.

Since Simple Voting emerged as the most promising ensemble method compared to Bagging,

Boosting and RandomSubSpace, it has been used as the reference in the subsequent experiments.

In Figure 5.10, the transfer loss of SV and mSDA+SV has been compared to Baseline(SVM)

and the state of the art models, i.e. Blitzer et al. [190], Glorot et al. [85] and Chen et al. [36]. A

first consideration relates to the contribution that SV is able to provide with respect to Baseline

(SVM), that is the best baseline in our experimental investigation and the most used in the

literature. The results clearly highlight that an ensemble of different learners has a reduced

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 95

transfer loss than a single classifier (baseline). Indeed, SV outperforms the baseline for all the

12 transfer configurations.

A significant remark is concerned with mSDA+SV. From Figure 5.10 it is possible to note that

this model achieved the best adaptation in 11 out of 12 cases (the only exception is the adaptation

from K→ B where the original mSDA approach in Chen et al. [36] performs slightly better).

More specifically, the ensemble enclosed in mSDA+SV contributes more on those domains

where the original mSDA approach provides less information, i.e. D→ E with a transfer loss

decrease of 4.6 and B→ E with a transfer loss decrease of 3.5. In 9 out of 12 cases mSDA+SV

performed a negative transfer loss and, interestingly, our framework is the only one able to

generate a negative transfer loss in D→ E. This suggests that the Ensemble Learning trained on

a different domain can outperform the gold standard (the most accurate model based on SVM

trained on the same domain).

FIGURE 5.11: Transfer ratio on the Amazon benchmark.

FIGURE 5.12: The in-domain ratio versus transfer ratio.

The transfer ratio (Figure 5.11) provides a global measure to evaluate the average performance

over all source-target couples. The reported results further confirm the ability of the proposed

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 96

mSDA+SV to perform better adaptation than the state of the art methods. Moreover, the Simple

Voting method evaluated on the raw feature proved to be able not only to outperform the baseline

but also the Structural Correspondence Learning approach proposed by Blitzer et al. [190].

Figure 5.12 depicts the performance in terms of transfer ratio (where the training and testing set

are related to different domains) and in-domain ratio (where training and testing are performed

on the same domain). The results of the most promising domain adaptation techniques have

been reported. It can be easily noted that mSDA+SV is not only a promising solution for domain

adaptation, but it is also able to improve the in-domain recognition abilities.

As final remarks, the results obtained by the proposed method, in terms of several domain adap-

tation measures, show a good improvement compared to the most accurate state of the art ap-

proaches. This demonstrates the importance of jointly consider a high-level feature representa-

tion input space and ensemble models for obtaining good generalization abilities over different

domains. As future work, it would be interesting to further extend the concept of Ensemble

Learning to the different denoising layers of mSDA, since it is expected that they incorporate

marginally different latent factors of the input data.

5.3.1.4 Related Works

Different approaches have been proposed in the literature for addressing the problem of domain

adaptation for sentiment classification. To reduce the distribution gap between training and

testing data several approaches investigated instance weighting techniques [191–193], which

can be regarded as a generalization of semi-supervised learning methods. Basically, instance

weighting techniques assign instance-dependent weights to the loss function when minimizing

the expected loss over the distribution of data.

Another solution to domain adaptation is to create a novel representation of the source and tar-

get domains so that they represent the same joint distribution of observations and labels. Blitzer

et al. [190] presented Structural Correspondence Learning (SCL), a method to automatically

induce correspondences among features from different domains, while in [194] Daumé III pro-

posed a kernel-mapping function for mapping the data into a high-dimensional feature space,

where standard discriminative learning methods are used to train the classifiers.

More recent and effective approaches for Representation Learning are related to Deep Learn-

ing architectures, as introduced in Chapter 3. Deep Learning methods have demonstrated very

promising abilities for discovering meaningful intermediate representations of the data. The

work of Glorot et al. [85] proposed the exploitation of a Stacked Denoising Auto-encoder (SDA)

to learn robust feature representation. Later, Chen et al. [36] derived a variation of SDA called

marginalized Stacked Denoising Auto-encoder (mSDA) which adopts a greedy layer-by-layer

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 97

training of SDA. Differently from Glorot et al. [85], they used linear denoisers as the basic

building blocks, leading to a reduction of the computational costs in the parameter estimation

phase.

In most of the approaches investigated in the literature, both instance-based and feature-based

transfer learning, a single base learner is assumed. However, within the natural language pro-

cessing research field, there is no agreement on which model is the best: one learner could per-

form better than others in a given feature distribution, while a further method could outperform

the others when dealing with a given language or linguistic register. To this purpose, Ensemble

Learning could provide a leverage towards accurate predictions and robust models when dealing

with domain adaptation issues. Most of the Ensemble Learning techniques, proposed for trans-

fer learning tasks, take advantage of a small amount of target domain data used for weighting

the influence of each learner model on the final ensemble composition [34, 195, 196].

5.4 Irony Detection

As introduced in the previous section, mining opinions from user-generated content is a highly

difficult task. It requires a deep understanding of explicit and implicit information conveyed

by language structures, whether in a single word or an entire document [197]. In particular,

Web 2.0 users are inclined to adopt a creative language making use of original devices such as

sarcasm and irony [198].

These figures of speech are very challenging when the sentiment polarity of the text should be

inferred (Sentiment Analysis task) because they are commonly used to intentionally convey an

implicit meaning that may be the opposite of the literal one. An ironic message typically con-

veys a negative opinion using only positive words, causing a misleading behavior of Machine

Learning models [199]. From the sentiment analysis perspective, such figures of speech repre-

sent an interfering factor that can revert the message polarity (usually from positive to negative).

Detecting ironic expressions can be crucial in different application domains, such as marketing

and politics, where the users tend to subtly communicate dissatisfaction usually referring to a

product or to a public figure such as a politician.

Traditional supervised or semi-supervised approaches to Irony Detection can incur into the same

issues presented before for Sentiment Analysis prediction. The ironic orientation of words can

consistently change with respect to the context as well as it works for sentiment-driven words.

For example, defining someone a clown can be positive if referred to an actor in a comic movie,

or very negative if ironically referred to politicians.

In the following sections, an unsupervised probabilistic model exploiting Word Embeddings
representation for Irony Detection is presented.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 98

5.4.1 A Probabilistic Model with Word Embeddings for Unsupervised Irony De-
tection

Although sarcasm and irony are a well-studied phenomenon in linguistics, psychology and cog-

nitive science, their automatic detection is still a great challenge because of its complexity. Stan-

dard dictionary-based methods for Sentiment Analysis, based on a predefined sentiment-driven

lexicon, have often shown to be inadequate in the face of indirect figurative meanings [198].

Several methods have been proposed to evaluate the abilities of semi-supervised and supervised

Machine Learning approaches to tackle the irony detection problem. However, they assume as

prerequisite human annotation of text as training data, which is a time and effort consuming task

that becomes impossible with the exponential increase of available data. Moreover, in a real So-

cial Media context, recognizing irony is a difficult task even for humans, making prohibitive the

labeling of huge amount of data. An additional weakness of supervised approaches, as already

stated in this chapter, is that it is commonly known that supervised Machine Learning classifiers

trained on one domain often fail to produce satisfactory results when shifted to another domain

since natural language expressions can be quite different [182].

The proposed model, presented in [200], is a fully unsupervised framework for domain-

independent irony detection. To perform unsupervised topic-irony detection, an existing prob-
abilistic topic model, initially introduced for sentiment analysis purposes, has been extended.

The aim of this model is to discover the hidden thematic structure in large archives of text. Prob-

abilistic topic models are particularly suitable for two main reasons: (i) they are able to discover

topics embedded in text messages in an unsupervised way, and (ii) they result in a language

model that estimates how much a word is related to each topic and to the irony figure of speech.

Word Embeddings have been used in order to improve the generalization abilities, in particular

for obtaining domain-aware ironic orientation for words. At the time of writing, this is the first

work that addresses the problem of irony detection in a fully unsupervised settings. Furthermore,

this study contributes as the first investigation on irony-topic models.

The following sections are organized as follows. In Section 5.4.1.1, the proposed model grounded

on an unsupervised Topic-Irony model and Word Embeddings is presented. Sections 5.4.1.2

and 5.4.1.3 show the experimental investigation, discuss the results computed on a benchmark

dataset and finally report a comparison between the proposed model and state of the art ap-

proaches. Section 5.4.1.5 outlines the most recent related works.

5.4.1.1 Unsupervised Topic-Irony Model

Topic-Irony Model (TIM) In order to perform unsupervised irony detection, taking into ac-

count also the topic-dependency of the words, the investigation has been focused on the suite

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 99

of generative models called probabilistic topic models, originally defined for sentiment analy-

sis purposes. Three main generative models have been considered, which are extensions of the

well-known Latent Dirichlet Allocation model [201].

The first one is Topic Sentiment Mixture (TSM) [202], that jointly models the mixture of topics

and sentiment predictions for the entire document. In TSM, the sentiment language model is

considered as distinct from the topics ones. This assumption can lead to a language model that

is not able to explain the hidden correlation between a topic and a sentiment. The second one is

Joint Sentiment-Topic (JST) model [203], which assumes that topics are dependent on sentiment

distributions and words are conditioned on sentiment-topic pairs. The last one is Aspect and

Sentiment Unification Model (ASUM) [204], that slightly differs from JST with respect to the

language distribution constraints. While in JST each word may come from a different language

model, ASUM constraints the words in a single sentence to come from the same language model.

Among them, ASUM has been chosen as the core model for the proposed approach. This choice

is motivated by the fact that (i) the topic-irony model should generate a topic and an ironic/not-

ironic orientation for each word, (ii) ASUM is particularly suitable for user-generated content

text, where messages have a limited number of characters and a sentence would be either ironic

or not ironic with respect to a specific topic, (iii) ASUM makes use of a set of seed words

explicitly integrated into the generative process, making the model more stable from a statistical

point of view.

Indeed, the proposed Topic-Irony model (TIM) is able to model irony toward different topics in

a fully unsupervised paradigm, enabling each word in a sentence to be generated from the same

irony-topic distribution. More formally, let D be the set of documents, Ds the set of sentences,

V the vocabulary corresponding to the set of words, Z the set of topics, and I the set of irony

classes {ironic, not ironic}.

The generative process is defined as follows:

1. For every pair of (i,z) such that i∈ I and z∈Z, draw a word distribution φiz∼Dirichlet(βi).

2. For each document d,

(a) Draw the document’s irony distribution πd ∼ Dirichlet(γ)

(b) For each i ∈ I, draw a topic distribution θdi ∼ Dirichlet(α)

(c) For each sentence

i. Choose an irony class î∼Multinomial(πd)

ii. Given î, choose a topic ẑ∼Multinomial(θdî)

iii. Generate words w∼Multinomial(φîẑ)

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 100

α

θ

γ

π

zi

w

|V |

|DS|

|D|

ϕ

|Z|

β

|I|

FIGURE 5.13: Graphical representation of the proposed Topic-Irony Model (TIM). Nodes
are random variables, edges are dependencies, and plates are replications. Shaded nodes are

observable.

Following the study in [204], βi is the parameter that controls the integration of seed words in the

models, in particular its asymmetric form has been adopted. Indeed, the parameter βi can encode

the expectation that words as “news, bbc, science” are not usually used in ironic expressions,

while “lol, oh, duh” are likely to appear in ironic messages. The latent variables θ,π, and φ are

inferred by Gibbs sampling. The graphical representation of TIM is shown in Figure 5.13.

Word Embeddings (WE) The original ASUM topic model makes use of known general sen-

timent seed words to derive domain-specific sentiment words [205]. For sentiment seed words,

existing sentiment word lexicons can be used (e.g., SentiWordNet [206]) or a new set of words

may be obtained by using sentiment propagation techniques [207–210].

For irony detection, a lexicon cannot be a priori defined, but it can be automatically derived in an

unsupervised way using a huge quantity of text, as a large amount of unlabeled available user-

generated content is easily accessible. To this purpose, Word Embeddings can be adopted to

derive latent relationships among words (e.g. irony is strictly related to #epicfail) and therefore

to automatically create lexicons based on the language model used in Social Media contexts.

This representation is obtained by various training methods inspired by neural network language

models (Sec 4.1).

In this study, the ironic-lexicon is derived by leveraging the two model architectures provided

by Word2vec [2] presented in Section 4.1.3, i.e. Continuous Bag of Words (CBOW) and Skip-

gram. Among the available neural network language models [1, 27], Word2vec has been chosen

because of its training efficiency and limited loss of information.

As a practical implication, Skip-gram gives better word representations when the monolingual

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 101

data is small. However, CBOW is faster and more suitable for larger datasets. When trained

on a large dataset, these models capture a substantial amount of semantic information. Closely

related words will have similar vector representations, e.g. Italy, France, Portugal will be similar

to Spain. That is exactly the property that is needed for creating the ironic-driven lexicon.

5.4.1.2 Experimental Settings

Dataset and Evaluation Settings The proposed model has been evaluated on a benchmark

dataset for irony detection of user-generated content [107]. The dataset contains 10,000 ironic

tweets and 30,000 non-ironic tweets (10,000 for each topic: Education, Humor and Politics).

As in [107], the evaluation has been performed as a set of binary classifications, between Irony

vs Education, Irony vs Humor and Irony vs Politics in a balanced settings (50% ironic text and

50% not ironic text). As a matter of completeness, the task with imbalanced classes, i.e. to learn

ironic vs others, have been additionally considered. In order to deal with a more realistic and

complex scenario, where the term “irony” is not explicitly available in the data, the evaluation

of the proposed model has been performed according to two experimental conditions:

• Original scenario (O): the dataset has been maintained as it is (where the hashtag symbols

have been removed), in order to allow a direct comparison with the state of the art models;

• Simulated scenario (S): the hashtags and the term “irony” have been removed from the

data in order to simulate a more realistic and complex scenario where the presence of

irony is not explicitly pointed out.

Concerning the proposed model, the two hyper-parameters γ and β have been tuned. γ is a prior

distribution for the irony distribution in text. Since it is not possible to make assumptions on this

distribution, several configurations have been evaluated. The second hyper-parameter β, is the

key element for taking advantage of the seed words originated by Word Embeddings. β is the

prior of the word-irony-topic distribution defined for ironic seed words, not ironic seed words

and all the other words.

The construction of the irony lexicon (to be enclosed as seed words) has been performed by

training the Word Embeddings model on all the user-generated content in the benchmark dataset.

The seed words have been obtained by extracting the most similar words to the term “irony”.

After a preliminary experimental investigation, the following results report the performance

related to the best distributed representation (CBOW).

In the following experimental results, TIM will denote the Topic-Irony Model, while TIM+WE

will represent the Topic-Irony Model based on the lexicons induced by Word Embeddings.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 102

The experimental investigation is conducted by comparing TIM, TIM+WE and supervised ap-

proaches available in the literature [107, 211–215]). The performance of Precision (P), Recall

(R) and F-Measure (F) have been evaluated both in terms of macro-averaged measures (Eqs. 5.9,

5.11, 5.13) and by distinguishing the individual classes of ironic (+) and not ironic (-) (Eqs. 5.4,

5.5, 5.6). Moreover, the results have been also reported in terms of Accuracy (Eq. 5.3).

5.4.1.3 Experimental Results

Balanced Dataset

Original scenario (O) The results of the proposed model are compared to the method intro-

duced in [107] in Table 5.29. TIM clearly outperforms the supervised method of Reyes et al.

with significant improvements, i.e. (on average) 11% for Precision, 14% for Recall and 13% for

F-Measure.

TABLE 5.29: Results compared to a supervised state of the art method for each binary prob-
lem (O).

P R F
irony Reyes et al. [107] 0.7600 0.6600 0.7000

vs TIM 0.8225 0.8746 0.8477
education TIM + WE 0.8228 0.8629 0.8423

irony Reyes et al. [107] 0.7500 0.7100 0.7300
vs TIM 0.9127 0.8560 0.8834

politics TIM + WE 0.9131 0.8373 0.8735
irony Reyes et al. [107] 0.7800 0.7400 0.7600

vs TIM 0.8414 0.8174 0.8292
humor TIM + WE 0.8142 0.7832 0.7983

A further remark relates to the Precision and Recall measures obtained by TIM and TIM+WE.

It can be easily noted, from Table 5.29, that the two proposed models achieve homogeneous per-

formance in all the binary classification problems, obtaining Precision and Recall performance

of similar magnitude.

In order to grasp more peculiar behaviors, the performance measures both for ironic (+) and not

ironic (-) classes have been reported in Table 5.30. It is again possible to observe that Preci-

sion and Recall measures are well balanced for both classes, ensuring good performance also

on the most difficult target (ironic). Concerning Accuracy, TIM and TIM+WE are able not

only to outperform a trivial classifier that would ensure 50% of Accuracy, but they also perform

differently according to the binary problem that they address. As expected, tackling Irony vs

Humor is more difficult than Irony vs Politics and Irony vs Education. In fact, as stated by the

authors that made the dataset available [107], the similarity estimated between pairs of classes

is significantly higher in Irony vs Humor in the other binary problems.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 103

TABLE 5.30: Results of the proposed models (TIM and TIM+WE) for each binary problem
(O) distinguishing between ironic (+) and not ironic (-).

P (+) R (+) F (+) P (-) R (-) F (-) Accuracy

irony vs education
TIM 0.8225 0.8746 0.8477 0.8664 0.8116 0.8380 0.8430
TIM + WE 0.8228 0.8629 0.8423 0.8566 0.8146 0.8350 0.8388

irony vs politics
TIM 0.9127 0.8560 0.8834 0.8644 0.9183 0.8905 0.8871
TIM + WE 0.9131 0.8373 0.8735 0.8498 0.9204 0.8836 0.8788

irony vs humor
TIM 0.8414 0.8174 0.8292 0.8227 0.8461 0.8342 0.8318
TIM + WE 0.8142 0.7832 0.7983 0.7911 0.8214 0.8059 0.8022

Regarding the ironic-lexicon derived through Word Embeddings, the presented results show that

it does not generally improve the performance of TIM. This is probably due to the impact that

the word “irony” has into the dataset and into the model: the lexicon of TIM only composed

of the “irony” term is sufficient to discriminate between the ironic and non-ironic orientations.

Although the additional seed words enclosed in TIM+WE allow the model to obtain remarkable

results with respect to the supervised settings and similar performance compared to TIM, the

only presence of the term “irony” guarantees better performance than richer lexicons. As ex-

pected, TIM better fits the original scenario where the ironic statements available into the dataset

are strongly characterized by the “irony” term. In order to evaluate the generalization abilities

of the proposed models in a real and more complex scenario, where the term “irony” is not ex-

plicitly available into the ironic statements, the model performance has been also evaluated in a

simulated scenario presented in the next section.

Additional results are reported in order to compare the proposed approaches with respect to other

supervised related works on the same dataset. In particular, the benchmark corpus exploited for

the training and inference process of TIM and TIM+WE has been previously adopted also in

[212–215] (only in balanced settings for the original scenario). The results obtained by the

proposed model together with the ones by supervised state of the art models are detailed in

Table 5.31.

TABLE 5.31: Results in terms of F-Measure of the proposed models (TIM and TIM+WE)
against state of the art approaches.

Irony vs.

Education Humor Politics

Reyes et al. [107] 0.70 0.76 0.73

Barbieri and Saggion [212] 0.73 0.75 0.75

Hernández-Farı́as et al., Farias and Irazu [213, 214]1 0.78 0.75 0.79

Hernández-Farı́as et al., Farias and Irazu [213, 214]2 0.78 0.79 0.79

TIM 0.85 0.83 0.88

TIM+WE 0.84 0.80 0.87

Farı́as et al. [215] 0.90 0.90 0.92

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 104

TABLE 5.32: Results of the proposed models (TIM and TIM+WE) for each binary problem
(S) distinguishing between ironic (+) and not ironic (-).

P (+) R (+) F (+) P (-) R (-) F (-) Accuracy

irony vs education
TIM 0.7996 0.7934 0.7964 0.7958 0.8022 0.7989 0.7977
TIM + WE 0.8050 0.8103 0.8075 0.8098 0.8046 0.8070 0.8073

irony vs politics
TIM 0.8719 0.8358 0.8534 0.8426 0.8775 0.8596 0.8567
TIM + WE 0.8780 0.8420 0.8596 0.8485 0.8833 0.8655 0.8627

irony vs humor
TIM 0.7356 0.7675 0.7510 0.7574 0.7247 0.7405 0.7460
TIM + WE 0.7205 0.8392 0.7752 0.8079 0.6752 0.7354 0.7570

This final comparison clearly highlights the improvements that the proposed models are able to

provide. Not only TIM and TIM+WE perform significantly better than most of state of the art

models, but it is even more remarkable that they perform better even though their completely un-

supervised nature. The peculiarity of the supervised approach that obtain the best performance

[215] is the exploitation of the emotional information, which has been considered by computing

the frequency of words in the text belonging to an emotional category according different re-

sources (e.g. EMOLEX [216]). Although the good performance of the model proposed in [215],

it still remains a supervised approach.

The following paragraph reports the computational results on the simulated scenario, where

the ironic figurative language is not explicitly marked in the dataset, but embedded into the

sentences. In Table 5.32 the results in terms of Precision, Recall and F-measure are reported

distinguishing between ironic (+) and not-ironic (-) classes, together with the global Accuracy

measure.

As expected, the recognition performance of TIM and TIM+WE decreases, compared to the

original scenario (see Table 5.30), since the term “irony” is removed from the corpus. More-

over, in this simulated case, where the irony is not explicitly pointed out, a lexicon able to boost

TIM, and therefore the recognition performance of ironic messages, becomes beneficial. By an-

alyzing all the performance measures, it is evident that the introduction of WE derived-lexicon

allows the probabilistic model TIM+WE to achieve better results than simple TIM. Also in these

experimental settings, it is possible to remark that the two proposed models are able to obtain

similar Precision and Recall performance, highlighting robust performance in this complex sce-

nario.

Imbalanced Dataset

Original scenario (O) In order to compare the proposed model to the state of the art ap-

proaches on irony detection, Figure 5.14 shows the results obtained by TIM, TIM+WE and two

1In these experiments, the authors used the Lesk similarity measure.
2In these experiments, the authors used the Wu-Palmer similarity measure.

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 105

supervised approaches, i.e. the feature engineering based approach presented by Reyes et al.

[107] and the ensemble model introduced by Fersini et al. [211].

FIGURE 5.14: Comparison of TIM and TIM+WE with supervised state of the art methods on
the imbalanced dataset.

First of all, it is important to mention that TIM and TIM+WE are able to perform better than

a trivial classifier that would ensure 70% of Accuracy. Furthermore, it can be pointed out that

the proposed unsupervised models achieve remarkable results compared to the supervised ones.

In particular, both TIM and TIM+WE are able to obtain higher recognition performance than

the supervised irony model introduced in [107]. Regarding the comparison with the supervised

ensemble method presented in [211], TIM and TIM+WE achieve similar performance.

In summary, considering that the proposed method is fully unsupervised, it can be considered

very promising. The evaluation of the framework has been extensively studied in Table 5.33.

Similar to the balanced experimental settings on the original scenario, the contribution of WE

does not generally improve the performance of TIM, still remaining comparable. Again, the bet-

ter performance obtained by TIM with respect to TIM+WE is related to the dataset composition,

where more than 36% of the ironic textual messages contain the word “irony”.

Simulated scenario (S) This section reports the computational results on the simulated sce-

nario, where the irony figure of speech is embedded in the sentences with no reference to the

term “irony”. Table 5.34 shows the behavior of both the proposed models. Similar to the pre-

vious balanced case study, the recognition performance of TIM and TIM+WE decreases, com-

pared to the original scenario (see Table 5.33), once the term “irony” is removed from the corpus.

The contribution of WE becomes evident when dealing with the simulated scenario. In a more

complex and real environment, where the ratio between ironic and not ironic messages is low and

the ironic orientation in a sentence can be derived only by the surrounding context, TIM+WE is

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 106

TABLE 5.33: Results of the proposed models (TIM and TIM+WE) on the imbalanced dataset
(O) distinguishing between ironic (+) and not ironic (-).

P (+) R (+) F (+) P (-) R (-) F (-) Accuracy
TIM 0.7543 0.6408 0.6929 0.8861 0.9305 0.9078 0.8581
TIM + WE 0.7122 0.6478 0.6784 0.8862 0.9128 0.8993 0.8466

TABLE 5.34: Results of the proposed models (TIM and TIM+WE) on the imbalanced dataset
(S) distinguishing between ironic (+) and not ironic (-).

P (+) R (+) F (+) P (-) R (-) F (-) Accuracy
TIM 0.4406 0.5902 0.5044 0.8464 0.7507 0.7957 0.7107
TIM + WE 0.5320 0.4958 0.5132 0.8361 0.8550 0.8455 0.7654

able to provide a valuable contribution to bridge the semantic gap. By investigating in details

Precision and Recall measures of both models, it is possible to derive two main observations:

• TIM and TIM+WE, even if induced in the worst scenario where the dataset is imbalanced

and lacks of explicit references to irony, are able to perform better than a trivial classifier

that would ensure 70% of Accuracy. This makes the proposed models particularly suitable

for real-world applications, in particular on noisy user-generated data.

• TIM+WE obtains Precision and Recall of the same magnitude both for the ironic class

(0.5320 for P(+) and 0.4958 for R(+)) and not ironic class (0.8361 for P(-) and 0.8550

for R (-)), compared to TIM which obtains a poor trade-off between the two perfor-

mance measures (0.4406 for P(+) and 0.5902 for R(+), and 0.8464 for P(-) and 0.7507

for R (-)). This suggests that TIM+WE has good predictive performance characterized

by well-proportioned abilities both in terms of Precision and Recall on both ironic and

not-ironic orientations.

5.4.1.4 Topic Detection results

In order to perform a qualitative analysis of the obtained results, this section reports some exam-

ples of discovered ironic and not ironic topics. Tables 5.35 and 5.36 show the words that both

topic-irony models, TIM and TIM+WE, have associated to each topic distinguishing between

ironic (+) and not ironic (-). In particular, each column corresponds to the words which have

been inferred to be most probable one with respect to a given topic and ironic orientation. For a

more effective visualization, the words that have been empirically evaluated as topic-related are

highlighted in bold, while the ones that have been empirically considered as irony-related have

been underlined.

As general remark, the experimental evaluation suggests that the proposed Topic-Irony models

may not only help the irony classification task, but they can also improve the ability to identify

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 107

TABLE 5.35: Topic-related words are reported in bold, while the irony-related ones are
underlined. These results are related to TIM in the original scenario (O) and the balanced

settings distinguishing between ironic (+) and not ironic (-) for each topic.

humor(-) humor(+) politics(-) politics(+) education(-) education(+)
funny unions tcot irony technology irony

posemoticon workers politics oh education linux
shoy benefit obama get new org

award always news lol apple microsoft
nominate cd p like google open

lol movies gop u school tsunami
humor labor tlot people news attack
jokes porn teapay day ipad creates
joke fox us one posemoticon sponsors

q tv palin love twitter openmainframe
comedy news iran common via gnu
quote playboy pay got ac religion
like weed sgp time iphone ban
get marijuana iranelection posemoticon edtech thought
one cannabis hcr see web dilemma

the underlying topics of user-generated content. Indeed, the specific topics of the benchmark

dataset can be well distinguished by looking at the most relevant keywords identified by the pro-

posed approaches, still maintaining a good characterization of ironic and not ironic orientations.

For instance, the sentence “@user Deeper irony would be Sarah Palin campaigning for literacy”

is correctly classified as ironic and properly related to the topic Politics.

A further remark concerns TIM+WE and, in particular, to its ability to deal with short and noisy

natural language text. The fact that user-generated content is composed of a limited number of

words poses considerable problems when applying traditional probabilistic topic models. These

models typically suffer from data sparsity to estimate robust word co-occurrence statistics when

dealing with short and ill-formed text. The proposed model is able to reduce the negative impact

of short and noisy text in real and complex scenarios thanks its ability to take advantage of

distributed representation derived through Word Embeddings. In conclusion, TIM+WE shows

promising results on detecting irony in user-generated content, where Word Embeddings models

help on overcoming the issues related to the short and noisy nature of the input text. Moreover,

the proposed model resulted as particularly suitable for dealing with those topic-related ironic

sentences where the ironic orientation is not explicitly available. An instance of its ability can

be grasped by the following sentence “catching up on news... see that Pres. Obama’s aunt is in

the news again, and that she said she loves Pres. Bush.”, where the model correctly classifies

the statement as Politics and recognizes as ironic (even if the ironic orientation is not explicitly

marked in the text).

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 108

TABLE 5.36: Topic-related words are reported in bold, while the irony-related ones are
underlined. These results are related to TIM+WE in the simulated scenario (S) and the bal-

anced settings distinguishing between ironic (+) and not ironic (-) for each topic.

humor(-) humor(+) politics (-) politics(+) education (-) education (+)
funny quote tcot oh technology common

posemoticon popular obama u education postrank
shoy love politics lol new education

award palin news get apple health
nominate blind p like google nowplaying

lol lingerie gop day news make
humor vote tlot posemoticon school lol
jokes quickpolls us one twitter flaker
joke anonymous teapay people ipad cholesterol

q com pay got via video
comedy voteglobal iran common posemoticon man
quote gotpolitics sgp love ac difference
like politics hcr yet iphone causes
one friends iranelection politics one sense
get barbie health time edtech fiction

5.4.1.5 Related Works

As defined in [217], a figure of speech is any artful deviation from the ordinary mode of speaking

or writing. Among the tasks dealing with the problematic figures of speech in Natural Language

Processing, this work studies irony detection on user-generated content. Sulis et al. [218] distin-

guish two different kinds of irony: situational and verbal [219–221]. Situational irony refers to

the state of events which is the reverse of what has been expected, while the term verbal irony

refers to a figure of speech characterized by the possibility of distinguishing between a literal

and an intended/implied meaning. Verbal irony is often viewed as a synonym of sarcasm and in-

vestigated as the same problem [222–224]. Nevertheless, few preliminary studies addressed the

task to further deepen the differences between irony and sarcasm [218, 225, 226]. Additionally,

a rarely investigated form of irony used in Social Media is self-mockery [227, 228]. Differently

from other forms of irony, self-mockery does not involve contempt for others, but the speaker

wishes to dissociate from the content of the utterance.

This thesis focuses on verbal irony, which is commonly used to convey implicit criticism with

a particular victim as its target, saying or writing the opposite of what the author means [229].

As mentioned in [230], the language should not be taken literally, especially when addressing

a Sentiment Analysis task. The presence of strongly positive (or negative) words that are used

ironically, which means that the opposite polarity was intended, can easily mislead Sentiment

Analysis classification models [231].

In the last year, several approaches for irony detection based on different set of features have

been investigated. In [232], the authors proposed a semi-supervised technique to detect sarcasm

in Amazon product reviews and tweets. They used pattern-based (high-frequency words and

Chapter 5. Deep Learning Representation for Making Sense of User-Generated Content 109

content words) and punctuation-based features to build a sarcasm detection model. A supervised

approach has been proposed in [233], where the irony detection problem is studied for sentiment

analysis in Twitter data. The authors used unigrams, word categories, interjections (e.g., “ah”,

“yeah”), and punctuation as features. Emoticons and ToUser (which marks if a tweet is a reply

to another tweet) were also used. In [234], the authors considered a specific type of sarcasm

where sarcastic tweets include a positive sentiment (such as “love” or “enjoy”) followed by

an expression that describes an undesirable activity or state (e.g., “taking exams” or “being

ignored”). In [107] the authors focused on developing classifiers to detect verbal irony based on

a set of high-level features: ambiguity, polarity unexpectedness and emotional cues. In [235] a

supervised model has been exploited for document-level irony detection in Czech and English

by using n-grams, patterns, POS tags, emoticons, punctuation and word case. Additionally, in

[213, 214] the authors studied structural and sentiment analysis features, while in [215] affective

features have been also considered. In [212], the relevance of linguistic features have been

evaluated to derive the most representative ones for irony detection. In [211] the authors

proposed an ensemble approach, based on a Bayesian Model Averaging paradigm, which makes

use of models trained using several linguistic features, such as pragmatic particles and Part-

Of-Speech tags. In [213], the irony detection problem has been addressed by investigating

statistical-based and lexicon-based features paired with two semantic similarity measures, i.e.

Lesk and Wu-Palmer [236].

Other recent works [237, 238] aim to address the sarcasm detection in microblogs by including

extra-linguistic information from the context such as properties of the author, the audience, the

immediate communicative environment and the user’s past messages. Word Embeddings have

been used as features in a supervised approach in [239], where the authors expressed the sarcasm

detection task as a Word Sense Disambiguation problem.

Although the above-mentioned studies represent a fundamental step towards the definition of

effective irony detection systems, they suffer from three main limitations:

• they assume a labeled corpus for training supervised and semi-supervised models;

• they are tailored for domain-dependent irony detection, restraining their applicability to

other domains of interest;

• they disregard the topic subjected to the irony.

In order to overcome these limitations, the proposed work has investigated an unsupervised

topic-irony model enriched with domain-independent Word Embeddings.

Chapter 6

Enhancing Textual Feature
Representation including Relational
Information

The previous chapters have highlighted the importance of user-generated content as a valuable

textual source of information for many domains and applications.

Although a portion of user-generated content is created by individuals (producers), the great

majority is developed through the collaborative efforts of multiple users (participants) [240].

An excellent example is Wikipedia, where contributors work together on articles; another case

regards scientific publications where scientific collaborations and comparisons are the success

keys for innovating; common people collaborate every day by posting on Social Media their

opinions and sentiment about several subjects, such as products, events or political parties.

From these observations, it is possible to conclude that user-generated content encloses relevant

insights that can be extracted from their textual content and further enhanced by taking into

account the interactions that involve them. Let us consider, for example, the task of Sentiment

Analysis in a Social Media environment, where opinions are usually collected by gathering the

textual content from a large number of users. Do not taking into account the relational structure

underlying the users could lead to misleading conclusions. For instance, collecting an isolated

reply post within a discussion that state “I agree with you!” does not provide any insight on

the user’s opinion about the considered topic, because it is unknown to which post is related to.

In fact, “I agree with you!” could be equally probable related either to a positive or negative

original opinion. However, jointly considering the textual content and the existing relationships,

can significantly help on the post interpretation.

110

Chapter 6. Enhancing Textual Feature Representation including Relational Information 111

The most suitable structure for representing both textual and relational information is an at-
tributed graph, where the subjects (nodes) involved are related to each other through relation-

ships (edges) and a set of attributes (i.e. text) is associated to each node.

Dealing with attributed graph is very complex and computationally expensive because of dif-

ferent characteristics of the data, i.e. size of the graph, dynamic nature, noise and heterogene-

ity [241]. Efficient approaches for handling such structure are based on Representation Learning,

and in particular on the effective Deep Learning models. However, most of the state of the art

works are aimed at efficiently learning good representations for either the textual or relational

information.

In the literature, as already detailed in Chapter 4, the most effective vector representation of

natural language text can be obtained by several Deep Learning models, which can be roughly

distinguished in neural networks language models [1, 2, 27, 28] and Deep Neural Networks in

the form of Auto-encoders [35, 37, 96–98, 100].

The embedded representation of the relational structure associated with potentially large and

complex graphs has been investigated by the so-called graph embedding models. These models

map each graph node to a low-dimensional dense vector representation, encoding meaningful

information conveyed by the graph. Indeed, Deep Learning is again the most dominant approach

for obtaining graph embeddings.

This Chapter presents a novel Representation Learning model based on Deep Learning archi-

tectures. The proposed model, called Constrained deep Attributed Graph Embeddings model

(CAGE), will provide a representation able to convey textual attribute content enhanced by the

relational structure of the graph. Considering both textual and relational information for obtain-

ing a joint vector representation of user-generated content is expected to improve the results in

different Natural Language Processing tasks.

The proposed model will face the following challenges:

(1) Textual attribute expression: the obtained feature representation will be able to directly

encode the textual attribute content and to provide higher expressiveness with respect to

traditional models for representing text.

(2) Relational structure preservation: the obtained feature representation will preserve the struc-

ture of the graph, that is often complex and highly nonlinear, by facing the common prob-

lem of real-world graphs, i.e. scalability and sparsity.

(3) Dimensionality of the representation: the dimension of the embedded representation should

be chosen as a trade-off between reconstruction precision performance and time/space

complexity.

Chapter 6. Enhancing Textual Feature Representation including Relational Information 112

6.1 Related Works

Representation Learning models for attributed graphs comprising textual attributes are mostly

investigated by separately considering relational information and textual attributes.

Regarding textual content, Chapter 4 provides an overview of the Deep Learning architectures

for providing meaningful representations of natural language text.

Representation Learning models of relational structures have attracted a surge of research atten-

tion over the past decade, focusing in particular on developing new embedding algorithms. In

this domain, the research studies can be roughly distinguished in Factorization based methods

and Deep Learning approaches [242].

The basic idea underlying both methods is to preserve both the local and global graph structures

in the derived embedded vector space. Naturally, the local structures are represented by the

observed relations in the graphs, which capture the first-order proximity between pairs of nodes.

The global structure is captured by the second-order proximity, which considers the shared

neighborhood of pairs of nodes. This means that the more neighbors are shared by two nodes,

the higher the similarity between them should be.

Factorization based methods represent the connections between nodes in the form of a matrix

and factorize this matrix to obtain the embeddings. Although Laplacian Eigenmaps [243] and

Locally Linear Embedding [244] are the fundamental approaches in this area, they are not able to

scale for real-world graphs. For this reason, Ahmed et al. [245] introduced Graph Factorization

to find a low-dimensional embeddings for large graphs. In order to solve the complexity of

the computational process of matrix factorization, the framework has been distributed so that

the data are partitioned over a set of machines. However, this factorization approach does not

preserve the global graph structure. Hence, their work was successively extended for including

both first- and second-order proximities [246, 247].

As anticipated in the previous section, the growing interest in Deep Learning algorithms has

affected also the task of graph Representation Learning due to their ability to model nonlinear

structures in the data.

Among the most relevant related works, deep representations of random walks have been inves-

tigated. These methods are efficient for dealing with large graphs because they can be easily

parallelized and they are particularly suitable to accommodate small changes in the graph struc-

ture without the need for global recomputation of the models. The most promising approaches

known as DeepWalk [248] and node2vec [249] take advantage of neural network language mod-

eling. In particular, these methods are aimed at preserving a higher-order proximity between

nodes by learning latent representations of random walks, treating them as the equivalent of

sentences.

Chapter 6. Enhancing Textual Feature Representation including Relational Information 113

Beyond random walks methods, most of the investigations are focused on improving Deep

Learning architectures. Structural Deep Network Embeddings (SDNE) [250] exploits the ability

of deep neural networks to generate an embedded representation that can capture nonlinearity

in graphs and simultaneously preserve the first- and second-order graph proximities. This un-

supervised model is based on an architecture characterized by two main components: the first

one is a deep Auto-encoder that estimates the embeddings vectors by reconstructing the nodes’

neighborhood, while the second one is based on Laplacian Eigenmaps [243] and aims to make

the embedded representation of connected nodes more similar.

Only few studies consider the set of attributes associated with each node in addition to the graph

topological structure (attributed graph). In [241], the authors proposed a supervised model for

transferring different nodes in heterogeneous graphs to unified vector representations. While this

approach is scalable and robust, it only considers the first-order proximity and it has a specific

focus on image-text relationships. An approach able to generalize independently from the input

data type was proposed by Huang et al. [251], where graph embeddings are computed based

on the decomposition of an attribute similarity matrix and the embeddings difference between

connected nodes. They also developed a distributed optimization algorithm to decompose the

original problem into many sub-problems with lower complexity, which can be solved by sub-

workers in parallel.

Although the above-mentioned approaches represent a fundamental step and obtained impres-

sive results in terms of efficiency and efficacy performance, they do not explicitly consider the

attributes of the nodes but only a measure of attribute similarity. Hence, the computed vector

representations encode the graph structure and reflect the attribute similarities between nodes,

but it is not a direct expression of their attributes.

In 2016, Pan et al. [252] proposed a supervised model called TriDNR, which makes use of

coupled neural network architectures to exploit network information from three parties: node

structure, node attributes, and node labels (if available). In this model, node structure and at-

tributes are leveraged by two state of the art approaches, i.e. DeepWalk [248] and Paragraph

Vector [253] respectively. Despite the impressive improvements with respect to the other ap-

proaches in the literature, it is possible to identify two main disadvantages of using TriDNR.

First, it adopts DeepWalk model for obtaining an embedded representation of the node struc-

ture. Although this model has been proved to be empirically effective, DeepWalk does not well

articulate a clear objective function to preserve the graph structure and it is also prone to pre-

serve only the second-order proximity. Secondly, TriDNR is a supervised model, which implies

that the data must be manually labeled.

In order to overcome the above-mentioned limitations, an unsupervised model for learning a

feature representation from large attributed graphs has been presented in this thesis. In par-

ticular, the proposed model is aimed at creating high-level representations of textual attributes

Chapter 6. Enhancing Textual Feature Representation including Relational Information 114

enhanced by the relational information conveyed by the graph. In order to accomplish this task,

promising Deep Learning architectures, able to efficiently and effectively produce dense vector

representation from node attributes and structure, are considered.

6.2 Deep Attributed Graph Embeddings Model

In this section, several needed definitions are given for providing an overall description of the

problem.

6.2.1 Problem Definition and Motivation

As first concern, the formal definition of an attributed graph is provided:

Definition 6.2.1. An attributed graph is defined as G = (V,E,ΠΠΠ), where V = {v1, . . . ,vn} is

the set of nodes, E = {ei j}n
i, j=1 is the set of edges between the nodes and ΠΠΠ = {πv1 , . . . ,πvn}

represents the node attributes related to each node vi. Each edge ei j is associated with a weight

si j > 0, which indicates the strength of the relation.

A graphical representation of an attributed graph is reported in Figure 6.1

FIGURE 6.1: Graphical example of an attributed graph. Attribute distribution
is exemplified by the color representation.

In order to encode the textual attribute information and the graph structure (local and global),

the proposed model should preserve several proximity measures between pairs of nodes that are

presented in the following section. Hence, the concept of node textual content proximity can be

defined as:

Definition 6.2.2. The textual attribute proximity between attributes of a pair of nodes (πvi ,πv j)

in a graph is the similarity between their textual attribute contents.

Chapter 6. Enhancing Textual Feature Representation including Relational Information 115

As previously mentioned, considering the node textual attributes permits to model the most es-

sential component in user-generated content for their interpretation and understanding, i.e. the

natural language text. The example in Figure 6.2(a) describes the case where there exists a

latent relation between two nodes (v1 and v6), visible from the similarity between the attributes

expressed as similar colors, but an edge between them does not exist. Intuitively, these two

nodes should have a similar representation because of their high attribute proximity. As a real-

world application example, in a citation network, papers with similar contents would have a

similar representation, while papers with different contents will tend to have a distant vectors.

Considering only the relational information can lead to imprecise conclusions. For example, a

citation between two papers does not always imply that they share the same topics, because they

could be related for marginal aspects (e.g. a paper on Irony Detection that cites another paper

on Machine Learning). An analogous scenario can be observed in Sentiment Analysis on Social

Networks, where it is commonly assumed that the relational information, in the form of friend-

ships or follower relationships, unconditionally represent the sentiment agreement between two

connected users. This assumption does not hold in a real-world scenario, where two structurally

connected users (e.g. friends) may have divergent opinions on a given topic [254]. This issue

can be overcome by considering the textual content provided by the users.

Although the natural language text is of a great importance when dealing with user-generated

content, it is not sufficient for representing the whole underlying picture. In fact, especially in

Social Media, contents are usually associated to nodes that are related to each others. Taking

into consideration this relational information can further help to capture similarities or dissimi-

larities between nodes enhancing the information obtained by the textual content. For providing

a complete representation of the structural component of the graph, both local and global struc-

tures are essential to be preserved. Then, the local structure can be captured by the first-order

proximity [246]:

Definition 6.2.3. The first-order proximity in a graph is the local pairwise proximity between

two nodes. For each pair of nodes linked by an edge ei j = (vi,v j), the weight on that edge si j

indicates the first-order proximity between vi and v j. If no edge is observed between vi and v j,

their first-order proximity is 0.

Intuitively, it is necessary for graph embeddings to preserve the first-order proximity because it

implies that the representation of two connected nodes should be similar. As shown in Figure

6.2(b), the stronger is the connection between two nodes (v5 and v6), the higher will be the

first-order proximity between them. The same reasoning is expected to be appropriate also for

real-world cases. For instance, two authors that co-authored a paper should share some topics

of interest. Consequently, the more papers they have co-authored, the more the authors will

have similar topic interests. In Social Networks, two users connected by an approval “like”

Chapter 6. Enhancing Textual Feature Representation including Relational Information 116

(a) (b)

(c)

FIGURE 6.2: Selection of nodes used for explaining textual attribute proximity (on the top
left), first-order proximity (on the top right) and second-order proximity (on the bottom).

interaction are expected to agree on a given topic, implying that the more approval interactions

exist between the users, the more it is likely that they share the same opinions.

In a real-world scenario, graphs are often sparse, meaning that the greater part of the nodes has

a degree considerably lower than the maximal possible one. For this reason, considering only

the proximity of connected nodes is not enough in order to capture the structure of the graph.

The following definition introduces the second-order proximity, which characterizes the global

graph structure [246].

Definition 6.2.4. The second-order proximity between a pair of nodes (vi,v j) in a graph is

the similarity between their neighborhood graph structures. Formally, let Ni = (wi1, . . . ,wi|V|)

denotes the first-order proximity of vi with all the other nodes, then the second-order proximity

between vi and v j is determined by the similarity between Ni and N j. If no nodes are linked

from/to both vi and v j, the second-order proximity between vi and v j is 0.

The assumption behind the second-order proximity is that nodes are similar if they have common

neighbors. Figure 6.2(c) depicts the case when second-order proximity can help to handle edge

sparsity. Although nodes v4 and v5 are not connected, their embedded representation should

be similar. This is due to the fact that they share many common neighbors (v1, v2 and v3) and

therefore they are characterized by a high second-order proximity. Such assumption has been

proved reasonable in many fields [255, 256]. Following the previous example, if two papers

Chapter 6. Enhancing Textual Feature Representation including Relational Information 117

cite several common papers, they are expected to discuss the same topics. Similarly, two users

are likely to be friends if they have many common friends. Hence, exploiting this proximity

measure makes possible to deal with the sparsity problem by coupling nodes that are not directly

connected.

The proposed model considers simultaneously all the presented proximities in order to address

the following problem:

Definition 6.2.5. Given an attributed graph denoted as G = (V,E,ΠΠΠ), attributed graph em-
beddings aims at learning a mapping function CG : V→ Rm , where m� |V|. The objective of

this function is to explicitly preserve first-order, second-order and textual attribute proximities

when computing the embedded representation of nodes.

6.2.2 Constrained Deep Attributed Graph Embeddings Model

This section introduces a novel embeddings model named Constrained deep Attributed Graph
Embeddings (CAGE). The main underlying idea of the proposed model is to learn, in unsuper-

vised settings, the textual feature representation of user-generated content by exploiting Deep

Learning methods on large attributed graphs.

In particular, two different Deep Learning models, i.e. SDNE [250] and KATE [100], have been

taken into consideration for deriving an embedding representation that explicitly considers both

textual attributes and graph structure. The two state of the art models have been preferred among

the others because (i) they are the most promising models for inferring node structure and textual

embeddings respectively and (ii) they both rely on the same Deep Learning architecture, that is

an Auto-encoder architecture. An overview of CAGE is reported in Figure 6.3.

FIGURE 6.3: Graphical representation of the Constrained deep Attributed Graph Embedding
model (CAGE).

Once the first deep Auto-encoder SDNE has obtained the structural graph embeddings, i.e.

the embedded representation of the node structure, the learning process of the second deep

Chapter 6. Enhancing Textual Feature Representation including Relational Information 118

Auto-encoder KATE will be constrained to let the attribute node embeddings, i.e. the em-

bedded representation of the textual node attributes, to be coherent with the structural graph

embeddings. According to this constrained model, the representation of two nodes, that are

structurally different in terms of first- and second-order proximity, but similar from the attribute

point of view, will converge. Analogously, the representation of two nodes with similar graph

structure, but with dissimilar attributes, will diverge. This model leads to solve two different

optimization problems related to the training phase.

Following, first the structural and attribute embeddings model are introduced, then the definition

and derivation of the proposed model is provided.

6.2.2.1 Auto-encoder

Auto-encoders are a specific Deep Learning architecture that is trained to attempt to copy its

input to its output [32]. As introduced in Section 4.2, these unsupervised models are particularly

able to efficiently extract latent factors of variations of the input data.

Formally, following the notations of Chapter 3, the construction of the hidden layers can be

formalized as:

h0 = a0(Wx+b0),

hl = al(Whl−1 +bl), l = 2, . . . ,u
(6.1)

where the subscript l corresponds to the sequence position of the layer in the neural network.

6.2.2.2 Textual Attribute Embedding Model

The model used for inferring the textual node attribute vector representation is KATE [100], that

stands for K-Competitive Auto-encoder for Text. As already presented in Section 4.2.5, this

approach has been specifically proposed to deal with natural language text, suggesting a novel

technique to address the sparsity and the Zipf’s law distribution issues. The main advancement

consists in the competition hidden layer, where neurons competes with each other. Therefore, it

is expected that each neuron becomes specialized in recognizing specific data patterns, learning

meaningful representations of textual data. Moreover, KATE is particularly suitable for dealing

with short and noisy text that typically characterize user-generated content.

Given the textual attribute matrix XT , where xT
i = πvi , the objective of the model is to minimize

the reconstruction error:

LT
x (θ

T) =
n

∑
i=1
‖xT

i − x̂T
i ‖2

2 (6.2)

Chapter 6. Enhancing Textual Feature Representation including Relational Information 119

6.2.2.3 Structural Graph Embedding Model

The key element for obtaining the structural graph embeddings is the Structural Deep Network

Embedding model (SDNE) proposed in [250]. This model is based on an Auto-encoder architec-

ture able to incorporate both first- and second-order proximity into the embedded representation

of each node of the graph.

Wang et al. claim that the second-order proximity can be naturally incorporated into the recon-

struction process of the Auto-encoder.

Given the adjacency matrix X S, where xS
i = si, the Auto-encoder will guarantee that nodes

with similar neighborhood structures will have similar latent representations. The loss function

concerned with the second-order proximity is the following:

LS
x =

n

∑
i=1
‖(x̂S

i − xS
i)�ξi‖2

2

= ‖(X̂S−XS)�ξξξ‖2
F

(6.3)

where � denotes the Hadamard product, i.e. entrywise multiplication, and ξi = {ξi, j}n
j=1. If

si, j = 0 then ξi, j = 1, else ξi, j = αξ > 1.

Recalling the architecture of an Auto-encoder presented in Section 4.2, XS is the input to the

encoder function and X̂S is its reconstruction given by the decoder function. The objective is to

minimize the reconstruction error, i.e. the difference between XS and X̂ .

The first-order proximity can be fulfilled by learning a model that makes the similarity between

the latent representations of pair of nodes representative of their connection strength. The higher

is the weight si j between a pair of nodes (vi,v j), the higher will be the similarity between their

embedded representation hi,h j.

The first-order proximity can be fulfilled by constraining the model to distance the latent repre-

sentations of a pair of nodes respect to their connection strength. The loss function related to

the first-order proximity is then defined as:

LS
h =

n

∑
i, j=1

si j‖(hS
i,u−hS

j,u)‖2
2

=
n

∑
i, j=1

si j‖(hS
i −hS

j)‖2
2

(6.4)

where

hS
i,1 = a1(WSxS

i +bS
1)

hS
i,l = al(WSxS

i +bS
l), l = 2, . . . ,u

(6.5)

Chapter 6. Enhancing Textual Feature Representation including Relational Information 120

The objective function of Eq. 6.4 borrows the idea of Laplacian Eigenmaps [243], which penal-

izes when similar nodes are mapped far away in the embedding space.

6.2.2.4 Optimization problem

As previously outlined, CAGE first solves the structural graph embedding optimization problem:

minLS(θS) =

LS
x︷ ︸︸ ︷

n

∑
i=1
‖xS

i − x̂S
i ‖2

2+

LS
h︷ ︸︸ ︷

n

∑
i, j=1

si j‖hS
i −hS

j‖2
2+LS

reg (6.6)

where θS = (WS,bS) are the neural network parameters, involved in the construction of the

hidden layers hS
i and hS

j (Eq. 6.5).

Then, once the embeddings hS
i for node vi is computed, it is used to constrain the attribute

embedding optimization problem:

minLT (θT) =

LT
x︷ ︸︸ ︷

n

∑
i=1
‖xT

i − x̂T
i ‖2

2+α

LT
h︷ ︸︸ ︷

n

∑
i, j=1

(
‖hT

i −hT
j ‖2

2−‖hS
i −hS

j‖2
2

)
+LT

reg (6.7)

where α∈ [0,1] is the coefficient that leverages the contribution of the structural component and

θT = (WT ,bT) are the neural network parameters used to derive hT
i = hT

i,u as:

hT
i,1 = a1(WT xT

i +bT
1)

hT
i,l = al(WT xT

i +bT
l), l = 2, . . . ,u

(6.8)

For a more intuitive explanation, the Auto-encoder reconstruction losses have been named as LS
x

and LT
x , while the losses involving the representation layers have been defined as LS

h and LT
h .

The optimization of the proposed model can be performed using stochastic gradient descent, or

other possible variations as presented in Section 3.5.3. These optimization algorithms rely on

the computation of the partial derivatives of the parameters.

As previously explained, the proposed model first solves the structural graph embeddings opti-

mization problem LS(θS) (Eq. 6.6), then it constraints the textual attribute embedding optimiza-

tion problem LT (θT) (Eq. 6.7) using the embeddings hS
i .

Following, the passages performed to compute the partial derivatives of LS(θS) are presented.

The computation of the derivative of LT (θT) is equivalent, computed with respect to the param-

eter set θT . The two loss functions differ only for the term ‖hS
i −hS

j‖2
2, which is zero if derived

with respect to θT .

Chapter 6. Enhancing Textual Feature Representation including Relational Information 121

The first required step is the computation of the partial derivative of LS(θS) with respect to ŴS
u

and WS
u:

∂LS

∂ŴS
l

=
∂LS

x

∂ŴS
l

+
∂LS

reg

∂ŴS
l

(6.9)

∂LS

∂WS
l
=

∂LS
x

∂WS
l
+

∂LS
h

∂WS
l
+

∂LS
reg

∂WS
l

(6.10)

The two addends can be expanded starting from the computation of the derivative of the last

layer u as follows:

∂LS
x

∂ŴS
u
=

∂LS
x

∂X̂
· ∂X̂

∂ŴS
u

(6.11)

∂LS
reg

∂ŴS
u
=

∂

(
1
2

u
∑

l=1
(‖WS

u‖2
F +‖ŴS

u‖2
F)
)

∂ŴS
u

= ŴS
u (6.12)

In Equation 6.11, ∂LS
x/∂ŴS

u is multiplied and divided by ∂X̂. This permits to easily compute

the two terms obtained, since ∂LS
x/∂X̂ is equal to 2(X̂S−XS)� ξi. The second term ∂X̂/∂ŴS

u

is trivial to compute since X̂ = a(ĥS
l−1 ·ŴS

u + b̂S
u). The derivative of ∂LS

x/∂ŴS
u can be therefore

easily estimated. Based on back-propagation, it is possible to iteratively obtain ∂LS
x/∂ŴS

l , l =

1, . . . ,u−1 and ∂LS
x/∂WS

l , l = 1, . . . ,u.

In a similar way, Equation 6.10 can be studied by separately analyzing the three terms of

∂LS/∂WS
u. The computation of the terms ∂LS

x/∂WS
u and ∂LS

reg/∂WS
u can be performed as in

Equations 6.11 and 6.12, respectively. The second term ∂LS
h/∂WS

u can be rewritten as:

∂LS
h

∂WS
u
=

∂LS
h

∂HS ·
∂HS

∂WS
u

(6.13)

where HS = a(HS
l−1WS

u + b̂S
u), resulting in a trivial derivative estimation with respect to WS

u.

For an easier computation of the first term, LS
h can be rewritten as:

n

∑
i, j=1

si j

(
‖hS

i −hS
j‖2

2

)
= 2tr(H ′LH) (6.14)

where L is a Laplacian matrix and si j is equal to 1 for every i and j. Given S the adjacency matrix

and a n×n diagonal matrix D, where Dii = ∑
j

si j, the Laplacian matrix is defined as L= D−S.

Finally, ∂LS
h/∂HS is equal to 2(L−L′) ·HS.

Once all the partial derivatives have been computed, it is possible to apply the stochastic gradient

descent method.

Chapter 6. Enhancing Textual Feature Representation including Relational Information 122

6.2.2.5 Toy Example

For a better understanding of the model behavior during the learning phase, Table 6.1 reports

some exemplified iterations related to the consideration of different proximity measures. For

each iteration, the attributed graph is shown on the left, where the red nodes correspond to the

nodes actively involved in a given iteration. On the right, a simplified 2-dimensional represen-

tation of the attributed graph embeddings is provided, where the dotted line is used to highlight

the node movements in the embedded space, caused by the updates of the representations. At it-

eration = 0, the node representations are initialized as random real-valued 2-dimensional vector.

Then, at iteration = 1, the model evaluates the first-order proximity. Since there exists an edge

between nodes v1 and v4, they have a high first-order proximity and consequently their represen-

tations move closer. In the same way, as depicted at iteration = 2, the representations of the two

connected nodes v5 and v6 gets even closer. It is possible to see from the embedded space that

v5 and v6 move closer to each other with respect to v1 and v4. This is due to the fact that a higher

connection weight results in a larger movement, depicted as a more marked edge line in the

attributed graph. Iteration = 3 involves the second-order proximity, which shifts closer/further

the embedded representations of nodes that have many/no common neighbors. Indeed, the em-

bedded representations of nodes v4 and v5 are similar, as they share 3 common node neighbors

(v1, v2 and v3). An analogous mechanism is related to the textual attribute similarity, i.e. the

more the textual contents of two nodes are similar/different, the more the representation of the

nodes should be similar/different. Iteration = 4 shows the first case where v1 and v6 have similar

attributes (depicted with similar colors). In this case, it is important to highlight that these nodes

are structurally very different, indeed their representation would have never moved closer with-

out taking into account the textual attributes. On the contrary, the representation of two nodes

that are structurally similar (v4 and v5) may be not consistent with the attribute proximity, which

results in an increase of the distance at iteration = 5.

From this simple case study, it is clear that the consideration of both textual attributes and

structural information is needed since each of them is able to capture different explicit or latent

relations between nodes.

6.3 Experimental Settings

The evaluation has been performed on two benchmark datasets of citation networks, where the

textual attribute is the paper title and the interaction between two nodes corresponds to the cite

relation. The aim is to classify the research area of the papers comprised in the datasets. This

task can be commonly addressed using an ordinary Natural Language Processing approach, i.e.

training a Machine Learning model over one of the well-known textual feature representations

Chapter 6. Enhancing Textual Feature Representation including Relational Information 123

TABLE 6.1: Toy example showing the impact of different proximity measures.

Iteration = 0

Iteration = 1

Iteration = 2

Iteration = 3

Iteration = 4

Iteration = 5

Chapter 6. Enhancing Textual Feature Representation including Relational Information 124

presented in Section 2.2. The experimental evaluation on the proposed feature representation

model is expected to prove that the use of the relational information enhances the textual fea-

ture representation and consequently improves the classification performance, especially with

respect to those methods that consider these two types of information independently.

The following sections detail the investigated datasets and the state of the art models considered

for the comparison. Then, a brief overview of the evaluation framework is given.

6.3.1 Dataset

For the experimental evaluation, two state of the art citation network datasets have been used. A

citation network is a graph where the nodes are composed of a set of research articles, the node

attribute is the title and the edges are the citation relationships between articles [257].

The DBLP dataset 1 is a collection of papers extracted from DBLP [258].

The dataset has been constructed using the same procedure reported in [252], where a list of

venues from 4 research areas has been selected: database (SIGMOD, ICDE, VLDB, EDBT,

PODS, ICDT, DASFAA, SSDBM, CIKM), data mining (KDD, ICDM, SDM, PKDD, PAKDD),

artificial intelligence (IJCAI, AAAI, NIPS, ICML, ECML, ACML, IJCNN, UAI, ECAI,COLT,

ACL, KR), computer vision (CVPR, ICCV, ECCV, ACCV, MM, ICPR, ICIP, ICME).

The second dataset, called CiteSeer-M10 [252], is a subset of CiteSeerX data2 [259]. This cita-

tion network comprises 10 distinct research areas: agriculture, archaeology, biology, computer

science, financial economics, industrial engineering, material science, petroleum chemistry,

physics, and social science. Since the resultant graphs are very sparse, with a huge number of

isolated nodes or isolated connected couple of nodes, the first connected component has been

considered as evaluation data for each graph. In particular, the extracted DBLP graph consists

of 16,191 nodes and 51,913 edges, while the CiteSeer-M10 graph comprises 2,035 and 3,356

edges.

6.3.2 Compared Models

For a comparison, the evaluation framework considered several algorithms that leverage only the

graph structure (S), only the node textual attributes (T) and both of them (S+T). The considered

algorithms are reported in the following:

• LAP (S) [243] is a nonlinear dimensionality reduction algorithm that has locality preserv-

ing properties.
1http://arnetminer.org/citation
2http://citeseerx.ist.psu.edu

http://arnetminer.org/citation
http://citeseerx.ist.psu.edu

Chapter 6. Enhancing Textual Feature Representation including Relational Information 125

• SDNE (S) [250] is a deep Auto-encoder that jointly preserves the first- and second-order

proximities.

• node2vec (S) [249] preserves a higher-order proximity between nodes by maximizing the

probability of occurrence of subsequent nodes in fixed length random walks.

• DeepWalk (S) [248] jointly adopts random walk and skip-gram model to obtain graph

embeddings.

• KATE (T) [100] is based on an Auto-encoder architecture specialized on dealing with

natural language text.

• Doc2Vec (T) [253] is the Paragraph Vectors algorithm which embeds any piece of text in

a distributed vector using a neural network language model.

• DW+D2V (S+T) [252] is a concatenation of the vectors learned by DeepWalk and Doc2Vec,

for obtaining a combined representation of node structure and textual attributes.

• TriDNR∗ (S+T) is the unsupervised variant of TriDNR [252], which is a supervised neural

network based approach that jointly learns graph structure, textual attributes and labels.

For a fair comparison with CAGE, TriDNR has been evaluated without considering the

label information.

6.3.3 Evaluation Framework

The experimental evaluation has been conducted on the task of node classification, aimed at

associating with each research article (node) the correspondent research area (label). The tex-

tual attributes and the graph structure have been used to derive the feature representation with

the proposed model. Once the embedding representation is obtained, a linear Support Vector

Machine is firstly induced using the training data and then used to predict the labels of the test

data. Analogously to what has been done in [252], a linear SVM has been chosen in order to

reduce the impact of complex learning approaches on the classification performance, like non-

linear models or sophisticated relational classifiers [260]. The datasets have been divided in

training and testing sets by randomly selecting a percentage of labeled nodes. The parameters

of the model have been estimated by using a sequential model-based optimization [261, 262].

The adopted performance measures are the same as presented in Section 5.1.1.2: Precision (Eq.

5.4), Recall (Eq. 5.5), F-Measure (Eq. 5.6) and Accuracy (Eq. 5.3). Since these measures can

be strongly influenced by the imbalanced distribution of the data classes, both micro and macro

performance (Eqs. 5.8-5.13) have been considered. Each experiment has been performed 10

times and the corresponding results have been reported by showing the average results and the

corresponding standard deviation.

Chapter 6. Enhancing Textual Feature Representation including Relational Information 126

6.4 Experimental Results

The experimental results are presented by separately comparing the proposed model against the

Representation Learning models that exploit only the graph structure (S), the ones that consider

only the textual node attributes (T) and finally those approaches that combine both representa-

tions (S+T).

TABLE 6.2: Comparison of CAGE vs S models on DBLP using 50% of labeled data.

CAGE LAP SDNE node2vec DeepWalk

Accuracy 0.7479 ± 0.004 0.4792 ± 0.004 0.4684 ± 0.003 0.6933 ± 0.004 0.4952 ± 0.000

Precisionmicro 0.7399 ± 0.004 0.3445 ± 0.145 0.3642 ± 0.037 0.7160 ± 0.003 0.4549 ± 0.000

Precisionmacro 0.7180 ± 0.003 0.2198 ± 0.123 0.2830 ± 0.091 0.6792 ± 0.008 0.4180 ± 0.001

Recallmicro 0.7479 ± 0.004 0.4792 ± 0.004 0.4684 ± 0.003 0.6933 ± 0.004 0.4952 ± 0.000

Recallmacro 0.6640 ± 0.005 0.2501 ± 0.000 0.2560 ± 0.002 0.5655 ± 0.005 0.3046 ± 0.000

F-measuremicro 0.7393 ± 0.004 0.3106 ± 0.005 0.3524 ± 0.005 0.6814 ± 0.004 0.4238 ± 0.000

F-measuremacro 0.6831 ± 0.005 0.1621 ± 0.001 0.2010 ± 0.002 0.5824 ± 0.005 0.2841 ± 0.000

TABLE 6.3: Comparison of CAGE vs S models on CiteSeer-M10 using 50% of labeled data.

CAGE LAP SDNE node2vec DeepWalk

Accuracy 0.8487 ± 0.006 0.5175 ± 0.040 0.3548 ± 0.011 0.7949 ± 0.012 0.6375 ± 0.003

Precisionmicro 0.8496 ± 0.007 0.2089 ± 0.015 0.2530 ± 0.032 0.7886 ± 0.010 0.6251 ± 0.003

Precisionmacro 0.7928 ± 0.076 0.4452 ± 0.086 0.1162 ± 0.027 0.6203 ± 0.069 0.4523 ± 0.010

Recallmicro 0.8487 ± 0.006 0.3576 ± 0.040 0.3548 ± 0.011 0.7949 ± 0.012 0.6375 ± 0.003

Recallmacro 0.6817 ± 0.048 0.1426 ± 0.001 0.1450 ± 0.001 0.5043 ± 0.031 0.4036 ± 0.008

F-measuremicro 0.8456 ± 0.006 0.2124 ± 0.039 0.2113 ± 0.012 0.7833 ± 0.012 0.6281 ± 0.003

F-measuremacro 0.7168 ± 0.055 0.0858 ± 0.010 0.0875 ± 0.005 0.5252 ± 0.034 0.4204 ± 0.009

Tables 6.2 and 6.3 show the performance considering 50% of the training set. It is possible to

grasp from the results on both datasets that CAGE achieves the best performance comparing

to all the considered structural graph embedding models. As expected, SDNE is the approach

that achieves the highest performance, after CAGE. From both tables, it clearly emerges that

considering both the textual attributes and the interactions of the nodes provides significant

improvements compared to the results obtained by modeling only the relational information.

Similarly, the proposed model is able to achieve better results compared to recent Natural Lan-

guage Processing models, i.e. KATE and Doc2Vec (Tabs. 6.4 and 6.5). When compared to

KATE, CAGE obtains satisfactory improvements, additionally demonstrating that the textual

feature representation can be enhanced by considering the relational information. The results of

Doc2Vec, DeepWalk and DW+D2V give further evidence of this statement, as the consideration

of the concatenated representation space of DeepWalk and Doc2Vec is able to achieve signif-

icant improvements with respect to the single methods: DeepWalk for the graph structure and

Chapter 6. Enhancing Textual Feature Representation including Relational Information 127

Doc2Vec for the text. The unsupervised version of TriDNR∗, which naturally includes textual

and relational information, achieves good performance that however are lower than the ones

obtained by CAGE (for all the performance measures).

TABLE 6.4: Comparison of CAGE vs T and S+T models on DBLP using 50% of labeled data.

CAGE KATE Doc2Vec DW+D2V TriDNR∗

Accuracy 0.7479 ± 0.004 0.745 ± 0.004 0.7095 ± 0.000 0.7106 ± 0.000 0.7019 ± 0.003

Precisionmicro 0.7399 ± 0.004 0.7377 ± 0.003 0.6924 ± 0.000 0.6980 ± 0.000 0.6886 ± 0.003

Precisionmacro 0.7180 ± 0.003 0.7278 ± 0.004 0.6543 ± 0.000 0.6654 ± 0.000 0.6558 ± 0.003

Recallmicro 0.7479 ± 0.004 0.7450 ± 0.004 0.5001 ± 0.000 0.7106 ± 0.000 0.7019 ± 0.003

Recallmacro 0.6640 ± 0.005 0.6433 ± 0.005 0.6080 ± 0.000 0.6133 ± 0.000 0.5952 ± 0.002

F-measuremicro 0.7393 ± 0.004 0.7325 ± 0.004 0.4005 ± 0.000 0.6992 ± 0.000 0.6885 ± 0.003

F-measuremacro 0.6831 ± 0.005 0.6702 ± 0.004 0.6198 ± 0.000 0.6309 ± 0.000 0.6144 ± 0.002

TABLE 6.5: Comparison of CAGE vs T and S+T models on CiteSeer-M10 using 50% of labeled
data.

CAGE KATE Doc2Vec DW+D2V TriDNR∗

Accuracy 0.8487 ± 0.006 0.7482 ± 0.002 0.7750 ± 0.000 0.8092 ± 0.002 0.8128 ± 0.004

Precisionmicro 0.8496 ± 0.007 0.8382 ± 0.003 0.7785 ± 0.000 0.8019 ± 0.002 0.8041 ± 0.003

Precisionmacro 0.7928 ± 0.076 0.7244 ± 0.022 0.6314 ± 0.000 0.6435 ± 0.011 0.6515 ± 0.013

Recallmicro 0.8487 ± 0.006 0.8360 ± 0.002 0.7750 ± 0.000 0.8092 ± 0.002 0.8128 ± 0.004

Recallmacro 0.6817 ± 0.048 0.6612 ± 0.003 0.4708 ± 0.000 0.5682 ± 0.003 0.5452 ± 0.003

F-measuremicro 0.8456 ± 0.006 0.8282 ± 0.010 0.7642 ± 0.000 0.8031 ± 0.002 0.8039 ± 0.004

F-measuremacro 0.7168 ± 0.055 0.5871 ± 0.033 0.4775 ± 0.000 0.5912 ± 0.005 0.5711 ± 0.003

Further results have been reported (Tabs. 6.6-6.9) in terms of F-measuremicro by varying the

percentage of the training set from 10% to 90% with a step of 10%.

From Tables 6.6 and 6.7, it is possible to draw similar conclusions to the ones referred to Tables

6.2 and 6.3. CAGE achieves the best results, immediately followed by SDNE. This confirms

that considering relationships to enhance the textual representation plays a fundamental role for

predicting the research area (label) of each research article (node).

Chapter 6. Enhancing Textual Feature Representation including Relational Information 128

TABLE 6.6: Comparison of CAGE vs S models in terms of F-measuremicro on DBLP using
different % of labeled data.

CAGE LAP SDNE node2vec DeepWalk

10 % 0.7118 ± 0.005 0.3111 ± 0.001 0.3697 ± 0.004 0.6641 ± 0.003 0.4373 ± 0.000

20 % 0.7310 ± 0.002 0.3109 ± 0.001 0.3633 ± 0.005 0.6690 ± 0.005 0.4201 ± 0.000

30 % 0.7324 ± 0.001 0.3130 ± 0.002 0.3616 ± 0.005 0.6765 ± 0.003 0.4235 ± 0.000

40 % 0.7372 ± 0.004 0.3095 ± 0.004 0.3564 ± 0.005 0.6794 ± 0.002 0.4208 ± 0.000

50 % 0.7402 ± 0.005 0.3106 ± 0.005 0.3524 ± 0.005 0.6814 ± 0.004 0.4238 ± 0.000

60 % 0.7381 ± 0.006 0.3143 ± 0.005 0.3481 ± 0.005 0.6805 ± 0.003 0.4234 ± 0.000

70 % 0.7439 ± 0.005 0.3124 ± 0.007 0.3491 ± 0.007 0.6822 ± 0.004 0.4268 ± 0.000

80 % 0.7355 ± 0.002 0.3137 ± 0.006 0.3419 ± 0.008 0.6806 ± 0.010 0.4294 ± 0.000

90 % 0.7421 ± 0.010 0.3246 ± 0.016 0.3512 ± 0.014 0.6944 ± 0.012 0.4365 ± 0.000

TABLE 6.7: Comparison of CAGE vs S models in terms of F-measuremicro on CiteSeer-M10
using different % of labeled data.

CAGE LAP SDNE node2vec DeepWalk

10 % 0.7611 ± 0.012 0.1789 ± 0.062 0.2238 ± 0.051 0.6882 ± 0.013 0.5163 ± 0.002

20 % 0.7964 ± 0.009 0.1947 ± 0.143 0.2390 ± 0.013 0.7180 ± 0.012 0.5867 ± 0.003

30 % 0.8152 ± 0.013 0.1885 ± 0.135 0.2369 ± 0.014 0.7529 ± 0.007 0.6032 ± 0.007

40 % 0.8177 ± 0.014 0.2036 ± 0.083 0.2384 ± 0.009 0.7758 ± 0.009 0.6143 ± 0.002

50 % 0.8260 ± 0.008 0.2124 ± 0.039 0.2113 ± 0.012 0.7817 ± 0.009 0.6281 ± 0.003

60 % 0.8306 ± 0.009 0.2110 ± 0.028 0.2349 ± 0.011 0.7874 ± 0.018 0.6345 ± 0.004

70 % 0.8282 ± 0.016 0.2058 ± 0.018 0.2146 ± 0.018 0.7878 ± 0.011 0.6470 ± 0.007

80 % 0.8388 ± 0.020 0.2098 ± 0.036 0.2322 ± 0.039 0.7868 ± 0.041 0.6438 ± 0.008

90 % 0.8577 ± 0.044 0.1868 ± 0.037 0.2410 ± 0.025 0.8085 ± 0.014 0.6277 ± 0.016

Analogous results can also be observed in Tables 6.8 and 6.9. CAGE outperforms both models

that consider only the textual attributes and models that combine textual and structure informa-

tion.

Another important conclusion that it is possible to derive from the results is that the proposed

model shows the best improvement with respect to the state of the art models in the case of little

available training data (from 10% to 50% of the training data). The robustness with respect to

the size of the training data is due to the joint contribution of textual and structural information

conveyed by the attributed graph.

Chapter 6. Enhancing Textual Feature Representation including Relational Information 129

TABLE 6.8: Comparison of CAGE vs T and S+T models in terms of F-measuremicro on DBLP
using different % of labeled data.

CAGE KATE Doc2Vec DW+D2V TriDNR∗

10 % 0.7118 ± 0.005 0.6927 ± 0.007 0.3668 ± 0.000 0.6541 ± 0.000 0.6620 ± 0.003

20 % 0.7310 ± 0.002 0.7122 ± 0.003 0.3898 ± 0.000 0.6799 ± 0.000 0.6743 ± 0.003

30 % 0.7324 ± 0.001 0.7275 ± 0.001 0.3943 ± 0.000 0.6971 ± 0.000 0.6868 ± 0.003

40 % 0.7372 ± 0.004 0.7319 ± 0.002 0.3968 ± 0.000 0.6975 ± 0.000 0.6872 ± 0.003

50 % 0.7402 ± 0.005 0.7325 ± 0.004 0.4005 ± 0.000 0.6992 ± 0.000 0.6885 ± 0.003

60 % 0.7381 ± 0.006 0.7374 ± 0.007 0.4091 ± 0.000 0.7040 ± 0.000 0.6903 ± 0.002

70 % 0.7439 ± 0.005 0.7368 ± 0.003 0.4097 ± 0.000 0.7072 ± 0.000 0.6916 ± 0.004

80 % 0.7355 ± 0.002 0.7362 ± 0.003 0.4187 ± 0.000 0.7088 ± 0.000 0.6889 ± 0.003

90 % 0.7421 ± 0.010 0.7378 ± 0.005 0.4116 ± 0.000 0.7261 ± 0.000 0.7059 ± 0.004

TABLE 6.9: Comparison of CAGE vs T and S+T models in terms of F-measuremicro on
CiteSeer-M10 using different % of labeled data.

CAGE KATE Doc2Vec DW+D2V TriDNR∗

10 % 0.7611 ± 0.012 0.7183 ± 0.009 0.6917 ± 0.000 0.7104 ± 0.003 0.7324 ± 0.003

20 % 0.7964 ± 0.009 0.7482 ± 0.005 0.7423 ± 0.000 0.7759 ± 0.001 0.7739 ± 0.006

30 % 0.8152 ± 0.013 0.7667 ± 0.006 0.7369 ± 0.000 0.7799 ± 0.002 0.7784 ± 0.004

40 % 0.8177 ± 0.014 0.7806 ± 0.010 0.7541 ± 0.000 0.7876 ± 0.003 0.7889 ± 0.005

50 % 0.8260 ± 0.008 0.7825 ± 0.013 0.7642 ± 0.000 0.8031 ± 0.002 0.8039 ± 0.004

60 % 0.8306 ± 0.009 0.8069 ± 0.009 0.7698 ± 0.000 0.8144 ± 0.000 0.8062 ± 0.006

70 % 0.8282 ± 0.016 0.8007 ± 0.014 0.7661 ± 0.000 0.8187 ± 0.005 0.8114 ± 0.005

80 % 0.8388 ± 0.020 0.8055 ± 0.016 0.7744 ± 0.000 0.8178 ± 0.002 0.8211 ± 0.005

90 % 0.8577 ± 0.044 0.8102 ± 0.023 0.7751 ± 0.000 0.8183 ± 0.004 0.8033 ± 0.004

The experimental evaluation further demonstrates that the enhancement of textual representa-

tion models with the relational information can provide significant improvements in terms of

different performance measures.

As future work, the definition of a joint model able to simultaneously learn both attribute and

graph embeddings is expected to result in better evaluation performance.

In particular, formalizing a unique optimization problem, where the contribution of attributes

and graph structure will be determined according to Lagrangian methods, would lead to even

more valuable feature representations.

Chapter 7

Conclusion and Future Works

Since the advent of Web 2.0, the amount of available user-generated content has exponentially

increased to unprecedent levels. This immense source of information is often not exploited to

its full potential mainly due to two challenging problems: (i) natural language text is expressed

in the form of discrete symbols, making difficult to obtain a mathematical representation that

machines can elaborate and (ii) keeping track of the ever-increasing number of generated data

creates the need of computationally efficient models able to extract valuable knowledge from

data that have not been manually annotated.

This thesis addresses these issues by proposing different novel Natural Language Processing

models enhanced by the representation obtained with unsupervised Deep Learning. These mod-

els are then able to learn a vector representation from text that encodes semantic and syntactic

meanings of the language units and to efficiently take advantage of a large amount of user-

generated content for identifying and disentangling their underlying explanatory factors. In

particular, this thesis provides two contributions for addressing the problem of making sense of

user-generated content, exploiting high-level representations of text and relational structure.

First, it has been demonstrated that the joint exploitation of Natural Language Processing and

Deep Learning models can significantly improve the understanding and interpreting of user-

generated content.

In particular, this thesis has initially shown the contribution of learning Deep Learning feature

representation (Auto-Encoders and Word Embeddings) for several Natural Language Processing

tasks. First, a novel model (L2A) has been provided for dealing with the problem of adapting the

classification of named entity types of a NER system to different ontologies by including a rep-

resentation of named entities derived by Word Embeddings. Second, this thesis has introduced

an unsupervised model for Named Entity Linking based on a novel heterogeneous representa-

tion space characterized by common embeddings of both words and named entities. Third, the

130

Chapter 7. Conclusion and Future Works 131

problem of Sentiment Analysis has been addressed by proposing a model, based on an Auto-

Encoder architecture and Ensemble Learning, that is able to adapt the prediction of a sentiment

orientation from a source domain to a target domain, where little or no training data is available.

Finally, this thesis contributed to provide an unsupervised model for Irony Detection that is able

to take into account domain-aware ironic orientation of words derived by Word Embeddings.

The proposed models for making sense of user-generated content has shown significant perfor-

mance and enhanced generalization abilities. Moreover, it has been proved that leveraging large

amount of unlabelled data with Deep Learning models can strongly help to acquire meaningful

data representation even in noisy environments such as Social Media.

The second main contribution of this thesis is concerned with the enhancement of textual feature

representations by taking into account the relational structure underlying user-generated content.

The proposed Representation Learning model (CAGE), based on Auto-encoder architectures, is

able to encode both the textual content (attributes) and the relational structure of user-generated

data (graph) for obtaining a common vector representation. The experimental evaluation, also in

this case, has demonstrated that the enhancement of textual representation models with the rela-

tional information can provide significant improvements in terms of classification performance.

There are several possible research directions that can be investigated to further improve the

results presented in this thesis.

The first issue is concerned with the cross-task generalization abilities. The representations

obtained by Deep Learning models have demonstrated excellent generalization abilities across

several domains. However, learning a representation that is also independent on the task would

permit to extensively reduce the amount of computational training time and the human effort

on developing different models for each task. In the simplest case, a representation model able

to express this property would then be able to obtain satisfactory results over all the presented

Natural Language Processing tasks by only using off-the-shelf Machine Learning algorithms.

An analogous research study that can be conducted regards the ability to perform multilingual

Natural Language Processing tasks for making sense of user-generated content. Although the

majority of natural language textual content on the Web is written in English, the amount of text

related to other languages is more than enough for creating an unlabelled training set. In this

context, the abilities of Deep Learning models to disentangle the factors of variations in the data

can strongly and positively impact on the addressed multilingual tasks [263, 264].

Regarding user-generated content provided in a networked environment, it is important to take

into account that relationships can be uncertain. The collection of large amount of noisy data

on the Web comes with imprecision and uncertainty: we cannot be completely confident that

data about individuals, or the connections between them, is accurate and truthful [265]. In this

Chapter 7. Conclusion and Future Works 132

context, uncertain, or probabilistic, graphs have been increasingly deployed to represent noisy

linked data in many emerging application scenarios [266–268]. In many cases, uncertainty or

imprecise information become a critical issue to understand and effectively take advantage of

the information contained in such relational environments.

The more comprehensive work that can be performed starting from this thesis regards the ex-

ploitation of attributed graph structure as input for learning meaningful representation for mak-

ing sense of user-generated content. For example, a Social Network can be seen as a heteroge-

neous attributed graph, where the nodes are the users and the posts, while edges are the different

relations that exist between users (e.g. friendship), users and posts (e.g. like, share), posts and

posts (e.g. comment). For instance, obtaining expressive representation could help the classifi-

cation of the sentiment of the posts or of the users. In this context, several works have already

suggested that the exploitation of users’ social relations could help to detect their opinions [269–

271]. Mapping users and posts to an embedded space, where similarities are the expression

of several explicit and implicit properties, would also permit to easily and more accurately sug-

gest new friends or new posts related to common topics of interest and not based only on the

structural connections.

Another example task, which heterogeneous attributed graph embedding are expected to im-

prove, is Named Entity Linking. In this case, a graph would be composed of words and entities,

where the relationships would be related to the number of times a word has been used to denote

an entity. Mapping these entities to a common embedded space would result in more meaningful

representations, where finding the corresponding entity associated with a word would be easier.

Considering the increasing volume of interactions in Social Media that are characterized by

temporal information, there are considerable motivations to develop latent representations for

relational data over time. These interactions can be explicit observations, e.g. a follower rela-

tionships, or more complex social interactions among users, e.g. two users may share similar

tags or read the same feeds. Efficiently dealing with these data poses different challenges on

treating and modeling networked data consisting of multiple co-evolving dimensions, e.g. users,

tags, feeds, comments, etc. A common solution is to represent a dynamic graph through a set

on independent snapshots and to adopt existing embedding algorithms. However, this usually

leads to unsatisfactory performance in terms of stability, flexibility and efficiency [272]. An al-

ternative solution that could be investigated as future work is to consider the dynamics directly

into the embedding model, in order to give more importance to more recent and actual data.

Appendix A

TWINE: A real-time system for TWeet
analysis via INformation Extraction

A.1 Introduction

The Word Embeddings model for Named Entity Linking presented in Section 5.2 has been

developed and integrated in a real-time system that collects, analyzes and shows entities spread

through Social Media. In particular, the investigated environment is Twitter, which is a popular

microblogging service that is particularly focused on the speed and ease of publication. This

choice is motivated by the fact that nearly 300 million of active users share over 500 million

of posts1 everyday. The proposed system, named TWINE, has the characteristic of combining

a big data architecture and user interface in order to perform and explore real-time analysis of

social media content streams.

In particular, TWINE has been defined in order to:

• perform real-time monitoring of tweets related to a set of topics of interest, with unre-

stricted keywords;

• explore the information extracted by semantic-based analysis of large amount of tweets,

i.e. (i) recognition of named entities and the information of the correspondent KB re-

sources, (ii) multi-dimensional spatial geo-tagging for each tweet, including the geo-

localization of the named entities identified as locations and (iii) two semantic-driven

interactive visualization interfaces.

The following section will present the details of the architecture for supporting real-time tweets

analysis and the description of the conceived graphical user interface.
1http://www.internetlivestats.com/

133

Appendix A. TWINE: A real-time system for TWeet analysis via INformation Extraction 134

FIGURE A.1: TWINE system overview.

A.2 TWINE system

TWINE, acronym for TWeet analysis via INformation Extraction, is a real-time system for the

analysis and exploration of information extracted from Twitter data. Figure A.1 outlines its

macro steps coupled with corresponding examples.

Given a set of keywords provided by the user (e.g. “Italy”) as input query, the system fetches

the stream of all the tweets (text and tweet’s author information) matching the keywords using

Twitter APIs. Next, each tweet text is processed by the Named Entity Recognition and Linking

(NEEL) pipeline.

Once each tweet text has been processed by Conditional Random Fields for identifying entities

and these entities are linked to the KB by using the proposed model in Section 5.2, several

additional information are retrieved: image, text description, type and coordinates (if the entity

is a location) are taken from the KB, while the account profile of the author of the tweet is

collected from Twitter, where the location information is resolved with a georeferencing system.

This information is subsequently stored in a database that incrementally enriches information

generated by the precedent phases. Then, the TWINE web interface fetches the stored data from

the database for populating two different interactive visualization interfaces.

A.2.1 System Architecture

TWINE is implemented using a centralized system architecture, as shown in Figure A.2. The

main requirement was to develop a system able to process real-time large incoming data streams.

In TWINE, all the afore-mentioned processes are triggered by the user from the client and elab-

orated on the server-side, i.e. the streaming fetching phase, the NEEL processing, the KB re-

sources retrieval, the geo-codification of the locations and the database storing.

Appendix A. TWINE: A real-time system for TWeet analysis via INformation Extraction 135

FIGURE A.2: TWINE system architecture.

FIGURE A.3: TWINE Map View snapshot.

According to this design implementation all the computations are performed on the server. This

improves the independence on the client technical specifications, preventing different problems

such as slow loading, high processor usage and even freezing.

The system architecture, presented in Figure A.2, is composed of several independent modules:

External Services. The system makes use of Twitter APIs for fetching the streaming of tweets

given an input query, a SPARQL endpoint over the DBpedia data set for the retrieval of the KB

resource information and a georeferencing system, OpenStreetMap2, to obtain the geographic

coordinates from the tweet author account’s profile location.

2https://www.openstreetmap.org/

Appendix A. TWINE: A real-time system for TWeet analysis via INformation Extraction 136

FIGURE A.4: TWINE List View snapshot.

NEEL pipeline. In order to extract and link entities contained in a tweet, the NEEL pipeline

uses the two following subcomponents:

• The NER system of Ritter et al. [109].

• The NEL model proposed in Section 5.2.

Message Broker system. This module is necessary to build pipelines for processing streaming

data in real time, in such a way that components can exchange data reliably. The Apache Kafka

platform3 permits us to store and process the data in a fault-tolerant way and to ignore the latency

due to the Information Extraction processing.

Database. All the source and processed data are stored in a NoSQL database. In particular, it

has been chosen a MongoDB4 database because of its flexibility, horizontal scalability and its

representation format that is particularly suitable for storing Twitter contents.

Frontend host and API web server. The presence of these two server-side modules is mo-

tivated by the need of making the TWINE user-interface independent on its functionalities. In

this way, the modularity and flexibility of the entire system are improved.

3https://kafka.apache.org/
4http://www.mongodb.org/

Appendix A. TWINE: A real-time system for TWeet analysis via INformation Extraction 137

A.2.2 User Interface

TWINE provides two different visualizations of the extracted information: the Map View, which

shows the different geo-tags associated with tweets in addition to the NEEL output, and the List

View, that better emphasizes the relation between the text and its named entities.

The Map View (Figure A.3) provides in the top panel a textual search bar where users can insert

keywords related to their topic of interest (e.g. italy, milan, rome, venice). The user can also,

from left to right, start and stop the stream fetching process, clear the current results, change

View and apply semantic filters related to the geo-localization and KB resource characteristics,

i.e. type and classification confidence score.

Then, in the left-hand panel the user can read the content of each fetched tweet (text, user

information and recognized named entities) and directly open it in the Twitter platform.

The center panel can be further divided into two sub-panels: the top one shows the information

about the Knowledge Base resources related to the linked named entities present in the tweets

(image, textual description, type as symbol and the classification confidence score), and the

bottom one provides the list of the recognized named entities for which it does not exist a

correspondence in the KB, i.e. NIL entities.

These two panels, the one that reports the tweets and the one with the recognized and linked KB

resources, are responsive. For example, by clicking on the entity Italy in the middle panel, only

tweets containing the mention of the entity Italy will be shown in the left panel. Respectively,

by clicking on a tweet, the center panel will show only the related entities.

In the right-hand panel, the user can visualize the geo-tag extracted from the tweets, (i) the

original geo-location where the post is emitted (green marker), (ii) the user-defined location for

the user account’s profile (blue marker) and (iii) the geo-location of the named entities extracted

from the tweets, if the corresponding KB resource has the latitude-longitude coordinates (red

marker).

Finally, a text field is present at the top of the first two panels to filter the tweets and KB resources

that match specific keywords.

The List View is reported in Figure A.4. Differently from the Map View, the focus is on the link

between the words, i.e. recognized named entities, and the corresponding KB resources. In the

reported example, this visualization is more intuitive for catching the meaning of Dolomites and

Gnocchi thanks to a direct connection between the named entities and the snippet and the image

of associated KB resources.

Appendix A. TWINE: A real-time system for TWeet analysis via INformation Extraction 138

A.3 Conclusion

This appendix has briefly overviewed TWINE, a system that provides an efficient real-time data

analytics platform for social media streaming content. The system is supported by a scalable

and modular architecture and by an intuitive and interactive user interface.

As future work, it is intended to implement a distributed solution in order to more efficiently

manage huge quantity of data. Additionally, current integrated modules will be improved: the

NEEL pipeline will be replaced by a multilingual method, the web interface will include more

insights such as the user network information, a heatmap visualization and a time control filter.

Appendix B

Additional Results for
LearningToAdapt model

TABLE B.1: Accuracy performance of L2A model considering Word Embeddings feature
space. For each dataset, the best results are reported in bold.

2015 2016
XE XP∪E XE XP∪E

Wiki2Vec GoogleNews Wiki2Vec GoogleNews Wiki2Vec GoogleNews Wiki2Vec GoogleNews

BN

mean 0.64 0.59 0.64 0.59 0.47 0.48 0.48 0.48
max 0.56 0.54 0.62 0.57 0.49 0.51 0.48 0.50
min 0.56 0.54 0.57 0.58 0.49 0.50 0.49 0.50
first 0.58 0.57 0.59 0.59 0.44 0.50 0.45 0.50

DT

mean 0.49 0.50 0.65 0.65 0.49 0.45 0.48 0.42
max 0.42 0.48 0.64 0.66 0.50 0.35 0.44 0.40
min 0.46 0.51 0.64 0.64 0.34 0.41 0.44 0.47
first 0.44 0.45 0.57 0.66 0.46 0.31 0.36 0.47

KNN

mean 0.55 0.55 0.64 0.68 0.56 0.53 0.56 0.54
max 0.53 0.54 0.61 0.65 0.51 0.51 0.51 0.54
min 0.52 0.55 0.60 0.66 0.48 0.51 0.52 0.54
first 0.49 0.52 0.63 0.60 0.43 0.46 0.46 0.54

MLR

mean 0.53 0.48 0.61 0.60 0.57 0.53 0.43 0.47
max 0.54 0.49 0.62 0.55 0.46 0.49 0.53 0.47
min 0.57 0.47 0.61 0.59 0.55 0.53 0.43 0.44
first 0.55 0.49 0.57 0.58 0.55 0.55 0.51 0.51

MLP

mean 0.59 0.58 0.73 0.74 0.57 0.67 0.60 0.55
max 0.62 0.61 0.73 0.71 0.54 0.62 0.55 0.55
min 0.59 0.60 0.72 0.72 0.55 0.61 0.58 0.55
first 0.57 0.58 0.73 0.69 0.53 0.57 0.54 0.53

NB

mean 0.64 0.59 0.65 0.60 0.52 0.57 0.50 0.54
max 0.56 0.54 0.61 0.57 0.56 0.58 0.57 0.55
min 0.55 0.54 0.57 0.58 0.55 0.56 0.54 0.56
first 0.58 0.57 0.59 0.59 0.48 0.55 0.50 0.50

SVM

mean 0.59 0.62 0.74 0.69 0.59 0.62 0.62 0.59
max 0.59 0.63 0.74 0.74 0.58 0.64 0.60 0.60
min 0.59 0.61 0.74 0.68 0.59 0.60 0.61 0.57
first 0.56 0.57 0.72 0.67 0.56 0.55 0.58 0.55

139

Appendix B. Additional Results for LearningToAdapt model 140

TABLE B.2: Class-Wise Accuracy Contribution (%) on #Micropost2015 Test set considering
Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E

Character 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Event 0.09 3.00 0.09 2.82 0.09 3.18 0.09 2.82 0.09 2.82 0.18 2.74

Location 31.95 38.92 33.89 39.01 32.22 38.13 32.48 39.81 31.51 39.81 31.77 39.63
Organization 5.83 7.33 6.44 7.15 5.91 7.33 5.03 7.06 5.21 7.15 6.00 7.15

Person 19.59 22.07 20.30 21.98 19.86 21.71 20.30 22.68 19.95 21.98 19.95 22.68
Product 0.79 0.79 0.97 1.06 0.62 0.88 0.79 1.15 1.24 1.24 0.79 1.24
Thing 0.62 0.88 0.35 0.88 0.53 0.88 0.88 1.06 0.97 1.06 0.88 1.06

Overall 58.87 72.99 62.05 72.90 59.22 72.11 59.58 74.58 58.96 74.05 59.58 74.49

TABLE B.3: Class-Wise Accuracy Contribution (%) on #Micropost2016 Test set considering
Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E

Character 9.18 2.04 6.12 5.10 3.06 7.14 4.08 3.06 5.10 3.06 3.06 3.06
Event 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02

Location 15.31 14.29 14.29 13.27 13.27 15.31 15.31 13.27 14.29 13.27 15.31 14.29
Organization 5.10 3.06 5.10 5.10 4.08 4.08 5.10 5.10 5.10 5.10 5.10 4.08

Person 21.43 21.43 20.41 20.41 19.39 19.39 20.41 21.43 22.45 23.47 20.41 20.41
Product 14.29 12.24 14.29 10.20 13.27 13.27 14.29 13.27 14.29 12.24 14.29 13.27
Thing 1.02 1.02 1.02 0.00 1.02 1.02 2.04 2.04 2.04 2.04 1.02 1.02

Overall 67.35 55.10 62.24 55.10 55.10 61.22 62.24 59.18 64.29 60.20 60.20 57.14

TABLE B.4: Precision, Recall, F-Measure and STMM on #Micropost2015 Test set considering
Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E

Precision 0.61 0.74 0.60 0.74 0.61 0.74 0.60 0.75 0.58 0.75 0.61 0.75
Recall 0.59 0.73 0.62 0.73 0.59 0.72 0.60 0.75 0.59 0.74 0.60 0.74

F-Measure 0.32 0.49 0.33 0.49 0.32 0.49 0.33 0.51 0.35 0.51 0.34 0.51
STMM 0.59 0.73 0.60 0.73 0.58 0.72 0.59 0.74 0.57 0.74 0.59 0.74

TABLE B.5: Precision, Recall, F-Measure and STMM on #Micropost2016 Test set considering
Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E

Precision 0.73 0.70 0.72 0.68 0.72 0.71 0.67 0.69 0.65 0.70 0.65 0.67
Recall 0.57 0.60 0.54 0.55 0.55 0.58 0.59 0.62 0.58 0.60 0.59 0.61

F-Measure 0.50 0.53 0.49 0.50 0.50 0.53 0.58 0.60 0.51 0.54 0.51 0.59
STMM 0.52 0.55 0.47 0.50 0.49 0.53 0.55 0.56 0.52 0.52 0.53 0.55

Appendix B. Additional Results for LearningToAdapt model 141

TABLE B.6: Class-Wise Accuracy Contribution (%) on #Micropost2015 Test set of L2A model
and baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XE) SVMmean (XP∪E)
Character 0.00 0.26 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.0 0.0
Event 0.00 3.80 2.91 1.32 0.09 0.00 0.00 0.00 1.44 0.35 0.09 2.82
Location 37.51 42.01 37.51 41.39 43.78 40.69 43.42 40.78 28.37 43.69 32.48 39.81
Organization 4.41 4.41 4.41 6.00 7.41 8.47 7.24 8.74 8.65 7.77 5.03 7.06
Person 20.83 20.83 16.95 18.80 20.39 20.92 22.33 20.30 30.29 20.92 20.30 22.68
Product 1.50 1.50 0.88 0.44 0.26 1.41 1.68 1.41 0.48 1.59 0.79 1.15
Thing 0.18 0.18 2.12 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.88 1.06
Overall 64.43 72.99 64.78 67.96 72.02 71.49 74.67 71.23 69.23 74.49 59.58 74.58

TABLE B.7: Class-Wise Accuracy Contribution (%) on #Micropost2016 Test set of L2A model
and baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XE) SVMmean (XP∪E)
Character 0.00 16.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.04 2.04 1.02
Event 0.00 1.02 1.02 1.02 1.02 0.00 1.02 0.00 1.02 1.02 1.02 1.02
Location 7.14 10.20 8.16 11.22 11.22 11.22 13.27 12.24 14.29 12.24 15.31 13.27
Organization 3.06 3.06 0.00 2.04 2.04 4.08 2.04 4.08 4.08 4.08 5.10 5.10
Person 21.43 21.43 15.31 18.37 18.37 22.45 23.47 21.43 22.45 21.43 20.41 21.43
Product 13.27 13.27 1.02 10.20 10.20 13.27 13.27 13.27 12.24 7.14 14.29 13.27
Thing 1.02 1.02 5.10 1.02 1.02 0.00 0.00 0.00 0.00 0.00 2.04 2.04
Overall 45.92 66.33 30.61 43.88 43.88 51.02 53.06 51.02 54.08 47.96 62.24 59.18

TABLE B.8: Precision, Recall, F-Measure and STMM on #Micropost2015 Test set of L2A
model and baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XE) SVMmean (XP∪E)
Precision 0.67 0.67 0.75 0.67 0.67 0.63 0.62 0.63 0.72 0.67 0.60 0.75
Recall 0.66 0.66 0.63 0.68 0.68 0.70 0.72 0.70 0.69 0.69 0.60 0.75
F-Measure 0.37 0.37 0.43 0.37 0.37 0.36 0.37 0.36 0.36 0.36 0.33 0.51
STMM 0.66 0.66 0.68 0.67 0.67 0.66 0.66 0.66 0.66 0.66 0.59 0.74

TABLE B.9: Precision, Recall, F-Measure and STMM on #Micropost2016 Test set of L2A
model and baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XE) SVMmean (XP∪E)
Precision 0.78 0.78 0.80 0.71 0.70 0.73 0.76 0.72 0.76 0.76 0.67 0.69
Recall 0.77 0.77 0.54 0.65 0.73 0.77 0.81 0.69 0.81 0.81 0.59 0.62
F-Measure 0.48 0.48 0.43 0.37 0.45 0.59 0.64 0.52 0.64 0.69 0.58 0.60
STMM 0.76 0.76 0.62 0.64 0.70 0.73 0.77 0.68 0.77 0.77 0.55 0.56

TABLE B.10: Capabilities performance measures on #Micropost2015 Test set of L2A model
and baselines.

Baselines L2A
Entity Type BL-P1 BL-P2 MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XP∪E)
MMCM 2.67 19.00 35.88 25.57 36.07 34.92 49.86
TUCM 15.25 27.29 57.63 42.37 45.76 45.76 46.67
FMCR 25.96 22.10 26.19 25.00 28.57 40.48 64.84

TABLE B.11: Capabilities performance measures on #Micropost2016 Test set of L2A model
and baselines.

Baselines L2A
Entity Type BL-P1 BL-P2 MLP (XP) SVM (XP) DT (XP) KNN (XP) SVMmean (XP∪E)
MMCM 4.67 18.26 32.03 24.00 40.50 39.52 43.24
TUCM 14.68 24.53 53.21 31.19 56.88 52.29 42.86
FMCR 34.00 32.17 48.67 28.52 57.41 30.56 33.33

Appendix B. Additional Results for LearningToAdapt model 142

TABLE B.12: Accuracy performance of L2A model considering Word Embeddings feature
space. For each dataset, the best results are reported in bold.

2015 2016
XE XP∪E XE XP∪E

Wiki2Vec GoogleNews Wiki2Vec GoogleNews Wiki2Vec GoogleNews Wiki2Vec GoogleNews

BN

mean 0.64 0.53 0.63 0.55 0.85 0.73 0.85 0.77
max 0.50 0.51 0.59 0.50 0.77 0.81 0.81 0.85
min 0.48 0.46 0.49 0.50 0.81 0.81 0.81 0.77
first 0.51 0.49 0.50 0.52 0.77 0.69 0.77 0.69

DT

mean 0.39 0.41 0.67 0.68 0.62 0.73 0.69 0.62
max 0.48 0.46 0.63 0.66 0.62 0.77 0.73 0.73
min 0.45 0.39 0.66 0.67 0.69 0.46 0.85 0.69
first 0.38 0.41 0.65 0.68 0.65 0.62 0.73 0.69

KNN

mean 0.51 0.53 0.67 0.75 0.85 0.92 0.81 0.88
max 0.45 0.54 0.56 0.67 0.69 0.88 0.85 0.85
min 0.45 0.54 0.56 0.66 0.73 0.81 0.85 0.85
first 0.46 0.49 0.65 0.57 0.58 0.81 0.73 0.81

MLR

mean 0.46 0.42 0.52 0.62 0.92 0.85 0.69 0.77
max 0.45 0.43 0.53 0.63 0.65 0.77 0.85 0.85
min 0.55 0.41 0.52 0.59 0.69 0.73 0.77 0.65
first 0.56 0.43 0.56 0.54 0.88 0.73 0.73 0.69

MLP

mean 0.54 0.57 0.77 0.76 0.92 0.88 0.88 0.85
max 0.55 0.60 0.75 0.72 0.92 0.85 0.85 0.81
min 0.52 0.59 0.77 0.75 0.88 0.88 0.88 0.88
first 0.59 0.55 0.77 0.68 0.85 0.85 0.85 0.85

NB

mean 0.64 0.53 0.63 0.68 0.81 0.77 0.77 0.88
max 0.50 0.51 0.57 0.53 0.73 0.81 0.85 0.81
min 0.48 0.46 0.58 0.55 0.77 0.77 0.81 0.85
first 0.50 0.50 0.49 0.63 0.73 0.69 0.73 0.65

SVM

mean 0.50 0.62 0.75 0.68 0.92 0.85 0.88 0.77
max 0.49 0.56 0.73 0.77 0.92 0.85 0.88 0.85
min 0.48 0.54 0.75 0.68 0.92 0.81 0.88 0.85
first 0.61 0.50 0.75 0.64 0.88 0.88 0.88 0.88

TABLE B.13: Class Wise Accuracy Contribution (%) on #Micropost2015 Dev set considering
Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E

Character 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Event 0.48 7.21 0.48 6.73 0.48 7.21 0.48 6.73 0.48 6.73 0.48 6.73

Location 16.83 25.96 17.79 24.52 16.83 24.52 15.87 24.52 15.38 24.04 14.90 24.52
Organization 6.73 7.69 7.21 8.65 6.73 8.17 5.77 8.17 5.77 8.65 7.69 8.17

Person 27.40 33.65 26.92 33.17 25.48 34.62 25.48 32.69 27.40 31.25 24.52 33.65
Product 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 2.40 1.92
Thing 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48

Overall 53.85 76.92 54.81 75.48 51.92 76.92 50.00 74.52 51.44 73.08 50.48 75.48

TABLE B.14: Class Wise Accuracy Contribution (%) on #Micropost2015 Dev set considering
Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E

Character 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85
Event 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Location 23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08
Organization 11.54 11.54 11.54 11.54 11.54 11.54 11.54 11.54 11.54 11.54 11.54 11.54

Person 50.00 46.15 50.00 42.31 46.15 46.15 50.00 46.15 50.00 46.15 50.00 46.15
Product 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85
Thing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Overall 92.31 88.46 92.31 84.62 88.46 88.46 92.31 88.46 92.31 88.46 92.31 88.46

Appendix B. Additional Results for LearningToAdapt model 143

TABLE B.15: Class Wise Accuracy Contribution (%) on #Micropost2015 Dev set of L2A
model and baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) MLPmean (XE) MLPmean (XP∪E)
Character 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Event 0.00 0.00 7.21 2.88 0.00 0.00 0.00 0.00 1.44 1.44 0.48 7.21
Location 24.52 24.52 23.56 25.96 28.37 27.40 28.85 27.40 28.37 28.37 16.83 25.96
Organization 6.73 6.73 5.77 8.17 9.62 9.13 9.13 9.62 8.65 8.65 6.73 7.69
Person 33.17 33.17 24.52 30.77 31.25 32.69 33.17 32.21 30.29 29.81 27.40 33.65
Product 0.96 0.96 0.00 0.48 0.00 0.96 0.96 0.96 0.48 0.48 1.92 1.92
Thing 0.48 0.48 2.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.48
Overall 65.87 65.87 63.46 68.27 69.23 70.19 72.12 70.19 69.23 68.75 53.85 76.92

TABLE B.16: Class Wise Accuracy Contribution (%) on #Micropost2016 Dev set of L2A
model and baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) MLPmean (XE) MLPmean (XP∪E)
Character 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.85 3.85
Event 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Location 19.23 19.23 15.38 23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08
Organization 7.69 7.69 7.69 11.54 7.69 7.69 11.54 7.69 11.54 11.54 11.54 11.54
Person 46.15 46.15 26.92 30.77 42.31 42.31 42.31 34.62 42.31 42.31 50.00 46.15
Product 3.85 3.85 3.85 0.00 0.00 3.85 3.85 3.85 3.85 3.85 3.85 3.85
Thing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Overall 76.92 76.92 53.85 65.38 73.08 76.92 80.77 69.23 80.77 80.77 92.31 88.46

TABLE B.17: Precision, Recall, F-Measure and STMM on #Micropost2015 Dev set consider-
ing Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E

Precision 0.77 0.55 0.76 0.54 0.77 0.54 0.52 0.75 0.52 0.75 0.50 0.76
Recall 0.77 0.54 0.75 0.55 0.77 0.52 0.50 0.75 0.51 0.73 0.50 0.75

F-Measure 0.54 0.33 0.53 0.37 0.53 0.33 0.31 0.51 0.32 0.50 0.33 0.51
STMM 0.76 0.52 0.75 0.51 0.76 0.50 0.48 0.74 0.49 0.73 0.48 0.75

TABLE B.18: Precision, Recall, F-Measure and STMM on #Micropost2016 Dev set consider-
ing Word Embeddings feature space (XE and XP_E).

MLP SVM
mean max min mean max min

XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E XE XP∪E

Precision 0.92 0.93 0.92 0.93 0.92 0.90 0.93 0.90 0.93 0.91 0.93 0.90
Recall 0.88 0.92 0.85 0.92 0.88 0.88 0.92 0.88 0.92 0.88 0.92 0.88

F-Measure 0.83 0.89 0.64 0.89 0.83 0.86 0.89 0.86 0.89 0.80 0.89 0.86
STMM 0.88 0.91 0.85 0.91 0.88 0.87 0.91 0.87 0.91 0.87 0.91 0.87

TABLE B.19: Precision, Recall, F-Measure and STMM on #Micropost2015 Dev set of L2A
model and baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) MLPmean (XE) MLPmean (XP∪E)
Precision 0.67 0.67 0.75 0.67 0.67 0.63 0.62 0.63 0.72 0.67 0.52 0.77
Recall 0.66 0.66 0.63 0.68 0.68 0.70 0.72 0.70 0.69 0.69 0.54 0.77
F-Measure 0.37 0.37 0.43 0.37 0.37 0.36 0.37 0.36 0.36 0.36 0.33 0.54
STMM 0.66 0.66 0.68 0.67 0.67 0.66 0.66 0.66 0.66 0.66 0.52 0.76

TABLE B.20: Precision, Recall, F-Measure and STMM on #Micropost2016 Dev set of L2A
model and baselines.

Baselines L2A
Entity Type BL-D BL-P1 BL-P2 BN (XP) NB (XP) MLR (XP) MLP (XP) SVM (XP) DT (XP) KNN (XP) MLPmean (XE) MLPmean (XP∪E)
Precision 0.78 0.78 0.80 0.71 0.70 0.73 0.76 0.72 0.76 0.76 0.93 0.92
Recall 0.77 0.77 0.54 0.65 0.73 0.77 0.81 0.69 0.81 0.81 0.92 0.88
F-Measure 0.48 0.48 0.43 0.37 0.45 0.59 0.64 0.52 0.64 0.69 0.89 0.83
STMM 0.76 0.76 0.62 0.64 0.70 0.73 0.77 0.68 0.77 0.77 0.91 0.88

Appendix B. Additional Results for LearningToAdapt model 144

TABLE B.21: Capabilities performance measures on #Micropost2015 Dev set of L2A model
and baselines..

Baselines L2A
Entity Type BL-P1 BL-P2 MLP (XP) SVM (XP) DT (XP) KNN (XP) MLPmean (XP∪E)
MMCM 2.67 19.00 35.88 25.57 36.07 34.92 41.51
TUCM 15.25 27.29 57.63 42.37 45.76 45.76 37.50
FMCR 25.96 22.10 26.19 25.00 28.57 40.48 61.11

TABLE B.22: Capabilities performance measures on #Micropost2016 Dev set of L2A model
and baselines.

Baselines L2A
Entity Type BL-P1 BL-P2 MLP (XP) SVM (XP) DT (XP) KNN (XP) MLPmean (XP∪E)
MMCM 4.67 18.26 32.03 24.00 40.50 39.52 50.00
TUCM 14.68 24.53 53.21 31.19 56.88 52.29 100.00
FMCR 34.00 32.17 48.67 28.52 57.41 58.94 33.33

Bibliography

[1] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A Neural Prob-

abilistic Language Model. Journal of Machine Learning Research, 3:1137–1155, 2003.

[2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word

Representations in Vector Space. CoRR, abs/1301.3781, 2013.

[3] Florentina T. Hristea. Statistical Natural Language Processing. In International Encyclo-

pedia of Statistical Science, pages 1452–1453. Springer, 2011.

[4] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction

to Natural Language Processing, Computational Linguistics, and Speech Recognition.

Prentice Hall, 2000.

[5] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-

guage Processing. MIT Press, 2001.

[6] Yoav Goldberg. Neural Network Methods for Natural Language Processing. Morgan &

Claypool Publishers, 2017.

[7] Federico Alberto Pozzi, Elisabetta Fersini, Enza Messina, and Bing Liu. Sentiment Anal-

ysis in Social Networks. Morgan Kaufmann, 2016.

[8] Simon Carter, Wouter Weerkamp, and Manos Tsagkias. Microblog language identifica-

tion: overcoming the limitations of short, unedited and idiomatic text. Language Re-

sources and Evaluation, 47(1):195–215, 2013.

[9] Francesco Barbieri, Miguel Ballesteros, and Horacio Saggion. Are emojis predictable?

In Proceedings of the 15th Conference of the European Chapter of the Association for

Computational Linguistics, 2017.

[10] Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko Bosnjak, and Sebastian Riedel.

emoji2vec: Learning Emoji Representations from their Description. In Proceedings of

the 4th International Workshop on Natural Language Processing for Social Media, pages

48–54, 2016.

145

Bibliography 146

[11] Francesco Barbieri, Jose Camacho-Collados, Francesco Ronzano, Luis Espinosa Anke,

Miguel Ballesteros, Valerio Basile, Viviana Patti, and Horacio Saggion. SemEval 2018

Task 2: Multilingual Emoji Prediction. In Proceedings of the 12th International Work-

shop on Semantic Evaluation, pages 24–33, 2018.

[12] Hannah Miller, Jacob Thebault-Spieker, Shuo Chang, Isaac Johnson, Loren Terveen, and

Brent Hecht. “Blissfully Happy” or “Ready to Fight”: Varying Interpretations of Emoji.

In Proceedings of the 10th International Conference on Web and Social Media, 2016.

[13] Debora Nozza, Elisabetta Fersini, and Enza Messina. A Multi-View Sentiment Corpus.

In Proceedings of the 15th Conference of the European Chapter of the Association for

Computational Linguistics, volume 1, pages 273–280, 2017.

[14] Francesco Barbieri, Miguel Ballesteros, Francesco Ronzano, and Horacio Saggion. Mul-

timodal Emoji Prediction. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, 2018.

[15] Andrew Kehoe and Matt Gee. Social Tagging: A new perspective on textual ‘aboutness’.

Studies in Variation, Contacts and Change in English, 6, 2011.

[16] Lei Yang, Tao Sun, Ming Zhang, and Qiaozhu Mei. We Know What@ You# Tag: Does

the Dual Role Affect Hashtag Adoption? In Proceedings of the 21st International Con-

ference on World Wide Web, pages 261–270, 2012.

[17] Yu-Ru Lin, Drew Margolin, Brian Keegan, Andrea Baronchelli, and David Lazer. #Big-

birds Never Die: Understanding Social Dynamics of Emergent Hashtags. In Proceedings

of the 7th International Conference on Weblogs and Social Media, 2013.

[18] Ruth E. Page. Stories and Social Media: Identities and Interaction. Routledge, 2013.

[19] Michele Zappavigna. Searchable talk: the linguistic functions of hashtags. Social Semi-

otics, 25(3):274–291, 2015.

[20] Bing Liu. Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, 2012.

[21] Elisabetta Fersini, Enza Messina, and Federico Alberto Pozzi. Expressive signals in social

media languages to improve polarity detection. Information Processing & Management,

52(1):20 – 35, 2016.

[22] Philipp Koehn. Statistical machine translation. Cambridge University Press, 2009.

[23] John R. Firth. A synopsis of linguistic theory 1930-55. In Studies in Linguistic Analysis

(special volume of the Philological Society), volume 1952-59, pages 1–32. The Philolog-

ical Society, 1957.

Bibliography 147

[24] Zellig Harris. Distributional structure. Word, 10(23):146–162, 1954.

[25] Peter F. Brown, Vincent J. Della Pietra, Peter V. de Souza, Jennifer C. Lai, and Robert L.

Mercer. Class-Based n-gram Models of Natural Language. Computational Linguistics,

18(4):467–479, 1992.

[26] Scott Miller, Jethran Guinness, and Alex Zamanian. Name Tagging with Word Clus-

ters and Discriminative Training. In Proceedings of the 2004 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, volume 4, pages 337–342, 2004.

[27] Ronan Collobert and Jason Weston. A Unified Architecture for Natural Language Pro-

cessing: Deep Neural Networks with Multitask Learning. In Proceedings of the 25th

International Conference on Machine Learning, pages 160–167, 2008.

[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Dis-

tributed Representations of Words and Phrases and their Compositionality. In Proceed-

ings of the 27th Annual Conference on Neural Information Processing Systems, pages

3111–3119, 2013.

[29] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education Inc., 2003.

[30] Adrian A. Hopgood. The State of Artificial Intelligence. Advances in Computers, 65:

3–77, 2005.

[31] Aaron Courville Yoshua Bengio and Pascal Vincent. Representation Learning: A Review

and New Perspectives. IEEE Transaction on Pattern Analysis and Machine Intelligence,

35(8):1798–1828, 2013.

[32] Yoshua Bengio Yann LeCun and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):

436–444, 2015.

[33] Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[34] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for Transfer Learning.

In Proceedings of the 24th International Conference on Machine Learning, pages 193–

200, 2007.

[35] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-

tracting and Composing Robust Features with Denoising Autoencoders. In Proceedings

of the 25th International Conference on Machine learning, volume 307, pages 1096–

1103, 2008.

Bibliography 148

[36] Minmin Chen, Zhixiang Xu, Fei Sha, and Kilian Q. Weinberger. Marginalized Denoising

Autoencoders for Domain Adaptation. In Proceedings of the 29th International Confer-

ence on Machine Learning, pages 767–774, 2012.

[37] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine

Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep

Network with a Local Denoising Criterion. Journal of Machine Learning Research, 11:

3371–3408, 2010.

[38] Simon Osindero Geoffrey E. Hinton and Yee-Whye Teh. A Fast Learning Algorithm for

Deep Belief Nets. Neural Computation, 18(7):1527–1554, 2006.

[39] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy Layer-

Wise Training of Deep Networks. In Proceedings of the 19th Annual Conference on

Neural Information Processing Systems, pages 153–160, 2006.

[40] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vin-

cent, and Samy Bengio. Why Does Unsupervised Pre-training Help Deep Learning?

Journal of Machine Learning Research, 11:625–660, 2010.

[41] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully Convolutional Networks for

Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 39(4):640–651, 2017.

[42] Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann LeCun. Pedestrian

Detection with Unsupervised Multi-stage Feature Learning. In Proceedings of the 2013

IEEE Conference on Computer Vision and Pattern Recognition, pages 3626–3633, 2013.

[43] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep

Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian

Kingsbury. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The

Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29(6):82–97,

2012.

[44] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catan-

zaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse

Engel, Linxi Fan, Christopher Fougner, Awni Y. Hannun, Billy Jun, Tony Han, Patrick

LeGresley, Xiangang Li, Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair, Ryan

Prenger, Sheng Qian, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sen-

gupta, Chong Wang, Yi Wang, Zhiqian Wang, Bo Xiao, Yan Xie, Dani Yogatama, Jun

Zhan, and Zhenyao Zhu. Deep Speech 2 : End-to-End Speech Recognition in English

and Mandarin. In Proceedings of the 33rd International Conference on Machine Learn-

ing, pages 173–182, 2016.

Bibliography 149

[45] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel.

Learning Visual Feature Spaces for Robotic Manipulation with Deep Spatial Autoen-

coders. CoRR, abs/1509.06113, 2015.

[46] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neu-

ral Networks. In Advances in Neural Information Processing Systems 27, pages 3104–

3112, 2014.

[47] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation

by Jointly Learning to Align and Translate. CoRR, abs/1409.0473, 2014.

[48] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano:

A CPU and GPU Math Compiler in Python. In Proceedings of the 9th Python in Science

Conference, pages 1–7, 2010.

[49] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow,

Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new features and

speed improvements. In Deep Learning and Unsupervised Feature Learning Neural In-

formation Processing Systems 2012 Workshop, 2012.

[50] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A Matlab-like

Environment for Machine Learning. In BigLearn, Neural Information Processing Systems

Workshop, 2011.

[51] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-

shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional Architecture for

Fast Feature Embedding. In Proceedings of the 22nd ACM International Conference on

Multimedia, pages 675–678, 2014.

[52] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-

icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya

Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-

aoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

CoRR, abs/1603.04467, 2016.

[53] Patricia S. Churchland and Terrence J. Sejnowski. The Computational Brain. MIT Press,

1992. ISBN 978-0-262-03188-2.

Bibliography 150

[54] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representa-

tions by back-propagating errors. Nature, 323(6088):533–536, 1986.

[55] Richard H.R. Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney J. Douglas,

and H. Sebastian Seung. Digital selection and analogue amplification coexist in a cortex-

inspired silicon circuit. Nature, 405(6789):947–951, 2000.

[56] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural Net-

works. In Proceedings of the 14th International Conference on Artificial Intelligence and

Statistics, pages 315–323, 2011.

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the

IEEE International Conference on Computer Vision, pages 1026–1034, 2015.

[58] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep

Network Learning by Exponential Linear Units (ELUs). In Proceedings of the 4th Inter-

national Conference on Learning Representations, 2016.

[59] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. In-

corporating Second-Order Functional Knowledge for Better Option Pricing. In Proceed-

ings of the 13th International Conference on Neural Information Processing Systems,

pages 472–478, 2000.

[60] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[61] Koby Crammer and Yoram Singer. On the Algorithmic Implementation of Multiclass

Kernel-based Vector Machines. Journal of Machine Learning Research, 2:265–292,

2002.

[62] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University

Press, Inc., 1995.

[63] Solomon Kullback. Information Theory and Statistics. Courier Corporation, 1968.

[64] Andrey Tikhonov. Solution of Incorrectly Formulated Problems and the Regularization

Method. Soviet Mathematics Doklady, 4:1035–1038, 1963.

[65] Robert Tibshirani. Regression Shrinkage and Selection Via the Lasso. Journal of the

Royal Statistical Society, Series B, 58:267–288, 1994.

[66] Hui Zou and Trevor Hastie. Regularization and Variable Selection via the Elastic Net.

Journal of the Royal Statistical Society: Series B, 67(2), 2005.

Bibliography 151

[67] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-

tectors. CoRR, abs/1207.0580, 2012.

[68] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[69] Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behav-

ioral Sciences. PhD thesis, Harvard University, 1974.

[70] Arthur E. Bryson. A gradient method for optimizing multi-stage allocation processes.

In Proceedings of the Harvard University Symposium on Digital Computers and Their

Applications, page 72, 1961.

[71] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representa-

tions by back-propagating errors. Nature, 323(6088):533–536, 1986.

[72] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,

abs/1609.04747, 2016.

[73] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient Back-

Prop. In Neural Networks: Tricks of the Trade, volume 7700 of Lecture Notes in Com-

puter Science, pages 9–48. Springer, 2012.

[74] Léon Bottou. Stochastic Gradient Descent Tricks. In Neural Networks: Tricks of the

Trade, volume 7700 of Lecture Notes in Computer Science, pages 421–436. Springer,

2012.

[75] Boris T. Polyak. Some methods of speeding up the convergence of iteration methods.

USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[76] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the Importance of

Initialization and Momentum in Deep Learning. In Proceedings of the 30th International

Conference on Machine Learning, pages 1139–1147, 2013.

[77] Yurii Nesterov. A method of solving a convex programming problem with convergence

rate O(1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

[78] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization. Journal of Machine Learning Research, 12:2121–

2159, 2011.

[79] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSProp, COURSERA: Neural

networks for machine learning. University of Toronto, Technical Report, 2012.

Bibliography 152

[80] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In

Proceedings of the 3rd International Conference on Learning Representations, 2014.

[81] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[82] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the Dimensionality of Data

with Neural Networks. Science, 313(5786):504–507, 2006.

[83] Ruslan Salakhutdinov and Geoffrey E. Hinton. Semantic hashing. International Journal

of Approximate Reasoning, 50(7):969–978, 2009.

[84] Marc’Aurelio Ranzato and Martin Szummer. Semi-supervised Learning of Compact Doc-

ument Representations with Deep Networks. In Proceedings of the 25th International

Conference on Machine Learning, pages 792–799, 2008.

[85] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain Adaptation for Large-Scale

Sentiment Classification: A Deep Learning Approach. In Proceedings of the 28th Inter-

national Conference on Machine Learning, pages 513–520, 2011.

[86] Li Deng and Dong Yu. Deep learning: methods and applications. Foundations and

Trends R© in Signal Processing, 7(3–4):197–387, 2014.

[87] Stanley F. Chen and Joshua Goodman. An Empirical Study of Smoothing Techniques for

Language Modeling. Computer Speech & Language, 13(4):359–393, 1999.

[88] Joshua T. Goodman. A Bit of Progress in Language Modeling. Computer Speech &

Language, 15(4):403–434, 2001.

[89] Frederick Jelinek and Robert Mercer. Interpolated estimation of Markov source param-

eters from sparse data. In Proceedings of Workshop on Pattern Recognition in Practice,

1980, 1980.

[90] Stanley F. Chen and Joshua Goodman. An Empirical Study of Smoothing Techniques for

Language Modeling. In Proceedings of the 34th Annual Meeting of the Association for

Computational Linguistics, pages 310–318, 1996.

[91] Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, and Jan Černockỳ. Strate-

gies for Training Large Scale Neural Network Language Models. In IEEE Workshop on

Automatic Speech Recognition and Understanding, pages 196–201, 2011.

[92] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and

Richard A. Harshman. Indexing by Latent Semantic Analysis. Journal of the Association

for Information Science, 41(6):391–407, 1990.

Bibliography 153

[93] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent Trends in

Deep Learning Based Natural Language Processing. CoRR, abs/1708.02709, 2017.

[94] Frederic Morin and Yoshua Bengio. Hierarchical Probabilistic Neural Network Language

Model. In Proceedings of the 10th International Workshop on Artificial Intelligence and

Statistics, 2005.

[95] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural prob-

abilistic language models. In Proceedings of the 29th International Conference on Ma-

chine Learning, 2012.

[96] Marc’Aurelio Ranzato, Christopher S. Poultney, Sumit Chopra, and Yann LeCun. Effi-

cient Learning of Sparse Representations with an Energy-Based Model. In Proceedings

of the 19th International Conference on Neural Information Processing Systems, pages

1137–1144, 2006.

[97] Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse Feature Learning for

Deep Belief Networks. In Proceedings of the 20th International Conference on Neural

Information Processing Systems, pages 1185–1192, 2007.

[98] Alireza Makhzani and Brendan J. Frey. K-sparse autoencoders. CoRR, abs/1312.5663,

2013.

[99] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[100] Yu Chen and Mohammed J. Zaki. KATE: K-Competitive Autoencoder for Text. In Pro-

ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 85–94, 2017.

[101] Guosong Shao. Understanding the appeal of user-generated media: a uses and gratifica-

tion perspective. Internet Research, 19(1):7–25, 2009.

[102] Kalina Bontcheva and Dominic Paul Rout. Making sense of social media streams through

semantics: A survey. Semantic Web, 5(5):373–403, 2014.

[103] Pierpaolo Basile, Valerio Basile, Malvina Nissim, and Nicole Novielli. Deep Tweets:

from Entity Linking to Sentiment Analysis. In Proceedings of the Italian Computational

Linguistics Conference, 2015.

[104] Andranik Tumasjan, Timm Oliver Sprenger, Philipp G. Sandner, and Isabell M. Welpe.

Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment.

In Proceedings of the 4th International Conference on Weblogs and Social Media, 2010.

[105] Kate Starbird and Leysia Palen. (How) Will the Revolution be Retweeted? Information

Diffusion and the 2011 Egyptian Uprising. In Proceedings of the ACM 2012 Conference

on Computer Supported Cooperative Work, pages 7–16, 2012.

Bibliography 154

[106] Michael J. Paul and Mark Dredze. You Are What You Tweet: Analyzing Twitter for

Public Health. In Proceedings at 5th International AAAI Conference on Weblogs and

Social Media, volume 20, pages 265–272, 2011.

[107] Antonio Reyes, Paolo Rosso, and Tony Veale. A multidimensional approach for detecting

irony in twitter. Language resources and evaluation, 47(1):239–268, 2013.

[108] Jihen Karoui, Farah Benamara, Véronique Moriceau, Nathalie Aussenac-Gilles, and

Lamia Hadrich Belguith. Towards a Contextual Pragmatic Model to Detect Irony in

Tweets. In Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics, pages 644–650, 2015.

[109] Alan Ritter, Sam Clark, Mausam, and Oren Etzioni. Named Entity Recognition in Tweets:

An Experimental Study. In Proceedings of the 2011 Conference on Empirical Methods

in Natural Language Processing, pages 1524–1534, 2011.

[110] Giuseppe Rizzo and Raphaël Troncy. NERD: A Framework for Unifying Named Entity

Recognition and Disambiguation Extraction Tools. In Proceedings of the Demonstrations

at the 13th Conference of the European Chapter of the Association for Computational

Linguistics, pages 73–76, 2012.

[111] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating Non-local

Information into Information Extraction Systems by Gibbs Sampling. In Proceedings of

the 43rd Annual Meeting on Association for Computational Linguistics, pages 363–370,

2005.

[112] Pablo N. Mendes, Max Jakob, Andrés Garcı́a-Silva, and Christian Bizer. DBpedia Spot-

light: Shedding Light on the Web of Documents. In Proceedings of the 7th International

Conference on Semantic Systems, pages 1–8, 2011.

[113] Dieter Fensel. Ontologies. In Ontologies, pages 11–18. Springer, 2001.

[114] Lizhen Qu, Gabriela Ferraro, Liyuan Zhou, Weiwei Hou, and Timothy Baldwin. Named

Entity Recognition for Novel Types by Transfer Learning. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pages 899–905,

2016.

[115] John D. Lafferty, Andrew McCallum, and Fernando C.N. Pereira. Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceed-

ings of the 18th International Conference on Machine Learning, pages 282–289, 2001.

[116] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Manning. Labeled

LDA: A supervised topic model for credit attribution in multi-labeled corpora. In Pro-

ceedings of the 2009 Conference on Empirical Methods in Natural Language Processing,

pages 248–256, 2009.

Bibliography 155

[117] Giuseppe Rizzo, Amparo E. Cano, Bianca Pereira, and Andrea Varga. Making Sense

of Microposts (# Microposts2015) Named Entity rEcognition and Linking (NEEL) Chal-

lenge. In Proceedings of the 5th Workshop on Making Sense of Microposts, pages 44–53,

2015.

[118] Markus Kroetzsch and Gerhard Weikum. Journal of Web Semantics: Special Is-

sue on Knowledge Graphs. http://www.websemanticsjournal.org/index.php/ps/

announcement/view/19/, 2015. [Online; accessed May-2018].

[119] Pikakshi Manchanda, Elisabetta Fersini, Matteo Palmonari, Debora Nozza, and Enza

Messina. Towards Adaptation of Named Entity Classification. In Proceedings of the

Symposium on Applied Computing, pages 155–157, 2017.

[120] Elisabetta Fersini, Pikakshi Manchanda, Enza Messina, Debora Nozza, and Matteo Pal-

monari. Adapting Named Entity Types to New Ontologies in a Microblogging Environ-

ment. In Proceedings of the 31st International Conference on Industrial, Engineering &

Other Applications of Applied Intelligent Systems, 2018. To appear.

[121] Leon Derczynski, Diana Maynard, Giuseppe Rizzo, Marieke van Erp, Genevieve Gorrell,

Raphaël Troncy, Johann Petrak, and Kalina Bontcheva. Analysis of named entity recogni-

tion and linking for tweets. Information Processing & Management, 51(2):32–49, 2015.

[122] Cı́cero Nogueira dos Santos and Maira Gatti. Deep Convolutional Neural Networks for

Sentiment Analysis of Short Texts. In Proceedings of the 25th International Conference

on Computational Linguistics, pages 69–78, 2014.

[123] Jason Weston, Sumit Chopra, and Keith Adams. #TagSpace: Semantic Embeddings from

Hashtags. In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 1822–1827, 2014.

[124] Cedric De Boom, Steven Van Canneyt, Thomas Demeester, and Bart Dhoedt. Learning

Representations for Tweets through Word Embeddings. In Proceedeings of Benelearn,

2016.

[125] Amparo Elizabeth Cano, Daniel Preotiuc-Pietro, Danica Radovanovic, Katrin Weller, and

Aba-Sah Dadzie. #Microposts2016: 6th Workshop on Making Sense of Microposts: Big

things come in small packages. In Proceedings of the 25th International Conference on

World Wide Web, pages 1041–1042, 2016.

[126] Yiming Yang and Xin Liu. A re-examination of text categorization methods. In Proceed-

ings of the 22nd Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 42–49, 1999.

http://www.websemanticsjournal.org/index.php/ps/announcement/view/19/
http://www.websemanticsjournal.org/index.php/ps/announcement/view/19/

Bibliography 156

[127] Arzucan Özgür, Levent Özgür, and Tunga Güngör. Text categorization with class-based

and corpus-based keyword selection. In Proceedings of the International Symposium on

Computer and Information Sciences, pages 606–615, 2005.

[128] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan. GATE: A

Framework and Graphical Development Environment for Robust NLP Tools and Appli-

cations. In Proceedings of the 40th Annual Meeting of the Association for Computational

Linguistics, pages 168–175, 2002.

[129] Hal Daumé III. Frustratingly easy domain adaptation. arXiv preprint arXiv:0907.1815,

2009.

[130] Andrew Arnold, Ramesh Nallapati, and William W. Cohen. Exploiting Feature Hierarchy

for Transfer Learning in Named Entity Recognition. In Proceedings of the 46th Annual

Meeting of the Association for Computational Linguistics, pages 245–253, 2008.

[131] Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Frederick Reiss, and Shivakumar

Vaithyanathan. Domain Adaptation of Rule-Based Annotators for Named-Entity Recog-

nition Tasks. In Proceedings of the 2010 Conference on Empirical Methods in Natural

Language Processing, pages 1002–1012, 2010.

[132] Kai Eckert, Christian Meilicke, and Heiner Stuckenschmidt. Improving Ontology Match-

ing Using Meta-level Learning. In Proceedings of the 6th European Semantic Web Con-

ference, pages 158–172, 2009.

[133] Feng Shi, Juanzi Li, Jie Tang, Guotong Xie, and Hanyu Li. Actively Learning Ontology

Matching via User Interaction. In Proceedings of the 8th International Semantic Web

Conference, pages 585–600, 2009.

[134] Songyun Duan, Achille Fokoue, and Kavitha Srinivas. One Size Does Not Fit All: Cus-

tomizing Ontology Alignment Using User Feedback. In Proceedings of the 9th Interna-

tional Semantic Web Conference, pages 177–192, 2010.

[135] Manuel Atencia, Alexander Borgida, Jérôme Euzenat, Chiara Ghidini, and Luciano Ser-

afini. A Formal Semantics for Weighted Ontology Mappings. In Proceedings of the 11th

International Semantic Web Conference, pages 17–33, 2012.

[136] Jeffrey Pound, Peter Mika, and Hugo Zaragoza. Ad-hoc Object Retrieval in the Web of

Data. In Proceedings of the 19th International Conference on World Wide Web, pages

771–780, 2010.

[137] Lev-Arie Ratinov and Dan Roth. Design Challenges and Misconceptions in Named Entity

Recognition. In Proceedings of the 13th Conference on Computational Natural Language

Learning, pages 147–155, 2009.

Bibliography 157

[138] Delip Rao, Paul McNamee, and Mark Dredze. Entity Linking: Finding Extracted En-

tities in a Knowledge Base. In Multi-source, Multilingual Information Extraction and

Summarization, pages 93–115. Springer, 2013.

[139] Leon Derczynski, Diana Maynard, Niraj Aswani, and Kalina Bontcheva. Microblog-

Genre Noise and Impact on Semantic Annotation Accuracy. In Proceedings of the 24th

ACM Conference on Hypertext and Social Media, pages 21–30, 2013.

[140] Flavio Massimiliano Cecchini, Elisabetta Fersini, Pikakshi Manchanda, Enza Messina,

Debora Nozza, Matteo Palmonari, and Cezar Sas. UNIMIB@ NEEL-IT: Named Entity

Recognition and Linking of Italian Tweets. In Proceedings of the 3rd Italian Conference

on Computational Linguistics, 2016.

[141] idio Ltd. Wiki2Vec. https://github.com/idio/wiki2vec, 2014.

[142] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.

Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, and

Christian Bizer. DBpedia–A Large-scale, Multilingual Knowledge Base Extracted from

Wikipedia. Semantic Web, 6(2):167–195, 2015.

[143] Pierpaolo Basile, Franco Cutugno, Malvina Nissim, Viviana Patti, and Rachele Sprugnoli.

EVALITA 2016: Overview of the 5th Evaluation Campaign of Natural Language Process-

ing and Speech Tools for Italian. Associazione Italiana di Linguistica Computazionale,

2016.

[144] Francesco Piccinno and Paolo Ferragina. From TagME to WAT: a new Entity Anno-

tator. In Proceedings of the 1st ACM International Workshop on Entity Recognition &

Disambiguation, pages 55–62, 2014.

[145] Jörg Waitelonis and Harald Sack. Named Entity Linking in #Tweets with KEA. In

Proceedings of the 6th Workshop on Making Sense of Microposts, 2016.

[146] Ikuya Yamada, Hideaki Takeda, and Yoshiyasu Takefuji. An End-to-End Entity Link-

ing Approach for Tweets. In Proceedings of the the 5th Workshop on Making Sense of

Microposts, 2015.

[147] Anne-Lyse Minard, Mohammed R.H. Qwaider, and Bernardo Magnini. FBK-NLP at

NEEL-IT: Active Learning for Domain Adaptation. Proceedings of the 5th Evaluation

Campaign of Natural Language Processing and Speech Tools for Italian, 2016.

[148] Vittoria Cozza, Wanda La Bruna, and Tommaso Di Noia. sisinflab: an ensemble of

supervised and unsupervised strategies for the NEEL-IT challenge at Evalita 2016. Pro-

ceedings of the 5th Evaluation Campaign of Natural Language Processing and Speech

Tools for Italian, 2016.

https://github.com/idio/wiki2vec

Bibliography 158

[149] Pierpaolo Basile, Annalina Caputo, Giovanni Semeraro, and Fedelucio Narducci.

UNIBA: Exploiting a Distributional Semantic Model for Disambiguating and Linking

Entities in Tweets. In Proceedings of the the 5th Workshop on Making Sense of Microp-

osts, 2015.

[150] Kara Greenfield, Rajmonda Caceres, Michael Coury, Kelly Geyer, Youngjune Gwon, Ja-

son Matterer, Alyssa Mensch, Cem Sahin, and Olga Simek. A Reverse Approach to

Named Entity Extraction and Linking in Microposts. In Proceedings of the the 6th Work-

shop on Making Sense of Microposts, pages 67–69, 2016.

[151] Pablo Torres-Tramón, Hugo Hromic, Brian Walsh, Bahareh Rahmanzadeh Heravi, and

Conor Hayes. Kanopy4Tweets: Entity Extraction and Linking for Twitter. Proceedings

of the 6th Workshop on Making Sense of Microposts, 2016.

[152] Wei Shen, Jianyong Wang, and Jiawei Han. Entity Linking with a Knowledge Base:

Issues, Techniques, and Solutions. IEEE Transactions on Knowledge and Data Engi-

neering, 27(2):443–460, 2015.

[153] Ben Hachey, Will Radford, Joel Nothman, Matthew Honnibal, and James R. Curran.

Evaluating Entity Linking with Wikipedia. Artificial intelligence, 194:130–150, 2013.

[154] Zhicheng Zheng, Fangtao Li, Minlie Huang, and Xiaoyan Zhu. Learning to Link Entities

with Knowledge Base. In Proceedings of the 2010 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, pages 483–491, 2010.

[155] Mark Dredze, Paul McNamee, Delip Rao, Adam Gerber, and Tim Finin. Entity Dis-

ambiguation for Knowledge Base Population. In Proceedings of the 23rd International

Conference on Computational Linguistics, pages 277–285, 2010.

[156] Wei Zhang, Jian Su, Chew Lim Tan, and Wen Ting Wang. Entity Linking Leveraging:

Automatically Generated Annotation. In Proceedings of the 23rd International Confer-

ence on Computational Linguistics, pages 1290–1298, 2010.

[157] Xianpei Han and Jun Zhao. NLPR KBP in TAC 2009 KBP Track: A Two-Stage Method

to Entity Linking. In Proceedings of the 2nd Text Analysis Conference, 2009.

[158] John Lehmann, Sean Monahan, Luke Nezda, Arnold Jung, and Ying Shi. LCC Ap-

proaches to Knowledge Base Population at TAC 2010. In Proceedings of the 3rd Text

Analysis Conference, 2010.

[159] Sean Monahan, John Lehmann, Timothy Nyberg, Jesse Plymale, and Arnold Jung. Cross-

Lingual Cross-Document Coreference with Entity Linking. In Proceedings of the 4th Text

Analysis Conference, 2011.

Bibliography 159

[160] Silviu Cucerzan. Large-Scale Named Entity Disambiguation Based on Wikipedia Data.

In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning, pages 708–716, 2007.

[161] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred

Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. Robust

Disambiguation of Named Entities in Text. In Proceedings of the 2011 Conference on

Empirical Methods in Natural Language Processing, pages 782–792, 2011.

[162] Stephen Guo, Ming-Wei Chang, and Emre Kiciman. To Link or Not to Link? A Study on

End-to-End Tweet Entity Linking. In Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, pages 1020–1030, 2013.

[163] Davide Caliano, Elisabetta Fersini, Pikakshi Manchanda, Matteo Palmonari, and Enza

Messina. UniMiB: Entity Linking in Tweets using Jaro-Winkler Distance, Popularity and

Coherence. Proceedings of the 6th International Workshop on Making Sense of Microp-

osts, pages 70–72, 2016.

[164] Razvan Bunescu and Marius Paşca. Using Encyclopedic Knowledge for Named Entity

Disambiguation. In Proceedings of the 11th Conference of the European Chapter of the

Association for Computational Linguistics, 2006.

[165] Paolo Ferragina and Ugo Scaiella. TAGME: On-the-fly Annotation of Short Text Frag-

ments (by Wikipedia Entities). In Proceedings of the 19th ACM International Conference

on Information and Knowledge Management, pages 1625–1628, 2010.

[166] Swapna Gottipati and Jing Jiang. Linking Entities to a Knowledge Base with Query

Expansion. In Proceedings of the 2011 Conference on Empirical Methods in Natural

Language Processing, pages 804–813, 2011.

[167] Anja Pilz and Gerhard Paaß. From Names to Entities using Thematic Context Distance.

In Proceedings of the 20th ACM International Conference on Information and Knowledge

Management, pages 857–866, 2011.

[168] Wei Shen, Jianyong Wang, Ping Luo, and Min Wang. LINDEN: Linking Named Entities

with Knowledge Base via Semantic Knowledge. In Proceedings of the 21st International

Conference on World Wide Web, pages 449–458, 2012.

[169] Wei Shen, Jianyong Wang, Ping Luo, and Min Wang. Linking Named Entities in Tweets

with Knowledge Base via User Interest Modeling. In Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

68–76, 2013.

Bibliography 160

[170] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and Global Algo-

rithms for Disambiguation to Wikipedia. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies, pages

1375–1384, 2011.

[171] Bernard J. Jansen, Mimi Zhang, Kate Sobel, and Abdur Chowdury. Twitter power:

Tweets as electronic word of mouth. Journal of the Association for Information Science

and Technology, 60(11):2169–2188, 2009.

[172] Michael Gamon, Anthony Aue, Simon Corston-Oliver, and Eric K. Ringger. Pulse: Min-

ing Customer Opinions from Free Text. In Advances in Intelligent Data Analysis VI,

6th International Symposium on Intelligent Data Analysis, volume 3646, pages 121–132,

2005.

[173] Debora Nozza, Elisabetta Fersini, and Enza Messina. Deep Learning and Ensemble Meth-

ods for Domain Adaptation. In Proceedings of the 28th IEEE International Conference

on Tools with Artificial Intelligence, pages 184–189, 2016.

[174] Thomas G. Dietterich. Ensemble Learning. The Handbook of Brain Theory and Neural

Networks, 2:110–125, 2002.

[175] Elisabetta Fersini, Enza Messina, and Federico Alberto Pozzi. Sentiment analysis:

Bayesian ensemble learning. Decision Support Systems, 68:26–38, 2014.

[176] Gang Wang, Jianshan Sun, Jian Ma, Kaiquan Xu, and Jibao Gu. Sentiment classification:

The contribution of ensemble learning. Decision Support Systems, 57:77–93, 2014.

[177] Federico Alberto Pozzi, Elisabetta Fersini, and Enza Messina. Bayesian Model Averag-

ing and Model Selection for Polarity Classification. In Proceedings of the International

Conference on Application of Natural Language to Information Systems, pages 189–200,

2013.

[178] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[179] Yoav Freund and Robert E. Schapire. A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. Journal of Computer and System Sciences, 55

(1):119–139, 1997.

[180] Tin Kam Ho. The Random Subspace Method for Constructing Decision Forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

[181] Josef Kittler, Mohamad Hatef, Robert P.W. Duin, and Jiri Matas. On Combining Classi-

fiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–239,

1998.

Bibliography 161

[182] John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, Bollywood, Boom-boxes

and Blenders: Domain Adaptation for Sentiment Classification. In Proceedings of the

45th Annual Meeting of the Association of Computational Linguistics, pages 440–447,

2007.

[183] George H. John and Pat Langley. Estimating continuous distributions in Bayesian clas-

sifiers. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence,

pages 338–345, 1995.

[184] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine learning, 20

(3):273–297, 1995.

[185] Yoav Freund and Robert E. Schapire. Large Margin Classification Using the Perceptron

Algorithm. Machine Learning, 37(3):277–296, 1999.

[186] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers

Inc., 1993.

[187] Niels Landwehr, Mark Hall, and Eibe Frank. Logistic Model Trees. Machine Learning,

59(1-2):161–205, 2005.

[188] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-Based Learning Algorithms.

Machine Learning, 6(1):37–66, 1991.

[189] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[190] John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation with structural

correspondence learning. In Proceedings of the 2006 Conference on Empirical Methods

in Natural Language Processing, pages 120–128, 2006.

[191] Steffen Bickel and Tobias Scheffer. Dirichlet-Enhanced Spam Filtering based on Biased

Samples. Proceedings of the 20th Annual Conference on Neural Information Processing

Systems, page 161, 2007.

[192] Jing Jiang and ChengXiang Zhai. Instance Weighting for Domain Adaptation in NLP. In

Proceedings of the 45th Annual Meeting of the Association for Computational Linguis-

tics, pages 264–271, 2007.

[193] Miroslav Dudı́k, Steven J. Phillips, and Robert E. Schapire. Correcting sample selec-

tion bias in maximum entropy density estimation. In Advances in Neural Information

Processing Systems, pages 323–330, 2005.

[194] Hal Daumé III and Daniel Marcu. Domain Adaptation for Statistical Classifiers. Journal

of Artificial Intelligence Research, pages 101–126, 2006.

Bibliography 162

[195] Koby Crammer, Michael Kearns, and Jennifer Wortman. Learning from Multiple

Sources. In Proceedings of the 20th Annual Conference on Neural Information Pro-

cessing Systems, page 321, 2007.

[196] Toshihiro Kamishima, Masahiro Hamasaki, and Shotaro Akaho. TrBagg: A Simple

Transfer Learning Method and its Application to Personalization in Collaborative Tag-

ging. In Proceedings of the 9th IEEE International Conference on Data Mining, pages

219–228, 2009.

[197] Cristina Bosco, Viviana Patti, and Andrea Bolioli. Developing Corpora for Sentiment

Analysis: The Case of Irony and Senti-TUT. IEEE Intelligent Systems, 28(2):55–63,

2013.

[198] Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso, Ekaterina Shutova, John Barnden,

and Antonio Reyes. SemEval-2015 Task 11: Sentiment Analysis of Figurative Language

in Twitter. In Proceedings of the 9th International Workshop on Semantic Evaluation,

pages 470–478, 2015.

[199] Herbert Colston and Raymond Gibbs. A Brief History of Irony. In Irony in Language

and Thought: A Cognitive Science Reader, pages 3–21. Lawrence Erlbaum Assoc Incor-

porated, 2007.

[200] Debora Nozza, Elisabetta Fersini, and Enza Messina. Unsupervised Irony Detection: A

Probabilistic Model with Word Embeddings. In Proceedings of the 8th International Joint

Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Manage-

ment, pages 68–76, 2016.

[201] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. Journal

of Machine Learning Research, 3:993–1022, 2003.

[202] Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, and ChengXiang Zhai. Topic Sen-

timent Mixture: Modeling Facets and Opinions in Weblogs. In Proceedings of the 16th

International Conference on World Wide Web, pages 171–180, 2007.

[203] Chenghua Lin and Yulan He. Joint Sentiment/Topic Model for Sentiment Analysis. In

Proceedings of the 18th ACM Conference on Information and Knowledge Management,

pages 375–384, 2009.

[204] Yohan Jo and Alice H. Oh. Aspect and Sentiment Unification Model for Online Review

Analysis. In Proceedings of the 4th ACM International Conference on Web Search and

Data Mining, pages 815–824, 2011.

[205] Valentin Jijkoun, Maarten de Rijke, and Wouter Weerkamp. Generating Focused Topic-

Specific Sentiment Lexicons. In Proceedings of the 48th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 585–594, 2010.

Bibliography 163

[206] Andrea Esuli and Fabrizio Sebastiani. SENTIWORDNET: A Publicly Available Lexi-

cal Resource for Opinion Mining. In Proceedings of the 5th Conference on Language

Resources and Evaluation, pages 417–422, 2006.

[207] Nobuhiro Kaji and Masaru Kitsuregawa. Building Lexicon for Sentiment Analysis from

Massive Collection of HTML Documents. In Proceedings of the 2007 Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural Lan-

guage Learning, pages 1075–1083, 2007.

[208] Saif Mohammad, Cody Dunne, and Bonnie Dorr. Generating High-Coverage Semantic

Orientation Lexicons From Overtly Marked Words and a Thesaurus. In Proceedings of

the 2009 Conference on Empirical Methods in Natural Language Processing, pages 599–

608, 2009.

[209] Delip Rao and Deepak Ravichandran. Semi-Supervised Polarity Lexicon Induction. In

Proceedings of the 12th Conference of the European Chapter of the Association for Com-

putational Linguistics, pages 675–682, 2009.

[210] Yue Lu, Malu Castellanos, Umeshwar Dayal, and ChengXiang Zhai. Automatic Con-

struction of a Context-aware Sentiment Lexicon: An Optimization Approach. In Pro-

ceedings of the 20th International Conference on World Wide Web, pages 347–356, 2011.

[211] Elisabetta Fersini, Federico Alberto Pozzi, and Enza Messina. Detecting Irony and Sar-

casm in Microblogs: The Role of Expressive Signals and Ensemble Classifiers. In Pro-

ceedings of IEEE International Conference on Data Science and Advanced Analytics,

pages 1–8, 2015.

[212] Francesco Barbieri and Horacio Saggion. Modelling Irony in Twitter. In Proceedings of

the Student Research Workshop at the 14th Conference of the European Chapter of the

Association for Computational Linguistics, pages 56–64, 2014.

[213] Irazú Hernández-Farı́as, José-Miguel Benedı́, and Paolo Rosso. Applying Basic Features

from Sentiment Analysis for Automatic Irony Detection. In Pattern Recognition and

Image Analysis - 7th Iberian Conference, pages 337–344, 2015.

[214] Hernández Farias and Delia Irazu. Irony and Sarcasm Detection in Twitter: The Role of

Affective Content. PhD thesis, Universitat Politècnica de València, Spain, 2017.

[215] Delia Irazú Hernańdez Farı́as, Viviana Patti, and Paolo Rosso. Irony detection in Twitter:

The role of affective content. ACM Transactions on Internet Technology, 16(3):19, 2016.

[216] Saif M. Mohammad and Peter D. Turney. Crowdsourcing a Word–Emotion Association

Lexicon. Computational Intelligence, 29(3):436–465, 2013.

Bibliography 164

[217] Corbett Edward P.J. and Robert Connors. Classical Rhetoric for the Modern Student.

New York: Oxford University Press, 1971.

[218] Emilio Sulis, Delia Irazú Hernández Farı́as, Paolo Rosso, Viviana Patti, and Giancarlo

Ruffo. Figurative messages and affect in Twitter: Differences between #irony,#sarcasm

and #not. Knowledge-Based Systems, 108:132–143, 2016.

[219] Salvatore Attardo. Irony. Elsevier, 2006.

[220] Marta Dynel. Linguistic approaches to (non) humorous irony. Humor, 27(4):537–550,

2014.

[221] David C. Littman and Jacob L. Mey. The nature of irony: Toward a computational model

of irony. Journal of Pragmatics, 15(2):131–151, 1991.

[222] Rachel Giora, Elad Livnat, Ofer Fein, Anat Barnea, Rakefet Zeiman, and Iddo Berger.

Negation Generates Nonliteral Interpretations by Default. Metaphor and Symbol, 28(2):

89–115, 2013.

[223] Rachel Giora, Shir Givoni, and Ofer Fein. Defaultness Reigns: The Case of Sarcasm.

Metaphor and Symbol, 30(4):290–313, 2015.

[224] Rachel Giora, Ari Drucker, Ofer Fein, and Itamar Mendelson. Default Sarcastic Inter-

pretations: On the Priority of Nonsalient Interpretations. Discourse Processes, 52(3):

173–200, 2015.

[225] Po-Ya Angela Wang. # Irony or# Sarcasm—A Quantitative and Qualitative Study Based

on Twitter. In Proceedings of the 27th Pacific Asia Conference on Language, Information,

and Computation, pages 349–356, 2013.

[226] Francesco Barbieri, Horacio Saggion, and Francesco Ronzano. Modelling Sarcasm in

Twitter, a Novel Approach. In Proceedings of the 5th Workshop on Computational Ap-

proaches to Subjectivity, Sentiment and Social Media Analysis, pages 50–58, 2014.

[227] Raymond W. Gibbs and Herbert L. Colston. Irony in language and thought: A cognitive

science reader. Psychology Press, 2007.

[228] Helga Kotthoff. Gender and joking: On the complexities of women’s image politics in

humorous narratives. Journal of Pragmatics, 32(1):55–80, 2000.

[229] Skye McDonald. Exploring the Process of Inference Generation in Sarcasm: A Review

of Normal and Clinical Studies. Brain and Language, 68(3):486–506, 1999.

[230] Leila Weitzel, Ronaldo Cristiano Prati, and Raul Freire Aguiar. The Comprehension of

Figurative Language: What Is the Influence of Irony and Sarcasm on NLP Techniques?

Bibliography 165

In Sentiment Analysis and Ontology Engineering: An Environment of Computational In-

telligence, pages 49–74. Springer, 2016.

[231] Antonio Reyes and Paolo Rosso. On the difficulty of automatically detecting irony: be-

yond a simple case of negation. Knowledge and Information Systems, 40(3):595–614,

2014.

[232] Dmitry Davidov, Oren Tsur, and Ari Rappoport. Semi-supervised recognition of sarcas-

tic sentences in twitter and amazon. In Proceedings of the 14th Conference on Com-

putational Natural Language Learning, pages 107–116. Association for Computational

Linguistics, 2010.

[233] Roberto González-Ibánez, Smaranda Muresan, and Nina Wacholder. Identifying Sarcasm

in Twitter: A Closer Look. In Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies - Short Papers, pages

581–586, 2011.

[234] Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De Silva, Nathan Gilbert, and Rui-

hong Huang. Sarcasm as Contrast between a Positive Sentiment and Negative Situation.

In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 704–714, 2013.

[235] Tomáš Ptáček, Ivan Habernal, and Jun Hong. Sarcasm Detection on Czech and English

Twitter. In Proceedings of the 25th International Conference on Computational Linguis-

tics: Technical Papers, pages 213–223, 2014.

[236] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. WordNet::Similarity - Mea-

suring the Relatedness of Concepts. In Demonstration Papers at the 2004 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 38–41, 2004.

[237] David Bamman and Noah A. Smith. Contextualized sarcasm detection on Twitter. In

Proceedings of the 9th International AAAI Conference on Web and Social Media, pages

574–77, 2015.

[238] Ashwin Rajadesingan, Reza Zafarani, and Huan Liu. Sarcasm Detection on Twitter: A

Behavioral Modeling Approach. In Proceedings of the 8th ACM International Conference

on Web Search and Data Mining, pages 97–106, 2015.

[239] Debanjan Ghosh, Weiwei Guo, and Smaranda Muresan. Sarcastic or Not: Word Embed-

dings to Predict the Literal or Sarcastic Meaning of Words. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, pages 1003–1012,

2015.

Bibliography 166

[240] Sam Ransbotham, Gerald C. Kane, and Nicholas H. Lurie. Network Characteristics and

the Value of Collaborative User-Generated Content. Marketing Science, 31(3):387–405,

2012.

[241] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C. Aggarwal, and Thomas S.

Huang. Heterogeneous Network Embedding via Deep Architectures. In Proceedings

of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 119–128, 2015.

[242] Palash Goyal and Emilio Ferrara. Graph Embedding Techniques, Applications, and Per-

formance: A Survey. arXiv preprint arXiv:1705.02801, 2017.

[243] Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps for Dimensionality Reduction

and Data Representation. Neural Computation, 15(6):1373–1396, 2003.

[244] Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality Reduction by Locally

Linear Embedding. Science, 290(5500):2323–2326, 2000.

[245] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and

Alexander J Smola. Distributed Large-scale Natural Graph Factorization. In Proceed-

ings of the 22nd International Conference on World Wide Web, pages 37–48, 2013.

[246] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE:

Large-scale Information Network Embedding. In Proceedings of the 24th International

Conference on World Wide Web, pages 1067–1077, 2015.

[247] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric Transi-

tivity Preserving Graph Embedding. In Proceedings of the 22nd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, pages 1105–1114, 2016.

[248] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learning of Social

Representations. In Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 701–710, 2014.

[249] Aditya Grover and Jure Leskovec. Node2Vec: Scalable Feature Learning for Networks.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 855–864, 2016.

[250] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural Deep Network Embedding. In Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 1225–1234, 2016.

[251] Xiao Huang, Jundong Li, and Xia Hu. Accelerated Attributed Network Embedding. In

Proceedings of the 2017 SIAM International Conference on Data Mining, pages 633–641,

2017.

Bibliography 167

[252] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-Party Deep

Network Representation. In Proceedings of the 25th International Joint Conference on

Artificial Intelligence, pages 1895–1901, 2016.

[253] Quoc V. Le and Tomas Mikolov. Distributed Representations of Sentences and Docu-

ments. In Proceedings of the 31th International Conference on Machine Learning, pages

1188–1196, 2014.

[254] Elisabetta Fersini, Federico Alberto Pozzi, and Enza Messina. Approval network: a novel

approach for sentiment analysis in social networks. World Wide Web, 20(4):831–854,

2017.

[255] Zellig S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[256] Emily M. Jin, Michelle Girvan, and Mark E.J. Newman. The structure of growing social

networks. Physical review E, 64(4):046132, 2001.

[257] Sophia R. Goldberg, Hannah Anthony, and Tim S. Evans. Modelling citation networks.

Scientometrics, 105(3):1577–1604, 2015.

[258] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. ArnetMiner:

Extraction and Mining of an Academic Social Network. In Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

990–998, 2008.

[259] Kar Wai Lim and Wray L. Buntine. Bibliographic Analysis with the Citation Network

Topic Model. In Asian Conference on Machine Learning, pages 142–158, 2015.

[260] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina

Eliassi-Rad. Collective Classification in Network Data. AI Magazine, 29(3):93–106,

2008.

[261] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-

Parameter Optimization. In Advances in Neural Information Processing Systems 24: 25th

Annual Conference on Neural Information Processing Systems 2011, pages 2546–2554,

2011.

[262] James Bergstra, Daniel Yamins, and David D. Cox. Making a Science of Model Search:

Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In

Proceedings of the 30th International Conference on Machine Learning, volume 28,

pages 115–123, 2013.

[263] Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong. Cross-Language Knowl-

edge Transfer using Multilingual Deep Neural Network with Shared Hidden Layers. In

Bibliography 168

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, pages 7304–7308, 2013.

[264] Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. Multi-Way, Multilingual Neural Ma-

chine Translation with a Shared Attention Mechanism. In Proceedings of the 2016 Con-

ference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 866–875, 2016.

[265] Eytan Adar and Christopher Ré. Managing Uncertainty in Social Networks. IEEE Data

Engineering Bulletin, 30(2):15–22, 2007.

[266] Arijit Khan and Lei Chen. On Uncertain Graphs Modeling and Queries. Proceedings of

the VLDB Endowment, 8(12):2042–2043, 2015.

[267] Mucheol Kim and Sangyong Han. Cognitive social network analysis for supporting the

reliable decision-making process. The Journal of Supercomputing, 2016.

[268] Salma Ben Dhaou, Kuang Zhou, Mouloud Kharoune, Arnaud Martin, and Boutheina Ben

Yaghlane. The advantage of evidential attributes in social networks. In Proceedings of

the 20th International Conference on Information Fusion, pages 1–8, 2017.

[269] Kaiquan Xu, Jiexun Li, and Stephen Shaoyi Liao. Sentiment Community Detection in

Social Networks. In Proceedings of the 2011 iConference, pages 804–805, 2011.

[270] William Deitrick and Wei Hu. Mutually Enhancing Community Detection and Sentiment

Analysis on Twitter Networks. Journal of Data Analysis and Information Processing, 1

(03):19, 2013.

[271] Mirko Lai, Marcella Tambuscio, Viviana Patti, Giancarlo Ruffo, and Paolo Rosso. Ex-

tracting Graph Topological Information and Users’ Opinion. In Proceedings of the Inter-

national Conference of the Cross-Language Evaluation Forum for European Languages,

pages 112–118, 2017.

[272] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. DynGEM: Deep Embedding

Method for Dynamic Graphs. CoRR, abs/1805.11273, 2018.

	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis contribution and organization

	2 Natural Language Processing
	2.1 Challenges
	2.2 Language Feature Representation
	2.2.1 Term Presence and Frequency
	2.2.2 Words and n-grams
	2.2.3 Complex Linguistic Descriptors
	2.2.4 Distributional features

	3 Deep Learning Background
	3.1 Challenges motivating Deep Learning
	3.2 Artificial Neural Networks
	3.3 Neural Network Architectures
	3.3.1 Single-Layer Feedforward Network
	3.3.2 Multi-Layer Feedforward Network
	3.3.3 Recurrent Neural Network

	3.4 Activation Functions
	3.5 Learning method
	3.5.1 Objective functions
	3.5.1.1 Loss functions
	3.5.1.2 Regularization

	3.5.2 Training algorithm
	3.5.3 Optimization algorithms
	3.5.3.1 Gradient descent
	3.5.3.2 Stochastic gradient descent
	3.5.3.3 Stochastic gradient descent with Momentum
	3.5.3.4 Stochastic gradient descent with Nesterov Momentum
	3.5.3.5 AdaGrad
	3.5.3.6 RMSProp
	3.5.3.7 Adam
	3.5.3.8 Adadelta

	4 Deep Learning Architectures for Textual Feature Representation
	4.1 Neural Networks Language Model
	4.1.1 Neural Probabilistic Language Model
	4.1.2 Collobert and Weston
	4.1.3 Word2vec

	4.2 Auto-encoder
	4.2.1 Stacked Auto-encoder
	4.2.2 Regularized Auto-encoder
	4.2.3 Sparse Auto-encoder
	4.2.3.1 k-sparse Auto-encoder

	4.2.4 Denoising Auto-encoder
	4.2.4.1 Marginalized Stacked Denoising Auto-encoder

	4.2.5 k-Competitive Auto-encoder

	5 Deep Learning Representation for Making Sense of User-Generated Content
	5.1 Named Entity Recognition and Classification
	5.1.1 Word Embeddings Representation for Learning to Adapt Entity Classification
	5.1.1.1 Adaptation Model: Learning to Adapt with Word Embeddings
	5.1.1.2 Experimental Settings
	5.1.1.3 Experimental Results
	5.1.1.4 Related Works

	5.2 Named Entity Linking
	5.2.1 Word Embeddings for Named Entity Linking
	5.2.1.1 Representation and Linking model
	5.2.1.2 Experimental Settings
	5.2.1.3 Experimental Results
	5.2.1.4 Related Works

	5.3 Sentiment Analysis
	5.3.1 Deep Learning Representation and Ensemble Learning methods for Domain Adaptation in Sentiment Classification
	5.3.1.1 Deep Learning Representation and Ensemble Learning model
	5.3.1.2 Experimental Settings
	5.3.1.3 Experimental Results
	5.3.1.4 Related Works

	5.4 Irony Detection
	5.4.1 A Probabilistic Model with Word Embeddings for Unsupervised Irony Detection
	5.4.1.1 Unsupervised Topic-Irony Model
	5.4.1.2 Experimental Settings
	5.4.1.3 Experimental Results
	5.4.1.4 Topic Detection results
	5.4.1.5 Related Works

	6 Enhancing Textual Feature Representation including Relational Information
	6.1 Related Works
	6.2 Deep Attributed Graph Embeddings Model
	6.2.1 Problem Definition and Motivation
	6.2.2 Constrained Deep Attributed Graph Embeddings Model
	6.2.2.1 Auto-encoder
	6.2.2.2 Textual Attribute Embedding Model
	6.2.2.3 Structural Graph Embedding Model
	6.2.2.4 Optimization problem
	6.2.2.5 Toy Example

	6.3 Experimental Settings
	6.3.1 Dataset
	6.3.2 Compared Models
	6.3.3 Evaluation Framework

	6.4 Experimental Results

	7 Conclusion and Future Works
	A TWINE: A real-time system for TWeet analysis via INformation Extraction
	A.1 Introduction
	A.2 TWINE system
	A.2.1 System Architecture
	A.2.2 User Interface

	A.3 Conclusion

	B Additional Results for LearningToAdapt model
	Bibliography

