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Abstract

In this thesis we focus on the theoretical subtleties of the top-quark mass (mt) determi-

nation, issue which persists in being highly controversial.

Typically, in order to infer the top mass, theoretical predictions dependent on mt

are employed. The parameter mt is the physical mass, that is connected with the bare

mass though a renormalization procedure. Several renormalization schemes are possible

and the most natural seems to be the pole-mass one. However, the pole mass is not

very well defined for a coloured object like the top quark. The pole mass is indeed

affected by the presence of infrared renormalons. They manifest as factorially growing

coefficients that spoil the convergence of the perturbative series, leading to ambiguities

of order of ΛQCD. On the other hand, short-distance mass schemes, like the MS, are

known to be free from such renormalons. Luckily, the renormalon ambiguity seems to

be safely below the quoted systematic errors on the pole-mass determinations, so these

measurements are still valuable. In the first part of the thesis, we investigate the presence

of linear renormalons in observables that can be employed to determine the top mass.

We considered a simplified toy model to describe W ∗ → tb̄ → Wbb̄. The computation

is carried out in the limit of a large number of flavours (nf ), using a new method that

allows to easily evaluate any infrared safe observable at order αS(αSnf )n for any n. The

observables we consider are, in general, affected by two sources of renormalons: the

pole-mass definition and the jet requirements. We compare and discuss the predictions

obtained in the usual pole scheme with those computed in the MS one. We find that

the total cross section without cuts, when expressed in terms of the MS mass, does not

exhibit linear renormalons, but, as soon as selection cuts are introduced, jet-related linear

renormalons arise in any mass scheme. In addition, we show that the reconstructed mass

is affected by linear renormalons in any scheme. The average energy of the W boson

(that we consider as a simplified example of leptonic observable) has a renormalon in

the narrow-width limit in any mass scheme, that is however screened at large orders for

finite top widths, provided the top mass is in the MS scheme.

The most precise determinations of the top mass are the direct ones, i.e. those

that rely upon the reconstruction of the kinematics of the top-decay products. Direct

determinations are heavily based on the use of Monte Carlo event generators. The

generators employed must be as much accurate as possible, in order not to introduce

biases in the measurements. To this purpose, the second part of the thesis is devoted to

the comparison of several NLO generators, implemented in the POWHEG BOX framework,

that differ by the level of accuracy employed to describe the top decay. The impact

of the shower Monte Carlo programs, used to complete the NLO events generated by

POWHEG BOX, is also studied. In particular, we discuss the two most widely used shower

Monte Carlo programs, i.e. Pythia8.2 and Herwig7.1, and we present a method to

interface them with processes that contain decayed emitting resonances. The comparison

of several Monte Carlo programs that have formally the same level of accuracy is, indeed,

a mandatory step towards a sound estimate of the uncertainty associated with mt.
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Introduction

The top quark is the heaviest elementary particle in the Standard Model (SM) that has been

observed so far. It thus appears clear that its phenomenology is driven by the large value of its

mass mt. Indeed, the top is the only quark that decays before hadronizing. This provides us

the unique occasion to study the properties of a “bare” quark. For these reasons an accurate

determination of mt is part of the Large Hadron Collider (LHC) physics program.

Through radiative corrections, the top-quark mass has a non-negligible impact on many

parameters of the Standard Model, like the masses of the electroweak bosons and the Higgs

self-coupling. Thus, the value of the Z (or the W ) mass is sensitive to the value of the top-

quark one. For this reason, the electroweak data enable us to have a simultaneous determination

of the top and of the Z-boson masses and the strong coupling αS(MZ). The extracted value

of mt is 176.7 ± 2.1 GeV [1], which is in slight tension with the value of 173.34 ± 0.76 GeV,

i.e. the latest Tevatron and the LHC combined results [2]. In addition the top-quark mass is

one key ingredient to address the issue of vacuum stability [3–6]. Under the assumption that

there is no new physics up to the Planck scale, the Higgs self coupling λ(µ) is always positive

during its renormalization-group flow for each scale µ adopted, if mt < 171 GeV. If instead

171 < mt < 176 GeV, we are in the metastability region, since λ(µ) becomes negative only at

scales of the order of the Planck scale. Thus, there is no indication of new physics below the

Planck scale coming from the requirement of vacuum stability.

The most precise determinations of mt are the so called “direct measurements”, which rely

upon the full or partial reconstruction of the top momentum out of its decay products. Kinematic

distributions sensitive to the top-quark mass are compared to Monte Carlo predictions and the

mt value that fits the data the best is the extracted top-quark mass. The ATLAS and CMS

measurements of Refs. [7] and [8], yielding the values mt = 172.84±0.34 (stat)±0.61 (syst) GeV

and mt = 172.44 ± 0.13 (stat) ± 0.47 (syst) GeV respectively, fall into this broad category. Of

course this kind of determinations is affected by theoretical errors that must be carefully assessed.

If the Monte Carlo used to simulate the distributions is not accurate enough, it introduces a

bias in the determination of mt. For this reason, many efforts have been done in order to

implement next-to-leading-order (NLO) generators capable to handle processes containing a

decayed emitting resonance, like the top quark is. We will discuss this issue in the second part

of the thesis.

However, in contrast with the increasing experimental precision of the top-mass measure-

ments at the LHC, the theoretical interpretation is still matter of debate. In Ref. [9] it was argued

that the Monte Carlo mass parameter does not coincide with the top-pole mass and their differ-

ence is unavoidable due to the intrinsic ambiguity of the pole-mass definition. Indeed, since the

top is quark is always colour-connected with another particle, an isolated top-quark cannot exist.
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This leads to a renormalon in the relation of the pole to the MS mass [10,11]. Nevertheless, the

renormalon ambiguity does not seem severe for the specific case of the top quark, since recent

studies [12, 13] have shown that it is in fact well below the current experimental error. In any

case non-perturbative corrections to top-mass observables (not necessarily related to the mass

renormalon) are present and must be carefully assessed. The top-quark mass renormalon and

its interplay with the renormalon arising from the use of jets [14] is discussed in the first part

of the thesis.

2
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Renormalons and all-orders

behaviour in top-mass sensitive

observables
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Chapter 1

Introduction

The top mass is measured quite precisely at the LHC by both the ATLAS [15] and the CMS [16]

Collaborations. Up to now, the methods that yield the most accurate results are the so called

“direct” methods, where kinematic distribution obtained reconstructing fully or partially the

top decay products are compared to templates produced with Monte Carlo event generators.

Current uncertainties are now near 500 MeV [7, 8], so that one can worry whether QCD

non-perturbative effects may substantially affect the result. In fact, the experimental collabora-

tions estimate these and other effects by varying parameters in the generators, and eventually

comparing different generators. This method has been traditionally used in collider physics to

estimate theoretical uncertainties due to the modelling of hadronization and underlying events,

and also to estimate uncertainties related to higher perturbative orders, as produced by the

shower algorithms. We perform a similar study in the second part of the thesis. This is a

valuable strategy, as long as all the generators under comparison can reproduce faithfully the

data.1 However, it should not be forgotten that it may only provide a lower bound on the

associated errors. However, it should not be forgotten that this statement is true only if all

the generators under comparison. It is thus important, at the same time, to investigate the

associated uncertainties from a purely theoretical point of view. In consideration of our poor

knowledge of non-perturbative QCD, these investigations can at most have a qualitative value,

but may help us to understand sources of uncertainties that we might have missed. One such

work is presented in Ref. [17], where the authors attempt to relate a theoretically well-defined

mass parameter with a corresponding shower Monte Carlo one, using as observable the jet mass

of a highly boosted top.

We consider the interplay of non-perturbative effects with the behaviour of perturbative

QCD at large orders in the coupling constant, focusing in particular upon observables that,

although quite simple, may be considered of the kind used in “direct measurements”.

It is known that, in renormalizable field theories, the renormalization group flow of the

couplings leads to the so called renormalons, i.e. to the factorial growth of the coefficients of the

perturbative expansion as a function of the order [18–25]. Renormalons lead to a divergence of

the perturbative expansion, that thus becomes asymptotic. In particular, in the case of infrared

renormalons in asymptotically-free field theories, the ambiguity in the summation of the series

corresponds to a power suppressed effect.

1If such a statement fails to be true, the bad-behaved generator must be discarded from the comparison, as
discussed in the second part of the thesis.
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Chap 1. Introduction

Renormalons were originally found in two-point function diagrams [18,19,26]. These contri-

butions are sometimes identified with renormalons in the so-called large (and negative) number of

flavour nf limit. We consider a fictitious process W ∗ → tb̄→Wbb̄, where the W boson has only

a vector coupling to quarks, and examine the behaviour of the cross section, of the reconstructed-

top mass and of the energy of the W boson, order by order in the strong coupling expansion,

taking the large-nf limit. We consider up to one gluon exchange, or emission, and dress this

gluon with an arbitrary number of fermion vacuum-polarization insertions. Furthermore, we

also consider final states where the gluon has undergone a splitting into a fermion-antifermion

pair, corresponding to a cut vacuum polarization diagram. We assume a finite width for the top

quark.

We have devised a method that allowed us to compute in principle any observable in our

process, without further approximations, making use of simple numerical techniques. We can

thus compute the perturbative expansion at any finite order and infer its asymptotic nature for

any observable, with the only limitation of the numerical precision.

We focus for simplicity upon simple top-mass observables, such as the production cross

section with or without cuts, the reconstructed-top mass, defined as the mass of a system

comprising the W and a b (not b̄) jet, and, as a simplified example of leptonic observable, the

average value of the energy of the final-state W boson. As discussed earlier, we consider our

reconstructed-top mass as an oversimplified representation of observables of the kind used in

the so called“direct” measurements. We also stress that we consider the kinematic region where

the top energy is not much larger than its mass, that is the region typically used in direct

measurements.

We know that there are renormalons arising in the computation of the position of the pole

in the top propagators, and we also know that there must be renormalons associated to jets

requirements. Since in our framework we can compute the perturbative expansion order by order

in perturbation theory, we are in the position to determine explicitly the effects of renormalons

in the perturbative expansion.

Our results can be given in terms of the top mass expressed either in the pole or in the MS

mass scheme. We know that the expression of the pole mass in terms of the MS mass has a linear

renormalon. If the MS mass is considered a fundamental parameter of the theory, this is to be

interpreted as an uncertainty of the order of a typical hadronic scale associated to the position of

the pole in the top propagator. One may wonder whether the pole mass could instead be used as

a fundamental parameter of the theory, which would imply that the MS mass has an uncertainty

of the order of a hadronic scale. In fact, it is well known and clear (but nevertheless we wish to

stress it again) that this last point of view is incorrect. QCD is characterized by a short distance

Lagrangian, and its defining parameters are short distance parameters. Thus, if we compute

an observable in terms of the MS mass, and we find that it has no linear renormalons, we can

conclude that the observable has no physical linear renormalons, since its perturbative expansion

in terms of the parameters of the short distance Lagrangian has no linear renormalons. On the

other end, in the opposite case of an observable that has no linear renormalons if expressed in

terms of the pole mass, we must conclude that this observable has a physical renormalon, that is

precisely the one that is contained in the pole mass. We also stress that it is the MS mass that

should enter more naturally in the electroweak fits [1, 27, 28] and in the calculations relative to

the stability of the vacuum [3–6], although in practice the pole mass is often used also in these

5



Chap 1. Introduction

contexts.

The outline of the first part of the thesis is the following. In Chap. 2 we describe some

notions strictly connected with the renormalon issues. In particular we present the physical

argument given by Dyson to show that perturbation expansions are not convergent in quantum

field theory. We then give a formal definition of asymptotic series and of the Borel transform.

In Chap. 3 we discuss the large-nf limit, where higher order corrections are accessible up to all

orders in the coupling. As first application, we illustrate the computation of the relation between

the pole and the MS mass scheme. We also present a possible solution to move from the large-

nf limit, that portrays QCD as an Abelian theory, to a more realistic large-b0 limit, where b0

is the first coefficient of the full QCD β function, in order to recover the asymptotic freedom

behaviour of the theory. In Chap. 4 we explicitly illustrate the steps for the computation of the

fictitious process W ∗ → tb̄→Wbb̄ in the large number of flavours limit, using the complex pole

mass scheme [29,30] for the normalization of the top mass. We also show how to rearrange the

expression in terms of the MS mass, that can be considered as a proxy for all short-distances

mass schemes. In Chap. 5 we discuss the presence of infrared linear renormalons in the inclusive

cross section, the reconstructed top-mass and the energy of the final-state W boson. We also

compare the small-momentum behaviour of such observables computed in the pole scheme with

the behaviour achieved by expressing them in terms of a short-distance mass. In Chap. 6 we

present the coefficients of the perturbative expansion in αS of the above-mentioned observables.

Finally, we draw our conclusions in Chap. 7. Some technical details are discussed in Appendices.

The results we present in this first part of the thesis can be found also in Ref. [31].
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Chapter 2

Generalities on divergent series and

on the renormalon concept

We now illustrate some basic concepts relative to the physics of infrared renormalons.

2.1 Dyson’s argument

Dyson in 1952 showed, with a simple and intuitive physical argument, that perturbative expan-

sions cannot converge in quantum field theory [32].

We can consider, for example,a generic observable in QED given by a perturbation expansion

in e2:

O(e2) =

∞∑
n=nmin

rn (e2)n. (2.1)

The expansion is performed around the value e2 = 0. If the series converges, then there would

be a radius of convergence around e2 = 0. This implies a convergent result also for small and

negative values of e2. Negative values of e2 would correspond to a force that is repulsive for

opposite charges and attractive for equal charges. “By creating a large number N of electron-

positron pairs, bringing the electrons together in one region of space and the positrons in another

separate region, it is easy to construct a “pathological” state in which the negative potential

energy of the Coulomb forces is much greater than the total rest energy and kinetic energy of

the particles” [32]. This corresponds to a state with unbounded negative energy, that implies

the absence of a stable vacuum.

We thus conclude that, since a convergence for negative e2 is impossible because the corre-

sponding theory is meaningless, the radius of convergences of the series is zero.

2.2 Divergent series

As we have seen in Sec. 2.1, perturbative series are divergent in quantum field theory. In

particular, one may ask whether is possible to assign a “sum” to the series. We consider an

observable O written in powers of α

O ∼
∞∑
n=0

cnα
n+1. (2.2)

7



Sec 2.2. Divergent series

We interpret the series as an asymptotic series in a region C of the complex α-plane if for each

order N there are numbers KN that satisfy∣∣∣∣∣O −
N−1∑
n=0

cnα
n+1

∣∣∣∣∣ < KNα
N+1 (2.3)

for all α in C. Let us consider a factorially divergent series

cn
n→∞−−−→ NanΓ(1 + b+ n) , (2.4)

with N , a and b constant. When small values of n are concerned, the terms cn α
n+1 decrease

for increasing n. However, for large values of n the coefficients cn behaves as in (2.4). When a

large value N ′ is reached such that∣∣∣cN ′−1α
N ′
∣∣∣ ≈ ∣∣∣cN ′αN ′+1

∣∣∣ , (2.5)

i.e. for

N ′ ≈ 1

|a|α
, (2.6)

the series of cnα
n+1 reaches its minimum and then starts growing. The best approximation of

the sum of the series is provided when the truncation error is minimum, i.e.

cN ′α
N ′+1 = Nα(αa)

1
|a|αΓ

(
1 + b+

1

|a|α

)
≈ Nα (|a|α)−b−

1
2 exp

(
− 1

|a|α

)
. (2.7)

To improve this approximation, we can employ the Borel summation technique. Given the series

in eq. (2.2) with α > 0, its Borel transform is given by

B [O] (t) =
∑
n=0

cn
n!
tn (2.8)

and the Borel integral is defined as

Õ =

∫ +∞

0
dt e−t/αB [O] (t) = α

∫ +∞

0
dt e−tB [O] (α t). (2.9)

It can be shown that the Borel integral has the same α-expansion of (2.2) and thus, if Õ exists,

it can be interpreted as the sum of the divergent series. This is particularly useful for alternate

sign factorially growing series. We consider the following series and its Borel integral:

O = N
∞∑
i=0

an Γ(1 + b+ n)αn+1 → (aα)−b
N
a

∫ +∞

0
dt e−t Γ(1 + b)

[
1

aα
− t
]−1−b

. (2.10)

where we have assumed non negative b values. The integral is well defined if a < 0, i.e. for an

alternated-sign series. For positive a values there is a pole on the integration path at t = −1/aα.

We stress that the location of the pole is independent from the value of b. We can give a meaning

to the integral by deforming the integration path above or below the pole, that thus acquires an

8



Sec 2.3. QCD infrared renormalons

imaginary part equal to

∓ πN
a

(aα)−b exp

(
− 1

aα

)
, (2.11)

where the sign depends on whether the integration is taken in the upper or lower complex plane.

The ambiguity can be estimated as 1/2π times the difference between the two imaginary parts,

i.e.
N
a

(aα)−b exp

(
− 1

aα

)
. (2.12)

By comparing eqs. (2.12) and (2.7) we notice that, in case of same sign factorially divergent

series, a small ambiguity proportional to exp [−1/aα] is unavoidable.

2.3 QCD infrared renormalons

Infrared renormalons [20, 21] provide a connection between the behaviour of the perturbative

expansion at large orders in the coupling constant and non-perturbative effects. They arise when

the last loop integration in the (n+ 1)-loop order of the the perturbative expansion acquires the

form (see e.g. [24, 25])

αn+1
S (Q)

1

Qp

∫ Q

dk kp−1 bn0

(
log

Q2

k2

)n
=
n!

p

(
2b0
p

)n
αn+1

S (Q) ≡ cn αn+1
S (Q) , (2.13)

where Q is the typical scale involved in the process and b0 is the first coefficient of the QCD

beta function

b0 =
11CA

12π
−
nf TR

3π
. (2.14)

The coefficient b0 arises because the running coupling is the source of the logarithms in eq. (2.13).

A naive justification of the behaviour illustrated in eq. (2.13) can be given by considering the

calculation of an arbitrary dimensionless observable, characterized by a scale Q, including the

effect of the exchange or emission of a single gluon with momentum k, leading to a correction

that, for small k, takes the form
1

Qp

∫ Q

dk kp−1αS, (2.15)

where p is an integer greater than zero for the result to be infrared-finite. Assuming that higher

order corrections will lead to the replacement of αS with the running coupling evaluated at the

scale l, given by the geometric expansion

αS(k) =
1

b0 log k2

Λ2
QCD

=
αS(Q)

1− αS(Q) b0 log Q2

k2

=
∞∑
0

αn+1
S (Q) bn0 logn

Q2

k2
, (2.16)

substituting eq. (2.16) into eq. (2.15), we obtain the behaviour of eq. (2.13).

The coefficients of the perturbative expansion displays a factorial growth. The series then

is not convergent and can at most be interpreted as an asymptotic series. As anticipated in

Sec. 2.2, the terms of the series are smaller and smaller for low values of n, until they reach a

minimum and then they start to diverge with the order. The minimum is reached when

cn−1 α
n
S (Q) ≈ cn αn+1

S (Q) , (2.17)

9



Sec 2.3. QCD infrared renormalons

that correspond to n ≈ p/(2b0αS(Q)), and the size of the minimal term is

n!

p

(
2b0
p

)n
αn+1

S (Q) ≈ Qp

p
αS(Q)n−n

(
nn+1/2e−n

)
≈ αS(Q)

n
1
2

p
exp

(
− p

2 b0 αS(Q)

)
≈

√
αS(Q)

2b0 p

(
ΛQCD

Q

)p
. (2.18)

If we resum the series whose terms are given in (2.16) using the Borel summation, we will get

an ambiguity
1

2 b0

(
ΛQCD

Q

)p
, (2.19)

where we have used eq. (2.12) with N = 1/p, b = 0 and a = 2b0
p . The value of p depends

upon the process under consideration. In this paper, we are interested in linear IR renormalons,

corresponding to p = 1, that can lead to ambiguities in the measured mass of the top quark of

relative order ΛQCD/mt, i.e. ambiguities of order ΛQCD in the top mass. Larger values of p lead

to corrections of relative order ΛpQCD/m
p
t , that are totally negligible.

We will see in Sec. 3 that the behaviour of the perturbative series in eq. (2.13) arises when

considering the large number of flavours limit. However, if we include more refinements, the

expected behaviour [24,25] becomes more complicate:

cn+1 α
n+1
S (Q) ∝ Γ(1 + b+ n)

(
2b0
p

)n
αn+1

S (Q) (2.20)

being b a positive number. As we have seen in Sec. 2.2, this does not change the location of the

singularity in the Borel plane and still leads to an ambiguity of the resummed series proportional

to exp
(
− p

2 b0 αS(Q)

)
≈
(

ΛQCD

Q

)p
. Thus our reasoning is not modified.

10



Chapter 3

The large-nf limit

The full renormalon structure of QCD is not known. There is however a fully consistent simplified

model where higher order corrections are accessible up to all orders in the coupling, namely the

large number of flavours, nf , limit of QCD. In this limit, the only higer-order contributions that

must be considered are the insertion of fermion loops in a gluon propagator, since they involve

powers of nfαS. Examples of computations performed in this limit can be found in Refs. [33,34].

Unfortunately, the large-nf limit of QCD does not yield to an asymptotically free theory,

since the first coefficient of the β function would be positive if we neglect self-gauge interactions.

However, it is believed that tracing the fermionic contribution to the β function, and, at the

end of the computation, making the replacement

nf → −
11CA

4TR

+ nl , (3.1)

where CA = 3, TR = 1/2 and nl is the number of light flavours, one recovers the correct results.

In this way, the first coefficient of the β function computed in the large-nf , b0, is matched with

its full expression:

b0 =
11

3π
CA −

4

3π
TF , (3.2)

with TF = TRnl. Since there is no formal proof of this statement, this is just a working hypothesis.

Our strategy to retain the full QCD β function is slightly different from the one above mentioned

and it is described in Sec. 3.3.

3.1 The dressed gluon propagator

In this section we address more technical details about the dressed gluon propagator to all orders

in the large-nf limit.

The insertion of an infinite number of self-energy corrections

Πµν(k, µ) = (−gµνk2 + kµkν) iΠ(k2, µ2) , (3.3)

where iη is a small imaginary part coming from the Feynman prescription to integrate around

11



Sec 3.1. The dressed gluon propagator

the poles, along a gluon propagator of momentum k, gives rise to

−i
k2 + iη

gµν +
−i

k2 + iη
Πµν(k, µ)

−i
k2 + iη

+ . . . = − i

k2 + iη
gµν

1

1 + Π(k2, µ2)
, (3.4)

where we have dropped all the longitudinal terms. The derivation of the exact d-dimensional

expression of Π(k2, µ2) can be found e.g. in Ref. [35]. In the limit of large number of flavours,

i.e. considering only light-quark loops, Π(k2, µ2) is given by

Π
(
k2, µ2

)
=
αSTF

π
eεγE

Γ(1 + ε) Γ2(1− ε)
Γ(1− 2ε)

1− ε
(3− 2ε)(1− 2ε)

1

ε

(
−k2

µ2

)−ε
, (3.5)

=
αSTF

π

[
1

ε
− log

(
−k2

µ2

)
+

5

3

]
+O(ε), (3.6)

where TF = nfTR, γE is the Euler-Mascheroni constant and we implicitly assume αS = αS(µ).

Eq. (3.5) can be obtained replacing

µ2 → µ2 e
εγE

4π
(3.7)

in eq. (4.21) of Ref. [35], according to the MS prescription.

If k2 > 0, we must replace k2 → k2 + iη, where iη is a small imaginary part coming from the

Feynman prescription. As a consequence, Π(k2, µ2) develops an imaginary part equal to

Im Π(k2, µ2) =
αSTF

3
. (3.8)

The replacement in eq. (3.7) is particularly convenient since it enables us to absorb in the

counterterm only the (UV) divergent part of Π

Πct =
αSTF

3π

1

ε
. (3.9)

The renormalized gluon propagator dressed with the sum of all quark-loop insertion is then

given by

− i

k2 + iη
gµν

1

1 + Π(k2, µ2)−Πct
, (3.10)

where

Π(k2, µ2)−Πct =
αSTF

3π

[
5

3
− log

(
|k2|
µ2

)
+ iπ θ(k2)

]
+O(ε) (3.11)

= αS b0,f

[
log

(
|k2|
µ2 eC

)
− iπθ

(
k2
)]

+O(ε), (3.12)

and we have defined

b0,f ≡ −
TF

3π
, (3.13)

and C = 5/3.

Sometimes it is useful to introduce a fictitious light quark mass mq to regulate the behaviour

12



Sec 3.2. Pole-MS mass conversion

of Π(0, µ2). The MS-renormalized vacuum polarization with a massive quark reads

Π(k2,m2
q , µ

2)−Πct = (3.14)

αS b0,f ×



log

(
µ2

m2
q

)
k2 = 0 ,

[
log

(
µ2

m2
q

)
+

5

3
+ ρ−

(
1 +

ρ

2

)√
ρ− 1

(
π − 2 arctan

√
ρ− 1

)]
0 < k2 ≤ 4m2

q ,{
log

(
µ2

m2
q

)
+

5

3
+ ρ+

(
1 +

ρ

2

)√
1− ρ

[
log

∣∣∣∣1−√1− ρ
1 +
√

1− ρ

∣∣∣∣+ iπθ
(
k2 − 4m2

q

)]}
k2 < 0 and k2 > 4m2

q ,

where we have defined

ρ =
4m2

q

k2
. (3.15)

It develops an imaginary part for k2 > 4m2
q equal to

Im Π(k2,m2
q , µ

2) = αS b0,f π
(

1 +
ρ

2

)√
1− ρ. (3.16)

3.2 Pole-MS conversion

As first example, we compute the difference between the pole mass m and the MS mass m(µ)

at all orders in αS(αSnf )n. The coupling αS is always meant to be evaluated at the scale µ.

At O(αS), the self-energy correction evaluated for the eigenvalue of /p equal to m takes the

form

iΣ(1)(m,m) = −i g2CF

(
µ2

4π
eγE
)ε ∫

ddk

(2π)d
γα(/p+ /k +m)γα

[k2 + iη] [(k + p)2 −m2 + iη]

∣∣∣∣∣
/p=m

, (3.17)

being k the gluon momentum. The details of computation of Σ(1)(m,m) can be found in

Appendix A.2.2 and the result is given by eq. (A.36). The mass counterterms defined in

the pole and in the MS schemes (see Sec. A) are given by

mc = −iΣ(1)(m,m)

= −αS

4π
CF e

εγE Γ(ε)m

(
µ2

m2

)ε
3− 2ε

1− 2ε

= −αS

4π
CFm

[
3

ε
+ 3 log

(
µ2

m2

)
+ 4

]
+O(ε) , (3.18)

mc(µ) =
[
−iΣ(1)(m(µ),m(µ))

](d)

= −αS

4π
CFm

c(µ)
3

ε
, (3.19)

respectively, where (d) denotes the divergent part according to the MS definition. Neglecting
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Sec 3.2. Pole-MS mass conversion

terms of the order α2
S, the mass difference is given by the finite part of iΣ(1)(m,m):

m−m(µ) =
[
iΣ(1)(m,m)

](f)
=
αS

4π
CFm

[
3 log

(
µ2

m2

)
+ 4

]
. (3.20)

According to Sec. A, to evaluate m−m(µ) beyond NLO, we need to compute

iΣ(/p,mb)
∣∣∣
/p=m

, iΣ(/p,mb)
∣∣∣
/p=m(µ)

, (3.21)

being mb the bare mass. Since up to αS corrections

mb ≈ m ≈ m(µ) (3.22)

and Σ(/p,mb) already contains a factor αS, in the large-nf limit we can just calculate

iΣ(/p,m)
∣∣∣
/p=m

= iΣ(m,m). (3.23)

Indeed, if we replace m with mb or m(µ) in contributions that are O(αS), we produce variations

of the order α2
S(αSnf )n, that are totally negligible in our context.

The all-orders expression of iΣ(m,m) is obtained by replacing the free gluon propagator of

eq. (3.17) with the dressed one, as shown in eq. (3.4). We thus obtain

iΣ(m,m) = −i g2CF

(
µ2

4π
eγE
)ε ∫

ddk

(2π)d
γα(/p+ /k +m)γα

k2 [(k + p)2 −m2]

1

1 + Π(k2, µ2)−Πct

∣∣∣∣∣
/p=m

. (3.24)

By using eq. (B.10), we can write

iΣ(m,m) = − i
π

∫ +∞

0−
dλ2

{
− g2CF

(
µ2

4π
eγE
)ε ∫

ddk

(2π)d
γα(/p+ /k +m)γα

[k2 − λ2] [(k + p)2 −m2]

}

× Im

[
1

λ2

1

1 + Π(λ2, µ2)−Πct

]
(3.25)

where we set mq = 0 since IR divergences are absent. The expression in the curly brackets of

eq. (3.25) is the one-loop self-energy of a quark of mass m, computed with a gluon of mass λ,

that we denote by Σ
(1)
λ (m,m), whose O(ε) expression is given in eq. (A.28). For ease of notation

we introduce

r̃(ε, λ) =
iΣ

(1)
λ (m,m)

m
=

αS

4π
CF

[
3

ε
+ 3 log

(
µ2

m2

)
+ 4

+
λ2

m2

(
1 + log

(
λ2

m2

))
+

(
2 +

λ2

m2

)
H

(
λ2

m2

)]
+O(ε) , (3.26)

r̃(ε, 0) =
iΣ

(1)
0 (m,m)

m
=
αS

4π
CF e

εγE Γ(ε)

(
µ2

m2

)ε
3− 2ε

1− 2ε
, (3.27)

r̃∞(ε, λ) =
iΣ

(1)
λ∞

(m,m)

m
=
αS

4π
CF e

εγE Γ(ε)

(
µ2

λ2

)ε
2(3− 2ε)

(1− ε)(2− ε)
, (3.28)
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Sec 3.2. Pole-MS mass conversion

where the function H is defined in eq. (A.25) and we have used the expressions of Σ
(1)
λ (m,m),

Σ
(1)
0 (m,m) and Σ

(1)
λ∞

(m,m) given by eqs (A.28), (A.35) and (A.46). The parametric dependence

on m, µ and αS of the integrand functions r̃(ε, λ), r̃(ε, 0) and r̃∞(ε, λ) is kept implicit for ease

of notation. We thus have

iΣ(m,m)

m
= − 1

π

∫ +∞

0−
dλ2 r̃(ε, λ)× Im

[
1

λ2 + iη

1

1 + Π(λ2, µ2)−Πct

]
. (3.29)

Since r̃(ε, λ) contains a single pole in ε and does not vanish for large λ, we need to evaluate the

integrand in d = 4− 2ε dimensions, in order to extract its finite part. We can express r̃(ε, λ) as

the sum of the following two terms

r̃d(ε, λ) =
µ2

µ2 + λ2
r̃(ε, 0) +

λ2

µ2 + λ2
r̃∞(ε, λ) , (3.30)

r̃f (λ) = r̃(ε, λ)− r̃d(ε, λ) . (3.31)

We dropped the ε dependence in r̃f since we can safely perform the ε→ 0 limit, indeed it does

not contain any UV ε-pole and

lim
λ→∞

r̃f (λ) = O
(
m2

λ2

)
, (3.32)

lim
λ→0

r̃f (λ) = −αS

CF

2

λ

m
+O

(
λ2

m2

)
, (3.33)

so that we can write

r̃f (λ) =
αSCF

4π

{
−3 log

(
m2

µ2

)
+
λ2

m2

(
1 + log

λ2

m2

)
+ 4 +

(
2 +

λ2

m2

)
H

(
λ2

m2

)
− µ2

µ2 + λ2

[
−3 log

(
m2

µ2

)
+ 4

]
− λ2

µ2 + λ2

[
−3 log

(
λ2

µ2

)
+

5

2

]}
. (3.34)

We thus rewrite eq. (3.29) as

iΣ(m,m)

m
= rf (m,µ, αS) + rd(m,µ, αS) , (3.35)

rf (m,µ, αS) ≡ − 1

π

∫ ∞
0−

dλ2 r̃f (λ) Im

[
1

λ2 + iη

1

1 + Π(λ2, µ2)−Πct

]
, (3.36)

rd(m,µ, αS) ≡ − 1

π

∫ ∞
0−

dλ2 r̃d(ε, λ) Im

[
1

λ2 + iη

1

1 + Π(λ2, µ2)−Πct

]
, (3.37)

where we have made explicit the dependence on m, µ and αS of the terms rf (m,µ, αS) and

rd(m,µ, αS).

We manipulate rf (m,µ, αS) as follows. The lower boundary can be moved from 0− to 0,

since r̃f (0) = 0. We also have

1

λ2 + iη

1

1 + Π(λ2, µ2)−Πct
=

1

αS b0,f

d

dλ2
log
[
1 + Π

(
λ2, µ2

)
−Πct

]
, (3.38)
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so that

rf (m,µ, αS) =− 1

αS b0,f

∫ ∞
0

dλ

π
r̃f
(
λ2
)

Im

{
d

dλ2
log
[
1 + Π

(
λ2, µ2

)
−Πct

]}
=

1

αS b0,f

∫ ∞
0

dλ

π

d

dλ
[r̃f (λ)] Im

{
log
[
1 + Π

(
λ2, µ2

)
−Πct

]}
=− 1

αS b0,f

∫ ∞
0

dλ

π

d

dλ
[r̃f (λ)] arctan

 αS π b0,f

1 + αS b0,f log
(

λ2

µ2eC

)
 , (3.39)

that can be evaluated numerically. We notice that rf (m,µ, αS) contains a linear infrared renor-

malon since the behaviour of r̃f (λ) for small λ is given by eq. 3.33.

As far as the integral in eq. (3.37) is concerned, we can split it into two terms, according to

eq. (3.30),

rd(m,µ, αS) =r0
d(m,µ, αS) + r∞d (m,µ, αS) , (3.40)

r0
d(m,µ, αS) ≡− 1

π

∫ ∞
0−

dλ2 µ2

µ2 + λ2
r̃(ε, 0) Im

[
1

λ2 + iη

1

1 + Π(λ2, µ2)−Πct

]
, (3.41)

r∞d (m,µ, αS) ≡− 1

π

∫ ∞
0−

dλ2 λ2

µ2 + λ2
r̃∞(ε, λ) Im

[
1

λ2 + iη

1

1 + Π(λ2, µ2)−Πct

]
. (3.42)

Since the integrand function in r0
d(m,µ, αS) vanishes for large λ, the integral of the imaginary

part can be replaced with the closed path integral depicted in Fig. B.1. Applying the residue

theorem, we have

r0
d(m,µ, αS) = r̃(ε, 0)

1

1 + Π(−µ2, µ2)−Πct
= r̃(ε, 0)

∞∑
n=0

[
Πct −Π

(
−µ2, µ2

) ]n
. (3.43)

In order to deal with the integral in r∞d (m,µ, αS), we need to expose the λ dependence of the

integrand. From eq. (3.28), we can write

r̃∞(ε, λ) =

(
λ2

µ2

)ε
R∞(ε) , (3.44)

where R∞(ε) depends only on ε and no longer on λ. Similarly, using eq. (3.5), we have

Π
(
λ2, µ2

)
=

αSTF

π
eεγE

Γ(1 + ε) Γ2(1− ε)
Γ(1− 2ε)

1− ε
(3− 2ε)(1− 2ε)

1

ε

(
λ2

µ2

)−ε
eiεπ

= Π
(
−µ2, µ2

)(λ2

µ2

)−ε
eiεπ, (3.45)
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and performing a Taylor expansion we can write

r∞d (m,µ, αS) = −R
∞(ε)

π

∫ ∞
0

dλ2 1

µ2 + λ2

(
λ2

µ2

)−ε
Im

[
1

1 + Π(λ2, µ2)−Πct

]
= −R

∞(ε)

π

∞∑
n=0

∫ ∞
0

dλ2 1

µ2 + λ2

(
λ2

µ2

)−ε
Im

[
Πct −Π

(
−µ2, µ2

)(λ2

µ2

)−ε
eiεπ

]n

= −R
∞(ε)

π

∞∑
n=1

∫ ∞
0

dz
z−ε

1 + z
Im
[
Πct −Π

(
−µ2, µ2

)
z−εeiεπ

]n
. (3.46)

By computing the imaginary part of the n-th power of the term in the square brackets, we are

let to evaluate integrals of the form∫ ∞
0

dz
z−h

1 + z
= Γ(1− h) Γ(h), (3.47)

where h is a real number, so that r∞d (m,µ, αS) can be straightforwardly evaluated by computer

algebraic means at any fixed order in αS. We emphasize that rd(m,µ, αS) has no linear renor-

malon. Indeed if we perform an ε expansion and we consider the small-λ contribution, by writing

dλ2 = 2λdλ, we notice that the integrand behaves as λ logn(λ). This signals the absence of linear

renormalons, that come from terms of the type logn(λ), without any power of λ in front.

As a check, we observe that, at O(αS), rf (m,µ, αS) and r∞d (m,µ, αS) do not contribute and

we recover the correct NLO result[
iΣ(m,m)

m

]
O(αS)

= r̃(ε, 0) =
iΣ

(1)
0 (m, 0)

m
=
iΣ(1)(m,m)

m
. (3.48)

From eqs. (A.3) and (A.14), and neglecting O(α2
S(αSnf )n) contributions, we have

mc = −iΣ(m,m) = −m [rf (m,µ, αS) + rd(m,µ, αS)] , (3.49)

mc(µ) = −iΣ(d)(m,m) = −mr
(d)
d (m,µ, αS) , (3.50)

where the superscript (d) denotes the divergent part according to the MS scheme. Thus

m−m(µ) = − [mc −mc(µ)] = m
[
rf (m,µ, αS) + r̃

(f)
d (m,µ, αS)

]
, (3.51)

with (f) denoting the finite part. We can expand the result of eq. (3.51) in series of αS(µ)

rf (m,µ, αS) + r
(f)
d (m,µ, αS) =

∑
i=1

ci(m,µ)αiS(µ) (3.52)

m−m(µ) = m
∑
i=1

ci(m,µ)αiS(µ). (3.53)

This expression can be employed to evaluate the difference m−m(µ) for an arbitrary real value

of µ. Furthermore, it can be used both for a complex or a real pole mass.

The authors of Ref. [36] performed the same computation, with a slightly different strategy,
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Sec 3.3. Realistic large-b0 approximation

for the case of m real and µ = m. They define1

m−m(m)

m
=

4

3

αS(m)

π

[
1 +

∞∑
i=1

di (b0,f αS(m))i
]
. (3.54)

We rearrange eq. (3.53) to put it into a form similar to eq. (3.54)

m−m(m)

m
= αS(m) c1(m,m)

[
1 +

∞∑
i=1

ci+1(m,m)

c1(m,m)
αiS(m)

]

=
4

3

αS(m)

π

[
1 +

∞∑
i=1

ci+1(m,m)

c1(m,m)

1

bi0,f
(b0,f αS(m))i

]
. (3.55)

Thus the coefficients di in eq. (3.54) are given by

di =
ci+1(m,m)

c1(m,m)

1

bi0,f
. (3.56)

Given our choice µ = m, the coefficients ci and di are independent from the value of m. We

checked numerically that our results reproduce exactly the coefficients di reported in the first

column of Tab. 2 of Ref. [36].

3.3 Realistic large-b0 approximation

In order to recover the full QCD one loop β function, we will add to eq. (3.5)

Πg

(
k2, µ2

)
= −αS

11CA

12π
eεγE

Γ(1 + ε) Γ2(1− ε)
Γ(1− 2ε)

(1 + εCg)
1

ε

(
−k2

µ2

)−ε
, (3.57)

where Cg is an arbitrary constant. Thus we have

Π
(
k2, µ2

)
=

αS

π
eεγE

Γ(1 + ε) Γ2(1− ε)
Γ(1− 2ε)

1

ε

(
−k2

µ2

)−ε
×
[
nlTR

1− ε
(3− 2ε)(1− 2ε)

− 11CA

12
(1 + εCg)

]
, (3.58)

where we have restored the correct number of light flavour nl. In order to cancel the 1/ε pole

of Π, the counterterm must be given by

Πct = −αS

b0
ε
, (3.59)

that allows us to write, adding an infinitesimal positive imaginary part to k2,

Π
(
k2, µ2

)
−Πct = αSb0

[
log

(
|k2|
µ2

)
− iπ θ(k2)

]
+
αS

π

[
nlTR

3

5

3
− 11CA

12
Cg

]
(3.60)

= αSb0

[
log

(
|k2|
µ2eC

)
− iπ θ(k2)

]
(3.61)

1The definition of β
Nf
0 in [36] corresponds to −b0,f .
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Sec 3.3. Realistic large-b0 approximation

with

C =
1

b0

[
−nl TR

3π

5

3
+

11CA

12π
Cg

]
. (3.62)

In this way, we also get that, for positive k2,

Im Π(k2, µ2) = −αS b0 π . (3.63)

If we choose

Cg =
67− 3π2

33
≈ 1.133, (3.64)

the constant C becomes

C =
1

2π b0
Kg , where Kg =

(
67

18
− π2

6

)
CA −

10

9
nlTR. (3.65)

Our choice is rather arbitrary and motivated by the fact that the final expression for the total

cross section (or for any infrared safe obsarvable) computed in the large-b0 limit, that we will

derive in Chap. 4, contains a factor

αS(k e−C/2) =
αS(k)

1− Kg
2π αS(k)

≈ αS(k)

[
1 +

Kg

2π
αS(k)

]
≡ αMC

S (k), (3.66)

where MC denotes the Monte Carlo scheme, also known as the CMW scheme, introduced in

Ref. [37]. Thus, with our choice of Cg, our formula becomes appropriate to describe a QCD

effective coupling.

Furthermore, one can in principle replace the term Cg with

Cg → Cg + εC ′g + ε2C ′′g . . . (3.67)

As we will discuss in Sec. 4, the additional terms would not contribute to the all-orders amplitude

computed in the pole scheme, since there are no UV divergences once the counterterm Πct is

introduced, and thus we are in position to perform the ε → 0 limit. On the other hand, as

we have seen in Sec. 3.2, to evaluate the m −m(µ) difference we need the exact ε dependence

of Π. However, the leading contribution to this difference, namely rf (m,µ, αS) of eq. (3.39),

is computed in d = 4 dimensions, so that terms εC ′g + ε2C ′′g . . . are dropped. These terms are

instead contained in rd(m,µ, αS) of eq. (3.37), but this contribution is subleading, since it does

not involve any infrared renormalon.
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Chapter 4

Description of the calculation

We want to compute the process W ∗ → t b̄ → Wb b̄, where the W boson has only a vector

coupling to the quarks, at all orders in the large-number-of-flavour limit. The parameters we

choose are

m0 = 172.5 GeV, (4.1)

Γt = 1.3279 GeV, (4.2)

m =
√
m2

0 − im0Γt, (4.3)

mW = 80.419 GeV, (4.4)

ECM = 300 GeV, (4.5)

µ = m0 . (4.6)

A sample of Feynman diagrams contributing to this process is depicted in Fig. 4.1. The dashed

blob represents the summation of all self-energy insertion in the large-nf limit.

We now describe how we compute the total cross section. We use the complex pole scheme

definition for the top mass. We assume the eventual presence of a set of cuts Θ(Φ), function of

the final state kinematics Φ. The integrated cross section reads

σ =

∫
dΦb

dσb(Φb)

dΦb
Θ(Φb) +

∫
dΦb

dσv(Φb)

dΦb
Θ(Φb) +

∫
dΦg

dσg(Φg)

dΦg
Θ(Φg)

+

∫
dΦqq̄

dσqq̄(Φqq̄)

dΦqq̄
Θ(Φqq̄), (4.7)

where first term represents the Born contribution, the second the virtual one, the third term

represents the contribution due to the emission of a real gluon and the fourth term represents the

contribution with the real production of nf qq̄ pairs. The last three contributions are potentially

divergent. Equation (4.7) implicitly defines our notation for the different phase space integration

volumes.

We always imply that the gluon propagators, in the last three contributions, include the sum

of all vacuum polarization insertions of light quark loops.
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Figure 4.1: Feynman diagram for the Born W ∗ →Wbb̄ process (a), and samples of Feynman diagrams for
the virtual contribution (b), for the real-emission contribution (c) and for W ∗ →Wbb̄qq̄ production (d).

We rewrite the total cross section as sum of four contributions:

σ = σb + σv + σg∗ + ∆σqq̄ , (4.8)

σb ≡
∫

dΦb
dσb(Φb)

dΦb
Θ(Φb) , (4.9)

σv ≡
∫

dΦb
dσv(Φb)

dΦb
Θ(Φv) , (4.10)

σg∗ ≡
∫

dΦg
dσg(Φg)

dΦg
Θ(Φg) +

∫
dΦqq̄

dσqq̄(Φqq̄)

dΦqq̄
Θ(Φg∗) , (4.11)

∆σqq̄ ≡
∫

dΦqq̄
dσqq̄(Φqq̄)

dΦqq̄
[Θ(Φqq̄)−Θ(Φg∗)] , (4.12)

where the selection cuts Θ(Φg∗) are evaluated with the same kinematics of the Wbb̄qq̄ events

but with the qq̄ pair clustered in a single jet (g∗).
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Sec 4.1. The ∆σqq̄ contribution

4.1 The ∆σqq̄ contribution

In this section we illustrate how to calculate the term ∆σqq̄ of eq. (4.8). ∆σqq̄ receives contri-

butions only from the real graphs with a final state Wbb̄qq̄, where qq̄ is a pair of light quarks,

as depicted in Fig. 4.1 (d).

Starting from the O(α2
S) tree-level cross section for the process W ∗ → Wbb̄qq̄, that we

indicate as dσ
(2)
qq̄ , with no vacuum polarization insertions in the gluon propagator, we obtain

the differential cross section dσqq̄ with the insertion of all the light-quark bubbles by simply

replacing the bare gluon propagator with the dressed one of eq. (3.10)

dσqq̄(Φqq̄)

dΦqq̄
=

dσ
(2)
qq̄ (Φqq̄)

dΦqq̄

∣∣∣∣ 1

1 + Π(k2, µ2)−Πct

∣∣∣∣2 , (4.13)

where k2 is the virtuality of the qq̄ pair arising after the gluon splitting. In order to compute

∆σqq̄, we insert this equation into (4.12), and we get

∆σqq̄ =

∫
dλ2 δ(k2−λ2)

∫
dΦqq̄

dσ
(2)
qq̄ (Φqq̄)

dΦqq̄

[
Θ(Φqq̄)−Θ(Φg∗)

] ∣∣∣∣ 1

1 + Π(λ2, µ2)−Πct

∣∣∣∣2 , (4.14)

where we have added the dummy integration
∫

dλ2 δ(k2 − λ2) = 1. We remark that, thanks

to the subtraction in the square parenthesis in eq. (4.14), ∆σqq̄ is finite as λ2 → 0. In fact,

if λ2 → 0 in the collinear sense, the first clustering of the jet algorithm is the one of the qq̄

pair into a g∗ (since Φqq̄ → Φg∗), unless the gluon three-momentum just happens to lay on the

jet cone. But, in this case, the direction of the pair must be closer to the cone than the pair

aperture, and this leads to a suppression of the cross section of the order of the pair separation.

The finiteness in the case of soft λ is obvious, since the reconstructed mass is insensitive to soft

particles. Notice that the integral is finite in the sense that the integrand goes like 1/λ, and it is

integrated in dλ2. For large λ, the integrand is zero for kinematic constraints, thus the integral

is finite.

In order to make contact to other contributions we are going to compute, we write the

absolute square of the dressed propagator in terms of the derivative of an imaginary part. We

can perform the following manipulation∣∣∣∣ 1

1 + Π(λ2, µ2)−Πct

∣∣∣∣2 = − 1

Im Π(λ2, µ2)
Im

[
1

1 + Π(λ2, µ2)−Πct

]
=

1

αS π b0
Im

[
1

1 + Π(λ2, µ2)−Πct

]
=

λ2

αS π b0
Im

[
1

λ2 + iη

1

1 + Π(λ2, µ2)−Πct

]
. (4.15)

since this factor multiplies an expression that is regular for λ = 0, and thus the δ(λ) arising

from the imaginary part (see eq. (B.9)) does not contribute. Using eq. (3.38) we are lead to∣∣∣∣ 1

1 + Π(λ2, µ2)−Πct

∣∣∣∣2 =
λ2

α2
S π b

2
0,f

d

dλ2
Im
{

log
[
1 + Π

(
λ2, µ2

)
−Πct

]}
(4.16)
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Sec 4.2. The σg∗ contribution

Equation (4.14) becomes

∆σqq̄ =

∫
dλ2

π
δ(k2 − λ2)

∫
dΦqq̄

dσ
(2)
qq̄ (Φqq̄)

dΦqq̄

[
Θ(Φqq̄)−Θ(Φg∗)

]
× λ2

α2
S b

2
0,f

d

dλ2
Im
{

log
[
1 + Π(λ2 + iη, µ2)−Πct

]}
. (4.17)

Defining

∆(λ) ≡ − λ2

αS b0,f

∫
δ(k2 − λ2) dΦqq̄

dσ
(2)
qq̄ (Φqq̄)

dΦqq̄

[
Θ(Φqq̄)−Θ(Φg∗)

]
, (4.18)

and integrating by parts eq. (4.17), we are lead to

∆σqq̄ =
1

αS b0,f

∫
0

dλ

π

d

dλ
[∆(λ)] Im

{
log
[
1 + Π(λ2 + iη, µ2)−Πct

]}
, (4.19)

where the integrand function is identically 0 for λ ≥
√
s−mW . We remind the reader that the

cross section σ
(2)
qq̄ and b0,f are both proportional to nf , that thus cancels in the definition of

∆(λ), so when we will move from the large-nf to the large-b0 limit, ∆(λ) will not change.

4.2 The σg∗ contribution

The σg∗ term of eq. (4.11) receives contributions from final states with both a single real gluon

or a qq̄ pair. Both these contributions have collinear divergences related to the qq̄ splitting that

cancel when integrating the latter over λ2 and summing them up.

4.2.1 The gluon contribution

The first contribution of eq. (4.11) can be computed starting from σ
(1)
g , the tree-level cross

section for the emission of a single gluon. The sum over all the polarization insertions gives rise

to the the following identity∫
dΦg

dσg(Φg)

dΦg
O(Φg) =

∫
dΦg

dσ
(1)
g (Φg)

dΦg
O(Φg)

1

1 + Π(0, µ2)−Πct
. (4.20)

Since Π(0, µ2) is not well-defined, it is convenient to assign to the quarks in the polarization

bubbles a small mass mq. We indicate the self-energy correction with a massive quark with

Π(0,m2
q , µ

2). Indeed it can be easily shown that

Π(0,m2
q , µ

2) =
αSTF

3π

[
1

ε
− log

(
m2
q

µ2

)]
+O(ε) , (4.21)

that is well defined and real. The analytic expression of Π(k2,m2
q , µ

2)−Πct for an arbitrary k2

value is given in eq. (3.14). We can then write

∫
dΦg

dσg(Φg)

dΦg
Θ(Φg) =

∫
dΦg

dσ
(1)
g (Φg)

dΦg
O(Φg)

1

1 + Π(0,m2
q , µ

2)−Πct
. (4.22)
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Sec 4.2. The σg∗ contribution

4.2.2 The qq̄ contribution

In order to treat the second term of eq. (4.11), we first discuss the relation between σ
(2)
qq̄ , the

cross section for the production of nf qq̄ pairs with invariant mass λ, and σ
(1)
g∗ , the cross section

for the production of a massive gluon whose four-momentum kµ is equal to the sum of the q

and q̄ momenta. We have

dσ
(1)
g∗ (λ,Φg∗)

dΦg∗
=

1

2s
Mµ

g∗(Φg∗)Mν∗
g∗ (Φg∗)

∑
pol

εµ (λ) ε∗ν (λ)

=
1

2s
Mµ

g∗(Φg∗)Mν∗
g∗ (Φg∗)

[
−gµν +

kµkν
λ2

]
(4.23)

where 1/2s is the flux factor and Mµ
g∗(Φg∗) is the amplitude for the production of a massive

gluon g∗ of momentum kµ, not contracted with its polarization vector εµ(k). The real phase

space Φqq̄ can be written as the product of the phase space for the production of a gluon with

virtuality k2, that we call dΦg∗ , and its decay into a qq̄ pair, dΦdec

dΦqq̄ =
dk2

2π
dΦg∗ dΦdec . (4.24)

Applying the optical theorem we have

∫
4m2

q

dk2

∫
dΦdec

dσ
(2)
qq̄ (Φqq̄)

dΦqq̄
δ(k2 − λ2)

= 2

[
Mµ

g∗(Φg∗)Mν,∗
g∗ (Φg∗)

2s

1

λ4
Im Π(λ2,m2

q , µ
2)
(
−λ2 gµν + kµkν

)]

=
dσ

(1)
g∗ (λ,Φg∗)

dΦg∗

2 Im
[
Π(λ2,m2

q , µ
2)
]

λ2
, (4.25)

where the imaginary part vanishes for k2 ≤ 4m2
q . Using eqs. (4.14) and (4.25) enables us to

rewrite the qq̄ splitting term as

∫
dΦqq̄

dσqq̄(Φqq̄)

dΦqq̄
Θ(Φg∗) =

∫
4m2

q

dλ2 δ(k2 − λ2)

∫
dΦqq̄

dσqq̄(Φqq̄)

dΦqq̄
Θ(Φg∗)

=

∫
4m2

q

dλ2

2π

∫
dΦg∗

∫
dΦdec

dσ
(2)
qq̄ (Φqq̄)

dΦqq̄

1∣∣1 + Π(λ2 + iη,m2
q , µ

2)−Πct

∣∣2 Θ(Φg∗)

=
1

π

∫
4m2

q

dλ2

λ2

∫
dΦg∗

dσ
(1)
g∗ (λ,Φg∗)

dΦg∗

Im Π(λ2,m2
q , µ

2)∣∣1 + Π(λ2 + iη,m2
q , µ

2)−Πct

∣∣2 Θ(Φg∗) .

(4.26)

4.2.3 Combination of the gluon and qq̄ contributions

Defining

R(λ) =

∫
dΦg∗

σ
(1)
g∗ (λ,Φg∗)

dΦg∗
Θ(Φg∗), (4.27)
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Sec 4.3. The σv contribution

we can combine eq. (4.22) and (4.26) and get

σg∗ = R(ε)(0)
1

1 + Π(0,m2
q , µ

2)−Πct
− 1

π

∫
4m2

q

dλ2

λ2
R(λ) Im

1

1 + Π(λ2,m2
q , µ

2)−Πct
. (4.28)

With the notation R(ε)(0) we remind the reader that for λ = 0 there are infrared divergences in

R that are regulated in dimensional regularization.

4.3 The σv contribution

The NLO differential virtual cross-section can be represented as

dσ
(1)
v (Φb)

dΦb
=

∫
ddk

(2π)d
Fvirt(k,Φb)

k2 + iη
, (4.29)

where k2 is the loop momentum and d = 4 − 2ε. By replacing the free gluon propagator with

the dressed one, we obtain the all-orders expression σv(Φb)

dσv(Φb)

dΦb
=

∫
ddk

(2π)d
Fvirt(k,Φb)

k2 + iη

1

1 + Π(k2, µ2)−Πct
. (4.30)

If we use eq. (B.8), we obtain

dσv(Φb)

dΦb
= − 1

π

∫ +∞

4m2
q

dλ2

λ2

∫
ddk

(2π)d
Fvirt(k,Φb)

k2 − λ2 + iη
Im

{
1

Π(λ2,m2
q , µ

2)−Πct

}
+

∫
ddk

(2π)d
Fvirt(k,Φb)

k2 + iη

1

Π(0,m2
q , µ

2)−Πct
, (4.31)

where mq is the light quark mass that has been introduced to regulate the bad behaviour of

Π(0, µ2). We define

V (λ) ≡
∫

dΦbΘ(Φb)

∫
ddk

(2π)d
Fvirt(k,Φb)

k2 − λ2 + iη
=

∫
dΦbΘ(Φb)

dσ
(1)
v (λ,Φb)

dΦb
, (4.32)

where dσ
(1)
v (λ,Φb) is the differential virtual cross section computed with a gluon of mass λ. The

σv of eq. (4.10) can be finally rewritten as

σv = V (ε)(0)
1

1 + Π(0,m2
q , µ

2)−Πct
− 1

π

∫
dλ2

λ2
V (λ) Im

1

1 + Π(λ2,m2
q , µ

2)−Πct
, (4.33)

where the notation V (ε)(0) signals the presence of the leftover IR divergences for λ = 0, that are

handled in dimensional regularization. If a finite gluon mass λ is employed, IR singularities are

regulated by single and double logarithms of λ. If we choose the pole mass scheme, V (λ)→ 1
λ2

for large λ. Furthermore, V (λ)/αS does not depend on µ. This signals that there are no UV

divergences. Thus V (λ), with λ > 0, can be evaluated performing the ε → 0 limit since the

integral in eq. (4.33) is finite.
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Sec 4.4. Combining the virtual and the real contributions

4.4 Combining the virtual and the real contributions

We define

S(λ) ≡ R(λ) + V (λ) , (4.34)

with R and V given by eqs. (4.27) and (4.32) respectively. As long as λ is not zero, R and V

are separately well defined in d = 4 dimensions, but they are IR divergent for λ→ 0. However,

as required by the KLN theorem, their sum S is finite in that limit, indeed

S(0) = lim
λ→0

[
R(λ) + V (λ)

]
= lim

ε→0

[
R(ε)(0) + V (ε)(0)

]
= σ(1), (4.35)

being σ(1) the integrated NLO cross section. Thus, summing eqs. (4.33) and (4.28), we have

σv + σg∗ = S(0)
1

1 + Π(0,m2
q , µ

2)−Πct

− 1

π

∫ +∞

4m2
q

dλ2

λ2
S(λ) Im

[
1

1 + Π(λ2,m2
q , µ

2)−Πct

]
= −

∫ +∞

0−

dλ2

π
S(λ) Im

[
1

λ2 + iη

1

1 + Π(λ2,m2
q , µ

2)−Πct

]
, (4.36)

where in the last line we have used eq. (B.9) and the fact that the limit λ→ 0 is well defined for

S, while this was not the case for V and R separately. We can check that at O(αS) we recover

the NLO result

[σv + σg∗ ]O(αS) = −
∫ +∞

0−

dλ2

π
S(λ) Im

[
1

λ2 + iη

]
= −

∫
dλ2

π
S(λ)

[
−π δ(λ2)

]
= σ(1) . (4.37)

We now illustrate a procedure to safety take the limit mq → 0 in eq. (4.36). We can write

eq. (4.36) by adding and subtracting the same term

σg + σv =−
∫ ∞

0−

dλ2

π

[
S(λ)− S(0)

µ2

λ2 + µ2

]
Im

[
1

λ2 + iη

1

1 + Π(λ2,m2
q , µ

2)−Πct

]
−
∫ ∞

0−

dλ2

π
S(0)

µ2

λ2 + µ2
Im

[
1

λ2 + iη

1

1 + Π(λ2,m2
q , µ

2)−Πct

]
, (4.38)

where µ2 is a real positive number. The first integral is regular for λ2 → 0 also if mq = 0, since

the term in the square brackets is O(λ) in this limit. This also enables us to move the lower

bound from 0− to 0. Using the identity already employed in eq. (3.38), we are left to∫ ∞
0

dλ2

π

[
S(λ)− S(0)

µ2

λ2 + µ2

]
Im

[
1

λ2 + iη

1

1 + Π(λ2, µ2)−Πct

]
=

∫ ∞
0

dλ2

π

[
S(λ)− S(0)

µ2

λ2 + µ2

]
Im

{
1

αS b0,f

d

dλ2
log
[
1 + Π

(
λ2, µ2

)
−Πct

]}
= −

∫ ∞
0

dλ2

π

d

dλ2

[
S(λ)− S(0)

µ2

λ2 + µ2

]
1

αS b0,f
Im
{

log
[
1 + Π

(
λ2, µ2

)
−Πct

]}
,

(4.39)
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Γ
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Figure 4.2: Integration path.

where the boundary terms vanish, since S(λ) vanishes for large λ (if the pole scheme is adopted),

and the difference in the square brackets is zero for λ = 0.

The second integral can be extended below from 0− to −µ2/2, since the imaginary part is

zero for λ2 < 0. We can rewrite∫ ∞
0−

dλ2

π
S(0)

µ2

λ2 + µ2
Im

[
1

λ2 + iη

1

1 + Π(λ2,m2
q , µ

2)−Πct

]
=

∫ ∞
−µ2/2

dλ2

π
S(0)

µ2

λ2 + µ2
Im

[
1

λ2 + iη

1

1 + Π(λ2,m2
q , µ

2)−Πct

]
=

1

2i

∮
dλ2

π
S(0)

µ2

λ2 + µ2

1

λ2

1

1 + Π(λ2,m2
q , µ

2)−Πct
, (4.40)

where the contour is depicted in Fig. 4.2. The integral in the last line is equal to the residue at

λ2 = −µ2, that is well-defined also for mq = 0. This allows us to safely take the limit mq → 0.

By using eq. (3.38), and integrating by parts, we are lead to

1

2i

∮
dλ2

π
S(0)

m2

λ2 +m2

1

λ2

1

1 + Π(λ2, µ2)−Πct

=
1

2i

∮
dλ2

π
S(0)

m2

λ2 +m2

1

αS b0,f

d

dλ2
log
[
1 + Π

(
λ2, µ2

)
−Πct

]
= − 1

2i

∮
dλ2

π
S(0)

d

dλ2

[
µ2

λ2 + µ2

]
1

αS b0,f
log
[
1 + Π

(
λ2, µ2

)
−Πct)

]
. (4.41)

If we set to infinity the larger radius of the boundary in Fig. 4.2, its contribution vanishes. The

27



Sec 4.5. Calculation summary

same holds if the radius around λ2 = −m2/2 becomes infinitesimal. We are thus left with

− 1

2i

∫ ∞
−µ2/2

dλ2

π
S(0)

d

dλ2

[
µ2

λ2 + µ2

]
1

αS b0,f

×
{

log
[
1 + Π

(
λ2 + iη, µ2

)
−Πct

]
− log

[
1 + Π

(
λ2 − iη, µ2

)
−Πct

] }
= −

∫ ∞
−µ2/2

dλ2

π
S(0)

d

dλ2

[
µ2

λ2 + µ2

]
1

αS b0,f
Im
{

log
[
1 + Π

(
λ2, µ2

)
−Πct

]}
= −

∫ ∞
0

dλ2

π
S(0)

d

dλ2

[
µ2

λ2 + µ2

]
1

αS b0,f
Im
{

log
[
1 + Π

(
λ2, µ2

)
−Πct

]}
, (4.42)

where in the last step we used the fact that the the imaginary part vanishes for negative values

of λ. Using the results of eqs. (4.39) and (4.42), we can write eq. (4.38) as

σg + σv =
1

αS b0,f

∫ ∞
0

dλ

π

d

dλ
[S(λ)] Im

{
log
[
1 + Π

(
λ2 + iη, µ2

)
−Πct

]}
. (4.43)

4.5 Calculation summary

Here we summarize our findings. If we combine eqs. (4.43) and (4.19), we have

σ =

∫
dΦb

dσb(Φb)

dΦb
Θ(Φb) +

∫
dΦb

dσv(Φb)

dΦb
Θ(Φb) +

∫
dΦg

dσg(Φg)

dΦg
Θ(Φg)

+

∫
dΦqq̄

dσqq̄(Φqq̄)

dΦqq̄
Θ(Φqq̄) (4.44)

= σb +
1

αS b0,f

∫ ∞
0

dk

π

d

dk
[T (λ)] Im

{
log
[
1 + Π

(
λ2, µ2

)
−Πct

]}
= σb −

1

αS b0,f

∫ ∞
0

dλ

π

d

dλ
[T (λ)] arctan

 αS π b0,f

1 + αS b0,f log
(

λ2

µ2eC

)
 , (4.45)

with

σb =

∫
dΦb

dσb(Φb)

dΦb
Θ(Φb) , (4.46)

T (λ) = V (λ) +R(λ) + ∆(λ) , (4.47)

V (λ) =

∫
dΦb

dσ
(1)
v (λ,Φb)

dΦb
Θ(Φb) , (4.48)

R(λ) =

∫
dΦg∗

dσ
(1)
g∗ (λ,Φg∗)

dΦg∗
Θ(Φg∗) , (4.49)

∆(λ) = − λ2

αS b0,f

∫
δ(k2 − λ2) dΦqq̄

dσ
(2)
qq̄ (Φqq̄)

dΦqq̄

[
Θ(Φqq̄)−Θ(Φg∗)

]
. (4.50)

To obtain the final expression in eq. (4.45) we have employed the following identity

Im
{

log
[
1 + Π

(
λ2, µ2

)
−Πct

]}
= − arctan

 αS π b0,f

1 + αS b0,f log
(

λ2

µ2eC

)
 , (4.51)
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where in the right-hand side we have neglected the contribution

− πΘ

(
µ2 exp

(
− 1

b0αS

+ C

)
− λ2

)
. (4.52)

We stress that the perturbative expansion in αS of formula (4.45) is an asymptotic one, and

only its coefficients are unambiguously defined, and are the subject of the present work. Thus,

for our purposes, eq. (4.45) is defined up to corrections that have a vanishing perturbative

expansion in αS, as are, for instance, the exponentials of the negative inverse of αS. For this

reason, the contribution in eq. (4.52) can be neglected and eq. (4.51) becomes exact, since the

left and the right-hand side have the same perturbative expansion in αS. In ref. [36], eqs. (2.24)

and (2.25), the form of the resummed expression for typical euclidean quantities is given by

taking the inverse Borel transform of the Borel transform of the perturbatve expansion, with

the prescription that the singularities in the Borel integration should be bypassed above the

positive real axis. The form of their result is simlar to ours, except for corrections that yield

powers of exp(−1/(b0αS)).

Eq. (4.45) can be rewritten as

σ = σb −
1

b0,f

∫ ∞
0

dλ

π

d

dλ

[
T (λ)

αS(µ)

]
arctan

[
b0,f π αS

(
λ e−C/2

)]
. (4.53)

From this expression it is evident that the resummed result does not depend on µ, since the

factor αS(µ) cancels in the expression in the squared brackets.

In order to evaluate numerically T (λ) we performed the following steps. We computed sep-

arately V (λ), R(λ) and ∆(λ) for several values of λ, using the POWHEG BOX RES framework [38],

to integrate over the phase space. Indeed, as long as λ > 0, these contributions are finite.

The λ = 0 point is also computed in the POWHEG BOX RES, that automatically implements the

subtraction of infrared singularities in the real cross section. The scalar integrals appearing in

the virtual amplitude are evaluated using the COLLIER [39] library. The calculation of the top

pole-mass counterterm and of the bottom field normalization constant in presence of a finite

gluon mass is detailed in Appendix A.

In order to obtain the analytic expression of T , we performed a polynomial fit for small-k

values, specifically for λ < 5 GeV,

T (λ) = p0 + p1 λ + p2 λ
2 + . . . , (4.54)

while we adopted a cubic spline interpolation for larger values of λ, imposing that both T and its

derivative are continuous for λ = 5 GeV. The fitting functions that we find are seen to represent

sufficiently well the numerical results for T , with the only caveat that, for small λ, these have

non-negligible errors. These errors strongly affect the coefficient p1, and have negligible effects

on the other coefficients. In fact, p0 is computed directly for massless gluons, and has a totally

negligible error. The p2 and higher order coefficients are controlled by the larger values of λ,

where our computation has a smaller error. Furthermore, only p1 is responsible for the presence

of linear renormalons, thus, at higher-orders, it dominates the value of the integral in (4.45).

We thus propagated only the error on the p1 coefficient to the calculation of the coefficients of

the perturbative expansion.
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4.6 Infrared-safe observables

We are also interested in evaluating the average value of a generic infrared-safe observable,

function of the phase space kinematics, O(Φ):

〈O〉 = NΘ

{∫
dΦb

dσb(Φb)

dΦb
OΘ(Φb) +

∫
dΦb

dσv(Φb)

dΦb
OΘ(Φb)

+

∫
dΦg

dσg(Φg)

dΦg
OΘ(Φg) +

∫
dΦqq̄

σqq̄(Φqq̄)

dΦqq̄
OΘ(Φqq̄)

}
, (4.55)

where

OΘ (Φ) = Θ (Φ)×O (Φ) (4.56)

and NΘ is a normalization factor whose expression is given by

N−1
Θ =

∫
dΦb

dσb(Φb)

dΦb
Θ(Φb) +

∫
dΦb

dσv(Φb)

dΦb
Θ(Φb) +

∫
dΦg

dσg(Φg)

dΦg
Θ(Φg)

+

∫
dΦqq̄

σqq̄(Φqq̄)

dΦqq̄
Θ(Φqq̄) = σ−1. (4.57)

The factor NΘ that multiplies the virtual, the real and the qq̄ contributions is in fact simply

the inverse of the Born cross section, since the quantities it multiplies are already at NLO level.

Thus, in these cases,

NΘ → N
(0)
Θ =

{∫
dΦb

dσb(Φb)

dΦb
Θ (Φb)

}−1

. (4.58)

The factor of NΘ in front of the Born term, on the other hand, must be expanded in series

NΘ = N
(0)
Θ

{
1−N (0)

Θ

[∫
dΦb

dσv(Φb)

dΦb
Θ(Φb) +

∫
dΦg

dσg(Φg)

dΦg
Θ(Φg)

+

∫
dΦqq̄ σqq̄(Φqq̄)Θ (Φqq̄)

]}
+O

(
α2

S (αSnf )n
)
. (4.59)

This gives rise to a constant Born term of the form

〈O〉b ≡ N
(0)
Θ

∫
dΦb

dσb(Φb)

dΦb
OΘ(Φb) , (4.60)

plus an NLO correction equal to

−N (0)
Θ 〈O〉b

[∫
dΦb

dσv(Φb)

dΦb
+

∫
dΦg

dσg(Φg)

dΦg
+

∫
dΦqq̄

dσqq̄(Φqq̄)

dΦqq̄

]
. (4.61)

In summary, eq. (4.55) becomes

〈O〉 = 〈O〉b +N
(0)
Θ

∫
dΦb

dσv(Φb)

dΦb

[
OΘ(Φb)− 〈O〉bΘ(Φb)

]
+N

(0)
Θ

∫
dΦg

dσg(Φg)

dΦg

[
OΘ(Φg)− 〈O〉bΘ(Φg)

]
+N

(0)
Θ

∫
dΦqq̄

dσqq̄(Φqq̄)

dΦqq̄

[
OΘ(Φqq̄)− 〈O〉bΘ(Φqq̄)

]
. (4.62)
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We notice that eqs. (4.62) and (4.44) are similar: the expression of the higher order corrections

of 〈O〉 can obtained from the the expression of the higher order corrections of the total cross

section by replacing

Θ(Φ)→ N
(0)
Θ

[
OΘ(Φ)− 〈O〉bΘ(Φ)

]
. (4.63)

Thus, starting from eqs. (4.45)–(4.50), we can write

〈O〉 = 〈O〉b −
1

αS b0,f

∫ ∞
0

dλ

π

d

dk

[
T̃ (λ)

]
arctan

 αS π b0,f

1 + αS b0,f log
(

λ2

µ2eC

)
 , (4.64)

where

〈O〉b = N
(0)
Θ

∫
dΦb σb(Φb)O(Φb) Θ(Φb) , (4.65)

T̃ (λ) = Ṽ (λ) + R̃(λ) + ∆̃(λ) (4.66)

Ṽ (λ) = N
(0)
Θ

∫
dΦb σ

(1)
v (λ,Φb)

[
O(Φb)− 〈O〉b

]
Θ(Φb) , (4.67)

R̃(λ) = N
(0)
Θ

∫
dΦg∗ σ

(1)
g∗ (λ,Φg∗)

[
O(Φg∗)− 〈O〉b

]
Θ(Φg∗) , (4.68)

∆̃(λ) = −N (0)
Θ

λ2

αS b0,f

∫
δ(k2 − λ2) dΦqq̄

dσ
(2)
qq̄ (Φqq̄)

dΦqq̄

×
{[
O(Φqq̄)− 〈O〉b

]
Θ(Φqq̄)−

[
O(Φg∗)− 〈O〉b

]
Θ(Φg∗)

}
. (4.69)

We notice that when computing inclusive quantities or quantities that do not depend upon

the jet kinematics, the ∆̃(λ) and ∆(λ) terms of eqs. (4.69) and (4.50) are zero. In these cases,

our results can just be expressed as functions of the NLO differential cross sections, computed

with a non-zero gluon mass. In general, however, the ∆̃(λ) and ∆(λ) contributions cannot be

neglected, since observables built with the full kinematics may differ from those obtained by

clustering the qq̄ pair into a massive gluon. This was first discussed in Ref. [34], in the context

of e+e− annihilation into jets.1

The strategy we adopted to extract the analytic expression of T̃ (λ) is the same we employed

for T (λ).

4.7 Changing the mass scheme

The relation between the pole mass m and the MS mass m is given by the formula (see Sec. 3.2)

m−m(µ) = m
[
rf (m,µ, αS) + r

(f)
d (m,µ, αS)

]
, (4.70)

where rf (m,µ, αS) and rd(m,µ, αS) are defined in eqs. (3.35) and (3.37) respectively and (f) de-

notes the finite part according to the MS prescription. The rf (m,µ, αS) term can be manipulated

1In Refs. [40, 41] it was shown that, for a large set of jet-shape observables, in order to account for the effect
of the ∆ terms, the naive predictions computed considering only the V + R contributions must be rescaled by a
factor, dubbed the “Milan factor”, to get the correct coefficient for the 1/Q non-perturbative effects.
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as in eq. (3.39), that we report here for ease of reading,

rf (m,µ, αS) = − 1

αSb0,f

∫ ∞
0

dλ

π

d

dλ
[r̃f (λ)] arctan

 αS π b0,f

1 + αS b0,f log
(

λ2

µ2eC

)
 , (4.71)

where (see eq. (3.33))

r̃f (λ) = −αS

CF

2

λ

m
+O(λ) . (4.72)

As stressed in App. 3.2, the linear dependence of r̃f (λ2) from λ is responsible for the presence of a

linear renormalon in the expression of the pole mass in terms of the MS mass, while rd(m,µ, αS)

is free from linear renormalons.2

In the present work we deal with the finite width of the top by using the complex mass

scheme [29, 30]. Thus, in our mass relation, both m and m are complex, and also rf (m,µ, αS)

and rd(m,µ, αS).

Given a result for a quantity Q expressed in terms of the pole mass, in order to find its

expression in terms of the MS mass we need to Taylor-expand its mass dependence in its leading

order expression, and multiply it by the appropriate mass correction. In order to do so, we

express Q in terms of the pole mass and its complex conjugate, as if they were independent

variables (one can think of m appearing in the amplitude, and m∗ appearing in its complex

conjugate). Denoting with Qb the LO prediction, we can write

Qb(m,m∗) =Qb(m,m∗) +

{
∂Qb(m,m∗)

∂m
(m−m) + cc

}
+O

(
α2

S (αSnf )n
)

=Qb(m,m∗) + 2 Re

{
∂Qb(m,m∗)

∂m
(m−m)

}
=Qb(m,m∗) + 2 Re

{
∂Qb(m,m∗)

∂m
m
[
rf (m,µ, αS) + rd (αS, µ,m)

]}
, (4.73)

where cc means complex conjugate. If Qb = σb, we have

∂

∂m
σb (m,m∗) =

∫
dΦb

∂σb (m,m∗; Φb)

∂m
Θ(Φb) , (4.74)

that corresponds to the coefficient of the pole-mass counterterm of the interference between the

virtual and Born amplitude (before taking two times the real part).

If Qb = 〈O〉b and we explicit the m dependence of the normalization factor N
(0)
Θ , we obtain

∂〈O〉b (m,m∗)

∂m
=

∂

∂m

[
N

(0)
Θ (m,m∗)

∫
dΦb σb (m,m∗; Φb) O(Φb) Θ(Φb)

]
=N

(0)
Θ (m,m∗)

∫
dΦb

∂σb (m,m∗; Φb)

∂m

[
O(Φb)− 〈O〉b (m,m∗)

]
Θ(Φb) ,

(4.75)

that, again, corresponds to the pole mass counterterm coefficient. Notice that we could have

2The relation between the pole and the MS mass in the large-nf limit is well-known (see e.g. [11,33,42]). Here
we have re-derived it so as to put it in a form similar to eqs. (4.64) and (4.45).
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obtained eq. (4.75) from eq. (4.74) by applying the replacement in eq. (4.63). Thus the term

2 Re

{
∂Qb(m,m∗)

∂m
(m−m)

}
= −2 Re

{
∂Qb(m,m∗)

∂m
(mc −mc(µ))

}
(4.76)

in eq. (4.73) tells us to subtract the contribution arising from the insertion of the mass coun-

terterm defined in the pole scheme and add the one computed using the MS definition of the

counterterm.

Notice that, for the term linear in λ, we get the simplified form

Qb(m,m∗) = Qb(m,m∗) +

[
∂Qb(m,m∗)

∂m
+ cc

]

×

− 1

αS b0,f

∫ ∞
0

dλ

π

d

dλ

[
−αS

CF

2
λ

]
arctan

 αS π b0,f

1 + αS b0 log
(

λ2

µ2eC

)
. (4.77)

Furthermore, we have [
∂Qb(m,m∗)

∂m
+ cc

]
=
∂Qb(m,m∗)

∂Re(m)
. (4.78)

Thus, when going from the pole to the MS mass scheme, the definitions for T and T̃ are modified

for small λ into

T (λ) → T (λ)− ∂σb(m,m∗)

∂Re(m)

CFαS

2
λ+O(λ2) , (4.79)

T̃ (λ) → T̃ (λ)− ∂〈O〉b(m,m∗)

∂Re(m)

CFαS

2
λ+O(λ2) . (4.80)

We stress that eqs. (4.80) and (4.79) also apply to any so called “short distance” mass schemes [43–

49]. These schemes are such that no mass renormalon affects their definition, and of course in

order for this to be the case, their small-λ behaviour should be the same one of the MS scheme.
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Chapter 5

Evaluation of the linear sensitivity in

top-mass dependent observables

As we have seen from eq. (4.45), in order to compute the all-orders total cross section we need

to evaluate

σ − σb = − 1

αS b0

∫ ∞
0

dλ

π

d

dλ
[T (λ)] arctan

 αS π b0

1 + αS b0 log
(

λ2

µ2eC

)
 , (5.1)

where we have performed the adjustments described in Sec. 3.3 to obtain a semi-realistic large-b0

expansion. The small-λ the contribution to the integral is given by

− 1

αS b0

∫ µ

0

dλ

π

[
T ′(0) + T ′′(0)λ+ · · ·

]
×
∞∑
m=0

(−1)m

2m+ 1

{
αS π b0

[ ∞∑
n=0

(
−αS b0 log

(
λ2

µ2eC

))n]}2m+1

≈ −
∫ µ

0
dλT ′(0)

∞∑
n=0

[
−2αS b0 log

(
λ

µ

)]n
= −T ′(0)

∞∑
n=0

(2αS b0)n n!, (5.2)

where we have neglected subleading powers of log(λ/µ). The Borel transform of the series in

eq. (5.2) is given by

B [O] (t) = −T
′(0)

αS

∞∑
n=0

(2 t b0)n = −T
′(0)

αS

1

1− 2 t b0
, (5.3)

and eq. (5.2) can be rewritten as

αS

∫ +∞

0
dt e−t B[O](αS t) = −T ′(0)

∫ +∞

0
dt

e−t

1− 2αS t b0
. (5.4)
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The integrand function has a pole located at t = 1/ (2αSb0) whose residue is proportional to

exp

[
−1

2αS b0

]
=

ΛQCD

µ
=

ΛQCD

m0
. (5.5)

Thus, if T ′(0) is non zero, we have infrared linear renormalons. A very similar situation appears

if we investigate an infrared safe observable, where T is replaced by T̃ .

If the quantity Q is computed in the pole-mass scheme, to obtain the linear sensitivity in

the MS-mass scheme we need to add to T ′(0) (or to T̃ ′(0)) the term

− CFαS

2

∂Qb(m,m
∗)

∂Re(m)
, (5.6)

being Qb the leading order prediction, as it is discussed in Sec. 4.7.

We now investigate the presence of linear terms in the expression of T/T̃ for the total cross

section, for the reconstructed-mass and for the energy of the final-state W boson, expressed in

terms of the pole mass and in terms of the MS one.

5.1 Inclusive cross section

The formula for the total cross section is given in eq. (4.45). We now study the presence of linear

λ terms in the expression of T (λ) in eq. (4.47), both for the inclusive process or in presence of

selection cuts.

5.1.1 Selection cuts

In order to mimic the experimental selections adopted at hadron colliders, at times we intro-

duce selection cuts for our cross sections, requiring the presence of a b jet and a (separated)

b̄ jet, both having energy greater than 30 GeV. Jets are reconstructed using the Fastjet [50]

implementation of the anti-kt algorithm [51] for e+e− collisions, with a variable R parameter.

5.1.2 Total cross section without cuts

In the absence of cuts, the expression for T (λ) in eq. (4.47) simplifies, since ∆(λ), given by

eq. (4.50) is identically zero. Its small-λ behaviour is shown in Fig. 5.1. As discussed in Sec. 4.7,

the same calculation performed in the MS mass scheme would yield, for the total cross section,

to the replacement given in eq. (4.79)

T (λ)→ T (λ)− ∂σb
∂ Re(m)

CFαS

2
λ+O(λ2). (5.7)

So, in the same figure, we also plot (in red) the expression

T (λ) = T (0) +
∂σb

∂ Re(m)

CFαS

2
λ . (5.8)

It is then clear that the MS result would have no linear term in λ for small λ, and thus that

there is no linear renormalon in this scheme. From the figure it is also clear that this holds for

both λ . Γt and for λ � Γt, where Γt is the top width. The λ . Γt behaviour is justified by
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Figure 5.1: Small-λ behaviour of T (λ) for the total cross section, where λ is the gluon mass. In black
the data points extracted with our numerical simulations, in red the linear λ dependence and in blue the
parabolic fit of the points.

the fact that, because of the finite width, phase-space points where the top is on shell are never

reached (see Appendix D). Thus, no linear renormalon is present unless one uses the pole-mass

scheme, that has a linear renormalon in the counterterm.

As far as the λ� Γt limit, we notice that the λ behaviour should be the same as that of the

narrow-width approximation (NWA), where the cross section factorizes in terms of the on-shell

top-production cross section, and its decay partial width:

σ
(
W ∗ →Wbb̄

)
= σ

(
W ∗ → tb̄

) Γ(t→Wb)

Γt
+O

(
Γt
m

)
. (5.9)

The behaviour of T (λ), computed either exactly or in the NWA, is shown in Fig. 5.2.

The factor σ(W ∗ → tb̄) is clearly free of linear renormalons, since it a totally inclusive decay

of a colour-neutral system. Although less obvious, this is also the case for the factor Γ(t→Wb)

(see [10,33,52]).

The computation of T (λ) using the NWA is discussed in Appendix (C), where we show in

Figs. C.1 and C.2 that the linear λ behaviour is due to the choice of the pole-mass scheme.

5.1.3 Total cross section with cuts

When the selection cuts discussed earlier are imposed, the cross section depends explicitly upon

the jet radius R. We expect jets requirement to induce the presence of linear renormalons,

and thus linear small-λ behaviour of T , with a slope that goes like 1/R for small R [14, 53].

In Fig. 5.3 we display the small-λ behaviour for T (λ) for the total cross section with cuts, for

several jet radii. Together with the results of our simulation, we plot also, for each value of R,

a polynomial fit to the data.

When changing from the pole to the MS-mass scheme, we only expect a mild R dependent
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Figure 5.3: Small-λ behaviour for T (λ) for the total cross section with cuts, for several jet radii. The
points represent the data obtained with our numerical calculations, while in solid lines their polynomial
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respectively.

correction to the slope of T (λ) at λ = 01, and thus we cannot expect the same benefit that we

observed for the cross section without cuts. This is illustrated in Fig. 5.4 for several jet radii.

The 1/R behaviour is clearly visible. In addition, for relatively large-R values, the use of the

MS scheme brings about some reduction to the slope of the linear term. This may be due to the

fact that the cross section with cuts captures a good part of the cross section without cuts, and

1The change of scheme is governed by formula (4.79), where the only radius dependence comes from the
derivative of the LO value of the observable, and this is mild for small R.
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or the MS mass scheme (black). The solid lines represent fits of parametric form a/R+ b+ cR+ dR2.

thus it partially inherits its benefits when changing scheme. However, it is also clear that linear

non-perturbative ambiguities remain important also in the MS scheme when cuts are involved.

5.2 Reconstructed-top mass

In this section we consider the average value 〈M〉, where M is the mass of the system comprising

the W boson and the b jet. Such an observable is closely related to the top mass, and, on the

other hand, is simple enough to be easily computed in our framework. We use the same selection

cuts described previously.

We computed 〈M〉 also in the narrow width limit, by simply setting the top width to

0.001 GeV. In this limit, top production and decay factorize, so that we have an unambigu-

ous assignment of the final state partons to the top decay products. We first compute 〈M〉 in

the narrow width limit, using only the top decay products, and without applying any cuts. We

then compute it again, still using only the top decay products, but introducing our standard

cuts. Finally we compute it again using all decay products and our standard cuts. The results

of these calculations are reported in Fig. 5.5, where the slope at λ = 0 of T̃ for our observable

is plotted as a function of the jet radius R. As expected we see the shape proportional to 1/R

for small R [14, 53].

In the case of the calculation of 〈M〉 performed using only the top decay products, and

without any cuts, we expect that, for large values of R, the average value of M should get closer

and closer to the input top pole mass, irrespective of the value of λ. Thus, the slope of T̃ (λ)

for λ = 0 should become smaller and smaller. We find in this case that, for the largest value

of R we are using (R = 1.5), the slope has a value around 0.09. When cuts are introduced this

value becomes even smaller, around 0.04. This curve is fairly close to the one obtained using all

final-state particles and including cuts. The large-R value in this case is −0.08.

If we change scheme from the pole mass to the MS one, the corresponding change of T̃ is
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structed mass M , when using only the top decay products and no cuts (red), when using only the top
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given by eq. (4.80), and for the observable at hand the derivative term it is very near 1. The

change in slope when going to the MS scheme is roughly −CF/2 ≈ −0.67. Thus, if we insisted

in using the MS mass for the present observable, for large jet-radius parameters, we would get

an ambiguity larger than if we used the pole mass scheme. The same holds even if we employ a

finite top width. The R dependence of the T̃ (λ) slope for Γt = 1.3279 GeV is shown in Fig. 5.6.

We notice that, in the present case, for values of R below 1, the MS scheme seems to be better,
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Figure 5.6: R dependence of the slope of T̃ (λ) for the averaged reconstructed mass M . The solid lines
are the result of a fit of the form a/R+ b+ cR+ dR2.

because of a cancellation of the R dependent renormalon and the mass one. From our study,

however, it clearly emerges that such cancellation is accidental, and one should not rely upon it
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to claim an increase in accuracy.

In the left pane of Fig. 5.7 we plot the small-λ behaviour of T̃ (λ) for the reconstructed-top

mass, computed with the finite top width, for several values of the jet radius R. It is clear

that our observable is strongly affected by the jet renormalon. The same plot for only the

three largest values of R is shown in the right pane. The figure shows clearly that the λ slope

computed with Γt = 1.3279 GeV changes when λ goes below 1 GeV, that is to say, when it goes

below the top width. This behaviour is expected, since the top width act as a cutoff on soft

radiation. In the figure we also report the λ behaviour in the narrow-width approximation. It is

evident that the slopes computed in this limit are similar to the slopes with Γt = 1.3279 GeV,

for values of λ larger than the top width. It is also clear that the slopes that we find here for the

largest R value are considerably smaller than the slope change induced by a change to a short

distance mass scheme, that amounts to −0.67. In other words, the pole mass scheme is more

appropriate for this observable, irrespective of finite width effects.

5.3 W boson energy

In this section we study the behaviour of the average value of the W energy, EW , since this is

another top-mass sensitive observable. This observable is chosen since it is a case of an observable

that does not depend upon the jet definition. It can thus be considered to be a representative

of pure “leptonic” observables in top-mass measurements. In this study, we do not apply any

cut, in order to avoid all possible jet or hadronic biases. Our goal is to see if this observable is

free of renormalons in some mass scheme.

In order to change scheme, according to eq. (4.80), we need the derivative of the Born value

of the observable with respect to the real part of the top mass. We have computed numerically
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this term and its value is given by

∂〈EW 〉b
∂ Re(m)

= 0.0980 (8) . (5.10)

The small-λ dependence of the corresponding T̃ function is shown in Fig. 5.8: for values of λ

much larger than the width, the slope of the curve is roughly 0.45. Thus, under these conditions,

a renormalon is clearly present whether we use the pole or the MS scheme, since the correction

in slope due to the use of the latter would be −0.098× CF/2 = −0.065.

For λ below the top width we see a reduction in slope, that is too difficult to estimate

because of the lack of statistics. Since the change in slope is clearly related to the top finite

width, we carried out the following tests: we run the program with a reduced Γt, expecting to

see a constant slope extending down to smaller values of λ. This is illustrated in Fig. 5.9. We

clearly see that, as Γt becomes smaller, the slope of the λ dependence remains constant, near

the value 0.45 found before, down to smaller values of λ. Since we have that

∂〈EW 〉b
∂ Re(m)

= +0.098 (4) , for Γt = 0.1 GeV, (5.11)

∂〈EW 〉b
∂ Re(m)

= +0.10 (3) , for Γt = 0.01 GeV, (5.12)

it is clear that, for a vanishing top width, the MS scheme, as well as the pole scheme, is still

affected by the presence of a linear renormalon.

We also performed a run with Γt = 10 GeV and Γt = 20 GeV, in order to estimate more

accurately the value of the slope for λ � Γt. The result is shown in Fig. 5.10. In Tab. 5.1 we

illustrate the slopes of T̃ (λ) for small λ, obtained from the polynomial interpolation displayed

in Fig. 5.10, and the corresponding value in the MS scheme, obtained by adding −CF
2
∂〈EW 〉b
∂ Re(m) to

the fitted slope. This shows that the linear sensitivity largely cancels in the MS scheme.

One may now wonder if the cancellation of the linear sensitivity in the MS scheme is exact,

or just accidental. In fact, we show in App. D that the cancellation is exact.
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Γt slope (pole)
∂〈EW 〉b
∂ Re(m)

−CF

2

∂〈EW 〉b
∂ Re(m)

slope (MS)

10 GeV 0.058 (8) 0.0936 (4) −0.0624 (3) 0.004 (8)

20 GeV 0.061 (2) 0.0901 (2) −0.0601 (1) 0.001 (2)

Table 5.1: Slopes of T̃ (λ)/αS, evaluated ad λ = 0, computed for 〈EW 〉 in the pole-mass scheme and the
derivative terms needed to change to the MS one, for large top widths.
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Chapter 6

All-order expansions in αS

We will now consider the all-order expansion of various quantities, in order to see how the

infrared renormalon affects the large-order behaviour, both in the pole mass scheme and in the

MS scheme.

One may think that in our framework we may even compare quantities computed in different

mass schemes, and thus assess the reliability of the methods used to estimate the resummation of

divergent series, and the corresponding ambiguity. In fact, within our large-nf approximation,

if the method adopted to resum the perturbative expansion is linear, as is the case of the Borel

transform method, we should find identical results (always in the large nf sense) in the MS and

the pole-mass schemes. This is shown as follows. The relation between the pole and MS scheme

for a generic observable is given by, following eq. (4.73),

〈O〉b(m,m∗) + 〈O〉(1)(m,m∗)αS = 〈O〉b(m,m∗) +

{[
∂〈O〉b(m,m∗)

∂m
(m−m) + cc

]
+ 〈O〉(1)(m,m∗)αS

}
+O(α2

S(αSnf )n). (6.1)

Neglecting subleading terms, this is an identity, since the expansion of 〈O〉b in the mass difference

stops at the first order in the large-nf limit. When performing the calculation in the pole mass

scheme, we need to resum the expansion of 〈O〉(1), while if we perform the calculation in the

MS scheme, we are resumming the expansion of the sum of terms in the curly bracket. If the

resummation method is linear this last resummation can be performed on the individual terms

inside the curly bracket. This is exactly what we would do on the left-hand side if, after the

resummation, we wanted to express the same result in the MS scheme. In other words, if one

uses the Borel method to perform the resummation, and defines the pole mass to be the sum of

the mass relation formula eq. (4.70), all results obtained in the MS scheme would be identical

to those obtained in the pole mass scheme up to terms of relative order αSCF or αSCA, provided

the same Borel sum method is used also for the observables.

In the following we will try to estimate the terms of the perturbative expansion using our

large-nf results. In order to do this, we will perform the replacement −TF/(3π) → b0 accom-

panied by some other minor adjustments, as described in Sec. 3.3. Needless to say, with these

realistic values, the large-nf approximation breaks down, and terms of relative order αSCF or

αSCA may be sizeable. We thus expect that by changing scheme we will generate difference of

relative orders αSCF or αSCA, that are not negligible. These differences should not therefore be
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interpreted as due to large ambiguities related to the choice of mass scheme, but rather to the

large-nf approximation.

The procedure we adopt in order to compute the terms of the perturbative expansion follows

from eq. (4.64). We fit numerically the λ dependence of the appropriate T or T̃ function, and

we take the derivative of the fit. The arctangent factor is instead expanded analytically, and the

integration is performed numerically for each perturbative order. In order to have a semi-realistic

result for the perturbative coefficients we perform the following replacement

Π(λ2 + iη, µ2)−Πct =
αSTF

3π

(
5

3
− log

λ2

µ2
+ iπ

)
≡
αSnfTR

3π

(
5

3
− log

λ2

µ2
+ iπ

)
→ −αS11CA

12π

(
Cg − log

λ2

µ2
+ iπ

)
+
αSnlTR

3π

(
5

3
− log

λ2

µ2
+ iπ

)
, (6.2)

where Cg is given in eq. (3.64). As a consequence, in eqs. (4.64), (4.45), and (3.39) the constant

C, introduced in eq. (3.12), is replaced with eq. (3.65) and the overall 1/b0,f factor with 1/b0 =

(αSnlTR
3 − αS11CA

12 )−1. For the computation of our observables no further modification is required,

since the factors ∆(λ) of eq. (4.69) and ∆̃(λ) of eq. (4.69) do not depend on nf , that cancels in

the ratio σ
(2)
qq̄ /b0,f .

However, given the fact that the pole-MS mass relation involves ultraviolet divergent quan-

tities, it must be carried out in d = 4 − 2ε dimension. For this reason, in this case, we cannot

simply use the O(ε0) expansion of
[
Π(λ2 + iη, µ2)−Πct

]
given in eq. (6.2) to evaluate eqs. (3.43)

and (3.46), but we need to use eqs. (3.58) and (3.59). We remark that these contributions do

not contain any infrared renormalon, conversely to rf (m,µ, αS), that can be computed in d = 4

dimensions. For this reason, as already discussed in Sec. 3.3, the presence of a second term C ′gε
2,

that accompanies Cgε in eq. (3.58), is totally negligible for the estimate of the leading linear

renormalons.

6.1 Mass-conversion formula

The procedure for the calculation of the mass-conversion formula is described in Sec. 3.2. Here

we switch to the realistic b0 and C values as discussed in the previous section. The expansion

of the mass conversion formula reads

m(µ) = m

(
1−

∞∑
i=1

ci α
i
S

)
, (6.3)

and the ci coefficients are tabulated in Tab. 6.1, with µ2 = Re(m2) = m2
0, where m0 is given in

eq. (4.1). Since we are using the complex mass scheme, they are complex, with a small imaginary

part, and they have a slight dependence upon the ratio Γt/Re(m). For small Γt they become

independent on m and Γt, and their imaginary part vanishes.

The value of the MS mass we adopt in the following is found by truncating the series in

eq. 6.3 at the smallest term before the series starts diverging, that corresponds to i = 8, as

shown in Tab. 6.1. We thus find that for a complex pole mass

m = (172.50− 0.66 i) GeV (6.4)
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m−m(µ)

i Re (ci) Im (ci) Re
(
mci α

i
S

)
Im
(
mci α

i
S

)
1 4.244× 10−1 2.450× 10−3 7.919× 10+0 +1.524× 10−2

2 6.437× 10−1 2.094× 10−3 1.299× 10+0 −7.729× 10−4

3 1.968× 10+0 8.019× 10−3 4.297× 10−1 +9.665× 10−5

4 7.231× 10+0 2.567× 10−2 1.707× 10−1 −5.110× 10−5

5 3.497× 10+1 1.394× 10−1 8.930× 10−2 +1.240× 10−5

6 2.174× 10+2 8.164× 10−1 6.005× 10−2 −5.616× 10−6

7 1.576× 10+3 6.133× 10+0 4.709× 10−2 +2.009× 10−6

8 1.354× 10+4 5.180× 10+1 4.376× 10−2 −1.031× 10−6

9 1.318× 10+5 5.087× 10+2 4.608× 10−2 +4.961× 10−7

10 1.450× 10+6 5.572× 10+3 5.481× 10−2 −2.909× 10−7

Table 6.1: Real and imaginary parts of the coefficients ci of the mass relation (6.3), up to the tenth order
in the strong coupling constant αS(µ), with µ2 = Re(m2) and m = 172.5 GeV. The numbers shown in
the last two columns are expressed in GeV.

the value of the corresponding MS complex mass is

m(µ) = m

(
1−

8∑
i=1

ci α
i
S

)
= (162.44− 0.68 i) GeV, (6.5)

with µ =
√

Re(m2).

6.2 The total cross section

In this section we deal with the perturbative expansion of the total cross section, first without

cuts, and then with cuts.

6.2.1 Total cross section without cuts

As discussed in Sec. 5.1.2, T (λ) (4.47) for the total cross section does not have any term linear

in λ, if expressed in terms of the MS mass. It follows that the total cross section computed in

the MS scheme should not have any ΛQCD/m renormalon and should display a better behavior

at large orders.

The coefficients ci of the expansion of eq. (4.45) in terms of αS

σ = σnocuts
b (m)

(
c0 +

∞∑
i=1

ci α
i
S

)
(6.6)

are collected in Tab. 6.2, in the pole (left) and in the MS (right) schemes. At large orders, the

MS total cross section receives much smaller contributions. On the other hand we see that the

N3LO contribution to σ(m) is already affected by a factorial growth. The minimum of the series
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Sec 6.2. The total cross section

σ/σnocuts
b (m)

pole scheme MS scheme

i ci ci α
i
S ci ci α

i
S

0 1.00000000 1.0000000 0.86841331 0.8684133

1 5.003 (0)× 10−1 5.411 (0)× 10−2 1.480 (0)× 100 1.601 (0)× 10−1

2 −6.20 (2)× 10−1 −7.25 (2)× 10−3 4.42 (2)× 10−1 5.17 (2)× 10−3

3 −3.03 (2)× 100 −3.83 (3)× 10−3 6.4 (2)× 10−1 8.1 (3)× 10−4

4 −1.25 (2)× 101 −1.70 (3)× 10−3 0 (2)× 10−2 0 (3)× 10−6

5 −6.4 (2)× 101 −9.4 (3)× 10−4 1 (2)× 10−1 1 (3)× 10−5

6 −3.9 (1)× 102 −6.2 (2)× 10−4 0 (1)× 100 0 (2)× 10−6

7 −2.9 (1)× 103 −5.0 (2)× 10−4 0 (1)× 101 0 (2)× 10−6

8 −2.5 (1)× 104 −4.6 (2)× 10−4 0 (1)× 102 0 (2)× 10−6

9 −2.4 (1)× 105 −4.9 (2)× 10−4 0 (1)× 103 0 (2)× 10−6

10 −2.6 (1)× 106 −5.8 (2)× 10−4 0 (1)× 104 −1 (2)× 10−6

Table 6.2: Coefficients of the αS expansion of the inclusive cross section to all orders, computed in
the large-b0 limit, normalized to the Born cross section computed in the pole-mass scheme. The errors
reported in parenthesis are due to the uncertainty on the linear coefficient of the fit (i.e. p1 in eq. (4.54)).

is reached for i = 8 (that corresponds to an O(α8
S) correction), and it is two orders of magnitude

larger than the corresponding contribution computed in the MS scheme. We also notice that

the MS result has an NLO correction larger than the pole mass result, an NNLO correction that

is similar, and smaller N3LO and higher order corrections. We also expect that the apparent

convergence of the expansion for the first few orders should depend upon the available phase

space for radiation.

6.2.2 Total cross section with cuts

As we have seen in Sec. 5.1.3, the presence of selection cuts introduces a renormalon in the total

cross section whose magnitude goes like 1/R.

In Tab. 6.3 we present the results for the total cross section, in the pole and in the MS-mass

scheme, for a small jet radius, R = 0.1, and a more realistic value, R = 0.5. For small radii, the

perturbative expansion displays roughly the same bad behaviour, either when we use the pole

or the MS scheme. For larger values of R, the size of the coefficients are typically smaller than

the corresponding ones with smaller values or R. In particular if we compare the coefficients for

R = 0.1 and R = 0.5, the second ones are one order of magnitude smaller than the first ones.

Furthermore, for R = 0.5, the coefficients computed in the MS-mass scheme are roughly half

of the ones computed in the pole-mass scheme. As remarked earlier, this reduction is due to

an accidental cancellation of the pole-mass associated renormalon and the 1/R, jet related one,

and cannot be used to imply that the MS scheme should be favoured in this case.
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Sec 6.3. Reconstructed-top mass

σ/σnocuts
b (m) R = 0.1

pole scheme MS scheme

i ci α
i
S ci α

i
S

0 0.9985836 0.8666708

1 −7.953 (0)× 10−2 2.650 (0)× 10−2

2 −7.22 (2)× 10−2 −5.98 (2)× 10−2

3 −3.71 (2)× 10−2 −3.24 (2)× 10−2

4 −1.97 (2)× 10−2 −1.80 (2)× 10−2

5 −1.13 (2)× 10−2 −1.04 (2)× 10−2

6 −7.0 (2)× 10−3 −6.4 (2)× 10−3

7 −4.8 (1)× 10−3 −4.3 (1)× 10−3

8 −3.6 (1)× 10−3 −3.1 (1)× 10−3

9 −3.1 (1)× 10−3 −2.7 (1)× 10−3

10 −3.2 (2)× 10−3 −2.6 (2)× 10−3

σ/σnocuts
b (m) R = 0.5

pole scheme MS scheme

i ci α
i
S ci α

i
S

0 0.9783310 0.8511828

1 −4.992 (0)× 10−3 9.705 (0)× 10−2

2 −2.966 (5)× 10−2 −1.779 (5)× 10−2

3 −1.267 (6)× 10−2 −8.22 (6)× 10−3

4 −5.37 (6)× 10−3 −3.73 (6)× 10−3

5 −2.58 (5)× 10−3 −1.66 (5)× 10−3

6 −1.44 (4)× 10−3 −8.5 (4)× 10−4

7 −9.8 (4)× 10−4 −5.0 (4)× 10−4

8 −8.1 (4)× 10−4 −3.7 (4)× 10−4

9 −8.0 (4)× 10−4 −3.4 (4)× 10−4

10 −9.2 (5)× 10−4 −3.7 (5)× 10−4

Table 6.3: Values of the ci α
i
S terms of the perturbative expansion for the average value of the cross

section with cuts, normalized to the inclusive Born cross section computed in the pole-mass scheme (see
eq. (6.6)), for two different values of the jet radius (R = 0.1 in the left pane and R = 0.5 in the right
one). The errors reported in parenthesis are due to the uncertainty on the linear coefficient of the fit (i.e.
p1 in eq. (4.54)).

6.3 Reconstructed-top mass

In this section, we discuss the terms of the perturbative expansion for the average reconstructed

mass 〈M〉

〈M〉 =
∞∑
i=0

ci α
i
S , (6.7)

for three values of the R parameter. We apply the cuts described in Sec. 5.1 and the results are

collected in Tab. 6.4.

From the table we can see that, for very small jet radii, the asymptotic character of the

perturbative expansion is manifest in both the pole and MS scheme. For the realistic value

R = 0.5, the MS scheme seems to behave slightly better. In fact, this is only a consequence of

the fact that the jet-renormalon and the mass-renormalon corrections have opposite signs, with

the mass correction in the MS scheme largely prevailing at small orders, yielding positive effects.

As the radius becomes very large, the jet renormalon becomes less and less pronounced, in

the pole-mass scheme, leading to smaller corrections at all orders. This is consistent with the

discussion given in Sec. 5.2, where we have seen that, for large radii, the reconstructed mass

becomes strongly related to the top pole mass, since it approaches what one would reconstruct

from the “true” top decay products.1

1We recall here that, in the narrow width limit, and in perturbation theory, the concept of a “true” top decay
final state is well defined.

47



Sec 6.4. W boson energy

〈M〉 [GeV]

R = 0.1 R = 0.5 R = 1.5

i pole MS pole MS pole MS

0 172.8280 163.0146 172.8201 163.0040 172.7533 162.9244

1 −7.597 (0)× 100 2.163 (0)× 10−1 −2.785 (0)× 100 5.030 (0)× 100 4.446 (0)× 10−1 8.268 (0)× 100

2 −4.136 (2)× 100 −2.852 (2)× 100 −1.255 (1)× 100 2.9 (1)× 10−2 1.029 (8)× 10−1 1.387 (1)× 100

3 −2.397 (2)× 100 −1.973 (2)× 100 −5.96 (2)× 10−1 −1.72 (2)× 10−1 1.4 (1)× 10−2 4.38 (1)× 10−1

4 −1.505 (2)× 100 −1.337 (2)× 100 −3.13 (2)× 10−1 −1.44 (2)× 10−1 −6 (1)× 10−3 1.63 (1)× 10−1

5 −1.038 (2)× 100 −9.50 (2)× 10−1 −1.88 (2)× 10−1 −1.00 (2)× 10−2 −9.7 (9)× 10−3 7.86 (9)× 10−2

6 −7.94 (2)× 10−1 −7.35 (2)× 10−1 −1.33 (1)× 10−1 −7.3 (1)× 10−2 −1.05 (8)× 10−2 4.89 (8)× 10−2

7 −6.79 (2)× 10−1 −6.33 (2)× 10−1 −1.09 (1)× 10−1 −6.3 (1)× 10−2 −1.12 (7)× 10−2 3.53 (7)× 10−2

8 −6.51 (2)× 10−1 −6.08 (2)× 10−1 −1.04 (1)× 10−1 −6.1 (1)× 10−2 −1.25 (7)× 10−2 3.08 (7)× 10−2

9 −6.99 (2)× 10−1 −6.54 (2)× 10−1 −1.12 (1)× 10−1 −6.7 (1)× 10−2 −1.47 (7)× 10−2 3.09 (7)× 10−2

10 −8.37 (2)× 10−1 −7.83 (2)× 10−1 −1.35 (1)× 10−1 −8.1 (1)× 10−2 −1.85 (9)× 10−2 3.57 (9)× 10−2

Table 6.4: Values of the ci α
i
S terms of the perturbative expansion for the average value of the

reconstructed-top mass, defined in eq. (6.7), for three different jet radii in the pole-mass and MS-mass
scheme. The errors reported in parenthesis are due to the uncertainty on the linear coefficient of the fit
(i.e. p1 in eq. (4.54)).

6.4 W boson energy

The coefficients of the perturbative expansion of the average energy of the W boson in the pole

and MS schemes

〈EW 〉 =
∞∑
i=0

ci α
i
S. (6.8)

are displayed in Tab. 6.5. We notice that the perturbative expansions are similarly behaved

in both schemes up to i ≈ 6, while, for higher orders, the MS scheme result is clearly better

convergent. This supports the observation, done in Sec. 5.3, that the top width screens the

renormalon effect if the MS mass is used. In fact, the 6th order renormalon contribution is

dominated by scales of order mt e
−5 ≈ 1.16, as illustrated in Sec. 2.3, very near the top width.

By looking at the i = 0 row, we notice that a variation of roughly 10 GeV in the value of the

top mass, corresponding to the pole-MS mass difference, leads to a variation of less than 1 GeV

in 〈EW 〉b. This implies that the sensitivity of the W -boson energy EW to the top mass is much

weaker than for the reconstructed-top mass M . Indeed, in Secs. 5.2 and 5.3 we already noticed

that
∂〈EW 〉b
∂ Re(m)

≈ 0.1 ,
∂〈M〉b
∂ Re(m)

≈ 1. (6.9)

The value of the EW derivative is strongly affected by our choice of the rest frame energy

E = 300 GeV, that corresponds to a boost βtop = |~ptop|/Etop = 0.5 for an on-shell top-quark.

Thus, despite the fact that EW is free from physical renormalons, if the top quark has substantial

kinetic energy, the weak sensitivity of such observable to the value of the top mass may in practice

reduce the precision of the measurement.
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Sec 6.4. W boson energy

〈EW 〉 [GeV]

pole scheme MS scheme

i ci ci α
i
S ci ci α

i
S

0 121.5818 121.5818 120.8654 120.8654

1 −1.435 (0)× 101 −1.552 (0)× 100 −7.192 (0)× 100 −7.779 (0)× 10−1

2 −4.97 (4)× 101 −5.82 (4)× 10−1 −3.88 (4)× 101 −4.54 (4)× 10−1

3 −1.79 (5)× 102 −2.26 (6)× 10−1 −1.45 (5)× 102 −1.84 (6)× 10−1

4 −6.9 (4)× 102 −9.4 (6)× 10−2 −5.7 (4)× 102 −7.8 (6)× 10−2

5 −2.9 (3)× 103 −4.4 (5)× 10−2 −2.4 (3)× 103 −3.5 (5)× 10−2

6 −1.4 (3)× 104 −2.2 (4)× 10−2 −1.0 (3)× 104 −1.7 (4)× 10−2

7 −8 (2)× 104 −1.3 (4)× 10−2 −5 (2)× 104 −8 (4)× 10−3

8 −5 (2)× 105 −9 (4)× 10−3 −2 (2)× 105 −4 (4)× 10−3

9 −3 (2)× 106 −7 (4)× 10−3 −1 (2)× 106 −2 (4)× 10−3

10 −3 (2)× 107 −6 (5)× 10−3 0 (2)× 106 −1 (5)× 10−4

11 −3 (3)× 108 −7 (6)× 10−3 0 (3)× 106 0 (6)× 10−5

12 −4 (3)× 109 −9 (9)× 10−3 0 (3)× 108 1 (9)× 10−3

Table 6.5: Coefficients of the perturbative expansion of the average W -boson energy in the pole and
MS schemes (see eq. (6.8)). The errors reported in parenthesis are due to the uncertainty on the linear
coefficient of the fit (i.e. p1 in eq. (4.54)).
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Chapter 7

Summary and conclusions

In this first part of the thesis we have examined non-perturbative corrections related to infrared

renormalons relevant to typical top-quark mass measurements, in the simplified context of a

W ∗ → tb̄ → Wbb̄ process, with an on-shell final-state W boson and massless b quarks. As a

further simplification, we have considered only vector-current couplings. We have however fully

taken into account top finite width effects.

We have investigated non-perturbative corrections that arise from the resummation of light-

quark loop insertions in the gluon propagator, corresponding to the so called large-nf limit of

QCD. The large-nf limit result can be turned into the so called large-b0 approximation, by

replacing the large-nf beta function coefficient with the true QCD one. This approximation has

been adopted in several contexts for the study of non-perturbative effects (see e.g. Refs. [10,11,

33,36,52,54]).

In this paper we have developed a method to compute the large-nf results exactly, using

a combination of analytic and numerical methods. The latter is in essence the combination

of four parton level generators, that allowed us to compute kinematic observables of arbitrary

complexity. We stress that, besides being able to study the effect of the leading renormalons,

we can also compute numerically the coefficients of the perturbative expansion up and beyond

the order at which it starts to diverge.

Although our findings have all been obtained in the simplified context just described, we can

safely say that all effects that we have found are likely to be present in the full theory, although

we are not in a position to exclude the presence of other effects related to the non-Abelian nature

of QCD, or to non-perturbative effects not related to renormalons.

Our findings can be summarized as follows:

• The total cross section for the process at hand is free of physical linear renormalons, i.e.

its perturbative expansion in terms of a short distance mass is free of linear renormalons.

This result holds both for finite top width and in the narrow-width limit. In the former

case, the absence of a linear renormalon is due to the screening effect of the top finite

width, while, in the latter case, it is a straightforward consequence of the fact that both

the top production cross section and the decay partial width are free of physical linear

renormalons.

By examining the perturbative expansion order by order, we find that, already at the

NNLO level, the MS scheme result for the cross section is much more accurate than the
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Chap 7. Summary and conclusions

pole-mass-scheme one.

We stress that our choice of 300 GeV for the incoming energy corresponds to a momentum

of 100 GeV for the top quark, that in turn roughly corresponds to the peak value of the

transverse momentum of the top quarks produced at the LHC. Thus, the available phase

space for soft radiation at the LHC is similar to the case of the process considered here,

so that it is reasonable to assume that our result gives an indication in favour of using the

MS scheme for the total cross section without cuts at the LHC.

• As soon as jet requirements are imposed on the final state, corrections of order ΛQCD

arise. They have a leading behaviour proportional to 1/R, where R is the jet radius, for

small R [14, 53]. These corrections are present irrespective of the top-mass scheme being

used. They are however reduced if the efficiency of the cuts is increased, for example by

increasing the jet radius, giving an indication in favour of the use of the MS scheme for the

total cross section calculation also in the presence of cuts. It should be stressed, however,

that with a typical jet radius of 0.5 the behaviour of the perturbative expansion in the MS

and Pole-mass scheme are very similar, with a rather small advantage of the first one over

the latter.

• The reconstructed-top mass, defined as the mass of the system comprising the W and the

b jet, has the characteristic power correction due to jets, with the typical 1/R dependence.

No benefit, i.e. reduction of the power corrections, seems to be associated with the use of

a short-distance mass. In particular, at large jet radii, when the jet renormalon becomes

particularly small, in the pole mass scheme the linear renormalon coefficient is smaller.

This observation is justified if one considers that, in the narrow-width limit, the production

and decay processes factorize to all orders in the perturbative expansion, yielding a clean

separation of radiation in production and decay. In this limit, the system of the top decay

products is well defined, and its mass is exactly equal to the pole mass. Consistently

with this observation, we have shown that, for very large jet radii, the linear renormalon

coefficient for the reconstructed-top mass is quite small (if the observables is expressed in

terms of the pole mass). One may then worry that, when reconstructing the top mass

from the full final state, renormalons associated with soft emissions in production from

the top and from the b̄ quark may affect the reconstructed mass, since these soft emissions

may enter the b-jet cone. By comparing the reconstructed mass obtained using only the

top decay products to the one obtain using all final state particles, we have shown that

these effects are in fact small.

We should also add, however, that the benefit of using very large jet radii cannot be

exploited at hadron colliders, since we expect other renormalon effects, due to soft-gluon

radiation in production entering the jet cone. This problem can in principle be investigated

with our approach, by applying it to the process of tt̄ production in hadronic collisions.

• We have considered, as a prototype for a leptonic observable relevant for top mass mea-

surement, the average energy of the W boson. We have found two interesting results:

– In the narrow-width limit, this observable has a linear renormalon, irrespective of the

mass scheme being used for the top. This finding does not support the frequent claim
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that leptonic observables should be better behaved as far as non-perturbative QCD

corrections are concerned. It also reminds us that, even if we wanted to measure the

top-production cross section by triggering exclusively upon leptons, we may induce

linear power corrections in the result that cannot be eliminated by going to the MS

scheme.

The presence of renormalons in leptonic observables seems to be in contrast with

what is found in inclusive semileptonic decays of heavy flavours [10, 52]. We have

however verified that there is no contradiction with this case. If the average value

of the W energy is computed in the top rest frame (which makes it fully analogous

to a leptonic observable in B decay) then no renormalon is present if the result is

expressed in terms of the MS mass.

– For finite widths, if a short-distance mass is used, there is no linear renormalon. We

verified this numerically, and furthermore we were also able to give a formal proof of

this finding. What this means in practice is that the perturbative expansion for this

quantity will have factorial growth up to an order n ≈ 1 + log(m/Γt), that will stop

for higher orders. In practice, for realistic values of the width, this turns out to be a

relatively large order. Thus, although in principle we cannot exclude a useful direct

determination of the top short-distance mass from leptonic observables, it seems clear

that finite-order calculations should be carried out at relatively high orders (up to the

fourth or fifth order) in order to exploit it. Although it seems unlikely that results

at these high orders may become available in the foreseeable future, perhaps it is not

impossible to devise methods to estimate their leading renormalon contributions, still

allowing a viable mass measurement (this assumning that the weaker sensitivity of

leptonic obervables to the top-mass value does not prove to be too strong a limitation).

In this work we have made several simplifying assumptions. These assumptions were motivated

by the fact that the computational technique is new, and we wanted to make it as simple as

possible. Some of these restrictions may be removed in future works. For example, we could

consider hadronic collisions, the full left-handed coupling for the W , the W finite width and the

effects of a finite b mass. Although removing these limitations can lead to interesting results, we

should not forget that our calculation does not exhaust all sources of non-perturbative effects that

can affect the mass measurement. As an obvious example, we should consider that confinement

effects are not present in our large-b0 approximation, while, on the other hand, it is not difficult

to show that they may give rise to linear power corrections. It is clear that theoretical problems

of this sort should be investigated by different means.
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Chapter 8

Introduction

The main results presented in the following sections can be also found in Ref. [55] and refer to

the problem of the determination of the theoretical uncertainty associated with the use of Monte

Carlo (MC) event generators to infer the top-quark mass.

The question on how precisely we can measure the top mass at hadron colliders is related

to our understanding of QCD and collider physics. In view of the large abundance of top-

pair production at the LHC, it is likely that precise measurements will be performed with very

different methods, and that comparing them will give us confidence in our ability to handle

hadron-collider physics problems.

Top-mass measurements are generally performed by fitting mt-dependent kinematic distri-

butions to MC predictions. The most precise ones, generally called direct measurements, rely

upon the full or partial reconstruction of the system of the top-decay products. The ATLAS and

CMS measurements of Refs. [7] and [8], yielding the value 172.84±0.34 (stat)±0.61 (syst) GeV

and mt = 172.44± 0.13 (stat)± 0.47 (syst) GeV respectively, fall into this broad category.

The MC event generators employed for the direct measurements make use of the pole mass

that is, as we have seen, affected by non perturbative corrections of order ΛQCD due to the

presence of infrared renormalons.

The theoretical problems raised upon the top-quark mass measurement issues have induced

several theorists to study and propose alternative methods. The total cross section for tt̄ produc-

tion is sensitive to the top mass, and has been computed including NNLO QCD corrections [56],

that have been recently combined with NLO electroweak ones [57]. These computations can be

employed to extract a top mass value [58–60]. If it is computed in the MS scheme, it has the

advantage of being free from the pole-mass renormalons.

In Refs. [61, 62] observables related to the tt̄ + jet kinematics are considered in NWA and

with full off-shell matrix elements in the dilepton channel, respectively. The authors of Ref. [63]

presented a method based upon the charged-lepton energy spectrum, that is not sensitive to

top production kinematics, but only to top decay, arguing that, since this has been computed

at NNLO accuracy [64, 65], a very accurate measurement may be achieved. Some authors have

advocated the use of boosted top jets (see Ref. [66] and references therein). In Ref. [67], the

authors make use of the b-jet energy peak position, that is claimed to have a reduced sensitivity

to production dynamics. In Ref. [68], the use of lowest Mellin moments of lepton kinematic

distributions is discussed. In the leptonic channel, it is also possible to use distributions based

on the “stransverse” mass variable [69], which generalizes the concept of transverse mass for
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a system with two identical decay branches [70, 71]. Some of these methods have in fact been

exploited [69,72–75] to yield alternative determinations of mt.

It turns out, however, that the direct methods yield smaller errors at the moment, and

it is likely that alternative methods, when reaching the same precision level, will face similar

theoretical problems. Because of this, and given the fact that recent studies [12,13] have shown

that the renormalon ambiguity in the top-mass definition is not as large as previously anticipated,

being in fact well below the current experimental error.1 it is still worthwhile to employ direct

measurements and to try to implement more and more accurate MC event generators, to avoid

biased measurements.

Recently, many efforts have been done in order to implement NLO+PS generators capable of

handling a decayed coloured resonance, like the top quark in the contest of the POWHEG BOX [38]

and MadGraph5 aMC@NLO [77]. In these references two alternatives of the standard Frixione-

Kunszt-Signer subtraction method [78] are discussed taking as example the case of single top

production. In Ref. [79] the same problem, applied to the process of top-pair production, is

discussed for the Catani-Seymour subtraction method [80].

In this work, we exploit the availability of the new POWHEG BOX generators for top-pair pro-

duction, in order to perform a theoretical study of uncertainties in the top-mass determination.

In particular, we are in a position to assess whether NLO corrections in top decay and finite

width effects, non-resonant contributions and interference of radiation generated in production

and decay can lead to sizeable corrections to the extracted value of the top mass. Since the old

hvq generator [81], that implements NLO corrections only in production, is widely used by the

experimental collaborations in top-mass analyses, we are particularly interested in comparing

it with the new generators, and in assessing to what extent it is compatible with them. We

will consider variations in the scales, parton distribution functions (PDFs) and the jet radius

parameter to better assess the level of compatibility of the different generators.

We are especially interested in effects that can be important in the top-mass determination

performed in direct measurements. Thus, the main focus of our work is upon the mass of a

reconstructed top, that we define as a system comprising a hard lepton, a hard neutrino and

a hard b jet. We will assume that we have access to the particle truth level, i.e. that we can

also access the flavour of the b jet, and the neutrino momentum and flavour. We are first of

all interested in understanding to what extent the mass peak of the reconstructed top depends

upon the chosen NLO+PS generator. This would be evidence that the new features introduced

in the most recent generators are mandatory for an accurate mass extraction.

We will also consider the inclusion of detector effects in the form of a smearing function

applied to our results. Although this procedure is quite crude, it gives a rough indication of

whether the overall description of the process, also outside of the reconstructed resonance peak,

affects the measurement.

Besides studying different NLO+PS generators, we have also attempted to give a first as-

sessment of ambiguities associated with shower and non-perturbative effects, by interfacing our

NLO+PS generators to two shower MC programs: Pythia8.2 [82] and Herwig7.1 [83,84]. Our

work focuses upon NLO+PS and shower matching. We thus did not consider further variations

of parameters and options within the same parton shower (PS), nor variations on the observables

1In fact, values in this range were obtained much earlier in Refs. [46,76], mostly in a bottom physics context,
but since the renormalon ambiguity does not depend upon the heavy quark mass, they also apply to top.
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aimed at reducing the dependence upon those.2

We have also considered two alternative proposals for top-mass measurements: the position

of the peak in the b-jet energy [67] and the leptonic observables of Ref. [68]. The first proposal

is an example of a hadronic observable that should be relatively insensitive to the production

mechanism, but may be strongly affected by NLO corrections in decay. The second proposal is an

example of observables that depend only upon the lepton kinematics, and that also depend upon

production dynamics, thus stronger sensitivity to scale variations and PDFs may be expected. It

is also generally assumed that leptonic observables should be insensitive to the b-jet modelling.

One should remember, however, that jet dynamics affects lepton momenta via recoil effects, so

it is interesting to study whether there is any ground to this assumption.

The study presented in this work was triggered by the availability of new NLO+PS gener-

ators describing top decay with increasing accuracy.3 As such, its initial aim was to determine

whether and to what extent these new generators, and the associated new effects that they im-

plement, may impact present top-mass measurements. As we will see, had we limited ourselves

to the study of the NLO+PS generators interfaced to Pythia8.2, we would have found a fairly

consistent picture and a rather simple answer to this question.

Since another modern shower generator that can be interfaced to our NLO+PS calculation

is available, namely Herwig7.1, we have developed an appropriate interface to it, and have also

carried out our study using it as our shower model. Our results with Herwig7.1 turn out to be

quite different from the Pythia8.2 ones, to the point of drastically altering the conclusions of our

study. In fact, variations in the extracted top mass values due to switching between Pythia8.2

and Herwig7.1 prevail over all variations that can be obtained within Pythia8.2 by switching

among different NLO+PS generators, or by varying scales and matching parameters within

them. Moreover, the comparison of the various NLO+PS generators, when using Herwig7.1,

does not display the same degree of consistency that we find within Pythia8.2. If, as it seems,

the differences found between Pythia8.2 and Herwig7.1 are due to the different shower models

(the former being a dipole shower, and the latter an angular-ordered one), the very minimal

message that can be drawn from our work is that, in order to assess a meaningful theoretical

error in top-mass measurements, the use of different shower models, associated with different

NLO+PS generators, is mandatory.

This part is organized as follows. In Chap. 9 we briefly review the features of the POWHEG

generators. We also briefly discuss the interfaces to the parton-shower programs Pythia8.2

and Herwig7.1. More details about the NLO+PS matching are discussed in appendix E.3.

In Chap. 10, we detail the setup employed for the phenomenological studies presented in the

subsequent sections and we describe how we relate the computed value of our observables to the

corresponding value of the top mass that would be extracted in a measurement. In Chap. 11, we

perform a generic study of the differences of our generators focusing upon the mass distribution

of the W b-jet system. The aim of this section is to show how this distribution is affected by

the different components of the generators by examining results at the Born level, after the

2An interesting example of work along this direction can be found in Refs. [85] and [86], where the impact of the
colour reconnection model on top-mass measurement is analysed. In Ref. [87], a study is performed to determine
whether the use of jet-grooming techniques in top-mass measurement can reduce the MC tune dependence.

3A fixed order study concerning the impact of the top-decay implementation on top mass determinations can
be found in Ref. [88]: NLO QCD predictions for the W+W−bb̄ process are compared to those obtained using the
narrow width approximation, where the process of tt̄ production is described at NLO QCD and the decay of the
top quarks is implemented at LO, at NLO or by a PS.
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inclusion of NLO corrections, after the PS, and at the hadron level. In Chap. 12 we consider

as our top-mass sensitive observable the peak position in the mass distribution of the W b-jet

system. We study its dependence upon the NLO+PS generator being used, the scale choices,

the PDFs, the value of αS and the jet radius parameter. Furthermore, we present and compare

results obtained with the two shower MC generators Pythia8.2 and Herwig7.1. We repeat

these studies for the peak of the b-jet energy spectrum [67] in Chap. 13, and for the leptonic

observables [68] in Chap. 14. In Chap. 15 we summarize our results, and in Chap. 16 we present

our conclusions. In the appendices we give some technical details.
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Chapter 9

POWHEG BOX generators for top-pair

production

In this section we describe the features of the NLO generators implemented in the POWHEG BOX

framework that describe the process of top-pair production and decay, i.e. the hvq, the tt̄dec

and the bb̄4` generators1. The POWHEG method is described in Appendix E.

The first top-pair production generator implemented in the POWHEG BOX and the most widely

used, up to now, is the hvq program [81]. It describes the process of production of tt̄ pairs at

NLO. The top decay is introduced in an approximate way according to the method presented

in Ref. [89] that makes it possible to take into account approximatively off-shell and spin cor-

relations effects. Radiation off the top-quark decay-products is fully handled by the PS. The

ones that we consider, Pythia8.2 and Herwig7.1, implement internally matrix-element correc-

tions (MEC) for top decay. Furthermore, Herwig7.1 also optionally includes a POWHEG-style

hardest-radiation generation. Thus, the accuracy in the description of top decay is, for our

purposes, equivalent to the NLO level.

The second in time generator implemented is the tt̄dec code [90]. NLO corrections and

spin correlations are implemented exactly using the narrow-width method, thus interference of

radiation generated in production and decay is not included. Off-shell effects are implemented

via a reweighting method, such that the LO cross section includes them exactly. It also contains

contributions of associated top-quark and W -boson production at LO.

In tt̄dec the POWHEG method was adapted to deal with radiation in resonance decays. As

it is discussed in Appendix E.2, this offers the possibility to modify the standard POWHEG

single-radiation approach. For the case of tt̄ production followed by leptonic top decay, the

“resonance aware” POWHEG formalism enables us to generate events that contains up to three

emissions: from the production process and from the b and b̄ quarks arising after the t and t̄

decay. This represents an improvement with respect to the single-emission formalism, where

only the hardest emission would have been kept. Indeed, for the tt̄ production process, the

hardest emission is most likely the one from the production process. This would leave to the

PS the task to generate the hardest emission off the top quark, limiting the effective accuracy

1The hvq and tt̄dec generators can be found under the User-Processes-V2 directory of the POWHEG BOX

V2 repository in the hvq and ttb NLO dec directories, respectively. The bb̄4` generator can be found under
the User-Processes-RES/b bbar 4l directory of the POWHEG BOX RES code. Detailed instructions are found at
powhegbox.mib.infn.it.
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employed for the description of the top decay. On the other hand, the multi-emission formalism

allows to overcome this problem since the hardest emission of each decayed resonance is already

included in the LH event.

A general procedure for dealing with decayed emitting resonances has been implemented in

a fully general and automatic way in a new version of the POWHEG BOX code, the POWHEG BOX

RES [38]. This framework allows for the treatment of off-shell effects, non-resonant subprocesses

including full interference, and for the treatment of interference between radiation generated in

production and from the resonances decay. Further details are given in Appendix E. The first

generator implemented in POWHEG BOX RES is the bb̄4` code [91] , that describes the process pp→
bb̄ e+νe µ

−ν̄µ, that is dominated by top-pair production with leptonic decay, including all QCD

NLO corrections in the 4-flavour scheme, i.e. accounting for finite b-mass effects. Furthermore,

double-top, single-top and non-resonant2 diagrams are all included with full spin-correlation

effects, radiation in production and decays, and their interference.

The interfaces between the POWHEG BOX generators and standard shower MC programs that

we have employed, i.e. the Pythia8.2 and Herwig7.1, are detailed in Appendix E.3.

2By non-resonant we mean processes that do not contain an intermediate top quark, e.g. pp → b b̄ Z →
b b̄W+W− → b b̄ e+νe µ

−ν̄µ.
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Phenomenological analysis setup

We simulate the process p p→ b b̄ e+νe µ
−ν̄µ, which is available in all the three NLO generators

we are investigating. It is dominated by top-pair production, with a smaller contribution by Wt

topologies.

The hvq and tt̄dec generators employ the pole-mass scheme for the renormalization of the

top mass mt, while in bb̄4` the complex mass scheme [91] is adopted, with the complex mass

defined as
√
m2
t − imt Γt.

The center-of-mass energy of our simulated sample is
√
s = 8 TeV. The parton distribution

function (PDF) used is the central member of the MSTW2008nlo68cl set [92]. PDF variations

to assess the theoretical uncertainty are also performed. Using the internal reweighting facil-

ity of the POWHEG BOX, we produced predictions for the central member of the following PDF sets:

• PDF4LHC15 nlo 30 pdfas [93] ,

• CT14nlo [94] ,

• MMHT2014nlo68cl [95] ,

• NNPDF30 nlo as 0118 [96] .

We also generated a sample using the central parton-distribution function of the

PDF4LHC15 nlo 30 pdfas set, and, by reweighting, all its members, within the hvq generator.

In this case, our error is given by the sum in quadrature of all deviations. We find that the

variation band obtained in this way contains the central value results for the different PDF sets

that we have considered. It thus makes sense to use this procedure for the estimate of PDF

uncertainties. Since reweighting for the 30 members of the set in the bb̄4` or in the tt̄dec case is

quite time consuming and since the dependence on the PDF is mostly due to the implementation

of the production processes, and all our generators describe it at NLO accuracy, we thus assume

that the PDF uncertainties computed in the hvq case are also valid for the bb̄4` and tt̄dec cases.

We have indeed checked that by reweighting to several PDF sets we get very similar variations

for all generators.

In the POWHEG BOX, the scale used to generate the real emissions is the transverse momen-

tum of the radiated parton with respect to the emitter. Variations of this scheme can lead

to different radiation pattern around the b jet, that can in turn have a non-negligible effect

on the reconstructed mass and thus must be evaluated to assess the theoretical uncertainty.

Since, at the moment, the POWHEG BOX does not offer the possibility to vary the definition of

the scale of the emission, the simplest way at our disposal for studying the sensitivity to the

intensity of radiation from the b quark is by varying the value of αS(mZ). To this end we use

the NNPDF30 nlo as115 and NNPDF30 nlo as121 sets, where αS(mZ)=0.115 and αS(mZ)=0.121,
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respectively. In the reweighting procedure, only the inclusive POWHEG cross section is recom-

puted. The Sudakov form factor is not recomputed, so that the radiated partons retain the

same kinematics. For this reason, it can not be employed to evaluate the αS dependence since

it changes the Sudakov form factor. For this reason, we generated two dedicated samples.

The typical scale of radiation in top decay can be estimated to be 30 GeV, that corresponds

to one-half of the typical b energy in the top rest frame. The ratio of the αS(µ) values for the two

PDF sets considered is 1.052 at µ = mZ and it becomes 1.06 at µ = 30 GeV. On the other hand,

a scale variation of a factor of two above and below 30 GeV yields a variation in αS of about

26%. This can be taken as a rough indication that a standard scale variation would yield to a

variation in the peak position that is 26/6 ≈ 4 times larger than the one obtained by varying

αS.

The central renormalization and factorization scale (µR and µF) is given by the quantity µ,

defined, following Ref. [91], as the geometric average of the transverse masses of the top and

anti-top

µ = 4

√(
E2
t − p2

z,t

) (
E2
t̄
− p2

z,t̄

)
, (10.1)

where the top and anti-top energies Et/t̄ and longitudinal momenta pz,t/t̄ are evaluated at the

underlying-Born level. In the bb̄4` case, there is a tiny component of the cross section given by

the topology

pp→ Zg → (W+ → e+νe)(W
− → µ−ν̄µ)(g → bb̄). (10.2)

In this case µ is taken as

µ =

√
p2
Z

2
, (10.3)

where pZ = pµ− + pν̄µ + pe+ + pνe .

We studied the dependence of our results on µR and µF, that gives an indication of the size of

higher-orders corrections. We varied µR and µF around the central scale µ defined in eqs. (10.1)

and (10.3)

µR = KR µ , µF = KF µ , (10.4)

where (KR,KF) are varied over the following combinations{
(1, 1), (2, 2),

(
1

2
,
1

2

)
, (1, 2),

(
1,

1

2

)
, (2, 1),

(
1

2
, 1

)}
. (10.5)

The scale variations have been performed using the reweighting technique.

The parameter hdamp controls the separation of remnants, see eq. (E.21), in the production

of tt̄ pairs with large transverse momentum1. We set it to the value of the top mass.2

The central predictions, together with the scale and PDF set variations, for a total of 12

weights, have been obtained for each generator under study for three top mass values: 169.5 GeV,

172.5 GeV, 175.5 GeV. The αS variations and the hvq sample containing the 30 members of the

PDF4LHC15 nlo 30 pdfas set have been produced only for mt = 172.5 GeV. The number of

events for each generated sample, together with an indicative computational time, are reported

in Tab. 10.1.

1We have only ISR remnants, this separation is not performed for radiation in decay.
2See Appendix F.1 for a discussion concerning the value of hdamp employed.
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Generated samples
mt [GeV] αS(mZ)

172.5 169.5 175.5 0.115 0.121

# events time # events time # events time # events time # events time

hvq 12 M 10 h 3M 2.5 h 3 M 2.5 h 12 M 9 h 12 M 9 h

tt̄dec 12 M 46 d 3M 11.5 d 3 M 11.5 d 12 M 25 d 12 M 25 d

bb̄4` 20 M 4600 d 1.7M 390 d 1.7 M 390 d 3 M 64 d 3 M 64 d

Table 10.1: Number of events and total CPU time of the generated samples. The samples used for the
αS variations were obtained in a relatively smaller time, since in this case only the central weight was
computed. This leads to a difference that can be sizeable, depending upon the complexity of the virtual
corrections.

10.1 Physics objects

In our analyses, we set the B hadrons stable, in order to simplify the definitions of b jets. Jets are

reconstructed using the Fastjet [50] implementation of the anti-kT algorithm [51] with R = 0.5.

We denote as B (B̄) the hardest (i.e. largest p⊥) b (b̄) flavoured hadron. The b (b̄) jet is the jet

that contains the hardest B (B̄).3 It will be indicated as jB (jB̄). The hardest e+ (µ−) and

the hardest νe (ν̄µ) are paired to reconstruct the W+ (W−). The reconstructed top (anti-top)

quark is identified with the corresponding W+jB (W−jB̄) pair. In the following we will refer to

the mass of this system as mWbj .

We require the presence of a b jet and a separated b̄ jet, that satisfy

p⊥ > 30 GeV , |η| < 2.5 . (10.6)

These cuts suppress the Wt topologies, that are not included by the hvq generator and included

only at LO by tt̄dec. The hardest e+ and the hardest µ− must satisfy

p⊥ > 20 GeV , |η| < 2.4 . (10.7)

10.2 Methodology

In the following we will focus upon three observables, the peak of the reconstructed-top mass

distribution mWbj , the peak of the b-jet energy spectrum Ebj [67] and the average value of the

leptonic observable of Ref. [68], and we will examine several sources of theoretical uncertainty

in the top-mass extraction.

Our observables are sensitive to the value of the top-mass and they bear a simple relation

with it

O = Oc +B (mt −mt, c) +O
(

(mt −mt, c)
2
)
, (10.8)

where mt is the input mass parameter in the generator, and mt, c = 172.5 GeV is our reference

central value for the top mass. The parameters Oc and B can be extracted using a MC generator

and in general depend on the generator and the setups employed. Given an experimental result

3Note that this notation is the opposite of what is commonly adopted for B mesons, where B refers to the
meson containing the b̄ quark.
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for the observable O, Oexp, the extracted top-mass value is

mt = mt, c +
Oexp −Oc

B
. (10.9)

Changing the generator (or its setup), leads to different parameters O′c and B′, and thus to a

different value for the top-mass m′t. The difference between the two extracted masses reads

m′t −mt =
Oc −O′c

B
+
(
Oexp −O′c

) B −B′
BB′

, (10.10)

where the second term is parametrically smaller if we assume that at least one of them yields a

mt value sufficiently close to mt, c. If this is the case, we are allowed to write

m′t −mt ≈
Oc −O′c

B
. (10.11)

In practice, in the following, we will compute the B parameter using the hvq generator, that is the

one that requires less computation time. We also checked that using the other generators for this

purpose yields results that differ by at most 10%, confirming the validity of our approximation.
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Anatomy of the reconstructed-top

mass distribution

Before comparing the predictions of the several generators employed, we investigate the impact of

the several ingredients of a typical NLO+PS on the kinematic distribution of the reconstructed-

top mass mWbj . Despite the fact this is a simplified observable, it can be considered a proxy

of all top-mass sensitive observables that rely upon the full or partial reconstruction of the

top quark. As we will see in Chap. 12, where the extraction of the peak of the distribution is

discussed, our very crude approach allows us to concentrate more on theoretical issues rather

than experimental ones.

On the perturbative side, we can compare the predictions obtained with our three NLO gen-

erators, that describe the top decay with different level of accuracy and assess the impact of the

PS employed. On the non-perturbative side, we illustrate the effect of including hadronization

and underlying event in the simulation.

11.1 Les Houches event level comparison of the generators

We begin by comparing the three generators at the Les Houches event (LHE) level, i.e. before

applying the PS. These events contain only the POWHEG hardest emission(s).

We first compare the LO distributions, i.e. without the inclusion of radiative corrections.

This is illustrated in Fig. 11.1, where we see that a non-negligible (although not dramatic)

difference in shape is present also at the LO level between the hvq and the other two generators.

This difference between the hvq and the other two generators is due to the different description

of how off-shell effects. The bb̄4` and tt̄dec generators are guaranteed to yield the correct top-

virtuality distribution at the NLO and LO level, respectively. This is not the case for the hvq

generator, where the resonance structure is recovered by a reweighting procedure that does not

guarantee LO accuracy.

We now investigate the impact of the POWHEG hardest emission(s) on the LO distribu-

tions. In Fig. 11.2 we compare mWbj , normalized to 1 in the displayed range, at LO and NLO

accuracy using the hvq (left panel) and the bb̄4` (right panel) generators. Since the hvq gener-

ator implements NLO corrections only in the production process, the mWbj distribution is not

significantly modified when moving from the LO to the NLO prediction. On the other hand,

the bb̄4` generator includes radiative corrections also to the decay process. Thus, when com-
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Figure 11.1: dσ/dmWbj distribution at LO obtained with bb̄4` (red), tt̄dec (blue) and hvq (green),
normalized to 1 in the displayed range. In the bottom panel the ratio with the bb̄4` prediction is shown.
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Figure 11.2: dσ/dmWbj distribution at LO (blue) and at NLO (red) obtained with the hvq (left) and
bb̄4` (right) generator, normalized to 1 in the displayed range. In the bottom panel the ratio with the
LO prediction is shown.

paring the NLO and the LO curves, large differences below the peak region, that can be easily

interpreted as due to radiation outside the b-jet cone, arise. The tt̄dec generator enables us to

specify whether NLO accuracy is required both in production and decay (default behaviour),

or just in production (by using the nlowhich 1 option). A graphical display of both options is

given in Fig. 11.3. As we have already seen, NLO corrections in production leads to a roughly

constant K-factor, while radiation from top decay affects the shape of the distribution.
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Figure 11.3: dσ/dmWbj distribution with NLO accuracy in production and decay (red), only in pro-
duction (green) and with LO accuracy (blue) obtained with the tt̄dec generator, normalized to 1 in the
displayed range. In the bottom panel the ratio with the LO prediction is shown.
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Figure 11.4: dσ/dmWbj distribution obtained with hvq (left pane) and bb̄4` (right pane) at the NLO
LHE level (green), and at NLO+shower (in red Pythia8.2 and in blue Herwig7.1), normalized to 1 in
the displayed range. In the bottom panel the ratio with the NLO LHE is shown.

11.2 Shower effects

We now investigate how the PS, that provides radiations beyond the hardest one, affect the

shape of the mWbj distributions.

In Fig. 11.4 we can see the impact of the PS provided by Pythia8.2 (red) and by Herwig7.1 (blue)

on the hvq (left) and bb̄4` (right) generators. In hvq, we notice a large effect in the low tail of

the distribution, since radiation in decay is fully generated by the shower. Conversely for bb̄4`

we get smaller shower corrections, since the hardest radiation in decay is already included at

the LHE level. In both cases, we see an enhancement in the region above the peak. This is

attributed to shower radiation that is captured by the b-jet cone.
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Figure 11.5: dσ/dmWbj distribution, normalized to 1 in the displayed range, obtained with bb̄4` (red)
and hvq (blue) at the NLO+PS level using Pythia8.2.

We observe that, after shower, the hvq result becomes qualitatively very similar to the bb̄4`

one, as shown in Fig. 11.5.

The inclusion of the shower in tt̄dec leads to effects similar to those observed in bb̄4`.

11.3 Hadronization and underlying events

The effect of hadronization and multi-parton interactions (MPI), as modelled by Pythia8.2 and

Herwig7.1, when interfaced to the hvq generator, is showed in Fig. 11.6. The hadronization (red)

has a large impact on the final distributions. It widens the peak for both generators. However,

in the Herwig7.1 case, we also observe a clear enhancement of the high mass region, that is

not as evident in the Pythia8.2 case. The MPI (blue), that generate particles that can deposit

in the b-jet cone, raise the tail of the distributions above the peak. In the combined effect of

hadronization and MPI (black), Herwig7.1 has a wider peak. On the other hand, the high tail

enhancement seems similar in the two generators.

The impact of the several components we have analysed, i.e. radiative corrections, the

hadronization and the MPI, strongly depend on the jet-radius parameter R. By increasing

(or decreasing) R, the peak position is shifted to the left (or right) as it is shown in Fig. 11.7.

Furthermore, as we will see in Chap. 12, differences in the implementation of radiation from the

resonances, the hadronization model and the underlying events can also shift the peak, leading

eventually to a displacement of the extracted top mass, that should be carefully assessed for a

sound estimate of the top-quark mass theoretical uncertainty.

67



Sec 11.3. Hadronization and underlying events

0.0

0.1

0.2

0.3

0.4

168 170 172 174 176 178

8 TeV

hvq+Py8.2

0.0

0.1

0.2

0.3

0.4

168 170 172 174 176 178

8 TeV

hvq+Py8.2

d
σ
/d
m

W
b j
/σ

P
S
[G

eV
−
1
]

mWbj [GeV]

PS only
d
σ
/d
m

W
b j
/σ

P
S
[G

eV
−
1
]

mWbj [GeV]

PS only

PS+HAD

PS+MPI

PS+HAD+MPI (full)

0.0

0.1

0.2

0.3

0.4

168 170 172 174 176 178

8 TeV

hvq+Hw7.1

0.0

0.1

0.2

0.3

0.4

168 170 172 174 176 178

8 TeV

hvq+Hw7.1

d
σ
/d
m

W
b j
/σ

P
S
[G

eV
−
1
]

mWbj [GeV]

PS only

d
σ
/d
m

W
b j
/σ

P
S
[G

eV
−
1
]

mWbj [GeV]

PS only

PS+HAD

PS+MPI

PS+HAD+MPI (full)

Figure 11.6: dσ/dmWbj distribution obtained with hvq interfaced with Pythia8.2 (left panel) and
Herwig7.1 (right panel). In green, the NLO+PS results; in red, hadronization effects are included; in
blue, NLO+PS with multi-parton interactions (MPI); and in black, with hadronization and MPI effects.
The curves are normalized using the NLO+PS cross section in the displayed range.
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Chapter 12

Reconstructed-top mass distribution

The peak of the reconstructed mass mWbj , defined in Sec. 10.1, is a representative of all the

direct measurement methods. To simplify our analysis, we assume we can distinguish between

the b and the b̄ flavoured jets and that we can fully reconstruct the neutrinos momenta together

with their sign. Our approach is very crude but it enables us to focus on theoretical issues

rather then experimental ones. Indeed, if we find differences in the extracted mass using our

ideal mWbj observable, we would be forced to conclude that there is an irreducible theoretical

error (i.e. an error that cannot be reduced by increasing the experimental accuracy) on the mass

measurement.

In order to mimic the experimental systematics, we introduce a Gaussian smearing to the

mWbj distributions. If differences among the generators are found in this latter case, the problem

is less severe and may be reduced once experimental resolution is improved.

However, we need to remark that also “irreducible” errors (according to the definition given

above) may be reduced in practice. This is the case if one of the generators at hand does not

fit satisfactorily measurable distributions related to top production. If we change the allowed

range for the parameters of the generator in order to reproduce the data fairly. This procedure

can reduce the error associated with top-quark mass measurements.

In Sec. 12.1 we describe the procedure for the extraction of the reconstructed-top mass peak,

for both the ideal mWbj distribution and the smeared one. In Sec. 12.2 we will compare the three

POWHEG BOX generators for tt̄ production interfaced to Pythia8.2. Scale and PDF variations are

also taken into account, together with αS variations to investigate the sensitivity to the intensity

of radiation from the b quark. In Sec. 12.3 we investigate the differences between the Pythia8.2

and Herwig7.1 predictions and the various alternative settings that the Herwig7.1 program

offers1.

12.1 mmax
Wbj

extraction

We first fit the mWbj distribution around the peak region. We call Y (mWbj ) the histogram of

our distribution, and y(mWbj , {a}) our fitting functional form, where {a} represent the fitting

1Unless specified otherwise, Pythia8.2 and Herwig7.1 are setup to run in full hadron mode including shower,
hadronization and multi-parton interactions.

69



Sec 12.2. Comparison among different NLO+PS generators

parameters

y(mWbj , {a}) =
a2[1 + a4(mWbj − a1)]

(mWbj − a1)2 + a2
3

+ a5 . (12.1)

To extract the parameters {a} we proceed as follows:

• We find the bin with the highest value, and assign its center to the variable mmax
Wbj

.

• We find all surrounding bins whose value is not less than Y (mmax
Wbj

)/2. We assign to the

variable ∆ the range covered by these bins divided by two.

• We minimize the χ2 computed from the difference of the integral of y(mWbj , {a}) in each

bin, divided by the bin size, with respect to Y (mWbj ), choosing as a range all bins that

overlap with the segment [mmax
Wbj
−∆,mmax

Wbj
+ ∆].

• From the fitted function we extract the maximum position and assign it to mmax
Wbj

.

• If the reduced χ2 of the fit is less than 2, we keep this result. If not, we replace ∆→ 0.95×∆

and repeat the operation until this condition is met.

Once the parameters {a} are determined, the extracted peak position mmax
Wbj

is found by solving

d y(mWbj , {a})
dmWbj

∣∣∣
mWbj

=mmax
Wbj

= 0 . (12.2)

Its error is derived by propagating the errors of the parameters {a} extracted using our fitting

procedures, in the expression of the peak. This procedure is applied to both the ideal mWbj

distribution and the smeared one.

The histogram of the smeared distribution Ys(mWbj ) is obtained convoluting Y (mWbj ) with a

Gaussian of width σ = 15 GeV (that is the typical experimental resolution on the reconstructed

top mass)

Y (mWbj ) = N
∑
mi

∆mi y(mi) exp

(
−

(mWbj −mi)
2

2σ2

)
, (12.3)

where mi is the central value of the ith bin and ∆mi its width. N is a normalization constant.

The B coefficient of eq. (10.8) that links mmax
Wbj

and mt is found performing a linear fit for

the three values of mt =169.5 GeV, 172.5 GeV, 175.5 GeV. Since mWbj is the mass of the

reconstructed top, we expect B ≈ 1 for the mmax
Wbj

observable.

The values for the B coefficients that we have obtained with the three generators showered

with Pythia8.2 are collected in Tab. 12.1, and confirm our expectation. Thus, we can safely

assume

∆mt = −∆mmax
Wbj

. (12.4)

12.2 Comparison among different NLO+PS generators

We begin by showing comparisons of our three generators, interfaced with Pythia8.2, for our

reference top-mass value of 172.5 GeV.

The mWbj distributions of the bb̄4` and tt̄dec generators are compared in Fig. 12.1, be-

fore (left) and after (right) applying the Gaussian smearing. In the left plot we see that the two
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Sec 12.2. Comparison among different NLO+PS generators

B, no smearing B, smearing

hvq 1.002± 0.002 0.949± 0.001

tt̄dec 1.000± 0.002 0.957± 0.001

bb̄4` 1.008± 0.002 0.958± 0.001

Table 12.1: Values for the B coefficients of eq. (10.8) for the mWbj peak position, for the non-smeared
and smeared distributions (see Sec. 12.2 for details), obtained with the hvq, tt̄dec and bb̄4` generators
showered with Pythia8.2.

0

0.05

0.1

0.15

0.2

0.25

0.3

168 170 172 174 176 178

d
σ
/d
m

W
b j

[p
b

/G
eV

]

bb̄4` mmax
Wbj

= 172.793 ± 0.004 GeV

tt̄dec mmax
Wbj

= 172.814 ± 0.003 GeV

8 TeV

No smearing

mWbj [GeV]

bb̄4`+Py8.2

tt̄dec+Py8.2

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

150 155 160 165 170 175 180 185 190 195

d
σ
/d
m

W
b j

[p
b

/G
eV

]

bb̄4` mmax
Wbj

= 172.717 ± 0.002 GeV

tt̄dec mmax
Wbj

= 172.857 ± 0.001 GeV

8 TeV

Smearing σ = 15 GeV

mWbj [GeV]

bb̄4`+Py8.2

tt̄dec+Py8.2

Figure 12.1: dσ/dmWbj distribution obtained with the bb̄4` and tt̄dec generators interfaced with
Pythia8.2, for mt = 172.5 GeV, before (left) and after (right) applying the Gaussian smearing.

generators yield a very similar shape and the results concerning mWbj are very similar. This is

an indication that interference effects in radiation and other off-shell effects, that are included

in bb̄4` but not in tt̄dec, have a very minor impact on the peak position, at least if we consider a

measurement with an ideal resolution. The results obtained applying a 15 GeV smearing on the

distribution are shown in the right plot of Fig. 12.1. The smearing procedure correlates points

near the peak together with the tails of the mWbj distribution, increasing the impact on mmax
Wbj

of the region away from the peak, where there are larger differences between the two generators.

This leads to a difference in the peak position of 140 MeV.

In Figs. 12.2 we compare the bb̄4` and the hvq generators. We see a negligible difference in

the peak position in the non-smeared case, while, in the smeared case, the hvq generator differs

from bb̄4` by −147 MeV, similar in magnitude to the case of tt̄dec, but with opposite sign.

Our findings are summarized in Tab. 12.2, where we also include results obtained at the

shower level, i.e. without the inclusion of the underlying event and of the hadronization.

We notice that hvq, even if it does not implement NLO corrections in top decay, yields to

results similar to those of the most accurate bb̄4` generator. This is due to the inclusion of matrix-

element corrections (MEC) in top decay by the Pythia8.2 PS. MEC are indeed equivalent,

up to an irrelevant normalization factor, to next-to-leading order corrections in decay. This

observation is confirmed by examining Tab. 12.3, where predictions obtained with and without

MEC are compared. When MEC are not included, the peak position in the smeared distribution
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Figure 12.2: dσ/dmWbj distribution obtained with the bb̄4` and hvq generators interfaced with
Pythia8.2, for mt = 172.5 GeV, before (left) and after (right) applying the Gaussian smearing.

PS only full

No smearing 15 GeV smearing No smearing 15 GeV smearing

bb̄4` 172.522± 0.002 GeV 171.403± 0.002 GeV 172.793± 0.004 GeV 172.717± 0.002 GeV

tt̄dec − bb̄4` −18± 2 MeV +191± 2 MeV +21± 6 MeV +140± 2 MeV

hvq − bb̄4` −24± 2 MeV −89± 2 MeV +10± 6 MeV −147± 2 MeV

Table 12.2: Differences in the mWbj peak position for mt=172.5 GeV for tt̄dec and hvq with respect to
bb̄4`, showered with Pythia8.2, at the NLO+PS level and at the full hadron level.

No smearing 15 GeV smearing

MEC MEC − no MEC MEC MEC − no MEC

bb̄4` 172.793± 0.004 GeV −12± 6 MeV 172.717± 0.002 GeV +55± 2 MeV

tt̄dec 172.814± 0.003 GeV −4± 5 MeV 172.857± 0.001 GeV −26± 2 MeV

hvq 172.803± 0.003 GeV +61± 5 MeV 172.570± 0.001 GeV +916± 2 MeV

Table 12.3: mWbj peak position for mt=172.5 GeV obtained with the three different generators, showered
with Pythia8.2+MEC (default). We also show the differences between Pythia8.2+MEC and Pythia8.2

without MEC.

provided by the hvq generator receives a considerable shift, near 1 GeV. On the other hand,

the bb̄4` and tt̄dec generators, that already include the hardest emission off b quarks, display a

reduced sensitivity on the MEC. This leads to the conclusion that the MEC in Pythia8.2 do a

decent job in simulating top decay as far as the mWbj distribution is concerned. The remaining

uncertainty of roughly 140 MeV in the case of both hvq and tt̄dec generators, pulling in opposite

directions, is likely to be due to the approximate treatment of off-shell effects.
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Sec 12.2. Comparison among different NLO+PS generators

No smearing 15 GeV smearing

SR SR − FSR SR SR − FSR

bb̄4` 172.816± 0.004 GeV +23± 6 MeV 172.737± 0.002 GeV 20± 2 MeV

tt̄dec 172.812± 0.004 GeV −1± 5 MeV 172.878± 0.001 GeV 21± 2 MeV

Table 12.4: mWbj peak position for mt=172.5 GeV obtained with the bb̄4` and tt̄dec generators, showered
with Pythia8.2, for the ScaleResonance (SR) veto procedure. The differences with FSREmission (FSR),
that is our default, are also shown.

PowhegHooks − no PowhegHooks [MeV]

observable bb̄4` tt̄dec hvq

mmax
Wbj

no smearing 35± 6 18± 5 17± 5

mmax
Wbj

smearing 77± 2 78± 2 71± 2

Table 12.5: Differences between the mmax
Wbj

predictions obtained using the POWHEG:veto = 1 and the
POWHEG:veto = 0 settings for the three generators interfaced with Pythia8.2.

12.2.1 Matching uncertainties

The FSREmission veto procedure described in Appendix E.3.2 represents the most accurate

way to perform the vetoed shower on the POWHEG BOX generated events interfaced with the

Pythia8.2, because it uses the POWHEG definition of transverse momentum rather than the

Pythia8.2 one.

There is also an alternative, the ScaleResonance procedure, always described in Appendix E.3.2,

where the scale of the POWHEG emissions from the t and the t̄ are set as initial scales for the

showers evolutions. The ScaleResonance procedure can introduce a mismatch that we take as

an indication of the size of the matching uncertainties. The extracted peak position for the bb̄4`

and tt̄dec with the two matching procedures are summarized in Tab. 12.4. We can see that these

differences are roughly 20 MeV in bb̄4` for both the no-smearing and smearing case, and in tt̄dec

they are a few MeV for the no-smearing case, and 20 MeV with smearing.

This is due to the fact that the first emissions of the decayed top has already a small

transverse momentum and in the collinear limit the POWHEG and the Pythia8.2 definitions

of p⊥ are equivalent.

We can also compare the default behaviour for dealing with radiation in the production

process with the results obtained with the PowhegHooks veto machinery, that is activated with

the setting

POWHEG:veto = 1.

The results are shown in Tab. 12.5. A slightly increased dependence on the veto procedure is

found concerning radiation in the production process, since it is in general much more harder

than the radiation in production and thus the two p⊥ definitions may differ. However, we notice

that even for the smeared mass distribution the differences between the mmax
Wbj

obtained with

PowhegHooks and the default ones are rather small and equivalent for all the NLO generators.

Thus, our choice of not using the PowhegHooks settings as default does not alter the comparison

among the three codes.
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No smearing 15 GeV smearing

% − bb̄4` (µR, µF) PDF αS % − bb̄4` (µR, µF) PDF αS

bb̄4` +0 MeV +26
−17 MeV - ±8 MeV +0 MeV +86

−53 MeV - ±64 MeV

tt̄dec +21 MeV +2
−10 MeV - ±8 MeV +140 MeV +6

−6 MeV - ±54 MeV

hvq +10 MeV +2
−6 MeV ±3 MeV ±2 MeV −147 MeV +7

−7 MeV ±5 MeV ±9 MeV

Table 12.6: Theoretical uncertainties associated with the mWbj peak position extraction for
mt=172.5 GeV for the three different generators, showered with Pythia8.2. The PDF uncertainty
on the bb̄4` and tt̄dec generators is assumed to be equal to the hvq one, as explained in Chap. 10.

12.2.2 Scale, PDF and strong-coupling variations

In Tab. 12.6 we summarize the uncertainties due to scale, PDF and strong-coupling variations,

connected with the extraction of the mWbj peak position, for the input mass mt = 172.5 GeV,

for all the generators showered with Pythia8.2.

The upper (lower) error due to scale variation reported in the table is obtained by taking the

maximum (minimum) position of the mWbj peak for each of the seven scales choices of eq. (10.5),

minus the one obtained for the central scale.

In the PDF case, as discussed in Chap. 10, we compute the PDF uncertainties only for the

hvq generator, and assume that they are the same for bb̄4` and tt̄dec.

We consider a symmetrized strong-coupling dependence uncertainty, whose expression is

given by

∆mWbj (αS(mZ)) = ±
∣∣mWbj (αS(mZ) = 0.115)−mWbj (αS(mZ) = 0.121)

∣∣
2

. (12.5)

We stress that these variations have only an indicative meaning. In a realistic analysis, exper-

imental constraints may reduce these uncertainties. We also stress that these are not the only

theoretical uncertainties. Others may be obtained by varying MC parameters. Here we focus

specifically on those uncertainties that are associated with the NLO+PS generators.

As we have already discussed, the use of the hvq and the tt̄dec generators would lead to a

negligible bias in the mWbj distribution if we were able to measure it without any resolution

effects. However, if we introduce a smearing to mimic them, the description of the region away

from the peak plays an important role, and the hvq and tt̄dec generators yield predictions for the

mass peak position that are shifted by roughly 140 MeV in the downward and upward direction

respectively with respect to bb̄4`.

We also notice that the bb̄4` generator is the most affected by theoretical uncertainties.

In particular, the tt̄dec and hvq generators have an unrealistically small scale dependence of

the peak shape, due to the way in which off-shell effects are approximately described. The

tt̄dec generator displays a non-negligible sensitivity only to the strong-coupling constant. The

theoretical errors that we have studied here lead to very small effects for the hvq generator, since

it does not include radiative corrections in the top decay. On the other hand, the hvq generator

is bound to be more sensitive to variation of parameters in Pythia8.2, that in this case fully

controls the radiation from the b quark.
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R = 0.4 R = 0.5 R = 0.6

No smearing 15 GeV smearing No smearing 15 GeV smearing No smearing 15 GeV smearing

bb̄4` [GeV] 172.156± 0.004 171.018± 0.002 172.793± 0.004 172.717± 0.002 173.436± 0.005 174.378± 0.002

tt̄dec − bb̄4` +35± 5 MeV +195± 2 MeV +21± 6 MeV +140± 2 MeV +1± 7 MeV +97± 2 MeV

hvq − bb̄4` +47± 5 MeV −113± 2 MeV +10± 6 MeV −147± 2 MeV −7± 6 MeV −174± 2 MeV

Table 12.7: mWbj peak position obtained with the bb̄4` generator for three choices of the jet radius. The
differences with the tt̄dec and the hvq generators are also shown.

No smearing 15 GeV smearing

Hw7.1 Py8.2 − Hw7.1 Hw7.1 Py8.2 − Hw7.1

bb̄4` 172.727± 0.005 GeV +66± 7 MeV 171.626± 0.002 GeV +1091± 2 MeV

tt̄dec 172.775± 0.004 GeV +39± 5 MeV 171.678± 0.001 GeV +1179± 2 MeV

hvq 173.038± 0.004 GeV −235± 5 MeV 172.319± 0.001 GeV +251± 2 MeV

Table 12.8: mWbj peak position for mt=172.5 GeV obtained with the three different generators, showered
with Herwig7.1 (Hw7.1). The differences with Pythia8.2 (Py8.2) are also shown.

12.2.3 Radius dependence

In this section we investigate the stability of the previous results with respect to the choice of the

jet radius. The results are summarized in Tab. 12.7. For the distributions without smearing, the

differences between the three generators are small and decrease as R increases. For the smeared

distributions, the differences between tt̄dec and bb̄4` decrease as the radius increases, while the

difference between the hvq and the bb̄4` generator increases.

The small differences in the R dependence among the three generators in the non-smeared

cases can be understood if we consider that differences in the b radiation do not affect much

the peak position in the non-smeared distribution, but rather they affect the strength of the tail

on the left side of the peak. On the other hand, the peak position is affected by radiation in

production and by the underlying-event structure, that is very similar in the three generators.

It should be noticed that the difference between the displacements of the tt̄dec and hvq with

respect to bb̄4` is less than 55 MeV and 34 MeV, respectively, below the current statistical pre-

cision of top-mass measurements. Thus, the good agreement found among the three generators

persists also for different R values.

12.3 Comparison with Herwig7.1

In order to assess uncertainties due to the shower Monte Carlo (SMC) program, in this section

we compare the results obtained using Herwig7.1 and Pythia8.2. In Tab. 12.8 we compare the

mWbj peak position extracted for the input mass mt = 172.5 GeV using the three generators

showered with Pythia8.2 and Herwig7.1. For the hvq generator, the differences are of the

order of 240 MeV for both the smeared and non-smeared case, but with opposite signs. In the

smeared case, both the tt̄dec and bb̄4` generators yield much larger differences, of more than

1 GeV.

In Tab. 12.9 we report the differences between the Herwig7.1 and Pythia8.2 predictions
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Sec 12.3. Comparison with Herwig7.1

Pythia8.2 − Herwig7.1

PS only full

No smearing 15 GeV smearing No smearing 15 GeV smearing

bb̄4` +10± 2 MeV +984± 2 MeV +66± 7 MeV +1091± 2 MeV

tt̄dec +5± 2 MeV +1083± 2 MeV +39± 5 MeV +1179± 2 MeV

hvq −0± 2 MeV +113± 2 MeV −235± 5 MeV +251± 2 MeV

Table 12.9: Differences between Pythia8.2 and Herwig7.1 in the extracted mWbj peak position for
mt=172.5 GeV obtained with the three different generators, at the NLO+PS level (PS only) and including
also the underlying events, the multi-parton interactions and the hadronization (full).
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Figure 12.3: dσ/dmWbj distribution obtained by showering the bb̄4` results with Pythia8.2 and
Herwig7.1, at parton-shower level (left) and with hadronization and underlying events (right).

for all the generators, at the NLO+PS level and at the full hadron level. We notice that at the

NLO+PS level and without smearing, the differences between the two parton-shower programs

are negligible. For the smeared distributions, at both the NLO+PS and full level, the differences

are roughly 1 GeV for the bb̄4` and the tt̄dec generator. For hvq the differences are considerably

smaller, although not quite negligible.

The origin of these large differences is better understood by looking at the differential cross

sections plotted in Figs. 12.3 and 12.4. In Fig. 12.3 we plot the results for the non-smeared case,

at the NLO+PS level (left) and at the full hadron level (right): while the peak position is nearly

the same for both Pythia8.2 and Herwig7.1, the shape of the curves is very different around

the peak, leading to a different mass peak position when smearing is applied, as displayed in

Fig. 12.4. We notice that in this last case we see a difference in shape also after smearing. This

suggests that at least one of the two generators may not describe the data fairly.

Since we observe such large differences in the value of mmax
Wbj

in Herwig7.1 and Pythia8.2,

we have also studied whether sizeable differences are also present in the mmax
Wbj

dependence upon

the jet radius R. The results are shown in Tab. 12.10, and displayed in Fig. 12.5. In the

case of the bb̄4` generator, the difference between Pythia8.2 and Herwig7.1 goes from 830

to 1267 MeV. Thus, assuming for instance that Pythia8.2 fits the data perfectly, i.e. that it
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Figure 12.4: Smeared dσ/dmWbj distribution obtained by matching the bb̄4` generator with Pythia8.2

and Herwig7.1.

Pythia8.2 − Herwig7.1

R = 0.4 R = 0.5 R = 0.6

No smearing 15 GeV smearing No smearing 15 GeV smearing No smearing 15 GeV smearing

bb̄4` −98± 7 MeV +830± 2 MeV +66± 7 MeV +1091± 2 MeV +253± 8 MeV +1267± 2 MeV

tt̄dec −100± 5 MeV +979± 2 MeV +39± 5 MeV +1179± 2 MeV +210± 6 MeV +1314± 2 MeV

hvq −370± 5 MeV +73± 2 MeV −235± 5 MeV +251± 2 MeV −31± 6 MeV +389± 2 MeV

Table 12.10: Differences in the mWbj peak position obtained matching the three generators with
Pythia8.2 and Herwig7.1, for three choices of the jet radius.

extracts the same value of the mass by fitting the mmax
Wbj

values obtained with the three different

values of R, Herwig7.1 would extract at R = 0.6 a mass value that is larger by 437 MeV from

the one extracted at R = 0.4. We stress that the differences in the R behaviour of mmax
Wbj

may

have the same origin as the difference in the reconstructed mass value, since both effects may

be related to the amount of energy that enters the jet cone, and it is not unlikely that, by

tuning one of the two generators in such a way that they both have the same R dependence,

their difference in mmax
Wbj

would also be reduced.2 It is unlikely, however that this would lead

to a much improved agreement, since the difference in slope is much less pronounced than the

difference in absolute value.

12.3.1 Alternative settings in Herwig7.1

We have examined several variations in the Herwig7.1 settings, in order to understand whether

the Herwig7.1 results are reasonably stable, or depend upon our particular settings.

2Similarly, one could fit appropriate calibration observables associated to the b-jet structure, along the lines of
Ref. [97].
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Figure 12.5: Differences of mmax
Wbj

between the Pythia8.2 and the Herwig7.1 showers, for the three
generators, as a function of the jet radius.

hvq No smearing 15 GeV smearing

MEC − no MEC 307± 6 MeV 1371± 2 MeV

MEC − POWHEG 244± 6 MeV 356± 2 MeV

Table 12.11: Differences in the mWbj peak position for the hvq generator showered with Herwig7.1,
with MEC switched off (no MEC) or using the Herwig7.1 POWHEG option, with respect to our default
setting, that has MEC switched on.

12.3.1.1 MEC and POWHEG options in Herwig7.1

Herwig7.1 applies matrix-element corrections by default, but it also offers the possibility to

replace the MEC with its internal POWHEG method, when available, to achieve NLO accuracy

in top decays. These options are activated by the instructions

set ShowerHandler:HardEmission None

or

set ShowerHandler:HardEmission POWHEG

respectively. We have verified that, as expected, switching off the matrix-element corrections

does not significantly affect the bb̄4` and tt̄dec results. In the case of the hvq generator, we can

compare the default case, where MEC is on, with the cases where POWHEG replaces MEC,

and with the case where neither MEC nor POWHEG is implemented. The results are shown

in Tab. 12.11. We notice that the inclusion of MEC enhances by more than 1.3 GeV the peak

position of the smeared distribution. A similar result was found in Pythia8.2 (see Tab. 12.3),

where the difference was slightly less than 1 GeV. The difference between the POWHEG and

MEC results is much below the 1 GeV level but not negligible. This fact is hard to understand,

since the POWHEG and MEC procedures should only differ by a normalization factor.
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PS only full

No smearing 15 GeV smearing No smearing 15 GeV smearing

bb̄4` 172.512± 0.002 GeV 170.419± 0.002 GeV 172.727± 0.005 GeV 171.626± 0.002 GeV

tt̄dec − bb̄4` −13± 2 MeV +92± 2 MeV +48± 7 MeV +52± 2 MeV

hvq − bb̄4` −14± 2 MeV +782± 2 MeV +311± 7 MeV +693± 2 MeV

hvq+PWG − bb̄4` −16± 2 MeV +479± 2 MeV +67± 7 MeV +337± 2 MeV

Table 12.12: Differences of hvq and tt̄dec with respect to bb̄4`, all showered with Herwig7.1. The
result obtained using the Herwig7.1 internal POWHEG implementation of top decay, rather than MEC,
labelled as hvq+PWG, is also shown.

No smearing 15 GeV smearing

FSV FSV − SV FSV FSV − SV

bb̄4` 172.776± 0.005 GeV +49± 7 MeV 171.829± 0.002 GeV +203± 2 MeV

tt̄dec 172.810± 0.004 GeV +35± 6 MeV 171.906± 0.001 GeV +228± 2 MeV

Table 12.13: mWbj peak position for mt=172.5 GeV for bb̄4` and tt̄dec showered with Herwig7.1 using
the FullShowerVeto (FSV) procedure. The differences with ShowerVeto (SV), that represents our default,
are also shown.

We have seen previously that the three NLO+PS generators interfaced to Pythia8.2 yield

fairly consistent results for the reconstructed top mass peak. The same consistency is not found

when they are interfaced to Herwig7.1. However, the best agreement is found when the internal

POWHEG option for top decay is activated in Herwig7.1, as can be seen in Tab. 12.12. The

difference between the POWHEG and MEC or POWHEG Herwig7.1 results is puzzling, since

they have the same formal accuracy. We will comment about this issue later on.

12.3.1.2 Veto procedures in Herwig7.1

As discussed in Appendix . E.3.3, Herwig7.1 offers two different classes that implement the veto

procedure: the ShowerVeto, our default one, where the veto is performed at the emission level,

and the FullShowerVeto class, where the veto is performed at the end of the whole showering

phase. The corresponding results are summarized in Tab. 12.13. For both the bb̄4` and the

tt̄dec the two procedures lead to a 200 MeV difference in the peak position for the smeared

distributions. The origin of such difference is not fully clear to us. In part it may be ascribed

to the fact that when using the ShowerVeto class we mix two different definitions of transverse

momentum (the Herwig7.1 and the POWHEG one), and in part may be due to the fact that

in the FullShowerVeto class the vetoing is done on the basis of the shower structure after

reshuffling has been applied.

12.3.1.3 Truncated showers

In Ref. [98] it was shown that, when interfacing a POWHEG generator to an angular-ordered

shower, in order to compensate for the mismatch between the angular-ordered scale and the

POWHEG hardness, that is taken equal to the relative transverse momentum in radiation, one

should supply appropriate truncated showers. None of our vetoing algorithms take them into
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No smearing 15 GeV smearing

TS TS − default TS TS − default

bb̄4` 172.730± 0.005 GeV +3± 8 MeV 171.496± 0.002 GeV −130± 2 MeV

tt̄dec 172.786± 0.004 GeV +12± 6 MeV 171.546± 0.001 GeV −132± 2 MeV

Table 12.14: mWbj peak position for mt=172.5 GeV obtained with the bb̄4` and tt̄dec generators showered
with Herwig7.1, with the settings of eq. (E.27) (labelled as TS). The differences with the default results
are also shown.

account, but it turns out that Herwig7.1 provides facilities to change the settings of the initial

showering scale according to the method introduced in Ref. [99], that, in our case, are equivalent

to the inclusion of truncated showers (see Appendix E.3.3). The effects this inclusion, performed

with the settings of eq. (E.27), for the bb̄4` and tt̄dec generators are shown in Tab. 12.14. As we

can see, this does not introduce dramatic changes in the peak position: in fact the differences

are negligible in the distributions without smearing, and are roughly 130 MeV when smearing

is applied. It should be noticed that these settings slightly increase the difference with respect

to the results obtained with Pythia8.2.
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The energy of the b jet

In Ref. [67] it was proposed to extract mt using the peak of the energy spectrum of the b jet.

This method has been investigated by the CMS collaboration in Ref. [73], where it was found

mt = 172.29 ± 1.17 (stat) ± 2.66 (syst) GeV (13.1)

At leading order, the b jet consists of the b quark alone, and its energy in the top rest frame,

neglecting top-width effects, is fixed and given by

Emax
bj

=
m2
t −m2

W +m2
b

2mt
, (13.2)

i.e. the spectrum is a delta function in the energy and its value is independent from the top-

production mechanism. In the laboratory frame, because of the variable boost that affects the

top, the delta function is smeared into a wider distribution, but it can be shown that its peak

position remains at Emax
bj

. On the basis of this observation we are led to assume that also after

the inclusion of off-shell effects, radiative and non-perturbative corrections, the relation between

Emax
bj

and the top pole-mass mt should be largely insensitive to production dynamics.

We performed a study of the Emax
bj

observable along the same lines adopted for mWbj in the

previous section. If the range of variations of the top mass around a given central value mt, c is

small enough, a linear relation between Emax
bj

and the top mass must hold, so that we can write

Emax
bj

(mt) = Emax
bj

(mt, c) +B (mt −mt, c) +O(mt −mt, c)
2. (13.3)

It was suggested in Ref. [73] that the Ebj distribution dσ/dEbj is better fitted in terms of

logEbj . Thus, in order to extract the peak position, we fitted the energy distribution with a

fourth order polynomial

y = a+ b(x− xmax)2 + c(x− xmax)3 + d(x− xmax)4 , (13.4)

where x = logEbj . The fitting procedure is the same employed to extract mmax
Wbj

, that is described

in Sec. 12.1

The parameter B of eq. (13.3), extracted from a linear fit of the three Emax
bj

values corre-

sponding to the three different values of mt that we have considered (see Tab. 10.1) using the
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Figure 13.1: Logarithmic energy distribution obtained with the three generators interfaced to Pythia8.2,
together with their polynomial fit, in the range displayed in the figure. The value of Emax

bj
for each

generator is also reported.

hvq generator showered by Pythia8.2, was found to be

B = 0.50± 0.03 , (13.5)

compatible with the expected value of 0.5 from eq. (13.2).1

13.1 Comparison among different NLO+PS generators

In Fig. 13.1 we plot the logarithmic energy distribution for the three generators interfaced

to Pythia8, together with their polynomial fit. The extracted Ebj peaks from the bb̄4` and

the tt̄dec generators are compatible within the statistical errors. On the other hand, the hvq

generator yields a prediction which is roughly 460 ± 100 MeV smaller than the bb̄4` one. We thus

observe that the jet modelling implemented by Pythia8.2 with MEC seems to yield slightly less

energetic jets. An effect going in the same direction was also observed for the mWbj observable

(see Tab. 12.6, the first column of the results with smearing), although to a smaller extent.

In Tab. 13.1 we have collected the values of Emax
bj

computed with MEC, and the differences

between the results with and without MEC. We notice that the MEC setting has little impact

in the bb̄4` and tt̄dec cases. On the other hand, in the hvq case the absence of MEC would have

lead to an Emax
bj

value about 2 GeV smaller than with MEC. We take this as another indication

that the implementation of radiation in top decay using MEC leads to results that are much

closer to the NLO+PS ones.

In Tab. 13.2 we summarize our results together with the scale, PDF and αS uncertainties,

that are extracted with a procedure analogous to one described for the mWbj observable. We also

1When using the bb̄4` generator we obtain B = 0.54± 0.07, while with the tt̄dec one, we get B = 0.50± 0.03.
When using Herwig7.1 instead of Pythia8.2, we find values compatible with the given ones within 10%.
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MEC MEC − no MEC

bb̄4` 71.200± 0.081 GeV +170± 115 MeV

tt̄dec 71.361± 0.062 GeV −69± 87 MeV

hvq 70.744± 0.064 GeV +1937± 92 MeV

Table 13.1: Ebj peak position obtained with the three generators showered with Pythia8.2. The differ-
ences between the peak positions extracted by switching on and off the matrix-element corrections are
also shown.

% − bb̄4` (µR, µF) PDF αS stat

bb̄4` +0 MeV +22
−15 MeV - ±35 MeV ±81 MeV

tt̄dec +161 MeV +22
−24 MeV - ±17 MeV ±62 MeV

hvq −456 MeV +32
−47 MeV ±30 MeV ±25 MeV ±64 MeV

Table 13.2: Theoretical uncertainties for the Ebj peak position obtained with the three generators show-
ered with Pythia8.2. The last column reports the statistical uncertainty of our results.

report the corresponding statistical errors of our results. We see that scale and PDF variations

have negligible impact on our observable, given the small sensitivity on the production dynamics,

the only important change being associated with the choice of the NLO+PS generator.

We notice that our errors on scale and PDF variations are much smaller than our statistical

errors. On the other hand, these variations are performed by reweighting techniques, that,

because of correlations, lead to errors in the differences that are much smaller than the error on

the individual term. In view of the small size of these variations, we do not attempt to perform

a better estimate of their error. On the other hand, the variation of αS do not benefit from this

cancellation, and are all below the statistical uncertainties.

As previously done for mWbj , we have also investigated the dependence of the b-jet peak

positions on the jet radius. The results are summarized in Tab. 13.3. While we observe a

R = 0.4 R = 0.5 R = 0.6

bb̄4` 67.792± 0.089 GeV 71.200± 0.081 GeV 74.454± 0.076 GeV

tt̄dec − bb̄4` +365± 110 MeV +161± 102 MeV +75± 97 MeV

hvq − bb̄4` −563± 110 MeV −456± 103 MeV −323± 97 MeV

Table 13.3: Ebj peak position obtained with the bb̄4` generator showered with Pythia8.2, for three
choices of the jet radius. The differences with the tt̄dec and the hvq generators are also shown.

marked change in Emax
bj

, that grows by 3.4 and 3.3 GeV when going from R = 0.4 to 0.5 and

from 0.5 to 0.6 respectively, tt̄dec and hvq differ by bb̄4` by much smaller amounts. It is not

clear whether such small differences could be discriminated experimentally.

According to eqs. (10.11) and (13.5), the uncertainties that affect the value of the extracted

top mass are nearly twice the uncertainties on the b-jet energy. Considering the difference

for R = 0.5 between hvq and bb̄4` in Tab. 13.3, we see that, by using hvq instead of bb̄4`,

the extracted top mass would be roughly 900 MeV larger. This should be compared with the
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Pythia8.2 − Herwig7.1 [MeV]

R = 0.4 R = 0.5 R = 0.6

PS only full PS only full PS only full

bb̄4` +1297± 120 +1631± 122 +1666± 117 +2150± 114 +1802± 114 +2356± 113

tt̄dec +1786± 91 +2039± 91 +2179± 88 +2332± 88 +2121± 89 +2437± 87

hvq +515± 94 +762± 93 +707± 90 +1028± 89 +779± 87 +1188± 86

Table 13.4: Differences in the Ebj peak position between the Pythia8.2 and the Herwig7.1 showers
applied to the three generators for three choices of the jet radius. The results at the NLO+PS level (PS
only) are also shown.
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Figure 13.2: Differences of Emax
bj

between the Pythia8.2 and the Herwig7.1 showers, for the three
generators, as a function of the jet radius.

corresponding difference of about 150 MeV, that is shown in Tab. 12.7, for the smeared mWbj

case. In any case, these difference are much more smaller than the statical error of 2.66 GeV

quoted by CMS in Ref. [73].

As before, we have checked the sensitivity of our result to variations in the matching pro-

cedure in Pythia8.2, by studying the difference between ScaleResonance and FSREmission

options. The differences turn out to be of the order of the statistical error.

13.2 Comparison with Herwig7.1

In this section, we study the dependence of our results on the shower MC program, comparing

Herwig7.1 and Pythia8.2 predictions. We extract the differences in the Emax
bj

position for three

values of the jet radius: R = 0.4, 0.5 and 0.6. The results are summarized in Tab. 13.4, where we

also show the results at the PS-only level, and in Fig. 13.2. From Tab. 13.4 we clearly see that

the bb̄4` and the tt̄dec generators display larger discrepancies. For example, for the central value
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R = 0.5, we would get ∆Emax
bj
≈ 2 GeV, that roughly corresponds to ∆mt = −4 GeV, much

larger than the 2.66 GeV statistical error quoted in Ref. [73]. In the case of the hvq generator

the difference is near 1 GeV, implying that the extracted mass using hvq+Herwig7.1 would be

2 GeV bigger than the one obtained with hvq+Pythia8.2.

We find that the differences between Herwig7.1 and Pythia8.2 increases for larger jet radii.

Furthermore, by looking at Fig. 13.2, we notice that the bb̄4` generator displays a different R

dependence, as we have already observed from Tab. 13.3. Figure 13.2 indicates that bb̄4` and

tt̄dec are in better agreement for larger values of the jet radius. This was also observed for the

peak of the mWbj smeared distribution (Tab. 12.7).

We notice that, as in the case of the reconstructed mass peak, the predominant contribution

to the difference arise at the PS level.

As for the previous cases, we have examined the variations due to a different choice of the

matching scheme in Herwig7.1, that we found to be below the 200 MeV level, and thus negligible

in the present context.
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Leptonic observables

In this section, we investigate the extraction of the top mass from the leptonic observables

introduced in Ref. [68]. This method has been recently studied by the ATLAS collaboration in

Ref. [75] that finds

mt = 173.2 ± 0.9 (stat) ± 0.8 (syst) ± 1.2 (theo) GeV. (14.1)

Following Ref. [68], we consider the subsequent five observables

O1 = p⊥(`+), O2 = p⊥(`+`−), O3 = m(`+`−),

O4 = E(`+`−), O5 = p⊥(`+) + p⊥(`−),

i.e. the transverse momentum of the positive charged lepton, and the transverse momentum, the

invariant mass, the energy and the scalar sum of the transverse momenta of the lepton pair. We

compute the average value of the first three Mellin moments for each of the above mentioned

observables, 〈(Oi)j〉, with i = 1, . . . , 5 and j = 1, 2, 3. We assume that, if we do not vary too

much the range of the top mass, we can write the linear relation

〈(Oi)j〉 = O(ij)
c +B(ij)

[
(mt)

j − (mt, c)
j
]
. (14.2)

For ease of notation, we will refer to O
(ij)
c and B(ij) as Oc and B in the following. Their

determination will be discussed later.

We choose as reference sample the one generated with bb̄4` matched with Pythia8.2, using

mt, c = 172.5 GeV as input mass and the central choices for the PDF and scales. We indicate the

values of the observables computed with this generator as Obb̄4`, and with O′c the values of the

observable computed either with an alternative generator or with different generator settings,

but using as input parameter the same reference mass. The mass value that we would extract

from the events of the reference sample using the new generator is then given by

m′t =

[
(mt, c)

j − O′c −Obb̄4`c

B

]1/j

. (14.3)

Since all the leptonic observables are statistical-correlated among each other, we then per-
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observable gen 〈Oc〉 [GeV] % − bb̄4` [MeV] (µF, µR) [MeV] PDF [MeV] αS [MeV]

bb̄4` 56.653± 0.050 - +79
−86 - ±26 (±92)

〈p⊥(`+)〉 tt̄dec 56.804± 0.033 +151± 60 +84
−86 - ±41 (±23)

hvq 56.738± 0.032 +85± 59 +82
−86 ±130 ±49 (±23)

bb̄4` 69.759± 0.059 - +710
−444 - ±85 (±110)

〈p⊥(`+`−)〉 tt̄dec 69.660± 0.040 −100± 71 +538
−361 - ±78 (±28)

hvq 69.201± 0.038 −558± 71 +553
−367 ±95 ±95 (±27)

bb̄4` 108.685± 0.099 - +234
−341 - ±57 (±191)

〈m(`+`−)〉 tt̄dec 108.812± 0.065 +127± 119 +244
−259 - ±33 (±46)

hvq 109.200± 0.064 +515± 118 +247
−265 ±395 ±68 (±45)

bb̄4` 186.803± 0.163 - +342
−385 - ±540 (±305)

〈E(`+`−)〉 tt̄dec 187.005± 0.107 +201± 195 +448
−434 - ±474 (±76)

hvq 186.809± 0.105 +6± 194 +441
−427 ±1068 ±559 (±74)

bb̄4` 113.322± 0.095 - +165
−184 - ±93 (±178)

〈p⊥(`+) + p⊥(`−)〉 tt̄dec 113.598± 0.063 +276± 114 +165
−174 - ±72 (±44)

hvq 113.425± 0.062 +104± 113 +163
−177 ±259 ±101 (±43)

Table 14.1: The average values of each leptonic observable computed with bb̄4`, tt̄dec and hvq, showered
with Pythia8.2, for mt=172.5 GeV, and their variations with respect to bb̄4` are shown in the first
two columns. The differences with respect to their corresponding central values due to scale and PDF
variations are also shown in columns three and four. Their αS uncertainties, computed as described in
Chap. 10 are displayed in column five. The statistical errors are also reported, except for the scale and
PDF variations, where they have been estimated to be below 13% of the quoted values.

formed a weighted average of all the results considering as covariance matrix

Vαβ = min
[
σ2
(
m

(α)
t

)
, σ2

(
m

(β)
t

)
, Cαβ σ(m

(α)
t )σ(m

(α)
t )
]

(14.4)

being σ(m
(α)
t ) the error on the extracted top-mass relative to the observable Oα and

Cαβ =
〈OαOβ〉 − 〈Oα〉〈Oβ〉√
〈O2

α − 〈Oα〉2〉 〈O2
β − 〈Oβ〉2〉

(14.5)

is the statistical correlation between Oα and Oβ. This procedure has been taken from Ap-

pendix B of Ref. [75].

We begin by showing in Tabs. 14.1 and 14.2 the average values of the leptonic observables

computed with our three NLO+PS generators interfaced with Pythia8.2 and Herwig7.1. We

show the central values, the differences with respect to bb̄4`, and the upper and lower results

induced by scale, PDF and αS variations.

The scale and PDF variations are performed by reweighting. As a consequence of that,

the associated error is much smaller than the statistical error on the cross section. In order to

estimate it, we have divided our sample of events in ten sub-samples, computed the observables

for each sub-sample, and carried out a straightforward statistical analysis on the ten sets of

results. We found errors that never exceed the quoted value by more than 13%.

For the PDF variation, we have verified that differences due to variations in our reference
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observable gen 〈Oc〉 [GeV] % − bb̄4` [MeV] (µF, µR) [MeV] PDF [MeV] αS [MeV]

bb̄4` 56.104± 0.049 - +92
−106 - ±20 (±91)

〈p⊥(`+)〉 tt̄dec 56.199± 0.047 +95± 68 +90
−105 - ±23 (±23)

hvq 56.399± 0.032 +295± 59 +87
−100 ±222 ±45 (±23)

bb̄4` 68.665± 0.059 - +587
−372 - ±54 (±108)

〈p⊥(`+`−)〉 tt̄dec 68.632± 0.051 −33± 78 +452
−307 - ±56 (±28)

hvq 68.566± 0.038 −99± 70 +466
−312 ±161 ±91 (±27)

bb̄4` 108.497± 0.099 - +201
−265 - ±24 (±190)

〈m(`+`−)〉 tt̄dec 108.076± 0.072 −422± 122 +240
−250 - ±2 (±46)

hvq 109.056± 0.063 +559± 117 +247
−258 ±683 ±52 (±45)

bb̄4` 185.540± 0.162 - +337
−380 - ±504 (±304)

〈E(`+`−)〉 tt̄dec 185.315± 0.118 −225± 200 +428
−416 - ±426 (±76)

hvq 186.125± 0.104 +585± 192 +420
−410 ±1842 ±520 (±73)

bb̄4` 112.280± 0.095 - +188
−218 - ±52 (±177)

〈p⊥(`+) + p⊥(`−)〉 tt̄dec 112.455± 0.077 +174± 122 +177
−205 - ±36 (±45)

hvq 112.796± 0.061 +516± 112 +176
−204 ±444 ±97 (±43)

Table 14.2: As in Tab. 14.1 but for Herwig7.1.

PDF sets (see Chap. 10) are very similar among the different generators. On the other hand,

a full error study using the PDF4LHC15 nlo 30 pdfas set was only performed with the hvq

generator, and the associated errors exceed by far the variation band that we obtain with our

reference sets. Thus, also in this case we quote the PDF variations only for hvq, implying that

a very similar variation should also be present for the others. It is clear from the tables that the

PDF uncertainties are dominant for several observables, and scale variations are also sizeable.

The large variations in the αS column are not always conclusive because of the large statistical

errors (in parentheses), due to the fact that we cannot perform this variation by reweighting.

However, unlike for the mWbj case, here the PDF dependence is not small, and thus we cannot

conclude that the αS variation probes mainly the sensitivity to the intensity of radiation in

decay, since when we vary αS we change also the PDF set.

It is instead useful to look at the effect of MEC on the leptonic observables, displayed in

Tab. 14.3. We observe that in the bb̄4` and tt̄dec case the effect of MEC is compatible with the

statistical uncertainty. In the hvq case we find instead sizeable effects. This is expected, since

large-angle radiation from the b quark, by subtracting energy to the whole Wb system, affects

significantly also leptonic observables.

In Ref. [68] it was observed that the observables p⊥(`+`−) and m(`+`−) had larger errors

due to a stronger sensitivity to radiative corrections, and were more sensitive to spin-correlation

effects. We see a confirmation of this observations in their larger errors due to scale variation,

and in the fact that for hvq their central value is shifted with respect to the bb̄4` and tt̄dec

generators, that treat spin correlations in a better way.

In Tab. 14.4 we show the extracted values of the B coefficients for the first Mellin moment of

each observable. The B values corresponding to the different generators are compatible within

the statistical errors. We thus choose the values computed with the hvq generator, that have
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MEC − no MEC

bb̄4` tt̄dec hvq

〈p⊥(`+)〉 +117± 74 MeV +30± 47 MeV +342± 46 MeV

〈p⊥(`+`−)〉 +167± 89 MeV +41± 57 MeV +544± 55 MeV

〈m(`+`−)〉 +171± 149 MeV +102± 94 MeV +631± 91 MeV

〈E(`+`−)〉 +372± 243 MeV +159± 153 MeV +1245± 150 MeV

〈p⊥(`+) + p⊥(`−)〉 +232± 142 MeV +85± 89 MeV +699± 88 MeV

Table 14.3: Impact of MEC in Pythia8.2 on the leptonic observables for the different NLO+PS genera-
tors.

observable generator B

bb̄4` 0.17± 0.04

〈p⊥(`+)〉 tt̄dec 0.19± 0.02

hvq 0.19± 0.02

bb̄4` 0.30± 0.05

〈p⊥(`+`−)〉 tt̄dec 0.30± 0.02

hvq 0.29± 0.02

bb̄4` 0.31± 0.08

〈m(`+`−)〉 tt̄dec 0.31± 0.03

hvq 0.33± 0.03

bb̄4` 0.55± 0.14

〈E(`+`−)〉 tt̄dec 0.56± 0.05

hvq 0.56± 0.05

bb̄4` 0.38± 0.08

〈p⊥(`+) + p⊥(`−)〉 tt̄dec 0.39± 0.03

hvq 0.39± 0.03

Table 14.4: Extracted B coefficients for the three different generators showered with Pythia8.2.

the smallest error. According to eq. (14.3), we can translate a variation in an observable into a

variation of the extracted mass, that for the first Mellin moment is simply obtained applying a

−1/B factor. The results are illustrated in Tab. 14.5. The errors shown have been obtained by

summing in quadrature the statistical error and the scale and PDF uncertainties. We have not

included the αS variation in the error in order to avoid over-counting, since, in the present case,

is likely to be largely dominated by the change in the associated PDF.

The overall errors on the last two lines of Tab. 14.5 are obtained with the same procedure

adopted in Ref. [68] to account for correlations among the different observables. We do not see

excessive differences among our three generators showered with the same MC generator, while
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mt extracted with Pythia8.2 mt extracted with Herwig7.1

observable bb̄4` tt̄dec hvq bb̄4` tt̄dec hvq

〈p⊥(`+)〉 172.500+0.845
−0.825 171.719+0.821

−0.816 172.060+0.822
−0.811 175.340+1.298

−1.269 174.847+1.293
−1.263 173.817+1.270

−1.244

〈p⊥(`+`−)〉 172.500+1.601
−2.515 172.848+1.315

−1.915 174.451+1.334
−1.967 176.328+1.433

−2.141 176.442+1.227
−1.689 176.675+1.235

−1.728

〈m(`+`−)〉 172.500+1.605
−1.419 172.116+1.441

−1.417 170.945+1.450
−1.420 173.068+2.233

−2.171 174.342+2.208
−2.198 171.379+2.214

−2.203

〈E(`+`−)〉 172.500+2.061
−2.037 172.138+2.081

−2.091 172.490+2.076
−2.086 174.771+3.393

−3.378 175.176+3.401
−3.406 173.720+3.397

−3.401

〈p⊥(`+) + p⊥(`−)〉 172.500+0.852
−0.827 171.791+0.818

−0.806 172.233+0.821
−0.802 175.178+1.296

−1.265 174.730+1.275
−1.246 173.851+1.267

−1.239

〈p2
⊥(`+)〉 172.500+0.977

−0.960 171.657+0.998
−1.011 172.286+0.991

−1.007 175.816+1.515
−1.502 175.326+1.541

−1.524 174.424+1.508
−1.497

〈p2
⊥(`+`−)〉 172.500+2.072

−3.375 172.945+1.716
−2.585 174.738+1.694

−2.577 176.673+1.770
−2.725 176.864+1.533

−2.170 177.253+1.532
−2.199

〈m2(`+`−)〉 172.500+1.787
−1.643 172.119+1.687

−1.680 171.286+1.702
−1.695 173.511+2.573

−2.569 174.808+2.571
−2.595 172.082+2.619

−2.644

〈E2(`+`−)〉 172.500+2.457
−2.462 172.072+2.490

−2.534 172.611+2.475
−2.518 175.005+3.992

−4.067 175.339+3.996
−4.093 174.054+4.019

−4.117

〈(p⊥(`+) + p⊥(`−))2〉 172.500+1.076
−1.035 171.642+1.036

−1.004 172.198+1.043
−1.008 175.489+1.608

−1.552 174.982+1.563
−1.536 174.145+1.566

−1.539

〈p3
⊥(`+)〉 172.500+1.269

−1.268 171.558+1.273
−1.302 172.626+1.262

−1.299 176.472+1.801
−1.817 175.877+1.861

−1.872 175.212+1.798
−1.823

〈p3
⊥(`+`−)〉 172.500+2.912

−4.970 173.092+2.435
−3.825 175.316+2.333

−3.692 177.424+2.355
−3.756 177.691+2.075

−3.038 178.410+2.046
−3.033

〈m3(`+`−)〉 172.500+2.172
−2.080 172.416+2.089

−2.099 171.834+2.124
−2.140 173.978+3.170

−3.243 175.662+3.127
−3.219 172.980+3.237

−3.339

〈E3(`+`−)〉 172.500+2.958
−3.022 172.003+2.998

−3.107 172.843+2.963
−3.070 175.349+4.701

−4.944 175.515+4.704
−4.972 174.576+4.744

−5.017

〈(p⊥(`+)+p⊥(`−))3〉 172.500+1.511
−1.428 171.431+1.417

−1.374 172.134+1.422
−1.373 175.963+2.137

−2.022 175.379+2.011
−1.995 174.558+2.029

−2.012

all observables 172.500+0.784
−0.766 171.751+0.751

−0.751 172.238+0.754
−0.748 175.392+1.045

−1.138 175.452+0.962
−1.104 174.607+0.961

−1.097

1st moment 172.500+0.794
−0.772 171.755+0.764

−0.756 172.247+0.766
−0.753 175.440+1.102

−1.184 175.445+1.011
−1.141 174.756+1.010

−1.135

Table 14.5: Extracted mass in GeV for all the generators, showered with Pythia8.2 and Herwig7.1,
corresponding to the different leptonic observables, using as reference sample the bb̄4` one generated
with mt = 172.5 GeV and showered with Pythia8.2. The quoted errors are obtained by summing in
quadrature the scale, PDF and the statistical errors. The weighted average is also shown, for all the
observables and considering only their first Mellin moment.

the differences between the Pythia8.2 and Herwig7.1 results are considerably large. This is

also the case for the hvq generator, that has a much simpler interface to both Pythia8.2 and

Herwig7.1.

We observe in Tab. 14.5 that the inclusion of higher moments of the leptonic observables

does not modify appreciably the results from the first moments. This is a consequence of the

large error on the higher moments, and of the strong correlations among different moments.

The results in Tab. 14.5 are also summarized in Fig. 14.1, where the discrepancy between

Pythia8.2 and Herwig7.1 and the mutual consistency of the different observables can be im-

mediately appreciated.

As we did for mmax
Wbj

and Emax
bj

, also in the present case we have computed the leptonic

observables without including hadronization effects, i.e. at parton-shower only level, in order to

determine whether the differences between Pythia8.2 and Herwig7.1 are due to the shower or

to the hadronization. Our findings are summarized in Tab. 14.6. Most of the differences already

arise at the shower level, this is not surprising since the hadronization and the underlying event

does not alter the leptons momenta.

As for the previous observables, we have studied the effect of changing the matching scheme

in decay, by switching between our two alternative matching schemes with Pythia8.2 and

Herwig7.1, and by considering the settings of eq. (E.27) in Herwig7.1. In both cases we find

results that are consistent within statistical errors.

We also evaluate the impact of the PowhegHooks veto for radiation in production, the results
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are presented in Tab. 14.7. Like for the mmax
Wbj

case, the differences between the two alternatives

are very small, in particular, given the present statistical error, it is not negligible only for

the p⊥ of the lepton pair. Furthermore, the discrepancies are roughly the same for each NLO

generator. Thus, our previous conclusions will not be modified by the use of PowhegHooks to

deal with radiation in the production process.

Py8.2 − Hw7.1 [MeV]

observable gen full PS only

bb̄4` +549± 70 +563± 71

〈p⊥(`+)〉 tt̄dec +605± 57 +609± 48

hvq +340± 45 +376± 46

bb̄4` +1094± 83 +1092± 84

〈p⊥(`+`−)〉 tt̄dec +1027± 65 +1020± 59

hvq +636± 54 +662± 55

bb̄4` +188± 140 +286± 142

〈m(`+`−)〉 tt̄dec +736± 97 +814± 98

hvq +144± 90 +182± 91

bb̄4` +1263± 229 +1342± 232

〈E(`+`−)〉 tt̄dec +1690± 160 +1712± 159

hvq +684± 148 +719± 150

bb̄4` +1041± 134 +1091± 136

〈p⊥(`+) + p⊥(`−)〉 tt̄dec +1143± 99 +1173± 92

hvq +629± 86 +690± 88

Table 14.6: Differences between the Pythia8.2 and Herwig7.1 results for the leptonic observables, at
full hadron level and at parton-level only.

PowhegHooks − no PowhegHooks [MeV]

observable bb̄4` tt̄dec hvq

〈p⊥(`+)〉 57± 70 74± 47 50± 46

〈p⊥(`+`−)〉 166± 84 173± 56 150± 54

〈m(`+`−)〉 25± 140 16± 91 −18± 90

〈E(`+`−)〉 145± 230 143± 152 123± 149

〈p⊥(`+) + p⊥(`−)〉 123± 135 144± 89 107± 87

Table 14.7: Differences between the leptonic observables obtained using the POWHEG:veto = 1 and the
POWHEG:veto = 0 settings for the three generators interfaced with Pythia8.2.
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Figure 14.1: Extracted mass for the three generators matched with Pythia8.2 (red) and Herwig7.1 (blue)
using the first three Mellin moments of the five leptonic observables. The horizontal band represents the
weighted average of the results, and the black horizontal line corresponds to mt = 172.5 GeV, which is
the top mass value used in the bb̄4`+Pythia8.2 reference sample.
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Chapter 15

Summary and outlook

In this second part of the thesis we have compared generators of increasing accuracy for the

production and decay of tt̄ pairs considering observables suitable for the measurement of the

top mass. The generators that we have considered are:

• The hvq generator [81], that implements NLO corrections in production for on-shell top

quarks, and includes finite-width effects and spin correlations only in an approximate way,

by smearing the on-shell kinematics with Breit-Wigner forms of appropriate width, and

by generating the angular distribution of the decay products according to the associated

tree-level matrix elements [89].

• The tt̄dec generator [90], that implements NLO corrections in production and decay in

the narrow-width approximation. Spin correlations are included at NLO accuracy. Finite

width effects are implemented by reweighting the NLO results using the tree-level matrix

elements for the associated Born-level process, including however all finite width non-

resonant and interference effects at the Born level for the given final state.

• The bb̄4` generator [91], that uses the full matrix elements for the production of the given

final state, including all non-resonant diagrams and interference effects. This includes

interference of QCD radiation in production and decay.

The main focus has been the study of the mass distribution of a particle-level reconstructed top,

consisting of a lepton-neutrino pair and a b-quark jet with the appropriate flavour. The peak

position of the mass of this system is our observable, that is loosely related to the top mass.

We considered its distributions both at the particle level, and by assuming that experimental

inaccuracies can be summarized by a simple smearing with a resolution function, a Gaussian

with a width of 15 GeV, which is the typical resolution achieved on the top mass by the LHC

collaborations. This observable is an oversimplified version of the mass observables that are

used in direct top-mass measurements, that are the methods that lead to the most precise mass

determinations.

We have found a very consistent picture in the comparison of our three generators when

they are interfaced to Pythia8.2, and thus we begin by summarizing our results for this case.

We first recall what we expect from such comparison. When comparing the hvq and the tt̄dec

generators, we should remember that the latter has certainly better accuracy in the description of

spin correlations, since it implements them correctly both at the leading and at the NLO level.
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However, we do not expect spin correlations to play an important role in the reconstructed

top mass. As a further point, the tt̄dec generator implements NLO corrections in decay. In

the hvq generator, the decay is handled by the shower, where, by default, Pythia8.2 includes

matrix-element corrections (MEC). These differ formally from a full NLO correction only by a

normalization factor, that amounts to the NLO correction to the top width. Thus, as long as the

MEC are switched on, we do not expect large differences between hvq and tt̄dec. As far as the

comparison between tt̄dec and bb̄4`, we expect the difference to be given by NLO off-shell effects,

and by interference of radiation in production and decay, since these effects are not implemented

in tt̄dec. This comparison is particularly interesting, since the interference between production

and decay can be considered as a “perturbative precursor” of colour reconnection effects.

The results of these comparisons can be summarized as follows:

• The tt̄dec and the bb̄4` generators yield very similar results for most of the observables

that we have considered, implying that NLO off-shell effects and interference between

production and decay are modest.

• As far as mmax
Wbj

(the peak of the reconstructed mass distribution) is concerned, the tt̄dec

and the hvq generators yield very similar results, confirming the fact that the MEC im-

plementation in Pythia8.2 has an effect very similar to the POWHEG implementation

of NLO corrections in decay in the tt̄dec. We have also observed that, if we switch off

the MEC, the agreement between the two generators is spoiled. More quantitatively, we

find that the spread in the peak of the reconstructed mass at the particle level among the

three NLO+PS generators is never above 30 MeV. On the other hand, if resolution effects

are accounted for with our smearing procedure, we find that the hvq result is 147 MeV

smaller, and the tt̄dec result 140 MeV larger than the bb̄4` one. These values are safely

below currently quoted errors for the top-mass measurements with direct methods.

If we switch off the MEC in Pythia8.2, we find that the peak position at the particle level

in the hvq case is displaced by 61 MeV, while, if smearing effects are included, the shift

is of 916 MeV, a rather large value, that can however be disregarded as being due to the

poor accuracy of the collinear approximation in b radiation when MEC corrections are off.

• The jet-energy peak seems to be more sensitive to the modelling of radiation from the b

quark. In fact, while the tt̄dec and the bb̄4` results are quite consistent with each other,

with the peak positions differing by less than 200 MeV, the hvq result differs from them

by more than 500 MeV. This would correspond to a difference in the extracted mass of

the top quark roughly equal to twice that amount. On the other hand, if the MEC in hvq

are switched off, the shift in the b-jet energy peak is more than 1.9 GeV. This leads us to

conclude that the impact of modelling of b radiation on the b-jet peak is much stronger

than in the reconstructed top mass peak. We stress, however, that the difference between

hvq (with MEC on) and the other two generators is safely below the errors quoted in

current measurements [73].

• For the leptonic observables, we generally see a reasonable agreement between the dif-

ferent generators. The largest differences are found in the hvq case, for the p⊥(`+`−)

and m(`+`−), larger than 500 MeV with respect to the other two. In Ref. [68] it was
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noticed that these observables had larger errors due to a stronger sensitivity to radiative

corrections, and to spin-correlation effects, that are modelled incorrectly by hvq.

Several sources of possible uncertainties have been explored in order to check the reliability

of these conclusions. First of all, two different matching procedures for interfacing the tt̄dec

and bb̄4` generators to Pythia8.2 have been implemented. For example, for the reconstructed

mass peak, we have checked that switching between them leads to differences below 20 MeV

for both generators. The effect of scales, αs and PDF uncertainties have also been examined,

and were found to yield very modest variations in the reconstructed mass peak. It was found,

in particular, that scale variations lead to a negligible peak displacement (below 7 MeV) in the

tt̄dec and hvq case, while the effect is of +86
−53 MeV for bb̄4`. The lack of scale dependence in

the hvq and tt̄dec is easily understood as being due to the fact that the peak shape is obtained

by smearing an on-shell distribution with a Breit-Wigner form, that does not depend upon any

scale, and it suggests that, in order to get realistic scale-variation errors, the most accurate bb̄4`

generator should be used. We have also computed results at the shower level, excluding the

effects of hadronization and multi-parton interactions, in order to see if the consistent picture

found at the hadron level is also supported by the parton-level results, and we have found that

this is indeed the case.

We have thus seen that the overall picture of the comparison of our three NLO+PS gen-

erators within the framework of the Pythia8.2 shower is quite simple and consistent. For the

most precise observable, i.e. the peak of the reconstructed mass distribution, it leads to the con-

clusions that the use of the most accurate generator may lead to a shift in the measured mass

of at most 150 MeV, which is well below the present uncertainties quoted by the experimental

collaborations.

Our study with Herwig7.1 instead reveals several problems. We can summarize our findings

as follows:

• The results obtained with Herwig7.1 differ substantially from those obtained with Pythia8.2.

In particular, the peak of the reconstructed mass distribution at the particle level is shifted

by -66 and -39 MeV in the bb̄4` and tt̄dec cases, and by +235 MeV in the hvq case. When

the experimental resolution is accounted for, using our smearing procedure, the shift raises

to -1091 and -1179 MeV in the bb̄4` and tt̄dec cases, and to -251 MeV in the hvq case.

• The results obtained within the Herwig7.1 framework display large differences between

the hvq generator with respect to bb̄4` and tt̄dec ones. In particular, while the tt̄dec result

exceeds the bb̄4` one only by about 50 MeV in both the particle level and smeared cases,

hvq exceeds bb̄4` by 311 MeV at particle level, and by 693 MeV after smearing.

These results are quite alarming. The shifts reach values that are considerably larger than

current experimental uncertainties.

In the hvq case, which is the NLO+PS generator currently used for top-mass studies by

the experimental collaborations, the difference in the mass-peak position between Herwig7.1

and Pythia8.2, for the smeared distribution, is -251 MeV, uncomfortably large but still below

current errors. One would then be tempted to conclude that the large shifts may be linked

to some problems concerning the new generators. However, we also notice that the same dif-

ference is +235 MeV when no smearing is applied, so it is about as large in magnitude but
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with the opposite sign. This indicates that the shape of the reconstructed mass distribution

is considerably different in the two shower models. Lastly, if we use the internal POWHEG

implementation of top decay (rather than the MEC) in Herwig7.1, the difference with respect

to Pythia8.2 raises to 607 MeV. Thus, we conclude that in the hvq case the smaller differ-

ence between Herwig7.1 and Pythia8.2 is accidental, and is subject to considerable variations

depending upon the settings.

Also in this case we checked whether the MEC yield an improved agreement between the

hvq and the other two generators, as was observed for Pythia8.2. We find that, by switching

off MEC, the hvq+Herwig7.1 result decreases by 307 MeV at particle level, and by 1371 MeV

in the smeared case. These effects are qualitatively similar to what was observed in Pythia8.2.

However, in the present case, when MEC are switched off, the hvq result exceeds the bb̄4` one

by a negligible amount at the particle level, and is lower than the bb̄4` one by 678 MeV in the

smeared case.

The discrepancy between hvq and the other two generators is mitigated if, instead of the

MEC procedure, the internal POWHEG option of Herwig7.1 for top decay is used. In this case,

the discrepancy between hvq and bb̄4` is reduced to 244 MeV with no smearing, and to 337 MeV

with smearing. We thus see that the consistency of the three NLO+PS generators interfaced to

Herwig7.1 is not optimal as in Pythia8.2. It is however acceptable if the internal POWHEG

feature is used rather than MEC in Herwig7.1.

We have performed several studies to determine the origin of the difference between Pythia8.2

and Herwig7.1, and to check whether it could be attributed to some problem in our matching

procedure. They can be summarized as follows:

• We have shown that the difference is mostly due to the shower model, since it is already

largely present at the parton level.

• We have considered the R dependence of the Herwig7.1 result. It differs from the one in

Pythia8.2, leading to the hope that both generators may not represent the same set of

data well, and tuning them may reduce their differences. However, we have also noticed

that the difference in slope is much smaller than the difference in size.

• We have already mentioned that we have also compared results by making use of the

internal POWHEG implementation of top decay in Herwig7.1, rather than using MEC.

We have found non-negligible differences in this case.

• We have implemented alternative veto procedure in the matching of Herwig7.1 with the

NLO+PS generators. We found differences of the order of 200 MeV, not large enough to

cover the discrepancy with Pythia8.2.

• When interfacing POWHEG generators to angular-ordered showers, in order to maintain

the double-logarithmic accuracy of the shower, one should introduce the so called “trun-

cated showers” [98]. One could then worry that the lack of truncated showers is at the

origin of the discrepancies that we found. Fortunately, Herwig7.1 offers some optional

settings that are equivalent to the introduction of truncated showers. We found that these

options lead to a shift of only 200 MeV in the peak position.

In summary, we found no indication that the discrepancy with Pythia8.2 is due to the specific

matching procedure and general settings that we have used in Herwig7.1.
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When comparing Herwig7.1 and Pythia8.2 in the computation of the b-jet energy peak,

we have found even larger differences: when using bb̄4` and tt̄dec, the shifts are of the order of

2 GeV, while for hvq the shift is around 1 GeV. They correspond to differences in the extracted

mass of around 4 GeV in the first two cases, and 2 GeV in the last one. This is not surprising,

in view of the stronger sensitivity of the b-jet peak to the shower model.

Finally, when considering leptonic observables, we find again large differences between Herwig7.1

and Pythia8.2. Most differences already arise at the shower level. Notice that this is in con-

trast with the naive view that leptonic observables should be less dependent upon QCD radiation

effects and jet modelling. The comparison between Herwig7.1 and Pythia8.2 for leptonic ob-

servables can by appreciated by looking at Fig. 14.1, representing the value of the extracted top

mass from a sample generated with bb̄4` interfaced to Pythia8.2.
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Conclusions

We focus our conclusions on the results obtained for the reconstructed mass peak, since the issues

that we have found there apply to the direct top mass measurements, that are the most precise.

The experimental collaborations extensively use the hvq generator for this kind of analyses, and

since new generators of higher accuracy, the tt̄dec and the bb̄4` ones, have become available,

we have addressed the question of whether the physics effects not included in hvq may lead to

inaccuracies in the top-mass determination. The answer to this question is quite simple and

clear when our generators are interfaced to Pythia8.2. The differences that we find are large

enough to justify the use of the most accurate generators, but not large enough to drastically

overturn the conclusions of current measurements. Notice that, since the hvq generator does

not include NLO corrections in decays, we might have expected a very different modelling of

the b-jet in hvq with respect to the other two generators, leading to important shifts in the

extracted top mass value. It turns out, however, that the Pythia8.2 handling of top decay in

hvq, improved with the matrix-element corrections, does in practice achieve NLO accuracy up

to an irrelevant normalization factor.

This nicely consistent picture does not hold anymore if we use Herwig7.1 as shower gener-

ator. In particular, it seems that the MEC implemented in Herwig7.1 do not have the same

effect as the handling of radiation in decay of our modern NLO+PS generators, leading to values

of the extracted top mass that can differ up to about 700 MeV. Furthermore, interfacing our

most accurate NLO+PS generator (the bb̄4` one) to Herwig7.1 leads to an extracted top mass

of up to 1.2 GeV smaller with respect to the corresponding result with Pythia8.2.

At this point we have two options:

• Dismiss the Herwig7.1 results, on the ground that its MEC handling of top decay does

not match our modern generators.

• Consider the Herwig7.1 result as a variation to be included as theoretical error.

We believe that the first option is not soundly motivated. In fact, the implementation of MEC

in Pythia8.2 is also technically very close to what POWHEG does. The hardest radiation is

essentially generated in the same way, and in both cases the subsequent radiation is generated

with a lower transverse momentum. Thus the good agreement between the two is not surprising.

The case of Herwig7.1 is completely different, since in angular-ordered showers the hardest

radiation is not necessarily the first [54]. It is thus quite possible that the differences we found

when Herwig7.1 handles the decay with MEC, with respect to the case when POWHEG does,
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are due to the fact that the two procedures, although formally equivalent (i.e. both leading to

NLO accuracy) are technically different. In this last case, their difference should be attributed

to uncontrolled higher-order effects, and should thus be considered as a theoretical uncertainty.

A further question that this analysis raises is whether we should consider the variation

between the Pythia8.2 and the Herwig7.1 programs as an error that should be added to current

top-mass measurements. By doing so, current errors, that are of the order of 500-600 MeV,

would become larger than 1 GeV. We believe that our crude modelling of the measurement

process does not allow us to draw this conclusion. The analysis procedures used in direct

measurements are much more complex, and involve adequate tuning of the MC parameters and

jet-energy calibration using hadronic W decays in the same top events. It is not unlikely that

these procedures could lead to an increased consistency between the Pythia8.2 and Herwig7.1

results. However, in view of what we have found in our study, it is difficult to trust the theoretical

errors currently given in the top quark mass determination if alternative NLO+PS and shower

generators combinations are not considered.
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Appendix A

Radiative corrections to quark lines

In this appendix we describe how to treat radiative corrections to external quark lines and how

to compute the mass counterterm.

We denote by Σ(/p,mb) the set of all the one-particle-irreducible corrections to an heavy

quark line whose bare mass is mb. If we include all the possible self-energy Σ(/p,mb) insertions

into a free propagator we obtain the expression for the dressed propagator

G(/p,mb) =
i

/p−mb
+

i

/p−mb
Σ(/p,mb)

i

/p−mb
+ . . .

=
i

/p−mb

∞∑
i=0

[
iΣ(/p)

1

/p−mb

]n
=

i

/p−mb − iΣ(/p,mb)
, (A.1)

where we have used the fact that Σ(/p,mb) commutes with /p. The location of the pole of the full

propagator, i.e. the pole mass m, is equal to eigenvalue of the operator /p that satisfies[
/p−mb − iΣ(/p,mb)

]
/p=m

→ m = mb + iΣ(m,mb). (A.2)

We can introduce a mass counterterm mc

mc≡ −iΣ(m,mb) , (A.3)

so that we can replace in our Lagrangian

mb → m+mc. (A.4)

The Feynman rule for the mass counterterm is thus defined as the insertion, in the fermion

propagator, of the vertex −imc.

At order O(αS)

Σ(m,mb) ≈ Σ(mb,mb) ≈ Σ(m,m) , (A.5)

so that

mc = −iΣ(m,m) +O(α2
S). (A.6)
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The dressed propagator expressed in terms of the pole mass is thus given by

Gr(/p,m) =
i

/p−m− iΣ(/p,mb)−mc
, (A.7)

that has a pole for /p = m. If we consider eigenvalues of /p slightly different fromm, the propagator

becomes

Gr(/p,m) ≈ i

/p−m− iΣ(m,mb)− z
(
/p−m

)
−mc

=
i

/p−m
(1− z)−1 ≡ i

/p−m
Z, (A.8)

where we have defined

z ≡ i
∂Σ(/p,mb)

∂/p

∣∣∣
/p=m

. (A.9)

If we introduce the rescaled field φr

φ = Z1/2φr, (A.10)

we have the effect of the fermion self-energy correction to an external line is equivalent to

multiply the leading order amplitude for a factor Z1/2. At order O(αS)

Z = (1− z)−1 ≈ 1 + z,
√
Z ≈ 1 +

1

2
z, (A.11)

where, neglecting orders O(α2
S), we have

z ≈ i
∂Σ(/p,m)

∂/p

∣∣∣
/p=m

. (A.12)

Thus, the contribution to the virtual amplitude containing radiative corrections to an external

quark line is given by
1

2
zMb, (A.13)

being Mb the LO amplitude.

An alternative to the pole mass scheme is given by the MS scheme. The mass counterterm is

defined in order to absorb only the divergent part of Σ (performing the replacement µ2 → µ2 eγE
4π )

mc(µ) ≡ −iΣ(d)(m(µ),mb) = −iΣ(d)(m,m) +O(α2
S) , (A.14)

where m(µ) is the MS mass evaluated at the scale µ and (d) denotes the divergent part. We

have

mb = m+mc = m(µ) +mc(µ), (A.15)

m−m(µ) = − [mc −mc(µ)] = iΣ(f)(m,m) +O(α2
S), (A.16)

where (f) denotes the finite part.
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A.1 One-loop radiative corrections to heavy quark lines

In the following we describe how to compute the one-loop on-shell top-quark self energy at order

αS. We give a finite mass λ to the gluon, since this result is necessary for the computation of the

self energy at all orders in αS(αSnf )n, as discussed in Sec. 3.2. Since we adopt the MS scheme,

in our computation we perform the replacement

µ2 → µ2 e
εγE

4π
(A.17)

so that, as we have seen in Sec. 3.1, the MS counterterms have a very simple expression since

they need to absorb only the UV divergent part of the radiative corrections.

At order αS, the top-quark self-energy expression with a gluon of mass λ in d = 4 − 2ε

dimensions is given by

Σ
(1)
λ (/p,m) = − g2CF

(
µ2

4π
eγE
)ε ∫

ddk

(2π)d
γα(/p+ /k +m)γα

[k2 − λ2] [(k + p)2 −m2]

= − g2CF

(
µ2

4π
eγE
)ε ∫

ddk

(2π)d
(2− d)/p+ dm+ (2− d)/k

[k2 − λ2] [(k + p)2 −m2]
(A.18)

= − g2CF

[
(2− d)/p

(m2 − λ2 − p2)B(p2, λ2,m2) +A(λ2)−A(m2)

2p2

+
(
(2− d)/p+ dm

)
B(p2, λ2,m2)

]
, (A.19)

where the suffix λ signals the presence of a finite gluon-mass λ and A and B are the one-point

and two-point Feynmam scalar integrals

A(m2) =

(
µ2

4π
eγE
)ε ∫

ddk

(2π)d
1

k2 −m2
, (A.20)

B(p2, λ2,m2) =

(
µ2

4π
eγE
)ε ∫

ddk

(2π)d
1

[k2 − λ2] [(k + p)2 −m2]
. (A.21)

A.2 Mass counterterm

From eq. (A.6), we see that the pole mass counterterm can be obtained from the self energy

evaluated for the eigenvalue of the operator /p equal to m. We thus compute Σ
(1)
λ (m,m). As it

is shown in Sec. 3.2, we also need the exact d-dimensional expression for the λ = 0 and λ� m

cases, while for a generic λ value it is sufficient the O(ε0) expressions.

A.2.1 Non-vanishing gluon mass

We now calculate Σ
(1)
λ (m,m) for a generic value of λ > 0. Eq. (A.19) becomes

Σ
(1)
λ (m,m) = −g2CFm

[
(2− d)

−λ2B(m2, λ2,m2) +A(λ2)−A(m2)

2m2

+dB(m2, λ2,m2)
]

(A.22)
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and the scalar integrals assume the values

A(m2) =
i

(4π)2
m2

[
1

ε
+ log

(
µ2

m2

)
+ 1

]
+O(ε), (A.23)

B(m2, λ2,m2) =
i

(4π)2

[
1

ε
+ 2 + log

(
µ2

m2

)
+H

(
λ2

m2

)]
+O(ε), (A.24)

with

H(x) =


−x

2
log x−

√
x(4− x) arctan

√
4− x
x

x ≤ 4 ,

−x
2

log x+
1

2

√
x(x− 4) log

√
x+
√
x− 4

√
x−
√
x− 4

x > 4 .

(A.25)

We can check that for small x

H(x) = −π
√
x+O(x) , (A.26)

while for large x

H(x) = −1− log(x) +
1

x

(
1

2
− log(x)

)
+O

(
1

x2

)
. (A.27)

Substituting the values of A and B in eq. (A.22), we get

Σ
(1)
λ (m,m) = −i αS

4π
CFm

[
3

ε
+ 3 log

(
µ2

m2

)
+ 4 +

λ2

m2

(
1 + log

(
λ2

m2

))
+

(
2 +

λ2

m2

)
H

(
λ2

m2

)]
. (A.28)

For small λ we have

Σ
(1)
λ (m,m) = −iαS

4π
CFm

[
3

ε
+ 3 log

(
µ2

m2

)
+ 4

]
+ αS

CF

2
λ+O(λ2) , (A.29)

while for large λ

Σ
(1)
λ (m,m) = −iαS

4π
CFm

[
3

ε
+ 3 log

(
µ2

λ2

)
+

5

2

]
+O

(
1

λ2

)
. (A.30)

We thus have that the mass counterterm in the pole scheme, computed keeping a fixed gluon

mass λ, is given by

mc
λ = −iΣ

(1)
λ (m,m)

= −αS

4π
CFm

[
3

ε
+ 3 log

(
µ2

m2

)
+ 4 +

λ2

m2

(
1 + log

(
λ2

m2

))
+

(
2 +

λ2

m2

)
H

(
λ2

m2

)]
. (A.31)

A.2.2 Massless gluon

We are now interested in the particular case λ = 0. By setting λ = 0 in eq. (A.22), we find

Σ
(1)
0 (m,m) = −g2CFm

[
−(2− d)

A(m2)

2m2
+ dB(m2, λ2,m2)

]
. (A.32)
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In this case, it is possible to use the exact d dimensional expressions for the scalar integrals

A(m2) =
i

(4π)2
Γ(1 + ε) eεγE

(
µ2

m2

)ε
m2

ε (1− ε)
, (A.33)

B(m2, 0,m2) =
i

(4π)2
Γ(1 + ε) eεγE

(
µ2

m2

)ε
m2

ε (1− 2ε)
, (A.34)

so that we find

Σ
(1)
0 (m,m) = −iαS

4π
CFm

(
µ2

m2

)ε
eεγE

Γ(1 + ε)

ε

3− 2ε

1− 2ε
. (A.35)

By expanding around ε = 0 we get

Σ
(1)
0 (m,m) ≈ −i αS

4π
CFm

[
3

ε
+ 3 log

(
µ2

m2

)
+ 4

]
. (A.36)

By comparing this expression with eq. (A.29), we find that the small λ result smoothly converges

to the massless one. Since Σ
(1)
0 (m,m) corresponds to the standard result peformed with massless

gluons, we have

Σ
(1)
0 (m,m) ≡ Σ(1)(m,m). (A.37)

The pole mass counterterm is thus given by

mc = −iΣ(1)(m,m) = −αS

4π
CFm

[
3

ε
+ 3 log

(
µ2

m2

)
+ 4

]
+O(α2

S). (A.38)

As shown in eq. (A.14), if we adopt the MS scheme, the mass counterterm contains only the

divergent part of Σ(1):

mc(µ) = −αS

4π
CFm(µ)

3

ε
+O(α2

S) , (A.39)

and

m−m(µ) = − [mc −mc(µ)] =
αS

4π
CFm

[
3 log

(
µ2

m2

)
+ 4

]
+O(α2

S). (A.40)

A.2.3 Large gluon mass

In order to evaluate the exact d dimensional expression of eq. (A.22) for large λ we just need to

compute B(m2, λ2,m2) neglecting terms of order m4

λ4

B(m2, λ2,m2) =

(
µ2

4π
eγE
)ε ∫

ddk

(2π)d
1

(k + p)2 −m2 + iη

1

k2 − λ2 + iη

=
i eεγEΓ(ε)

(4π)2
µ2ε

∫ 1

0
[−z(1− z)λ2 + (1− z)λ2 + zm2]−εdz

=
i eεγEΓ(ε)

(4π)2
µ2ε

∫ 1

0
[z2m2 + (1− z)λ2]−εdz

=
i

(4π)2

(
µ2

m2

)ε
eεγE Γ(ε)

∫ 1

0
(η+ − z)−ε(η− − z)−εdz, (A.41)
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where we have defined

η+ =
1 +
√

1− 4ξ

2ξ
≈ 1

ξ
− 1, η− =

1−
√

1− 4ξ

2ξ
≈ 1 + ξ , (A.42)

with ξ = m2/λ2. For small ξ the integral yields∫ 1

0
(η+ − z)−ε(η− − z)−εdz ≈ ξε

∫ 1

0
(1− ξ(1 + z))−ε(1− z + ξ)−εdz

≈ ξε
∫ 1

0
(1 + ε ξ(1 + z))(1− z + ξ)−εdz

≈ ξε
{

(1 + ξ)1−ε − ξ1−ε

1− ε
+ ε ξ

∫ 1

0
(1 + z)(1− z)−εdz

}
= ξε

{
1 + (1− ε)ξ − ξ1−ε

1− ε
+ ε ξ

3− ε
(1− ε)(2− ε)

}
= ξε

{
1

1− ε
− ξ1−ε

1− ε
+ ξ

(
1 + ε

3− ε
(1− ε)(2− ε)

)}
= ξε

{
1

1− ε
− ξ1−ε

1− ε
+ ξ

2

(1− ε)(2− ε)

}
, (A.43)

so

B(m2, λ2,m2) =
i

(4π)2

(
µ2

λ2

)ε
eεγE

Γ(1 + ε)

ε

×

[
1

1− ε
−
(
m2

λ2

)1−ε
1

1− ε
+
m2

λ2

2

(1− ε)(2− ε)

]
. (A.44)

By inserting eqs. (A.44) and (A.33) in eq. (A.22) and neglecting terms of the order λ−2 we find

Σ
(1)
λ∞

(m,m) = −iαS

4π
CFm

(
µ2

λ2

)ε
Γ(1 + ε) eεγE

ε

2 (3− 2ε)

(1− ε)(2− ε)
, (A.45)

where the subscript ∞ signals that Σ has been computed for a large value of λ and subleading

powers 1/λ2 have been neglected. By expanding Σ
(1)
λ∞

(m,λ2) around ε = 0 we get

Σ
(1)
λ∞

(m,m) ≈ −i αS

4π
CFm

[
3

ε
+ 3 log

(
µ2

λ2

)
+

5

3

]
, (A.46)

as we found in eq. (A.30).

A.3 External field normalization

From eqs. (A.11) and (A.12) we have that the external field normalization is given by

Z = 1 + z , with z = i
∂Σ(/p,m)

∂/p

∣∣∣
/p=m

. (A.47)

We perform this computation at O(αS) keeping a finite gluon mass λ and, separately, for λ = 0.

Conversely to the previous case, the small λ limit is not guaranteed to approach smoothly the
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λ = 0 result, since to compute z we deal both with IR and UV singularities.

We rewrite eq. (A.19) as

Σ
(1)
λ (/p,m) = g2CF

{
αB(p2, λ2,m2) + β

[
A(λ2)−A(m2)

]}
(A.48)

with

α =
d− 2

2p2
(m2 − λ2 − p2)/p+ (d− 2)/p− dλ, β =

d− 2

2p2 /p . (A.49)

Since /p/p = p2, the derivative of with respect /p evaluated at /p = m can be rewritten as

∂

∂/p

∣∣∣∣∣
/p=m

= 2m
∂

∂p2

∣∣∣∣∣
/p=m

. (A.50)

Using eq. (A.50) and

α(/p = m) = −m
[
2 + (1− ε) λ

2

m2

]
,

∂α

∂/p

∣∣∣∣∣
/p=m

= (1− ε) λ
2

m2
,

∂β

∂/p

∣∣∣∣∣
/p=m

=
ε− 1

m2
, (A.51)

eq. (A.48) becomes

∂Σ
(1)
λ (/p,m)

∂/p

∣∣∣∣∣
/p=m

=g2CF

{
λ2

m2
(1− ε)B(m2, λ2,m2) +

ε− 1

m2

[
A(λ2)−A(m2)

]
−m

[
2 + (1− ε) λ

2

m2

]
2m

∂B(p2, λ2,m2)

∂p2

∣∣∣
p2=m2

}
. (A.52)

The calculation of
∂B(p2, λ2,m2)

∂m2

∣∣∣
p2=m2

must be carried out by distinguishing the two cases λ = 0 and λ > 0.

A.3.1 Massless gluon

We need to compute the derivative ofB(p2, λ2,m2) for p2 = m2 in order to evaluate the derivative

of Σ(1). If λ2 = 0, we have the well-known result

∂B(p2, 0,m2)

∂p2

∣∣∣∣∣
p2=m2

=
i

(4π)2

(
µ2

m2

)ε
1

m2

[
− 1

2ε
− 1

]
+O(ε)

=
1

(4π)2

1

m2

[
− 1

2ε
− 1− 1

2
log

(
µ2

m2

)]
+O(ε). (A.53)

Substituting eqs. (A.53), (A.23) and the O(ε0) expansion of eq. (A.34) in eq. (A.52) and setting

λ = 0 we find

∂Σ(1)(/p,m)

∂/p

∣∣∣∣∣
/p=m

= i
αS

4π

[
3

ε
+ 4 + 3 log

(
µ2

m2

)]
. (A.54)
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So, from eq. (A.12), we get

z = i
∂Σ(1)(/p,m)

∂/p

∣∣∣∣∣
/p=m

= −αS

4π

[
3

ε
+ 4 + 3 log

(
µ2

m2

)]
. (A.55)

A.3.2 Massive gluon

We now compute the derivative of the bubble integral for λ > 0.

∂B(p2, λ2,m2)

∂p2

∣∣∣∣∣
p2=m2

=
∂

∂p2

[(
µ2 e

εγE

4π

)ε ∫ ddk

(2π)d
1

[k2 − λ2 + iη] [(k + p)2 −m2 + iη]

]

=
ieεγE

(4π)2

Γ(1 + ε)

ε
µ2ε ∂

∂p2

∫ 1

0
dx
(
−x(1− x)p2 + (1− x)λ2 + xm2 + iη

)−ε ∣∣∣∣∣
p2=m2

=
i

(4π)2

∫ 1

0

dxx(1− x)

[m2 x2 + (1− x)λ2 − iη]
+O(ε). (A.56)

The denominator can be rewritten as

m2 x2 + (1− x)λ2 − iη ≈ m2 x2 + (1− x)(λ2 − iη) = m2(x− α+)(x− α−) , (A.57)

with

α± =
(λ2 + iη)±

√
(λ2 + iη)− 4m2(λ2 + iη)

2m2
. (A.58)

We can suppose α± negative thanks to the analytic continuation.

∂B(p2, λ2,m2)

∂p2

∣∣∣∣∣
p2=m2

=
i

(4π)2

1

m2

∫ 1

0

dxx(1− x)

(x− α+)(x− α−)

=
i

(4π)2

1

m2

1

α+ − α−

∫ 1

0
dxx(1− x)

[
1

x− α+
− 1

x− α−

]
=

i

(4π)2

1

m2

1

α+ − α−
[I1 + I2] . (A.59)

We have defined

I1 =

∫ 1

0
dx
x(1− x)

x− α+
=

∫ 1

0
dx

x(1− x)− α+(1− α+) + α+(1− α+)

x− α+

=

∫ 1

0
dx (1− α+ − x) + α+(1− α+)

∫ 1

0
dx

1

x− α+

=
1

2
− α+ + α+(1− α+) log

(
α+ − 1

α+

)
, (A.60)

and, similarly,

I2 = −1

2
+ α− − α−(1− α−) log

(
α− − 1

α−

)
. (A.61)
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The final result is

∂B(p2, λ2,m2)

∂p2

∣∣∣∣∣
p2=m2

=
i

(4π)2

(
µ2

m2

)ε
1

m2

[
−1 +G

(
λ2

m2

)]
(A.62)

with

G(x) =



−3− x
4− x

√
x(4− x)

[
arctan

(
2− x√
x(4− x)

)
+ arctan

(√
x

4− x

)]
x < 4 ,

0 x = 4 ,

x− 3

2(x− 4)

√
x(x− 4)

[
log

(
x− 2−

√
x(x− 4)

x− 2 +
√
x(x− 4)

)
+ log

(
x−

√
x(x− 4)

x+
√
x(x− 4)

)]
x > 4

(A.63)

We can easily demonstrate that, for small x,

G(x) = −1

2
log (x) +

3

4
π
√
x+O

(
x2
)
. (A.64)

Inserting eqs. (A.62), (A.23) and (A.24) in eq. (A.52) leads to

∂Σ
(1)
λ (/p,m)

∂/p

∣∣∣∣∣
/p=m

=i
αS

4π
CF

{
1

ε
+ 3 log

(
µ2

m2

)
+ 4− 4G

(
λ2

m2

)
+
λ2

m2

[
log

(
µ2

m2

)

+3 +H

(
λ2

m2

)
− 2G

(
λ2

m2

)
− log

(
m2

λ2

)]}
. (A.65)

From eq. (A.12) we have

zλ = −αS

4π
CF

{
1

ε
+ 3 log

(
µ2

m2

)
+ 4− 4G

(
λ2

m2

)
+
λ2

m2

[
log

(
µ2

m2

)
+3 +H

(
λ2

m2

)
− 2G

(
λ2

m2

)
− log

(
m2

λ2

)]}
. (A.66)

From eqs. (A.26) and (A.64) we can extract the small λ behaviour

zλ = −αS

4π
CF

[
1

ε
+ 2 log

(
µ2

λ2

)
+ 3 log

(
µ2

m2

)
+ 4 + log

(
µ2

m2

)
− 3π

λ

m

]
+O

(
λ2
)
. (A.67)

A.4 Radiative corrections to external massless quark lines

We now compute the field normalization for a massless b quark. At order αS, the self-energy for

a massless quark computed with a gluon of mass λ is given by setting m = 0 in eq. A.19.

Σ
(1)
λ (/p, 0) = −g2CF(2− d)/p

[
A(λ2) + (p2 − λ2)B(p2, λ2, 0)

2 p2

]
. (A.68)
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The tadpole integral is given by eq. (A.23), while the bubble one is given by

B(p2, λ2, 0) =
i

(4π)2

[
1

ε
+ log

(
µ2

λ2

)
+ 2−

(
1− λ2

p2

)
log

(
1− p2

λ2

)]
=

i

(4π)2

[
1

ε
+ log

(
µ2

λ2

)
+ 1 +

1

2

p2

m2

]
+O

(
p4

λ4

)
. (A.69)

Thus, for small p2

Σ
(1)
λ (/p, 0) = i

αS

4π
CF/p

[
1

ε
+ log

(
µ2

λ2

)
− 1

2
+O

(
p2

λ2

)]
. (A.70)

We can now compute the mass counterterm and the field normalization constant for a massless

b quark

mc
λ = iΣ

(1)
λ (0, 0) = 0 , (A.71)

zλ = i
∂Σ

(1)
λ (/p, 0)

∂/p

∣∣∣
/p=0

= −αS

4π
CF

[
1

ε
+ log

(
µ2

λ2

)
− 1

2

]
. (A.72)

The above computation of zλ cannot be used to infer the value for λ = 0. Indeed in this case

eq. (A.68) becomes

Σ(1)(/p, 0) = −g2(d− 2)/p
B(p2, 0, 0)

2
(A.73)

and, since B(0, 0, 0) = 0,

mc = 0, z = 0 . (A.74)
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Appendix B

A useful dispersive relation

We want to apply a dispersive relation to the function

f(k2) =
1

k2

1

1 + Π(k2,m2
q , µ

2)−Πct
, (B.1)

where k2 is a complex number far from the real positive axis. The procedure is similar to the

one proposed in Ref. [33]. We notice that f(k2) has a pole at k2 = 0 and a branch cut for

k2 > 4m2
q . We choose as integration path the closed contour Γ, depicted in Fig. B.1. Applying

the residue theorem we have

f(k2) =
1

2πi

∮
Γ

dλ2 1

λ2 − k2
f(λ2) =

1

2π i

∮
Γ
dλ2 1

λ2 − k2

1

λ2

1

1 + Π(λ2,m2
q , µ

2)−Πct
, (B.2)

where the path Γ is displayed in fig. B.1. Notice that we have ignored the presence of the Landau

singularity at

λ2
L = −µ2 exp

(
− 1

b0αS

+ C

)
(B.3)

correponding to the vanishing of the denominator in the expression

1

1 + Π(k2,m2
q , µ

2)−Πct
=
∞∑
i=0

(
−Π(k2,m2

q , µ
2) + Πct

)i
. (B.4)

This is because we are only interested in the formal power expansion in αS of our result, and no

such singularity is present in the coefficients of the geometric expansion in eq. (B.4).

The contribution along the circle of radius R in eq. (B.2) goes to zero in the R →∞ limit.

The contribution given by the small circle of radius r is given by

Ir =
1

k2

1

1 + Π(0,m2
q , µ

2)
. (B.5)

We are thus left with

f(k2) =
1

2π i

[∫ 0

+∞

dλ2

λ2 − k2
f(λ2 − iη) +

∫ +∞

0

dλ2

λ2 − k2
f(λ2 + iη)

]
+

1

k2

1

1 + Π(0,m2
q , µ

2)
(B.6)
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Γ

k
2

λ
2

R

r

4mq
 2

Figure B.1: Integration path.

where iη is an infinitesimal imaginary part that enables us to avoid the branch cut on the real

axis. For positive values of λ2

f(λ2 + iη)− f(λ2 − iη) =
2 i

λ2
Im

[
1

1 + Π(λ2,m2
q , µ

2)−Πct

]
, (B.7)

and the imaginary part vanishes for k2 ≤ 4m2
q . We can thus write

f(k2) =
1

k2

1

1 + Π(k2,m2
q , µ

2)−Πct

= − 1

π

∫ +∞

4m2
q

dλ2

λ2

1

k2 − λ2
Im

[
1

1 + Π(λ2,m2
q , µ

2)−Πct

]
+

1

k2

1

1 + Π(0,m2
q , µ

2)
. (B.8)

If k2 is a real-positive number, we can still employ eq. (B.8) since we need to include a small

positive imaginary part iη coming from the Feynman prescription, so that k2 + iη is indeed a

complex number.

Since the imaginary part of Π vanishes for λ2 < 4m2
q and

Im

[
1

λ2 + iη

1

1 + Π(λ2,m2
q , µ

2)−Πct

]
= −π δ(λ2)

1

1 + Π(0,m2
q , µ

2)
+

1

λ2
Im

[
1

1 + Π(λ2,m2
q , µ

2)−Πct

]
, (B.9)
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eq. (B.8) can be rewritten as:

f(k2) =
1

k2

1

1 + Π(k2,m2
q , µ

2)−Πct

= − 1

π

∫ +∞

0−
dλ2 1

k2 − λ2
Im

[
1

λ2 + iη

1

1 + Π(λ2,m2
q , µ

2)−Πct

]
, (B.10)

where the 0− lower boundary underlines the fact that the delta function arising from the imag-

inary part of 1/(λ2 + iη) must be included.

The dispersive relation we presented here is useful to evaluate virtual contributions in which

the gluon line has been dressed with the insertion of infinite fermionic bubbles. When IR

divergences are not present, the form in eq. (B.10) can be safely employed, since the λ → 0

limit is smooth and does not require extra care. Furthermore, in this case, it is also possible to

set to zero the quark-mass regulator mq. When IR singularities are present, the λ = 0 value

must be handled separately, since it requires for example dimensional regularization to deal with

soft and collinear divergences. In this case, eq. (B.8) is more appropriate since it shows a clear

separation between the λ = 0 and the λ > 2mq regions.
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Appendix C

Single-top production in the

narrow-width approximation

In this appendix we compute the NLO corrections to the total cross section for the process

W ∗ → t b̄ → W b b̄ in the narrow-width approximation (NWA), i.e. for a vanishing top width,

keeping a finite gluon mass k. The top mass is defined in the on-shell (real) pole scheme. We

denote it with m0 since we reserve m for the complex top mass. We can write

σ
(
W ∗ →W b b̄

)
= σ

(
W ∗ → t b̄

) Γ(t→W b)

Γt
, (C.1)

where

Γt = 1.3279 GeV. (C.2)

At one loop, in the NWA,

σ(1)
(
W ∗ →W b b̄

)
= σ(1)

(
W ∗ → t b̄

) Γ(0)(t→W b)

Γt
+ σ(0)

(
W ∗ → t b̄

) Γ(1)(t→W b)

Γt
. (C.3)

As we have shown in eq. (4.45), to compute the all-orders corrections to a physical tree-level

quantity in the large-nf limit, we need the expression of its NLO corrections calculated keeping

a fixed gluon mass λ.1 We denote this quantity with T (λ). The linear λ dependence of T is

responsible for the presence of linear renormalons.

C.1 Production cross section

At LO, neglecting all the couplings, the production cross section is given by

σ(0)
(
W ∗ → t b̄

)
=

2
(
s−m2

0

) (
2 s+m2

0

)
s

(
1− m2

0

s

)
1

16π s
. (C.4)

Its derivative with respect to m0 is given by

∂σ(0)
(
W ∗ → t b̄

)
∂m0

= − 3

4π

m0

(
s−m2

0

) (
m2

0 + s
)

s3
. (C.5)

1The term ∆(λ) of eq. (4.50) is identically 0 since we do not impose any selection cuts.
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Sec C.2. Top decay width

We computed separately the virtual and the real cross sections for several positive values of the

gluon mass λ and we denote with T (λ) their sum. The external field normalization constant of

the b̄ and of the t quark, used in the expression of the UV normalized virtual contribution, are

given by eqs. (A.72) and (A.66) respectively. We used the COLLIER [39] library for the evaluation

of the one-loop scalar integrals. The λ = 0 computation was performed separately within the

POWHEG BOX RES framework. In this case the external b normalization constant is 0, while the

top one is given in eq. (A.55).

We display our results in Fig. C.1, where we also plot the straight line

1

αS σ(0)
(
W ∗ → t b̄

) [T (0) +
∂σ(0)

(
W ∗ → t b̄

)
∂ m0

CF

2
αS λ

]
, (C.6)

that interpolates fairly well the points we have computed for small-k values. Since to move

from the pole to the mass scheme, we can naively replace T (λ)→ T (λ)− ∂σ(0)(W ∗→t b̄)
∂ m0

CF
2 λ, we

notice that, if the top mass is expressed in terms of the MS one, the inclusive cross section is

free from linear renormalons. This behaviour is expected, since it is a totally inclusive decay of

a colour-neutral system.
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Figure C.1: NLO corrections to the cross section for the process W ∗ → t b̄ computed with a finite gluon
mass λ.

C.2 Top decay width

At LO, neglecting all the couplings, the decay width of the top quark is given by

Γ(0) (t→W b) = m3
0

(
1− m2

W

m2
0

)2(
1 +

2m2
W

m2
0

)
1

8π
. (C.7)
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Its derivative with respect to m0 is given by

∂Γ(0) (t→W b)

∂m0
= 3

(
m2

0 −m2
W

) (
m4

0 +m2
0m

2
W + 2m4

W

) 1

8πm4
0

. (C.8)

As we did for the production cross section, we computed the virtual and the real corrections

separately keeping a fixed gluon mass λ and we denoted with T (λ) their sum. From Fig. C.2 it

is clear that, if the top mass is expressed in the MS-mass scheme, the top decay width is free

from linear renormalons. Although not obvious, this cancellation is expected since the absence

of linear renormalons in the heavy-particles decay-width expressed in terms of the MS mass was

already shown in Refs. [10, 33,52].
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Figure C.2: NLO corrections to the top decay width computed with a finite gluon mass λ.

C.3 Considerations

We have just seen that both σ(W ∗ → tb̄) and Γ (t→W b) are linear-renormalon free if expressed

in terms of the MS mass, so it is the cross section σ(W ∗ → tb̄→W b b̄) in NWA. In Sec. 5.1.2 we

showed that this behaviour is achieved also for finite top width, since the top quark can never

be on-shell if a complex mass scheme is used. A formal demonstration of the cancellation of the

linear sensitivity in case of finite top width is given in appendix D.
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Appendix D

Cancellation of the linear sensitivity

in the total cross section and in

leptonic observables

In order to discuss the cancellation of the linear sensitivity in the total cross section and in

the energy of the W boson, EW , when finite top-width effects are included, we make use of the

old-fashioned perturbation theory. To this purpose, we first briefly summarize the main features

of this approach in Appendix D.1 and we recall the conditions for Landau threshold singularities

in Appendix D.2. In Appendix D.3 we show that, as long as Γt > 0, the Landau singularities

are not present and thus, if we adopt a short-distance mass, no linear mg-term can arise, being

mg the mass of the gluon.

D.1 Old-fashioned perturbation theory

In the old-fashioned (time-ordered) perturbation theory the propagator denominators in a Feyn-

man diagram are split into an advanced and a retarded part

i

k2 −m2 + iη
=

i

2Ek,m

[
1

k0 − Ek,m + iη
+

1

−k0 − Ek,m + iη

]
, (D.1)

where

Ek,m =

√
k2 +m2, (D.2)

and k = |~k|. The time Fourier transform of the first term vanishes for negative time, while for

the second term it vanishes for positive time∫
dk0

2π

i exp(−ik0t)

k0 − Ek,m + iη
= θ(t) exp(−iEk,m t) , (D.3)∫

dk0

2π

i exp(−ik0t)

−k0 − Ek,m + iη
= θ(−t) exp(iEk,m t) . (D.4)

These results can be easily demonstrated by promoting the integration path into a semicircle

integral and applying the residue theorem.

We observe that the first term in eq. (D.1), that corresponds to an advanced propagator,
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Sec D.1. Old-fashioned perturbation theory

propagates positive energies in the future, while the second one, i.e. the retarded one, propagates

negative energies in the past.

In presence of an unstable particle, the denominator is given by

i

k2 −m2 + imΓ
=

i

2Ek,m,Γ

[
1

k0 − Ek,m,Γ
+

1

−k0 − Ek,m,Γ

]
, (D.5)

where

Ek,m,Γ =

√
k2 +m2 − imΓ , (D.6)

so that Ek,m,Γ has a negative imaginary part. As a consequence, we also have∫
dk0

2π

i exp(−ik0t)

k0 − Ek,m,Γ + iη
= θ(t) exp

(
−iE0

k,m,Γ t
)
,∫

dk0

2π

i exp(−ik0t)

−k0 − Ek,m,Γ + iη
= θ(−t) exp

(
iE0

k,m,Γ t
)
,

and both functions have exponential damping for large positive (negative) time. We notice that

the iη factor is not necessary in intermediate states containing the unstable particle, because

they can never be on-shell.

We can write any Feynman diagram assigning an independent momentum to each propagator,

and include a factor (2π)4δ4 (
∑
k) to each vertex to ensure four-momentum conservation, where∑

k is the sum of all four-momenta entering the vertex. Furthermore, the time component of

the δ function can be rewritten as

(2π)4δ4
(∑

k
)

=

∫ +∞

−∞
dt exp

(
−it

∑
k0

)
(2π)3δ3

(∑
~k
)
. (D.7)

Thus each advanced or retarded propagator will carry the factor

1

2Ek,m

exp[−i(t2 − t1)k0]

±k0 − Ek,m + iη
, (D.8)

where t1 and t2 are the time variables associated with the beginning and the end of the prop-

agator, that are chosen accordingly to the direction of ~k. Performing the k0 integration, we

get ∫ ∞
−∞

dk0

2π

i

2Ek,m

exp[−i(t2 − t1)k0]

±k0 − Ek,m + iη
= θ(±(t2 − t1)) exp(∓iEk,mt)

1

2Ek,m
, (D.9)

with k0 replaced by its on shell (positive or negative) value in all other occurrences (i.e. propa-

gator numerators or vertex factors).

By splitting each propagator into an advanced and retarted part, a single Feynman diagram

will split into a sum of diagrams with all possible different time orderings for the vertices. We

consider a graph with a given ordering, and label the time of each vertex as

t0 < t1 < . . . < tn , (D.10)

and we can collect all exponential in the form

exp(−it0EV0) . . . exp(−itnEVn) , (D.11)
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where by EVi we mean the total energy entering the ith vertex. Integrating in tn from tn−1 to

infinity yields a factor ∫ +∞

tn−1

dtn exp(−itnEVn) = −iexp(−itn−1EVn)

EVn − iη
. (D.12)

Then, performing the dtn−1 integration yields

−i
EVn − iη

∫ +∞

tn−2

dtn exp [−itn(EVn + EVn−1)] = (−i)2 exp
[
−itn−2(EVn−1 + EVn)

]
(EVn − iη)(EVn−1 + EVn − iη)

, (D.13)

and so on. The last integral in dt0 is unrestricted, yielding

(−i)n 2π δ(EV0 + EV1 + . . . EVn)

(EVn − iη) . . . (EVn + EVn−1 . . .+ EV1 − iη)
, (D.14)

i.e. the total energy entering in all the vertices must be zero. The delta function is usually

removed from the amplitude.

In order to have a clearer picture of the resulting graph, we can attach a line coming from

t = −∞ to all vertices with an entering external momentum, and a line going to t = +∞ from

all vertices with outgoing external momenta. Then we imagine we cut our Feynman graphs with

lines at constant time between any pair or time-ordered vertices i − 1, i. This line defines the

intermediate state Si. We define the energy of the intermediate state Si as the sum ESi of the

energy flowing in all cut lines (including those from −∞ or to +∞) from smaller to larger times.

Then, the denominator of the ith vertex is

i

E − ESi + iη
, (D.15)

where E = ES−1 = ESn+1 is the energy of the intermediate state before all vertices, and the

energy of the intermediate state after all vertices, that are equal by momentum conservation.

In fact, in general the denominator arising from the nth vertex is

−i
EVn − iη

. (D.16)

Since En is the total energy entering the last vertex, it must equal the energy of the Sn inter-

mediate state, minus the energy of the Sn+1 state

−i
EVn − iη

=
−i

ESn − E − iη
=

i

E − ESn + iη
. (D.17)

The denominator arising from the n− 1 vertex is instead

−i
EVn + EVn−1 − iη

. (D.18)

Arguing as before, EVn−1 = ESn−1 − ESn , so

−i
EVn + EVn−1 − iη

=
−i

ESn − E + ESn−1 − ESn + iη
=

i

E − ESn−1 + iη
, (D.19)
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Sec D.1. Old-fashioned perturbation theory

and so on. Indeed, if we take for example the Feynman diagram of Fig. D.1 and we write the

energy entering in each vertex, we have

-∞, E +∞, E

S1 S2 S3

V0

V1 V2

V3

Figure D.1: Example of time ordered graph.

• EV0 = (E−∞)− (Eq,1 + Eq̄) = ES0 − ES1 = E − ES1

• EV1 = Eq,1 − EW − Eq,2 = (Eq,1 + Eq̄)− (EW + Eq,2 + Eq̄) = ES1 − ES2 ;

• EV2 = EW + Eq,2 − Eq,3 = (EW + Eq,2 + Eq̄)− (Eq,3 + Eq̄) = ES2 − ES3 ;

• EV3 = (Eq,3 + Eq̄)− (E+∞) = ES3 − ES4 = ES3 − E.

We can now formulate the rules for representing a given Feynman graph as the sum of contri-

butions coming from old-fashioned perturbation theory:

1. For a given Feynman graph, consider all possible ordering of its vertices. Write the whole

Feynman graph formula without the inclusion of the i/(k2 −m2 + iη) factors.

2. For each line joining two vertices provide the factor

1

2Ek,m
=

1

2
√
k2 +m2

, (D.20)

where k is the modulus of the three-momentum flowing in the graph. Assume that the

energy Ek,m flowing in propagators from smaller to larger time vertices is positive. This

factor indeed multiplies the advanced/retarded propagator in eq. (D.1).

3. In all numerator factors of the Feynman graph, substitute the time component of the

momenta flowing in the propagators with its on-shell value, with the sign determined

according to the convention of the previous point. This is a consequence of eq. (D.9).

4. Assign 3-momenta as usual, with 3-momentum conservation at each vertex, and

d3~k

(2π)3
(D.21)

momentum integration.
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Sec D.2. Landau singularities

5. Add lines from t = −∞ to each vertex with entering external momentum.

6. Add lines to t =∞ to each vertex with exiting external momentum.

7. Consider all intermediate states between any pair of nearby vertices. For each intermediate

state provide a factor
i

E − ESi + iη
, (D.22)

where E is the total energy coming from −∞ (or going to +∞) and ESi is the energy of

the state Si.

Notice that each energy denominator carries a factor of i, and so does each vertex. Since the

number of energy denominators is equal to the number of vertices minus 1, one i will survive in

the product.

D.2 Landau singularities

Landau singularities [100,101] are naturally explained in the old-fashioned perturbation theory.

In general, we have a denominator of the form

1

E −
∑n

i=1

√
|~ki|2 +m2

i + iη
, E ∼

n∑
i=1

mi. (D.23)

The so-called Landau anomalous threshold can arise when a sequel of singular denominators

appear at the same time. Let us assume we have a single loop where the 3-momentum ~k flows,

and we have a set of denominators

n∏
i=1

Di =
n∏
i=1

1

Ei −
∑ni

ji=1

√
(~qj + ~k)2 +m2

j + iη
. (D.24)

Assuming that the term Ei can be different for each denominator amounts to the assumption

that we may have external momenta entering at any vertex. We now assume that at some value

of ~k = ~k0 all denominators vanish at the same time. A necessary and sufficient condition for

this to be an avoidable singularity is that upon integrating in any component of ~k all iη pole

are on the same side of the integration plane near ~k0. We expand a energy denominator for
~k = ~k0 + δ~k.

Di =
1

Ei −
∑ni

ji=1

√
(~qj + ~k0 + δ~k)2 +m2

j + iη

≈ 1

Ei −
∑ni

ji=1

√
(~qj + ~k0)2 +m2

j − δ~k ·
∑ni

j=1
~qj+~k0√

(~qj+~k0)2+m2
j

+ iη

=
1

−δ~k ·
∑ni

j=1
~qj+~k0√

(~qj+~k0)2+m2
j

+ iη
=

−1

(~k − ~k0) ·
∑ni

j=1
~qj~k0√

(~qj+~k0)2+m2
j

− iη
. (D.25)
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V0

V1

V2

V3

k1, m1

k2, m2

k3, m3

k4, m4

S1 S2 S3

Figure D.2: Illustration of eq. (D.28).

In one dimension the sign of the imaginary part of the complex pole is given by

− sign

 ni∑
j=1

qj + k0√
(qj + k0)2 +m2

j

 , (D.26)

so, if this sum has the same sign for all the Di, the singularity is avoidable since it lies in the

same part of the complex plane for all the denominators. In 3 dimensions, if there is a direction

in the 3-dimensional integration space (corresponding to the 3-momenta flowing in the loop)

such that, integrating along it, it leaves the singularities of all the Di on the same side of the

complex plane, the integration contour can be deformed away from the singularity, so that the

denominators cannot contribute to the singularities. This is achieved if there is at least one

direction of δ~k such that

δ~k ·
ni∑
j=1

~qj + ~k0√
(~qj + ~k0)2 +m2

j

(D.27)

have the same sign for all i. Thus, all vectors given by the sum in (D.27) have components of

the same sign in at least one direction and so no null linear combination

n∑
i=1

λi

ni∑
j=1

~qj + ~k0√
(~qj + ~k0)2 +m2

j

= 0 (D.28)

must exist for any sequence of λi > 0. Conversely, if a null linear combination exists, (D.27)

cannot be satisfied for any choice of δ~k. This is the so-called Landau anomalous threshold

singularity.

The physical interpretation of eq. (D.28) is quite interesting. We interpret the λi as the time

between the first vertex on the left and on the right of the ith intermediate state. The ratios

in the sum in (D.28) are just the velocities of the particles, so, velocities times time equal the

displacements. So, the sum of all displacements of internal particles must be zero. Since all

internal particles are nearly on-shell (i.e. their displacement can be as large as one likes), this

means that their displacements must be compatible with kinematic constraints. This is better

illustrated with the example of Fig. D.2. The condition for the singularity is

(~v1 + ~v2)λ1 + (~v3 + ~v2)λ2 + (~v3 + ~v4)λ3 = 0, with ~vi =
~ki√

|~ki|2 +m2
i

, (D.29)
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Sec D.3. The specific case

for positive λ1...3. This is the same as

~v1λ1 + ~v3(λ3 + λ2) = −~v2(λ1 + λ2)− ~v4λ3, (D.30)

i.e. the displacement of particle 1 between its initial and final vertex, plus the displacement of

particle 3 between its initial and final vertex is equal and opposite to the subsequent displacement

of particles 2 and 4. In other words, the momenta should be such that the particles meet again

after having come apart.

D.3 The specific case

We now consider our W ∗ → b̄ + (t → W + b) process. An example of NLO diagram is shown

in Fig. D.3. The corresponding contribution to the cross section is obtained by setting either

b

b

W W

W

t t* *

1 2 3 4 5

Figure D.3: Example of NLO contribution to the process W ∗ → tb̄→Wbb̄.

one of the 2, 3, 4 intermediate states on the energy shell, and changing the sign of the iη in the

denominators to the right of the cut. We then define

D1 =
1

E − Et,1 − Eb̄,1
, (D.31)

D2 =
1

E − EW − Eb,2 − Eb̄,1 + iη
, (D.32)

D3 =
1

E − EW − Eb,3 − Eb̄,1 − Eg,3 + iη
, (D.33)

D4 =
1

E − EW − Eb,3 − Eb̄,4 + iη
, (D.34)

D5 =
1

E − Et,5 − Eb̄,5
, (D.35)
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where

Et,i =
√
~k2
t,i +m2 − imΓt , (D.36)

El,i =
√
~k2
l,i , l = b, b̄, g, (D.37)

EW =

√
~k2
W +m2 . (D.38)

Notice that the top energy has an imaginary part, so that no iη is needed in the denominators

containing it. We never include the corresponding cuts since the top width prevents this particle

from being on-shell. Thus, the only intermediate states contributing to cuts will be the ones

that do not include the top. According to the optical theorem, the cross section is given by the

imaginary part of a sum of contributions like the one displayed in Fig. D.3. Since we do not

include contributions in which the top is on-shell, in the integrand for the cross section we have

D1 Im[D2D3D4]D∗5 = D1

[
Im(D2)D∗3 D

∗
4 +D2 Im(D3)D∗4 +D2D3 Im(D4)

]
D∗5 . (D.39)

When performing the 3-momentum integral for the loops not including the W line, one can

come close to the singularity in the denominators. However, if there is a direction in the 9-

dimensional integration space (corresponding to the three 3-momenta flowing in the loops) such

that, integrating along it, it leaves the singularities of D2, D3 and D4 on the same side of the

complex plane, the integration contour can be deformed away from the singularities, so that the

denominators cannot contribute to mass singularities. The singularity for small λ will thus be

determined only by the remaining factor

d3kg√
~k2
g + λ2

, (D.40)

that gives a quadratic sensitivity to the gluon mass λ.

As we have already discussed, the only cases when an appropriate deformation of the contour

does not exist correspond to Landau singularities.

In order to explore the possible Landau configuration, one can start with the graph of Fig. D.3

with the top lines shrunk to a point. In fact, the top is always off-shell, and it cannot propagate

over large distances. The remaining configuration is shown in Fig. D.4. In order for the 2, 3 and

4 intermediate states to be on-shell at the same time, either both the b and the b̄ are collinear to

the gluon, or the gluon is soft. In the first case, also the two b quarks and the gluon are collinear,

and are all travelling in the opposite direction with respect to the W . Thus, they cannot meet

at the same point on the last vertex to the right. On the other hand, if the gluon is soft, the

b, the b̄ and the W produced at the primary vertex have momenta that sum to zero, so, again

their velocities will make them diverge. In both cases eq. (D.28) cannot be satisfied and these

configurations lead to an avoidable singularity. One can try to shrink other propagators to a

point to see if two intermediate states can be on-shell. Shrinking a b and a b̄ line to a point

leads to configuration with two massless system (either b quarks of collinear bg systems) and a

W , that again cannot meet at the same point. Shrinking the W , the two b or the two b̄ lines to

a point shrinks the whole graph to a point, leading to nothing. Thus, no Landau configuration

can exist, so one infers that the mg sensitivity of the total cross section is at least quadratic.
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b

b

W W

W

* *

2 3 4

Figure D.4: The reduced graph to look for Landau singularities in the graph of Fig. D.3.

We can repeat the same reasoning including a factor EW in our Feynman graph. The

argument runs as before, and so even for the average energy of the W one expects that the

sensitivity to the gluon mass is at least quadratic. Notice that in order for this to work, one

needs that the EW factor is the same for all cuts, which is in fact the case.

This argument fails if Γt is sent to zero. Indeed in this case D1 and D∗5 can be simultaneously

singular but their iη have opposite signs. Under these condition, the pinch is clearly unavoidable.

As a last point, we recall that the total cross section is free of linear mg sensitivity also

in the limit of zero width. This happens because, in the zero-width limit, the cross section

factorizes into a production cross section times a decay width, and both of them are free of

linear sensitivity to mg if the mass is in a short-distance scheme. The same, however, does not

hold for the average EW . In fact, the cancellation of mass singularities in Γt cannot be proven

in the same fashioned adopted here, since logarithmic divergences are also present in the wave-

function renormalization, and cannot be treated in a straightforward way in the old-fashioned

perturbation theory.
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Appendix E

The POWHEG BOX framework

The fixed order computations needed to evaluate the factors T (λ) and T̃ (λ) of eqs. (4.45)

and (4.64) and the NLO generators described in chap. 9 are implemented in the POWHEG BOX.

The POWHEG BOX is a framework that can be used to generate NLO events that can be interfaced

to modern parton shower (PS) according to the POWHEG method [98,102,103]. The latest re-

lease, i.e. the POWHEG BOX RES [38], has been developed to handle processes containing coloured

resonances that can emit.

E.1 NLO computations in the POWHEG BOX (RES)

The POWHEG BOX can be used as an integrator for fixed order NLO computations. The user has

to provide, according to Ref. [103]:

• the Born squared amplitude;

• the finite part of the virtual squared amplitude;

• the real squared amplitude;

• the Born phase space (in the POWHEG BOX RES it can be generated automatically);

• the flavour structure of the Born and of the real processes;

• the Born colour- and spin-correlated squared amplitudes.

We describe the main features for the computations of a 2→ n process at NLO for a generic

hadron-hadron collision. We introduce Φn to be the set of variables

Φn = {x1, x2, p1, . . . pn} , (E.1)

being x1,2 the fractions of the hadrons energies carried by the incoming partons and p1, . . . , pn

the four-momenta of the outgoing particles. We define the luminosity L = f i1(x1)f j2 (x2), where

f i1(x1) is the parton distribution function relative to the first hadron and it describes the prob-

ability of finding a parton i carrying a fraction x1 of the hadron energy. If one of the incoming

particle is a lepton, we replace f i1(x1) with δ(x1 − 1). We also denote with B the partonic
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Sec E.1. NLO computations in the POWHEG BOX (RES)

Born cross section, with Vb the partonic UV-renormalized virtual cross section and with R the

partonic real cross section. The total NLO cross section is given by

σNLO =

∫
dΦn L [B(Φn) + Vb(Φn)] +

∫
dΦn+1 L R(Φn+1) (E.2)

+

2∑
i=1

∫
dΦn

∫ 1

0
dz L Gi(z,Φn) ,

where the Gi terms are introduced by the renormalization of L and they ensure the cancellation

of the initial-state collinear singularities contained in R. If the incoming particle i is a lepton,

Gi = 0. For ease of notation, we define

V(Φn) = Vb(Φn) +
2∑
i=1

∫ 1

0
dz Gi(z,Φn). (E.3)

The Kinoshita-Lee-Nauenberg (KLN) [104, 105] theorem guarantees us that the infrared diver-

gences contained in R and in V cancel, yielding to a finite prediction for σNLO.

In order to handle numerically eq. (E.3), a counterterm C(Φn+1) is introduced, that ap-

proaches the real cross section in the soft and collinear limit, such as R(Φn+1) − C(Φn+1) is

finite. The phase space Φn+1 can be rewritten as

Φn+1 = {Φn,Φrad} , (E.4)

where Φn is the phase space of the underlying Born configuration and Φrad is a set of 3 kine-

matic variables that describe the phase space of the extra parton emitted in the n + 1-body

configuration. The total cross section now takes the form

σNLO =

∫
dΦn L B(Φn) +

∫
dΦn L

[
V(Φn) +

∫
dΦrad C(Φn+1)

]
(E.5)

+

∫
dΦn+1 L [R(Φn+1)− C(Φn+1)] ,

where the expression in the squared brackets is finite in d = 4 dimensions and thus can be

evaluated numerically.

With this subtraction formalism, we can compute predictions for any generic infrared-safe

observable O, i.e. such that On+1(Φn+1)→ On(Φn) when one parton becomes soft or collinear

to another one. More explicitly, we have

O =

∫
dΦn L B(Φn) On(Φn) (E.6)

+

∫
dΦn L

[
V(Φn) +

∫
dΦrad C(Φn+1)

]
On(Φn)

+

∫
dΦn+1 L [R(Φn+1) On+1(Φn+1)− C(Φn+1) On(Φn)] .

In the POWHEG BOX framework, the counterterms C introduced eq. (E.6) is evaluated using

the Frixione-Kunszt-Signer (FKS) subtraction [78] method. The real cross section is written as

a sum of terms, each of them containing at most one collinear and one soft singularity associated
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Sec E.1. NLO computations in the POWHEG BOX (RES)

with one parton (the FKS parton). We label with i the region of the phase space where the

parton i becomes soft or collinear to an incoming parton, ij the region where i and j are collinear.

We introduce non-negative functions di and dij , that in the POWHEG BOX are defined as

di = E2
i (1− cos2 θi) , dij =

2EiEj
(Ei + Ej)2

pi · pj , (E.7)

being Ei and pi the energies and the four-momenta of the parton i, θi the angle between the

parton i and the beams axis, everything computed in the partonic rest frame. This enables us

to introduce the S functions defined as

Si =
1

di D
, Sij =

1

dij D
. (E.8)

where

D =
∑
i

1

di
+
∑
ij

1

dij
. (E.9)

The real cross sectionR is then split into a sum of contributions associated to the several singular

regions:

R =
∑
i

Ri +
∑
ij

Rij , (E.10)

with

Ri = SiR , Rij = SijR. (E.11)

This decomposition offers us the possibility to choose a different parametrization for the n+ 1-

body phase space for each contribution α = i, ij.∫
dΦn+1 L [R(Φn+1)− C(Φn+1)] =

∑
α

∫
dΦα

n+1 L
[
Rα(Φα

n+1)− Cα(Φα
n+1)

]
. (E.12)

A fully detailed description of this method can be found in Ref. [102]. What we want to

underline is that for each region α, we have a subtraction term Cα, that approaches Rα when

α is singular. The subtraction terms Cα are automatically built by POWHEG BOX from the Born

squared amplitude1

Cα(Φα
n+1) = C̃(Φα

n,Φrad) Bα(Φα
n) (E.13)

and C̃(Φα
n,Φ

α
rad) is a function that can be easily integrated analytically in d = 4− 2ε dimensions

over the radiation phase space. The underlying Born phase space Φα
n associated with Φα

n+1 is

reconstructed using a mapping Mα(Φα
n+1). When the parton i is soft or collinear to the parton

j, Mα(Φα
n+1) should fulfill the following property:

Φα
n+1 = {x1, x2, . . . , pi, pj , . . . } → Φα

n =
{
x′1, x

′
2, . . . , pi + pj , . . .

}
, (E.14)

where the incoming partons energy-fraction differs in case of an initial-state emission. The

inverse mapping M−1
α (Φα

n+1) is used to generate the real emission phase space from Φα
n and the

three radiation variables.

1More precisely, also the spin- and colour-correlated squared amplitudes are necessary. For further details,
see [103].
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Sec E.2. NLO events with the POWHEG method

From eq. (E.13) we see that the subtraction term is proportional to the Born and thus it

will contains the denominators like (p2 −m2)2 + Γ2m2, being m and Γ the pole mass and the

decay width of resonance and p2 its virtuality obtained from the momenta of its decay products

as computed in the n-body kinematic, while Rα contains the same denominators but evaluated

using the full n + 1-body kinematic. In the collinear limit, the momenta of the underlying

Born configurations are assigned by merging the two collinear partons and then applying some

reshuffling to ensure that all the external particles are on their mass shell. The procedure

described in Sec. 5 of Ref. [102] does not preserve p2 and the resonance momentum will differ

of an amount of order m2/E, being E the energy of the resonance. As it is shown in Ref. [38],

the cancellation of the divergences contained in Rα and in Cα takes place only if m2 < Γ E.

We clearly see that for small decay width the convergence is problematic, and it is completely

spoiled in the zero-width limit.

To this purpose, a new version of the POWHEG BOX, namely the POWHEG BOX RES [38], has been

built. Given a flavour structure all the possible intermediate resonances histories are assigned.

The mapping between the real phase space and the underlying Born configuration preserves the

virtuality of the assigned intermediate resonances.

A similar procedure, applied to the dipole subtraction formalism, is described in Ref. [79].

E.2 NLO events with the POWHEG method

The POWHEG method, proposed for the first time in Ref. [98], enables to consistently match

NLO computations with PS algorithms.

In order to preserve the NLO accuracy of inclusive observables, the events generated accord-

ing to the POWHEG method have weight

B(Φn) = B(Φn) + V (Φn) +

∫
dΦradR(Φn+1) , (E.15)

where we have introduced

B = LB , V = LV , R = LR . (E.16)

The Sudakov form factor, that describes the non-emission probability, is defined by

∆
(
p⊥,Φn

)
=
∏
α

∆α

(
p⊥,Φn

)
(E.17)

with

∆α

(
p⊥,Φn

)
= exp

{
−
[∫

dΦα
radR

α(Φα
n+1) θ

(
p⊥ − k⊥(Φα

n+1)
)]

Φα
n=Φn

B(Φn)

}
, (E.18)

with Rα = LRα and the hardness of the emission p⊥ is defined to be the transverse momentum

of the emitted parton with respect to the emitter. Thus, the differential cross section for the

first emission becomes

dσ = B(Φn) dΦn

[
∆(p⊥,min,Φn) +

R(Φn+1)

B(Φn)
∆
(
p⊥(Φn+1),Φn

)
dΦrad

]
. (E.19)
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The event generated by POWHEG BOX using eq. (E.19) is then completed by a standard shower

MC program, like Pythia or Herwig. The core of a shower MC is represented by the PS

that generates the subsequent emissions in the collinear limit. In order not to spoil the NLO

accuracy of the result, a veto algorithm is implemented in such a way that all the emissions

with a transverse momentum larger that the POWHEG one are discarded. Further details

are given in appendix E.3. The SMC provides also a model for the underlying event, that is

generally described in terms of multiple-parton interactions (MPI), and for the hadronization.

The POWHEG BOX framework offers the possibility to separate the real contribution R in two

pieces, one containing all the infrared singularities and one finite for p⊥ → 0

R = Rs +Rf (E.20)

with

Rs =
h2

p2
⊥ + h2

R , Rf =
p2
⊥

p2
⊥ + h2

R , (E.21)

where the parameter h is called hdamp in the POWHEG jargon. Only Rs is used in the compu-

tation of eq. (E.19), while the Rf contribution, that corresponds to high transverse momentum

radiation, is evaluated separately and it is employed to generate Born-like events called rem-

nants. It is also possible to have a process that admits real corrections that are not associated

with any singular region. Those contributions are handled separately in an analogous way to

the remnants. The POWHEG formula thus becomes

dσ = B(Φn) dΦn

[
∆(p⊥,min,Φn) +

Rs(Φn+1)

B(Φn)
∆
(
p⊥(Φn+1),Φn

)
dΦrad

]
+Rf (Φn+1) dΦn+1 , (E.22)

where B and ∆ are evaluated only using Rs and Rf collects the either the remnants or the finite

real processes.

In the standard POWHEG formalism, radiation is generated using the Sudakov form factor

defined in eq. E.17 and it contains the ratio R(Φn+1)/B(Φn). If the resonance virtualities are

not the same when building the underlying Born phase space, large ratios that badly violate

the collinear approximation can arise. The improved version of the FKS method implemented

in POWHEG BOX RES overcomes this problem.

Furthermore, the PS that will complete the event should be instructed to preserve the mass

of the resonances. In the POWHEG BOX RES framework this is achieved by providing a resonance

assignment to radiation.

To each Born configuration a resonance structure fb is assigned. The only contribution α

we consider are those where the collinear partons both arises from the same resonance (the

production process is considered as a resonance). We label with i all the resonances contained

in fb and we denote by αi a singular contribution where an emission is originated from the decay
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products of i. The improved resonance-aware POWHEG formalism allow us to write

dσ =
∑
fb

Bfb(Φn) dΦn

∏
i∈fb

[
∆i(p⊥,min)

+∆i (p⊥(Φn+1),Φn)
∑
αi

[
Rαi(Φ

αi
n+1) dΦαi

rad

]
Φ
αi
n =Φn

Bfb(Φn)

]
. (E.23)

Radiation is now generated according to the POWHEG Sudakov form factor both for the pro-

duction and for all resonance decays that involve coloured partons. This feature also offers the

opportunity to modify the standard POWHEG single-radiation approach: instead of keeping

only hardest radiation from one of all possible origins, the POWHEG BOX RES can generate simulta-

neously the hardest radiation in production and in each resonance decay. The Les Houches (LH)

events can thus contain more radiated partons, one for production and one for each resonance.

Multiple-radiation events have to be completed by a shower MC program, that has to gener-

ate radiation from each origin without exceeding the hardness of the corresponding POWHEG

one, thus requiring an interface that goes beyond the simple Les Houches standard [106]. The

two most widely used PS programs, Pythia and Herwig, already implement a veto algorithm

for radiation in production in order to guarantee that the POWHEG emission is the hardest,

while radiation in decay is left, by default, unrestricted.

E.3 NLO+PS matching

We briefly describe now how the NLO events generated with POWHEG BOX (RES) can be completed

by the shower MC programs Pythia8.2 or Herwig7.1.

E.3.1 Interface to shower generators

According to the POWHEG method, the event needs to be completed by a standard shower

MC program. The subsequent emissions included by the PS must be softer than the POWHEG

generated one. In the standard Les Houches Interface for User Processes (LHIUP) [106], each

generated event has a hardness parameter associated with it, called scalup. The POWHEG BOX

sets this parameter is set equal to the relative transverse momentum of the generated radiation

p⊥. By default, radiation in decay is left unrestricted and the starting scale is set to be of

the order of the resonance virtuality. The PS preserves the virtuality of the resonance, like

the POWHEG BOX RES does when generating the real emission, if its decay products have the

resonance as mother particle in the LH event record.

A generic method for interfacing POWHEG processes that include radiation in decaying

resonances with PS generators was introduced in Refs. [90] and [91]: radiation from the top decay

products is left unrestricted and when the event is completed. A veto is applied a posteriori :

if any radiation in the decaying resonance shower is found to be harder than the POWHEG

generated one, the event is showered again.

The practical implementation of the veto procedure depends on whether we are using a

dipole, as in Pythia8.2, or an angular-ordered shower, as in Herwig7.1. In the following we

describe the implementation of our veto procedures. Conversely to the method introduced in
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Ref. [90], we do not need the whole event to be completed before applying the veto, thus saving

a lot of computational time.

E.3.2 Pythia8.2

The Pythia8.2 [82] code implements a p⊥ ordered shower. Thus, the matching with POWHEG

BOX is natural because it is enough to require that the starting scale of the shower evolution is

scalup, i.e. the transverse momentum of the POWHEG emission coming from the production

process.

When multiple emissions are concerned, the user can define a starting scale for each res-

onance, implementing the virtual functions canSetResonanceScale and scaleResonance. In

this way also emissions from a resonance can have an upper limit defined by the corresponding

POWHEG emission, like it is done by default for radiation from the production process. This

solution was adopted for example in Ref. [91].

However, the p⊥ definitions employed by Pythia and by the POWHEG BOX are slightly different.

To overcome this issue, the Pythia8.2 program offers the possibility to use the PowhegHooks

class. Each time an emission takes place, its transverse momentum is re-computed with the

POWHEG BOX definition: if it is higher than scalup, the emission is discarded.

We have implemented a new class, PowhegHooksBB4L, that can be used for the case of tt̄

production and decay. We rewrote the FSREmission method to guarantee that when an emis-

sion is originated from the production process, the PowhegHooks machinery can be employed2,

otherwise, when it comes from the t (or the t̄) the momenta of the emitter and of the emitted

particles i and j are boosted in the top frame and the transverse momentum of the radiation is

computed using

p2
⊥ = 2pb · pg

Eg
Eb

, (E.24)

if the emitter is a b (or b̄) heavy quark, using

p2
⊥ = 2pi · pj

EiEj
(Ei + Ej)2

, (E.25)

otherwise. If it is harder than the corresponding POWHEG one, this emission is discarded. The

FSREmission veto algorithm represents our default choice for handling radiation in decay.

E.3.3 Herwig7.1

The Herwig7.1 package [83, 84] implements an angular ordered PS. In the collinear limit, the

variable q that parametrizes the hardness of the emission is given by

q ≈ Eθ , (E.26)

with E the energy of the emitter before the emission and θ the angle between the two emitted

particles. A brief sketch of the evolution of an angular ordered PS is represented graphically

in Fig. E.1. The initial stages are characterized by large-angle soft radiation (green), while the

hardest emission, i.e. the one with largest p⊥ (red), may appear later.

2We have checked that the PowhegHooks veto in production does not alter significantly the results presented
in this work, thus we have not adopted it.
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Sec E.3. NLO+PS matching

Figure E.1: Angular ordered PS: in green the truncated-vetoed shower, in red the hardest emission and
in blue the remaining vetoed shower.

The procedure on how POWHEG-style NLO emissions can be matched with an angular

ordered shower is discussed in detail in Ref. [98]. Here we give only a brief summary. The

hardest emission originated from a parton i satisfies the following properties:

• it can be found by following the hardest line each time a branching takes place;

• if i is a gluon, the probability that the hardest emission takes place after a g → qq̄ can be

neglected, since this splitting is not soft-singular;

• if i is a quark, following the hardest line coincides with following the quark line since the

probability that a gluon carries the main part of the energy after a q → qg splitting is

power suppressed.

When matching an event generated with POWHEG BOX with an angular ordered PS, the scale q of

the POWHEG emission should be computed. The two partons corresponding to the POWHEG

emission should be merged and an angular ordered PS associated with the paired parton, starting

from q0, the maximum allowed scale, down to q, should be implemented. All the emissions with

a transverse momentum larger than scalup, i.e. the p⊥ of the POWHEG emission, must be

vetoed. This shower is called truncated-vetoed shower and corresponds to the green contribution

portrayed in Fig E.1. When the scale q is reached, all the subsequent vetoed showers (blue

emissions in Fig. E.1) are implemented. Since truncated-vetoed showers are known to give rise

only to a little contribution3, Herwig7.1 neglects them by default, simply requiring that all the

emissions have a transverse momentum smaller than scalup.

However, by doing so, all the large angle emissions with a scale larger than q would be missing.

The veto technique introduced in Ref. [99] and activated in Herwig7.1 with the settings

set PartnerFinder:PartnerMethod Maximum

set PartnerFinder:ScaleChoice Different
(E.27)

performs a task equivalent to the implementation of truncated showers. For example if a q → qg

splitting is the POWHEG hardest emission, the initial angle for radiation from the gluon is

taken as the maximum angle between the gluon and its two colour partners, i.e. the incoming

and the outgoing quark q. This leads to unrestricted radiation from the gluon. However, the

colour factor CA associated with this radiation is reduced by a factor of two if the scale of the

emission t′ is larger than the POWHEG one t, while it is restored to CA for smaller angles.

3In the POWHEG simulations where truncated showers have been implemented and studied [107–111] their
effect was found to be basically negligible.
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Since CA/2 ≈ CF in the large Nc limit, we see that this is equivalent to the inclusion of a

truncated-vetoed shower from the incoming q quark down to a scale t. If not specified, in this

work the settings of eq. (E.27) have not been used.

The Herwig7.1 code offers two alternative solutions for the implementation of a veto algo-

rithm that can act on the emissions coming from resonances. The two methods are equivalent

at the leading-logarithmic accuracy level, i.e. at all orders in powers of αS log2(p⊥).

It is possible to implement the virtual function vetoTimeLike belonging to the ShowerVeto

class. We have built the BB4LShowerVeto class that inherits the vetoTimeLike method from

ShowerVeto. Each time an emission that has a t or a t̄ quark as shower progenitor takes place,

it is rejected if its transverse momentum is larger than the one of the corresponding POWHEG

emission. This implementation of the veto is the analogous of the default behaviour employed

to treat radiation from the production process. The drawback of this method is that we are

unable to compute the p⊥ of the emission we are inspecting using eqs. (E.24) and (E.25), since

the momenta of the emitted particles have not been generated yet, so we must rely on the

Herwig7.1 definition of transverse momentum. However, the two definitions are the same at

the leading-logarithmic accuracy level.

An alternative is represented by the virtual function vetoShower, which belongs to the

FullShowerVeto class. As the name of the class suggests, this veto is applied at the end of

the full showering phase, before the hadronization takes place. In our implementation of the

BB4LFullShowerVeto class, the hardest emissions of the showers initiated by the coloured (anti-

)top decay products, i.e. the (anti-)bottom and eventually a gluon, is searched. If we encounter

an emission whose transverse momentum is larger than the corresponding POWHEG one, the

event is showered again. This method enables us to use the POWHEG p⊥ definition, since we

have access to the momenta of the particles. However, since some momentum reshuffling must be

applied to keep the external particles on their mass-shell after a 1→ 2 branching, the transverse

momentum of the intermediate emissions turns out to be computed with off-shell partons. This

has an impact only beyond the leading-logarithmic accuracy level.

If not specified, we adopted BB4LShowerVeto to perform the veto.
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Appendix F

The treatment of remnants for

multiple-emission processes

As we have seen in Appendix E.2, in POWHEG it is possible to separate the real cross section,

in a given singular region α, into two contributions Rαs and Rαf , where Rαf does not contain any

singularities, while Rαs is singular. Only Rαs is exponentiated in the Sudakov form factor and

used for the computation of B̃, while the leftover Rαf , dubbed the remnant contribution, is finite

upon phase space integration [98].

In all our three NLO generators it is possible to achieve this separation for initial-state

radiation (ISR) emissions by setting the parameter hdamp1 in the powheg.input file. Denoting

with αISR the production region, eq. (E.21) tells us that RαISR
s and RαISR

f are defined as

RαISR
s =

(hdamp)2

(hdamp)2 + (pαISR
⊥ )2

RαISR , (F.1)

RαISR
f =

(pαISR
⊥ )2

(hdamp)2 + (pαISR
⊥ )2

RαISR , (F.2)

where pαISR
⊥ is the transverse momentum of the emitted parton relative to the beam axis. The

scalup variable contained in the Les Houches event, that is used by the parton shower program

to veto emissions harder than the POWHEG one, is set equal to pαISR
⊥ .

Since remnant events are non-singular, the associated radiation has transverse momenta of

the order of the partonic center-of-mass energy. We can thus define scalup as

scalup =
ŝ

2
. (F.3)

We have checked that, by using as scalup the default POWHEG scale (i.e. the transverse

momentum of the radiated parton) the mmax
Wbj

and the Emax
bj

values are very close to the ones

we have presented in this paper. This is consistent with the expectation that these observables

should be relatively insensitive to radiation in production, that in our case is always treated

as ISR. The same holds for the leptonic observable m(`+`−). For the remaining ones, a higher

sensitivity to ISR effects is not excluded, and in fact the differences of the first Mellin moments

1We used an hdamp value equal to the input top-quark mass, i.e. the qmass parameter for the hvq generator,
tmass for bb̄4` and tt̄dec.
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reported in Tab. 14.1 with the corresponding ones obtained with the default scalup value, for

the hvq generator showered with Pythia8.2, are given by

∆〈p⊥(`+)〉 = 125± 46 MeV ,

∆〈p⊥(`+ + `−)〉 = 298± 54 MeV ,

∆〈E(`+`−)〉 = 214± 149 MeV ,

∆〈p⊥(`+) + p⊥(`−)〉 = 219± 87 MeV .

(F.4)

In comparison with Tab. 14.1, we see that these variations are of the same order or smaller than

those arising from scale and PDF uncertainties.

In the bb̄4` code, when ISR remnants are generated, no radiation in decay is produced.2

Thus, in this case, radiation off the resonances is fully handled by the parton shower, without

the use of a veto algorithm to limit the p⊥ of the radiated partons.

The tt̄dec generator does instead implement radiation in decay also for remnants, and thus

in this case vetoing is performed as for the standard events.

The absence of emissions from the t and t̄ resonances in remnant events for the bb̄4` generator,

in contrast with the tt̄dec one, is probably the reason why the former generator displays a slightly

larger sensitivity to matrix-element corrections (see Tabs. 12.3, 13.1 and 14.3).

To summarize:

• hvq: Emissions in decay are never vetoed. For remnant events the scalup value used to

limit radiation in production is set to
√
ŝ/2.

• tt̄dec: Emissions in decay are always vetoed. For remnant events the scalup value is set

to
√
ŝ/2.

• bb̄4`: Emissions in decay are always vetoed except if the event is a remnant, in which case

they are never vetoed. For remnant events the scalup value is set to
√
ŝ/2.

F.1 Sensitivity of the results on hdamp

For our top-mass studied we have choosen

hdamp = mt, (F.5)

being the top mass mt a scale of our hard process. However, since we focus on top-pair produc-

tion, also

hdamp = 2mt (F.6)

seems an equally natural choice. We thus investigate the sensitivity of our result on the value

of hdamp. Sice this parameter affects only the treatment of ISR, we restricted our comparison

to the hvq generator, on the ground that all the generators under analysis describe ISR with

the same accuracy. We thus generated a sample of 106 events with the setting in eq. (F.6). The

impact of the two choices in eqs. (F.5, F.6) is shown in Tab. F.1.

2This behaviour may be changed in the future.
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We notice that all the observables suggest a mt value larger for the hdamp = mt case (∆mt =

−∆O/B), apart from the energy of the b-jet and the mass of the lepton pair where, however,

the standard deviation has the same size of the difference. The discrepancy between the two

alternatives is in general very small, in particular if we consider the reconstructed mass, where

the two predictions differ by 3-4 MeV. The energy of the lepton pair corresponds to a mass shift

of 0.45 GeV, but with an error of 0.33 GeV. Given our statistical error, the only observable that

shows a non-negligible difference is the transverse momentum of the lepton pair, where we find a

mt shift of 0.6± 0.2 GeV. In any case, the variations produced by the different choices of hdamp

are smaller than those induced by scale and PDF variations (see Tab. 14.1).

hvq, pwgveto=0, NLO+PS, GeV

observable hdamp1 = mt hdamp2 = 2mt hdamp1 − hdamp2

mmax
Wbj

no smearing 172.498± 0.001 172.501± 0.002 −0.003± 0.002

mmax
Wbj

smearing 171.315± 0.001 171.319± 0.002 −0.004± 0.002

Emax
bj

69.36± 0.06 69.24± 0.09 +0.12± 0.11

〈p⊥(`+)〉 56.68± 0.03 56.71± 0.04 −0.03± 0.06

〈p⊥(`+`−)〉 69.16± 0.04 69.35± 0.05 −0.19± 0.07

〈m(`+`−)〉 109.07± 0.06 109.00± 0.09 +0.07± 0.11

〈E(`+`−)〉 186.70± 0.11 186.95± 0.14 −0.25± 0.18

〈p⊥(`+) + p⊥(`−)〉 113.30± 0.06 113.38± 0.08 −0.08± 0.10

Table F.1: Differences between the leptonic observables obtained using the hdamp= mt and the hdamp=
2mt settings for the hvq generator interfaced with Pythia8.2. The results shown are at the NLO+PS
level, i.e. without the inclusion of the hadronization and of the underlying event.
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