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Abstract. Motivated by a conjecture of Xiao, we study families of coverings of elliptic

curves and their corresponding Prym map Φ. More precisely, we describe the codifferential

of the period map P associated to Φ in terms of the residue of meromorphic 1-forms

and then we use it to give a characterization for the coverings for which the dimension

of Ker(dP ) is the least possibile. This is useful in order to exclude the existence of non

isotrivial fibrations with maximal relative irregularity and thus also in order to give

counterexamples to the Xiao’s conjecture mentioned above. The first counterexample to

the original conjecture, due to Pirola, is then analysed in our framework.

Introduction

Hurwitz spaces were classically introduced and studied by Clebsh and Hurwitz (see

[Cle72] and [Hur91]) as spaces parametrizing branched coverings of P1. Nowadays, the

term Hurwitz space refers to a variety which parametrizes, up to equivalence, coverings

π : F → E of curves with some geometric restrictions. In this article we will use a local

version of Hurwitz spaces, namely a local family of coverings, whose seminal idea can be

found in [Kan04]. Roughly, given a fixed covering π : F → E where E is an elliptic curve,

one is able to construct a map p : F → E of curves over H, where H is a contractible open

set. Then H is a parameter space for smooth coverings which share the same degree and

the same ramification indices with π.

Attached to a local family of coverings p : F → E with parameter spaceH there is the Prym

map Φ, which associates to a b ∈ H the generalized Prym variety of πb = π|Fb
: Fb → Eb,

i.e. the connected component containing 0 of the kernel of the norm map Nm(πb). The

Prym map is, in some sense, the analogous of the Torelli map T from Mg, the moduli

space of curves of genus g, to Ag, the moduli space of principally polarized abelian varieties

of dimension g.

A celebrated theorem, the infinitesimal Torelli theorem, states that the differential of the

Torelli map is injective outside the hyperelliptic locus of Mg and it should be interesting

to have a similar theorem also for Prym maps or, at least, to their lifting P to a period

domain. We will show that, in our case, i.e. when the base E is an elliptic curve, the

dimension of the kernel of doP∨ is at least 1 as a consequence of how the local families

that we will use are constructed. Roughly, by composing a covering with a traslation of

the base we always have coverings with the same Prym, so there is a tangent direction in

the parameter space along which the Prym map is constant. Hence a question analogous

to the one answered by the infinitesimal Torelli is
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Given a family of coverings with central fiber π, which conditions

can we put on π in order to have that Ker(doP) has dimension 1?

It is already known that an infinitesimal Torelli-like theorem for the Prym map cannot

hold without restrictions as there are examples of coverings π : F → E (moreover with F

non hyperelliptic) for which there are two independent directions along which doP is 0.

One of these examples, due to Pirola, will be analyzed in Section 4. This paper is devoted

to the study of the Prym map Φ : H → A in the cases for which H parametrizes coverings

over an elliptic curve.

A further motivation to study this kind of problems comes from a conjecture about fibered

surfaces. Recall that, given a fibration f : S → B of a smooth compact surface S over

a smooth compact curve B, the relative irregularity qf is defined to be the difference

q(S)− g(B). A modified version of a conjecture of Xiao states that, if f is not isotrivial,

then

(1) qf ≤
⌈
g + 1

2

⌉
.

The original conjecture was without the round up and has been modified after a coun-

terexample of Pirola, the one that we will present in Section 4. To have an insight of what

is known about the relative irregularity and about recent results about an upper bound a

good reference is [BGN15]. The link between the world of non isotrivial fibrations and the

one of the families of coverings we will define is broadly given as follows. The fibration f

induces a surjective map alb(f) : Alb(S)→ Alb(B) = J(B) with dim(Ker(alb(f))) = qf ,

which has a connected component containing 0. We shall denote it with Kf . If B0 is the

open subset of B over which the fibration has smooth fibers, we denote by Fb the fiber

over b ∈ B0. Via the map Fb ↪→ S we have a map JFb → Alb(S) whose image is, up to

translation, exactly Kf . Dualizing we have a map

K∨f
� � // JF∨b = JFb

Note that K∨f doesn’t depend on b whereas Fb strongly depends on it. In particular we

have proved that the Jacobian of every smooth fiber of a non isotrivial fibration contains

a fixed abelian variety of dimension qf . Assume now that we are in an extreme case,

i.e., assume that qf = g − 1. Since in this article we are only interested in non isotrivial

fibrations, we will call fibration with maximal relative irregularity those with qf = g − 1.

In fact, every fibration satisfies 0 ≤ qf ≤ g and the equality qf = g holds if and only if the

fibration is trivial (this follows from a result of Beauville: see the appendix of [Deb82] for

details). In this case dim(K∨f ) = qf = g − 1 and we can consider the quotient JFb/K
∨
f

which will be an abelian variety of dimension g − qf = 1: an elliptic curve Eb.

Φ(πb) = K∨f
� � // JFb

pb // // Eb

Fb

πb

>>OO

πb
// Eb

Moreover, in this case K∨f is the connected component through the origin of the kernel

of the norm map associated to the ramified covering πb : Fb → Eb, i.e. the Prym variety

Φ(πb). Hence, an eventual counterexample to the modified version of the conjecture of
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Xiao, under the additional assumption qf = g − 1, would give a family of coverings of

elliptic curves with constant Prym variety. At the moment the question

Is there a non isotrivial fibration (with maximal relative irregularity qf or not)

giving a counterexample to the modified Xiao’s conjecture?

is still completely open but, by answering precisely to our first question one should be able

to construct counterexamples or to prove that, at least for the case of maximal relative

irregularity, such examples cannot exist. It is worth to mention that, by the original work

of Xiao (see [Xia87]), a non isotrivial fibration with maximal relative irregularity can exist

only if g ≤ 7.

The paper is organized as follows. In Section 1 we recall some definitions and facts about

Prym varieties associated to ramified coverings and Prym maps that we are going to

use extensively in what follows. In Section 2 we will extend the techniques developed in

[Kan04] for coverings with simple ramification to the case of arbitrary one. The main

result is this theorem

Theorem (2.3). With the notations of section 2, for any ϕ ∈ Sym2(H0(ωF )−) we have

(2) doP∨(ϕ) =
n∑
j=1

Resaj

(
m(ϕ)

π∗α

)
dtj +

(
n∑
k=0

m(ϕ)

π∗α2
(xk)

)
ds.

that describe the (dual of the) differential of the Period map in terms of residues of some

meromorphic forms. In Section 3, given a covering π : F → E and assuming that F is

not hyperelliptic, we prove Theorem 3.4, a geometric criterion on the canonical model F

that is a sufficient condition in order to have dim(Ker(doP)) = 1. Finally, in Section 4, we

analyze in our framework the family that was constructed in [Pir92]. We will prove, using

our framework, that the existence of the family is consistent with our Theorem as well

as other interesting geometric aspects that may suggest a different way to approach, in

the future, the problem of finding an answer to the second question by starting from the

geometry of canonical models.
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1. Some preliminaries

In this section we recall some definitions that we are going to use in the following sections.

Let F,E be two smooth curves of genus g ≥ 2 and 1 respectively and consider the covering

π : F → E. One can consider the Albanese variety associated to F , which coincides with

its Jacobian, because F is a curve. Namely

(3) J(F ) =
H0(ωF )∨

H1(F,Z)
= Alb(F ) =

H1(OF )

H1(F,Z)
.
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This is a principally polarized abelian variety of dimension g. As E has genus 1 we have

E = J(E) = Alb(E). By the universal property of Alb(F ) there is a map alb(π) such that

the diagram

F
π // //

��
	

E

=
��

JF
alb(π)
// // JE

commutes, where the map F → JF is the Albanese map of F , also called the Abel-

Jacobi map. The map alb(π) is also called the norm map of π, Nmπ, and it is surjective.

The generalized Prym variety associated to π : F → E (or simply Prym variety) is the

connected component of Ker(alb(π)) that contains the 0, i.e.

(4) P (π) = Ker(alb(π))0.

P (π) is an abelian variety of dimension g − 1 with a natural polarization ΘP given by

ΘJF |P via the embedding

P (π) �
� // JF.

The map π : F → E induces a map trπ : H0(ωF ) → H0(ωE) called the trace of π (see

Appendix A of [Kan04] for the definition). The trace satisfies

trπ ◦ π∗ = Deg(π) IdH0(ωE) .

If we define

(5) H0(ωF )− = Ker(trπ)

we have a canonical splitting

(6) H0(ωF ) = π∗H0(ωE)⊕H0(ωF )−

and we can identify the quotient H0(ωF )/π∗H0(ωE) with H0(ωF )−. In particular, the

tangent bundle of P (π) can be described as

(7) TP (π) =

(
H0(ωF )

π∗H0(ωE)

)∨
⊗OP (π) = (H0(ωF )−)∨ ⊗OP (π).

Now we will introduce the families of coverings of elliptic curves we are interested in. Fix

a smooth curve F of genus g ≥ 2 and consider a degree d covering π : F → E, where E is

an elliptic curve. Denote with

R =
n∑
j=1

(nj − 1)aj

the ramification divisor and call bj the branch point corresponding to the ramification point

aj, i.e. π(aj) = bj. Thus nj is the degree of π when restricted to a suitable neighborhood

of aj.

Fix a generator α of H0(ωE). Choose a suitable set {∆j} of coordinate neighborhoods

centered in the points bj and call wj the corresponding coordinate on E. This is not

needed at the moment but observe that we can assume that α|∆j
= dwj. We can chose a

collection of pairwise disjoint coordinate neighborhoods (Uj, zj) centered in aj in such a

way that wj = π|Uj
(zj) = z

nj

j .
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Denote by HE the polydisc Πn
j=1∆j and consider the coordinates t = (tj)

n
j=1 defined by

the relation

tj(P1, · · · , Pn) = wj(Pj).

We can consider, as in Section 4.1 of [Kan04], a family

(Ψ, f) : F → E ×HE

of d-sheeted branched coverings deforming π parametrized by HE such that

(8) wj = Ψ|Uj
(zj, t) = z

nj

j + tj.

In this way, to each b′ ∈ HE, it is associated a covering πb′ : Fb′ → E which is a deformation

of π, the central fiber. Note that (8) forces the ramification orders to remain costant and

allows different branch points to move indipendently. This is what we will call in the

following local family of coverings over E with central fiber π parametrized by HE.

The tangent space to HE in b = (b1, . . . , bn) ∈ HE is

TbHE '
n⊕
j=1

TbjE '
n⊕
j=1

C
∂

∂tj
,

where the tangent vectors on the right are evaluated in 0.

We can also take into account the deformation of the elliptic curve. Indeed, following

[ACG11], if one chooses c ∈ E not among the bj and considers a small coordinate

neighborhood (N, v) of c (eventually shrinking ∆j in such a way that for all j they are

disjoint from N), one can consider the associated Schiffer variation E → N of E with

coordinate s. Observe that we can assume α|N = dv. Taking into account also the

movement of the branch points one has a family f : F → HE ×N of curves of genus g

that fits into the diagram

(9) F
f
��

p // E

��
HE ×N // N

For a choice (b′, s′) ∈ H = HE × N we have an elliptic curve Es′ , the fiber of the map

E → N over s′, a curve F(b′,s′) of genus g and a covering

π(b′,s′) = p|F(b′,s′)
: F(b′,s′) → Es′ .

For this reason, the map p is what we will call local family of coverings with central fiber π

parametrized by H or, simply, local family of coverings. The tangent space to H in (b, s) is

T(b,s)H '

(
n⊕
j=1

C
∂

∂tj

)
⊕ C

∂

∂s
.

and, clearly, containts TbHE in a natural way. We stress that, through the whole article,

unless otherwise stated, we will always refer to the families of coverings constructed in

this sections.

If we have a family of coverings parametrized by H, for each (b, s) we can construct the

Prym variety associated to the covering. Moreover, the type of polarization remains
5



constant. Hence we can consider the Prym map

(10) H Φ // Ag−1

(b, s) � // [P (π(b,s))]

where Ag−1 is the moduli space of abelian varieties with polarization (which will be

omitted) equal to the one of the central fiber. In the same way one has the Prym map ΦE

associated to a local family of coverings over E.

To avoid technical subtleties around singular points of Ag−1, we will consider the period

map P : H → D (or PE : HE → D) instead of the Prym map Φ (respectively ΦE), where D
is a suitable period domain for Ag−1. The interested reader is referred to [Kan04, Section

3] for technical details.

Through the whole article, giving two sections s1, s2 ∈ H0(OX(D)) we will write s1 ⊗̂ s2

to mean their symmetric product, i.e.

1

2
(s1 ⊗ s2 + s2 ⊗ s1) ∈ Sym2(H0(OX(D))).

If si ∈ H0(OX(Di)), s1 · s2 will mean the evaluation of s1⊗ s2 in H0(OX(D1 +D2)) under

the multiplication map.

2. A direct formula for the codifferential of the Prym map

In this section we will prove an explicit formula for the codifferential of the period map in

terms of the residue at the ramification points of some forms. The framework is similar to

the one in [Kan04] with the main difference being that we don’t restrict ourselves to the

case of simple ramification. First of all we introduce some notations.

Fix an elliptic curve E and let π : F → E be a covering of E with F of genus g. Consider

(Ψ, f) : F → E ×HE,

the local family of coverings with fixed base E, central fiber π and parameter space HE

constructed in Section 1. By construction, it induces a family f : F → HE with central

fiber Fo = F . If we consider a minimal versal deformation f ′ : F ′ → M of F then the

previous family is induced by f ′ by means of a pullback. More precisely there exists a

holomorphic map hE : HE →M such that

(11) F
f
��

// F ′

f ′

��
HE

hE

// M

is commutative. Being f ′ a minimal versal deformation we have

ToM ' H1(TF ) ' H0(ω⊗2
F )∨.

Moreover, under this identification, if we take a tangent vector v in ToHE and evaluate

dhE in v we get the Kodaira-Spencer map KSE associated to F → HE evaluated in v.

We are able to prove the first important part of Theorem 2.3.
6



Proposition 2.1. Using the identifications introduced above, we have that

dh∨E : T∨o M → T∨o HE

can be written as

(12) dh∨E(ϕ) =
n∑
j=1

γjdtj where γj = 2πiResaj

( ϕ

π∗α

)
and ϕ ∈ T∨o M = H0(ω⊗2

F ).

Proof. For every ϕ ∈ H0(ω⊗2
F ) we have that dh∨E(ϕ) is identified, as cotangent vector on

M in o, by the complex numbers γj such that

dh∨E(ϕ) =
n∑
j=1

γjdtj.

By construction, we can obtain these numbers simply by pairing dh∨E(ϕ) against ∂
∂tj

:

γj = dh∨E(ϕ)

(
∂

∂tj

)
= ϕ

(
dhE

(
∂

∂tj

))
= ϕ

(
KSE

(
∂

∂tj

))
.

In order to develop the computation we may proceed using a description of KSE in terms

of the Čech cohomology (details of this can be found in [Hor73]). To do it consider the

exact sequence

(13) 0 // TF
dπ // π∗TE

ψ // R // 0

and let δ be the coboundary map H0(R)→ H1(TF ). Then KSE factors as δ ◦ τ = KSE
where τ : TbH → H0(R) is the characteristic map of the family (see [Hor73] for the

definition and the proof of this fact). Hence we can unfold the calculation using these

exact sequences.

If one restricts the exact sequence (13) on Uj (or some sufficiently small subset of this

coordinate neighborhood), it can be identified with

(14) 0 // OUj

∂
∂zj

dπ // OUj

∂
∂wj

ψ // R|Uj
// 0.

The first map sends ∂
∂zj

to njz
nj−1
j

∂
∂wj

while the second one is simply the restriction

to the ramification locus. Let U = {U0, U1, . . . , Un} where Uj for j = 1, . . . , n are the

neighborhoods defined above and U0 = F \ {aj}. Let, as usual, Uα,β, be a shorthand for

Uα ∩ Uβ with α < β. If η = [ηj] ∈ H0(U ,R) with η0 = 0 and ηj = pj(zj)
∂
∂wj

we have

δ (η) = [λα,β] with λ0,j =
pj(zj)

njznj−1

∂

∂zj

for j > 0 and λα,β = 0 if α, β > 0. Following [Hor73] and using Equation (8) we have

(15) τ

(
∂

∂tj

)
= [τ

(j)
k ] with τ

(j)
k =

{
0 k 6= j
∂
∂wj

k = j.

Hence we have

KSE

(
∂

∂tj

)
= δ

(
τ

(
∂

∂tj

))
= [χ

(j)
α,β] with χ

(j)
α,β =

{
1

njz
nj−1

∂
∂zj

(α, β) = (0, j)

0 otherwise.
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If ϕ ∈ H0(ω⊗2
F ) we can represent it as Čech-cocycle as [φj] where

φ0 = φ|U0 and φj = qj(zj)dz
2
j

are the local expressions of ϕ in coordinates around aj. The numbers we are interested in

are simply the ones obtained by considering the perfect pairing

(16) H0(ω⊗2
F )⊗H1(TF ) // H1(ωF )

' // C

applied to KSE

(
∂
∂tj

)
and ϕ. Using Čech cohomology, the image in H1(ωF ) of our product

is given by the Čech class [ε
(j)
α,β] with

ε
(j)
α,β =

{
qj(zj)

njz
nj−1dzj (α, β) = (0, j)

0 otherwise.

What remains to be proven is the analogous to the calculation of [Kan04] for the case

of simple ramification: roughly, one can adapt the techniques of [ACG11, pag. 14-15] to

develop the last isomorphism of (16) in order to finally get

γj = 2πiRes0

qj(zj)dz
2
j

njz
nj−1
j dzj

= 2πiResaj
ϕ

π∗α
.

�

Consider now the family p : F → E with central fiber π : F → E and parameter space

H = HE×N as defined in Section 1. As before, we have an induced deformation f : F → H
of F , its associated Kodaira-Spencer map KS and, when a minimal versal deformation

f ′ : F ′ →M of F is chosen, an holomorphic map h : H →M such that

(17) F
f
��

// F ′

f ′

��
H

h
// M

is commutative. Again, as ToM ' H1(TF ), we can identify dh with KS. We will denote

by x1, . . . , xd the points of the fiber of π over the point c which, by construction, are all

different.

Proposition 2.2. Using the identifications introduced above, we have that

dh∨ : T∨o M → T∨o H

can be written for any ϕ ∈ H0(ω⊗2
F ) = T∨o M as dh∨(ϕ) =

∑n
j=1 γjdtj + γds where

(18) γj = 2πiResaj

( ϕ

π∗α

)
and γ = 2πi

d∑
k=1

ϕ

π∗α
(xk).

Proof. As before, by duality,

dh∨(ϕ) = ϕ ◦ dh = ϕ ◦KS.

It is then clear that the formula for γj follows directly from Proposition 2.1. The one that

gives γ, as it involves calculations done far from the ramification points, doesn’t depend

on the type of the ramifications. Hence, the one given in [Kan04] when π as only simple

ramification is still valid. �
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Recall that we have a decomposition of H0(ωF ) given by H0(ωF )− ⊕ π∗H0(ωE) where

the first space is the vector space of 1-forms on F with trivial trace. This induces a

decomposition on Sym2(H0(ωF )). Unless otherwise specified, consider Sym2(H0(ωF )−) as

a subspace of Sym2(H0(ωF )) in the natural way. Let m : Sym2(H0(ωF )2)→ H0(ω⊗2
F ) be

the multiplication map. Denote by P : H → D the period map associated to the Prym

map Φ : H → Ag−1 where D is a suitable period domain. We are ready to prove Theorem

2.3.

Theorem 2.3. With the notation introduced in this section, for any ϕ ∈ Sym2(H0(ωF )−)

we have

(19) doP∨(ϕ) =
n∑
j=1

Resaj

(
m(ϕ)

π∗α

)
dtj +

(
d∑

k=1

m(ϕ)

π∗α2
(xk)

)
ds.

Proof. Theorem 3.21 of [Kan04] expresses the codifferential of the period map calculated

in ϕ ∈ Sym2(H0(ωF )−) and paired with ∂
∂tj

as

ϕ

(
KS

(
∂

∂tj

))
without any restriction on the ramification type. In particular, this formula, together with

Proposition 2.2 ends the proof of the Theorem. �

Remark 2.4. As a consequence of the last Theorem we can conclude that, if we fix E,

the codifferential doP∨E : Sym2(H0(ωF )−)→ T∨o HE factors as

(20) H0(ω⊗2
F )

dh∨E
��

Sym2 (H0(ωF ))
dT∨oo

T∨o HE Sym2(H0(ωF )−)
?�

σ

OO

doP∨E

oo

where T is the Torelli map (so that m = dT∨) and σ is the lifting of the projection of

Sym2(H0(ωF )) → Sym2(H0(ωF )−) induced by the decomposition H0(ωF ) = H0(ωF )− ⊕
π∗H0(ωE). The commutativity of the diagram is a consequence of Proposition 2.1 as, for

any ϕ ∈ H0(ωF ) ⊗̂ π∗H0(ωE), we have that ϕ/π∗α is holomorphic and hence has residue

zero everywhere.

3. A geometric approach via the canonical embedding

In this section we will use the technical result of the previous section in order to prove

that dim(Ker(doPE)) = 1 for arbitrary ramification types and a geometric criterion to

determine whether dim(Ker(doP)) = 1 or not. First we fix some notation and facts about

the canonical curves that we are going to use extensively in the following.

As F has genus g ≥ 3 and is not hyperelliptic, we may identify it with its canonical model in

P = PH0(ωF )∨. This is a non-degenerate curve of degree 2g − 2, which is also projectively

normal by a classical result of Max Noether (see, for example, [ACGH85]). One of the

consequences of this fact is that the multiplication map mk : SymkH0(ωF ) → H0(ω⊗kF )

is surjective. As before we will denote m2 simply by m. We will use frequently the

natural identifications H0(OP(d)) = SymdH0(ωF ) which enable us to identify P(Ker(md))
9



with the space of hypersurfaces of degree d in PH0(ωF )∨ that contain F . By abuse of

notation we will simply say that an element in SymdH0(ωF ) is an hypersurface of degree

d if no confusion arises. In particular, if IF is the ideal sheaf of F in PH0(ωF )∨, then

Ker(m) = H0(IF (2)) gives the set of all quadrics in PH0(ωF )∨ containing the curve F ,

and has dimension (g−2)(g−3)
2

.

Recall that the decomposition

H0(ωF ) = H0(ωF )− ⊕ π∗H0(ωE)

where the first space is the space of forms with zero trace.

Since elements in H0(ωF ) are linear equations on PH0(ωF )∨, all the hyperplanes defined by

elements in H0(ωF )− intersect in a single point q− of P which is a point really important in

what will follows. We have also a particular hyperplane, the one defined by the subspace

π∗H0(ωE) which will be denoted by H−. More precisely,

q− = P((H0(ωF )−)⊥) and H− = P((π∗H0(ωE))⊥)

As before, we will fix a generator α of H0(ωE) so that

(21) Sym2(H0(ωF )) = Sym2(H0(ωF )−)⊕
(
π∗α ⊗̂H0(ωF )

)
.

Given a quadric Q in P we will denote by GQ ∈ Sym2(H0(ωF )) one of its equations and

by G−Q ∈ Sym2(H0(ωF )−) and ωQ ∈ H0(ωF ) the only elements such that

GQ = G−Q + π∗α ⊗̂ωQ

under the decomposition (21). Finally, given a quadric Q, we will denote by Q− the cone

given by the equation G−Q, i.e. the quadric such that GQ− = G−Q− = G−Q.

In order to prove Theorem 3.2 we will need the following result:

Lemma 3.1. We have a natural inclusion of H0(IF (2)) in Ker(doP∨E).

Proof. Recall that, fixed a family of coverings with base E and central fiber π : F → E,

by fixing a minimal versal deformation F ′ →M of F , we can construct hE : H →M like

in diagram (11). As observed in Remark 2.4 we have a commutative diagram

(22) 0

0 // Ker doP∨E
� � j // Sym2(H0(ωF )−)

OO

doP∨E // T∨o HE

0 // H0(IF (2))
?�

γ

OO

� � ι // Sym2(H0(ωF ))

pr
OOOO

m // // H0(ω⊗2
F )

dh∨E

OO

// 0

H0(ωF ) ⊗̂ π∗H0(ωE)
?�

OO

0

OO

10



It is easy to see that the image of pr ◦ ι lives in Ker(doP∨E) so we have a well defined map

γ : H0(IF (2)) → Ker(doP∨E). We want to prove that this map is indeed injective. This

follows from the geometry of the problem. Indeed, if a quadric Q contains F , i.e. if the

quadric has equation

GQ = G−Q + π∗α ⊗̂ωQ ∈ H0(IF (2)),

and if γ(GQ) = 0 then we have that the quadric has equation π∗α ⊗̂ωQ. But this is

impossible because such a quadric the union of two planes (one of which is H−) and the

canonical curve is non-degenerate. Hence γ is injective. �

Theorem 3.2. Let π : F → E be a covering with F non-hyperelliptic, consider a local

family of coverings with base E and parameter space HE constructed in Section 1. Let PE
be the period mapping associated to the Prym map ΦE. Then dim(Ker(doPE)) = 1.

Proof. First of all, observe that for dimensional reasons, one has dim(Ker(doPE)) = 1 if

and only if

dim(Ker(doP∨E)) =
g(g − 1)

2
− n+ 1.

From the splitting H0(ωF ) = H0(ωF )− ⊕ π∗H0(ωE) we have the commutative diagram

0 // H0(ωF )
⊗̂π∗α // Sym2(H0(ωF ))

pr //

Ψ ))

Sym2(H0(ωF )−) //

doP∨E
��

0

ToHE

with Ψ defined by extending the formula in Theorem 2.3 to Sym2(H0(ωF )). This can be

done because, as previously observed (see Remark 2.4), doP∨E(H0(ωF ) ⊗̂ π∗α) = {0}. In

particular, we have the relation

(23) dim(Ker(doP∨E)) = dim(Ker(Ψ))− dim(Ker(pr)) = dim(Ker(Ψ))− g.

By definition, Ψ factors through the multiplication map m as Ψ = Ψ̄ ◦m. The map Ψ̄ is

well defined as, by Lemma 3.1, Ker(m) ⊂ Ker(Ψ).

0 // H0(ωF )
⊗̂π∗α // Sym2(H0(ωF ))

pr //

Ψ

))
m
��

Sym2(H0(ωF )−) //

doP∨E
��

0

H0(ω⊗2
F )

Ψ̄ // ToHE

Being m surjective (as F is non-hyperelliptic) we obtain the further relation

(24) dim(Ker(Ψ)) = dim(Ker(Ψ̄)) + dim(Ker(m)) = dim(Ker(Ψ̄)) +
(g − 2)(g − 3)

2
.

As the divisor associated to π∗α is exactly R, the ramification divisor, we have that

ωF = OF (R) and there is an exact sequence

(25) 0 // ωF
·π∗α // ω⊗2

F
// ω⊗2

F |R // 0

11



which yields, denoting with V the quotient H0(ω⊗2
F )/(H0(ωF ) · π∗α), the exact sequences

(26) 0 // H0(ωF )
·π∗α // H0(ω⊗2

F )
ε // V // 0

0 // V
ζ // H0(ω⊗2

F |R) // H1(ωF ) // 0

Let η ∈ Ker(ε). We want to prove that Ψ̄(η) = 0. This is easily proven: write η as ω · π∗α
and observe that

Ψ̄(η) = (Ψ̄ ◦m)(ω ⊗̂ π∗α) = (doP∨E ◦pr)(ω ⊗̂ π∗α) = 0

because ω ⊗̂ π∗α ∈ Ker(pr). In particular, Ker(ε) ⊂ Ker(m) and we can define a map

λ : V → T∨o HE such that Ψ̄ = λ ◦ ε. Moreover

(27) dim(Ker(Ψ̄)) = dim(Ker(λ)) + g.

Using the second exact sequence in 26 we can also define a map µ : H0(ω⊗2
F |R)→ ToHE

such that µ ◦ ζ = λ.

(28) H0(IF (2))
� _

��

H0(ωF ) �
�⊗̂π∗α //
� t

·π∗α

''

Sym2(H0(ωF ))
pr // //

Ψ

**

m
����

Sym2(H0(ωF )−)

doP∨E
��

H0(ω⊗2
F )

Ψ̄ //

ε
%% %% **

T∨o HE

V

λ
88

��
ζ

// H0(ω⊗2
F |R)

µ

OO

// // H1(ωF )

Note that we have several ways to define µ. Since ω⊗2
F |R = ωF (R)|R the global sections of

ω⊗2
F |R are just collections of meromorphic tails on the points of ramification, i.e. elements{

nk−1∑
j=1

βjk
dzk

zjk

}
ak∈R

where nk is the ramification index of the point ak. In particular, we can define µ as the

map which gives the residue in the corresponding point of the meromorphic tail. This

ensures that the diagram is commutative. In addition, µ is surjective (this because the

image of a collection of meromorphic tails {sk}, one for each point of ramification, with

β1m = δkm, generates the image), and as a consequence, ζ|Ker(λ) is an isomorphism between

Ker(λ) and Ker(µ). Hence,

(29) dim Ker(doP∨E) = dim(Ψ)− g = dim(Ψ̄) + dim(Ker(m))− g =

= dim(λ) + dim(Ker(m)) = dim(µ) + dim(Ker(m)) =

= h0(ωF (R)|R)− dimT∨o HE + dim(Ker(m)) =
g(g − 1)

2
− n+ 1

as wanted. �

Now we will prove the first main theorem:
12



Theorem 3.3. Let π : F → E be a covering with F non-hyperelliptic, consider the local

family of coverings with parameter space H constructed in Section 1. Let P be the period

mapping associated to the Prym map Φ : H → Ag−1. Using the same notations of Theorem

2.3 we have

dim(Ker(doP))) = 1 ⇐⇒ ∃β ∈ Ker(doP∨E) |
d∑

k=1

m(β)

π∗α2
(xk) 6= 0.

Proof. First of all consider the diagrams

ToH
doP // TP (o)D

ToHE

doPE

99

?�

OO
T∨o H

����

T∨P (o)D
doP∨oo

doP∨Eyy
T∨o HE

and observe that one always has

Ker(doPE) ⊆ Ker(doP) Ker(doP∨) ⊆ Ker(doP∨E).

Moreover, the codimensions are at most 1. If one considers the exact sequences

0 // Ker(doPE) // ToHE
// TP (o)D // Ker(doP∨E)∨ // 0

0 // Ker(doP) // ToH // TP (o)D // Ker(doP∨)∨ // 0

it is clear that Ker(doPE) = Ker(doP) if and only if Ker(doP∨) ( Ker(doP∨E). Hence we

have

dim(Ker(doP))) = 1⇐⇒ Ker(doP∨) ( Ker(doP∨E).

This is true if and only there exists an element β ∈ Ker(doP∨E) on which doP∨ doesn’t

vanish. This can only be possible if doP∨(β) is not zero on ∂
∂s

, where s is the parameter

taking into account the moduli of the elliptic curve. By using Theorem 2.3 we have

doP∨(β) =
d∑

k=1

m(β)

π∗α2
(xk)

and this concludes the proof. �

This result improves the one in [Kan04] where it is proved only for simple ramification.

In the same work is proved that, for simple ramification, having the sum in Theorem 3.3

different from zero for some β ∈ Ker(doP∨E) is equivalent to ask that the intersection of

the quadrics that contain the canonical model of F doesn’t contain the point q− defined

before. Unfortunately, in the case of arbitrary ramification, we are not able to prove this

equivalence but only one implication.

Theorem 3.4. With the same hypotesis of Theorem 3.3, if we identify F with its canonical

model in PH0(ωF )∨, then we have

(30) q− 6∈
⋂
F⊂Q

Q =⇒ dim(Ker(doP)) = 1,

where Q ranges in the set of quadrics of PH0(ωF )∨ containing F .

The proof of the theorem uses some arguments developed in [Kan04] that we have

summarized in the following Lemma.
13



Lemma 3.5. Let Q be a quadric of PH0(ωF )∨ containing F and denote by GQ = G−Q +

π∗α ⊗̂ωQ one of its equations. Then

d∑
k=1

m(G−Q)

π∗α2
(xk) = 0⇐⇒ GQ(q−) = 0⇐⇒ q− ∈ Q.

Proof. The last statement is clear by definition so we really need to prove only the first

one. First of all observe that we can choose the coordinate s in such a way that α is locally

given by ds. Then, as G−Q = GQ − π∗α ⊗̂ωQ and Q ∈ H0(IF (2)) = Ker(m) by hypotesis,

one has
d∑

k=1

m(G−Q)

π∗α2
(xk) = −

d∑
k=1

m(π∗α ⊗̂ωQ)

π∗α2
(xk) = −Trπ(ωQ)

α
(c).

But Trπ(ωQ) is an element of H0(ωE) so it is equal to r · α for some r. Thus we have

d∑
k=1

m(G−Q)

π∗α2
(xk) = −r

which is zero if and only if ωQ has trace 0, i.e. if and only if ωQ ∈ H0(ωF )−. This happens

if and only if (π∗α)⊗2 doesn’t appear in the equation of Q, i.e. if and only if q− ∈ Q. �

Using Lemma 3.1 and Lemma 3.5 the proof of Theorem 3.4 is straightforward.

Proof of Theorem 3.4. Assume that

q− 6∈
⋂
F⊂Q

Q.

Then, there exists a quadric which cointains F but doesn’t contain q−. Denote by GQ its

equation. By Lemma 3.1 we know that β = γ(GQ) = G−Q ∈ Ker(doP∨E) and by Lemma 3.5

we have that
d∑

k=1

m(β)

π∗α2
(xk) 6= 0.

Hence, using Theorem 3.3 we have the thesis. �

Remark 3.6. In [Kan04], with different methods, it is proved that H0(IF (2)) = Ker(doP∨E)

if the ramification is simple. This fact is exactly what allows to prove the converse

implication of Theorem 3.4.

Remark 3.7. Notice that H0(IF (2)) = Ker(doP∨E) if and only if all the ramification indices

are equal to 2. Indeed, denote by Rred the reduced divisor whose support equals the support

of the ramification divisor. Let R̄ be R−Rred. From Riemann-Hurwitz we have

2g − 2 = deg(R) = deg(Rred) + deg(R̄) = n+ deg(R̄).

Hence, from Equation (29) one has

dim Ker doP
∨
E = h0(IF (2)) + deg(R̄).

As R̄ ≥ 0 and is trivial if and only if all the ramification indices are equal to 2 the claim

follows. In particular, the converse implication of (30) in Theorem 3.4 holds for coverings

whose ramification indices are all equal to 2.
14



We conclude this section by proving the existence of an exact sequence which should help

to measure, in a more intrinsic way, how much H0(IF (2)) and Ker(doP∨E) differ.

Proposition 3.8. Under the hypotesis of Theorem 3.4 there is an exact sequence

(31) 0 // H0(IF (2)) �
� γ // Ker(doP∨E) // Ker(dh∨)

H0(ωF ) ⊗̂ π∗H0(ωE)
// 0.

Proof. Starting from diagram (22) it is easy to see that the composition of the inclusion

of H0(ωF ) ⊗̂ π∗H0(ωE) with m has image in H0(ω⊗2
F ) but also in the kernel of dh∨. Hence

there is a map

ε : H0(ωF ) ⊗̂ π∗H0(ωE)→ Ker(dh∨),

which is easily proven to be injective as we have done with γ. We can also complete the

diagram on the right by adding two (trivial) vertical arrows. The complete diagram looks

like this

(32) 0

0 // Ker doP∨E
� � j // Sym2(H0(ωF )−)

OO

doP∨E // T∨o HE
// (Ker doPE)∨ // 0

0 // H0(IF (2)) �
� ι //

?�

γ

OO

Sym2(H0(ωF ))

pr
OOOO

m // // H0(ω⊗2
F )

dh∨

OO

// 0

OO

0

OO

// H0(ωF ) ⊗̂ π∗H0(ωE) �
� ε //

?�

OO

Ker dh∨

OO

// Coker ε //

OO

0

0

OO

0

OO

By using the snake lemma on the central columns one obtain the wanted sequence. �

4. An interesting family of curves

In this section we review the first example, due to Pirola, of a non-trivial family of coverings

of elliptic curves with 2 independent directions along which the Prym map Φ is constant.

Hence the kernel of the differential of the Period map associated to Φ has dimension greater

than 1. The existence of the family is proved in [Pir92] but the proof is not constructive

and uses a framework different form ours. After some notations and a brief idea of how to

prove the existence of this family (for details, see [Pir92]), we will prove that q− belongs

to the only quadric that contains F and that for all the elements of Ker(doP∨E) the sum in

Theorem 3.3 is 0.

In order to prove the existence of such a family, let G ' Z3 and consider the space HG of

Galois coverings π : F → E of degree 3 with ramification given by 3 points (so the number

of branch points is exactly 3 and the genus of F is 4) modulo the identifications given by
15



a commutative diagram like

F1

π1
��

' // F2

π2
��

E1 '
// E2

With this type of identification of two coverings the dimension of HG is 3. Note that, with

this definition, a covering π : F → E and the covering obtained by composing π with a

translation of E are equivalent: they represent the same point in HG.

Fix a generator g of G and ρ, a primitive root of 1 of order 3. If V is a vector space on

which G acts, we will denote by Vρk the subspace where g acts as the multiplication by ρk.

As π is the quotient by the group G, the G-action on F induces several other G-actions.

We will do now a small list of the one that we are going to use in this section.

a) The canonical action on H0(ωF ) via pullback: by changing, if necessary, g with g2, we

have

(33) H0(ωF ) = H0(ωF )1 ⊕H0(ωF )ρ ⊕H0(ωF )ρ2 = π∗H0(ωE)⊕ C2
ρ ⊕ C1

ρ2 .

b) A canonical G-action on H0(ωF )− which is simply the restriction of the canonical

representation on H0(ωF ).

c) An action on Sym2(H0(ωF )), whose decomposition in irreducible subrepresentations is

given by

Sym2(H0(ωF )) = C3
1 ⊕ C3

ρ ⊕ C4
ρ2 .

d) an action on H0(ω⊗2
F ) using the surjectivity of m by imposing that m becomes a

morphism of G-vector spaces and hence on its dual H1(TF ).

e) An action on H0(IF (2)) as the kernel of m.

f) An action on the Prym Φ(π): this is induced at level of tangent spaces (as the tangent

space T0Φ(π) is H0(ωF )−) and it is compatible with the quotient by the periods’ lattice.

g) An action of G on PH0(ωF )∨ = P as every automorphism of F , seen as a canonical

curve in P lifts to an automorphism of the whole space.

All these actions, by construction, are compatible via the usual identification. For example,

if we interpret H0(ωF ) as the space of equations of hyperplanes of P an invariant hyperplane

in P has an equation which is an eigenvector of g in H0(ωF ).

One has a Prym map Φ̃ : HG → Ag−1 and a period map P̃ : HG → D. We stress that,

by construction, if we prove that dim(Ker(doP̃ )) > k then, the period map P associated

to the Prym map of a local family of coverings with π as central fiber will have kernel of

dimension at least k + 1.

The rough idea to prove that there exists a family of coverings in HG which gets contracted

by Φ̃ is to observe, as we have done in f), that the Prym map Φ̃ factors through the

inclusion of AGg−1, the space of abelian varieties of dimension g − 1 with an action of G, in

Ag−1. If we denote by DG a period domain for AGg−1 we have an analogous period map

P̃G : HG → DG. We want to get a bound on the dimension of the image dP̃G.

Clearly, the image of dP̃G has dimension at most the dimension of

TDG = Sym2(H0(ωF )−)G
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and the same bound holds, by construction, for the dimension of the image of dP̃ . As

Sym2(H0(ωF )−)G is isomorphic, by b), to

H0(ωF )ρ ⊗̂H0(ωF )ρ2 ,

we have that its dimension is 2. As T[π]HG has dimension 3 this implies that the kernel of

dP̃ has dimension at least 1 and the existence of the family is proved.

Proposition 4.1. Let π : F → E with [π] ∈ HG, identify F with its canonical model and

let Q be the only quadric containing F . Then q− ∈ Q and either

H0(IF (2)) ⊂ Sym2(H0(ωF ))ρ or H0(IF (2)) ⊂ Sym2(H0(ωF ))ρ2 .

Proof. There exists only a quadric containing F because g(F ) = 4. More precisely F is

the complete intersection of a quadric Q and a cubic surface C. Let GQ ∈ H0(IF (2)) be

an equation for Q. Being F invariant under the G-action introduced in g), we have that

the orbit of GQ under the action given in e), is simply given by itself plus, possibly, some

of its multiple by elements in C∗. The key point now is to see that H0(IF (2))1 = 0. In

order to prove this observe that, by construction, we have an exact sequence of G-vector

spaces given by

0 // H0(IF (2)) // Sym2(H0(ωF )) // H0(ω⊗2
F ) // 0

Hence, by taking invariant parts and dimensions we have

dim(H0(IF (2))G) = dim(Sym2(H0(ωF ))G)− dim(H0(ω⊗2
F )G).

As claimed in [Pir92], we can identify T[π]HG with H1(TF )G = (H0(ω⊗2
F )∨)G. Hence, we

have dim(H0(ω⊗2
F )G) = 3. Using c) we have that also dim(Sym2(H0(ωF ))G) = 3 so, as

claimed, H0(IF (2))1 = 0.

As consequence we have either GQ ∈ Sym2(H0(ωF ))ρ or GQ ∈ Sym2(H0(ωF ))ρ2 . Note that

in both cases, as π∗H0(ωE)2 ⊂ Sym2(H0(ωF ))1, we have GQ(q−) = 0 so q− ∈ Q. �

Lemma 4.2. Let π : F → E with [π] ∈ HG and assume that F is not hyperelliptic. Denote

by a1, a2 and a3 the 3 ramification points of π. Let L be a g1
3. Then:

• L is G-invariant, i.e. g∗L = L;

• h0(OF (3ai)) = 1;

• If L′ is a g1
3 then L ' L′, i.e. there is only one g1

3 on F .

Proof. Recall that every curve of genus 4 is trigonal and moreover, the number of g1
3 is at

most 2. If there is only one g1
3 clearly it is G-invariant. If there are 2, as G has order 3

and acts on a set of two elements, it has to fix both of them.

Now let’s prove that h0(OF (3ai)) = 1. The Riemann-Roch formula for OF (3ai) is

h0(OF (3ai))− h1(OF (3ai)) = deg(h0(OF (3ai)))− 4 + 1 = 0

so, by Serre duality, we have

h0(OF (3ai)) = h0(ωF (−3ai)).

From

0→ ωF (−3ai)→ ωF (−2ai)→ ωF (−2ai)|ai → 0
17



one has H0(ωF (−3ai)) ≤ H0(ωF (−2ai)). In particular, as F is not hyperelliptic we obtain

that the dimension of H0(ωF (−3ai)) is either 1 or 2. Moreover, h0(ωF (−3ai)) = 2 if and

only if H0(ωF (−3ai)) = H0(ωF (−2ai)). But this cannot happen as the pullback η of a non-

zero holomorphic form on E has a zero of multiplicity 2 exactly in the ramification points

so there is at least one element in H0(ωF (−2ai)) \H0(ωF (−3ai)). Hence h0(OF (3ai)) = 1

as claimed.

Recall that on F there are at most two g1
3 and they are related by

L⊗ L′ = ωF = OF (2a1 + 2a2 + 2a3).

Hence we will conclude by proving that L = OF (a1 + a2 + a3). Let A,B in F such

that L ' OF (a1 + A + B). As a1 is invariant and the same holds for L, we have that

OF (g(A) + g(B)) = OF (A + B). Therefore, as F is not hyperelliptic, also the equality

of divisors g(A) + g(B) = A + B has to hold. Moreover, as g has order 3, it cannot

exchange A and B: we have proved that A and B are ramification points. If we assume

that L 6= OF (a1 + a2 + a3) there are several possibilities:

A = a1 = B: This is impossible as we would have

2 = h0(L) = h0(OF (3a1)) = 1.

A = a1 6= B: Assume that A = a1 and B = a2 so that L ' OF (2a1 + a2). Let

C,D ∈ F such that OF (2a1 + a2) ' OF (a3 + C + D). As before, we have that

C and D are ramification points and as F is not hyperelliptic the only possible

option is to have C = D = a3. But then, again, we have a contradiction

2 = h0(OF (L)) = h0(OF (2a1 + a2)) = h0(OF (3a3)) = 1.

A 6= a1 = B: This case is analogous to the previous one.

A = B 6= a1: This case is analogous to the second one.

Hence, we have proved that L = OF (a1 + a2 + a3) and thus that L ' L′ and there is only

a g1
3 on F . �

Proposition 4.3. Let π : F → E with [π] ∈ HG and assume that F is not hyperelliptic.

Denote by Q be the only quadric containing the canonical curve F . Then Q is a quadric

cone with vertex V and V 6∈ F . Moreover, the hyperplane H− is tangent to the cone and

the 3 ramification points of π lie on a line on the cone.

Proof. Recall that if the quadric Q containing F is smooth, then F can be seen as a curve

of bidegree (3, 3) in P1 × P1 and the projections on each factor give two different g1
3. If,

instead, Q is a cone (these are the only possible cases as F is non degenerate) there exists

only one g1
3. Hence, by Lemma 4.2, we can conclude that Q is a cone. If V is the vertex,

it is clear that V 6∈ F as, otherwise F would be singular.

Now we will prove that the ramification points are on a line in the canonical model

of F . By what we have seen in this section we have a decomposition of H0(ωF ) into

subrepresentations with H0(ωF )1 = π∗H0(ωE). We can assume, as before, that H0(ωF )ρ
has dimension 2. Denote respectively with {u0}, {u1, u2} and {u3} a basis for π∗H0(ωE),

H0(ωF )ρ and H0(ωF )ρ2 . By abuse of notation we will write uiuj to mean ui ⊗̂uj. With

these coordinates, the hyperplane H− has equation u0 = 0 and q− = (1 : 0 : 0 : 0). As

(34) Sym2(H0(ωF )) = 〈u2
0, u1u3, u2u3〉1 ⊕ 〈u0u1, u0u2, u

2
3〉ρ ⊕ 〈u0u3, u

2
1, u

2
2, u1u2〉ρ2
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We know by Proposition 4.1 that an equation GQ of Q is either an element of

Sym2(H0(ωF ))ρ or of Sym2(H0(ωF ))ρ2 . In the first case the generic element of

Sym2(H0(ωF ))ρ is a quadric cone and has equation

u2
3 + u0(au1 + bu2) = 0.

Moreover, it is easy to see that H− is tangent to the cone along the line L1 = {u3 = u0 = 0}.
In the second case the generic element of Sym2(H0(ωF ))ρ2 is a smooth quadric but it is

easy to see that the generic singular element is a cone with equation

u3u0 + (au1 + bu2)2 = 0.

As before, H− is a plane tangent to Q along the line L2 = {u0 = au1 + bu2 = 0}. So,

in both cases, as the ramification points of the canonical curve F are given exactly as

H− ∩ F , they are on a line as claimed. �

Now we are going to calculate the sum in Theorem 3.3 and to see that it is zero for each

element in Ker(doP∨E).

Proposition 4.4. Let π : F → E be a Galois covering of degree 3 as before and consider

a local family of coverings with central fiber π. Then, if

ν(β) =
3∑

k=1

m(β)

π∗α2
(xk),

one has ν(β) = 0 for all β ∈ Ker(doP∨E).

Proof. Ker(doP∨E) is a subspace of Sym2(H0(ωF )−). If β ∈ Ker(doP∨E) we can decompose

it as

β = β1 + βρ + βρ2

with βµ ∈ Sym2(H0(ωF )−)µ. First of all we will prove that ν(βρ) = ν(βρ2) = 0.

As c is not a branch point, we have that the fiber π−1(c) = {x1, x2, x3} over c is equal to

the orbit of each of its points: π−1(c) = {x1, g(x1), g2(x1)}. Hence

ν(β) =
3∑

k=1

m(β)

π∗α2
(xk) =

2∑
k=0

m(β)

π∗α2
(gk(x1)) =

2∑
k=0

m(β ◦ gk)
π∗α2

(x1).

If we assume that β is in the eigenspace Sym2(H0(ωF ))µ of g∗ then

ν(β) =
m
(∑d

k=1(g∗)k(β)
)

π∗α2
(x1) =

m
(∑2

k=0 µ
kβ
)

π∗α2
(x1) =

(
2∑

k=0

µk

)
m(β)

π∗α2
(x1).

Hence, if µ 6= 1, we have λ(β) = 0 as claimed.

Hence we have that ν(β) = ν(β1) so it is enough to prove that

ker(doP∨E) ⊆ Sym2(H0(ωF )−)ρ ⊕ Sym2(H0(ωF )−)ρ2

i.e., that β1 = 0.

Let a be a ramification point and consider holomorphic coordinates (U, z) centered in a

and (V,w) centered in π(a) = b. Assume, moreover, that α|V = dw, the relation w = z3

holds and the action of g ∈ G near a is given by z 7→ ρz for ρ 6= 1 such that ρ3 = 1.

By changing ρ with ρ2 we can assume, moreover, that the decomposition of H0(ωF ) in
19



invariant subspaces with respect to the action of G is the one given in Equation (33).

Consider η ∈ H0(ωF ). Near a we can write

η|U =

(∑
j≥0

ηjz
j

)
dz and g∗η|U = ρ

(∑
j≥0

ηjρ
jzj

)
dz.

In particular, η ∈ H0(ωF )G if and only if, near a we have

η|U =

(∑
j≥0

η2+3jz
2+3j

)
dz

and an analogous decomposition holds near the other ramification points. Similarly, we

have

η|U =

(∑
j≥0

η3jz
3j

)
dz and η|U =

(∑
j≥0

η1+3jz
1+3j

)
dz

if η ∈ H0(ωF )ρ and η ∈ H0(ωF )ρ2 respectively.

As

Sym2(H0(ωF )−)1 = H0(ωF )ρ ⊗H0(ωF )ρ2 , Sym2(H0(ωF )−)ρ = H0(ωF )⊗2
ρ2 ,

and

Sym2(H0(ωF )−)ρ2 = Sym2(H0(ωF )ρ),

if ϕ ∈ Sym2(H0(ωF )−)µ we can write it in coordinate near a as

ϕ|U = z
(
ϕ0 + ϕ1z

3 + o(z5)
)
dz2

for µ = 1 and as

ϕ|U =
(
ϕ0 + ϕ1z

3 + o(z5)
)
dz2 and ϕ|U = z2

(
ϕ0 + ϕ1z

3 + o(z5)
)
dz2

if µ = ρ and µ = ρ2, respectively. In the latter cases, we have that the residue of ϕ/π∗α in

a is 0 as ϕ/π∗α is either holomorphic or has a pole of order 2 with coefficient of degree −1

equal to 0. Hence

Sym2(H0(ωF )−)ρ ⊕ Sym2(H0(ωF )−)ρ2 ⊆ Ker(doP∨E).

By Theorem 3.2 and using Diagram (32) we obtain dim(Ker(doP∨E)) = 4. This is equal to

the dimension of Sym2(H0(ωF )−)ρ ⊕ Sym2(H0(ωF )−)ρ2 so

Sym2(H0(ωF )−)ρ ⊕ Sym2(H0(ωF )−)ρ2 = Ker(doP∨E).

In particular, β1 = 0 and ν(β) = 0 as claimed.

�
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English summary) [Numerical inequalities for surfaces of general type] With an appendix by

A. Beauville. Bull. Soc. Math. France 110 (1982), no. 3, 319–346.

[Hor73] Horikawa E. On deformations of holomorphic maps I. J. Math. Soc. Japan 25 (1973), 372–396.

[Hor74] Horikawa E. On deformations of holomorphic maps II. J. Math. Soc. Japan 26 (1974), 647–667.

[Hur91] A. Hurwitz, Uber Riemann’sche Flachen mit gegebenen Verzweigungspunkten, Math. Ann. 39

(1891),1–61.

[Isk77] Iskovskih V. A. Fano threefolds I. Math. USSR-Izv. 11 (1977), no. 3, 485–527 (1978)

[Kan04] Kanev V., Hurwitz spaces of triple coverings of elliptic curves and moduli spaces of abelian

threefolds. Ann. Mat. Pura Appl. (4) 183 (2004), no. 3, 333–374.

[Mir95] Miranda R. Algebraic curves and Riemann surfaces Graduate Studies in Mathematics, Vol 5,

American Mathematical Society, Providence, RI, 1995

[Pir92] Pirola G. P. On a conjecture of Xiao J. Reine Angew. Math. 431 (1992), 75–89.

[Xia87] Xiao G. Fibered algebraic surfaces with low slope Math. Ann. 276 (1987), 449–466.

(Filippo F. Favale) Department of Mathematics, University of Trento, via Sommarive 14,

I-38123 Trento, Italy

E-mail address: filippo.favale@unitn.it

(Sara Torelli) Department of Mathematics, University of Pavia, Via Ferrata, 5, I-27100

Pavia, Italy

E-mail address: sara.torelli02@ateneopv.it

21


	Introduction
	1. Some preliminaries
	2. A direct formula for the codifferential of the Prym map
	3. A geometric approach via the canonical embedding
	4. An interesting family of curves
	References

