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Introduction

This thesis explores the connection between a crystallographic Coxeter system
(W,S) and the roots of an arbitrary Kac-Moody Lie algebra associated with a
symmetrizable Generalized Cartan Matrix (GCM) with Weyl group W through
the Kac’ denominator formula:∑

w∈W

(−1)`(w)e(c(w)) =
∏
α∈Λ+

Z

(1 − e(α))mα , (1)

Here:

1. W is a crystallographic Coxeter group;

2. e(α) is a formal exponential;

3. Λ+
Z is the positive root cone;

4. ` : W →N0 is the length on (W,S);

5. m. : Λ+
Z →N0 is the multiplicity function;

6. c(w) is the sum of positive roots being sent by w−1 to negative ones.

The formula (1) is parametrized when we explicitly know the function m.. In this
case we know for which elements of the positive cone Λ+

Z (called weights) the
multiplicity is different from 0; these elements are called roots of a Kac-Moody
Lie algebra.
The formula (1) was firstly discovered and proved by I. G. Macdonald for affine
Kac-Moody Lie algebras. Subsequently it was extended to the entire class of
Kac-Moody Lie algebras associated with a symmetrizable GCM by V. G. Kac.
In order to understand the formula (1) better, the reader should keep in mind
that the Weyl group W of a Kac-Moody Lie algebra associated with a symme-
trizable GCM is a crystallographic Coxeter group (cf. [8]). The left hand-side
of (1) depends entirely on the Coxeter group. One of the most important goals
is to calculate this left hand-side of (1) for crystallographic Coxeter groups with
∞-decomposition (cf. Definition 0.1 and Formula (43)). This is possible because
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Introduction

the left hand-side of (1) can be reinterpreted with the complete growth series (cf.
Section 1.12.2) applied to the trace (9) and using several facts on the complete
growth series of crystallographic Coxeter groups with∞-decomposition.

The geometric representation of the crystallographic Coxeter group (W,S)

ρ : W → GL(R,V) (2)

allows us to consider the elements s ∈ S as reflections, called simple reflections,
with respect to vectors αs ∈ V, called simple roots (cf. [16]).
Moreover the set

Φ = {w(αs) | s ∈ S, w ∈W} (3)

is called the root system of (W,S).
We recall that every α ∈ Φ can be written as

α =
∑
s∈S

ksαs. (4)

Moreover, if ks ∈ Z≥0 for all s ∈ S then α is a positive root, if ks ∈ Z≤0 for all
s ∈ S then α is a negative root. We denote by Φ+ the set of positive roots and by
Φ− = −Φ+ the set of negative roots (cf. [8]).
In the root system of a Kac-Moody Lie algebra associated with a symmetrizable
GCM with Weyl group W, there are two types of roots: real and imaginary. The
set of real roots Φ̇Re coincides with (3), while the set of imaginary roots is

Φ̇Im = {α ∈ ΛZ | α < ΦRe, mα , 0} (5)

where we define ΛZ := ZΦ̇ the root lattice (cf. [8]).
The left hand side of (1) can be seen as a formal power series depending

entirely on (W,S) (cf. Chapter 4). It captured our attention because it involves
a map

c : W → Λ+
Z, (6)

where Λ+
Z := Z≥0Φ̇

+ is the positive cone.
Since the geometric representation of W allows us to consider W as a reflec-
tions group, where ΛR := RΦ̇ is endowed with a symmetric bilinear form 〈, 〉.
Therefore for all s ∈ S, we can define the simple coroot λs as the unique element
of ΛZ such that

〈λs, αs′〉 =
1
2
δss′〈αs, αs〉, s′ ∈ S (7)

(cf. [8]).

In Chapter 1 (cf. Section 2.4) we show some properties of the map (6), in
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particular that it is a 1-cocycle that can be written as:

c(w) = (1 − w) · ω0 (8)

where
ω0 =

∑
s∈S

λs (9)

is called trace.
Kac’ denominator formula has been already established by I. G. McDonald

(cf. [21]) for some classes of Coxeter groups. The class of Coxeter groups is split
into three principal types: finite Coxeter groups, affine Coxeter groups and in-
definite Coxeter groups. Kac’ denominator formula has just been parametrized
for finite and affine Coxeter groups (cf. [8]) and also for some indefinite Coxeter
groups (cf. [7]). Then we must work with the class of indefinite Coxeter groups.
There is one class of indefinite Coxeter groups, the one of the so-called hyper-
bolic Coxeter groups. These groups have attracted much attention among the
mathematicians in recent years as F. Lannér and J. E. Humphreys.

A Coxeter group is cocompact if after removing any edge in the Coxeter
graph, one obtains a graph of a Coxeter group of finite or affine type. There is
only one isomorphism class of cocompact crystallographic hyperbolic Coxeter
systems (W,S), whose Coxeter graph is Γ(W):

•2

4

•1

4

•3 •4

(10)

Γ(W) sets the relations between the four generators s1, s2, s3, s4 ofW:

1. if there are no edges linking i and j, with i , j, then (sis j)2 = 1;

2. if a non labelled edge links i and j, then (sis j)3 = 1;

3. if a labelled edge with an integer m links i and j, then (sis j)m = 1.

Moreover s2
i = 1 for i = 1, . . . , 4.

In this thesis we spent much effort to represent (W,S) as a cocompact arith-
metic lattice of O+

R(3, 1), the orthogonal group of matrices with real entries that
stabilizes a bilinear form of signature (3, 1) and with positive entry in position
(1, 1), generalising a result of J. Elstrodt, F. Grunewald, J. Mennicke (cf. [11]).

In Chapter 3 we establish an explicit description of the Coxeter system
(W,S) in the Lie group O+

R(3, 1) using the following idea. By definitionW acts
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on the Lorentzian space of signature (3, 1) (cf. Chapter 3). Then we consider a
homomorphism of Lie groups (cf. [11])

Ψ : SL(2,C)→ SO+
R(3, 1), (11)

where SO+
R(3, 1) is the special orthogonal group of matrices with real entries

that stabilizes a bilinear form of signature (3, 1) and with a positive entry in
position (1, 1).
It can be extended to an exceptional isomorphism

Ψ̃ : SL(2,C)→ OR(3, 1) (12)

through external involutions. Indeed we considered the involution σ that acts

on a matrix A =

a b
c d

 of SL(2,C) in the following way:

σAσ =

a b
c d

 , (13)

where : C→ C is the complex conjugation.

At this point we use two well-known facts. Let Q be a quadratic form
and SQ be the symmetric bilinear form relative to Q over a filed K. Let ι be a
real embedding of K, then define the quadratic form Q[ι] as Q[ι](x) := xTι(SQ)x,
where xT is the transpose of x.
The following theorem describes the discrete orthogonal group constructed
with the help of Q and insures that W is commensurable to a subgroup of
POR(3, 1).

Theorem 0.1 (cf. [11]) Let K be a totally real number field with ring of integers OK.
Let Q be a quadratic form in four variables over K satisfying the hyperbolic signature
condition. Let ι be a real embedding of K so that Q[ι] is of signature (1, 3). Define

Γ(OK,Q) := ι(PO4(OK,Q)) < PO4(R,Q[ι]).

Then the following hold

1. Γ(OK,Q) is a discrete subgroup of PO4(R,Q[ι]).

2. Γ(OK,Q) is a cocompact if and only if Q is K-anisotropic.

2

As quadratic form we have considered Q(x0, x1, x2, x3) = −7x2
0 + x2

1 + x2
2 + x2

3 in
4 variables over Q(i

√
7) (cf. Chapter 3).
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LetA :=
(

a,b
K

)
be the K-quaternion algebra with basis 1, i, j, k such that

i2 = a, j2 = b, ij = −ji = k. (14)

Let L be a field extension of K such that
√

a,
√

b ∈ L, then the map

φ : A =
(a, b
K

)
→M(2,L)

φ(x0 + x1i + x2j + x3k) =

 x0 + x1
√

a x2
√

b + x3
√

ab
x2
√

b − x3
√

ab x0 − x1
√

a

 (15)

is an injectiveK-algebra homomorphism with the property that the norm of an
element of A is the determinant of the image of that element through φ. (cf.
[11]).
We take the map (cf. Chapter 3)

φ : A =
(
−1,−1

Q(i
√

7)

)
→M(2,Q(i,

√

7)). (16)

The following theorem describes the discrete and cocompact subgroups of
SL(2,C).

Theorem 0.2 (cf. [11]) Let K an algebraic number field with exactly one pair of
complex embeddings. Let A be a quaternion algebra over K which is ramified at all
real embeddings of K. For a complex embedding v0 let φ : A⊗K Kv0 → M(2,C) be a
Kv0 = C -algebra isomorphism. For an order R ⊂ A, put

Γ = φ(R1),

where R1 is the group of the elements of R with norm 1.
The group Γ has the following properties:

1. Γ is a discrete subgroup of SL(2,C).

2. Γ is cocompact if and only ifA is a skew field.

2

In conclusion we exhibited the generators of W in 〈σ〉 n PSL(2,C) through an
explicit formula (cf. Section 3.4.6) generalizing the results of Masaaki Yoshida
(cf. [35]).
Moreover, generalising some results of A. Feingold, I. Frenkel (cf. [12]), we
obteined a description of the root system of a Kac-Moody Lie algebra with
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Weyl group (W,S) defining aW-equivariant linear map (cf. Chapter 3)

µ : ΛZ → {A ∈M(2,C) | det(A) ∈ R} (17)

such that

µ(α1) =

1 1
1 −1

 , µ(α2) =

−1 − i 0
0 1 − i

 ,
µ(α3) =

2i 0
0 2i

 , µ(α4) =

 1 − i −3 −
√

7
−3 +

√
7 −1 − i

 , (18)

with the property that the square of norm of a root is the determinant of the
matrix that corresponds to the root through µ.
In general it is extremely difficult to determine or characterize all imaginary
roots but thank to this property and to the following result of R. V. Moody (cf.
[23]) about the roots of the hyperbolic Kac-Moody Lie algebras

Φ̇Im = {α ∈ ΛZ | 〈α, α〉 ≤ 0}, (19)

it is possible in this case (cf. Chapter 3), i.e. one has

µ(Φ̇Re) = {X ∈ µ(ΛZ) | det(X) = −2,−4}, (20)

µ(Φ̇Im) = {X ∈ µ(ΛZ) | det(X) ≥ 0}. (21)

In Chapter 4 we study crystallographic Coxeter systems (W,S) with a sphe-
rically∞-decomposition. More precisely:

Definition 0.1 Let (SH,SN) be a pair of subsets of S satisfying:

1. S = SH ∪ SN;

2. let S• := SH ∩ SN. For all s ∈ SO := SH \ S• and t ∈ SM := SN \ S• one has
ms,t = ∞, where (ms,t)s,t∈S is the Coxeter matrix of (W,S).

(SH,SN) will be called an∞-decomposition of (W,S). 2

An∞-decomposition is said to be:

1. non-trivial if SO , ∅ and SM , ∅;

2. a spherical∞-decomposition if additionally the parabolic subgroup W• =

WS• is finite.

Some examples of crystallographic Coxeter groups with a spherically ∞-
decomposition are:
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1. Ã1 with Coxeter graph Γ(Ã1)

•0
∞
•1 (22)

Γ(Ã1) sets the relations between the two generators s0, s1 of Ã1: the edge
labelled with∞ denotes that there are no relations between s0 and s1.
We can set SH = {s0} and SN = {s1}. In this case we obtain that (WH,SH)
and (WN,SN) are of isomorphism class A1 and (W•,S•) is the trivial
group.

2. (W,S) with Coxeter graph Γ(W)

•1 •2

∞

•4 •3

(23)

As before, Γ(W) sets the relations between the four generators s1, s2, s3, s4

ofW.
We can set SH = {s1, s2, s3} and SN = {s1, s3, s4}. In this case we obtain that
(WH,SH) and (WN,SN) are of isomorphism class A3 and (W•,S•) is of
isomorphism class A1 × A1.

Our aim is to find an explicit formula for the left hand-side of the Kac’ de-
nominator formula (1) for the crystallographic Coxeter groups with spherically
∞-decomposition. We use this fundamental fact:

Fact 0.1 Let (W,S), S = SH ∪ SN, be a Coxeter system with an∞-decomposition. Put
S• = SH ∩ SN and W× = WS× for × ∈ {H,N, •}. Let WH tW• WN be the free product of
groups WH WN with amalgamated group W•. Then the canonical map

f : WH tW• WN →W (24)

is an isomorphism. 2

The elements of a free product of groups with amalgamation have a unique
expression in a canonical normal form (cf. [27]). Let \W•

H = W•
H \ {1} be the set

of representatives of the non-trivial WH/W•-cosets (respectively \W•
N = W•

N \ {1}
and WN/W•). For every w ∈ W there exists t ≥ 0, a0, at ∈ W•

H, ai ∈ ]W•
H for

1 ≤ i ≤ t − 1, b j ∈ ]W•
N for 1 ≤ j ≤ t, and c ∈W• such that

w = a0b1 · · · btatc, (25)

and the expression (25) is unique for the element w ∈W.

8
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Therefore we have

W = ΩHH tΩHN tΩNH tΩNN tW•, (26)

where

ΩHH = {a0b1a1 . . . btath | t ≥ 0, ai ∈ \W•

H, bi ∈ \W•

N, h ∈W•
}, (27)

ΩHN = {a1b1 . . . atbth | t ≥ 1, ai ∈ \W•

H, bi ∈ \W•

N, h ∈W•
}, (28)

ΩNH = {b1a1 . . . btath | t ≥ 1, ai ∈ \W•

H, bi ∈ \W•

N, h ∈W•
}, (29)

ΩNN = {b0a1b1 . . . atbth | t ≥ 0, ai ∈ \W•

H, bi ∈ \W•

H, h ∈W•
}. (30)

For the Coxeter group W with an ∞-decomposition we define a fake length
function

`∐ : W −→N0, (31)

such that for w ∈W with expression (25)

`∐(w) :=
∑
0≤i≤t

`H(ai) +
∑

1≤ j≤t

`N(b j) + `•(c), (32)

where
`× : W× →N0 (33)

is the length function of W× = WS× for × ∈ {H,N, •}.
Thus, by definition, one has `(w) ≤ `∐(w) for all w ∈W.

Theorem 0.3 (cf. [2]) Let (W,S), S = SH ∪ SN, S• = SH ∩ SN, be a Coxeter system
with an∞-decomposition. Then ` = `∐. 2

We want to show a formula for the left hand-side of (1) when the Coxeter
group W has a spherically∞-decomposition.
We call the series

CW(t) :=
∑
w∈W

t`(w)c(w) (34)

cocycle series for the group W. It is an element of the ring Z[Λ+
Z][[t]] of the

formal power series whose variable is t and whose coefficients come from the
group ring Z[Λ+

Z]. It is treated multiplicatively letting an element α ∈ Λ+
Z as

the formal exponential e(α) (cf. [4]).
We define six elements.

AH :=
∑

a∈\W•
H

t`(a) (35)

9
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AN :=
∑

b∈\W•
N

t`(b) (36)

A• :=
∑
c∈W•

t`(c) (37)

They are elements of the ring Z[[t]] of the formal power series whose variable
is t and whose coefficients come from the ring Z.

ÃH :=
∑

a∈\W•
H

t`(a)a (38)

ÃN :=
∑

b∈\W•
N

t`(b)b (39)

Ã• :=
∑
c∈W•

t`(c)c (40)

They are elements of Z[W][[t]] the ring of the formal power series with coeffi-
cients in the group ring Z[W].
Let

W(t) :=
∑
w∈W

t`(w)
∈ Z[[t]] ⊆ Z[W][[t]] (41)

be the growth series for the group W (cf. [16]) and

W̃(t) :=
∑
w∈W

t`(w)w ∈ Z[W][[t]] (42)

be the complete growth series for the group W (cf. [1]). These series were intro-
duced for studying combinatorial structures in the context of infinite groups.
From (8), we write

CW(t) = (W(t) − W̃(t)) · ω0 ∈ Z[Λ+
Z][[t]] (43)

with

W(t) = AH(
∑
i=0

(ANAH)i)A•+(
∑
i=1

(ANAH)i)A•+(
∑
i=1

(AHAN)i)A•+AN(
∑
i=0

(AHAN)i)A•+A•

(44)
and

W̃(t) = ÃH(
∑
i=0

(ÃNÃH)i)Ã•+(
∑
i=1

(ÃNÃH)i)Ã•+(
∑
i=1

(ÃHÃN)i)Ã•+ÃN(
∑
i=0

(ÃHÃN)i)Ã•+Ã•

(45)
as a formal power series of the elements (35), (36), (37), (38), (39) and (40).
In Chapter 4, we see that the formula (43) for Ã1 is in analogy to the Kac’
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denominator formula for Ã1 shown by V. G. Kac (cf. [8]).
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Chapter 1

Coxeter groups

In this chapter we introduce the general theory for the Coxeter groups. For
more details we refer the reader to [16]. First of all, we recall the definition of
the Coxeter groups as abstract groups. This kind of groups has a geometric
representation, called also Tits representation, that allows us to have a concrete
idea of these groups as reflection groups.
There are three principal types of Coxeter groups: finite, affine and indefinite.
We will focus on the last type, since the studies about it have not been completed
yet and in particular we will introduce in the third chapter a specific hyperbolic
Coxeter group. This group has a certain relevance in physics, because, starting
from its geometric representation, one can consider this group as a reflection
group acting on the Lorentz space.

1.1 Coxeter systems

Definition 1.1 (cf. [16]) A Coxeter system is a pair (W,S) where W is a group and
S ⊂W is a set of generators of W satisfying exclusively relations of the form

(ss′)m(s,s′) = 1 (1.1)

where m(s, s) = 1 and m(s, s′) = m(s′, s) ≥ 2 for s , s′. If there are no relations between
s and s′ then m(s, s′) = ∞.

The order of S, |S|, is called rank of the Coxeter system, the group W is a Coxeter
group and the elements of S are called simple reflections. 2

We shall always assume that |S| is finite, even though a good part of the
theory applies to arbitrary S.

12



1. Coxeter groups

Definition 1.2 (cf. [16]) With a Coxeter system (W,S) we may associate a graph Γ(W)
called Coxeter graph as follow: the vertices of Γ(W) are in bijection with S and an edge
between the vertices s and s′ is labelled by m(s, s′) whenever this number (∞ included)
is at least 3. When m(s, s′) = 3 the label on the edge is omitted. Then if distinct vertices
s and s′ are not joined, this means that m(s, s′) = 2. 2

Example 1.1 Let W = S3 be the permutation group on the set {1, 2, 3} and S =

{(12), (23)} ⊂W be the set of transpositions, generators of W. Then (W,S) is a Coxeter
system whose Coxeter graph is

• • (1.2)

2

1.2 Length function

Since the generators s ∈ S have order 2 in W, every 1 , w ∈W can be written in
the form

w = s1s2 . . . sr (1.3)

for some si (not necessarily distinct) in S.
The expression for w is called reduced when r is the smallest integer such that w
can be written as (1.3).

Definition 1.3 (cf. [16]) Let (W,S) be a Coxeter system, we define a function

` : W →N0 (1.4)

called length function, defined as follows:

`(w) :=

0 i f w = 1

r i f w = s1s2 . . . sr is a reduced expression
(1.5)

2

The following lemma shows some elementary properties for the length
function.

Lemma 1.1 (cf. [16]) The length function satisfies the following properties:

L1 `(w) = `(w−1) for all w ∈W;

L2 `(w) = 1 if and only if w ∈ S;

L3 `(w) − `(w′) ≤ `(ww′) ≤ `(w) + `(w′) for all w,w′ ∈W.

13



1. Coxeter groups

Proof

L1 If w = s1 . . . sr then w−1 = sr . . . s1, so `(w−1) ≤ `(w). Similarly for w−1 in
place of w.

L2 It is trivial.

L3 If w = s1 . . . sr and w′ = s′1 . . . s
′

t are reduced, then ww′ = s1 . . . srs′1 . . . s
′

t

and `(ww′) ≤ `(w) + `(w′). For the first inequality we consider `(w) =

`(ww′w′−1) ≤ `(ww′) + `(w′−1). Then, using L1, `(ww′) ≥ `(w) − `(w′).

2

Proposition 1.1 (cf. [16]) There is a unique group morphism ε : W → {±1} such
that ε(s) = −1 with s ∈ S. Furthermore, we have ε(w) = (−1)`(w) for all w ∈W.

Proof To prove the existence we only need to show that the defining equations
of W are satisfies, in fact (ε(s)ε(s′))m(s,s′) = 1 for all s, s′ ∈ S. Now let w = s1 . . . sr

be a reduced expression, r = `(w), we have ε(w) = (−1)`(w). 2

Corollary 1.1 (cf. [16]) For all w ∈ W and for all s ∈ S, we have `(ws) = `(w) ± 1
and the same for `(sw).

Proof Using L2 and L3 of Lemma 1.1, we have that `(w)−`(s) ≤ `(ws) ≤ `(w)+`(s).
From Proposition 1.1, we know that ε(ws) = −ε(w), therefore `(ws) − `(w) ≡
1(mod 2). This proves the result. The same is for `(sw). 2

1.3 Geometric representation

In this section we recall that the geometric representation, called Tits representation,
allows us to represent the Coxeter groups as groups of reflections with respect
to hyperplanes over a vector space. First of all we formally introduce these
notions.

Definition 1.4 (cf. [16]) Let V be a vector space endowed with a symmetric bilinear
(·, ·). A reflection is a linear operator s on V which sends some non-zero vector α to its
negative and fixes pointwise the hyperplane Hα = {v ∈ V | (v, α) = 0} orthogonal to
α. We may write s = sα. The simple formula for a generic reflection is:

sα(v) = v −
2(v, α)
(α, α)

α, v ∈ V. (1.6)

2

14



1. Coxeter groups

Let (W,S) be a Coxeter system and let ΛR be anR-vector space of dimension
|S|. Fixed a basis {αs | s ∈ S} in one-to-one correspondence with s, one defines
a symmetric bilinear form B on ΛR by

B(αs, αs′ ) := − cos
π

m(s, s′)
(1.7)

with the convention that B(αs, αs′ ) = −1 when m(s, s′) = ∞. This definition of
B imposes on ΛR a geometry in such a way that the angle between αs and αs′

will be compatible with the given m(s, s′). We can observe that B(αs, αs) = 1 and
B(αs, αs′ ) ≤ 0 if s , s′.
Moreover let s ∈ S, the linear map

ρs : ΛR → ΛR (1.8)

such that ρs(v) = v − 2B(αs, v)αs, is a reflection in fact: ρs(αs) = −αs and ρs fixes
the hyperplane Hs orthogonal to αs pointwise.

Remark 1.1 (cf. [16]) Let GL(ΛR) be the general lienar group on ΛR and O(ΛR,B)
be the orthogonal subgroup of GL(ΛR) preserving B. For all s ∈ S, ρs is an element of
O(ΛR,B).

Proof Let consider B(ρs(u), ρs(v)) = B(u − 2B(αs,u)αs, v − 2B(αs, v)αs) = B(u, v) −
4B(u, αs)B(αs, v) + 4B(u, αs)B(αs, v)B(αs, αs), ∀u, v ∈ ΛR ∀s ∈ S. The result follows
because B(αs, αs) = 1. Therefore, B(ρs(u), ρs(v)) = B(u, v), the bilinear form B is
invariant under ρs. 2

Note that concerning the orthogonal group we use the standard notation of
Dieudonné (1971), that is

O(ΛR,B) := {g ∈ GL(ΛR) | B ◦ g = B}. (1.9)

Proposition 1.2 (cf. [16]) There is a unique group morphism ρ : W → O(ΛR,B)
such that the image of any s ∈ S is ρs. Moreover, for each pair s, s′ ∈ S, the order of ss′

in W is m(s, s′). 2

Corollary 1.2 (cf. [16]) For any elements s and s′ of S, the order of ss′ is exactly
m(s, s′). In particular all elements of S are distinct.

Proof This follows from the Proposition 1.2. In fact the image of ss′ is ρsρs′ , that
has order m(s, s′). 2

Proposition 1.2 gives us the geometric representation ρ : W → GL(ΛR),
called also Tits representation. The Coxeter group W can be considered as a sub-

15



1. Coxeter groups

group of the orthogonal group O(ΛR,B) respect to the bilinear form B defined
in (1.7).

Proposition 1.3 (cf. [16]) Let ρ : W → GL(ΛR) be the geometric representation of
W. ρ(W) is a discrete subgroup of GL(ΛR). 2

1.4 Root system

The geometric representation will be useful to have a concrete idea of the Coxeter
groups. In particular, it is considerable to analyse the action of a Coxeter group
W on the vector space ΛR. To simplify the notation, we may write w(αs) instead
of ρ(w)(αs).

Definition 1.5 (cf. [16]) The root system Φ of the Coxeter system (W,S) is a set of
unit vectors in ΛR permuted by W:

Φ := {w(αs) | w ∈W, s ∈ S}. (1.10)

The roots αs with s ∈ S are called simple roots. Let α be a root, it can be uniquely
written in the form

α =
∑
s∈S

ksαs

with ks ∈ R. α is called positive (resp. negative) root, if ks ≥ 0 (resp. ks ≤ 0) for all
s ∈ S and we write α > 0 (resp. α < 0). The set of positive (resp. negative) roots will
be denoted by Φ+ (resp. Φ−). 2

Since W preserves the form B on ΛR, the roots are unit vectors.

Remark 1.2 (cf. [16]) Φ = −Φ, because s(αs) = −αs. 2

Theorem 1.1 (Tits Theorem, cf. [16]) Let w ∈ W and s ∈ S. If `(ws) > `(w), then
w(αs) > 0. If `(ws) < `(w), then w(αs) < 0. 2

Corollary 1.3 (cf. [16]) The representation ρ : W → O(ΛR,B) is faithful.

Proof Let w ∈ Kerρ. If w , 1, there exists s ∈ S such that `(ws) < `(w). Then
Tits Theorem 1.1 says that w(αs) < 0. But, since w ∈ Kerρ, then w(αs) = αs > 0,
which is a contradiction. 2

From Tits Theorem (Theorem 1.1) it directly follows that Φ is the union of
Φ+ and Φ−.
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1. Coxeter groups

1.5 Parabolic subgroups

Definition 1.6 (cf. [16]) Let T be a subset of S. The pair (WT,T) is a subgroup of
(W,S) called parabolic subgroup. 2

We call `T the length function restricted to WT. It is clear that `(w) ≤ `T(w)
for all w ∈WT.

The following theorem describes the nature of the parabolic subgroups.

Theorem 1.2 (cf. [16])

(a) For each subset T ⊆ S, the pair (WT,T) with the given values m(s, s′) is a Coxeter
system.

(b) Let T ⊆ S. If w = s1 . . . sr with si ∈ S is a reduced expression and in particular
w ∈WT, then all si ∈ T. In particular `(w) = `T(w) and WT ∩ S = T.

(c) The assignment T→WT defines a lattice isomorphism between the subsets of S
and the parabolic subgroups of W.

(d) S is a minimal generating set for W.

Proof

(b) We proceed by induction on `(w). If w = 1, then `(1) = 0 = `T(1). Let now
w = s1 . . . sr , 1 be a reduced expression, and let s = sr. By Tits Theorem
(Theorem 1.1), w(αs) < 0. Because w ∈ WT, then w = t1 . . . tq is a reduced
expression with ti ∈ T. Thus

w(αs) = αs +

q∑
i=1

ciαti , ci ∈ R.

Since w(αs) < 0, then there exists i such that s = ti ∈ WT and ws =

s1 . . . sr−1 ∈ WT is a reduced expression. Therefore, by induction, every
si ∈ T. The other statements are clear.

2

Example 1.2 Let W = S3 be the permutation group on the set {1, 2, 3} and S =

{(12), (23)} ⊂ W be the set of transpositions, generators of W. Then, let T1 = {(12)}
and T2 = {(23)} be all non trivial subsets of S, WTi (i = 1, 2) are all non-trivial parabolic
subgroups of W. 2

17



1. Coxeter groups

1.6 Geometric interpretation of the length function

The geometric representation of the Coxeter groups allows to give also a geo-
metric interpretation of the length function.

Proposition 1.4 (cf. [16])

(a) Let s ∈ S, then s(αs) = −αs and for any α ∈ Φ+ we have s(α) ∈ Φ+
\ {αs}.

(b) For any w ∈ W the length `(w) is the number of positive roots mapped by w in
negative ones.

Proof

(a) We know that s(αs) = −αs. Let α be a positive root distinct from αs

(therefore α cannot be a multiple of αs). We can write α =
∑

u∈S kuαu with
ku > 0 for some u , s. We observe that s(α) =

∑
u,s kuαu + (ks − 2B(αs, α))αs

has at least one positive coefficient ku > 0 for some u , s. Since s(α) is a
root, then it is a positive root.

(b) For w ∈W, we define n(w) to be the number of positive roots sent by w to
negative ones, i.e. n(w) := |Π(w)|, where Π(w) := Φ+

∩ w−1(−Φ+).
First of all we observe that if w(αs) < 0 then, by part (a), Π(ws) = s(Π(w) \
{αs}), with αs ∈ Π(w), and n(ws) = n(w) − 1. Otherwise if w(αs) > 0 then,
by part (a), Π(ws) = s(Π(w)) t {αs} and n(ws) = n(w) + 1.
We use induction on `(w) to show that `(w) = n(w). If `(w) = 0, it is trivial
because w = 1. If `(w) = 1, then by the part (a) n(w) = 1. Now if s ∈ S such
that `(ws) = `(w) − 1. Therefore by induction `(ws) = n(ws). We know
from Tits Theorem (Theorem 1.1) that if `(ws) < `(w), then w(αs) < 0,
therefore n(w) = n(ws) − 1. Then n(w) = `(w). Instead if s ∈ S such that
`(ws) = `(w) + 1, always by induction `(w) = n(w). In fact we know from
Tits Theorem (Theorem 1.1) that if `(ws) > `(w), then w(αs) > 0, therefore
n(ws) = n(w) + 1. Then n(ws) = `(ws).

2

Proposition 1.5 (cf. [16]) Given a reduced expression w = s1 . . . sr ∈ W, si ∈ S, set
αi := αsi and βi := srsr−1 . . . si+1(αi), interpreting βr to be αr. Then Π(w) consists of
the r distinct positive roots β1, . . . , βr.

Proof At first we observe that βi are positive roots for all i. In fact, if there exists
i such that βi := srsr−1 . . . si+1(αi) is negative, then by Tits Theorem (Theorem 1.1)
`(sr . . . si+1si) < `(sr . . . si+1) and this contradicts the fact that the expression of w
is reduced.
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The argument is similar to show that w(βi) are negative roots for all i.
At the end, we prove that βi is different from β j for all i , j. Let suppose that
βi = β j for i > j. We obtain si−1 . . . s j+1(α j) = −αi, then by Tits Theorem (Theorem
1.1) `(si−1 . . . s j+1s j) < `(si−1 . . . s j+1), so as before we obtain a contradiction with
the hypothesis that the expression of w is reduced. 2

1.7 Roots and reflections

Remind that the geometric representation ρ : W → GL(ΛR) allows each s ∈ S
to act on the R-vector space ΛR as a reflection. Therefore each s ∈ S can be
associated with a root αs. Let α ∈ Φ such that α = w(αs) for some w ∈ W and
s ∈ S. The action of the element wsw−1 on ΛR is given by:

wsw−1(v) = w(w−1(v) − 2B(w−1(v), αs)αs) = v − 2B(w−1(v), αs)α (1.11)

= v − 2B(v,w(αs))α = v − 2B(v, α)α = sα(v).

wsw−1 depends only on α and not on w and s. It acts as a reflection on ΛR. We
define the set R of all reflections sα by

R =
⋃
w∈W

wSw−1. (1.12)

Remark 1.3 (cf. [16]) The correspondence α→ sα is injective for α ∈ Φ+.

Proof If sα = sβ, then sα(β) = sβ(β). We obtain that β = B(α, β)α. Then α = β,
because they are unit vectors in Φ+. 2

Lemma 1.2 (cf. [16]) If α, β ∈ Φ and β = w(α) for some w ∈W, then wsαw−1 = sβ.

Proof This comes from the above formula (1.12) and from the fact that B is
W-invariant. 2

Proposition 1.6 (cf. [16]) Let w ∈ W and α ∈ Φ+, then `(wsα) > `(w) if and only if
w(α) > 0.

Proof It is sufficient to prove that if `(wsα) > `(w) then w(α) > 0. We proceed by
induction on `(w). If `(w) = 0, then it is trivial. If `(w) > 0, then there exists s ∈ S
such that `(sw) = `(w) − 1. Then we have `(wsα) > `(w) > `(sw). This implies
that `(swsα) ≥ `(wsα) − 1 > `(w) − 1 = `(sw). Therefore by induction sw(α) > 0.
Assume that w(α) < 0, this implies that w(α) = −αs, i.e. sw(α) = αs. From
Lemma 1.2 it follows that (sw)sα(sw)−1 = s, whence we obtain a contradiction
because wsα = sw, but `(wsα) > `(w) > `(sw). Therefore w(α) must be positive.
2

19



1. Coxeter groups

1.8 Strong Exchange Condition

Theorem 1.3 (Strong Exchange Condition, cf. [16]) Let w = s1 . . . sr, si ∈ S,
be a non necessary reduced expression. If there exists a reflection t ∈ R such that
`(wt) < `(w), then there is an index i for which wt = s1 . . . ŝi . . . sr (omitting si). If the
expression for w is reduced, then the index i is unique.

Proof Let t = sα with α ∈ Φ+. By Proposition 1.6 we have w(α) < 0. Because
α > 0, there exists an index i such that si+1 . . . sr(α) > 0 but si . . . sr(α) < 0, i.e. by
Proposition 1.4 (a) si+1 . . . sr(α) = αi, the simple root associated with si. Therefore
by Lemma 1.2 (si+1 . . . sr)t(sr . . . si+1) = si, or wt = s1 . . . ŝi . . . sr.
If the expression is reduced `(w) = r, we suppose that there exists an other index
j > i such that wt = s1 . . . ŝi . . . sr = s1 . . . ŝ j . . . sr, whence si+1 . . . s j = si . . . s j−1 and
thus si . . . s j = si+1 . . . s j−1. So this contradicts the fact that the expression of w is
reduced. 2

Corollary 1.4 (Deletion Condition, cf. [16])

(a) Let w = s1 . . . sr, si ∈ S, be a non-reduced expression, then there exist indices
i < j such that w = s1 . . . ŝi . . . ŝ j . . . sr.

(b) If w = s1 . . . sr, si ∈ S, then a reduced expression of w can be obtained by omitting
an even number of si.

Proof

(a) Because of `(w) < r, there exists an index j such that `(w′s j) < `(w′),
where w′ = s1 . . . s j−1. Then by Strong Exchange Condition (Theorem 1.3)
applied to w′ and s j, we get w′s j = s1 . . . ŝi . . . s j−1, i.e. w = s1 . . . ŝi . . . ŝ j . . . sr.

(b) This follows from part (a), applying as long as the expression is non-
reduced.

2

Definition 1.7 (cf. [16]) The Bruhat order is a partial ordering in W. We write that
w ≺ w′ if there exists a reduced expression w′ = s1 . . . sr such that w = s1 . . . ŝi . . . sr

(or if `(w) < `(w′) and w = w′t for some t ∈ R). 2

1.9 Fundamental domain for W

Let ρ : W → GL(ΛR) be the geometric representation of the Coxeter group W
and ρ∗ : W → GL(Λ∗R) be the controgradient action. Let us denote by 〈 f , λ〉,

20
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f ∈ Λ∗R, λ ∈ ΛR, the natural pairing in ΛR. Then the action of W in Λ∗R is
characterized by

〈w( f ),w(λ)〉 = 〈 f , λ〉, w ∈W, f ∈ Λ∗R, λ ∈ ΛR. (1.13)

For all s ∈ S, we can define the hyperplane

Zs := { f ∈ Λ∗R | 〈 f , αs〉 = 0} (1.14)

and the half-spaces
As := { f ∈ Λ∗R | 〈 f , αs〉 > 0} (1.15)

A′s := { f ∈ Λ∗R | 〈 f , αs〉 < 0} = s(As). (1.16)

Let C :=
⋂

s∈S As, its closure is the fundamental domain for W.
Observe that s fixes Zs pointwise. If n = |S|, one can identify ΛR withRn and so
also for Λ∗R. Therefore, respect to the standard topology of Rn, Zs is closed and
instead As and A′s are open, from which it follows that C is also open. Call As

the closure of As, i.e. As ∪ Zs, it is clear that D := C is the intersection of As for
all s ∈ S. Moreover the action of W on ΛR and Λ∗R is continuous.
Let WI be a parabolic subgroup of W (I ⊆ S) and define

CI :=
(⋂

s∈I

Zs

)
∩

(⋂
s<I

As

)
(1.17)

be a subset of D. Then C∅ = C and CS = {0}. WI fixes CI pointwise, because
s fixes Zs pointwise. Instead if s ∈ S fixes a point f ∈ CI, then s ∈ I, in fact
〈 f , αs〉 = 〈s( f ), s(αs)〉 = −〈 f , αs〉, from which f ∈ Zs.
Define U :=

⋃
w∈W w(D). U is a W-stable subset of Λ∗R. Next proposition claims

that the family C := {w(CI) | w ∈ W, I ⊂ S} form a partition of U. In particular
U is a convex cone called Tits cone.

Lemma 1.3 (cf. [16]) Let s ∈ S and w ∈ W. Then `(sw) > `(w) if and only if
w(C) ⊂ As. Instead `(sw) < `(w) if and only if w(C) ⊂ A′s.

Proof We use Proposition 1.6. Let `(sw) < `(w), i.e. `(w−1s) < `(w−1). It is
equivalent to w−1(αs) > 0. If f ∈ C, we have that 〈w( f ), αs〉 > 0 if and only
if 〈 f ,w−1(αs)〉 > 0, that is equivalent (by the way C is defined) to say that
w−1(αs) > 0. Then w(C) ⊂ As if and only if `(sw) > `(w). 2

Proposition 1.7 (cf. [16])

(a) Let w ∈W and I, J ⊂ S. If w(CI)∩CJ , ∅ then I = J and w ∈WI, so w(CI) = CI.
In particular, WI is the precise stabilizer in W of each point of CI, and C is a
partition of U.
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(b) D is the fundamental domain for the action of W on U: the W-orbit of each point
of U meets D in exactly one point.

(c) The cone U is convex and every closed line segment in U meets just finitely many
of the sets in the family C.

2

1.10 Types of Coxeter groups

1.10.1 Irreducible Coxeter systems

Definition 1.8 (cf. [16]) Let (W,S) be a Coxeter system. It is called irreducible if the
Coxeter graph Γ(W) is connected. 2

Proposition 1.8 (cf. [16]) Let (W,S) be a Coxeter system. If Γ1, . . . ,Γn are connected
components of the Coxeter graph Γ(W), let S1, . . . ,Sn be the corresponding subsets of
S. Then W is the direct product of the parabolic subgroups WS1 , . . . ,WSn , and each
Coxeter system (WSi ,Si) is irreducible.

Proof The elements of Si commute with the elements of S j for i , j. Then each
parabolic subgroup WSi centralizes each other, hence every WSi is normal in W.
Moreover, the product of these subgroups contains S, i.e. it must be all W. By
induction WS\Si is the direct product of WS j (i , j) that intersects WSi trivially.
So the product is direct. 2

1.10.2 Crystallographic Coxeter groups

Definition 1.9 (cf. [16]) Let W be a Coxeter group and ρ : W → GL(ΛR) be the
geometric representation. W is crystallographic relative to ρ if W stabilizes a lattice L
in ΛR. 2

The following proposition gives a condition for W to be crystallographic.

Proposition 1.9 (cf. [16]) Let Γ(W) be the Coxeter graph associated with the Coxeter
group W. If Γ(W) contains no circuit, W is crystallographic (relative to ρ) if and only
if m(s, t) ∈ {2, 3, 4, 6,∞} for all s, t ∈ S with s , t. Otherwise W is crystallographic
(relative to ρ) if and only if m(s, t) ∈ {2, 3, 4, 6,∞} for all s, t ∈ S with s , t and,
moreover, for each circuit in Γ(W), the number of edges labelled 4 (resp. 6) is even. 2

We are interested in the crystallographic Coxeter groups because they are
exactly the Weyl groups of the Kac-Moody Lie algebras (cf. [8]).
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1.10.3 Coxeter groups and bilinear forms

Let (W,S) be a Coxeter system and ρ : W → GL(ΛR) be the geometric represen-
tation of W. Let {αs | s ∈ S} be a fixed basis of ΛR, one defines the following
bilinear form B(αs, αs′ ) = − cos π

m(s,s′) in (cf. Section 1.3). This bilinear form
can be seen as the bilinear form associated with the Coxeter graph Γ(W) of W.
Through B it is possible to distinguish certain types of Coxeter groups.
The graph Γ(W) is said to be of positive type when the bilinear form B is positive
definite and of positive semidefinite type when B is positive semidefinite but not
positive definite (cf. [16]).
It is well know that the following graphs are the only connected Coxeter graphs
of positive type associated with crystallographic Coxeter groups.

An (n ≥ 1) •1 •2 •3 •n−2 •n−1 •n

Bn (n ≥ 2) •1 •2 •3 •n−2 •n−1
4

•n

Dn (n ≥ 2) •n−1

•1 •2 •3 •n−3 •n−2

•n

E6 •4

•1 •2 •3 •5 •6

E7 •4

•1 •2 •3 •5 •6 •7

E8 •4

•1 •2 •3 •5 •6 •7 •8

F4 •1 •2
4
•3 •4

G2 •1
6
•2

(1.18)

The Coxeter groups represented in Table 1.18 are the only crystallographic
Coxeter groups called of finite type (cf. [16]).
The Coxeter groups of finite type can be represented through their geometric
representation as finite reflection groups acting on the Euclidean space (cf. [16]).
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Instead the following graphs are the only connected Coxeter graphs of po-
sitive semidefinite type.

Ã1 •0
∞

•1

Ãn (n ≥ 2)

B̃2 = C̃2 •0
4
•1

4
•2

B̃n (n ≥ 3) •0

•2 •3 •n−2 •n−1
4

•n

•1

C̃n (n ≥ 3) •0
4
•1 •2 •n−2 •n−1

4
•n

D̃n (n ≥ 4) •0 •n−1

•2 •3 •n−3 •n−1

•1 •n

Ẽ6 •0

•4

•1 •2 •3 •5 •6

Ẽ7 •4

•0 •1 •2 •3 •5 •6 •7

Ẽ8 •4

•1 •2 •3 •5 •6 •7 •8 •0

F̃4 •0 •1 •2
4
•3 •4

G̃2 •0 •1
6
•2

(1.19)

The Coxeter groups represented in Table 1.19 are the only crystallographic
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Coxeter groups called of finite type (cf. [16]).
The Coxeter groups of affine type can be represented through their geometric
representation as infinite groups generated by affine reflections in the Euclidean
space (cf. [16]).

1.11 Hyperbolic Coxeter groups

Let (W,S) be an irreducible Coxeter system and B the associated nondegenerate
bilinear form. B allows to identify the vector space ΛR, on which the group W
acts, and its dual Λ∗R.
Let {λs | s ∈ S} be the dual basis to the basis {αs | s ∈ S}, relative to B.
Remind that the cone C defined in Section 1.9 is

C = {λ ∈ ΛR | B(λ, αs) > 0 f or all s ∈ S} = {
∑

csλs | cs > 0}. (1.20)

(presented as a subset of ΛR). Moreover observe that all λs lie in the closure D
of C, that is the fundamental domain for the action of W on U = ∪w∈Ww(C). D
is the convex hull of the vectors λs.

Definition 1.10 (cf. [16]) Let (W,S) be a Coxeter system acting on the vector space
ΛR of dimension n and let B be the associated nondegenerate bilinear form. (W,S) is
called hyperbolic Coxeter system if B has signature (n − 1, 1) and B(λ, λ) < 0 for all
λ ∈ C. The Coxeter group W is said to be hyperbolic. 2

Definition 1.10 forces B(λ, λ) < 0 for all λ ∈ D, then, in particular, this
property is true also for the vectors λs of the dual basis.

The following proposition allows us to recognize a hyperbolic Coxeter group
from its Coxeter graph.

Proposition 1.10 (cf. [16]) Let (W,S) be an irreducible Coxeter system, with Coxeter
graph Γ(W) and associated bilinear form B. It is hyperbolic if and only if satisfies the
following conditions:

(a) B is nondegenerate, but not positive definite.

(b) For each s ∈ S, the Coxeter graph obtained by removing s from Γ is of positive
type or of positive semidefinite type.

2

The most significant facts about the classification are these: the hyperbolic
Coxeter groups exist only in ranks 3 to 10 and there are only finitely many in
each ranks 4 to 10 (cf. [16]).
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1. Coxeter groups

1.11.1 Cocompact Coxeter group

Among the hyperbolic Coxeter groups we want focus our attention about the
hyperbolic Coxeter groups that are also cocompact.
When B is nondegenerate W is a discrete subgroup of the corresponding or-
thogonal group G := O(ΛR,B) (cf. [16]). G is a real Lie group endowed with
a Haar measure then one can define the volume for the homogeneous space
G/W. It is known that the volume is finite if and only if B is positive definite,
so when W is finite, or when B has signature (n − 1, 1) and B(λ, λ) < 0 for all
λ ∈ C, so when W is hyperbolic. To say that the volume is finite is the same to
say that W is a lattice in G. The following theorem is a condition to distinguish
those hyperbolic lattices W (called cocompact hyperbolic) in G such that G/W is
compact.

Theorem 1.4 (cf. [16]) W is a cocompact hyperbolic Coxeter group if and only if both
conditions hold:

(a) B is nondegenerate, but not positive definite.

(b) For each s ∈ S, the Coxeter graph obtained by removing s from Γ is positive
definite.

2

Cocompact hyperbolic Coxeter groups exist only in ranks 3, 4, 5 (cf. [16]), but
there is only one isomorphism class of cocompact crystallographic hyperbolic
Coxeter systems: (W,S) with Coxeter graph Γ(W)

•2

4

•1

4

•3 •4

(1.21)

In Chapter 3 we will spent much effort to represent (W,S) as a cocompact
arithmetic lattice of O+

R(3, 1), the orthogonal group of matrices with real entries
that stabilizes a bilinear form of signature (3, 1) and with positive entry in
position (1, 1), generalising a result of J. Elstrodt, F. Grunewald, J. Mennicke (cf.
[11]).

1.12 Some important series for Coxeter groups

This section has the aim to remind two important series, the growth series (cf.
[16]) and the complete growth series (cf. [1]), useful to study the growth of W
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1. Coxeter groups

relative to the generating set S. These series were introduced for studying
combinatorial structures in the context of infinite groups.

1.12.1 Growth series

The growth series is a series that, for a given set of generators, counts the number
of elements of certain length (cf. [16]).
Let

an := |{w ∈W | `(w) = n}|, (1.22)

one defines
W(t) :=

∑
n≥0

antn =
∑
w∈W

t`(w) (1.23)

that is a polynomial in the indeterminate t, said also Poincaré polynomial, element
of the polynomial ringZ[t] when W is finite, otherwise is a formal power series
in the indeterminate t, called also Poincaré series, element of the ringZ[[t]] of the
formal power series whose variable is t and whose coefficients come from the
ring Z.
There is a formula to calculate the sum of this series, as shown below.
Let I ⊆ S, remind that WI is a parabolic subgroup of W, define the set

WI := {w ∈W | `(ws) > `(w) f or all s ∈ I}. (1.24)

Proposition 1.11 (cf. [16]) Fix I ⊆ S. Given w ∈ W, there exists a unique u ∈ WI

and a unique v ∈ WI such that w = uv. Then `(w) = `(u) + `(v). Furthermore, u is
the unique element of smallest length in the coset wWI.

Proof Let w ∈W and choose a coset representative u ∈ wWI of smallest possible
length. Then w = uv for v ∈ WI. Since us ∈ wWI for all s ∈ I, then u ∈ WI,
because u is of smallest possible length and `(us) > `(u) for all s ∈ I. Consider
the reduced expression for u and v: u = s1 . . . sq with si ∈ S and v = s′1 . . . s

′
r with

s′i ∈ I. Then `(w) ≤ `(u) + `(v) = q + r. If the inequality was strict, the Deletion
Condition (Corollary 1.4) would allow to delete two factors si or s′i in uv without
changing w. If we delete two factors from u then we obtain a smaller element
in wWI. Instead if we delete two factors from v then we change v because the
expression is reduced. Therefore `(w) = `(u) + `(v).
At the end we have to prove the uniqueness of u as coset representative of
smallest length.
Suppose that there exists another element u′ ∈ WI that is also an element of
wWI different from u. We can write u′ = uv with `(v) = r > 0, then v = s1 . . . sr

with si ∈ I. But `(u′sr) < `(u′) contrary to u′ ∈WI. 2
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1. Coxeter groups

For every subset X ⊆W, we can define

X(t) :=
∑
w∈X

t`(w). (1.25)

Then WI(t) is the growth series of the Coxeter group WI, since ` = `I on WI.
From Proposition 1.11 and this considerations, it follows the formula

W(t) = WI(t)WI(t). (1.26)

Proposition 1.12 (cf. [16])

(a) If W is finite we have the identity

∑
I⊆S

(−1)|I|
W(t)
WI(t)

=
∑
I⊆S

(−1)|I|WI(t) = tN (1.27)

where N is the number of positive roots, otherwise the right side equals 0.

(b) W(t) is an explicitly computable rational function of t.

Proof

(a) In general, the equality of the first and second sum follows from the
previous remarks.
Let W be finite and w ∈ W be a fixed element. Set K := {s ∈ S | `(ws) >
`(w)}. Then w ∈WI when I ⊆ K, so t`(w) occurs in the sum with coefficient∑

I⊆K(−1)|I|. When K , ∅ then the coefficient
∑

I⊆K(−1)|I| = 0, but when
K = ∅, exactly when w is the element of maximal length (that exists only
for finite Coxeter groups and moreover is unique (cf [16])), the coefficient
is equal to tN.
Let W be infinite. The set K is non-empty for all w, so all coefficients are
0.

(b) We prove this assertion by induction on |S|. If |S| = 1, then W(t) = 1 + t.
Then using the equation in part (a):

∑
I,S

(−1)|I|
1

WI(t)
=

f (t)
W(t)

, (1.28)

where f (t) := tN
− (−1)|S| when W is finite, otherwise f (t) := −(−1)|S|.

By induction the left side is a computable rational function of t because it
involves WI(t) for which I , S. Then also W(t) is a computable rational
function.

2
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1. Coxeter groups

We see an example of calculation of a growth series.

Example 1.3 Let W = Ã1 the infinite dihedral group, i.e. S = {s0, s1} and m(s0, s1) =

∞. From the definition of Poincaré series we have:

W(t) = 1 + 2t + 2t2 + ... (1.29)

By Proposition 1.12, we can compute W(t) as rational function. We consider all subset
I ⊂ S: for I = ∅WI(t) = 1, for I = {s1} or I = {s2}WI(t) = 1 + t.
Then using formula (1.28):

−
1

W(t)
= 1 −

1
1 + t

−
1

1 + t
. (1.30)

So we obtain
W(t) =

1 + t
1 − t

. (1.31)

2

1.12.2 Complete growth series

The complete growth series is another series introduced after the growth series
for studying combinatorial structures in the context of infinite groups (cf. [1]).
It counts the element of the group of a certain length adding them together. It
is an element of the group ring.
Let (W,S) be a Coxeter system. We define the element Wn as the element of the
group ring Z[W] formed by the sum of all elements of W of length n:

Wn :=
∑
w∈W
`(w)=n

w. (1.32)

The complete growth series of W is the formal power series

W̃(t) :=
∑
w∈W

wt`(w) =
∑
n=0

Wntn. (1.33)

It is an element of the ring Z[W][[t]] of the formal power series whose variable
is t and whose coefficients come from the group ring Z[W].

The complete growth series for Coxeter groups with respect to their standard
generating set are known to be rational (cf. [30]).

Proposition 1.13 (cf. [20]) Let (W,S) be a not finite Coxeter group. Let W̃(t) be the
complete growth series for W and for I ⊂ S W̃I(t) be the complete growth series for the
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1. Coxeter groups

parabolic subgroup WI. Then we have the identity

∑
I⊆S

(−1)|I|
W̃(t)
W̃I(t)

= 0 (1.34)

Proof The proof is similar to that one of Proposition 1.12. 2
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Chapter 2

Kac-Moody Lie algebras and
Kac’ denominator formula

In 1967 Victor G. Kac and Robert Moody independently initiated the study of a
Lie algebra associated with a matrix different from the usual Cartan Matrix: the
Generalised Cartan Matrix. Their theory generalizes the theory of the semisim-
ple Lie algebras. This chapter explores briefly the theory of Kac-Moody Lie
algebras, highlighting the difference between the classical theory of the Lie al-
gebras. For more details we refer the reader to [8].
Moreover in this chapter we see the connection between a crystallographic
Coxeter system (W,S) and the roots of an arbitrary Kac-Moody Lie algebra as-
sociated with a symmetrizable Generalised Cartan Matrix with Weyl group W
through the Kac’ denominator formula introduced by V. G. Kac (cf. [17]).

2.1 Generalized Cartan Matrix

Definition 2.1 (cf. [8]) A matrix A = (Ai j) ∈Mn(C) is a Generalized Cartan Matrix
(GCM) if satisfies:

C1 Aii = 2 i = 1, . . . , r;

C2 Ai j ∈ Z and Ai j ≤ 0 for i , j;

C3 if Ai j = 0 then A ji = 0.

2

From Definition 2.1 we can observe that the GCM is a generalization of
the Cartan Matrix. In fact a Cartan Matrix satisfies the properties C1 and C3,
instead C2 is replaced by Ai j ∈ {0,−1,−2,−3} for i , j and moreover one adds
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2. Kac’ denominator formula

that if Ai j ∈ {−2,−3} then A ji = −1. Conversely the entries of a GCM that do not
lie in the main diagonal can assume any nonpositive integer values. Therefore
a Cartan Matrix is a particular GCM.
The following definition introduce some properties that a GCM can have.

Definition 2.2 (cf. [8]) A GCM A is indecomposable if is not equivalent to a diagonal
sum A1 0

0 A2


of smaller GCMs A1 and A2. 2

Definition 2.3 (cf. [8]) A GCM A is symmetrizable if there exists a non-singular
diagonal D and a symmetric matrix B such that A = DB. 2

We shall always assume that the GCM that we consider are indecomposable
and symmetrizable.

Proposition 2.1 (cf. [8]) Let A be a symmetrizable indecomposable GCM. Then A
can be expressed in the from A = DB with D = diag(d1, . . . , dn) and B symmetric,
where di ∈ Z>0 and Bi j ∈ Q. D is determined by these conditions up to scalar multiple.
2

2.2 Kac-Moody Lie algebra

To define a Kac-Moody Lie algebra, at first we should remind the definition
and some properties of a minimal realisation of a square matrix.

2.2.1 Minimal realisation of a square matrix

Definition 2.4 (cf. [8]) Let A be an n× n matrix over C. A realisation of A is a triple
(H,Π,Π∨) such that:

1. H is a finite dimensional vector space over C;

2. Π∨ = {h1, . . . , hn} is a linearly independent subset of H;

3. Π = {α1, . . . , αn} is a linearly independent subset of H∗, the dual of H;

4. α j(hi) = Ai j ∀i, j.

2

Proposition 2.2 (cf. [8]) If (H,Π,Π∨) is a realisation of A then dimH ≥ n − rankA.
2
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2. Kac’ denominator formula

Definition 2.5 (cf. [8]) A realisation of A is called minimal if

dimH = 2n − rankA.

2

Proposition 2.3 (cf. [8]) Any n×n matrix overC has a minimal realisation. Moreover
it is univocally determined up less to isomorphism. 2

2.2.2 Definition of Kac-Moody Lie algebras

The definition of a Kac-Moody Lie algebra can be understood if it is clear the
definition of a Lie algebra.

Definition 2.6 (cf. [8]) A Lie algebra is a vector space over a field K endowed with a
bilinear function

[∗, ∗] : L × L −→ L (2.1)

called commutator satisfying the following axioms:

1. [x, x] = 0 ∀x ∈ L;

2. [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 ∀x, y, z ∈ L.

Axiom 2 is called Jacobi identity. 2

Let L be a Lie algebra, for every x ∈ L one defines a K-linear map

adx : L→ L (2.2)

such that adx(y) := [x, y].

Definition 2.7 (cf. [8]) Let A be a n × n GCM of rank r and (H,Π,Π∨) be a minimal
realisation of A. A Kac-Moody algebra is a complex Lie algebra L generated by H and
by elements e1, . . . , en, f1, . . . , fn satisfying:

L1 [h, h′] = 0 ∀h, h′ ∈ H;

L2 [ei, f j] = δi jhi;

L3 [h, ei] = αi(h)ei;

L4 [h, fi] = −αi(h) fi;

L5 [ek, d−i j] = 0, where d−i j = (adei )
1−Ai j e j;

L6 [ fk, d+
i j] = 0, where d+

i j = (ad fi )
1−Ai j f j.
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2. Kac’ denominator formula

The first four relations are called Chevalley-Serre relations and the last two are the Serre
relations. We can write L = L(A). 2

From Definition 2.7 we observe that a GCM A defines univocally (up less to
isomorphism) a Kac-Moody Lie algebra L(A).
As C-vector space L(A) can be written as the direct sum of H, N− the C-vector
space generated by f1, . . . , fn and N+ the C-vector space by e1, . . . , en

L(A) = N− ⊕ H ⊕N+. (2.3)

The following proposition follows trivially from Definition 2.7.

Proposition 2.4 (cf. [8]) If A is a Cartan matrix then L(A) is the finite dimensional
semisimple Lie algebra with Cartan matrix A. 2

The theory of the Kac-Moody algebras is an extension of the theory of the
finite dimensional semisimple Lie algebras.

Proposition 2.5 (cf. [8]) Let A be a GCM and L(A) be the associated Kac-Moody Lie
algebra as in Definition 2.7. There exist a Lie algebra L̃(A) and an ideal I such that
L(A) = L̃(A)/I. 2

2.2.3 Properties of Kac-Moody Lie algebras

Since the Kac-Moody Lie algebras are a generalization of the semisimple Lie
algebras, the following concepts and propositions follow by analogy with the
theory of the semisimple Lie algebras.
Let L(A) be a Kac-Moody Lie algebra with minimal realisation (H,Π,Π∨) where
Π = {α1, . . . , αn}. Define the lattice

ΛZ := {α = k1α1 + k2α2 + . . . knαn | k1, . . . , kn ∈ Z} (2.4)

subgroup of H∗ and

Λ+
Z := {0 , α ∈ ΛZ | ki ≥ 0 ∀i}, Λ−Z := {0 , α ∈ ΛZ | ki ≤ 0 ∀i} (2.5)

subsets of ΛZ that are respectively a positive and a negative cone. The elements
of the positive cone are called weights. For each α ∈ ΛZ define

Lα := {x ∈ L(A) | [h, x] = α(h)x ∀h ∈ H}. (2.6)

Proposition 2.6 (cf. [8])

1. L(A) =
⊕

α∈ΛZ
Lα
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2. Kac’ denominator formula

2. dimLα is finite for all α ∈ ΛZ

3. L0 = H

4. If α , 0 then Lα = 0 unless α ∈ Λ+
Z or α ∈ Λ−Z

5. [Lα,Lβ] ⊂ Lα+β for all α, β ∈ ΛZ

Proof These properties follow from Proposition 2.5 whereby L(A) = L̃(A)/I and
also from the existence of the canonical mapπ : L̃(A)→ L(A) that allows to shift
some properties of the semisimple Lie algebras in the Kac-Moody Lie algebras.
2

Definition 2.8 (cf. [8]) The C-vector space H is a subalgebra of L(A) called Cartan
subalgebra. An element α ∈ H∗ is called root of L(A) if α , 0 and Lα , 0. The set

Φ̇ = {α ∈ ΛZ | α is a root} (2.7)

is called root system of L(A). Every root lies in Φ̇+ := Φ̇∩Λ+
Z, so called positive roots,

or in Φ̇− := Φ̇ ∩Λ−Z, so called negative roots. If α is a root, then Lα is the root space of
α. The dimension of Lα is called the multiplicity of α, mα. 2

Proposition 2.7 (cf. [8])

1. dimLαi = 1 = dimL−αi

2. If k > 1 then dimLkαi = 0 = dimL−kαi

Proof This proof follows from the considerations done in the proof of Proposi-
tion 2.6. 2

The roots α1, α2, . . . , αn form a basis of ΛZ and are called simple roots of L(A).

2.2.4 Kac-Moody Lie algebras associated with a symmetrizable
GCM

Remind that for a semisimple Lie algebra L = L(A), with A Cartan matrix, we
can define a nondegenerate symmetric bilinear form, called Killing form,

K : L × L→ C (2.8)

that is invariant in the sense that K([x, y], z) = K(x, [y, z]) for x, y, z ∈ L.
Also in the general case of a Kac-Moody Lie algebra L(A) there exists a nonde-
generate symmetric invariant bilinear form on L(A) when A is a symmetrizable
GCM (cf. [8]).
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Let A be a symmetrizable GCM. Then A = DB with D = diag(d1, . . . , dn) diago-
nal matrix and B symmetric matrix.
Let (H,Π,Π∨) be a minimal realisation of A, where Π∨ = {h1, . . . , hn} is a line-
arly independent set of H, Π = {α1, . . . , αn} is a linearly independent set of H∗,
α j(hi) = Ai j and dimH = 2n − r with r = rankA.
Let H′ be the subspace of H generated by h1, . . . , hn and H′′ be the complement
of H′ in H. Then H = H′ ⊕ H′′ where dimH′ = n and dimH′′ = n − r.
The bilinear form

〈, 〉 : H × H→ C (2.9)

defined by the rules:

〈hi, h j〉 = did jBi j i, j = 1, . . . ,n (2.10)

〈hi, x〉 = 〈x, hi〉 = diαi(x) x ∈ H′′ (2.11)

〈x, y〉 = 0 x, y ∈ H′′ (2.12)

is a nondegenerate symmetric bilinear form on H (cf. [8]). Moreover this form
can also be extended to a nondegenerate symmetric invariant bilinear form on
L(A) (cf. [8]) that is called standard invariant bilinear form on L(A).
Since the form (2.9) is nondegenerate on H, it determines a bijection H∗ → H by
α→ hα where

〈h′α, h〉 = α(h) ∀h ∈ H (2.13)

(cf. [8]).
The bilinear form (2.9) allows to associate with a Kac-Moody algebra L(A) a
reflection group with interesting properties and called Weyl group of L(A).

2.2.5 Weyl group of L(A)

Proposition 2.8 (cf. [8]) The map si : H → H such that si(x) = x − αi(x)hi for
i = 1, . . . ,n has the following properties:

1. s2
i = 1;

2. si(hi) = −hi;

3. si(x) = x when 〈hi, x〉 = 0.

Proof The first and the second property come from the formula of si and
from αi(hi) = 2. To prove the third property we must add the fact that
〈hi, x〉 = diαi(x) = 0 implies αi(x) = 0. 2

The maps si : H→ H for i = 1, . . . ,n are called simple reflections.
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Definition 2.9 (cf. [8]) The group W of non-singular linear transformations of H
generated by s1, . . . , sn is called the Weyl group of L(A). 2

Proposition 2.9 (cf. [8]) The bilinear form 〈, 〉 on H is invariant under W.

Proof Let x, y ∈ H. Then

〈six, siy〉 = 〈x−αi(x)hi, y−αi(y)hi〉 = 〈x, y〉−αi(x)〈hi, y〉−αi(y)〈x, hi〉+αi(x)αi(y)〈hi, hi〉

= 〈x, y〉 − αi(x)diαi(y) − αi(y)diαi(x) + αi(x)αi(y)2di = 〈x, y〉.

2

The action of W can also be defined on H∗ by

(wα)h = α(w−1h) f or w ∈W, α ∈ H∗, h ∈ H. (2.14)

This action is compatible with the isomorphism H∗ → H given by α→ hα such
that 〈h′α, h〉 = α(h) for all h ∈ H. In fact, let α, β ∈ H∗ such that w(α) = β. Then

〈w(h′α), h〉 = 〈h′α,w
−1(h)〉 = α(w−1(h)) = (wα)h = β(h) = 〈h′β, h〉 (2.15)

for all h ∈ H. Thus w(h′α) = h′β (cf. [8]).

Proposition 2.10 (cf. [8]) The action of si on H∗ is given by

si(β) = β − β(hi)αi.

Proof Let x ∈ H. Then

(si(β))x = β(s−1
i x) = β(six) = β(x − αi(x)hi)

= β(x) − αi(x)β(hi) = (β − β(hi)αi)x.

2

Remind that an element 0 , α ∈ ΛZ such that Lα , 0 is called root of L(A)
and that the set Φ̇ of all roots of L(A) is called root system. Then W naturally
acts on Φ̇. In analogy with the semisimple Lie algebras there are the following
properties.

Proposition 2.11 (cf. [8]) If α ∈ Φ̇, w ∈ W then w(α) ∈ Φ̇. Moreover dimLα =

dimLw(α). 2

Proposition 2.12 (cf. [8]) Let i , j. The order of sis j ∈W is:
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2 if Ai jA ji = 0
3 if Ai jA ji = 1
4 if Ai jA ji = 2
6 if Ai jA ji = 3
∞ if Ai jA ji ≥ 4.

2

As for the Coxeter groups one can also define a length for the elements of a
Weyl group W respect to its generators, i.e. the simple reflections s1, . . . , sn:

` : W →N0. (2.16)

(cf. Chapter 1, Section 1.2).
Moreover the number `(w) is exactly the number of positive roots being sent
by w to negative ones (cf. [8]), in analogy with the geometric interpretation of
the length function for Coxeter groups (cf. Chapter 1, Section 1.6).
The following proposition gives us the connection between a crystallographic
Coxeter system (W,S) and a Kac-Moody Lie algebra associated with a symme-
trizable Generalized Cartan Matrix (GCM) with Weyl group W.

Proposition 2.13 (cf. [8]) The Weyl group W of the Kac-Moody Lie algebra L(A) is
a crystallographic Coxeter group generated by s1, . . . , sn with relations:

s2
i = 1

(sis j)2 = 1 if Ai jA ji = 0
(sis j)3 = 1 if Ai jA ji = 1
(sis j)4 = 1 if Ai jA ji = 2
(sis j)6 = 1 if Ai jA ji = 3.

The order of sis j is exactly the exponent of the previous relations. 2

2.2.6 Root system

Let A be a GCM and L(A) be the corresponding Kac-Moody Lie algebra. Then

L(A) = H ⊕
∑
α∈Φ̇

Lα (2.17)

where Φ̇ := {α , 0 | Lα , 0} is the root system of L(A).
In analogy with the theory of the semisimple Lie algebras, the root system
Φ̇ = Φ̇+

t Φ̇− is the disjoint union of Φ̇+ := Φ̇ ∩Λ+
Z that is the set of the positive

roots (positive root system) and Φ̇− := Φ̇ ∩ Λ−Z of negative ones (negative root
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system) (cf. [8]). Π := {α1, . . . , αn} is the set of the simple roots.
The map

m. : Λ+
Z →N0 (2.18)

is the multiplicity function, that associates with every α ∈ Λ+
Z its multiplicity

mα, i.e. the dimension of Lα. Remind that the simple roots have multiplicity
equals to 1 (cf. Proposition 2.7) and the Weyl group W acts on Φ̇ and preserves
multiplicities (cf. Proposition 2.11). In the root system of a Kac-Moody Lie
algebra associated with a symmetrizable GCM with Weyl group W, there are
two types of weights: real and imaginary.

Definition 2.10 (cf. [8]) α ∈ Φ̇ is called real root if there exist αi ∈ Π and w ∈ W
such that α = w(αi), otherwise α is called imaginary root. Call Φ̇Re the real root system
and Φ̇Im the imaginary root system. 2

Definition 2.11 (cf. [15]) Let α ∈ Φ̇+, such that α = k1α1 + . . . + krαr. The height of
α is the positive integer

ht(α) =

r∑
i=1

ki.

2

Remark 2.1 (cf. [8]) If α is a real root then also −α is it and the same is true for α
imaginary root.

Proof If α is a real root, then there exist αi ∈ Π and w ∈ W such that α = w(αi).
Therefore −α = wsi(αi). Consequently if α is an imaginary root so it is −α. 2

Proposition 2.14 (cf. [8]) Let α be a real root. Then α has multiplicity 1. Also for
k ∈ Z, kα is a root if and only if k = ±1.

Proof If α is a real root, then there exist αi ∈ Π and w ∈ W such that α = w(αi).
Therefore, from Proposition 2.11, it follows that α has multiplicity 1. Moreover
Proposition 2.7 says us that kαi is not a root. Then kα = w(kαi) is not a root. 2

Let Φ̇+
im be the positive imaginary root system.

Proposition 2.15 (cf. [8]) If α ∈ Φ̇+
Im and w ∈W. Then w(α) ∈ Φ̇+

Im.

Proof We know that W acts both on Φ̇ and on the set Φ̇Re of real roots. Therefore
W acts on the set Φ̇Im of imaginary roots. We want to show that W cannot
change the sign of an imaginary root. Let

α =

n∑
i=1

kiαi ki ≥ 0.
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Then at least two ki are positive, otherwise α is a multiple of some αi and hence
α = αi would be a real root.
Consider that si(α) = α − α(hi)αi contains at least one simple root with positive
coefficient. Then si(α) ∈ Φ̇+

Im. Since w is a product of si then w(α) ∈ Φ̇+
Im. 2

The following theorem and proposition characterize the set of positive ima-
ginary roots and hence of imaginary roots.

Theorem 2.1 (cf. [8]) Let α ∈ Φ̇+
Im. Then kα ∈ Φ̇+

Im for all positive integers k. 2

Let A be a symmetrizable GCM and 〈, 〉 be the standard invariant bilinear
form on the Kac-Moody algebra L(A). Since 〈, 〉 is nondegenerate on H, then it
determines an isomorphism H∗ → H defined by λ→ h′λ such that λ(x) = 〈h′λ, x〉
for all x ∈ H. The bilinear form 〈, 〉 on H can be shifted on H∗ by defining

〈λ, µ〉 = 〈h′λ, h
′

µ〉 (2.19)

(cf. [8]). In particular one can define 〈α, α〉 for α ∈ Φ̇.

Proposition 2.16 (cf. [8]) Let A be a symmetrizable GCM. If α is a real root then
〈α, α〉 > 0. If α is an imaginary root then 〈α, α〉 ≤ 0. 2

2.3 The classification of Kac-Moody Lie algebras

Let A be an indecomposable GCM. The structure of a Kac-Moody Lie algebra
L(A) depends on the GCM A. Then to classify the Kac-Moody Lie algebras is
equivalent to classify the corresponding GCMs.

The classifications of types of the Kac-Moody Lie algebras L(A) is the fol-
lowing one (cf. [7]).

Finite type: A is positive definite. In this case det(A) > 0 and A is the Car-
tan matrix of a finite dimensional semisimple Lie algebra.

Affine type: A is positive semidefinite, but not positive definite. In this case
det(A) = 0.

Indefinite type: A is neither of finite nor affine type.

The simplest indefinite types are called
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Hyperbolic type: A is neither finite nor affine type, but every proper, inde-
composable principal submatrix is either of finite or affine type. In this case
det(A) < 0.

Lorentzian type: det(A) < 0 and A has exactly one negative eigenvalue.

The GCMs of Lorentzian type include and are larger then the GCMs of hy-
perbolic type.
Let A be a GCM of hyperbolic type. A is of cocompact hyperbolic type if every
proper, indecomposable principal submatrix is of finite type.

If A has finite type, then L(A) is a finite Kac-Moody algebra (simple Lie alge-
bra); if A has affine type, then L(A) is an affine Kac-Moody algebra; if A has
indefinite type, then L(A) is an indefinite Kac-Moody algebra; if A has hyperbolic
type, then L(A) is a hyperbolic Kac-Moody algebra.

Theorem 2.2 (cf. [8]) Let A be an indecomposable GCM of finite or affine type. Then
A is symmetrizable. 2

Since a crystallographic Coxeter group W is a Weyl group of a Kac-Moody
Lie algebra L(A) (cf. Proposition 2.13), then it is easy to verify that:

1. if L(A) is of finite type then W is a finite crystallographic Coxeter group;

2. if L(A) is of affine then W is an affine crystallographic Coxeter group;

3. if L(A) is of hyperbolic type then W is a hyperbolic crystallographic Co-
xeter group.

The following theorems show some properties of the root systems of the
different types of Kac-Moody Lie algebras.

Theorem 2.3 (cf. [8]) Let A be an indecomposable GCM.

1. If A has finite type then L(A) has no imaginary roots.

2. If A has affine type then there exists a vector u with positive entries such that
Au = 0. u is determined up to scalar multiple. Then there is a unique u whose
entries are positive integers have no common factors. Let u = (a1, . . . , an). Let
δ = a1α1 + . . . + anαn. Then the imaginary roots of L(A) are the elements kδ for
k ∈ Z, k , 0.

3. If A has indefinite type then there exists α ∈ Φ̇+
Im such that α =

∑n
i=1 kiαi with

ki > 0 and α(hi) < 0 for i = 1, . . . ,n.
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2

Corollary 2.1 (cf. [8]) If A is an indecomposable GCM of affine or indefinite type then
the dimension of L(A) is infinite.

Proof In both cases L(A) has an imaginary root α. Then L(A) has infinitely many
roots kα for k ∈ Z, k , 0, by Theorem 2.1. Since L(A) = H ⊕

∑
α∈Φ̇ Lα, then the

dimension of L(A) must be infinite. 2

The following propositions, due to R. V. Moody, reassume the properties of
the root system of a Kac-Moody Lie algebra of hyperbolic type.

Theorem 2.4 (cf. [23]) If A is a symmetrizable and hyperbolic GCM, then

Φ̇Im = {α ∈ ΛZ | 〈α, α〉 ≤ 0}.

2

Corollary 2.2 (cf. [23]) If A is a symmetrizable and hyperbolic GCM, then Φ̇+
Im is a

semi-group under addition. 2

In conclusion, the following theorem is one of the most important result of
R. V. Moody.

Theorem 2.5 (cf. [23]) Let A be an indecomposable symmetrizable GCM.

Φ̇Im = {α ∈ ΛZ | 〈α, α〉 ≤ 0}

if and only if A has finite, affine or hyperbolic type. 2

One of the open problems relative to the Kac-Moody Lie algebras is to find
an effective closed formula for the dimensions of the imaginary root spaces for
hyperbolic and other indefinite Kac-Moody Lie algebras.

2.4 Kac’ denominator formula

This thesis explores the connection between a crystallographic Coxeter system
(W,S) and the roots of an arbitrary Kac-Moody Lie algebra associated with
a symmetrizable GCM with Weyl group W through a formula, called Kac’
denominator formula: ∑

w∈W

(−1)`(w)e(c(w)) =
∏
α∈Λ+

Z

(1 − e(α))mα , (2.20)

Here:
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2. Kac’ denominator formula

1. W is a crystallographic Coxeter group;

2. e(α) is a formal exponential;

3. Λ+
Z is the positive root cone;

4. ` : W →N0 is the length on (W,S);

5. m. : Λ+
Z →N0 is the multiplicity function;

6. c(w) is the sum of positive roots being sent by w−1 to negative ones.

The formula (2.20) is parametrized when we explicitly know the function m.. It
was at first discovered and proved by I. G. Macdonald for affine Kac-Moody
Lie algebras (cf. [21]) and then extended to the entire class of Kac-Moody Lie
algebras associated with a symmetrizable GCM by V. G. Kac (cf. [4]).

2.4.1 The function c

The left hand-side of formula (2.20) depends crucially on the function c, then
we will study its properties. Let ΛR be an R-vector space with basis the simple
roots α1, . . . , αn. We consider the lattice ΛZ := {k1α1 + . . .+ knαn | k1, . . . , kn ∈ Z}.
Remember that Λ+

Z := ΛZ≥0 is the positive cone whose elements are called
weights. Let Φ be the root system of W and for w ∈ W let Γ(w) := Φ+

∩ w(Φ−).
The function

c : W → Λ+
Z,

given by
c(w) =

∑
γ∈Γ(w)

γ,

maps w in the sum of positive roots being sent by w−1 to negative ones.

Properties of c

(c1) c(w−1) = −w−1(c(w)) ∀w ∈W

Proof Let w = s1 . . . sr with `(w) = r, then w−1 = sr . . . s1.
The positive roots that w−1 sends to negative ones are γi = s1 · · · si−1(αi)
for 1 ≤ i ≤ r and interpreting γ1 to be α1. Instead the positive roots that w
sends to negative ones are βi = sr · · · si+1(αi) for 1 ≤ i ≤ r and interpreting
βr to be αr (c.f. Proposition 1.5).
Then c(w−1) =

∑r
i=1 βi and c(w) =

∑r
i=1 γi.

Observe that w−1(γi) = sr . . . s1(s1 · · · si−1(αi)) = sr . . . si(αi) = −sr . . . si+1(αi) =

−βi.
So c(w−1) =

∑r
i=1 βi = −

∑r
i=1 w−1(γi) = −w−1(

∑r
i=1 γi) = −w−1(c(w)). 2
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(c2) Let w = s1 . . . sr with `(w) = r, then c(s1s2 . . . sr) = s1 . . . sr−1(αr)+c(s1 . . . sr−1).

Proof Let γi as defined in the proof of (c1).
c(s1s2 . . . sr) =

∑r
i=1 γi = γr +

∑r−1
i=1 γi = s1 . . . sr−1(αr) + c(s1 . . . sr−1). 2

(c3) Let w ∈W and s ∈ S such that `(ws) = `(w) + 1, then c(ws) = w(αs) + c(w).

Proof It follows from (c2) with s = sr and w = s1 . . . sr−1. 2

(c4) c(w) = 0 if and only if w = 1.

Proof It is trivial, in fact Γ(1) = ∅. 2

(c5) c(sα) = α.

Proof It is trivial, in fact Γ(sα) = {α}. 2

(c6) c(sw) = αs + s(c(w)) for s ∈ S and w ∈W such that `(sw) = 1 + `(w).

Proof It is sufficient to observe that Γ(sw) = {αs} t s · Γ(w). 2

(c7) Fixed w = s1 . . . sr ∈W with `(w) = r. One defines the map

cw : {0, 1, . . . , r} → Λ+
Z

by induction in this way:

cw
0 = 0, cw

i = cw
i−1 + sr . . . sr−(i−1)+1(αr−(i−1)+1) i = 0, . . . , r

where cw
r = c(w).

(c8) Let w,w′ ∈ W. If w′ ≺ w in the Bruhat ordering then c(w′) < c(w), i.e.
c(w) − c(w′) ∈ Λ+

Z.

Proof If w′ ≺ w in the Bruhat ordering, then there exist w0 = w′,w1, . . . ,wr =

w such that w0 ≺ w1 ≺ . . . ≺ wr and `(wi) = `(wi−1) + 1 for i = 1, . . . , r, i.e.
wi is given by wi−1 adding a simple reflection si: wi = wi−1si.
By (c3), c(wr) = wr−1(αr) + c(wr−1) = wr−1(αr) + wr−2(αr−1) + c(wr−2) = . . . =

wr−1(αr) + wr−2(αr−1) + . . . + w0(α1) + c(w0).
c(wr)− c(w0) = wr−1(αr) + wr−2(αr−1) + . . .+ w0(α1) ∈ Λ+

Z, so c(w′) < c(w). 2

Root systems

Let (W,S) be a Coxeter root system with ρ : W → GL(ΛR) the geometric re-
presentation. In Definition 1.5, the root system Φ = {w(αs) | w ∈ W, s ∈ S}
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of (W,S) is constructed starting by the basis {αs | s ∈ S} of unitary vectors, i.e.
B(αs, αs) = 1. An alternative definition of the root system is the following one,
because starting by unitary vectors is not always convenient.

Definition 2.12 We call a subset Υ ⊆ ΛR a root system of (W,S), if

(R1) 0 < Υ;

(R2) ∀β ∈ Υ: R · β ∩ Υ = {±β};

(R3) ∀w ∈W one has w(Υ) = Υ;

(R4) ∀γ ∈ Φ there exist βγ ∈ Υ and e ∈ R+ such that γ = e · βγ;

(R5) ∀β ∈ Υ there exist γβ ∈ Φ and d ∈ R+ such that β = d · γβ.

2

Therefore, roughly speaking, a root system Υ of (W,S) is the set of renor-
malized vectors {dγ · γ | γ ∈ Φ} such that (R3) is satisfied.
Let β ∈ Υ, the reflection sβ associated with β is

sβ(x) := x − 2 ·
B(x, β)
B(β, β)

· β, x ∈ ΛR. (2.21)

A root system Υ is said to be crystallographic if ∀α, β ∈ Υ

〈〈α, β〉〉 := 2 ·
B(α, β)
B(β, β)

∈ Z. (2.22)

and rational crystallographic, if it is crystallographic and for all β ∈ Υ

B(β, β) ∈ Q. (2.23)

The canonical basis of Υ is the set

∆ =
⋃
s∈S

(R>0 · αs ∩ Υ). (2.24)

Fact 2.1 Let Υ be a root system of the Coxeter group (W,S). Then

(a) Υ = {w(β) | β ∈ ∆,w ∈W};

(b) (W,S) is a crystallographic Coxeter group if and only if 2 · B(α,β)
B(β,β) ∈ Z for all

α, β ∈ ∆.

Proof

(a) It is a direct consequence of Definition 1.5.
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(b) It is sufficient to prove that if 2 · B(α,β)
B(β,β) ∈ Z for all α, β ∈ ∆, then W is

crystallographic.
Let consider

ΛZ = spanZ∆ ⊆ ΛR. (2.25)

Since W is generated by S, then ΛZ is a W-invariant subset of ΛR and, by
definition ∆ ⊂ ΛZ. Hence, by (a), Υ ⊆ ΛZ. Moreover, by (a), for α, β ∈ ΛZ

there exists w ∈W such that w(β) ∈ ∆ and

w(α − sβ(α)) = 2 ·
B(α, β)
B(β, β)

· w(β) ∈ ΛZ.

2

We can refer to a crystallographic Coxeter group with the triple (W,S,Υ).
The lattice ΛZ ⊂ ΛR given by (2.25) is called root lattice of the crystallographic
Coxeter group (W,S,Υ).
From now on, we shall always consider the root system Φ of the Coxeter group
(W,S) in the sense of Definition 2.12, then the vectors αs of Φ are not necessarily
unitary vectors.

Fact 2.2 Let L(A) be a Kac-Moody Lie algebra with Weyl group W. Proposition 2.13
insures that W is a crystallographic Coxeter group generated by the simple reflections.
Then the root system Φ of W coincides with the real root system Φ̇Re of L(A). 2

The rational root space

Let (W,S,Φ) be a crystallographic Coxeter group. Then we call ΛQ := Q ⊗Z ΛZ

the rational root space of (W,S,Φ). It has the following properties.

Fact 2.3 Let (W,S,Φ) be a crystallographic Coxeter group and ∆ = {αs | s ∈ S} the
basis of Φ, considered in the sense of Definition 2.12.

1. There exists λs ∈ ΛQ for s ∈ S such that

B(λs, αs′ ) =
1
2

B(αs, αs)δs,s′ , s, s′ ∈ S, (2.26)

where δ.,. denotes Kronecker’s function.

2. αs(λs′ ) = λs′ − δs,s′αs (by identifying αs with sα).

Proof
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1. We consider an enumeration over the elements of S: s1, s2, . . . , sn. So using
Grand-Schmidt process we can take

λsi =
1
2
αsi −

n∑
j=1
j,i

projλsj
(αsi ),

where projλsj
(αsi ) is the orthogonal projection of αsi over λs j .

2. αs(λs′ ) = λs′ − 2 B(λs′ ,αs)
B(αs,αs)

αs = λs′ − 2
1
2 B(αs,αs)δs,s′

B(αs,αs)
αs = λs′ − δs,s′αs.

2

The set Ω = {λs | s ∈ S} satisfying (2.26) will be called dual basis of ∆. In case
that B : ΛR × ΛR → R is nondegenerate, such a basis is uniquely determined
by ∆. For a dual basis Ω of ∆ we put

ω0 =
∑
s∈S

λs (2.27)

and we call it trace of Ω.

The positive 1-cocycle

In this section we describe the function c : W → Λ+
Z showing an explicit formula

with the following proposition.

Proposition 2.17 Let (W,S,Φ) be a crystallographic Coxeter group and Ω be a dual
basis of ∆ with trace ω0. Then for all w ∈W one has

c(w) = (1 − w) · ω0. (2.28)

In particular, c is a 1-cocycle.

Proof
Let h : W → ΛQ be given by h(w) = (1 − w) · ω0. h is a 1-cocycle, i.e., for all
w1,w2 ∈W one has

h(w1w2) = (1−w1w2)·ω0 = ω0−w1w2·ω0 = ω0−w1·ω0+w1·ω0−w1w2·ω0 = h(w1)+w1h(w2).

Let w ∈W we prove by induction on `(w) that h(w) = c(w).
For `(w) = 0, one has c(1) = 0 = (1 − 1) · ω0 = h(1).
For `(w) = 1, one has c(sα) = α and h(sα) = (1 − sα) · ω0 =

∑
s∈S ωs −

∑
s∈S α(ωs) =∑

s∈S ωs −
∑

s∈S ωs + α = α, since α = αs. Therefore c(sα) = h(sα).
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Consider w′ ∈ W and assume that c(w) = h(w) for all w ∈ W with `(w) ≤ `(w′).
Let w′ = sαw of length `(w′) = `(w) + 1, so

c(w′) = c(sαw) = α + sαc(w) = α + sαh(w) = α + sα((1 − w) · ω0) =

α + ω0 − α + (sαw) · ω0 = (1 − sαw) · ω0 = h(sαw).

Hence by induction we prove the equality c = h. 2

We call the map c : W → Λ+
Z the positive 1-cocycle of (W,S,Φ).

Corollary 2.3 Let c : W → Λ+
Z be the positive 1-cocycle of the crystallographic

Coxeter group (W,S,Φ). Then c is injective.

Proof
Letω0 be the trace of a dual basis Ω of ∆. Let w1,w2 ∈W such that c(w1) = c(w2),
then (1 − w1) · ω0 = (1 − w2) · ω0 ⇒ w1 · ω0 = w2 · ω0 ⇒ w−1

1 w2 · ω0 = ω0.
Hence c(w−1

1 w2) = (1 − w−1
1 w2) · ω0 = 0, so w−1

1 w2 = 1⇒ w1 = w2. 2

To the property (c1)-(c8) we add the following one.

(c9) If ρ := 1
2

∑
α∈Φ+ α, then w(ρ) = ρ − c(w) ∀w ∈W.

Proof We prove by induction on `(w). Let `(w) = 0, then w = 1 and it is
trivial. If `(w) = 1, then w = s ∈ S. Then s(ρ) = − 1

2αs + 1
2

∑
α∈Φ+−{αs}

α = ρ − c(s).
We suppose that the thesis is satisfied for all w′ ∈ W with `(w′) < `(w). Let
s ∈ S such that w = sw′. Then w(ρ) = sw′(ρ) = s(ρ − c(w′)) = ρ − c(s) − s(c(w′)) =

ρ − c(sw′) 2

2.4.2 The characteristic power series of a crystallographic group

Let λ =
∑

s∈S ks · αs ∈ Λ+
Z, ks ∈N0, define

Tλ =
∏
s∈S

Tks
s ∈ Z[[Ts | s ∈ S]]. (2.29)

Then
χW(T) = χ(W,S,Φ)(T) =

∑
w∈W

(−1)`(w)Tc(w)
∈ Z[[Ts | s ∈ S]] (2.30)

is a formal power series with coefficients in {−1, 0, 1} and in |S| independent
variables. We call this series the characteristic power series of the crystallographic
Coxeter group (W,S,Φ).
The left hand-side of Kac’ denominator formula (2.20) relative to an arbitrary
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Kac-Moody Lie algebra associated with a symmetrizable GCM with Weyl group
W and root system Φ̇ can be reinterpreted as the characteristic power series of
a crystallographic group (W,S,Φ). Then one has the following equality:

χW(T) = χ(W,S,Φ)(T) =
∑
w∈W

(−1)l(w)Tc(w) =
∏
α∈Φ̇+

(1 − Tα)mα . (2.31)

Example 2.1 1. Let A1 be the Coxeter group with graph

•α (2.32)

Its characteristic power series is

χA1 (X) = 1 − X. (2.33)

2. Let A2 be the Coxeter group with graph

α• •β (2.34)

Φ+ = {α, β, α+β} is the positive root system of A2. Its characteristic power series
is

χA2 (X,Y) = (1−X)(1−Y)(1−XY) = 1−X−Y + X2Y + XY2
−X2Y2. (2.35)

3. Let A3 be the Coxeter group with graph

α• β• •γ (2.36)

Φ+ = {α, β, γ, α + β, β + γ, α + β + γ} is the positive root system of A3. Its
characteristic power series is

χA3 (X,Y,Z) = (1 − X)(1 − Y)(1 − Z)(1 − XY)(1 − YZ)(1 − XYZ) = (2.37)

= 1 − X − Y + X2Y + XY2
− X2Y2

− Z+

+XZ + Y2Z − X3Y2Z − XY3Z + X3Y3Z + YZ2
− X2YZ2+

−Y2Z2+X3Y2Z2+X2Y4Z2
−X3Y4Z2

−XY2Z3+X2Y2Z3+XY3Z3
−X3Y3Z3

−X2Y4Z3+X3Y4Z3.

2
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2.4.3 The multiplicities

S. Berman and R. V. Moody inverted Kac’ denominator formula (2.20) and
obtained an explicit formula to calculate the multiplicities of the weights (cf.
[4]).
Let α ∈ Λ+

Z,

mα =
∑
λ|α

µ
(α
λ

)λ
α

∑
(n)∈S(λ)

(∏
ε(ci)ni

) ((∑ ni) − 1
)
!∏

(ni!)
. (2.38)

where

1. µ denotes the Möbius function.

2. For α, λ ∈ Λ+
Z we write λ|α if α = rλ for r ∈ Z≥0 and α

λ = r.

3. Let c0, c1, c2, . . . be the set of elements c(w), w ∈ W, written in order of
increasing heights (cf. Definition 2.11)). Then c0 = c(1) = 0 and ci = c(si)
for i = 1, . . . , r.

4. Let c(w), ε(c(w)) = (−1)`(w)+1.

5. (n) = (n1 n2 n3 . . .) is a sequence of nonnegative integers ni.

6. Let λ ∈ Λ+
Z, then S(λ) = {(n) |

∑
nici = λ}.

An example of calculation of multiplicities using formula (2.38) is given in
Chapter 3, Example 3.5.
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Chapter 3

A cocompact crystallografic
hyperbolic Coxeter group

There is only one isomorphism class of cocompact crystallographic hyperbolic
Coxeter systems (W,S), whose Coxeter graph is Γ(W):

•2

4

•1

4

•3 •4

(3.1)

In this chapter we spent much effort to represent (W,S) as a cocompact arith-
metic lattice of O+

R(3, 1), the orthogonal group of matrices with real entries that
stabilizes a bilinear form of signature (3, 1) and with positive entry in position
(1, 1), generalising a result of J. Elstrodt, F. Grunewald, J. Mennicke (cf. [11]).
In fact the idea to establish an explicit description of the Coxeter system (W,S)
in the Lie group O+

R(3, 1) starts by considering a homomorphism of Lie groups
(cf. [11])

Ψ : SL(2,C)→ SO+
R(3, 1), (3.2)

where SO+
R(3, 1) is the special orthogonal group of matrices with real entries

that stabilizes a bilinear form of signature (3, 1) and with a positive entry in
position (1, 1).
It can be extended to an exceptional isomorphism

Ψ̃ : SL(2,C)→ OR(3, 1) (3.3)

through external involutions.
Moreover, generalising some results of A. Feingold, I. Frenkel (cf. [12]) and
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3. A crystallographic cocompact hyperbolic Coxeter group

using an important result of V. G. Kac (cf. [17]), we obtained also a description
of the root system of a Kac-Moody Lie algebra with Weyl group (W,S).

3.1 The Coxeter group (W,S)

Let (W,S) be the Coxeter group with Coxeter graph Γ(W)

2•

4

•1

4

3• •4

(3.4)

Then S = {s1, s2, s3, s4} and

W = 〈s1, s2, s3, s4 |

(s1s2)3 = (s1s3)2 = (s1s4)4 = (s2s3)4 = (s2s4)2 = (s3s4)3 = s2
i = 1 i = 1, . . . , 4〉. (3.5)

Let ΛR be a 4-dimensionalR-vector space and {αi ∈ ΛR | si ∈ S} be a fixed basis
in one-to-one correspondence with S. Through the geometric representation
(cf. Section 1.3)W is represented as a subgroup of the orthogonal group O(ΛR,B)
respect to the bilinear form B defined in (1.7):

B :=


1 −

1
2 0 −

√
2

2

−
1
2 1 −

√
2

2 0

0 −

√
2

2 1 −
1
2

−

√
2

2 0 −
1
2 1

 , (3.6)

where Bi j = B(αi, α j) := − cos
(
π

mi j

)
.

Then W is a reflection group generated by four simple reflections si := sαi

i = 1, . . . , 4, where αi are the simple roots.
In particularW is a cocompact (from Theorem 1.4) crystallographic (from Propo-
sition 1.9) hyperbolic (from Proposition 1.10) Coxeter group.
Being W a crystallographic Coxeter group, then it is a Weyl group of a Kac-
Moody Lie algebra (from Proposition 2.13)L(A) where A = (Ai j) is the following
GCM:

A =


2 −1 0 −1
−1 2 −1 0
0 −2 2 −1
−2 0 −1 2

 . (3.7)
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3. A crystallographic cocompact hyperbolic Coxeter group

Moreover A is a symmetrizable GCM, in fact A = DB′, where

B′ :=


1 −

1
2 0 −

1
2

−
1
2 1 −

1
2 0

0 −
1
2

1
2 −

1
4

−
1
2 0 −

1
4

1
2

 . (3.8)

is a symmetric matrix and D = diag(di) is a diagonal matrix

D :=


2 0 0 0
0 2 0 0
0 0 4 0
0 0 0 4

 . (3.9)

Then (cf. Sections 2.2.4 and 2.2.6) one can define the standard bilinear form as
〈αi, α j〉 :=

√
di

√
d jB′i j for i, j = 1, . . . , 4:

1. 〈α1, α1〉 = 2 = 〈α2, α2〉;

2. 〈α3, α3〉 = 4 = 〈α4, α4〉;

3. 〈α1, α2〉 = −1;

4. 〈α1, α3〉 = 0 = 〈α2, α4〉;

5. 〈α1, α4〉 = −2 = 〈α2, α3〉 = 〈α3, α4〉.

The simple reflections of the Weyl group W, as subgroup of O(ΛR,B), respect
to the basis of the simple roots α1, α2, α3, α4 with bilinear form 〈·, ·〉 have the
following representation:

s1 =


−1 1 0 2
0 1 0 0
0 0 1 0
0 0 0 1

 , s2 =


1 0 0 0
1 −1 2 0
0 0 1 0
0 0 0 1

 , (3.10)

s3 =


1 0 0 0
0 1 0 0
0 1 −1 1
0 0 0 1

 , s4 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 1 −1

 . (3.11)

3.1.1 3-dimensional Hyperbolic Space

An R-vector space V of dimension n + 1 endowed with a symmetric bilinear
form (·, ·) : V×V → R of signature (n, 1) is called Lorentzian space. The quadratic
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3. A crystallographic cocompact hyperbolic Coxeter group

hypersurface
{λ ∈ V | (λ, λ) = −1} (3.12)

is a hyperboloid of two sheets, and one connected componentHn will be called
hyperbolic space of dimension n. Since the tangent space of Hn at λ ∈ Hn is the
orthogonal complement of λ in V, Hn inherits a natural Euclidean structure
from (·, ·) by restriction.
Let consider in ΛR (the 4-dimensional R-vector space as defined in Section 3.1)
four vectors e0, e1, e2, e3 such that

〈ei, e j〉 = 0 ∀i , j, 〈e0, e0〉 = −7, 〈ei, ei〉 = 1 i = 1, 2, 3. (3.13)

The simple roots α1, α2, α3, α4 of the Coxeter group W can be written as linear
combination of e0, e1, e2, e3:

α1 = e1 − e2, α2 = e2 + e3, α3 = −2e3, α4 = e0 − 3e1 − e2 + e3. (3.14)

{e0, e1, e2, e3} is also a basis for ΛR, then ΛR is a Lorentzian space endowed with
the symmetric bilinear form 〈·, ·〉 that defines the following quadratic form

Q(x0, x1, x2, x3) = −7x2
0 + x2

1 + x2
2 + x2

3. (3.15)

3.2 An exceptional isomorphism

In this section we shall describe the construction of an exceptional isomorphism

Ψ̃ : SL(2,C)→ OR(3, 1), (3.16)

i.e. the construction of an isomorphism

Ψ̃ : PSL(2,C)→ PO+
R(3, 1), (3.17)

We start off with certain facts about Clifford algebras. For more details we refer
the reader to [11].

3.2.1 Clifford algebras

Let K be a field of characteristic different from 2 and V be an n-dimensional
K-vector space. Suppose Q : V → K be a nondegenerate quadratic form
associated with a symmetric bilinear form ΦQ : V × V → K such that

ΦQ =
1
2

(Q(x + y) −Q(x) −Q(y)) (3.18)
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3. A crystallographic cocompact hyperbolic Coxeter group

Q(x) = ΦQ(x, x). (3.19)

Denote by T(V) the tensor algebra of V and by I the two sided ideal generated
by the elements x ⊗ y + y ⊗ x − 2ΦQ(x, y), where x, y ∈ V. The Clifford algebra
of Q is defined as the quotient C(Q) := T(V)/I (cf. [11]).
Let e1, . . . , en be a basis of V, orthogonal with respect to ΦQ. Then we have in
C(Q):

e2
i = Q(ei), eie j = −e jei ∀i, j = 1, . . . ,n. (3.20)

Let Pn be the set of subsets of {1, . . . ,n}. For M ∈ Pn, M = {i1, . . . , ir} with
i1 < . . . < ir, we define

eM := ei1 . . . eir (3.21)

with the additional convention e∅ := 1. The 2n elements eM form a basis for
C(Q). If M = Pn, we call eM the volume element of C(Q).
Denote by Rp,q the n = p + m-dimensional R-vector space Rn with nondege-
nerate quadratic form Q of signature (p, q), where p is the number of positive
autovalues and q of negative. In this case we write C(p, q) for C(Q) (cf. [13]).

Example 3.1 (cf. [11]) For ε ∈ K with ε , 0 let Vε = K f3 be the 1-dimensional K-
vector space with basis f3. On Vε we fix the quadratic form Qε given by Qε( f3) = −ε.
Then the Clifford algebra C(Qε) is 2-dimensional and commutative. If K = R and
ε = 1 then we say f3 to be the imaginary number i. So we make the identification
C(Q1) = C. 2

Example 3.2 (cf. [11]) For a, b ∈ K with a, b , 0 let Ha,b = Ki ⊕ Kj be the 2-
dimensional K-vector space with basis i, j. On Ha,b we fix the quadratic form Qa,b,
given by Qa,b(αi + βj) = aα2 + bβ2. The Clifford algebra C(Qa,b) is 4-dimensional.
C(Qa,b) is the quaternion algebra H(a, b;K) = {α + βi + γj + δk | i2 = a, j2 =

b, k = ij = −ji}. 2

3.2.2 The main involutions

Denote with C(Q)op the opposite algebra of C(Q), i.e. an algebra with the same
elements and addition operations, but with the multiplication performed in the
reverse order. The Clifford algebra C(Q) has a main anti-involution

∗ : C(Q)op
→ C(Q), (3.22)

e∗M := (−1)
r(r−1)

2 eM and a main involution

′ : C(Q)→ C(Q), (3.23)
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3. A crystallographic cocompact hyperbolic Coxeter group

e′M := (−1)reM, where r is the cardinality of M. The main anti-involution and
the main involution commute, so we can also define an other anti-involution

: C(Q)op
→ C(Q), (3.24)

that is eM := e′∗M = (−1)
r(r+1)

2 eM.
We set

C
+(Q) := {a ∈ C(Q) | a = a′}, C−(Q) := {a ∈ C(Q) | a′ = −a}. (3.25)

Then C(Q) = C+(Q)⊕C−(Q), and C+(Q) is a subalgebra of C(Q), the even Clifford
algebra, whose generators are the elements eM where M has even cardinality.

Example 3.3 (cf. [11]) Let V0 = K f0 ⊕K f1 ⊕K f2 be a 3-dimensionalK-vector space
with the quadratic form Q0, given by Q0(y0 f0 + y1 f1 + y2 f2) = y2

0 − y2
1 − y2

2. The even
Clifford algebra C+(Q0) is the algebra of 2 × 2-matrices over K, M(2,K).
In fact, it is easy to prove that the map ψ : M(2,K)→ C+(Q0), given by1 0

0 0

→ 1
2

(1 + f0 f1),

0 1
0 0

→ 1
2

( f0 f2 − f1 f2),

0 0
1 0

→ 1
2

( f0 f2 + f1 f2),

0 0
0 1

→ 1
2

(1 − f0 f1),

is an algebra isomorphism. Moreover, we have

ψ
(α β

γ δ

 )∗= ψ
( δ −β

−γ α

 )
2

Remark 3.1 Let eX be a fixed element in C−(Q). The conjugation action of eX on
C

+(Q) allows to construct the following involution

ξeX : C+(Q)→ C+(Q)

ξeX (eM) := e−1
X eMeX.

2

Definition 3.1 (cf. [11]) For the K-vector space V with quadratic form Q, we define
the K-vector space Ṽ := V0 ⊕ V with quadratic form Q̃ := Q0 ⊥ Q. 2

C(Q0) can be identified with the subalgebra of C(Q̃) generated by f0, f1, f2.
The following propositions are the first step for the construction of the excep-
tional isomorphism (3.16).
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3. A crystallographic cocompact hyperbolic Coxeter group

Proposition 3.1 (cf. [11]) The map · : V → C+(Q̃) with x· := f0 f1 f2x extends to an
injective K-algebra homomorphism · : C(Q)→ C+(Q̃). The map · commutes with the
anti-automorphism ∗.

Proof The existence of the extension of the map · can be deducted from simple
elementary considerations or from the universal property of Clifford algebras.
The formula ( ∑

M∈Pn

λMeM

)·
=

∑
M∈Pn

λM( f0 f1 f2)εM eM (3.26)

where

εM =

0 i f the cardinality o f M is even,

1 otherwise.

allows to prove the injectivity considering also that eM, M ∈ Pn, form a basis of
C(Q) constructed from an orthogonal basis of the n dimensional vector space
V. Moreover from formula (3.26) it is clear that the maps · and ∗ commute. 2

Proposition 3.2 (cf. [11]) The map ψ : M(2,C(Q))→ C+(Q̃),

ψ
(α β

γ δ

 ):= α·
1
2

(1+ f0 f1)+β·
1
2

( f0 f2− f1 f2)+γ·
1
2

( f0 f2 + f1 f2)+δ·
1
2

(1− f0 f1) (3.27)

is a K-algebra isomorphism and satisfies

ψ
(α β

γ δ

 )∗= ψ
( δ∗ −β∗

−γ∗ α∗

 ). (3.28)

Proof Since the elements 1
2 (1 + f0 f1), 1

2 ( f0 f2 − f1 f2), 1
2 ( f0 f2 + f1 f2), 1

2 (1− f0 f1) com-
mute with C(Q), it follows from Example 3.3 that ψ is a homomorphism. More-
over, from formula (3.26) ψ is injective. ψ is also surjective because M(2,C(Q))
and C+(Q̃) have the same dimension. 2

3.2.3 The exceptional isomorphism

We shall describe now the construction of the exceptional isomorphism

Ψ : SL(2,C)→ O4(R,Q1) = O4(3, 1), (3.29)

i.e. the construction of an isomorphism

Ψ : PSL(2,C)→ PSO4(R,Q1) = PSO4(3, 1), (3.30)

where Q1(x0, x1, x2, x3) := x2
0 − x2

1 − x2
2 − x2

3 is a quadratic form.
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3. A crystallographic cocompact hyperbolic Coxeter group

Definition 3.2 (cf. [11]) Let V be an n-dimensional K-vector space with nondegene-
rate quadratic form Q. Then the spin-group of Q is defined as

Spinn(K,Q) := {s ∈ C+(Q) | sVs∗ ⊆ V, ss∗ = 1}.

2

Remind Vε is the 1-dimensional vector space with basis f3 endowed with
the quadratic form Qε( f3) = −ε (cf. Example 3.1).

Proposition 3.3 (cf. [11]) The K-algebra isomorphism ψ : M(2,C(Qε)) → C+(Q̃ε)
defined as in Proposition 3.2 restricts to a group isomorphism ψ : SL(2,C(Qε)) →
Spin4(Q̃ε).

Proof Let

A =

a0 + a1 f3 b0 + b1 f3
c0 + c1 f3 d0 + d1 f3


be the general element of M(2,C(Qε)). Recalling the definition of ψ we find:

2ψ(A) = a0 + d0 + (a0 − d0) f0 f1 + (b0 + c0) f0 f2 + (b1 − c1) f0 f3
+(c0 − b0) f1 f2 − (b1 + c1) f1 f3 + (a1 − d1) f2 f3 + (a1 + d1) f0 f1 f2 f3.

The statement follows then from Proposition 3.2 together with some ele-
mentary considerations. 2

The spin-group of the quadratic form has a canonical homomorphism with
the corresponding orthogonal group which is constructed as follows. Let V
be an n-dimensional vector space with nondegenerate quadratic form Q. The
space V is identified with a subspace of C(Q) and one has that for v ∈ V:
Q(v) = vv∗.
For s ∈ Spinn(K,Q) then there is a linear map Λ(s) ∈ GL(V) given by Λ(s)(x) :=
sxs∗. The computation

sxs∗(sxs∗)∗ = sxs∗sx∗s∗ = sxx∗s∗ = xx∗ (3.31)

shows that Λ(s) ∈ On(K,Q). Therefore the map

Λ : Spinn(K,Q)→ On(K,Q). (3.32)

is a homomorphism.
We shall have a description of the image and cokernel of Λ. Let Ωn(K,Q)
be the commutator subgroup of On(K,Q) and Γ(Q) be the subgroup of K∗/K∗2

generated by Q(x)Q(y) where x, y ∈ V such that Q(x) , 0 , Q(y). Every element
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3. A crystallographic cocompact hyperbolic Coxeter group

g ∈ On(K,Q) is the product of reflections sxi associated with anisotropic vectors
xi for i = 1, . . . , r: g = sx1 . . . sxr . Associating with g the product Q(x1) . . .Q(xr) in
K∗/K∗2, we get a well-defined homomorphism

Σ : SOn(K,Q)→ K∗/K∗2 (3.33)

which is called the spinorial norm homomorphism. The following proposition is
contained in Dieudonné (1971), Artin (1957).

Proposition 3.4 (cf. [11]) Let V be an n-dimensional K-vector space with nondege-
nerate quadratic form Q. Then the following statements hold.

1. We have Λ(Spinn(K,Q)) ⊂ SOn(K,Q) and Σ(SOn(K,Q)) ⊂ Γ(Q), the resulting
sequence 1→ {1,−1} → Spinn(K,Q)→ SOn(K,Q)→ Γ(Q)→ 1 is exact.

2. We define SO+
n (K,Q) := Im(Λ) and get Ωn(K,Q) ⊆ SO+

n (K,Q).

3. If n ≥ 3 then Ωn(K,Q) is also the commutator subgroup of SOn(K,Q).

4. Let n ≥ 3 and V be a vector space that contains an isotropic vector x, i.e. x , 0
such that Q(x) = 0, then Ωn = Ker(Σ) = Im(Λ).

2

Chosen as quadratic form Qε then:

Definition 3.3 (cf. [11]) Let Vε be a 1-dimensional vector space with basis f3 and
quadratic form Qε, then

Ψ : SL(2,C(Qε))→ O4(K, Q̃ε) (3.34)

is defined as Ψ := Λ ◦ ψ. 2

ψ and Ψ are usually called exceptional isomorphims. From Proposition 3.4 it
follows:

Proposition 3.5 (cf. [11]) The map Ψ : SL(2,C(Qε))→ O4(K, Q̃ε) has the property

Ψ(SL(2,C(Qε))) = SO+
4 (K, Q̃ε)

and the resulting sequence

1→ {1,−1} → SL(2,C(Qε))→ SO4(K, Q̃ε)→ K/K∗2 → 1

is exact. 2
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We give now a concrete matrix-expression for our map.

Proposition 3.6 (cf. [11]) Let Vε be the 1-dimensional vector space with basis f3 and
quadratic form Qε, that is Qε( f3) = −ε. For

A =

a0 + a1 f3 b0 + b1 f3
c0 + c1 f3 d0 + d1 f3

 ∈ SL(2,C(Qε))

define
N1 := a2

0 + b2
0 + c2

0 + d2
0 + ε(a2

1 + b2
1 + c2

1 + d2
1),

N2 := −a2
0 + b2

0 − c2
0 + d2

0 + ε(−a2
1 + b2

1 − c2
1 + d2

1),

N3 := −a2
0 − b2

0 + c2
0 + d2

0 + ε(−a2
1 − b2

1 + c2
1 + d2

1),

N4 := a2
0 − b2

0 − c2
0 + d2

0 + ε(a2
1 − b2

1 − c2
1 + d2

1),

T1 := −a0c0 − b0d0 + ε(−a1c1 − b1d1),

T2 := a0c0 − b0d0 + ε(a1c1 − b1d1),

T3 := −a1c0 + a0c1 − b1d0 + b0d1,

T4 := a1c0 − a0c1 − b1d0 + b0d1.

Then

Ψ(A) =


N1
2

N2
2 −a0b0 − c0d0 + ε(−a1b1 − c1d1) ε(a1b0 − a0b1 + c1d0 − c0d1)

N3
2

N4
2 a0b0 − c0d0 + ε(a1b1 − c1d1) ε(−a1b0 + a0b1 + c1d0 − c0d1)

T1 T2 a0d0 + b0c0 + ε(a1d1 + b1c1) ε(−a1d0 + a0d1 + b1c0 − b0c1)
T3 T4 a1d0 − a0d1 + b1c0 − b0c1 a0d0 − b0c0 + ε(a1d1 − b1c1)

 .
(3.35)

Proof These formulas follow by straightforward computations from the previ-
ous definitions. 2

3.2.4 The orthogonal group O4(R,Q1)

Let K = R. We take the 1-dimensional R-vector space V1 = R f3 with quadratic
form Q1(λ f3) = −λ2. Example 3.1 introduced the identification C(Q1) = C. Let
Q1 := Q̃1 be a quadratic form on the 4-dimensional vector space Ṽ1 defined in
Definition 3.1. Then we have the following statements.

Proposition 3.7 (cf. [11]) Let SO+
4 (R,Q1) be the image of the homomorphism Ψ :

SL(2,C)→ SO4(R,Q1) as defined in Proposition 3.4. Then the following holds.

(1) SO+
4 (R,Q1) has index 2 in SO4(R,Q1).
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(2) SO+
4 (R,Q1) is the connected component of the identity in SO4(R,Q1).

(3) SO+
4 (R,Q1) consists of those elements in SO4(R,Q1) which have a positive entry

in the left upper corner.

(4) SO+
4 (R,Q1) is equal to the commutator subgroup of SO4(R,Q1) and also equal

to the commutator subgroup of O4(R,Q1).

(5) The quotient map SO4(R,Q1) → PSO4(R,Q1) maps SO+
4 (R,Q1) isomorphi-

cally onto PSO4(R,Q1).

Proof The only statements which are not clear form Proposition 3.4 are (2) and
(5). Statement (2) follows from the formulas in Proposition 3.6, while (5) is
obvious. 2

The following proposition characterizes a particular subset of O4(R,Q1).

Proposition 3.8 (cf. [11]) Define O+
4 (R,Q1) to be the set of elements in O4(R,Q1)

which have a positive entry in the left upper corner. Then the following hold:

(1) Let x ∈ Ṽ1 be an anisotropic vector and let σx ∈ O4(R,Q1) be the corresponding
reflection. Then −σx ∈ O+

4 (R,Q1)

(2) O+
4 (R,Q1) is a subgroup of index 2 in O4(R,Q1).

(3) O+
4 (R,Q1) maps isomorphically onto PO4(R,Q1).

Proof We infer (2) from the obvious (1) and Proposition 3.7. Statement (3) is
clear. 2

The previous propositions described the possibility to construct the excep-
tional isomorphism

Ψ : SL(2,C)→ O4(R,Q1) = O4(3, 1), (3.36)

i.e. an isomorphism

Ψ : PSL(2,C)→ PSO4(R,Q1) = PSO4(3, 1). (3.37)

3.2.5 The orthogonal group O4(R,Q)

We now consider the orthogonal group O4(R,Q) respect to the quadratic form
Q(x0, x1, x2, x3) = 7x2

0 − x2
1 − x2

2 − x2
3, just introduced in Section 3.1.1. We will

see later that it will be useful to our aim: to represent (W,S) as a cocompact
arithmetic lattice of O+

4 (R,Q).
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3. A crystallographic cocompact hyperbolic Coxeter group

Starting by the exceptional isomorphism Ψ : SL(2,C) → O4(R,Q1) (3.36), we
should construct

Ψ : SL(2,C)→ O4(R,Q). (3.38)

At the same way of the proof of Proposition 3.6, we fix a vector space Ṽ1 with
quadratic form Q1 and basis F = { f0, f1, f2, f3}. Now, let ΛR be a vector space
endowed with quadratic form Q and basis E = {e0, e1, e2, e3} satisfying (3.13).
Changing basis, from F to E, we obtain the representation of ImΨ in O4(R,Q):

N1 = a2
0 + b2

0 + c2
0 + d2

0 + a2
1 + b2

1 + c2
1 + d2

1,

N2 = −a2
0 + b2

0 − c2
0 + d2

0 + −a2
1 + b2

1 − c2
1 + d2

1,

N3 = −a2
0 − b2

0 + c2
0 + d2

0 − a2
1 − b2

1 + c2
1 + d2

1,

N4 = a2
0 − b2

0 − c2
0 + d2

0 + a2
1 − b2

1 − c2
1 + d2

1,

T1 = −a0c0 − b0d0 + −a1c1 − b1d1

T2 = a0c0 − b0d0 + a1c1 − b1d1,

T3 = −a1c0 + a0c1 − b1d0 + b0d1,

T4 = a1c0 − a0c1 − b1d0 + b0d1,
N1
2

N2

2
√

7
−a0b0−c0d0−a1b1−c1d1

√
7

a1b0−a0b1+c1d0−c0d1
√

7√
7N3
2

N4
2 a0b0 − c0d0 + a1b1 − c1d1 −a1b0 + a0b1 + c1d0 − c0d1

√
7T1 T2 a0d0 + b0c0 + a1d1 + b1c1 −a1d0 + a0d1 + b1c0 − b0c1
√

7T3 T4 a1d0 − a0d1 + b1c0 − b0c1 a0d0 − b0c0 + a1d1 − b1c1

 . (3.39)

The obtained exceptional isomorphism Ψ : SL(2,C) → O4(R,Q) has the fol-
lowing property:

Ψ(SL(2,C)) = SO+
4 (R,Q). (3.40)

We should extend this map to an isomorphism.
On SL(2,C) it can be defined in a natural way an involution σ such that, let

A =

a0 + ia1 b0 + ib1

c0 + ic1 d0 + id1

 be an element of SL(2,C),

σAσ = A :=

a0 − ia1 b0 − ib1

c0 − ic1 d0 − id1

 . (3.41)
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We have that

Ψ(A) =


N1
2

N2

2
√

7
−a0b0−c0d0−a1b1−c1d1

√
7

−
a1b0−a0b1+c1d0−c0d1

√
7√

7N3
2

N4
2 a0b0 − c0d0 + a1b1 − c1d1 −(−a1b0 + a0b1 + c1d0 − c0d1)

√
7T1 T2 a0d0 + b0c0 + a1d1 + b1c1 −(−a1d0 + a0d1 + b1c0 − b0c1)

−
√

7T3 −T4 −(a1d0 − a0d1 + b1c0 − b0c1) a0d0 − b0c0 + a1d1 − b1c1

 .
(3.42)

= τΨ(A)τ

where τ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

.

The image of σ through Ψ is the reflection τ, i.e. an involution of trace 2. More-

over let I =

1 0
0 1

 be the identity matrix of SL(2,C), then Ψ(I) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =

Ψ(−I).
In this way we extend

Ψ : SL(2,C)→ SO+
4 (R,Q) (3.43)

to an isomorphism

Ψ̃ : 〈σ〉 n PSL(2,C)→ O+
4 (R,Q), (3.44)

where n is the semidirect product, that can also be viewed as an isomorphism

Ψ̃ : 〈σ〉 n SL(2,C)→ O+
4 (R,Q), (mod KerΨ̃) (3.45)

or
Ψ̃ : 〈σ〉 n SL(2,C)→ O4(R,Q), (mod KerΨ̃), (3.46)

by Proposition 3.8.

3.3 The quadratic form Q

In Section 3.1.1 we observed that the 4-dimensional R-vector space ΛR is a
Lorentzian space endowed with the symmetric bilinear form 〈·, ·〉 that defines
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the following quadratic form

Q(x0, x1, x2, x3) = −7x2
0 + x2

1 + x2
2 + x2

3. (3.47)

Then in this section we reassume some important facts about the theory of
quadratic forms, because we will observe in the next section that their pro-
perties give us some clues to recognize groups commensurable to cocompact
subgroups of the orthogonal groups. For more details we refer the reader to
[24].
It is interesting to know that a good part of the theory about the quadratic forms
has a strong connection with the theory about the Brauer groups.

Definition 3.4 (cf. [25]) Let K be a field and let Ω(K) be the class of all finite
dimensional, simple and central K-algebras. Two algebras A and B are equivalent
if there is a division algebra D ∈ Ω(K) and a positive integers m and n such that
A 'M(n,D) and B 'M(m,D).
We writeA ∼ B. The equivalence class ofA in Ω(K) will be denoted by [A].

Theorem 3.1 (Brauer’s theorems, cf. [25]) For a fieldK, the set B(K) = {[A] | A ∈
Ω(K)} is an abelian group with the product [A][B] = [A⊗B], the unity element [K],
and the inverse operation [A]−1 = [A∗]. 2

Every class in B(K) is represented by a division algebra that is unique up to
isomorphism, this remark comes from Definition 3.4.

For every prime p of K, let Kp denote the p-adic completion of K. For an
algebraA over K we putAp = A⊗KKp, the completion (also called localization)
ofA at p.
Splitting of a K-algebraAmeans thatA is a full matrix algebra over K.

Theorem 3.2 (Local Global Principle, cf. [28]) Let K be an algebraic number field
and A be a central simple K-algebra. If the Kp-algebra Ap splits for every p then A
spits. 2

An important application of the Local Global Principle (Theorem 3.2) is
to determine the structure of the Brauer group B(K) over a number field K.
Let K be a number field and p be a prime of K. If we associate with every
central simple algebra A over K its completion Ap, then we obtain the p-adic
localization map of Brauer group B(K) → B(Kp). Combining the maps for all
primes p of K we obtain the universal localization map

B(K)→
⊕∑

p

B(Kp). (3.48)
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The Local-Global Principle (Theorem 3.2) can be interpreted to say that this
localization is injective. So B(K) can be viewed as a subgroup of the direct sum
of the local groups B(Kp).

From the theory about Brauer groups it follows this consideration about the
quadratic forms. Let Q be a quadratic form, the question Q has a non-trivial
zero in a field is, of course, identical with the question whether the field is a
splitting field for an algebra.

3.3.1 Quadratic forms over Qp

Let V be a K-vector space and Q be a quadratic form on V, we called (V,Q)
quadratic module. Let x, y ∈ V, the bilinear form associated with Q is

(x, y) =
1
2

(Q(x + y) −Q(x) −Q(y)). (3.49)

(V,Q) is said degenerate if there exists 0 , x ∈ V such that x.y = 0 ∀y ∈ V,
otherwise (V,Q) is nondegenerate.
An element 0 , x ∈ V is said to be isotropic if Q(x) = 0.
Q represents an element α ∈ K if there exists 0 , v ∈ V such that Q(x) = α. In
particular Q represents 0 if and only if the corresponding quadratic module
contains a non-zero isotropic element. When Q represents 0, we say that Q is
anisotropic over K.

From the theory about the Brouer groups it follows this result.

Theorem 3.3 (Hasse-Mikowski Theorem, cf. [10]) Let Q be a quadratic form in n
variables with coefficients in Q. Then Q represents 0 in Q if and only if it represents 0
in every Qp for all p prime. 2

Let n := rankQ be the rank of Q. If {e1, . . . , en} is an orthogonal basis of V
and put ai = (ei, ei), then the discriminant of Q is d := a1 . . . an ∈ Q∗p/(Q∗p)2 and
ε :=

∏
i< j (ai, a j), where (a, b) is the Hilbert symbol for a, b ∈ Q∗p.

The Hilbert symbol (a, b) is given by

(a, b) :=

1 i f there exists a non − trivial solution o f z2
− ax2

− by2 = 0,

−1 otherwise.
(3.50)

Theorem 3.4 (cf. [10]) Let Q be a nondegenerate quadratic form in n variables with
coefficients in Q. Then Q represents 0 in Qp if and only if one of the following holds:

1. n = 2 and d = −1 (in Q∗p/(Q∗p)2);
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2. n = 3 and ( − 1,−d) = ε;

3. n = 4 and either d , 1 or d = 1 and ε = ( − 1,−d);

4. n ≥ 5.

2

Theorem 3.5 (cf. [10]) Let consider the equation aX2 + bY2 + cZ2 = 0 with 0 ,
a, b, c ∈ Z.

1. If p is an odd prime that does not divide abc, then the equation has a non-trivial
solution in Qp.

2. If p = 2 and a, b and c are all odd, and the sum of two of them is divisible by 4,
then the equation has a non-trivial solution in Q2.

3. If p = 2 and one of a, b and c is even, and the sum of two coefficients or the sum
of all three coefficients will be divisible by 8, then the equation has a non-trivial
solution in Q2.

4. If p is an odd prime and a is divisible by p and there exists an integer r ∈ Z
such that b + r2c ≡ 0(mod p), then the equation has a non-trivial solution inQp.
(−b/c is a quadratic residue modulo p, means that is congruent to a square mod
p.)

2

The following lemma allows us to recognize the squares in Qp.

Lemma 3.1 (Hensel’s Lemma, cf. [10]) Let p , 2 be a prime. An element x ∈ Qp is
a square if and only if it can be written x = p2ny2 with n ∈ Z and y ∈ Z∗p a p-adic unit.
The quotient group Q∗p/(Q∗p)2 has order four. If c ∈ Z∗p is any element whose reduction
modulo p is not a quadratic residue, then the set {1, p, c, cp} is a complete set of coset
representatives.
If p = 2. An element x ∈ Q2 is a square if and only if it can be written x = 22ny2 with
n ∈ Z and y is a 2-adic unit such that y ≡ 1(mod8Z2). The quotient group Q∗p/(Q∗p)2

has order eight and the set {±1,±2,±5,±10} is a complete set of coset representatives.
2

3.3.2 Q(x0, x1, x2, x3) = −7x2
0 + x2

1 + x2
2 + x2

3

Let consider the quadratic formQ(x0, x1, x2, x3) = −7x2
0 + x2

1 + x2
2 + x2

3 introduced
in Section 3.1.1. The question is if Q represents 0 in Q.
We are interesting to this property forQ because in the next section, starting by
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Q, we will construct a division algebra. By the theory about Brauer group, we
know that let Q be a quadratic form, the question Q has a non-trivial zero in
a field is, of course, identical with the question whether the field is a splitting
field for an algebra.
Hasse-Mikowski Theorem (Theorem 3.3) allows to observe that Q does not
represent 0 in Q because for p = 2 it does not represent 0 in Q2.
In fact, referring to Theorems 3.4, we observe that the discriminant d = −7 is
equal to 1 inQ∗2/(Q

∗

2)2 (cf. Lemma 3.1) and ε = (−7, 1)3(1, 1)3 = 1 , (−1, 7) = −1
(cf. Theorem 3.5).

3.4 A representation ofW

In this section we establish an explicit description of the Coxeter system (W,S)
in the Lie group O+

R(3, 1) using the exceptional isomorphism (3.44) constructed
in Section 3.2.5. Moreover we exhibit the generators of W in 〈σ〉 n PSL(2,C)
through an explicit formula and, generalising some results of A. Feingold, I.
Frenkel (cf. [12]), we show a description of the root system of the Kac-Moody
Lie algebra with Weyl group (W,S).

3.4.1 The quaternion algebra

We start off with certain facts about the quaternion algebras. LetK be a field of
characteristic , 2.

Definition 3.5 (cf. [25]) Let a and b be non-zero elements of K. Let A be a 4-
dimensional K-vector space with basis 1, i, j, k and bilinear multiplication defined by
the conditions that 1 is a unity element, and

i2 = a, j2 = b, ij = −ji = k. (3.51)

A :=
(

a,b
K

)
is an associative K-algebra called quaternion algebra. 2

Example 3.4 HR :=
(
−1,−1
R

)
is the classical Hamiltonian quaternion algebra.

Lemma 3.2 (cf. [25]) For any non-zero a, b ∈ K, A =
(

a,b
K

)
is a central simple

K-algebra.

Proof A is a central algebra if Z(A) = K. It is obvious that Z(A) ⊇ K. Vice versa
let x ∈ Z(A), x = x0 + x1i + x2j + x3k. xi = ix if and only if x2 = 0 = x3, then
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x = x0 + x1i. And xj = jx if and only if x1 = 0, then x = x0 ∈ K.
Let I a non-zero ideal ofA and x = x0 + x1i + x2j + x3k ∈ I. Now,

j(ix − xi) − (ix − xi)j = −4bx2i ∈ I,

k(jx − xj) − (jx − xj)k = 4abx3j ∈ I,

i(kx − xk) − (kx − xk)i = −4ax1k ∈ I.

If one of x1, x2 or x3 is not 0, then I contains a unit of A; instead if x1 = x2 =

x3 = 0, then 0 , x = x0 is a unit belonging to I. In all cases, I = A. 2

Thus, the quaternion algebras are associative, central and simple.

InA =
(

a,b
K

)
the map

: A→A, x0 + x1i + x2j + x3k = x0 − x1i − x2j − x3k (3.52)

is called the conjugation map.
Moreover every element ofA is equipped by the norm

N : A→ K, N(x) = xx (3.53)

and by the trace
Tr : A→ K, Tr(x) = x + x. (3.54)

These maps satisfy
xy = xy, N(xy) = N(x)N(y) (3.55)

for all x, y ∈ A. We also have the formula

N(x0 + x1i + x2j + x3k) = x2
0 − ax2

1 − bx2
2 + abx2

3. (3.56)

Theorem 3.6 (cf. [25]) IfA is a quaternion algebra overK, thenA is either a division
algebra orA is isomorphic to M2(K).

Proof By Weddeburn’s Structure Theorem for finite-dimensional simple alge-
bras, A is isomorphic to a full matrix algebra Mn(D), where D is a division
algebra, with n andD uniquely determined byA. The K-dimension Mn(D) is
mn2, where m = dimKD. Then for the 4-dimensional quaternion algebras there
are only two possibilities: m = 4,n = 1 or m = 1,n = 2. 2

Definition 3.6 (cf. [25]) If the quaternion algebraA overK is such thatA 'M2(K),
we say thatA splits or unramifies in K, otherwise it does not spits or ramifies in K.
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Let v a place of K and Kv the completion of K respect to v, if the quaternion K-algebra
A ramifies in Kv, we say thatA ramifies at the place v. 2

The following map is the connection between a quaternion algebra and the
algebra of matrix of order 2 (cf. [11]). Let L be a field extension of K with
√

a,
√

b ∈ L then the map

φ : A =
(a, b
K

)
→M(2,L)

x0 + x1i + x2j + x3k→

 x0 + x1
√

a x2
√

b + x3
√

ab
x2
√

b − x3
√

ab x0 − x1
√

a

 (3.57)

is an injective K-algebra homomorphism satisfying N(x) = Det(φ(x)).

Definition 3.7 (cf. [11]) LetA0 be the subspace ofA spanned by the vectors i, j, k.
The elements ofA0 are called pure quaternions inA. 2

LetOK be the ring of integers ofK andO a subring of finite index inOK. (We
always assume that all rings contain an identity element 1). Such subrings are
usually called orders of K. LetA be a quaternion algebra over K. An O-order R
inA is a subring which contains aK-basis ofA. It is also anO-submodule ofA
and is finitely generated asO-module. An order ia anOK-order ofA. An order
is called maximal if it is not properly contained in another order. Two orders
R1,R2 ofA are equivalent if and only if there is an invertible element x ∈ Awith
R2 = xR1x−1.

Definition 3.8 (cf. [11]) LetA be a quaternion algebra over K and R a subring ofA
closed under conjugation. We put

R
1 := {x ∈ R | N(x) = 1} (3.58)

and call it the norm 1 group of R. 2

If R is an order then OK ⊆ R and if x ∈ R then x + x ∈ OK, hence every order
is closed under conjugation and the above definition applies.

It is easy to prove that, let K be an algebraic number field,

φ :
(a, b
K

)1

→ SL(2,C) (3.59)

x0 + x1i + x2j + x3k→

 x0 + x1
√

a x2
√

b + x3
√

ab
x2
√

b − x3
√

ab x0 − x1
√

a


is an injective group homomorphism (cf. [11]).
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Remark 3.2 (cf. [25]) If F is a field extending K, then(a, b
K

)
⊗K F '

(a, b
F

)
.

2

There is a connection between the quaternion algebras and the even Clifford
algebras (cf. [11]). Let K0 be a field of characteristic , 2 and a, b, c ∈ K0. We
assume that

d := abc < K2
0 (3.60)

Let V be a 4-dimensional K0-vector space with basis e0, e1, e2, e3 and quadratic
form

Qa,b,c(x0e0 + x1e1 + x2e2 + e3e3) = x2
0 + ax2

1 + bx2
2 + cx2

3. (3.61)

C(K0,Qa,b,c) is the Clifford algebra of Qa,b,c over K0. Since we vary the field
coefficients in this section we include them in the symbol for the Clifford algebra,
changing the notation of Section 3.2. The algebra of even elementsC+(K0,Qa,b,c)
is an 8-dimensional K0-subalgebra of C(K0,Qa,b,c). We put

f := e0e1e2e3, K := K0( f ). (3.62)

The element f satisfies f 2 = abc and K is equal to the center of C+(K0,Qa,b,c).
By the assumption (3.60) the field K is a quadratic extension of K0 and the
K-algebra C+(K0,Qa,b,c) is 4-dimensional with basis

1, i = e0e1, j = e0e2, k = e2e1. (3.63)

These elements satisfy the usual relations (3.51) of the standard basis of a
quaternonian K-algebra, i.e.

i2 = −a, j2 = −b, ij = −ji = k. (3.64)

We get an obvious K-algebra isomorphism (cf. [11])

Θ :
(
−a,−b
K

)
→ C

+(K0,Qa,b,c). (3.65)

Proposition 3.9 (cf. [25]) LetA be a quaternion algebra and x a non-zero element of
A. x is invertible if and only if N(x) , 0.

Proof Let x be a non-zero invertible element ofA, since N(x)N(x−1) = N(xx−1) =

N(1) = 1 then N(x) , 0. Let x be a non-zero element of A such that N(x) , 0.
The calculation show that xxN(x)−1 = 1, then x is an invertible element. 2
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A first important property of our construction is given in the following lemma.

Lemma 3.3 (cf. [11]) Let K0 be any field of characteristic , 2. Let a, b, c ∈ K0 be so
that abc < K2

0 and put K := K0(
√

abc). Let Qa,b,c be the quadratic form in 4 variables
over K0 defined in (3.61). Then the following statements are equivalent:

1. The quadratic form Qa,b,c is K0-anisotropic.

2. The quaternion algebra
(
−a,−b
K

)
is a skew-field.

Proof Assume first that Qa,b,c isK0-anisotropic. This is the case if and only if the
equation

abx2
0 + bx2

1 + ax2
2 + abcx2

3 = 0 (3.66)

has a non-trivial K0-solution. Then the element α := x3
√

abc + x2i + x1j + x0k

is a non-zero element of
(
−a,−b
K

)
having norm 0. This α cannot be invertible in(

−a,−b
K

)
by Proposition 3.9.

To prove the reverse implication we assume that
(
−a,−b
K

)
' M(2,K). Since(

−a,−b
K

)
'

(
−a,−b
K0

)
⊗K0 K the K0-quaternion algebra

(
−a,−b
K0

)
has to contain an

element α := x0 + x1i + x2j + x3k with α2 = abc. This equation amounts to

x0 = 0, −ax2
1 − bx2

2 − abx2
3 = abc.

We see that (3.66) has a non-zero solution. 2

The above considerations mean that starting by a quadratic form Q, we can
associate a quaternion algebraA := A(Q) and vice versa.

Theorem 3.7 (cf. [25]) ForA :=
(

a,b
K

)
, the following are equivalent:

1. A '
(

1,1
K

)
.

2. A is not a division algebra.

3. A is isotropic as a quadratic space with the norm form.

4. A0 is isotropic as a quadratic space with the norm form.

5. The quadratic form ax2 + by2 = 1 has solution with (x, y) ∈ K ×K.
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Proof The equivalence of 1 and 2 is just a restatement of Theorem 3.6.
2 ⇒ 3 If A is not a division algebra, it contains a non-zero non-invertible

element x. Thus N(x) = 0 andA is isotropic.
3⇒ 4 Let x = x0 + x1i + x2j + x3x1k be an element ofA such that N(x) = 0.

If x0 = 0, then x ∈ A0 and A0 is isotropic. If x0 , 0, then at least one of x1, x2

and x3 must be non-zero. Without loss of generality, assume that x1 , 0. Now
from N(x) = 0, we obtain x2

0 − bx2
2 = a(x2

1 − bx2
3). Let

y = b(x0x3 + x1x2)i + a(x2
1 − bx2

3)j + (x0x1 + bx2x3)k.

A straightforward calculation gives that N(y) = 0. Now suppose that A0

is anisotropic. Thus y = 0 and, in particular, −ax2
1 + abx2

3 = 0. Thus for
z = x1i+ x3k, N(z) = 0. Again, ifA0 is anisotropic, this implies that x1 = 0. This
is a contradiction showing thatA0 is isotropic.

4⇒ 5 An equation of the form −ax2
1 − bx2

2 + abx2
3 = 0 holds with at least two

of x1, x2 and x3 non-zero. If x3 , 0, then x = x2
ax3
, y = x1

bx3
satisfy ax2 + by2 = 1. If

x3 = 0, then x = 1+a
2a and y =

x2(1−a)
2ax1

satisfy ax2 + by2 = 1.
5⇒ 2 Let ax2

0 + by2
0 = 1. 1 + x0i + y0j is a non-zero element ofA of norm 0.

Then A is not a division algebra. 2

3.4.2 Cocompact discrete subgroups of SL(2,C)

Let G be a semisimple real Lie group with finite center, K be a maximal compact
subgroup and Γ be a torsion-free discrete subgroup of G. The discrete subgroup
Γ is cocompact if the locally symmetric space X := G/Γ is compact. General
results by A. Borel and J-P. Serre (1963) imply that such discrete cocompact
subgroups can be constructed as arithmetic subgroups of suitable algebraic
groups defined over some algebraic number field (cf. [5], [29]).

The construction of discrete cocompact subgroups of SL(2,C) is incorporated
in the following theorem.

Theorem 3.8 (cf. [11]) Let K be an algebraic number field with exactly one pair of
complex places. Let A be a quaternion algebra over K which is ramified at all real
places ofK. For a complex place v0 let φ : A⊗KKv0 →M(2,C) be a Kv0 = C -algebra
isomorphism. For an order R ⊂ A, put

Γ = φ(R1),

where R1 is the group of the elements of R with norm 1.
The group Γ has the following properties:

1. Γ is a discrete subgroup of SL(2,C).
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2. Γ is cocompact if and only ifA is a skew field.

2

Then, by Theorem 3.8, the quaternion algebras are a starting point to con-
struct discrete cocompact subgroups of SL(2,C).

Given a quadratic form Q in 4 variables over the totally real algebraic num-
ber field K and let ι be a real place of K, we may consider the quadratic form
over R: Q[i](x) := xTι(SQ)x with x ∈ R4 and SQ the matrix that represents Q.

Definition 3.9 (cf. [11]) We say that the quadratic form Q satisfies the hyperbolic
signature condition if there is a real place ι of K so that Q[ι] is of signature (1, 3) and if
the Q[ι] for all other embeddings ι are (positive or negative) definite. 2

In the situation of Definition 3.9 there is a g ∈ GL(4,R) so that

Q[ι]
◦ g(x) = x2

1 − x2
2 − x2

3 − x2
4. (3.67)

Going back to the map Ψ as in Definition 3.3 we may use one of these g to get
a group homomorphism

Ψ0 : SL(2,C)→ PO4(R,Q[ι]). (3.68)

The homomorphisms Ψ0 for the various g are equal up to conjugation in
PO4(R,Q[ι]), we fix one of them. Ψ0 has the center of SL(2,C) as kernel and
finite cokernel.

The following proposition is a very useful tool to construct or recognize
discrete cocompact subgroups of the ortogonal group preserving a particular
quadratic form.

Proposition 3.10 (cf. [11]) LetK0 be a totally number field with ring of integers OK0 .
Let Q be a quadratic form in 4 variables over K0 satisfying the hyperbolic signature
condition. Let ι be a real place of K0 so that Q[ι] is of signature (1, 3). Put d := DetSQ

and K := K0(
√

d). Then K is a quadratic extension of K0 having exactly one pair of
complex places v0 and v0, they are the extensions of ι. The K0 -algebra C+(K0,Q) is a
quaternion algebra A(Q) over its center K. It is extended from a quaternion algebra
overK0. TheK-algebraA(Q) is a skew field if and only if Q isK0 anisotropic. Choose
maps

φ : A(Q) ⊗K Kv0 →M(2,C), Ψ0 : SL(2,C)→ PO4(R,Q[ι]) (3.69)
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where φ is aKv0 = C-algebra isomorphism and Ψ0 is as in (3.68). Let R be an order in
A(Q). Then the group Ψ0(φ(R1)) is O4(R,Q[ι])-conjugate to a group commensurable
with ι(O4(R,Q[ι])). 2

3.4.3 W as cocompact arithmetic lattice

In this section we exhibit the group (W,S) as a cocompact arithmetic lattice
of the orthogonal group O+

4 (R,Q) with Q(x0, x1, x2, x3) = 7x2
0 − x2

1 − x2
2 − x2

3,
generalising a result of J. Elstrodt, F. Grunewald, J. Mennicke (cf. [11]).
The groupW has a presentation as algebraic group, because it is represented as
subgroup of the algebraic group O4(R,Q). In Section 3.1 we observed thatW is
a crystallographic, cocompact hyperbolic Coxeter group. Therefore, if we think
to use the isomorphism Ψ in (3.44), thenW has also a representation as discrete
and cocompact subgroup of SL(2,C). Moreover we know how to construct the
discrete and cocompact subgroups of SL(2,C) thanks to Theorem 3.8.
Now we refer to Proposition 3.10. We fix K0 = Q be a totally real number field
andQ(x0, x1, x2, x3) = 7x2

0 − x2
1 − x2

2 − x2
3 be an anisotropic quadratic form over Q

(cf. Section 3.3.2). Q satisfies the hyperbolic signature.
With a similar reasoning to Section 3.4.1, we consider aQ-vector space ΛQ with
basis e0, e1, e2, e3 and quadratic formQ(x0e0 +x1e1 +x2e2 +x3e3) = 7x2

0−x2
1−x2

2−x2
3.

The discriminant of Q (i.e. the determinant of the matrix that represent Q
respect to the fixed basis) is d = −7. Therefore, over K = Q(i

√
7), the even

Clifford algebra C+(Q,Q) is a quaternion algebra A(Q) over its center Q(i
√

7).
Moreover, sinceQ isQ-anisotropic the quaternion algebraA(Q) overQ(i

√
7) is

also a skew-field. It is easy to construct the following Q-algebra isomorphism:

γ : C+(Q,Q)→A(Q) (3.70)

γ(1) = 1, γ(e0e1e2e3) = i
√

7, γ(e1e2) = i, γ(e1e3) = j, γ(e3e2) = k

such that i2 = j2 = −1 and ij = −ji.
Therefore,A(Q) is a quaternion algebra over the field Q(i

√
7):

A(Q) =
(
−1,−1

Q(i
√

7)

)
. (3.71)

An alternative proof about the fact that the quaternion algebra
(
−1,−1
Q(i
√

7)

)
is a

skew-field is the following one.

Remark 3.3 (cf. [18]) S :=
(
−1,−1
Q(i
√

7)

)
is a skew-field.

Proof The integer ring of Q(i
√

7) is O = Z[ 1+i
√

7
2 ]. In the extension Q(i

√
7)
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3. A crystallographic cocompact hyperbolic Coxeter group

over Q the prime 2 splits as 2 =
(

1+i
√

7
2

)(
1−i
√

7
2

)
. Therefore 2O = PP′, where P

and P′ are distinct prime ideals. The completion Kv of Q(i
√

7) at valuation v
corresponding to either of these primes is thus isomorphic to the 2-adic numbers
Q2. 1 Thus

S ⊗Q(i
√

7) Kv '

(
−1,−1
Q2

)
.

The equation −x2
− y2 = z2 has only the trivial solution in the ring of 2-adic

integers by Theorem 3.5. Then from Theorem 3.7 it follows that S ⊗Q(i
√

7) Kv

is a skew-field. Thus S is ramified at v ans so S can not be isomorphic to
M(2,Q(i

√
7)). 2

Let S1 be the group of the elements of S of norm 1 and consider the com-
position of the map Ψ (3.43) and the map φ (3.57).

Ψ = Ψ ◦ φ : S1
→ SL(2,C)→ SO+

4 (R,Q) (3.72)

Ψ(x0 + x1i + x2j + x3k) = Ψ(φ(x0 + x1i + x2j + x3k)) = Ψ
(x0 + x1i x2i + x3

x2i − x3 x0 − x1i

 )=

x2

0 + x2
1 + x2

2 + x2
3 0 0 0

0 x2
0 + x2

1 − x2
2 − x2

3 2x1x2 + 2x0x3 2x0x2 − 2x1x3

0 2x1x2 − 2x0x3 x2
0 − x2

1 + x2
2 − x2

3 −2x0x1 − 2x2x3

0 −2x0x2 − 2x1x3 2x0x1 − 2x2x3 x2
0 − x2

1 − x2
2 + x2

3


(3.73)

Let the group

Γ1 :=
{x0 + x1i x2i + x3

x2i − x3 x0 − x1i

 ∈ PSL(2,Q(i,
√

7))
∣∣∣∣∣ xi ∈ Q(i

√

7)
}
, (3.74)

and ∆ be the group Ψ(Γ1), i.e. the group of matrix of type (3.73).
We want to extend this homomorphism of groups through external involu-

tions:
Ψ̃ = Ψ̃ ◦ φ̃ : 〈ξ〉 n S1

→ 〈σ〉 n Γ1
→ O4(R,Q) (3.75)

where σ is the complex conjugation, instead ξ corresponding to σ through the

1There are two valuations v1, v2 above 2 corresponding to the two finite primes p1 =
(

1+i
√

7
2

)
and p2 =

(
1−i
√

7
2

)
. The completion Kv, where v is one of vi, i = 1, 2, is an extension of Q2, since the

v1-adic topology on K = Q(i
√

7) extends the 2-adic topology on Q. Since K = Q[X]
(X2+7)

, we have that

Q(i
√

7) contains a solution for the equation X2 + 7 = 0. From Hensel’s Lemma (Lemma 3.1), we
have that −7 is a square in Q2. Thus Kv ' Q2.
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3. A crystallographic cocompact hyperbolic Coxeter group

respective maps as in Section 3.2.5: let x0 + x1i + x2j + x3k ∈ S
1

ξ(x0 + x1i + x2j + x3k)ξ = x0 − x1i − x2j + x3k (3.76)

where : C→ C is the complex conjugation. Let

R =
{
x0 + x1i + x2j + x3k ∈ S

∣∣∣ xi ∈ Z
[1 +

√
−7

2

]}
(3.77)

be an order in S. By Theorem 3.8 φ(R1) is a discrete cocompact subgroup of
SL(2,C), therefore Ψ̃(R1) is a discrete cocompact subgroup of O4(R,Q).

3.4.4 The tetrahedral group T

Let G be a group generated by reflections in the faces of a suitable polyhedra.
A subgroup of G is called polyhedral group if it is a subgroup of index 2 in G
consisting of orientation-preserving isometries in the groups generated by re-
flections. When the polyhedra is a tetrahedra then the group is called tetrahedral
group and has the following presentation

〈x, y, z | xm = yn = zp = (yz−1)r = (zx−1)s = (xy−1)t = 1〉. (3.78)

The following group

T = 〈x, y, z | x2 = y3 = z4 = (yz)2 = (zx)3 = (xy)4 = 1〉. (3.79)

is a tetrahedral subgroup ofW (cf. [18]).
We will find a representation of W in O4(R,Q) (in particular in O+

4 (R,Q)).
Let x, y, z be three elements of the group 〈σ〉 n PSL(2,C). By straightforward
calculation, imposing the relations in (3.79), we obtain the representation of the
tetrahedral group T in 〈σ〉 n PSL(2,C):

x =

a b
c −a

 , y =

 1
2 + 1

2 i 1
2 i + 1

2
1
2 i − 1

2
1
2 −

1
2 i

 , z =

 1
√

2
+ 1
√

2
i 0

0 1
√

2
−

1
√

2
i

 . (3.80)

Through the map Ψ̃ (3.39), we obtain the representation of the elements y
and z in O4(R,Q).

Ψ̃(y) =


1 0 0 0
0 0 1 0
0 0 0 −1
0 −1 0 0

 , Ψ̃(z) =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 . (3.81)

76



3. A crystallographic cocompact hyperbolic Coxeter group

By construction, we can think the elements in (3.81) as even products of
simple reflections in SO+

4 (R,Q).

3.4.5 A representation ofW in O+
4 (R,Q)

We remind that in Section 3.2.5 we observed that the involution, that we called
σ, acts in a natural way on SL(2,C) and we calculated the image of σ throght Ψ̃,

that is τ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

. τ is the reflection, i.e. an involution with trace 2.

To find the representation ofW in O4(R,Q) (in particular in O+
4 (R,Q)), one can

fix τ as the third simple reflection:

S3 := τ. (3.82)

Considering the element Ψ(z) in (3.81) and multiplying this element by S3, we
obtain the second simple reflection

S2 := S3Ψ(z) =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0

 . (3.83)

Considering then the element Ψ(y) in (3.81) and multiplying this element by
S2, we obtain the first simple reflection

S1 := S2Ψ(y) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (3.84)

By straightforward calculations, imposing the relations (3.5) between the
simple reflections of the Coxeter group W, one has the last generator of the
group:

S4 :=


9
2

3
2

1
2 −

1
2

−
21
2 −

7
2 −

3
2

3
2

−
7
2 −

3
2

1
2

1
2

7
2

3
2

1
2

1
2

 . (3.85)

In this description ofW the simple roots corresponding to the simple reflec-
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3. A crystallographic cocompact hyperbolic Coxeter group

tions S1,S2,S3,S4 are presented as:

α1 =


0
1
−1
0

 , α2 =


0
0
1
1

 , α3 =


0
0
0
−2

 , α4 =


1
−3
−1
1

 . (3.86)

Then the presentation ofW in O+
4 (R,Q) is

W = 〈S1,S2,S3,S4 |

(S1S2)3 = (S1S3)2 = (S1S4)4 = (S2S3)4 = (S2S4)2 = (S3S4)3 = S2
i = 1 i = 1, . . . , 4〉.

(3.87)

3.4.6 A representation ofW in 〈σ〉 n PSL(2,C)

In this description, we use the symbols s1, s2, s3, s4 as generators of W in 〈σ〉 n
PSL(2,C) in place of S1,S2,S3,S4, generators of W in O+

4 (R,Q). From Section
3.4.5 and using Ψ̃ (3.44), it is easy to observe that

s3 := σ =
1
2
σ

2 0
0 2

 , (3.88)

s2 := σz = σ

 1
√

2
+ 1
√

2
i 0

0 1
√

2
−

1
√

2
i

 =
1
√

2
σ

1 + i 0
0 1 − i

 , (3.89)

s1 := s2y = σzy = σ

 1
√

2
i 1

√
2
i

1
√

2
i −

1
√

2
i

 =
1
√

2
σ

i i
i −i

 . (3.90)

Moreover, by straightforward calculations and by supposing that x = s2s4, we
also obtain

x =

 1
√

2
i ( 1

4 + 1
4 i)(−3 −

√
7)
√

2

( 1
4 −

1
4 i)(3 −

√
7)
√

2 −
1
√

2
i

 (3.91)

and

s4 := s2x = σzx = σ

 −
1
2 + 1

2 i −
1
2 i(3 +

√
7)

−
1
2 i(3 −

√
7) −

1
2 −

1
2 i

 =
1
2
σ

 −1 + i −3i −
√

7i
−3i +

√
7i −1 − i

 .
(3.92)

We found a representation ofW in PSL(2,C) that is only commensurable with
a subgroup in PSL(2,Z[ 1+i

√
7

2 ]) and the representation ofW in O4(R,Q) is com-
mensurable with a subgroup in O4(Z,Q).
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3. A crystallographic cocompact hyperbolic Coxeter group

We show a general formula for the reflections in 〈σ〉 n PSL(2,C), generalizing
the results of Masaaki Yoshida (cf. [35]). Let introduce some notations.
Let A (cf. (3.7)) be the GCM associated with the group W. In Section 3.1 we
observed that A is diagonalizable and so that there exists a diagonal matrix D
(cf. (3.9)) such that A = DB′ with B′ (cf. (3.8)) symmetric matrix. Let

P =


0 0 0 1
1 0 0 −3
−1 1 0 −1
0 1 −2 1

 (3.93)

be the change of basis matrix from the basis {α1, α2, α3, α4} of simple roots to the
basis {e0, e1, e2, e3} introduced in Section 3.1.1. We have that AD = PTHP, where

H =


−14 0 0 0

0 2 0 0
0 0 2 0
0 0 0 2

 . (3.94)

Proposition 3.11 Notations being as above, we have that

S j = Ψ̃
( 1√

d j
σ

 P4 j + P3 ji −P2 ji + P1 j
√

7i
−P2 ji − P1 j

√
7i P4 j − P3 ji

 ), (3.95)

where P = (Pi j) and D = diag(d j).

Proof Let R j be the matrix representation of R j respect to the basis {α1, α2, α3, α4}.
Then we have

R j = I − δT
j δ jAT,

where δ j is the column vector with null components except 1 in the j-th and I
is the unit matrix. Thus we have

S j = PR jP−1 = I − PδT
j δ jATP−1 = I − PδT

j δ jD−1ATH =

= I −


P1 j

P2 j

P3 j

P4 j


(
−14P1 j 2P2 j 2P3 j 2P4 j

)
�d j =
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=



1 +
14P2

1 j

d j
−

2P1 jP2 j

d j
−

2P1 jP3 j

d j
−

2P1 jP4 j

d j

14P1 jP2 j

d j
1 −

2P2
2 j

d j
−

2P2 jP3 j

d j
−

2P2 jP4 j

d j

14P1 jP3 j

d j
−

2P2 jP3 j

d j
1 −

2P2
3 j

d j
−

2P3 jP4 j

d j

14P1 jP4 j

d j
−

2P2 jP4 j

d j
−

2P3 jP4 j

d j
1 −

2P2
4 j

d j


.

On the other hand, AD = PTHP and A j j = 2 implies

1
d j

(−7P2
1 j + P2

2 j + P2
3 j + P2

4 j) = 1.

These considerations and formula (3.39) of Ψ̃ prove the proposition. 2

From formula (3.95), we also obtain a formula for s j:

s j =
1√
d j
σA j ∈ 〈σ〉 n PSL(2,C) (3.96)

where

A j =

 P4 j + P3 ji −P2 ji + P1 j
√

7i
−P2 ji − P1 j

√
7i P4 j − P3 ji

 ∈ PSL(2,C). (3.97)

Because Pi j are integers, then A j ∈ Γ1 (cf. (3.74)) and
√

d j is exactly the norm of
the simple root α j.

3.4.7 A description of the root system Φ̇

Remind that the group W is a Weyl group of a Kac-Moody Lie algebra L(A)
associated with the symmetrizable GCM A (cf. (3.7)). In this section we give a
presentation of the root system Φ̇ of L(A).
Let α1, α2, α3, α4 be the simple roots ofW, generators of the root lattice ΛZ. We
choose the basis introduced in Section 3.1.1 e0, e1, e2, e3 such that 〈ei, e j〉 = 0 ∀i ,
j, 〈ei, ei〉 = 1 i = 1, 2, 3 and 〈e0, e0〉 = −7. Then

α1 = e1 − e2, α2 = e2 + e3, α3 = −2e3, α4 = e0 − 3e1 − e2 + e3. (3.98)

We define a C-linear map

µ : ΛZ → {A ∈M(2,C) | det(A) ∈ R} (3.99)

µ(n0e0 + n1e1 + n2e2 + n3e3) =

 −n2 − n3i n1 −
√

7n0

n1 +
√

7n0 n2 − n3i
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Then one has

µ(α1) =

1 1
1 −1

 , µ(α2) =

−1 − i 0
0 1 − i

 , (3.100)

µ(α3) =

2i 0
0 2i

 , µ(α4) =

 1 − i −3 −
√

7
−3 +

√
7 −1 − i

 .
The groupW acts on µ(ΛZ) by

(σAi1 . . . σAik ) · X = σAi1 . . . σAik XAikσ . . .Ai1σ. (3.101)

Then the map µ isW-equivariant and we can identify ΛZ with µ(ΛZ).
Moreover

〈α, α〉 = −det(µ(α)) = 7n2
0 − n2

1 − n2
2 − n2

3. (3.102)

We recall the root lattice of L(A) to be the set

ΛZ := Zα1 ⊕Zα2 ⊕Zα3 ⊕Zα4. (3.103)

Referring to Section 2.4.1, the set Ω = {λs | s ∈ S} constructed with formula
(2.26) is another canonical basis of H∗ and λs are called simple weights:

λ1 = −
2
7
α1 −

5
7
α2 −

4
7
α3 −

3
7
α4, λ2 = −

5
7
α1 −

2
7
α2 −

3
7
α3 −

4
7
α4 (3.104)

λ3 = −
8
7
α1 −

6
7
α2 −

2
7
α3 −

5
7
α4, λ4 = −

6
7
α1 −

8
7
α2 −

5
7
α3 −

2
7
α4.

Then we call the weight lattice of L(A) the set

Λ∗Z := Zω1 ⊕Zω2 ⊕Zω3 ⊕Zω4. (3.105)

We also define the sets

Λ+
Z := Z+α1 ⊕Z

+α2 ⊕Z
+α3 ⊕Z

+α4, (3.106)

Λ−Z := −Λ+
Z (3.107)

and
Λ∗

+

Z := Z+ω1 ⊕Z
+ω2 ⊕Z

+ω3 ⊕Z
+ω4, (3.108)

Λ∗
−

Z := −Λ∗
+

Z . (3.109)

We also see that

ΛZ = {n0e0 + n1e1 + n2e2 + n3e3 | ni ∈ Z} (3.110)
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Λ+
Z = {n0e0+n1e1+n2e2+n3e3 | n0 ≥ 0, n1+n2 ≥ −4n0, n3 ≤ n1+n2+5n0}, (3.111)

Λ∗Z = {−
1
7

n0e0 + n1e1 + n2e2 + n3e3 | ni ∈ Z}, (3.112)

Λ∗
+

Z = {−
1
7

n0e0 + n1e1 + n2e2 + n3e3 | n0 ≥ n1 ≥ n2 ≥ −n3 ≥ 0}. (3.113)

Remind (cf. Definition 2.10) the definition of the real root system that for the
Kac-Moody Lie algebra with Weyl groupW is

Φ̇Re :=W · {α1, α2, α3, α4} (3.114)

and of the imaginary root system

Φ̇Im := Φ̇ \ Φ̇Re. (3.115)

We also have positive (and negative) real and imaginary roots

Φ̇±Re = Φ̇Re ∩ Φ̇±, Φ̇±Im = Φ̇Im ∩ Φ̇±, (3.116)

and
Φ̇± = Φ̇ ∩ΛZ, Φ̇±Re = Φ̇Re ∩Λ±Z, Φ̇±Im = Φ̇Im ∩Λ±Z. (3.117)

In general it is extremely difficult to determine or characterize all imaginary
roots, but thank to the following result of R. V. Moody (cf. [23]) about the
hyperbolic Kac-Moody Lie algebras

Φ̇Im = {α ∈ ΛZ | 〈α, α〉 ≤ 0}, (3.118)

and to the property (3.102), we have that

µ(Φ̇Re) = {X ∈ µ(ΛZ) | det(X) = −2,−4}, (3.119)

µ(Φ̇Im) = {X ∈ µ(ΛZ) | det(X) ≥ 0}, (3.120)

µ(Φ̇+
Im) = {X ∈ µ(ΛZ) | 7n2

0−n2
1−n2

2−n2
3 ≥ 0, n0 ≥ 0, n1+n2 ≥ −4n0, n3 ≤ n1+n2+5n0}.

(3.121)

Remark 3.4
Φ̇Re =W · {α1, α3} (3.122)

Proof It is sufficient to observe that s1s2(α1) = α2 and s3s4(α3) = α4. 2

Moreover, using formula (2.38), we calculated the multiplicities for all α ∈
Λ+
Z such that ht(α) ≤ 4 and we obtained the following results:
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3. A crystallographic cocompact hyperbolic Coxeter group

1. Of height 2 and 3 there no positive imaginary roots.

2. Of height 4 there is only one imaginary root

α1 + α2 + α3 + α4.

of multiplicity 3.

We give an example of calculation of multiplicities using formula (2.38).

Example 3.5 Let α1 + α2 + α3 + α4 ∈ Λ+
Z.

There are four ways to write α1 + α2 + α3 + α4 as linear combination of c(w), w ∈W
with integer coefficients:

α1 + α2 + α3 + α4 = c(s1) + c(s2) + c(s3) + c(s4)

α1 + α2 + α3 + α4 = c(s1s3) + c(s2s4)

α1 + α2 + α3 + α4 = c(s1s3) + c(s2) + c(s4).

α1 + α2 + α3 + α4 = c(s1) + c(s3) + c(s2s4).

Then

mα1+α2+α3+α4 = (−1)2(−1)2(−1)2(−1)2 (1 + 1 + 1 + 1 − 1)!
1!1!1!1!

+ (−1)3(−1)3 (1 + 1 − 1)!
1!1!

+(−1)3(−1)2(−1)2 (1 + 1 + 1 − 1)!
1!1!1!

+ (−1)3(−1)2(−1)2 (1 + 1 + 1 − 1)!
1!1!1!

= 3.

2
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Chapter 4

Crystallographic Coxeter
groups with an
∞-decomposition and Kac’
denominator formula

In this chapter we study the crystallographic Coxeter systems (W,S) with a
spherically∞-decomposition (cf. Section 4.2).
Some examples of crystallographic Coxeter groups with a spherically∞-decomposition
are:
Ã1

•0
∞
•1 (4.1)

and (W,S) with Coxeter graph Γ(W).

•1 •2

∞

•4 •3

(4.2)

Our aim is to find an explicit formula for the left hand-side of the Kac’ de-
nominator formula (cf. (2.20)) for the crystallographic Coxeter groups with a
spherically∞-decomposition.
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4. Crystallographic Coxeter groups with an∞-decomposition and Kac’
denominator formula

4.1 Free products of groups with amalgamation

The free products of groups with amalgamation are generalization of free pro-
ducts of groups. In this section we remind some general notions about free
products of groups with amalgamation. For more details we refer the reader to
[27].

Definition 4.1 (cf. [27]) Let {Gλ | λ ∈ Λ} be a non-empty set of groups and H be a
group which is isomorphic with a subgroup Hλ of Gλ by means of a monomorphism

φλ : H→ Gλ (λ ∈ Λ).

Considering F :=
∐

λ∈Λ Gλ the free product of the Gλ and N the normal closure in F of
the subset

{(hφλ )−1hφµ | λ, µ ∈ Λ, h ∈ H},

we call the group
G = F/N

free product group of the Gλ’s with the amalgamated group H and we write

G =
∐
λ∈Λ

H

Gλ. (4.3)

2

The group G in (4.3) can be considered as the group generated by the
Gλ, λ ∈ Λ, in which the subgroups Hλ are identified by means of φλ. Since
hφλ ≡ hφµmodN, the subgroups NHφλ/N, λ ∈ Λ, are equal in G. In general G will
depend on the φλ chosen.
There are two particular cases:

1. When H = {1} then G is a free product of groups. Therefore we may
consider the free product of groups with amalgamation as a generalization
of the free product of groups.

2. When we have two groups G1 and G2 with subgroups H1 and H2 that are
isomorphic by means of φ : H1 → H2. Then we can construct the group
G1

∐
H G2 as free product group of G1 and G2 with the amalgamated group

H setting H = H1, φ1 = 1 and φ2 = φ.

Example 4.1 (cf. [27]) Let A = 〈a〉 and B = 〈b〉 be cyclic groups of orders 4 and 6
respectively. We observe that in the free product of A and B

A
∐

B = 〈a, b | a4 = 1, a2 = b3
〉
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there are two elements a2 and b3 that have both order 2, therefore the subgroups 〈a2
〉 and

〈b3
〉 are isomorphic. We may form the free product G with amalgamation determined

by the isomorphism 〈a2
〉 → 〈b3

〉. This amounts to identify a2 and b3. Thus

G = 〈a, b | a4 = 1, a2 = b3
〉. (4.4)

The element h = a2 = b3 commutes with a and b, so it belongs to the center of G and
every element of G can be written in the form

a j1 bk1 a j2 bk2 · · · a jr bkr hi, (r ≥ 0), (4.5)

where i and js are equal to 0 or 1 and ks are 0, 1 or 2. We will see that every element of
the free product of groups with amalgamation admits a writing as (4.5) that is called
normal form. 2

4.1.1 A particular case of free product with amalgamation

We will consider the case in which G is the free product of only two groups G1

and G2 with amalgamated group H = G1 ∩ G2:

G = G1

∐
H

G2.

Let \Gi ⊆ Gi be a set coset representatives for Gi/H containing 1 and ]Gi = \Gi\{1},
i = 1, 2. LetM the free monoid generated by ]G1 t ]G2 tH, and let

ΩG1,G1 = {a0b1a1 . . . btath | t ≥ 0, ai ∈ ]G1, bi ∈ ]G2, h ∈ H}, (4.6)

ΩG1,G2 = {a1b1 . . . atbth | t ≥ 1, ai ∈ ]G1, bi ∈ ]G2, h ∈ H}, (4.7)

ΩG2,G1 = {b1a1 . . . btath | t ≥ 1, ai ∈ ]G1, bi ∈ ]G2, h ∈ H}, (4.8)

ΩG2,G2 = {b0a1b1 . . . atbth | t ≥ 0, ai ∈ ]G1, bi ∈ ]G2, h ∈ H}. (4.9)

Put Ω = ΩG1,G1 tΩG1,G2 tΩG2,G1 tΩG2,G2 tH.

Theorem 4.1 (Normal Form Theorem, cf. [27) Let G = G1
∐

H G2, and let [−] :
M → G be the canonical homomorphism of monoids. Then [−]|Ω : Ω → G is a
bijection. 2

The Normal Form Theorem (Theorem 4.1) establishes that every element of
G admits a canonical normal form and chosen the set of coset representatives,

]G1 and ]G2, the normal form is unique. In fact it is trivial to remark that the nor-
mal form of an element depends on the choice of the set of coset representatives.
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Put \G = G \ H, the Normal Form Theorem (Theorem 4.1) can be used to
define two principal functions: a rough length function

ρ∐ : G→ Z≥0 (4.10)

and a conductor function

cond([−]) : ]G→ ]G1

∐
]G2. (4.11)

The rough length is defined by

ρ∐(g) :=



2t + 1 g = [a0b1a1 . . . btath] ∈ ΩG1,G1

2t g = [a1b1 . . . atbth] ∈ ΩG1,G2

2t g = [b1a1 . . . btath] ∈ ΩG2,G1

2t + 1 g = [b0a1b1 . . . atbth] ∈ ΩG2,G2

0 g ∈ H

(4.12)

It does not depend on the choice of the sets of coset representatives \G1 and \G2.
The conductor is defined by

cond([−])(g) :=



a0 g = [a0b1a1 . . . btath] ∈ ΩG1,G1

a1 g = [a1b1 . . . atbth] ∈ ΩG1,G2

b1 g = [b1a1 . . . btath] ∈ ΩG2,G1

b0 g = [b0a1b1 . . . atbth] ∈ ΩG2,G2

(4.13)

On the contrary, it depends on the choice of the sets of coset representatives \G1

and \G2.
The connection between the rough length function and the conductor function
of an element g ∈ G\H for G = G1

∐
H G2 is showed in the following proposition.

Proposition 4.1 (cf. [2]) Let G = G1
∐

H G2, and ]G1 and ]G2.

(a) Let g ∈ ΩG1,G1 and g = a0b1a1 . . . bkakh for k ≥ 0, ai ∈ G1, bi ∈ G2 and h ∈ H.
Then 2k + 1 ≥ ρ∐(g). Moreover, if 2k + 1 = ρ∐(g), then a0 ∈ cond(g)H.

(b) Let g ∈ ΩG1,G2 and g = a1b1 . . . akbkh for k ≥ 1, ai ∈ G1, bi ∈ G2 and h ∈ H.
Then 2k ≥ ρ∐(g). Moreover, if 2k = ρ∐(g), then a1 ∈ cond(g)H.

(c) Let g ∈ ΩG2,G1 and g = b1a1 . . . bkakh for k ≥ 1, ai ∈ G1, bi ∈ G2 and h ∈ H.
Then 2k ≥ ρ∐(g). Moreover, if 2k + 1 = ρ∐(g), then b1 ∈ cond(g)H.

(d) Let g ∈ ΩG2,G2 and g = b0a1b1 . . . akbkh for k ≥ 0, ai ∈ G1, bi ∈ G2 and h ∈ H.
Then 2k + 1 ≥ ρ∐(g). Moreover, if 2k + 1 = ρ∐(g), then b0 ∈ cond(g)H.

87



4. Crystallographic Coxeter groups with an∞-decomposition and Kac’
denominator formula

Proof

(a) Suppose 2k + 1 < ρ∐(g). The canonical reduction process yield a normal
form g = x′0y′1 · · · y

′

kx′kh′ (allowing x′0, x
′

k ∈ \G1). Thus, ρ∐(g) ≤ 2k + 1, a
contradiction. Therefore, 2k + 1 ≥ ρ∐(g). If 2k + 1 = ρ∐(g), the canonical
reduction process yield the normal form of g ∈ G. Hence, by the unique-
ness of the normal form, x0 ∈ cond(g)H. The statements (b), (c) and (d) are
proved by a similar argument. 2

4.2 Coxeter systems with an∞-decomposition

Definition 4.2 Let (W,S) be a Coxeter system and (SH,SN) be a pair of subsets of S
satisfying:

1. S = SH ∪ SN;

2. for all s ∈ SO := SH \S• and t ∈ SM := SN \S• one has ms,t = ∞, where (ms,t)s,t∈S

is the Coxeter matrix of (W,S).

The pair (SH,SN) is called an∞-decomposition of (W,S). 2

A decomposition as in Definition 4.2 is said to be:

1. non-trivial if SO , ∅ and SM , ∅;

2. a spherical∞-decomposition if additionally the parabolic subgroup W• =

WS• is finite.

Fact 4.1 Let (W,S), S = SH ∪ SNbe a Coxeter system with an ∞-decomposition. Put
S• = SH ∩ SN and W× = WS× for × ∈ {H,N, •}. Then the canonical map

φ : WH

∐
W•

WN →W

is an isomorphism. 2

Example 4.2 The Coxeter group W of isomorphism class of type Ã1

1• ∞
•2

has a spherically∞-decomposition.
It is a free products of two groups WH and WN of isomorphism class A1, in fact W• = {1}.
2
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Example 4.3 The Coxeter group W̃

1• •2

∞

4• •3

(4.14)

has a spherically∞-decomposition.
This group is a free products of two groups WH and WN of isomorphism class A3 with
amalgamated group W• of isomorphism class A1 × A1. 2

Let (W,S), S = SH ∪ SN and S• = SH ∩ SN, be a Coxeter system with an
∞-decomposition. By choosing \W•

H = W•
H \ {1} that is the set of representatives

of the non-trivial WH/W•-cosets (respectively \W•
N = W•

N \ {1} and WN/W•) one
obtains, from Normal Form Theorem (Theorem 4.1), a canonical normal form
for elements in W.
Let ΩH,H = ΩWH,WH , ΩH,N = ΩWH,WN , etc... In particular,

W = ΩH,H tΩH,N tΩN,H tΩN,N tW•. (4.15)

Remind that every element w ∈ W, w , 1 has a reduced expression (cf.
Section 1.2):

w = s1 . . . sr, si ∈ S (4.16)

where r is the minimal number such that this expression for w exists. Therefore
the length function can be defined in the following way

` : W →N0 (4.17)

such that `(w) = r and `(1) = 0 (cf. Section 1.2).
Remind also the following property of the length function, that comes from
Proposition 1.11: let W′ be a parabolic subgroup of W, then

`(w′w) = `(w′) + `(w) (4.18)

for all w′ ∈W′ and for all w ∈W \W′.
We can define the conductor function for the group W with∞-decomposition as
in (4.13):

cond([−]) : W \W• −→ \W•

H t \W•

N. (4.19)

The function
c` = ` ◦ cond([−]) : W \W• −→ Z>1 (4.20)

is called the conductor length function.
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The following property is a direct consequence of Proposition 4.1 and of (4.18).

Proposition 4.2 Let (W,S), S = SH ∪ SN, S• = SH ∩ SN, be a Coxeter system with
∞-decomposition.

(a) Let w ∈ ΩH,H and w = x0y1 · · · ykxk for k ≥ 0, xi ∈ WH, and y j ∈ WN. Then
2k + 1 ≥ ρ∐(w). Moreover, if 2k + 1 = ρ∐(w), then `(x0) ≥ c`(w).

(b) Let w ∈ ΩH,N and w = x1y1 · · · xkyk for k ≥ 1, xi ∈ WH, and y j ∈ WN. Then
2k ≥ ρ∐(w). Moreover, if 2k = ρ∐(w), then `(x1) ≥ c`(w).

(c) Let w ∈ ΩN,H and w = y1x1 · · · ykxk for k ≥ 1, xi ∈ WH, and y j ∈ WN. Then
2k ≥ ρ∐(w). Moreover, if 2k = ρ∐(w), then `(y1) ≥ c`(w).

(d) Let w ∈ ΩN,N and w = y0x1 · · · xkyk for k ≥ 0, xi ∈ WH, and y j ∈ WN. Then
2k + 1 ≥ ρ∐(w). Moreover, if 2k + 1 = ρ∐(w), then `(y0) ≥ c`(w).

2

For the Coxeter group W with ∞-decomposition, a fake length function can
be defined

`∐ : W −→ Z≥0. (4.21)

For every element w ∈W there exist t ≥ 0, a0, at ∈W•
H, ai ∈ ]W•

H for 1 ≤ i ≤ t − 1,
b j ∈ ]W•

N for 1 ≤ j ≤ t, and c ∈W• such that

w = a0b1 · · · btatc, (4.22)

and the expression (4.22) is unique for the element w ∈W. For w ∈W given by
(4.22) we define

`∐ =
∑
0≤i≤t

`(ai) +
∑

1≤ j≤t

`(b j) + `(c). (4.23)

Thus, by definition, one has `(w) ≤ `∐(w) for all w ∈W.

Theorem 4.2 (cf. [2]) Let (W,S), S = SH ∪ SN, S• = SH ∩ SN, be a Coxeter system
with an∞-decomposition. Then ` = `∐.

Proof We proceed by induction on n = ρ∐(w) in order to show that `(w) = `∐(w).
For n = 0 one has w ∈ W• and hence there is nothing to show, while for n = 1
the claim is a direct consequence of (4.18). Hence we may assume that one has
`(w′) = `∐(w′) for elements w′ ∈ W satisfying ρ∐(w′) < n, and that w ∈ W,
ρ∐(w) = n ≥ 2. As the cases cond(w) ∈ ]W•

H and cond(w) ∈ ]W•
N are almost

identical, we restrict our attention to the case q = cond(w) ∈ ]W•
H. Let w = qτ. In

particular, ρ∐(τ) = n − 1, and thus, by hypothesis, `(τ) = `∐(τ).
Let τ = b1a1 · · · btatc where ai ∈ ]W•

H for 1 ≤ i ≤ t − 1 and at ∈ W•
H, b j ∈ ]W•

N for
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1 ≤ j ≤ t, and c ∈ W•. As ρ∐(τ) ≥ 1, one has t ≥ 1. Moreover, n = ρ∐(w) =

2t + 1 − δ0,`(at), where δ0,`(at) is the Kronecker delta. Let

q = s1 · · · s`(q), b j = x( j)
1 · · · x

( j)
`(b j)

, ai = u(i)
1 · · · u

(i)
`(ai)
, c = v1 · · · v`(c)

be minimal expressions. Note that `(ar) = 0 and `(c) = 0 are allowed. It suffices
to show that

w = s1 · · · s`(q) · x
(1)
1 · · · x

(1)
`(b1) · · · · · · u

(t)
1 · · · u

(t)
`(at)
· v1 · · · v`(c)

is a minimal expression for w. Let w0 ∈ W be such that w = s1w0. Again we
proceed by induction on k = c`(w) = `(q) ≥ 1.
If k = 1, then w0 = τ, and the claim holds for w0. Hence

w0 = x(1)
1 · · · x

(1)
`(b1) · · · · · · u

(t)
1 · · · u

(t)
`(at)
· v1 · · · v`(c) (4.24)

is a minimal expression for w0. So either `(w) = `(w0) + 1, and the claim holds
for w, or `(w) = `(w0) − 1. In the latter case the Strong Exchange Condition
(Theorem 1.3) implies that one has w = (w0)∨∗ , where ∨

∗ means omitting the
involution s∗ in the minimal expression (4.24). In particular, w = b′1a′1 · · · b

′

ta
′

tc
′,

ai ∈ WH, b j ∈ WN, c′ ∈ W•, and a′t = 1 if at = 1, which is impossible by
Proposition 4.2 (a) and (b).
Thus we may assume that k > 1, and that the claim holds for all elements w′ ∈W
satisfying c`(w′) < k. In particular, it holds for w0. Again either `(w) = `(w0)+1,
and the claim holds for w, or `(w) = `(w0) − 1. In the latter case the Strong
Exchange Condition (Theorem 1.3) implies that w = (w0)V

∗ , where ∗ is one of the
involutions in the minimal expression

w0 = s2 · · · sk · x
(1)
1 · · · x

(1)
`(b1) · · · · · · u

(t)
1 · · · u

(t)
`(at)
· v1 · · · v`(c).

In particular, w = a′0b′1a′1 · · · b
′

ta
′

t, ai ∈ WH, b j ∈ WN, a′t = 1 if at = 1. Moreover,
a′0 = (s2 · · · sk)V

∗ and thus `(a′0) < c`(w). As ρ∐(w) = 2t + 1 − δ0,`(at), part (a) and
(b) of Proposition 4.2 show that this is impossible. 2

Corollary 4.1 (cf. [2]) Let (W,S), S = SH ∪ SN, S• = SH ∩ SN, be a Coxeter system
with an∞-decomposition. For t ≥ 0, a0, at ∈W•

H, ai ∈ ]W•
H for 1 ≤ i ≤ t− 1, b j ∈ ]W•

N

for 1 ≤ j ≤ t and c ∈W• let

ai = s(i)
1 · · · s

(i)
`(ai)
, b j = x( j)

1 · · · x
( j)
`(b j)

, c = u1 · · · u`(c),
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si, t j,uk ∈ S, be reduced expressions. Then

w = s(0)
1 · · · s

(0)
`(a0) · x

(1)
1 · · · x

(1)
`(b1) · · · · · · s

(t)
1 · · · s

(t)
`(at)
· u1 · · · u`(c)

is a reduced expression. 2

4.3 Cocycle series

We recall that for a Kac-Moody Lie algebra with Weyl group W and root system
Φ̇ the Kac’ denominator formula (cf. Chapter 2) is∑

w∈W

(−1)`(w)e(c(w)) =
∏
α∈Φ̇+

(1 − e(α))mα , (4.25)

where
c : W → Λ+

Z (4.26)

is the cocycle (cf. Section 2.4.1) that maps an element w ∈ W in the sum of
positive roots being sent by w−1 to negative ones.
c can also be defined through the following formula

c(w) = (1 − w) · ω0, (4.27)

where ω0 is the trace of dual basis of Φ̇ (cf. Section 2.4.1).
In this section, we will observe that the left hand side of (4.25) can be interpreted
as a formal power series depending entirely on (W,S).
We define six elements.

AH :=
∑

a∈\W•
H

t`(a) (4.28)

AN :=
∑

b∈\W•
N

t`(b) (4.29)

A• :=
∑
c∈W•

t`(c) (4.30)

They are elements of the ring Z[[t]] of the formal power series whose variable
is t and whose coefficients come from the ring Z.

ÃH :=
∑

a∈\W•
H

t`(a)a (4.31)

ÃN :=
∑

b∈\W•
N

t`(b)b (4.32)
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Ã• :=
∑
c∈W•

t`(c)c (4.33)

They are elements of Z[W][[t]] the ring of the formal power series with coeffi-
cients in the group ring Z[W].
We call the series

CW(t) :=
∑
w∈W

t`(w)c(w) (4.34)

cocycle series for the group W. It is an element of the ring Z[Λ+
Z][[t]] of the

formal power series whose variable is t and whose coefficients come from the
group ring Z[Λ+

Z]. It is treated multiplicatively letting an element α ∈ Λ+
Z as

the formal exponential e(α) (cf. [4]).
Let

W(t) :=
∑
w∈W

t`(w)
∈ Z[[t]] ⊆ Z[W][[t]] (4.35)

be the growth series for the group W (cf. Section 1.12.1) and

W̃(t) :=
∑
w∈W

t`(w)w ∈ Z[W][[t]] (4.36)

be the complete growth series for the group W (cf. Section 1.12.2).
From (4.27), we write

CW(t) = (W(t) − W̃(t)) · ω0 ∈ Z[Λ+
Z][[t]] (4.37)

with

W(t) = AH(
∑
i=0

(ANAH)i)A•+(
∑
i=1

(ANAH)i)A•+(
∑
i=1

(AHAN)i)A•+AN(
∑
i=0

(AHAN)i)A•+A•

(4.38)
and

W̃(t) = ÃH(
∑
i=0

(ÃNÃH)i)Ã•+(
∑
i=1

(ÃNÃH)i)Ã•+(
∑
i=1

(ÃHÃN)i)Ã•+ÃN(
∑
i=0

(ÃHÃN)i)Ã•+Ã•

(4.39)
as a formal power series of the elements (4.28), (4.29), (4.30), (4.31), (4.32) and
(4.33).
In this section, we will see that the formula (4.37) for Ã1 is in analogy to Kac’
denominator formula for Ã1 shown by V. G. Kac (cf. [8]).
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4.3.1 Cocycle series of Ã1

Let W be the Coxeter group of isomorphism class of type Ã1 with Coxeter graph

1• ∞
•2 (4.40)

As we seen in Example 4.2, it has a spherically ∞-decomposition: it is a free
product of two groups

WH = 〈s1 | s2
1 = 1〉 (4.41)

WN = 〈s2 | s2
2 = 1〉 (4.42)

of isomorphism class A1, in fact W• = {1}.
In particular we can consider W as a free product of groups WH and WN with
amalgamation of the trivial group W• = {1}.

W 'WH

∐
W•

WN = 〈s1, s2 | s2
i = 1, i = 1, 2〉. (4.43)

Normal Form Theorem (Theorem 4.1) allows a canonical normal form for the
elements in W.
We write g for the representative of the coset gW•:

1W• = {1} = 1 (4.44)

s1W• = {s1} = s1 (4.45)

s2W• = {s2} = s2 (4.46)

Then:
ΩH,H = {s1(s2s1)r

| r ≥ 0} (4.47)

ΩH,N = {(s1s2)r
| r ≥ 1} (4.48)

ΩN,H = {(s2s1)r
| r ≥ 1} (4.49)

ΩN,N = {s2(s1s2)r
| r ≥ 0} (4.50)

and
W = ΩH,H tΩH,N tΩN,H tΩN,N tW•. (4.51)

Then the left hand-side of the Kac’ denominator formula (2.20) can be divided
in four parts: ∑

w∈W

(−1)l(w)ec(w) =
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∑
w∈W•

(−1)l(w)ec(w)+
∑

w∈ΩH,H

(−1)l(w)ec(w)+
∑

w∈ΩH,N

(−1)l(w)ec(w)+
∑

w∈ΩN,H

(−1)l(w)ec(w)+
∑

w∈ΩN,N

(−1)l(w)ec(w).

(4.52)
We calculate the following ones:

c(s1(s2s1)r) = (
r∑

i=0

(s1s2)i)c(s1) + s1(
r−1∑
i=0

(s2s1)i)c(s2) (4.53)

c(s2(s1s2)r) = (
r∑

i=0

(s2s1)i)c(s2) + s2(
r−1∑
i=0

(s1s2)i)c(s1) (4.54)

c((s1s2)r) = (
r∑

i=0

(s1s2)i)c(s1) + s1(
r∑

i=0

(s2s1)i)c(s2) (4.55)

c((s2s1)r) = (
r∑

i=0

(s2s1)i)c(s2) + s2(
r∑

i=0

(s1s2)i)c(s1) (4.56)

and, substituting in (4.52), obtain∑
w∈W

(−1)l(w)ec(w) =

1 −
∑
r≥0

e(
∑r

i=0(s1s2)i)α1+s1(
∑r−1

i=0 (s2s1)i)α2 −

∑
r≥0

e(s2(
∑r−1

i=0 (s1s2)i)α1+
∑r

i=0(s2s1)i)α2+ (4.57)

+
∑
r≥1

e(
∑r

i=0(s1s2)i)α1+s1(
∑r

i=0(s2s1)i)α2 +
∑
r≥1

es2(
∑r

i=0(s1s2)i)α1+(
∑r

i=0(s2s1)i)α2

The set (4.47) contains elements of odd length 2r + 1 with r ≥ 0.
Let w = s1(s2s1)r

∈ ΩH,H, the positive roots being sent by w−1 to negative ones
are:

α1, 2α1 + α2, . . . , (2r + 1)α1 + 2rα2 (r ≥ 0). (4.58)

Then
c(s1(s2s1)r) =

(2r + 1)(2r + 2)
2

α1 +
2r(2r + 1)

2
α2 (4.59)

and ∑
w∈ΩH,H

(−1)l(w)ec(w) = −
∑
r≥0

e
(2r+1)(2r+2)

2 α1+
2r(2r+1)

2 α2 = −
∑
r≥0

X
(2r+1)(2r+2)

2 Y
2r(2r+1)

2 , (4.60)

with X = eα1 and Y = eα2 .
Similarly, if w = s2(s1s2)r

∈ ΩN,N, then∑
w∈ΩN,N

(−1)l(w)ec(w) = −
∑
r≥0

e
2r(2r+1)

2 α1+
(2r+1)(2r+2)

2 α2 = −
∑
r≥0

X
2r(2r+1)

2 Y
(2r+1)(2r+2)

2 . (4.61)
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The set (4.48) contains elements of even length 2r with r ≥ 1.
Let w = (s1s2)r

∈ ΩH,N, the positive roots being sent by w−1 to negative ones are:

α1, 2α1 + α2, . . . , 2rα1 + (2r − 1)α2 (r ≥ 1). (4.62)

Then
c((s1s2)r) =

2r(2r + 1)
2

α1 +
(2r − 1)2r

2
α2 (4.63)

and ∑
w∈ΩN,H

(−1)l(w)ec(w) =
∑
r≥1

er(2r+1)α1+(2r−1)rα2 =
∑
r≥1

Xr(2r+1)Y(2r−1)r. (4.64)

Similarly, if w = (s2s1)r
∈ ΩN,H:∑

w∈ΩH,N

(−1)l(w)ec(w) =
∑
r≥1

e(2r−1)rα1+r(2r+1)α2 =
∑
r≥1

X(2r−1)rYr(2r+1). (4.65)

Therefore the Kac’ denominator formula for W of isomorphism class of type
Ã1, written using this reasoning, is∑

w∈W

(−1)l(w)ec(w) = (4.66)

1 −
∑
r≥0

X
(2r+1)(2r+2)

2 Y
2r(2r+1)

2 −

∑
r≥0

X
2r(2r+1)

2 Y
(2r+1)(2r+2)

2 +

+
∑
r≥1

X(2r−1)rYr(2r+1) +
∑
r≥1

Xr(2r+1)Y(2r−1)r

= 1 − X
(∑

r≥0

X
(2r+1)(2r+2)

2 −1Y
2r(2r+1)

2

)
− Y

(∑
r≥0

X
2r(2r+1)

2 Y
(2r+1)(2r+2)

2 −1
)
+

+XY
(∑

r≥1

X(2r−1)r−1Yr(2r+1)−1 +
∑
r≥1

Xr(2r+1)−1Y(2r−1)r−1
)

where 1 − X − Y − XY =
∑

w∈W′ (−1)l(w)ec(w) where W′ is a Coxeter group of
isomorphism class A1 × A1.
In [8], the Kac’ denominator formula for W of isomorphism class Ã1 is∑

m∈Z

X
m(m−1)

2 Y
m(m+1

2 =
∏
n>0

(1 − XnYn)(1 − Xn−1Yn)(1 − XnYn−1). (4.67)

One observes that formula (4.66) is equivalent to the right part of formula (4.67).
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4.3.2 Cocycle series ofW

Let (W,S) be the Coxeter group with Coxeter graph Γ(W)

1• •2

∞

4• •3

(4.68)

As we seen in Example 4.3, it has a spherically ∞-decomposition: it is a free
products of two groups

WH = 〈x1, x2, x3 | (x1x2)3 = (x2x3)3 = (x1x3)2 = x2
i = 1, i = 1, 2, 3〉 (4.69)

WN = 〈y1, y2, y3 | (y1y2)3 = (y2y3)3 = (y1y3)2 = y2
i = 1, i = 1, 2, 3〉 (4.70)

of isomorphism class A3 with amalgamation group

W• = 〈w1,w2 | (w1w2)2 = w2
i = 1, i = 1, 2〉. (4.71)

of isomorphism class A1 × A1.
Now we consider the following group homomorphisms:

φH :W• →WH φN :W• →WN (4.72)

φH(w1) = x1 φN(w1) = y1

φH(w2) = x3 φN(w2) = y3

Then
W 'WH

∐
W•

WN = (4.73)

〈s1 = x1 = y1, s2 = y2, s3 = x3 = y3, s4 = x2 |

(s1s2)3 = (s1s3)2 = (s1s4)3 = (s2s3)3 = (s3s4)3 = s2
i = 1, i = 1, 2, 3, 4〉.

Normal Form Theorem (Theorem 4.1) allows a canonical normal form for the
elements inW.
LetW•

× = φ×W• with × ∈ {H,N} and we write g for the representative of the
coset gW•

× (remember that a Coxeter group W of isomorphism class A3 is the
permutation group S4 and (i1 . . . it) is a permutation of S4):

(1)W• = {(1), (12), (34), (12)(34)} = {1, s1, s3, s1s3} = 1 (4.74)

(13)W• = {(13), (123), (134), (1234)} = {s2, s2s1, s2s3, s2s1s3} = s2 (4.75)
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(14)W• = {(14), (124), (143), (1243)} = {s2s3s2, s2s3s2s1, s3s2, s3s2s1} = s3s2 (4.76)

(23)W• = {(23), (132), (234), (1342)} = {s1s2s1, s1s2, ts1s2s1s3, s1s2s3} = s1s2 (4.77)

(24)W• = {(24), (142), (243), (1432)} = (4.78)

{s1s2s3s2s1, s1s2s3s2, s1s3s2s1, s1s3s2} = s1s3s2

(13)(24)W• = {(13)(24), (1423), (1324), (14)(23)} = (4.79)

{s2s1s2s3s2s1, s2s1s2s3s2, s2s1s3s2s1, s2s1s3s2} = s2s1s3s2

(1)W• = 1 (4.80)

(13)W• = s4 (4.81)

(14)W• = {s4s3s4, s4s3s4s1, s3s4, s3s4s1} = s3s4 (4.82)

(23)W• = {s1s4s1, s1s4, s1s4s1s3, s1s4s3} = s1s4 (4.83)

(24)W• = {s1s4s3s4s1, s1s4s3s4, s1s3s4s1, s1s3s4} = s1s3s4 (4.84)

(13)(24)W• = {s4s1s4s3s4s1, s4s1s4s3s4, s4s1s3s4s1, s4s1s3s4} = s4s1s3s4 (4.85)

Then
AH :=

∑
a∈\W•

H

t`(a) = t + 2t2 + t3 + t4 (4.86)

AN :=
∑

b∈\W•
N

t`(b) = t + 2t2 + t3 + t4 (4.87)

A• :=
∑

c∈W•

t`(c) = 1 + 2t + t2 (4.88)

ÃH :=
∑

a∈\W•
H

t`(a)a = s2t + s3s2t2 + s1s2t2 + s1s3s2t3 + s2s1s3s2t4 (4.89)

ÃN :=
∑

b∈\W•
N

t`(b)b = s4t + s3s4t2 + s1s4t2 + s1s3s4t3 + s4s1s3s4t4 (4.90)

Ã• :=
∑

c∈W•

t`(c)c = 1 + s1t + s3t + s1s3t2. (4.91)

Then the cocycle series for W in terms of (4.86), (4.87), (4.88), (4.89), (4.90),
(4.91) is

CW(t) = (W(t) − W̃(t)) · ω0 (4.92)
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where

W(t) = AH(
∑
i=0

(ANAH)i)A•+(
∑
i=1

(ANAH)i)A•+(
∑
i=1

(AHAN)i)A•+AN(
∑
i=0

(AHAN)i)A•+A•

(4.93)
is the growth series ofW and

W̃(t) = ÃH(
∑
i=0

(ÃNÃH)i)Ã•+(
∑
i=1

(ÃNÃH)i)Ã•+(
∑
i=1

(ÃHÃN)i)Ã•+ÃN(
∑
i=0

(ÃHÃN)i)Ã•+Ã•

(4.94)
is the complete growth series ofW.

Now the problem is, how this interpretation of the left hand-side of the Kac’
denominator formula can be useful to determine the roots and the multiplicities
of the Kac-Moody Lie algebra that hasW as Weyl group.
Therefore, using formula (2.38), we calculated the multiplicities for all α ∈ Λ+

Z

such that ht(α) ≤ 4 and we obtained the following results:

1. Of height 2 there is only one positive imaginary root

α2 + α4

of multiplicity 1.

2. Of height 3 there are two positive imaginary roots

α1 + α2 + α4

α2 + α3 + α4

of multiplicity 2.

3. Of height 4 there are three positive imaginary roots of multiplicity 1, that
are

2α1 + α2 + α4 = s1(α2 + α4)

α2 + 2α3 + α4 = s3(α2 + α4)

2α2 + 2α4 = 2(α2 + α4);

four positive imaginary roots of multiplicity 2, that are

α1 + 2α2 + α4 = s1(α1 + α2 + α4)

2α2 + α3 + α4 = s3(α2 + α3 + α4)

α1 + α2 + 2α4 = s4(α1 + α2 + α4)
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α2 + α3 + 2α4 = s4(α2 + α3 + α4);

one positive imaginary root of multiplicity 4, that is

α1 + α2 + α3 + α4.

Despite these calculations we do not find a correlations between formula
(4.92) and the right hand-side of the Kac’ denominator formula.
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Chapter 5

Conclusion

This thesis explored the connection between a crystallographic Coxeter system
(W,S) and the roots of an arbitrary Kac-Moody Lie algebra associated with a
symmetrizable Generalized Cartan Matrix (GCM) with Weyl group W through
the Kac’ denominator formula (cf. Chapter 2)∑

w∈W

(−1)`(w)e(c(w)) =
∏
α∈Λ+

Z

(1 − e(α))mα (5.1)

for two particular crystallographic Coxeter groups:

1. a cocompact hyperbolic Coxeter group (W,S) (Chapter 3)

•2

4

•1

4

•3 •4

(5.2)

2. a Coxeter group with an∞-decomposition (W,S) (Chapter 4)

1• •2

∞

4• •3

(5.3)

We know that for the Kac-Moody Lie algebras of finite and affine type the mul-
tiplicity of every roots is 1, but for the Kac-Moody Lie algebras of indefinite type
the situation is vastly different, due to the exponential growth of the imaginary
root spaces.

In Chapter 3 we spent much effort to representW as a cocompact arithmetic
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lattice of O+
R(3, 1), generalising a result of J. Elstrodt, F. Grunewald, J. Mennicke

(cf. [11]). We exhibited the generators of W in 〈σ〉 n PSL(2,C) through an ex-
plicit formula (cf. Section 3.4.6) generalizing the results of Masaaki Yoshida (cf.
[35]). Moreover, generalising some results of A. Feingold, I. Frenkel (cf. [12]),
we obteined a description of the root system of a Kac-Moody Lie algebra with
Weyl groupW.

Open problem is to find a closed formula for the multiplicities of the ima-
ginary roots for a Kac-Moody Lie algebra with Weyl groupW.

In Chapter 4 we presented an explicit formula for the left hand-side of
the Kac’ denominator formula (5.1) for the crystallographic Coxeter groups
with a spherically∞-decomposition.

Open problem is to find a connection between the explicit formula for the
left hand-side of the Kac’ denominator formula (5.1) for the crystallographic
Coxeter groups with a spherically ∞-decomposition and the right hand-side,
to determine the roots and the multiplicities of the Kac-Moody Lie algebra that
hasW as Weyl group.

In order to explain next open problem, we need to introduce some conside-
rations.
Let (W,S) be a Coxeter group with an ∞-decomposition. If we eliminate the
edge labelled with∞ in the graph (5.3) then we obtain an other crystallographic
group (W̃, S̃)

1• •2

4• •3

(5.4)

Define an injective homomorphism

π :W −→ W̃,

such that
πIS : S −→ S̃

is a bijection, si −→ s̃i (i = 1, 2, 3, 4).

Open problem is to find (if it exists) a normal form for the elements of W̃
knowing a normal form for the elements ofW.

102



Conclusion

It is with the following observations that this problem arises and might be
better formalised.

Lemma 5.1 Let ` :W→ N0 be the length function ofW and ˜̀ : W̃ → N0 be the
length function of W̃. Then `(w) ≥ ˜̀(π(w)) ∀w ∈ W.

Proof Let w ∈ W be a reduced element such that

w = si1 . . . sik s2s4︸︷︷︸ . . . s2s4︸︷︷︸︸            ︷︷            ︸
h

sik+1 . . . sir

of length `(w) = r + 2h.
We distinguish two cases.
If h is even, i.e. h = 2c (c can also be 0) then

π(w) = s̃i1 . . . s̃ik s̃ik+1 . . . s̃ir .

Therefore ˜̀(π(w)) ≤ r ≤ `(w), the equality holds when c = 0.
If h is odd, i.e. h = 2c + 1 (c can also be 0) then

π(w) = s̃i1 . . . s̃ik s̃2s̃4sik+1 . . . s̃ir .

Therefore ˜̀(π(w)) ≤ r + 2 ≤ `(w), the equality holds when c = 0.
In both cases, we proved that `(w) ≥ ˜̀(π(w)). 2

Proposition 5.1 Let 1 , w ∈ W such that π(w) = s̃i1 . . . s̃ir is a reduced element in
W̃, then w = si1 . . . sir is reduced inW.

Proof We prove the proposition by induction on ˜̀(π(w)).
If ˜̀(π(w)) = 1, then π(w) = s̃i and so w = si is also a reduced element.
Now we suppose that the proposition holds for all k < ˜̀(π(w)). Let π(w) =

s̃i1 . . . s̃ir be a reduced element, so ˜̀(π(w)) = r. We can write π(w) = π(w′)s̃ir ,
whereπ(w′) = s̃i1 . . . s̃ir−1 and ˜̀(π(w′)) = r−1, therefore w′ = si1 . . . sir−1 is a reduced
element. We have that w = w′sir and `(w) = `(w′) ± 1 = (r − 1) ± 1 ≥ ˜̀(π(w)) = r
by Lemma 5.1. Then `(w) = r and w = si1 . . . sir is a reduced element ofW. 2

Definition 5.1 ∀w̃ ∈ W̃, we define the set

Ωw̃ := {w ∈ W | `(w) = ˜̀(w̃) : w̃ = π(w)} = {w ∈ π−1({w̃}) | `(w) = ˜̀(w̃)}

2

Proposition 5.2 Let w̃ ∈ W̃ be a reduced element with inside non consecutive h-
sequences s̃2s̃4 or s̃4s̃2. Then |Ωw̃| = 2h.
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Proof We prove by induction on h.
If h = 0, the reduced element w̃ ∈ W̃ contains no sequences s̃2s̃4 or s̃4s̃2. Then
there is a unique element w ∈ W such that `(w) = ˜̀(w̃) and π(w) = w̃. Therefore
|Ωw̃| = 1 = 20.
If h = 1, the reduced element w̃ ∈ W̃ contains exactly a sequence s̃2s̃4 or s̃4s̃2.
Then there are exactly two elements w1,w2 ∈ W such that `(wi) = ˜̀(w̃) and
w̃ = π(wi), i = 1, 2. In fact in W̃ we have the equality s̃2s̃4 = s̃4s̃2, but in W
s2s4 , s4s2. Therefore |Ωw̃| = 2 = 21.
Now, we suppose that the proposition holds for an element that contains non
consecutive h − 1-sequences s̃2s̃4 or s̃4s̃2 and we prove that the proposition also
is true for h.
Let w̃ ∈ W̃ be a reduced element with h-sequences and we separate this element
in two reduced elements:

w̃ = s̃i1 · · · s̃ik︸  ︷︷  ︸
w̃′

s̃2s̃4s̃ik+1 · · · s̃ir︸         ︷︷         ︸
w̃′′

.

w̃′ is a reduced element with h− 1-sequences, therefore |Ωw̃′ | = 2h−1 and w̃′′ is a
reduced element with 1-sequence, therefore |Ωw̃′′ | = 2. If we add consecutively
to w̃′ the element w̃′′ to obtain w̃, we have that |Ωw̃| = 2h−1

· 2 = 2h. 2

Proposition 5.3 Let w̃ ∈ W̃, w̃ , 1, be a reduced element. There exists an element
w ∈ W be a reduced element in normal form (cf. Section 4.1.1) such that π(w) = w̃.

Proof We prove this proposition by induction on ˜̀(w̃).
If ˜̀(w̃) = 1 then w̃ = s̃, therefore we can set w = s and the proposition holds
trivially.
Now we suppose that the proposition holds for all k < ˜̀(w̃). Let w̃ = s̃i1 · · · s̃ir

be a reduced element, so ˜̀(w̃) = r. We can write w̃ = w̃′s̃ir , where w̃′ = s̃i1 · · · s̃ir−1

and ˜̀(w̃′) = r − 1, therefore w′ = si1 . . . sir−1 is reduced and in normal form such
that π(w′) = w̃′. Without loss of generality, we can suppose that w′ ∈ ΩH,H, so
w′ = a0b1a1 . . . bkakh with k ≥ 0, ai ∈ ]WH, bi ∈ ]WN, h ∈ W• and `(w′) = r − 1.
If we consider the reduced element w̃ = s̃i1 · · · s̃ir with ˜̀(w̃) = r, then, by Propo-
sition 5.1, w = si1 · · · sir = w′sir = a0b1a1 . . . bkakhsr is reduced. Then, remind that
adding sir the length of w is always r, we can distinguish three cases:

1. if sir = s1 or sir = s3 then w = a0b1a1 . . . bkakh′ is in normal form;

2. if sir = s4 then w = a0b1a1 . . . bkakbk+1 is in normal form, it is necessary to
observe that hs4 is an element of ]W̃•N forall h ∈ W•.

3. if sir = s2 then w = a0b1a1 . . . bka′kh′ is in normal form, by straightforward
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calculations and reminding that w is reduced, one observes that akhs2 =

a′kh′ for all ak ∈ ]W
•
H and for all h ∈ W•.

The proposition holds in the same way if w′ is a normal element of type ΩH,N,
ΩN,H, ΩN,N,W•. 2

Proposition 5.4 Let w ∈ W, w , 1, reduced element and in normal form (cf. Section
4.1.1) such that contains no consecutive sequences s2s4 or s4s2. Then π(w) is a reduced
element of the same length and has a normal form that comes from the normal form of
W.

Proof We prove the proposition by induction on `(w).
If `(w) = 1 then π(w) = s̃ and the proposition holds trivially.
Now we suppose that the proposition holds for all k < `(w). Let w = si1 · · · sir be
a reduced element, so `(w) = r. Without loss of generality, we can suppose that
w ∈ ΩH,H, so w = a0b1a1 . . . bkh with k ≥ 0, ai ∈ ]WH, bi ∈ ]WN, h ∈ W•.
If we write w = w′sir , we obtain by similar reasoning to those of Proposition 5.3
that w′ can be of three types:

1. w′ = a0b1a1 . . . bkh′;

2. w′ = a0b1a1 . . . bk;

3. w′ = a0b1a1 . . . bkak−1h.

In all cases w′ is reduced and in normal form and contains no consecutive
sequences s2s4 or s4s2, then by induction also π(w′) is reduced, in normal form
and with the same length of w′.
Then we have that π(w) = π(w′)s̃ir = π(a0b1a1 . . . bkakh′)s̃ir . If for example we
consider the first type for w′. First of all ˜̀(π(w)) = `(π(w′)) ± 1 = `(w′) ± 1 =

r − 1 ± 1. If ˜̀(π(w)) = r − 2, this means that there would be in w consecutive
sequences s2s4 or s4s2, because `(w) = r, but this is impossible by hypothesis.
Now, we know that π(w′) is in normal form: π(w′) = a0 b1 a1 . . . bk h′

and π(w) = π(w′)s̃ir = ã0b̃1ã1 . . . b̃kãkh̃′s̃ir = π(w) = π(a0b1a1 . . . bkakh), always by
similar reasoning to the proof of Proposition 5.3 also π(w) is in normal form. 2

Corollary 5.1 Every reduced element of W̃ has a normal form that comes from the
normal form ofW. 2

We know that formula (1.34) for the growth series is valid for all crystallo-
graphic Coxeter groups, then we can use this formula for the group W̃, but the
elements of W̃ have not a normal form, therefore it is difficult to find a formula
for the cocycle series as (4.37). Then we formalise the following problem.
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Open problem is to understand if it is possible to change formula (4.92) for the
cocycle series ofW to adapt it to a formula for the cocycle series of W̃ and then
how these formulas can be useful to determine the roots and the multiplicities
of the roots of the Kac-Moody Lie algebras withW and W̃ as Weyl groups.
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