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1 Introduction

Quantum field theory is a universal framework for describing the behavior of many physical

phenomena. It is useful to organize the dynamics by energy scale via the renormalization

group. At the shortest and longest distances one frequently finds conformally invariant

systems, and thus CFTs play a foundational role in our understanding of field theory.

In simple examples in low spacetime dimensions, models of interacting CFTs can be

found starting from free fields and tuning interactions to a critical point. In spacetime

dimension d > 4 this simple paradigm breaks down, since all interactions of free fields

are either unstable or irrelevant. This makes the problem of defining ultraviolet complete

interacting theories in high spacetime dimensions challenging. Nevertheless, string theory

sometimes suggests the existence of critical points engineered by intersecting branes [1–4].

Recent years have seen a revival of interest in such CFTs, fueled for example by progress

in their holographic AdSd+1 duals (see for example [5–7] for d = 6 and [8, 9] for d = 5), by

F-theory [10, 11], or by field-theoretic analysis [12–15].

The concrete examples of d > 4 CFTs that emerge from string theory are all supersym-

metric, and this enhanced symmetry provides crucial insights to their dynamics. However,

for algebraic reasons, superconformal field theories can only exist in d ≤ 6 [16, 17]. Thus

we are left to wonder whether interacting CFTs can exist in general spacetime dimensions.
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In other words: does unitary quantum field theory itself have an upper critical dimension,

i.e. a dimension beyond which all unitary theories are necessarily free?

In this paper we confront this problem via gauge-gravity duality. We construct new

non-supersymmetric solutions of type IIA supergravity where the only non-vanishing flux

is F0. In particular, these solutions can have AdS8 factors and hence are potentially

holographically dual to d = 7 interacting CFTs. Note that while any effective theory

in AdSd+1 defines a perturbative solution to the crossing equations of a putative dual

CFTd [18], the embedding in string theory strongly suggests that our models are non-

perturbatively consistent.1

Apart from CFT motivations, the study of high-d compactifications is also interesting

as a simple version of the landscape problem. Indeed supersymmetric AdS7 and AdS6

solutions have by now been completely classified (see [5–7] and [8, 9]), and one can hope

that this will inspire progress in the harder classification of d = 4 compactifications. We can

thus view AdS8 as a simple setup where the restricted geometry might enable a classification

of non-supersymmetric compactifications, parallel to the classification of supersymmetric

AdS7 compactifications.

Our strategy for finding AdS8 solutions is straightforward. We assume that the internal

M2 space has a U(1) isometry. This reduces the equations of motion to a system of ODEs.

We study these equations of motion first in a perturbation series, and then numerically.

The perturbation approach is especially useful to treat loci where the isometry S1 shrinks.

We present this analysis in section 2 below.

One class of solutions that emerges with this treatment has an M2 which is topologically

an S2, with an O8-plane with infinite string coupling at its equator. This makes it similar

to existing AdS6 [21], AdS7 [22, section 5.1] solutions.2 What makes it far simpler than

those, however, is that the only flux present is the Romans mass F0. A cartoon of this

geometry is shown in figure 1a. We can also generalize this class of examples by including

D8-branes either on top of the O8 or on circles inside M2 as shown in figure 1b. In analogy

with [4, 21, 22], one expects a configuration with nD8 D8-branes on the O8 to give rise to

E1+nD8 bulk gauge symmetry, and hence the putative dual CFTs would have exceptional

flavor symmetry.

In the region near the O8 in our solution, the string coupling diverges, and the super-

gravity equations of motion are no longer physically relevant; they should be superseded

by the complete string theory equations. While these are not known, at leading order in

distance from the source our solution resembles the O8 solution in flat space, which pre-

sumably is a solution of string theory. This suggests that our solution should survive the

onslaught of stringy corrections in the vicinity of the O8. Ideally one would be able to

change to a different duality frame near the O8, and then patch this description with the

supergravity solution which is valid almost everywhere.

A related general feature of our solutions is that, at the two-derivative level, they all

possess a modulus that can be used to tune the solution to the reliable region of small

1Another approach to CFTs in high dimensions is the numerical bootstrap. See [19] for preliminary

discussion. See also [20] for another recent proposal of non-supersymmetric holography.
2The AdS3 solutions in [23] also have an O8 of the same type, but have a non-compact internal space.
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(a) The O8 solution. (b) A solution with D8s away from the O8.

Figure 1. Cartoons of the compactification geometry M2 for our solutions. In (a), the solution

with no D8-branes: the radius of the circle and string coupling diverge as we approach the O8 brane

where the geometry ends. In (b) an example with D8-branes (shown in black) away from the O8.

As discussed in section 2.7, these solutions are unstable: the D8s either slip off to the tip of the

geometry or to the O8.

curvature and weak string coupling. In other words, this modulus can be used to make

the O8 region arbitrarily small. However, the existence of this modulus also implies that

their fate may be sensitive to higher derivative (stringy) corrections to the equations of

motion as in the discussion of [24]. Another way to think about this is that the stringy

corrections are not invariant under shifts in the modulus. This means that the stringy

corrections generate a potential, and so we expect that our solutions survive at most for

discrete values of the modulus. Since we have found only a finite number of examples

this might mean that after moduli stabilization our solutions are all strongly-coupled. We

comment on these points in more detail in section 2.6 below.

It is also natural to ask whether our solutions are stable. In contrast to more familiar

supersymmetric solutions, non-supersymmetric AdS solutions are not a priori protected

against instabilities. A conjecture has even been put forward [25] that they are all unsta-

ble, based on a certain non-perturbative decay channel mediated by brane bubbles. (For

previous work on such bubbles see for example [26] and [27, section 4.1.2], which we will

review below in footnote 10.) Our solutions are simple enough that they can provide a sim-

ple playground to test such suspicions. This is especially important in view of our original

motivation, namely to give evidence for the existence of unitary interacting CFTs in d = 7.

We will argue that for our case the bubble instability of [25] is not present. This is in

part because the flux components along the internal volume, which are often present in an

AdS solution, are not present in our solutions. Related to this, our solutions do not arise

from any known near-horizon geometry, so one of the original motivations for the brane

nucleation instability of [25] seems inapplicable.

One might wonder whether our solutions suffer from even more basic perturbative

instabilities. One mode that we analyze in detail in section 2.7 is uniform motion of the

D8-branes in the internal space. With a probe computation, we find that placing the D8-

branes at generic positions in the internal manifold is in fact unstable. Meanwhile the

position of the D8-branes is stable if they are localized on top of the O8. Since the number

of such D8-branes is bounded above 0 ≤ nD8 < 8 this leads to a small list of candidate
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stable solutions. A complete treatment of perturbative stability requires a Kaluza-Klein

reduction, a challenging task which we leave for future work [28].

We conclude in section 3 with a brief generalization of our section 2 analysis to other

dimensions: this shows that there exist non-supersymmetric AdSd solutions with only

F0 6= 0 and no other flux for other values of d as well. Parallel to our previous analysis,

the simplest examples have as internal space a topological sphere S10−d with an SO(10-d)

isometry, and an O8-plane at the fixed locus of an involution.

Finally, appendix B contains a discussion of other candidate AdS8 solutions which can

either be excluded or are unphysical.

2 O8-D8 solutions

We first look at IIA supergravity. In section 2.1 we specialize the equations of motion to

our AdS8 problem. We will immediately find that there are two options: F0 6= 0, F2 = 0

and F2 6= 0, F2 = 0. In this section we discuss explicit solutions for the first case. We

examine the remaining case and IIB in appendix B.

2.1 IIA equations of motion

The general IIA equations of motion are reviewed in appendix A.

The most general ansatz preserving the isometries of AdS8 is as follows. The metric

can be written as

ds2
10 = e2Wds2

AdS8
+ ds2

M2
, (2.1)

where M2 is the compactification two-manifold, and the warping function W and dilaton

are functions on M2. Throughout unless otherwise mentioned we fix conventions such that

the cosmological constant Λ is −1. In IIA, the only possible fluxes consistent with our

desired isometry are F0 and F2; the latter should be proportional to the volume form vol2
of the internal space M2. Sometimes (for example in appendix A) we also refer to their

duals defined by (A.1e).

From the flux equations of motion, we immediately notice some strong constraints.

Throughout our solution, the NS-NS three-form H must vanish. This means that, away

from brane sources, we have dFp = 0 (see (A.1d)). Comparison with (A.1c) then implies

that

F0 ∧ ∗F2 = 0 . (2.2)

Thus, in IIA our analysis will split in the two cases F0 6= 0, F2 = 0 and F2 6= 0, F0 = 0.

In order to get concrete results, we will mostly consider the cohomogeneity-one ansatz,

defined by taking the metric to be

ds2
10 = e2Wds2

AdS8
+ e−2Q(dz2 + e2λdθ2) , (2.3)

where θ ∼ θ + 2π is periodic and now W , Q and λ as well as the fluxes and dilaton only

depend on z. We can fix the radial (z) reparameterization gauge freedom for example by

fixing Q in terms of other functions.3

3We can assume eλ > 0, even if only its square appears in the metric. In a solution where eλ changes

sign, it goes through zero; at such a point the S1 shrinks and the manifold ends (see below).
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2.2 Reduction to ordinary differential equations

In this section we will solve the condition (2.2) by taking F2 = 0. (The other possibility of

F2 6= 0, F0 = 0 is discussed in section B.1.)

We specialize the general type II equations of motion (A.1) to the ansatz (2.3). To begin

we work away from brane sources, and thus neglect localized δ terms. We will introduce

sources in section 2.3 below. We find the following system of ODEs (below prime indicates

derivative with respect to z):

−4e−2(Q+W )=2(φ′)2+λ′(λ−Q−2φ)′+4W ′(9W ′+2λ−4φ)′+(λ−2φ+8W−Q)′′ (2.4a)

4e−2(Q+W )=e2(φ−Q)F 2
0 −4W ′(λ−2φ+8W )′−4W ′′ (2.4b)

0=
1

4
e2(φ−Q)F 2

0−(λ′)2−8(W ′)2+Q′(−8W+λ+2φ)′−(λ−2φ+8W−Q)′′ (2.4c)

0=
1

4
e2(φ−Q)F 2

0 −(λ′)2−8W ′λ′+2λ′φ′+Q′(8W+λ−2φ)′+(Q−λ)′′ (2.4d)

The coordinate z never appears explicitly in the equations: in other words, the system is

autonomous.

As usual in general relativity and in theories with gauge redundancies, from the sys-

tem (2.4) we can extract a first-order linear combination:4

− 2e−2(Q+W ) =
1

8
e2(φ−Q)F 2

0 + 2W ′(7W − 2Q+ 2λ)′ + φ′(Q− 8W − λ)′ + (φ′)2 . (2.5)

We can trade an equation appearing in the combination, say (2.4a), for (2.5). Moreover,

another equation, say (2.4d), is a linear combination of ∂z(2.5), (2.5), (2.4b) and (2.4c).5

This leaves us with a system of three equations: (2.4b), (2.4c), (2.5).

Observe also that λ never appears underived in this system. Therefore, given any

solution, we can obtain another by shifting λ by a constant. Below we will consider smooth

points where the circle parameterized by θ collapses. In this case smoothness of the solution

fixes this freedom.

We can achieve some further simplification by fixing the radial reparametrization gauge

freedom in (2.3) with the choice

Q = W , (2.6)

so that the metric now reads

ds2
10 = e2Wds2

AdS8
+ e−2W (dz2 + e2λdθ2) . (2.7)

This gauge is often useful in other contexts, including for AdS7 solutions [7] and for black

hole solutions in general relativity. With the further definition

α = eλ−2φ+8W , (2.8)

4One can try to generate further first-order equations by taking a first derivative of (2.5) and subtracting

the second derivatives using (2.4). However, this putative new equation is in fact proportional to (2.5).
5Actually this is true just if λ′ 6= Q′. But if we took λ′ = Q′, then (2.4d) would set F0 = 0 and there

are no solutions.
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we obtain the system

0 = 2e−4W +
F 2

0

8
e2φ−2W − α′

α
(φ− 4W )′ −

(
(φ′)2 − 9φ′W ′ + 22(W ′)2

)
, (2.9a)

e2φ = 4e−2W

(
α+ e4W (αW ′)′

)
F 2

0α
, (2.9b)

e4W = −9
α

α′′
. (2.9c)

Up to factors, the last equation determines the warping function (the coefficient of ds2
AdS)

in the same way obtained for AdS7 solutions in [7, (2.27)]. We also note that, since α is

positive, equation (2.9c) implies that α′′ is negative definite. In particular this means that

the geometry M2 cannot be periodic.

Another important feature of the system (2.9), is that it is invariant under the rescaling

W →W + c , φ→ φ− c , λ→ λ+ 2c , z → e2cz . (2.10)

This can equivalently be thought of as

ds2
10 → e2cds2

10 , eφ → e−ceφ . (2.11)

Given any solution, (2.10) can be used to generate another solution with smaller curvature

and smaller string coupling eφ, without changing F0. Thus we can get parametrically good

perturbative control over any solution. (Taking into account higher order corrections, one

expects this modulus to be lifted; see section 2.6.)

Unfortunately we have not found analytic solutions to this system of ODEs, but in

the following we will see that one can straightforwardly find numerical solutions. Before

proceeding we record one further way of writing the equations of motion:

∆fW = −1

4
e2φF 2

0 + e−2W ,

∆fφ = 5∆fW − 5e−2W = −5

4
e2φF 2

0 ,

(2.12)

with ∆f a modified Laplacian

∆fy ≡ −e−f∇α
(
ef∇αy

)
, f ≡ 8W − 2φ . (2.13)

The covariant derivatives are computed with respect to the purely two-dimensional metric

ds2
M2

.

2.3 Domain wall conditions

We now consider what happens near sources. Since only F0 6= 0, we restrict our attention

to D8-branes and O8-planes. Fortunately the singularities that these objects induce in the

fields are relatively mild and we can treat them using simple distributional derivatives.

A first subtlety is that the process of elimination we performed in section 2.2 does not

quite work in the same way; this is basically because F0 is not constant, and its derivative

– 6 –
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generates additional δs. An alternative presentation of the system is then

1

8
F 2

0 e
2(−W+φ) =

α′

α
(φ− 4W )′ (2.14a)

+
(
−9W ′φ′ + 22

(
W ′
)2

+
(
φ′
)2)− 2e−4W ,

1

4
e−2W+φ

(
F 2

0 e
φ + eWκ2τδ (z − z0)

)
= W ′′ +W ′

α′

α
+ e−4W , (2.14b)

e4W = −9
α

α′′
, (2.14c)

−5

4
e−2W+φ

(
F 2

0 e
φ + eWκ2τδ (z − z0)

)
= φ′′ + φ′

α′

α
. (2.14d)

Finally, the Bianchi identity for F0 tells us that it jumps at brane sources according to

dF0 = −κ2τδ(z − z0) . (2.15)

The presence of localized sources in (2.14) makes it clear that the functions defining the

solution are no longer smooth. Instead, we assume that the variables are continuous but not

differentiable: in a distributional (or weak) sense, their first derivatives are discontinuous,

and their second derivatives have some δ terms. For example, the function |z − z0| has a

weak first derivative ∂z|z − z0| = sign(z − z0), and a weak second derivative ∂2
z |z − z0| =

∂zsign(z − z0) = 2δ(z − z0).

Let us examine the behavior of the variables at a source locus z = z0 (where the first

derivatives are discontinuous). The discontinuity in the first derivative can be determined

by integrating (2.14) on an infinitesimal interval around z0. We obtain:

eW−φ∆W ′ =
1

4
κ2τ , eW−φ∆φ′ =

5

4
κ2τ , ∆α′ = 0 , (2.16a)

F0 = −eW−φ
(
φ′ −W ′ + α′

α

)
. (2.16b)

All quantities which are not under the variation sign ∆ are to be understood as evaluated

on the left of the object, i.e. for z → (z0)−. (We have used ∆(F 2
0 ) = 2F0∆F0 + (∆F0)2.)

Meanwhile, using (A.2), (A.3) and (2.15), in string units ls = 1,

− κ2τ = − 1

2π
(nD8 − 8nO8) = ∆F0 =

∆n0

2π
, (2.17)

where nO8 ∈ {0, 1}.
For example, we can apply this to an O8-plane (possibly with nD8 < 8 D8-branes on

top). By definition of O8, the solution has an involution relating the left and right sides

of the O8-plane. Then we have for example ∆F0 = −2F0, where F0 is the value of the

Romans mass on the left side. (2.16) then become

−2eW−φφ′|O8 = −10eW−φW ′|O8 =
5

4
κ2τ , α′|O8 = 0 , (2.18)

where again all quantities are evaluated on the left side z < zO8 of the O8; κ2τ is given

by (2.17) (with nO8 = 1). Using (2.18) in (2.14a) we get

Λe−4W |O8 = 0 , (2.19)

– 7 –
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where in the above we have restored the cosmological constant Λ.

To verify that these discontinuities indeed describe an O8-plane we should check that

locally our metric behaves like that of an O8-plane in flat space:

ds2
10 ∼ H−1/2(−dx2

0 + dx2
1 + . . . dx2

8) +H1/2dx2
9 , (2.20)

where H = a+b|x9|, b = gs
4π (8−nD8), and a ≥ 0 is a free parameter of the flat space solution.

Comparing with (2.3) we see H = e−4W ; so we deduce from (2.19) that we can only have

O8-planes for which a = 0. In this case, the string coupling eφ ∼ gsH
−5/4 diverges. (By

contrast in flat space Λ vanishes and (2.19) does not constrain the warp factor.)

This result is not entirely surprising: in most AdS solutions in other dimensions, the

O8-planes that appear have a diverging dilaton (see for example [21, 22]).

In a region where the dilaton diverges, however, the logic that took us to (2.16) should

be reexamined. At a formal level, we cannot really use the weak second derivative ∂2
z |z −

z0| = 2δ(z − z0), since the functions diverge rather than just having an angular point.

Various formal manipulations can be attempted; one is for example to change variables

to ones that still have an angular point, such as H1 = e−4W and H2 = e−
4
5
φ. This takes

us back to (2.16); other changes of variables however might take us to impose (2.16) even

at subleading orders in |z − z0|. Most importantly, however, while in this paper we use

supergravity as a tool, we are ultimately interested in finding solutions that are valid

in fully-fledged string theory. In the region where the dilaton diverges, the supergravity

equations of motion are no longer valid, and strictly speaking we cannot use the logic

leading to (2.16) at all. (We can use (2.10) to make this strongly-coupled region as small

as we like, but we can never eliminate it completely.) In spite of this, we will still use (2.16)

as a domain-wall condition even if the dilaton diverges, given that it reproduces the same

leading-order behavior as an O8 in flat space. We will return to this point in section 2.6.

2.4 Perturbative solutions

We will now study the equations of motion in a power-series approach.

First we look for a solution for which the circle with coordinate θ shrinks at some

point, so that the space is regular (non-singular) around it. Without loss of generality, we

can take this point to be at z = 0. Regularity then means that

eλ = z +O(z2) , W = W0 +O(z2) , φ = φ0 +O(z2) . (2.21)

The behavior of eλ is so that the internal metric in (2.3) behaves as ds2
10 ∼ dz2+z2dθ2+. . .,

which is the R2 metric when the periodicity ∆θ = 2π. (In particular this fixes the freedom

in shifts of λ mentioned below (2.5)) The absence of linear terms in W and φ is so that

they are at least C2, since z is a radial coordinate. Solving the equation of motion (2.9)

– 8 –
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assuming (2.21) leads to

W =
log (c1)

2
+
z2
(
c2

0c1F
2
0 − 4

)
16c2

1

+
z4
(
c2

0c1F
2
0

(
c2

0c1F
2
0 + 6

)
− 20

)
128c4

1

+

+
z6
(
c2

0c1F
2
0

(
30c4

0c
2
1F

4
0 + 99c2

0c1F
2
0 + 1142

)
− 3072

)
23040c6

1

+O
(
z7
)
, (2.22a)

φ = log (c0) +
5c2

0F
2
0 z

2

16c1
+

5c2
0F

2
0 z

4
(
c2

0c1F
2
0 + 4

)
128c3

1

+

+
c2

0F
2
0 z

6
(
30c4

0c
2
1F

4
0 + 99c2

0c1F
2
0 + 598

)
4608c5

1

+O
(
z7
)
, (2.22b)

α =
c4

1z

c2
0

− 3c2
1z

3

2c2
0

+
9

80
z5

(
c1F

2
0 +

2

c2
0

)
+O

(
z7
)
. (2.22c)

The results depend on two real parameters c0, c1.

In fact, imposing that α has the form in (2.21) already implies the other two conditions

there, namely that W ′ and φ′ vanish at z = 0. Our system (2.9) consists of two second-order

equations and one first-order equations; so at a generic point one expects five parameters

to determine the initial conditions. One might then expect that imposing two conditions

should result in a local solution with three free parameters. To see why we instead only

have two free parameters in (2.22), notice that (2.9b) near z = 0 has the form α(W ′′+. . .) =

W ′α′, and so setting α = 0 implies W ′ = 0 automatically; this fixes one extra parameter.

This phenomenon can also be understood in the framework of quasi-linear systems of ODEs,

namely systems of the form M(q)q′ = v(q), where q is a vector of variables, and M and v

are a matrix and vector which can be taken to depend on q nonlinearly. Our system can

be cast in this form in terms of the three variables α, φ, W and their first derivatives; it

becomes a point-dependent vector field on the five-dimensional space M5 defined by the

first-order equation (2.9a). At a generic point on M5, the matrix M(q) is invertible and

q′ = M(q)−1v(q) is determined; at special loci where M(q) is non-invertible, however, the

system will have no solution unless we impose v(q) to be in the image of M(q), and this

fixes more parameters than one originally intended.

Another local behavior that will be interesting for us is that around an O8 (with nD8

D8-branes on top). From the discussion around (2.20) we have the local behavior

eλ ∼ t−1/2 , eW ∼ t−1/4 , eφ ∼ t−5/4 , t ≡ |z − z0| . (2.23)

Moreover, we also note from (2.8) that α goes to a constant.

In a strong coupling region the supergravity equations of motion are not physically

relevant, as we discussed at the end of the previous subsection. In spite of this, we can try

as an exercise to formally solve the supergravity equations of motion in the neighborhood

of the O8. Identifying the subleading behavior in (2.23) is not immediate: one has to decide

for example if the expansion parameter is t or some fractional power like t1/4. (A similar

problem presented itself for the O6 in [29, (5.8)].) After some experimentation and some
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help from numerical results, we obtain

e4W =
a2

t
+ a1 +

5a2
1t

3a2
+

(
4a3

1

3a2
2

− 41

24

)
t2 (2.24a)

+

(
71a4

1

45a3
2

− 43a1

60a2

)
t3 +

(
52a5

1

45a4
2

− 517a2
1

360a2
2

)
t4 +O

(
t5
)
,

e4φF 4
0 =

a2

t5
+
a1

t4
+

19a2
1

3a2t3
+

1

t2

(
6a3

1

a2
2

− 125

24

)
(2.24b)

+
256a4

1 − 41a1a
2
2

12a3
2t

+
6968a5

1 − 10499a2
1a

2
2

360a4
2

+O
(
t1
)
,

α = a0 −
3a0t

3

2a2
+

3a0a1t
4

4a2
2

+
3a0a

2
1t

5

10a3
2

−
a0

(
24a3

1 + 5a2
2

)
t6

80a4
2

+O
(
t8
)
, (2.24c)

where a0, a1, a2 are three real parameters. The O8 domain-wall conditions (2.18) are

automatically satisfied by this solution; remarkably, even the correct coefficient −κ2τ =

∆F0 = −2F0 is reproduced. This means that the bulk supergravity equations already know

about the correct O8 tension, even without imposing supersymmetry.

2.5 Numerics

We can now use the perturbative solutions we found as a seed for a numerical study.

For example, we can start from a regular point. The usual technique is to evaluate the

perturbative solution (2.22) at a small value of z, where it is very reliable, and use it as an

initial condition for a numerical evolution using the system (2.9).6

For each value of the initial conditions, there are actually two possible solutions: this

is due to the first-order equation (2.4a), which is quadratic in the first derivatives. The

result of the numerical evolution always results in a singularity for both solutions. But one

of these singularities is exactly (2.23),7 the back-reaction of an O8 with diverging dilaton,

possibly with nD8 < 8 D8-branes on top.

To be more precise, the solution one gets this way is not physical for any choice of the

initial parameters: a fine tuning is required to reproduce the correct local behavior of α

in (2.24c) (specifically we must reproduce α′ → 0 at the singularity).8 The resulting solu-

tions depend on a single real parameter which can be identified with the modulus discussed

in (2.10) and can be used to make eφ and the curvature of this solution arbitrarily small.

On the other hand, the rest of (2.18) works automatically, given the Bianchi identity,

which from (2.17) in this case reads −2n0 = ∆n0 = −(nD8 − 8). This is a consequence

of our remark below (2.24), where we noticed that any solution with the correct local

behavior (2.23) already reproduces the correct O8 tension.

6In fact, it is also possible to push (2.22) to very high order, obtaining results which are virtually

indistinguishable from the numerical solutions.
7The other type of solution has a singularity for which eW ∼ t2/11, eφ ∼ t7/11, eλ ∼ t9/11; we cannot

match this to any IIA object, and we thus conclude that it is unphysical and do not consider it further.
8Note from the local behavior (2.24c), that near an O8 both α′ → 0 and α′′ → 0. However, the equation

of motion (2.14c) shows that as soon as W diverges α′′ automatically vanishes. Thus only a one parameter

tuning is necessary to achieve the correct local behavior of the O8.
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25 50 75 100 125
z

2

4

Figure 2. A numerical solution with eφ (black), W (turquoise), α/αO8 (orange), with F0 = − 2
2π ,

nD8 = 4. At the left endpoint, the solution is regular; at the right endpoint, it behaves as an O8

with diverging dilaton. (One should imagine a mirror copy of the solution to the right of the O8;

the two halves are identified by the orientifold involution.)

Even though we are only showing in figure 2 the solution on the left of an O8, one

should imagine a mirror copy of it to the right of the O8. The two halves are identified by

the orientifold involution.

We can also try to insert some D8-branes which are not on top of the O8. We again

use (2.22) as a starting point. We can place D8-branes at a locus where (2.16b) is satisfied.

For convenience we rewrite this condition as

n0 = −2π
eW−φ

α

(
α(φ′ −W ′) + α′

)∣∣∣z=zD8 (2.25)

We can stop the evolution at the point z = zD8 where the above is satisfied, and we place

nD8 D8-branes there. We then start the evolution again from this point, with new initial

data obtained by applying (2.16a). The solution we obtain again leads to a diverging-

dilaton O8. As in the case without D8-branes we have to fine tune our initial conditions

at z = 0 so that α′|O8 = 0 is satisfied.

From this procedure we can see some restrictions on the number of D8-branes in our

geometry. Specifically, we can show that the initial n0 in equation (2.25) cannot be positive.

To verify this, first note that a combination of the equations of motion can be rewritten as

∂z
(
α(φ′ −W ′)

)
= αe−4W

(
e2φ−2WF 2

0 + 1
)
≥ 0 . (2.26)

The function α(φ′−W ′) vanishes at a regular point, and hence by the above is everywhere

non-negative. This implies that (2.25) can only be satisfied for positive n0 if α′|z=zD8 < 0.

However, as remarked below equation (2.9), the equations of motion imply that α′′ ≤ 0.

Thus if α′ is negative, it will continue to decrease, and can never reach its required value

of zero on the O8.

Let us combine this argument with the Bianchi equation which relates n0 to the number

nD8 of D8-branes away from the O8, and to the number ñD8 of (half-)D8-branes on top of

the O8:

n0 = nD8 +
ñD8

2
− 4 < 0 . (2.27)
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0.5 1 1.5 2
z

5

15

25

Figure 3. A numerical solution with a single stack of three D8-branes, to the left of a diverging-

dilaton O8. The values of the Romans mass are F0 = n0

2π , with n0 = (−1,−4). To illustrate the

kink we have plotted α (orange), e4W (turquoise) and eφ (black).

We conclude that there is an upper bound on the total number of D8-branes we can place

in our solution.

In principle, this process can be repeated to obtain solutions with several stacks of D8-

branes. In figure 3 we show an example with a single stack of D8-branes and a diverging-

dilaton O8 to its right. The D8 stack manifests itself as the angular point in the functions,

where they are continuous but their derivatives change.

One might also try to consider anti-D8-branes. An anti-D8 has the opposite charge of

a D8 but the same tension and thus are not just obtained by considering a negative nD8

above. Taking this into account one sees that the left-hand side of (2.25) changes sign;

one now concludes that n0 on the left is positive, rather than negative as in (2.27). This

would require a sufficient number of half-D8-branes on top of the O8 so that the total

O8-D8 system has positive tension. This is in contradiction with what we can have in the

solution, and we conclude that anti-D8s are forbidden.

2.6 Higher-derivative corrections

As mentioned around equation (2.11), a general feature of all our solutions is that they

come in one-parameter families obtained by acting on any solution with the transformation:

ds2
10 → e2cds2

10 , eφ → e−ceφ . (2.28)

Scaling to large c, the solutions become weakly curved and have small string coupling eφ.

Although the rescaling modulus (2.28) is classically a flat direction, it is natural to expect

that quantum corrections to the IIA string theory effective action will lift this mode. This

is especially true given that our solution is non-supersymmetric and hence there is no

symmetry reason for a flat modulus to persist.

This issue is related to the fact that near the O8 the string coupling diverges. As we

mentioned at the end of section 2.3, in this region the supergravity equations of motion are

superseded by the unknown equations of motion of string theory. While we have no access

to those equations, our solution resembles at leading order in |z−z0| the O8 solution in flat
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space, which should exist in string theory, given its fundamental definition in terms of open

strings. This gives us good hope that our solution also exists in full string theory. However,

the equations of motion of full string theory are not invariant under (2.28); presumably,

then, the solution should only be valid for one particular value of c.

In spite of these difficulties, we could try to proceed as follows. One approach to these

corrections is to evaluate the higher derivative terms on a given family of solutions and

thereby view them as a generating an effective potential for the mode c. This method is

reliable in the regime of large c where the corrections are small, and leads to a qualitative

picture analogous to that discussed in [24]. For instance, the leading order corrections

to the IIA effective action are tree level in the string coupling and begin with R4 (see

e.g. [30, 31] for a recent summary).9 Schematically

Stree
R4 ∼

∫
d10x
√
g10 e

−2φ

(
t8t8 +

1

8
ε10ε10

)
R4 + · · · , (2.29)

where above the terms t8t8 and ε10ε10 indicate particular index contractions of the Riemann

tensor, and · · · include for instance terms with derivatives of the dilaton. The parametric

dependence of (2.29) on the modulus c is easy to fix based on scaling and is simply e4c. Sim-

ilarly, at next order there are one-loop R4 as well as tree level R5 terms, which scale as e2c.

To deduce the effective potential we rewrite these corrections in the eight-dimensional

effective action in the form

Seffective ∼
∫
d8x
√
g8 (R− V (c)) , (2.30)

and hence from our qualitative discussion above we have (restoring the cosmological con-

stant)

V (c) = Λ +Ae−4c +Be−6c + · · · . (2.31)

There are several essential challenges to making this approach quantitatively reliable

even in the regime of large c. The first is a question of practice: although much work has

been done on higher derivative corrections to supergravity, the complete form of even the

leading order corrections including all relevant terms is not explicitly known. A second

challenge is one of principle. The coefficients A and B in the potential above should be

determined by evaluating the various curvatures on our compactification manifold. How-

ever, all our solutions have O8 sources near which the curvatures diverge. In principle

this means that the higher order terms in the effective action become relevant. As we dis-

cussed above, the fact that the O8 is an exact solution of string theory suggests that this

is not a fundamental challenge; but it does make it difficult to treat the higher derivative

corrections systematically.

2.7 Stability

As we anticipated in the introduction, it is natural to wonder about the stability of our

solutions. We will first consider the solutions with the O8-plane only, and then consider

solutions with D8-branes at the end of the subsection.
9There are also higher derivative corrections to the brane worldvolume actions that we neglect in our

qualitative discussion below.
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In general there are two possible types of instabilities: perturbative and non-perturba-

tive. The first can be assessed with a Kaluza-Klein reduction around the solution, which

we will present elsewhere [28]. The second occurs when a tunneling event at a point in

spacetime takes the fields to a different vacuum; this generates a bubble which can then

expand and reach the boundary of AdS in finite time.

A first type of bubble that one can consider is a D-brane domain wall. For an

AdSd ×M10−d compactification, this would be a Dp-brane wrapping an R× Sd−2 ⊂ AdSd
(with the R direction being time) and a (p − d + 2)-submanifold ⊂ M10−d. Given that

the RR flux jumps across a brane, the vacua inside and outside will not be the same: the

brane represents a domain wall connecting two different vacua. Assuming such a brane is

created by a quantum effect, we can wonder whether the Sd−2 will expand or collapse. The

D-brane action contains a gravitational DBI term, which will make the brane collapse, and

a coupling to the RR fields, which in general will want to make it expand (much like an

electron-positron pair in an electric field, in the Schwinger effect). In supersymmetric com-

pactifications, these two can exactly cancel each other, in which case the brane represents

a BPS domain wall. In non-supersymmetric compactifications, one of the two terms will

dominate. A natural extension of the weak-gravity conjecture [32] suggests that there is

always a brane for which the gravitational term is weaker, which will make it expand [25].10

This would make one conclude that all non-supersymmetric AdS vacua are unstable.

In our case, such a brane would wrap a R×S6 ⊂ AdS8. There are thus only two options:

a D6-brane which is a point in the internal M2, and a D8-brane wrapping all of the internal

M2. (More generally one could consider D8/D6-bound states, but the discussion for these

is the same as for a pure D8-brane.)

A D6-brane couples in fact to F2; but this flux is just absent in our solution, and thus

the coupling to the RR term is just absent. Only the DBI gravitational term is present,

which will make such a bubble collapse, if it is created.

We next consider a D8-brane. Here we find a more fundamental problem: such a

D8 would intersect transversely the O8-plane already present in the solution; this is not

possible. To see why, call ρ the radial direction of AdS8 (in global coordinates), and say

the D8 is at ρ = ρ0; the O8 in our solution is of course extended along all of AdS8, and sits

at z = z0. (While in figure 2 we have depicted only z < z0, recall that in fact there is also

a region z > z0, where the graph of the functions would just be a mirror image of those for

z < z0.) In our original vacuum, which would exist outside the bubble, ρ > ρ0, F0 has values

F0 =
1

2π

{
n0 z < z0 ,

−n0 z > z0 ,
(2.32)

because the O8 reverses the sign of F0. After crossing the D8 into the ρ < ρ0 region, F0

should change by one unit, going to

F0
?
=

1

2π

{
n0 + 1 z < z0 ,

−n0 + 1 z > z0 .
(2.33)

10For an illustration of this mechanism, see for example the non-supersymmetric AdS4 vacua in [27,

section 4.1]. For those vacua, the computation in section 4.1.2 there shows that D2-branes wrapping

R× S2 ⊂ AdS4 always expand until they force F0 = 0, which takes us back to the supersymmetric case.
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But this configuration would not be consistent with the O8 action F0 → −F0. Thus a

D8-brane bubble cannot in fact exist, and cannot destabilize our solution.11

After all this discussion, it is perhaps also worth remarking that there are no super-

symmetric solutions that our solutions can decay to (unlike for the AdS4 solutions of [27,

section 4.1]). Thus it is only natural that there are no decay channels.

One last possibility would be a “bubble of nothing”. This was shown to exist for

non-supersymmetric Minkowski4 × S1 in [35]. In that case, the surface of the bubble is a

locus where the internal S1 shrinks smoothly. One might imagine something like this in

our case, but our S2 is not round and thus cannot shrink smoothly on a locus inside AdS8.

One might imagine a configuration where the S2 has the shape required by our vacuum at

infinity, but becomes round on an interior locus. That seems unlikely to us, in particular

because of the presence of the O8 at the equator.

We now consider the solutions where D8-branes are also present. When there is a

stack of D8-branes away from the O8, as in figures 1b and 3, one can ask whether they

are unstable against small uniform perturbations in their z position in either direction.

Let us investigate this in a probe approximation. The low-energy action has two terms:

a DBI term
∫
d9xe−φ

√
−g, which generalizes the gravitational potential of a particle, and

a WZ term
∫
C9, which gives the interaction with F0 = ∗F10 = dC9. For a D8 in the

background of a stack of other D8-branes in flat space, the gravitational attraction would

exactly balance everywhere with the repulsion given by the presence of F0.

Our curved space solution is more complicated; the gravitational attraction and the

F0 repulsion do not exactly balance everywhere. In fact, the sum of the two forces is

proportional to F0 + eW−φ
(
φ′ −W ′ + α′

α

)
and D8 branes can only be placed at loci where

this force vanishes. Looking back at (2.16b), we see that this is exactly the condition we

used to decide where to place our D8 stack. However, the force becomes non-zero away

from the D8 stack; we find that it is positive for z > zD8 and negative for z < zD8, meaning

that the D8s in the stack are in unstable equilibrium. In other words, when we move one

of the D8s to the right of the stack, they are repelled by the gravitational potential of the

O8, but the coupling to F0 gives a stronger force which pushes them towards the O8. On

the other hand, if we move one of the D8s to the left of the stack, the F0 force is weaker

than the gravitational repulsion of the O8, and the D8 slips off towards the regular point.

There is no such instability for D8-branes on top of the O8-plane. In that case, the

gravitational and F0 force balance on the O8, and away from it are arranged so that they

lead to stable equilibrium.12

11A D8-antiD8 pair would not have such a problem; moreover, the O8 projection removes the tachyon

on this system and makes it stable. This stable non-BPS brane is T-dual to the seven-brane in [33, (3.1)])

and plays a role in [34]. However, it does not change F0 and thus does not destabilize our solution.
12In the full KK analysis, the open-string D8 degrees of freedom might interact with the supergravity

fluctuations.
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3 O8-D8 AdSd solutions

In this section, we will generalize the O8-D8 solutions of section 2 to arbitrary AdSd×M10−d
spacetimes. This results in a simple class of non-supersymmetric AdSd solutions supported

only by F0. The compactification manifold M10−d will be topologically a sphere S10−d with

SO(10-d) isometry. Parallel to our earlier AdS8 examples, there is a Z2 involution and an

O8-plane at its fixed point.

Explicitly, for the manifold M10−d, we consider a fibration of a round sphere S9−d

(whose radius is defined by Rmn = ρgmn) over an interval identified by the coordinate z.

We will later use regularity to fix the radius to one. We again work in the gauge (2.6),

where our ansatz for the metric now reads

ds2
10 = e2Wds2

AdSd
+ e−2W (dz2 + e2λds2

S9−d) . (3.1)

The equations of motions with 9-dimensional sources orthogonal to the coordinate z

now read:

0 = 8
α′

α
(φ+(4−d)W )′+2(d−8)

(α′)2

α2
+(d−9)

(
F 2

0 e
(−2d+18)W

d−9
+2φ+2de

(−4d+36)W
d−9

)
+

+8
(
φ′
)2−8(d+1)W ′φ′+8(3d−2)

(
W ′
)2

+2(d−9)2ρα
2
d−9 e

4(φ−(d−4)W )
d−9 , (3.2a)

0 =F 2
0 e

2φ−4−4e2W

(
W ′′− α

′

α
W ′
)

+δκ2τeW+φ , (3.2b)

0 = (9−d)ρα
2
d−9

+1e
4(3W+φ)
d−9 −α′′e

4dW
d−9 −α(d+1)e

32W
d−9 , (3.2c)

0 = (9−d)(ρα
2
d−9 e

4φ
d−9 +e

20W
d−9 )+e

4(d−4)W
d−9

(
(10W −2φ)′′+(10W −2φ)′

α′

α
− α

′′

α

)
, (3.2d)

where we introduced

α = e(9−d)λ−2φ+2(d−4)W , (3.3)

which has the property that its derivative does not jump across the brane sources, gener-

alizing (2.8).

The first-order equation (3.2a) expresses the expected constraints in gravitational the-

ories, generalizing (2.5). (3.2) are again invariant under the rescaling (2.10). (We also have

the possibility of rescaling λ → λ + 2c̃, ρ → ρe4c̃; this however is just a redefinition, and

does not change the solution.)

We can start analyzing the properties of the equations by looking at the behavior

across the sources. Doing so we get the same conditions as in (2.16).

After taking care of the behavior near the sources, we can now eliminate one of the sec-

ond order equations, say (3.2d), and use the remaining system to look for regular solutions.
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Imposing the conditions for regularity as in (2.21), but without fixing the first-order

coefficient of eλ, we get for d < 8 the perturbative solution

e
2

9−dφ = c1 + z2 5F 2
0 c

10−d
1 c9−d

2

4 (d2 − 19d+ 90)
+O

(
z4
)
, (3.4a)

e
2

9−dW =
1

c2
+ z2

(
F 2

0 c
9−d
1 c8−d

2 − 4c17−2d
2

)
4d2 − 76d+ 360

+O
(
z4
)
, (3.4b)

α
2

9−d = z2 ρc8−2d
2

c2
1(8− d)

− z4 ρc
−d−2
1 c17−4d

2

(
c9

1(d− 8)F 2
0 c
d
2 − 6c9

2(d− 2)cd1
)

6(d− 10)(d− 9)(d− 8)
+O

(
z6
)
. (3.4c)

(As in the d = 8 case, this expansion can be pushed to high order, but given all the free

parameters we have at this point the expressions become quite cumbersome very quickly.)

On this solution, e2λ behaves as:

e2λ = z2 ρ

8− d
+O

(
z4
)
. (3.5)

In order to have a regular space, we fix the value of ρ such that the sphere S9−d has radius

one:

ρ = 8− d. (3.6)

This choice fixes the linear coefficient in the expansion of eλ to be 1.

The local regular solution above again depends on two real parameters, c0 and c1.

As in our previous analysis we can now numerically evolve along z. By tuning the initial

conditions we again find an O8 singularity. This leaves us with a one-parameter family

of solutions related by the modulus (2.11). This construction is possible in all 2 ≤ d < 8

resulting in solutions qualitatively similar to those described in section 2 in all spacetime

dimensions.
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A Equations of motion

In this appendix we summarize the equations of motion of type II string theory.

The bosonic closed-string field content consists of a metric gMN , a dilaton φ, a two-

form B field with three-form field strength H, as well as Ramond-Ramond fields Cp−1 with

field-strengths Fp, with p even. We work with a complete set of field strengths and impose

the duality relations at the same time as the equations of motion.
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The equations of motion then read

R+ 4∇2φ− 4 (∇φ)2 − 1

2
|H|2 =

1

2
τκ2eφ+W δ , (A.1a)

e−2φ

(
RMN + 2∇M∇Nφ−

1

2
|H|2MN

)
− 1

4

∑
p≥1

|Fp|2MN =
1

4
τκ2e−φ+W

× (gMN − 2ΠMN ) δ , (A.1b)

d(e−2φ ∗H) +
1

2

∑
p≥2

Fp−2 ∧ ∗Fp = 0 , (A.1c)

dFp +H ∧ Fp−2 = −κ2τδ , (A.1d)

∗Fp + (−1)p(p+1)/2F10−p = 0 . (A.1e)

We have collected the source terms on the right.

κ2 ≡ (2π)7(ls)
8 (A.2)

denotes Newton’s constant. τ denotes the total source’s tension; it is the sum τ = (nDpτDp−
8nOp)τOp, where

τDp =
1

gs(2π)plp+1
s

, τOp = −2p−5τDp (A.3)

are the D-brane and O-plane tensions; nOp ∈ {0, 1}. (In the main text we work in string

units ls = 1.) δ is locally of the form Π10
m=p+1δ(x

m)dxm; the projector Π is defined by

ΠMN ≡ Eαβ∂αxP∂βxQgMP gNQ , (A.4)

where α, β = 0, . . . , p denote brane indices, EMN = gMN + BMN , its pull-back Eαβ =

∂αx
M∂βx

NEMN , and its inverse is Eαβ .

B Other cases

We will now look for AdS8 solutions in other setups. In section B.1 we will analyze the

case F2 6= 0, F0 = 0, and show that within our cohomogeneity-one ansatz there are no

physical solutions. In section B.2 we will look at IIB, where the only solutions we found

are of dubious physical significance.

B.1 IIA, F2 6= 0, F0 = 0: no solutions

We will now look at the other branch of (2.2), namely F2 6= 0, F0 = 0, again using the

cohomogeneity-one ansatz, where the metric reads (2.7), with W and the dilaton φ only

depending on z. An important difference with section 2 is that now we have no natural

candidates for sources from string theory. Indeed F2 should be sourced by D6-branes,

which cannot be introduced in our system without breaking the isometries of AdS8.

We can parameterize

F2 = f2dz ∧ dθ . (B.1)
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The equation of motion d ∗ F2 = 0 gives, recalling

∂θf2 = ∂z(e
10W−λf2) = 0 ⇒ f2 = e−10W+λf20 . (B.2)

(The first condition is in fact part of the cohomogeneity-one ansatz.)

We perform now the same manipulations as in the F0 6= 0 case, taking again Q = W .

We end up with the system

0 =
1

8
f2

20e
2(φ−9W ) +W ′

(
22W ′ − 9φ′ − 4

α′

α

)
+ φ′

(
φ′ +

α′

α

)
− 2e−4W , (B.3a)

0 =
1

4
f2

20e
2(φ−9W ) −W ′′ −W ′α

′

α
− e−4W , (B.3b)

0 =
1

2
f2

20e
2(φ−9W ) − α′′

α
− 9e−4W . (B.3c)

To make the solutions compact, one possibility is to make the circle paramerized by

θ shrink at two points, leading to an S2 topology. The second possibility is a periodic

solution, where z would be identified to itself up to a translation, leading to a T 2 topology.

We begin with the first possibility. The starting point is to look perturbatively for

regular solutions, which we again impose by (2.21). We get

W =
log(c1)

2
+ z2 (c2

0f
2
20 − 4c7

1)

16c9
1

− z4 (−44c2
0c

7
1f

2
20 + 5c4

0f
4
20 + 60c14

1 )

384c18
1

+O(z6) (B.4a)

φ = log(c0) + z2 3c2
0f

2
20

16c9
1

− z4 (−36c2
0c

7
1f

2
20 + 5c4

0f
4
20)

128c18
1

+O(z6) , (B.4b)

α = z
c4

1

c2
0

+ z3

(
−18c7

1 + f2
20c

2
0

)
12c5

1c
2
0

+
1

120
z5

(
18f2

20

c7
1

− 2c2
0f

4
20

c14
1

+
27

c2
0

)
+O(z7) . (B.4c)

We can again use this as a starting point for a numerical study, and as before we always

evolve to singularities. However, unlike in section 2, we cannot interpret these as the back-

reaction of some physical object. (Again there are two branches of solutions. One goes as

in footnote 7; the other behaves as eW ∼ t−3/8, eφ ∼ t−21/8, eλ ∼ t−5/4.) This is ultimately

because of our observation at the beginning of this subsection, that there are no natural

candidates. So the possibility of solutions with S2 topology fails.

This leaves us to consider periodic solutions, with T 2 topology. To exclude such so-

lutions we observe that by taking derivatives of the first-order equation (B.3a) with the

others in (B.3), we can find a combination that reads

∂z(φ
′α) =

3

4
αe−18W+2φf2

20 . (B.5)

This equation says that φ′α is monotonous; so the solution cannot be periodic.

B.2 IIB

We will now turn to IIB. We will again use the cohomogeneity-one ansatz (2.7). Again

everything depends on the coordinate z only. The only possible flux is now F1, a one-form

on M2. (A.1d) tells us that it should be locally closed. The only possible source for it is an
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O7 or a D7 filling completely eight-dimensional spacetime, and localized in the internal M2.

Since we are taking ∂θ to be an isometry, this should be at a locus where the circle shrinks.

From the zθ component of (A.1b) we now get

F1θF1z = 0 . (B.6)

A D7 or an O7 at z = z0 would source F1θ, since
∫
F1 =

∫
dθF1θ measures the object’s

charge. So we choose F1z = 0.

We can now compute the system of ODEs. Defining α as in (2.8), after some manip-

ulations we end up with the system

F 2
1θ

8α2
e16W−2φ =

α′

α
(φ− 4W )′ + (φ′)2 − 9W ′φ′ + 22(W ′)2 − 2e−4W , (B.7a)

F1θ

4α2
e16W−2φ =

(
αW ′

)′
+ e−4W , (B.7b)

e4W = −9
α

α′′
. (B.7c)

Again we observe that α′′ ≤ 0 excluding periodic solutions. The full system is invariant

under the rescalings

W →W + c1, φ→ φ− c2, λ→ λ+ 2c3, F1θ → e2c3+c2−2c1F1θ, z → e2c1z. (B.8)

From the system (B.7), we can derive a monotonicity equation:

∂z
(
φ′α
)

= e16W−2φF
2
1θ

α
≥ 0 . (B.9)

Using the above we can exclude regular solutions in IIB. Indeed, at a regular point, both

φ′ and α vanish, and hence so the left-hand side of (B.9) also vanishes. However, if W

and φ remain finite, the right-hand side diverges at that point, and the equation cannot

be satisfied.

That leaves us one last possibility: that the solution has two sources at two values of

z. We can for example expand around an O7-plane. This is subtler than the O8-planes we

discussed in section 2. The metric for a D7-brane or O7-plane in flat space reads:

ds2
10 = H−1/2(−dx2

0 + dx2
1 + . . . dx2

7) +H1/2(dx2
8 + dx2

9) , (B.10)

which is similar to (2.20), but now with H ∼ a+ b log(x2
8 + x2

9), with b = −gsn
4π ; the string

coupling is eφ = gsH
−1 and n = nD7 − 4nO7 (nO7 ∈ {0, 1}) is the D7-charge of the object,

also measured by

n =

∫
F1 =

∫
dθF1θ . (B.11)

We recover this solution by solving the analogue of (B.7) for vanishing cosmological

constant Λ with

H ≡ e−4W = c0 − c1 log(z), e−φ = ±F1θ

c1
H, α =

F 2
1θ

c2
1

z , (B.12)

for which eλ = z and we can identify dz2 + z2dθ2 = dx2
8 + dx2

9.
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If n > 0, so that the object has positive total tension, there is an excluded region for

large enough dx2
8 + dx2

9, where the metric doesn’t make sense; if n < 0 and negative total

tension, the excluded region is at small x2
8 +x2

9. The boundary of this region is x2
8 +x2

9 = 1

for a = 0.

The strange behavior at small distance is in fact cured by non-perturbative physics,

as can be found using F-theory [36] (see for example [37, section 3] for a review):

H = e−φ
|η(τ)|4

∆1/6(τ)
(B.13)

where eφ is determined by τ = C0 + ie−φ and by inverting j(τ) = 4
∆(24f)3; j is the

modular invariant function of the fundamental region under SL(2,Z), ∆ = 27g2 + 4f3 is

the discriminant, f and g are the functions of τ defined by the Weierstrass equation y2 =

x3 +fx+g for a torus of modular parameter τ . Finally, τ is a holomorphic function of u ≡
x8 + ix9. A D7-brane is realized by j(τ(u)) = 1

u . An O7-plane turns out to be [38] a bound

state of two SL(2,Z) duals of D7-branes; the excluded region is now no longer present.

Within supergravity, however, we can only use the description (B.10). We cannot

expand around the center x8 = x9 = 0, where the metric does not make sense, but we can

expand around the boundary of the excluded region. (There are by now many examples

where a local metric has been successfully identified with an O-plane by comparing its

behavior near the excluded region; for example, AdS7 solutions include O6-planes [5], and

holography works well in their presence [39].) In this spirit we impose

e−4W ∼ t , e−φ ∼ t , α ∼ const. , t ≡ |z − z0| . (B.14)

One can indeed find a perturbative solution with this behavior. The first orders of this

expansion are

e−φ =
α0h

2
1t

F1θ
+ ϕ2t

2 + t3
(
−12α1h

2
1ϕ2F1θ + 20ϕ2

2F
2
1θ + 21α2

1h
4
1

)
96α0h2

1F1θ
+O

(
t4
)
, (B.15a)

e−4W = h1t− t2
(
α1h

2
1 − 2ϕ2F1θ

)
4 (α0h1)

+ t3
(
9α2

1h
4
1 − 4ϕ2

2F
2
1θ

)
24α2

0h
3
1

+O
(
t4
)
, (B.15b)

α = α0 + α1t−
3

2
α0h1t

3 − t4
(

3ϕ2F1θ

8h1
+

9α1h1

16

)
+O

(
t5
)
. (B.15c)

(Again the expansion can be pushed to high orders; see footnote 6.) By choosing some

value for the free parameters and starting the numerical evolution, we get two kinds of

numerical solutions. In one case we have a non-physical divergence. In the other case, the

solution is attracted back to an endpoint with the behavior (B.14). This looks like another

O7-plane on the other side; but Gauss’s law implies that it has in fact negative tension and

positive charge. While such an “anti-orientifold” does exist, it is not entirely clear that it

makes sense to combine it with an ordinary one.
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