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Response to Referee

We would like to thank the reviewers for their helpful comments and positive

suggestions on the manuscript. In this version of the manuscript we have

tried to consider all the points. Here we want to explain step by step the

improvements made on the manuscript.

Response to Referee1

1) The Chapter one is published in M. Burzoni, I. Peri, C. Ruffo, ” On

the properties of the Lambda value at risk: robusteness, elicitability

and consistency”, Quantitative Finance, 17(11),1735-1843, 2017.

2) In the financial industry the typical effort is to compare quantitative

strategies against the market in order to measure their ability to gain

money with respect to the buy-and-hold portfolio which is the portfolio

full invested into market. However, we also linked our trading strategy

with another on.

3) We handle the problem of different closing days in different markets

using the SP500 Calendar, which is the most relevant market around

the world. In addition, in order to manage weekends data, we use the

Bloomberg setup for the download of trading days.

4) The two-State Markov Switching model is almost common in finance

for at least a couple of reasons: first of all, this solution is able to

highlight clusters in returns in a very intuitive and useful way by de-

scribing the pattern of performance in terms of bull and bear mar-

ket. This way of describing returns is particular useful for conditional

portfolio construction issues and conditional tactical asset allocation

strategies. Secondly, parameters of Markov Switching models tend to

increase quite rapidly when the number of regimes does increase, so
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we decided to focus our attention on the 2-state version in order to

deal with a number of free parameters under control. Anyway, we run

a 3-State Markov Switching model to highlight how the third state is

not able to add a strong value to the analysis because its state condi-

tioned normal distribution is really close to the distribution of one of

the other two states.

5) All routines are written in Matlab and we provide in the Appendix

some of them, but other routines are available upon request. All the

routines were implemented by the candidate.

6) In Bayesian Econometrics, it is recommended to work with the so

called ”natural conjugate priors”, so priors once combined with the

likelihood generate posterior distributions of the same form of the pri-

ors, with posterior parameters easily calculated given prior parameters

and sample data. Working with known posterior distributions is cru-

cial for model estimation via simulation. In the Bayesian literature,

variance is usually described by the gamma or inverse gamma distri-

bution, while the first order parameter of the normal distribution (µ)

is typically described by the normal distribution in conditional terms

with respect to the variance.

7)-8) At page 64, we set the parameter of prior gamma distribution in order

to put the expected value of the variance of returns equals to 10% in

the ”bull regime” and to 30% in the ”bear regime”. These priors in

the expected value are typical values of the VIX Index in these king

market environment. At page 63-65, we study from a historical point

of view the pattern of the VIX Index when the SP500 moves higher

or exhibits strong negative corrections. Our analysis confirms how

10% and 30% are good priors for the bull and bear market. Anyway,

the impact of these expectations into the estimating process is quite
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limited and under control because the parameters describing the level

of confidence around these expected values are set to be quite large.

9) In Markov Switching Models the variable St is a latent variable, so

it has to be estimated as the other parameters of the model like µ

and σ of the two state conditional normal distributions . The Gibbs

sampling estimates the latent variable St at the iteration-i via uniform

distribution, given the other parameters of model at the iteration i−1.

At page 53-57 you find the details of the Gibbs Sampling algorithm.

11)-12) Added, Page 66 and Pages 88-91

13) We propose a version of ΛV aR using Markov switching model as pro-

cess of generating data (MS-ΛV aR). Markov Switching allows to use a

dynamic switching of the direction of Λ conditioning on the prevailing

regime in each t. We calculate the number of violations of our trading

strategy and perform a backtesting exercise both with 1%-MS-ΛV aR

and with 1%− ΛV aR with increasing Λ.

Response to Referee2

• The aim of the model is to generate a trading strategy able to follow

the market when investors are in a ”risk-on” mood, condition where

the risk-appetite improves sharply and investors’ demand for risky

assets become supportive. On the other hand, our strategy aims to

reduce risk and portfolio drawdowns when the market moves down

and investors’ risk aversion increases dramatically as the demand for

safe assets.

• Figure 2.5 shows the result of the Gibbs Sampling for the posterior

distribution of parameters µ and σ. The first chart shows the 2 his-

tograms relative to the draws of µ considering the posterior distribu-
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tions of the 2 states, the second chart shows the same picture for the

variance.

• The preliminary analysis of market returns via Garch model highlights

that volatility of returns in not constant but rather it tends to change

over time. The Garch model highlights this point assuming the pres-

ence of autocorrelation in the patter of the volatility and according

to this assumption the memory of shocks in returns on the future

volatility tends to decrease gradually overtime. Given this picture, we

decided to move ahead in order to describe returns in a more accurate

way, not just to manage the time variation of volatility but in the effort

to capture the presence of cluster in returns distribution. The state

space representation of the pattern of returns and the introduction of

the latent variable St move in this way. Given the overall evidence of

non normality, our solution allows us to recover the normal distribu-

tion of returns conditional on any state. In other words, the presence

of clusters in returns is not true by construction but it is confirmed by

the statistical relevance of the state variable St and by the statistical

difference of the parameters µ and σ of the normal distributions of the

2 states. The two-State Markov Switching model is almost common in

finance for at least a couple of reasons: first of all, this solution is able

to highlight clusters in returns in a very intuitive and useful way by

describing the pattern of performance in terms of bull and bear mar-

ket. This way of describing returns is particular useful for conditional

portfolio construction issues and conditional tactical asset allocation

strategies. Secondly, parameters of Markov Switching models tend to

increase quite rapidly when the number of regimes does increase, so

we decided to focus our attention on the 2-state version in order to

deal with a number of free parameters under control. Anyway, we run

a 3-State Markov Switching model to highlight how the third state is
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not able to add a strong value to the analysis because its state con-

ditioned normal distribution normal distribution is really close to the

distribution of one of the other two states.

• The distinction between risky and defensive assets is based on the re-

sult of the univariate version of the Markov Switching model, which

highlights a different pattern of volatility among the various asset

classes. In particular, the estimated volatility for the High Volatil-

ity regime highlights how the euro and the yen have shocks in returns

which remain under control even in the presence of markets drawdown.

• The different volatility of the two portfolios is the result of the al-

location scheme proposed by our model, which tries to manage the

relative allocation of the risky portfolio with respect to the defensive

one, given the state allocation of the variable St. The ability to fore-

cast the regime switching from the normal volatility regime to the high

volatility regime allows the model to put money out of risky portfolio

in favor of the defensive one, in order to reduce the overall drawdown.

7



Introduction

Risk management, distribution of returns and trading strategies are the cru-

cial aspects of the complex world of financial markets. Portfolio manager

and Risk manager are the beating heart of asset management. The global

financial crisis highlighted the limits of the Value at Risk as measure of por-

folio risk and led some to doubt about the real benefits of the international

and cross assets diversification.

On the one hand, the research of alternative risk measures which overcome

lacks of the Value at Risk became questions of primary concern. On the

other hand the study of expected mean, volatility and correlations cross as-

sets conditioned on the business cycle was therefore warranted. In this work

both this fundamental arguments are bring up.

The first part is focused on important properties for a risk measure. Specif-

ically, a new risk measure, the Lambda Value at Risk, is introduced by

[Frittelli et al.2014] as generalization of VaR. This risk measure could be

interesting because it is based on the same idea of the VaR, solves some of

its problem and keep its good properties. We showed that Lambda Value

at Risk is robust and elicitable within particular classes of distributions. In

addition, it also satisfies the consistency property without any condition on

the mechanism generating data. This first part is taken from the paper ”On

the properties of the Lambda value at risk: robusteness, elicitability and

consistency” published in 2017 on Quantitative Finance, 17(11),1735-1843,

with Matteo Burzoni and Ilaria Peri.
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The behavior of financial markets may change dramatically when wars, eco-

nomical or political crises and other events occur. The key issues of quanti-

tative finance regarding to the correct distribution of returns and the correct

estimation of correlations in each market status are the central aims of the

second part of this work. More specifically, given the heteroskedasticity and

the non-normality of returns, we decided to describe returns according to

Markov Switching mixture of gaussian distributions. Both univariate and

multivariate Markov Switching models are estimate via Gibbs sampling al-

gorithm. Based on the results, a regime-based trade rule is introduced and

compared with a buy-and-hold-strategy.

At the end, we propose the use of Markov Switching model in the estima-

tion of the ΛV aR as process of generation data. More specifically, Markov

Switching models give the maximum flexibility to the ΛV aR since allow to

choice two different Λ conditioned on the prevailing regime in each t, in or-

der to maintain the same numbers of violations respect to the ΛV aR with

one function Λ, but reducing the capital aside that could be invested.
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Chapter 1

Relevant Properties of

Lambda Value at Risk

1.1 Introduction

Risk measurement is a matter of primary concern to the financial services

industry. The most widely used risk measure is the value at risk (V aR),

which is the negative of the right λ-quantile q+
λ , for some conventional

confidence level λ (e.g. 1%). V aR became popular as a law invariant

risk measure for its simple formulation and facility of computation, how-

ever, it presents several limits. First, V aR lacks convexity with respect

to random variables which, in general, penalize diversification. V aR sat-

isfies, instead, the quasi-convexity property with respect to distributions

[Drapeau and Kupper,2012, Frittelli et al.2014]. This condition has a natu-

ral interpretation in terms of compound lotteries: the risk of the compound

lottery is not higher than the one of the riskiest lottery. Another relevant

issue of V aR is the lack of sensitivity to the tail risk as it attributes the

same risk to distributions having the same quantile but different tail behav-

ior. Recently, a new risk measure, the Lambda value at risk (ΛV aR), has

been proposed by [Frittelli et al.2014]. ΛV aR seems to be interesting for its
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ability to capture the tail risk by generalizing V aR. Specifically, ΛV aR is

defined as follows:

ΛV aR(F ) := − inf{x ∈ R : F (x) > Λ(x)}

where Λ : R → [λm, λM ] with 0 < λm ≤ λM < 1 is a right continuous

and monotone function. When the Λ function is constantly equal to some

λ ∈ (0, 1) it coincides with the definition of V aR with confidence level λ.

The main idea is that the confidence level can change and it is a func-

tion of the asset’s losses. In this way, ΛV aR is able to discriminate the

risk among P&L distributions with the same quantile but different tail be-

haviour. In this regard, the sensitivity of ΛV aR is up to the λm-quantile of

a distribution, since, by definition, ΛV aR(F ) ≤ V aRλm(F ). Nevertheless,

the requirement λm > 0 is only technical and λm can be chosen arbitrarily

close to 0. Properties of ΛV aR such as monotonicity and quasiconvexity

are obtained in [Frittelli et al.2014] in full generality (i.e. allowing also for

λm = 0).

The purpose of this paper is to study if ΛV aR satisfies other important

properties for a risk measure also satisfied by V aR. We first focus on the

so-called robustness that refers to the insensitivity of a risk estimator to

small changes in the data set. We adopt the Hampel’s classical notion

of qualitative robustness [Hampel et al.,1986, Huber1981], also considered

by [Contet al.,2010] for general risk measures (a stronger notion has been

later proposed by [Krätschmer et al.2014] for convex risk measures). We

show that the historical estimator of ΛV aR is robust within a family of

distributions which depends on Λ. In particular, we recover the result of

[Contet al.,2010] for V aR, in the case of Λ ≡ λ ∈ (0, 1).

A second property we investigate is the elicitability for ΛV aR . Several

authors underlined the importance of this property in the risk management

and backtesting practice [Gneiting2011, Ziegel, 2014, Embrechts and Hofert,2014,

Bellini and Bignozzi, 2015]. Specifically, the elicitability allows the compari-
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son of risk measure forecasts and provides a natural methodology to perform

the backtesting. As for the case of V aR, also ΛV aR is elicitable in a partic-

ular family of distributions which depends on Λ and, for the particular case

of Λ ≡ λ ∈ (0, 1), we recover the results of [Gneiting2011]. Note that the elic-

itability for Λ decreasing was already observed by [Bellini and Bignozzi, 2015],

we extend here to the most interesting case of Λ increasing.

Finally, we study the consistency property, as recently proposed by

[Davis 2016]1. In this study, Davis argues that the decision-theoretic frame-

work of elicitability assumes the strong assumption that the theoretical P&L

distribution is known and remain unchanged at any time. He thus suggests,

under a more refined framework, the use of the so-called consistency prop-

erty, in order to verify if a risk measure produces accurate estimates.We

show that ΛV aR satisfies the consistency property without any assumption

on the P&L generating process, as in the case of V aR.

The structure of the paper is as follows. After introducing the basic

notions and definitions, in Section 1.2, we start examining the robustness

property in Section 1.3. We dedicate the Section 1.4 to the elicitability of

ΛV aR. Finally, in Section 1.5, we refine the theoretical framework and we

verify the consistency of ΛV aR.

1.2 Notations and Definitions

Let (Ω,F ,P) be a non-atomic probability space and L0 := L0(Ω,F ,P) be

the space of F-measurable random variables that are P-almost surely finite.

We assume that X ∈ L0 represents a financial position (i.e. a loss when

X < 0 and a profit when X > 0). Any random variable X ∈ L0 induces a

probability measure PX on (R,BR) by PX(B) = P(X−1(B)) for every Borel

set B ∈ BR and F (x) := PX(−∞, x] denote its distribution function. Let

1During the review process of this paper the consistency property has been renamed

by Davis as calibration of predictions in a dynamic setting.
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D := D(R) be the set of distribution functions and D1 those with finite first

moment.

A risk measure is a map ρ : L ⊆ L0 → R that assigns to each return

X ∈ L a number representing the minimal amount of capital required by the

regulator in order to cover its financial risk. The majority of risk measures

used in finance are distribution-based risk measures, that is, they assign

the same value to random variables with the same distribution. Such risk

measures ρ are called law-invariant, more formally they satisfy:

X ∼d Y ⇒ ρ(X) = ρ(Y ).

In this way, a risk measure ρ can be represented as a map on a set M⊆ D

of distributions. With a slight abuse of notation, we still denote this map

by ρ and set:

ρ(F ) := ρ(X)

where F is the distribution function of X. Since the seminal paper by [?],

the theory of risk measures has been based on the study of their minimal

properties. Also when risk measures are defined on distributions, mono-

tonicity is generally accepted; formally, for any F1, F2 ∈ M, ρ is monotone

if:

F1(x) ≥ F2(x), ∀x ∈ R implies ρ(F1) ≤ ρ(F2).

Other properties have been discussed by academics. As pointed out in

[Frittelli et al.2014], the convexity property, for risk measures defined on dis-

tributions, is not compatible with the translation invariance property. Thus,

we might require ρ to satisfy quasiconvexity [Drapeau and Kupper,2012,

Frittelli et al.2014]:

for any γ ∈ [0, 1], ρ(γF1 + (1− γ)F2) ≤ max(ρ(F1), ρ(F2)).

It is widely accepted in the financial industry to adopt the risk measure

Value at Risk (V aR) at a confidence level λ ∈ (0, 1), that is defined as

13



follows [Artzner et al.,1999]:

V aRλ(F ) := − inf{x ∈ R : F (x) > λ}. (1.1)

V aR is monotone and quasiconvex [Frittelli et al.2014] but, obviously from

the definition, it is not tail-sensitive. In order to overcome its limits, the

[Basel Committee, 2013] recommends the use of Expected Shortfall (ES),

formally given by:

ESλ(F ) :=
1

λ

∫ λ

0
V aRs(F )ds. (1.2)

ES is able, by definition, to evaluate the tail risk and it satisfies the

subadditivity property on random variables [Artzner et al.,1999].

Another tail sensitive risk measure is Lambda Value at Risk (ΛV aR),

recently introduced by [Frittelli et al.2014], whose properties are the main

topic of this paper. ΛV aR generalizes V aR by considering a function Λ

instead of a constant λ in the definition of V aR. The advantages of con-

sidering the Λ function are twofold: on the one hand, ΛV aR provides a

criterion to change the confidence level when the market condition changes

(e.g. putting aside more capital in case of expected greater losses), on the

other hand, it allows differentiating the risk of P&L distributions with dif-

ferent tail behaviour. Formally, ΛV aR is defined by:

Definition 1.

ΛV aR(F ) := − inf{x ∈ R : F (x) > Λ(x)} (1.3)

where Λ : R → [λm, λM ] with 0 < λm ≤ λM < 1 is a right continuous and

monotone function.

Intuitively, if both F and Λ are continuous, ΛV aR is given by the small-

est intersection between F and Λ. Unlike ES, ΛV aR lacks subadditivity,

positive homogeneity and translation invariance when defined on random

variables, nevertheless, ΛV aR is monotone and quasiconvex on the set of

distributions [Frittelli et al.2014].
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1.3 Robustness

Evaluating the goodness of a risk measure involves determining how its

computation can be affected by estimation issues. The problem consists in

examining the sensitivity of a risk measure to small changes in the available

data set; for this reason, robustness seems to be a key property. In this

context, the first rigorous study is given by [Contet al.,2010]. The authors

pointed out that the notion of robustness should be referred to the “risk

estimator”, as outcome of a “risk measurement procedure” [Contet al.,2010],

and they founded the problem on the Hampel’s classical notion of qualitative

robustness [Hampel et al.,1986, Huber1981]. Basically, a risk estimator is

called robust if small changes in the P&L distribution imply small changes in

the law of the estimator. They consider the case of historical estimators ρ̂h,

those obtained by applying the risk measure ρ to the empirical distribution

F̂ , and they conclude that historical estimators of V aR lead to more robust

procedures than alternative law-invariant coherent risk measures.

Afterwards, [Krätschmer et al.,2012] and [Krätschmer et al.2014] argued

that the Hampel’s notion does not discriminate among P&L distributions

with different tail behaviour and, hence, is not suitable for studying the

robustness of risk measures that are sensitive to the tails, such as ES. So

they focused on the case of law-invariant coherent risk measures and they

showed that robustness is not entirely lost, but only to some degree, if a

stronger notion is used.

Substantially, the robustness of a risk estimator is based on the choice

of a particular metric and different metrics leads to a more or less strong

definition. However, as pointed out by [Embrechts et al.2014], a proper

definition of robustness is still a matter of primary concern. The aim of

this section is to study the robustness of ΛV aR, where we use the weakest

definition of robustness proposed by [Contet al.,2010].

Let us denote with x ∈ X the n-tuple representing a particular data set,

15



where X = ∪n≥1Rn is the set of all the possible data sets. The estimation

of F given a particular data set x is denoted with F̂ and represents the map

F̂ : X → D. We call risk estimator the map ρ̂ : X → R that associates to a

specific data set x the following value:

ρ̂(x) := ρ(F̂ (x)).

In particular, the historical estimator ρ̂h associated to a risk measure ρ is the

estimator obtained by applying ρ to the empirical P&L distribution, F emp,

defined by F emp(x) := 1
n

∑n
i=1 1(x≥xi) with n ≥ 1, that is:

ρ̂h(x) := ρ(F emp(x)).

Let us denote with d(·, ·) the Lévy metric, such that for any two distributions

F,G ∈ D we have

d(F,G) := inf{ε > 0 | F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε ∀x ∈ R}.

Hereafter, we recall the definition of C-robustness of a risk estimator as

proposed by [Contet al.,2010], where C is a subset of distributions.

Definition 2. [Contet al.,2010] A risk estimator ρ̂ is C-robust at F if for

any ε > 0 there exists δ > 0 and n0 > 1 such that, for all G ∈ C:

d(G,F ) ≤ δ ⇒ d(Ln(ρ̂, G),Ln(ρ̂, F )) ≤ ε ∀n ≥ n0

where d is the Lévy distance and Ln(ρ̂, F ) is the law of the estimator ρ(F̂ (X))

with X := (X1, . . . , Xn) a vector of independent random variables with com-

mon distribution F .

As a consequence of a generalization of the Hampel’s theorem, [Contet al.,2010]

obtained the following result:

Corollary 3. [Contet al.,2010] If a risk measure ρ is continuous in C respect

to the Lévy metric, then the historical estimator, ρ̂h is C-robust at any F ∈ C

.
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Hence, they show that the historical estimator of V aRλ is robust with

respect to the following set:

Cλ :=
{
F ∈ D | q−λ (F ) = q+

λ (F )
}

(1.4)

where q+
λ (F ) := inf {x | F (x) > λ} and q−λ (F ) := inf {x | F (x) ≥ λ}. Sub-

stantially, when the quantile of the true P&L distribution is unique, then

the empirical quantile is robust. In addition, they showed that the histor-

ical estimator of ESλ is not robust. More important, they pointed out a

conflict between convexity (on random variables) and robustness: any time

the convexity property is required on distribution-based risk measures, its

historical estimator fails to be robust.

We use the result by [Contet al.,2010] in Corollary 3 to prove under

which conditions the historical estimator of ΛV aR is robust.

Assumption 4. In this section we assume that Λ : R 7→ [λm, λM ] is a

continuous function.

First, let us consider the following set:

EF := {x ∈ R | F (x) = Λ(x) or F (x−) = Λ(x)}

which consists of those points where the distribution F (or the left-continuous

version of F ) intersects Λ. We introduce the following class CΛ of distribu-

tions:

CΛ := {F ∈ D | F ((x, x+ ε)) > Λ((x, x+ ε)) for some ε = ε(x) > 0, ∀x ∈ EF }

(1.5)

where F ((x, x+ ε)) and Λ((x, x+ ε) are the images of the interval (x, x+ ε)

through F and Λ respectively. The set CΛ consists of those distributions

that do not coincide with Λ on any interval. In the special case of Λ ≡ λ ∈

(0, 1), it simply means that the quantile is uniquely determined, thus, the

family CΛ coincides with the one in (1.4) considered by [Contet al.,2010] for
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the robustness of V aRλ. Note also that for Λ decreasing this condition is

automatically satisfied and hence CΛ = D.

In the following proposition we show that the historical estimator of

ΛV aR is robust in the class CΛ of distribution functions.

Proposition 5. ΛV aR is continuous on CΛ. Hence, Λ̂V aR
h

is CΛ-robust.

Proof. We only need to show continuity of ΛV aR respect to the Lévy metric

the rest follows from Corollary 3 by [Contet al.,2010].

Fix ε > 0 and F ∈ CΛ. Let x := −ΛV aR(F ). For any n ∈ N, define the sets

An := {x ∈ (−∞, x − ε] | Λ(x) − F (x + 1/(2n)) ≥ 1/n}. Observe that, for

x ∈ An, we have

1

n+ 1
≤ 1

n
≤ Λ(x)− F

(
x+

1

2n

)
≤ Λ(x)− F

(
x+

1

2(n+ 1)

)
and hence An ⊆ An+1. We first show that

(−∞, x− ε] =
⋃
n∈N

An.

The inclusion ⊇ is obvious. Fix x ∈ (−∞, x− ε] and let γ := Λ(x)− F (x).

By definition of x and CΛ we have that Λ(x) > F (x) and hence γ > 0. From

the right-continuity of Λ− F , and the continuity of Λ, for any ε′ > 0 there

exists n0 ∈ N such that ∀n ≥ n0, Λ(x + 1/(2n)) − F (x + 1/(2n)) ≥ γ − ε′

and Λ(x)− Λ(x+ 1/(2n)) ≥ −ε′. Take now ε′ = γ/4 to obtain

Λ(x)−F (x+1/(2n)) = Λ(x+1/(2n))−F (x+1/(2n))+Λ(x)−Λ(x+1/(2n)) ≥ γ−γ/4−γ/4 = γ/2

since γ > 0, for a sufficiently large n we get Λ(x) − F (x + 1/(2n)) ≥ 1/n

and hence x ∈ An for some n ∈ N, as claimed.

We now show that there exists n0 ∈ N such that

(−∞, x− ε] =

n0⋃
n=1

An.
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If indeed An+1 \ An 6= ∅ for infinitely many n ∈ N, then there exists a

convergent subsequence {xk} with xk ∈ Ank+1 \ Ank and x̃ := limk→∞ xk

such that: i) −∞ < x̃ ≤ x− ε and ii) F (x̃) ≥ Λ(x̃). i) follows from the fact

that Λ has a lower bound λm while F obviously tends to 0 as x approaches

−∞. There exists therefore M > 0 and nM such that (−∞,M ] ⊆ An for

every n ≥ nM ; ii) follows from xk /∈ Ank which implies Λ(xk) − F (xk +

1/(2nk)) < 1/nk and the right-continuity of F which implies

F (x̃) ≥ lim supF (xk + 1/(2nk)) ≥ lim sup Λ(xk)− 1/nk = Λ(x̃)

where the last inequality follows from the continuity of Λ. If F (x̃) = Λ(x̃),

by definition of CΛ we obtain −ΛV aR(F ) ≤ x̃ ≤ x− ε which is a contradic-

tion. The same conclusion obviously follows when F (x̃) > Λ(x̃).

We have therefore shown the existence of n0 ∈ N such that Λ(x)−F (x+

1/(2n0)) ≥ 1/n0 for every x ∈ (−∞, x − ε] Take now δ1 := 1/(2n0) and

G ∈ CΛ such that d(F,G) < δ1. We thus have, for any x ≤ x− ε,

Λ(x)−G(x) ≥ Λ(x)− F (x+ δ1)− δ1 ≥
1

n0
− δ1 =

1

2n0
> 0.

It follows

ΛV aR(G) ≤ ΛV aR(F ) + ε (1.6)

which is the upper semi-continuity.

By showing the lower semi-continuity we conclude the proof. From Defini-

tion 1, for any ε > 0, there exists x̂ ∈ [x, x + ε] such that γ := F (x̂) −

Λ(x̂) > 0. Since Λ is continuous, there exists δ > 0 such that for all

δ′ ≤ δ, Λ(x̂) − Λ(x̂ + δ′) ≥ −γ/4. Take now δ2 ≤ min{δ, γ/4, ε} so that

x̂+ δ2 ∈ [x, x+ ε]. By observing that, for G ∈ CΛ with d(F,G) < δ2 we have

G(x̂+δ2)−Λ(x̂+δ2) ≥ F (x̂)−δ2−Λ(x̂+δ2) ≥ F (x̂)−Λ(x̂)−γ/4−δ2 ≥ γ/2

we obtain

ΛV aR(G) ≥ −x̂− δ2 ≥ ΛV aR(F )− ε. (1.7)
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By taking δ := min{δ1, δ2} and combining (1.6) and (1.7), we have that

∀G ∈ CΛ with d(F,G) < δ =⇒ |ΛV aR(F )− ΛV aR(G)| < ε

as desired.

The Λ function adds flexibility to ΛV aR, however, when robustness is

required, ΛV aR should be constructed as suggested by the set CΛ. The

Λ function has to be chosen continuous and, on any interval, it cannot

coincide with any distribution F under consideration. We refer to Example

11 to show how this condition can be guaranteed given a set of normal

distributions of P&Ls.

1.4 Elicitability

The importance of this property from a financial risk management perspec-

tive has been highlighted by [Embrechts and Hofert,2014] as a consequence

of the surprising results obtained by [Gneiting2011] and [Ziegel, 2014]. In-

deed, [Embrechts and Hofert,2014] pointed out that the elicitability allows

the assessment and the comparison of risk measure forecasting estimations

and a straightforward backtesting.

The term elicitable has been introduced by [Lambert et al.,2008] but

the general notion dates back to the pioneering work of [Osband,1985]. In

accordance with some parts of the literature, we introduce the notation T :

M ⊆ D → 2R to describe a set-valued statistical functional. Let us denote

with S(x, y) the realized forecasting error between the ex-ante prediction

x ∈ R and the ex-post observation y ∈ R, where S is a function S : R×R→

[0,+∞) called “scoring” or “loss”. According to [Gneiting2011] a scoring

function S is consistent for the functional T if

EF [S(t, Y )] ≤ EF [S(x, Y )] (1.8)
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for all F in M, all t ∈ T (F ) and all x ∈ R. It is strictly consistent if it is

consistent and equality of the expectations implies that x ∈ T (F ).

Definition 6. [Gneiting2011] A set-valued statistical functional T : M →

2R is elicitable if there exists a scoring function S that is strictly consistent

for it.

[Bellini and Bignozzi, 2015] have recently proposed a slightly different

definition of elicitability. They consider only single-valued statistical func-

tionals as a natural requirement in financial applications. In addition, they

adopt additional properties for the scoring function. We also consider single-

valued statistical functionals but without imposing any restriction on the

scoring function.

Definition 7. A statistical functional T :M→ R is elicitable if there exists

a scoring function S such that

T (F ) = arg min
x
EF [S(x, Y )] ∀F ∈M. (1.9)

Definition 6 restricted to the case of single-valued statistical functional

is equivalent to Definition 7 when the minimum is unique. The statistical

functional associated to a risk measure is the map T : M → R such that

T (F ) = −ρ(F ) for any distribution F . We adopt this sign convention in ac-

cordance with part of the literature. We say that a risk measure is elicitable

if the associated statistical functional T is elicitable. In the following we will

restrict to M ⊆ D1 in order to have a finite expectation of the considered

scoring functions.

The statistical functional associated to V aR, T (F ) := q+
λ (F ), is elicitable

on the following set:

Mλ := {F ∈ D1 : F strictly increasing } ⊆ Cλ

with Cλ as in (1.4), and with the following scoring function [Gneiting2011]:

S(x, y) = λ(y − x)+ + (1− λ)(y − x)−. (1.10)
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Let us denote with TΛ : D → R the statistical functional associated to

ΛV aR such that:

TΛ(F ) = −ΛV aR(F ) (1.11)

and consider the set MΛ ⊆ D1 defined as follows:

MΛ = {F ∈ D1 : ∃ x̄ s.t. ∀x < x̄, F (x) < Λ(x) and ∀x > x̄, F (x) > Λ(x)}.

(1.12)

Once again this set coincides withMλ when Λ ≡ λ. In [Bellini and Bignozzi, 2015]

it has been shown that ΛV aR is elicitable under a stronger definition of elic-

itability and for the special case of Λ continuous and decreasing. In the next

theorem we prove that ΛV aR is elicitable using the general Definition 7 and

under less restrictive conditions on Λ. Specifically, we show that ΛV aR is

elicitable on the particular class of distribution MΛ in (1.12) depending on

Λ.

Theorem 8. For any monotone and right continuous function Λ : R →

[λm, λM ], with 0 < λm ≤ λM < 1, the statistical functional TΛ : D → R

defined in (1.11) is elicitable on the set MΛ ⊆ D1 defined in (1.12) with a

loss function given by

S(x, y) = (y − x)− −
∫ x

y
Λ(t)dt. (1.13)

Proof. We need to prove that

T (F ) = arg min
x

∫
R
S(x, y)dF (y).

In order to find a global minimum we first calculate the left and right deriva-

tives of
∫
R S(x, y)dF (y). Applying dominated convergence theorem we ob-

22



tain:

∂−

∂x

∫
R
S(x, y)dF (y) =

∂−

∂x

∫
R

(
(y − x)− −

∫ x

y
Λ(t)dt

)
dF (y)

=

∫
R

(∂−
∂x

(y − x)− − ∂−

∂x

∫ x

y
Λ(t)dt

)
dF (y)

=

∫
R

(
1(y<x) − Λ(x−)

)
dF (y)

= lim
t↑x

F (t)− Λ(x−) = F (x−)− Λ(x−).

Analogously for the right derivative

∂+

∂x

∫
R
S(x, y)dF (y) =

∫
R

(
1(y≤x) − Λ(x)

)
dF (y)

= F (x)− Λ(x).

Observe now that x∗ = inf{x ∈ R : F (x) > Λ(x)}, that is the statistical

functional associated to ΛV aR, satisfies, for every F ∈MΛ,

∀x < x∗ F (x) < Λ(x), F (x−) ≤ Λ(x−) ;

∀x > x∗ F (x) > Λ(x), F (x−) ≥ Λ(x−) ;
(1.14)

from which we deduce

∀x < x∗
∂−

∂x

∫
R
S(x, y)dF (y) ≤ 0,

∂+

∂x

∫
R
S(x, y)dF (y) < 0;

∀x > x∗
∂−

∂x

∫
R
S(x, y)dF (y) ≥ 0,

∂+

∂x

∫
R
S(x, y)dF (y) > 0.

(1.15)

This implies that x∗ is a local minimum. By showing that there are no

other local minima we obtain that x∗ is the unique global minimum. Take

first x < x∗. Observe that, by applying dominated convergence theorem,

I(x) :=
∫
R S(x, y)dF (y) is a continuous function. Moreover, I is not constant

on any interval in (−∞, x∗] since, from (1.15), we have ∂+

∂x I < 0. Since I is

continuous and, from (1.15), the left and right derivatives are non-positive,

we have that any sequence converging to x− is decreasing. Analogously, any

sequence converging to x+ is increasing. In other words, there exists δ > 0

such that, I(x1) > I(x) > I(x2) for all x− δ < x1 < x < x2 < x+ δ. Thus
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x is not a local minimum. The case x > x∗ is analogous. We can conclude

that ΛV aR is elicitable on the class of probability measures MΛ defined in

(1.12).

Remark 9. It is easy to prove that the scoring function in (1.13) can be

rewritten as follows:

S(x, y) =

∫ x
y Λ(t)dt

x− y
(y − x)+ +

(
1−

∫ x
y Λ(t)dt

x− y

)
(y − x)−. (1.16)

if x 6= y and S(x, x) = 0. It is evident the similarity with the scoring function

of V aR in (1.10). Moreover, note that If Λ is non-increasing obviously

(1.12) is satisfied by every F ∈ D1 increasing so that we recover the result

of [Bellini and Bignozzi, 2015].

In general, the elicitability of ΛV aR using the scoring function (1.13)

requires that Λ is crossed only once by any possible F at the level x̄ =

−ΛV aR(F ) as shown in (1.12).

Remark 10. ΛV aR with a decreasing function Λ is elicitable on the set

of all the distributions. In this case, MΛ ≡ D1, since F is non-decreasing

and the derivatives of Λ are negative. When Λ is non-increasing, ΛV aR is

elicitable on the set of increasing distribution functions.

If we additionally require continuity of Λ we observe that MΛ ⊆ CΛ

where CΛ is defined in (1.5). This implies that the set of distributions where

ΛV aR is elicitable guarantees also that ΛV aR is robust. Hereafter, we

provide an example of a construction of ΛV aR with non-decreasing Λ that

is elicitable and robust given a set of normal distributions of P&Ls.

Example 11. Denote by Φ(x) the distribution function of a standard normal

distribution. Let M := {Φ(x−µiσi
)}i∈I for some collection I such that µ :=
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supµi <∞ and σ := inf σi > 0. Set µ > µ, 0 < σ < σ and define

Λ(x) :=


λm x ≤ xm

Φ

(
x− µ
σ

)
xm ≤ x < xM

λM x ≥ xM .

If xm ≤ xM are such that 0 < λm ≤ Φ(x
m−µ
σ ) and Φ(x

M−µ
σ ) ≤ λM then

Λ is non-decreasing and continuous. Moreover, from Theorem 8, ΛV aR is

elicitable on M.

In order to have an elicitable ΛV aR with the scoring function (1.13)

we need to build the Λ function under a certain condition that depends

on the set of the P&L distributions. In particular, the scoring function

(1.13) guarantees the elicitability of ΛV aR with non-decreasing Λ only in

the class of probability measures MΛ in (1.12) as shown by the following

counterexample.

Example 12. Let 0 < ε < 0.5%. Let Λ(x) and F (x) as follows

F (x) =


0 x < −100

1.5% −100 ≤ x < 4

1 x ≥ 4

Λ(x) = ε+


0 x < −101

(x+ 101)/100 −101 ≤ x < −99

2% x ≥ −99.

F (x) is the cumulative distribution function of a random variable Y with

distribution: Y = −100 with probability p = 1.5% and Y = 4 with probability

1− p = 98.5%.

It is easy to compute that the statistical functional associated to ΛV aR

is TΛ(F ) = −100. If ΛV aR is elicitable TΛ should be the minimizer of

g(x) := E[S(x, Y )] = S(x,−100)
1.5

100
+ S(x, 4)

98.5

100
.

Since S for ΛV aR is defined as in (1.13), we need compute the primitive for
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Λ that is given by

Ψ(t) =

∫
Λ(t) = εt+


0 t < −101

(t2/2 + 101t)

100
−101 ≤ t < −99

2

100
t t ≥ −99.

Hence, Ψ(−100) = −51 − 100ε and Ψ(4) = 8/100 + 4ε, thus, we have

S(x,−100) = (−100 − x)− − Ψ(x) − 51 − 100ε and S(x, 4) = (4 − x)− −

Ψ(x) + 8/100 + 4ε and

g(x) = −Ψ(x) + (−100− x)−
1.5

100
+ (4− x)−

98.5

100
+ c

where c = (−51−100ε) ·1.5%+(0.08+4ε) ·98.5%. Observe now that ΛV aR

is not the global minimum, since g(−100) > g(4). Indeed:

g(−100)− g(4) = −Ψ(−100) + Ψ(4)− 104 · 1.5

100
= 51 +

8

100
− 104 · 1.5

100
> 0.

We have shown that the scoring function in (1.13) guarantees elicitability

of ΛV aR only on the set of distributions MΛ in (1.12). Whether there

exists another scoring function that guarantees the elicitability of ΛV aR on

a larger class of distributions is an interesting question which might be object

of further studies. We conclude this Section by discussing some insights on

this problem and the difficulties that might arise for such an extension. In

particular we investigate a necessary condition for elicitability, namely, the

convex level sets property [Osband,1985].

Definition 13. If M⊆ D is convex we say that T has convex level sets if,

for any γ ∈ R, the level sets

{T = γ} := {F ∈M : T (F ) = γ}

are convex, i.e. for any α ∈ [0, 1] and F1, F2 ∈M

T (F1) = T (F2) = γ ⇒ T (αF1 + (1− α)F2) = γ.
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Proposition 14. [Osband,1985] If a statistical functional T :M⊆ D → R

is elicitable, then T has convex level sets.

[Gneiting2011] showed that ES does not satisfy this necessary condition,

as a consequence, ES is not elicitable.

We have shown in Theorem 8 that ΛV aR is elicitable in MΛ, hence,

it also has convex level sets in this class of distributions. The following

example shows that, in general, ΛV aR might not satisfy this condition on

a larger set of distributions and, thus, neither elicitability.

Example 15. Fix 0 < ε < 1
2 and λM < 1. Consider

F1(x) :=
∞∑
k=1

1

2k
1[ 1

k+1
, 1
k )(x) + ε1[0,1) + 1[1,∞)

and

F2(x) := F1(x) +
∞∑
k=1

(−1)k
1

10k
1[ 1

k+1
, 1
k )(x).

As a function Λ take Λ := ε1(−∞,0) + 1
2(F1 + F2)1[0,1) + λM1[1,∞). Observe

that ∀k ∈ N F1( 1
2k ) > Λ( 1

2k ) and F2( 1
2k+1) > Λ( 1

2k+1). Moreover, 0 =

F1(x) = F2(x) < Λ(x) for all x < 0. This implies ΛV aR(F1) = ΛV ar(F2) =

0. Nevertheless, since Λ(x) = λM < 1 for x ≥ 1, we have ΛV ar(1
2F1 +

1
2F2) = −1, from which the convex level set property fails.

A positive answer for the convex level sets property is given by the choice

of a particular class of Λ for which the condition is satisfied on the set of

increasing distribution functions.

Lemma 16. If Λ is non-decreasing and piecewise constant with a finite

number of jumps, then ΛV aR has convex level sets on the set of increasing

distribution functions.

Proof. We first observe that, in general, TΛ(Fi) = γ for i = 1, 2 implies

TΛ(αF1 + (1 − α)F2) ≥ γ for every α ∈ [0, 1] and F1, F2 ∈ D. To this

end, we prove that inf{x : αF1(x) + (1 − α)F2(x) > Λ(x)} ≥ γ, with
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γ = TΛ(Fi) := inf{x : Fi(x) > Λ(x)} for i = 1, 2. Note that by definition of

TΛ(Fi) for i = 1, 2, we have Fi(x) ≤ Λ(x) for every x ≤ γ. We thus get, for

an arbitrary 0 ≤ α ≤ 1, αF1(x) + (1−α)F2(x) ≤ Λ(x) for every x ≤ γ from

which TΛ(αF1 + (1− α)F2) ≥ γ.

For the converse inequality observe that there exists ε > 0 such that

Λ is constant on [γ, γ + ε). Since γ = inf{x : Fi(x) > Λ(x)} and Fi is

non-decreasing, for i = 1, 2, then αF1(x) + (1 − α)F2(x) > Λ(x) for every

x ∈ (γ, γ + ε) from which TΛ(αF1 + (1− α)F2) ≤ γ.

In conclusion, we have observed that extending the class of distributions

for which the convex level sets property holds depends heavily on the specific

choice of Λ and hence it seems to necessitate a case-by-case study.

1.5 Consistency

In this section we refer to the notion of consistency recently studied by

[Davis 2016]. Davis recognized the importance of the elicitability property

in the backtesting context of risk measures, but he argued that the prob-

lem can be better addressed from a different perspective. The motivation of

Davis’ study relates to the difficulties of predicting the “true” distribution F

of portfolio financial returns. Suppose indeed you are given the information

up to time k − 1, at time k only one realization occurs and so there is not

enough information to claim if the prediction of F was correct or not. Thus,

Davis introduces the notion of consistency of a risk estimator that is based

on the daily comparison between the realization of the risk estimator and

the realized outcome, but without consideration how the predictions were

arrived at. Hence, the fundamental difference with the elicitability property

is that the assumption on the model generating the conditional distribution

of the portfolio returns can change at any time and one should just check if

the prediction is performing well or not [Davis 2016].
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In this section we adopt the framework of Davis. Namely, we fix (Ω,F , {Fk}k∈N)

where Ω =
∏∞
k=1 R(k) is the canonical space for a real-valued data pro-

cess Y = {Yk}k∈N; F is the product sigma-algebra generated by the Borel

sigma-algebra in each copy of R (denoted by R(k)); {Fk}k∈N is the natural

filtration of the process Y and F0 the trivial sigma-algebra. The class of

possible models, for this data process, is represented by a collection P of

probability measures denoted by P := {Pα, α ∈ A}, where A is an arbitrary

index set. We denote with Eα the expectation with respect to Pα. For every

Pα it is possible to define, for each k ≥ 1, the conditional distribution of

the random variable Yk given Fk−1, as a map Fαk : R × Ω 7→ [0, 1] satisfy-

ing: for Pα-a.e. ω, Fαk (·, ω) is a distribution function, and for every x ∈ R,

Fαk (x) = Pα(Yk ≤ x|Fk−1) Pα-a.s.

Definition 17. [Davis 2016] Let B(P) be a set of strictly increasing pre-

dictable processes b = {bn}n∈N such that limn→∞ bn = ∞ Pα-a.s. for every

α ∈ A, and l : R2 → R a calibration function, that is a measurable function

such that Eα[l(T (Fαk ), Yk)|Fk−1] = 0 for all Pα ∈ P . A risk measure ρ is

(l, b,P)-consistent if the associated statistical functional T satisfies

lim
n→∞

1

bn

n∑
k=1

l(T (Fαk ), Yk) = 0 Pα-a.s. ∀Pα ∈ P. (1.17)

Denote by P the set of all probability measures and define:

P0 = {Pα ∈ P : ∀k Fαk (x, ω) is continuous in x for Pα-almost all ω ∈ Ω}.

[Davis 2016] showed that V aR satisfies this consistency property for a large

class of processes B(P) and for the large class of data models P0 with the

following calibration function:

l(x, y) = λ− 1(y≤x).

The statistical functional associated to ΛV aR is given by (1.11), hence we
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define for every k and α ∈ A:

TΛ(Fαk ) := inf{x | Fαk (x) > Λ(x)}.

Notice that {TΛ(Fαk )}k∈N and {Λ(TΛ(Fαk ))}k∈N are predictable process, as

shown in the following lemma.

Lemma 18. For every k ≥ 1, TΛ(Fαk ) and Λ(TΛ(Fαk )) are Fk−1-measurable

random variables.

Proof. Fix a probability Pα with α ∈ A. Notice first that for any y ∈ R, for

Pα a.e. ω, we have

TΛ(Fαk ) ≥ y ⇐⇒ Fαk (x) ≤ Λ(x) ∀x ≤ y

⇐⇒ Fαk (q) ≤ Λ(q) ∀q ∈ Q, q ≤ y

where the last equivalence follows from the right-continuity of Fαk and Λ.

We therefore have

{ω | TΛ(Fαk ) ≥ y} =
⋂

q∈Q∩(−∞,y]

{ω | Fαk (q) ≤ Λ(q)} ∈ Fk−1

from which TΛ(Fαk ) is an Fk−1-measurable random variable.

Λ(TΛ(Fαk )) is also Fk−1-measurable: since Λ is right-continuous Λ(x) ≥ y

iff x ≥ Λ−(y) where Λ−(y) := inf{x ∈ R | Λ(x) ≥ y} is the generalized

inverse [Embrechts and Hofert, 2013, Proposition 1] and thus

{ω | Λ(TΛ(Fαk )) ≥ y} = {ω | TΛ(Fαk ) ≥ Λ−(y)} ∈ Fk−1.

By following the methodology suggested by [Davis 2016], we are able

to show that ΛV aR is consistent for the large class of data models P0, as

shown in the following theorem.

Theorem 19. For each Pα ∈ P0,

1

n

n∑
k=1

Λ(TΛ(Fαk ))− 1(Yk≤TΛ(Fαk )) → 0 Pα-a.s. (1.18)
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Thus, ΛV aR is (l, n,P0)-consistent with

l(x, y) = Λ(x)− 1(y≤x). (1.19)

Before giving the proof of the theorem we show the following lemma.

Lemma 20. For each Pα ∈ P0,

Eα
[
1(Yk≤TΛ(Fαk )) | Fk−1

]
= Λ(TΛ(Fαk )), Pα-a.s.

Proof. Fix Pα ∈ P0. Since there is no confusion, for ease of notation, we omit

the dependence on α. Observe that Uk := Fk(Yk) is uniformly distributed

and

Yk ≤ TΛ(Fk)⇐⇒ Uk ≤ Fk(TΛ(Fk)) = Λ(TΛ(Fk)).

Note now that Uk is independent of Fk−1 since, from the continuity of Fk,

P(Uk ≤ uk | Fk−1) = P(Yk ≤ F−k (uk) | Fk−1) = Fk(F
−
k (uk)) = uk = P(Uk ≤

uk) (where F−k denotes the generalized inverse of Fk). Since Λ(TΛ(Fk)) is

Fk−1-measurable from Lemma 18, we can compute the desired conditional

expectation through the application of the freezing lemma [Williams,1991,

Section 9.10]. Namely, define h(x, y) := 1{y≤x} and let ĥ(x) := E[1{Uk≤x}] =

x. Since h is a bounded Borel-measurable function and Uk is independent

of Fk−1, then

E
[
1(Yk≤TΛ(Fk)) | Fk−1

]
= ĥ(Λ(TΛ(Fk))) = Λ(TΛ(Fk))

where equalities are intended in the P-a.s. sense.

Proof of Theorem 19. Define:

Zk := Λ(TΛ(Fαk ))− 1(Yk≤TΛ(Fαk )),

Sn :=

n∑
k=1

Zk, Qn :=

n∑
k=1

(Zk)
2, 〈S〉n :=

n∑
k=1

Eα[(Zk)
2 | Fk−1].
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From Lemma 20, Sn is a martingale since Eα[Sn − Sn−1 | Fn−1] = Eα[Zn |

Fn−1] = 0. We now compute (Zk)
2, we use the shorthand W := Λ(TΛ(Fαk ))

.

(Zk)
2 = 1(Yk≤TΛ(Fαk )) +W 2 − 2W1(Yk≤TΛ(Fαk ))

= W 21(Yk>TΛ(Fαk )) + (1−W )21(Yk≤TΛ(Fαk )).

Note that since λm ≤ W ≤ λM we obtain Eα[(Zk)
2] ≤ max{(λM )2, (1 −

λm)2} <∞ so that Sn is a square integrable martingale. Moreover, observe

that,

(Zk)
2 ≥ min{(λm)2, (1− λM )2}. (1.20)

Since W is Fk−1-measurable, using Lemma 20,

Eα[(Zk)
2 | Fk−1] = W 2Eα[1(Yk>TΛ(Fαk )) | Fk−1] + (1−W )2Eα[1(Yk≤TΛ(Fαk )) | Fk−1]

= W 2(1−W ) + (1−W )2W

= W (1−W ).

It follows that

λm(1− λM ) ≤ Eα[(Zk)
2 | Fk−1] ≤ λM (1− λm)

which firstly implies 〈S〉n ≥ nλm(1 − λM ) → ∞, and, secondly, combined

with (1.20),

Qn
〈S〉n

≥ nmin{(λm)2, (1− λM )2}
nλM (1− λm)

=
min{(λm)2, (1− λM )2}

λM (1− λm)
=: εα > 0.

Notice that Zk is bounded from above by 1 for every k ∈ N, thus, we have

Qn ≤ n. We can therefore conclude∣∣∣∣Snn
∣∣∣∣ ≤ ∣∣∣∣ SnQn

∣∣∣∣ =
〈S〉n
Qn

∣∣∣∣ Sn〈S〉n
∣∣∣∣ ≤ 1

εα

∣∣∣∣ Sn〈S〉n
∣∣∣∣→ 0 Pα-a.s.

where the last term converges to 0 from Proposition 6.3 in [Davis 2016].
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As a consequence of the theorem, similarly to what observed by [Davis 2016]

for V aR, a risk manager could use the following relative frequency measure

1

n

n∑
k=1

Λ(TΛ(Fαk ))− 1(Yk≤TΛ(Fαk )) (1.21)

as test statistic in a finite-sample hypothesis test [Corbetta and Peri (2017)].

Obviously ΛV aR is also (l, b′,P0)-consistent with b′n = nbn and b = {bn}n ∈

B(P).

Therefore, the consistency of ΛV aR, as the quantile forecasting, can be

obtained under essentially no conditions on the mechanism generating the

data. This is not the case of the estimates of the statistical functional Tm

associated to the conditional mean (such as ES) and defined as follows:

Tm(Fαk ) :=

∫
R
xFαk (dx).

Indeed, [Davis 2016] showed that Tm(Fαk ) satisfies the condition (1.17) with

l(x, y) = x− y, Qn =
∑n

k=1 Z
2
k , where Zk := Yk−Tm(Fαk ), and, remarkably,

P1 ∈ P is the set of probability measures such that:

i) for any k, Yk ∈ L2(Pα),

ii) limn→∞〈S〉n =∞ Pα-a.s., with 〈S〉n :=
∑n

k=1 E[Z2
k |Fk−1],

iii) there exists εα > 0 such that Qn
〈S〉n > εα for large n, Pα-a.s.

In general, the validity of conditions i), ii), iii) might be difficult to check.

In addition, the process Qn is not predictable, thus, it is not possible to

conclude that statistical functionals that depends on the mean (such as ES)

satisfy the consistency property as in Definition 17 using this methodology

2. Hence, in line with the elicitability framework, verifying the accuracy of

mean-based estimates is definitely more problematic than the same problem

for quantile-based forecasts. For the case of ΛV aR this is possible and all the

conditions are satisfied so that the methodology can be successfully applied.

2We thank an anonymous referee that pointed out this issue.
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1.6 Conclusions

We have shown that ΛV aR, satisfies robustness and elicitability in partic-

ular classes of distributions. Robustness requires that the Λ function is

continuous and does not coincide with the distribution F on any interval.

Elicitability requires a bit more, that is, Λ is crossed only once by any pos-

sible F . We have also proposed an example of construction of an elicitable

and robust ΛV aR given a set of normal distributions. In addition, we have

shown that ΛV aR satisfies the consistency property without any conditions

on the mechanism generating data, allowing a straightforward back-testing.

After the recent financial crisis, the [Basel Committee, 2013] has sug-

gested that banks should abandon V aR in favour of the ES as a stan-

dard tool for risk management since ES is able to overcome two main

shortcomings of V aR: lack of convexity on random variables and insen-

sitivity with respect to tail behaviour. However, ES has also some is-

sues. Specifically, ES is not robust, or only for small degrees when a

stronger definition of robustness is required, and it is not elicitable. Recently,

[Acerbi and Székely,2014] showed that the elicitability of ES can be reached

jointly with V aR [Di Persio and Frigo (2016), see also]for an extended re-

sult]FZ14. In addition, verifying the consistency property for ES is more

problematic. Moreover, a recent study by [Koch-Medina and Munari,2016]

pointed out that not all the aspects of ES are well understood. For in-

stance, for positions with a high probability of losses but also high ex-

pected gains in the tails, ES does not necessarily perform better than V aR

from a liability holders’ perspective. Other risk measures which consider

the magnitude of losses beyond ES are the expectiles, recently studied by

[Bellini and Di Bernardino, 2015].

In any case, the issue of capturing tail risk remains crucial and cannot

be accomplished through V aR. The new risk measure, ΛV aR, may solve

this issue since it is able to discriminate the risk among distributions with
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the same quantile but different tail behaviour and shares with V aR other

important properties such as quasi-convexity. On the other hand, ΛV aR

lacks subadditivity and the flexibility introduced by the Λ function requires

additional criteria for determining its upper and lower bound. However, we

think that ΛV aR may be considered as an alternative risk measure valuable

for further studies.

35



Bibliography
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Chapter 2

Markov Switching Mixture

of Multivariate Gaussian

Distributions in a Bayesian

Framework.

2.1 Introduction

Returns of financial markets tend to change their patters over time in terms

of average returns, serial correlation and volatility. Typically, assets re-

turns exhibit a stochastic behavior which is not consistent with a Gaussian

distribution, particularly due to the volatility of returns changing over time

according to the typical phenomena of the heterskedasticity. In addition, the

Jarque-Brera test highlights that the distribution of rerturns is not symmet-

rical around the expected value (skewness) and with fat tails (kurtosis), so

extreme values are more likely than in case of normal distribution.

Markov Switching models are a powerful solution in order to manage the

patter of returns described above. In this work in particularly, the attention
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is focused on Markov switching Mixtures of Normal distributions. According

to this type of models, returns are assumed to follow a state-space repre-

sentation where in any state or regime the normal distribution of returns

is described by a different configuration of parameters. In this framework,

the unconditional likelihood of returns is a weighted average of the likeli-

hood of any state with weights equal to the state probabilities. This type of

unconditional distribution is a powerful way to described returns in a non-

normal way, dealing with their non-stationary stochastic process in terms

of expected value, auto-correlation and volatility. But on the other hand, it

is worth highlighting that the conditional distribution of returns on a single

state is still normal and so we can apply all the results that in term of port-

folio construction, equilibrium and pricing require the hypothesis of normal

returns. This way of describing returns is particular useful for conditional

portfolio construction issues and conditional tactical asset allocation strate-

gies.

Considering a 20 years database of daily returns for 11 asset classes, we

estimate the Markov switching model both in the univariate and multivari-

ate case. In the former, we study the time variation of returns in term of

expected value and volatility. In the latter we highlight the fenomeno of cor-

relation clustering, according to the co-movement of different asset classes

tend to change quite dramatically in reaction to shocks affecting financial

markets over time.

In this work we follow a bayesian approach in order to estimate the model

by combining sample data with extra-sample priors about parameters of the

model. Following [Kim and Nelson (1999)], we estimate the model thanks

to Markov chain Monte Carlo methods (MCMC).

The present study contributes to the sensitive issue of the estimation of cor-

relations matrix with an high number of assets and to the empirical analysis

of the performance of a asset allocation strategy based on Markov Switching
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regime filtering.

After introducing the notion of Markov Switching models and Gibbs

Sampling in Section 2.2, we estimate for any index a 2-State univariate

Markov Switching Model and a 2- State multivariate Markov switching

model, in order to take correlation switching into account. All estimations

are due through Gibbs sampling algorithm. At the end a regime-based

trading rule is presented and compared with an unconditional buy-and-hold

strategy.
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2.2 Markov Switching and Gibbs Sampling

2.2.1 Markov Switching: Definition and Properties

Let us consider the time series {rt}Tt=1 satisfying

rt = µSt + εt, εt ∼ N (0,ΣSt) (2.1)

where rt, µSt , εt ∈ RK, ΣSt ∈ RK×K and K is the number of assets. Returns

depend on a shock εt and a latent variable, called state or regime St, that

affects the mean, the volatility and the correlations of the process. The state

St is a discrete random variable such that St ∈ {1, . . . , N}. We assume that

it follows a first order N -state Markov chain

Pr(St = j|St−1 = i, St−2 = k, . . . ) = Pr(St = j|St−1 = i) = pij (2.2)

with

0 ≤ pij ≤ 1,
N∑
j=1

pij = 1. (2.3)

Hence, the future state depends on the past only through the present. The

probabilities, mentioned in (2.2) and (2.3), are known as the transition prob-

ability and give the probability that the process will switch from the state i

to the state j. These quantities are usually collected in a N ×N matrix P ,

called transition matrix:

P =


p11 p21 . . . pN1

p12 p22 . . . pN2

. . . . . . . . . . . .

p1N p2N . . . pNN .

 (2.4)

The transition probabilities pii, corresponding to the diagonal element of P ,

are a measure of persistence of each state. If pii > pjj then the expected so-

journ in the state i is longer than in state j. Following [Kim and Nelson (1999)]

we define the expected duration

E[Di] =
1

1− pii
.
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It is clear that transition probabilities and the latent variable St are included

in the parameters space

Θ = {θi, pij∀i, j, S1. . . . , ST } (2.5)

θi = {µSi , σ2
Si} ∀i = 1, . . . , N. (2.6)

As pointed out in 2.5 and 2.6, two issues arise in the estimation of a Markov

Switching model: the estimation of the model parameters and the estimation

of the latent variable St in each t.

In the particular case of mixture of normal distributions, conditional on

the state St, the stock returns follow a Gaussian distribution with specific

parameters µ and Σ

rt|St ∼ N (µSt ,ΣSt)

f(rt|St = j) =
1√
2π
|ΣSj | exp(−(rt − µSj )′ΣSj (rt − µSj ))

All the conditional density functions of rt are collected in a vector ηt

ηt =


f(rt|St = 1; θ1)

f(rt|St = 2; θ2)

. . .

f(rt|St = N; θN)

 . (2.7)

One important property of Markov chains is irreducibility. Roughly speaking

the irreducibility allows each state to repeat over time.

Definition 21. A N -state Markov chain is reducible if there exists a way

to label the states such that the transition probabilities can be written in the

form

P =

B C

0 D


where B ∈ RH×H with 1 ≤ H ≤ N . A Markov-chain is irreducible if it is

not reducible.
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For example, if N = 2 the Markov chain is irreducible if pii < 1 ∀ i.

In Finance one possible choice is to identify two states, corresponding to

bull and bear market. It is well know that both these situation are not

permanent, thus irreducible Markov chains are used.

2.2.2 Ergodic Probabilities

We know from equations 2.3 and 2.4 that every column of the transition

matrix P sums to unit

P ′1 = 1

In other words, the unit is an eigenvalue of P because a matrix and its trans-

pose share the same eigenvalues. The normalized eigenvector π, associated

with the unit eigenvalue, is called the vector of ergodic probability.

Pπ = π

It can be shown (see [Hamilton 1989]) that

lim
m→∞

Pm = π1′ (2.8)

and that equation 2.8 implies that the long-run forecast of a Markov chain is

independent of the current state and is equal to π. Moreover, the vector of

the ergodic probability can be interpreted as the unconditional probability

of each different state:

πi = Pr(St+m = i; θ), m→∞.

In the particular case of N = 2 the ergodic probabilities are

π1 =
1− p22

2− p11 − p22

π2 =
1− p11

2− p11 − p22
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Hamilton Filter

Let assume that the parameters are known. One important issue of Markov

Switching models is the nature of the latent variable St. Since St can not be

directly observed, the following procedure, known as Hamilton Filter, allows

to make inference on St based on the behavior of rt. This inference takes

the form of the following probability:

ξ̂j,t|t = Pr(St = j|r̄t; θj)

where r̄t = {r1, . . . , rt} is the set of all information available in t. We collect

all these probabilities in a vector ξ̂t|t.

ξ̂t|t =


Pr(St = 1|r̄t; θ1)

Pr(St = 2|r̄t; θ2)

. . . . . .

P r(St = N |r̄t; θN ).


It is also interesting to make inference about future states St+1 based on

r1, . . . , rt:

ξ̂j,t+1|t = Pr(St+1 = 1|r̄t; θj)

All these probabilities are collected in a vector ξ̂t+1|t

ξ̂t+1|t =


Pr(St+1 = 1|r̄t; θ1)

Pr(St+1 = 2|r̄t; θ2)

. . . . . .

P r(St+1 = N |r̄t; θN ).


It can be show (see [Hamilton 1989]) that the Hamilton Filter could be

obtain as follow:

ξ̂t|t−1 = P ξ̂t−1|t−1 Prediction (2.9)

ξ̂t|t =
ξ̂t|t−1 � ηt

1′(ξ̂t|t−1 � ηt)
Up-Date (2.10)
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where ηt is the vector of conditional densities, introduced in equation 2.7

and � denotes the element by element product. Given a starting point ξ̂0|0,

this procedure is runned iteratively for i = 1, . . . , T.

2.3 Markov Chain Monte Carlo: Gibbs Sampling

Markov Switching models can be estimated by different econometric meth-

ods. Maximum Likelihood and EM algorithms are exploited by [Hamilton 1989]

and [Guidolin et al. (2011)]. In this work we follow a Bayesian approach in

order to estimate the model by combining sample data with extra-sample

priors about some parameters of the model. Following [Kim and Nelson (1999)],

we estimate the model using Markov chain Monte Carlo methods (MCMC).

Specifically, Gibbs Sampling algorithm is used.

2.3.1 The Bayesian Framework

In a Bayesian approach the parameters, θ = {θ1, . . . , θh}, are treated as

random variables having their probability distributions. As in the classical

inference, the central aim is to learn about θ but in the Bayesian frame-

work we have two information sources: sample information rt and researcher

knowledge about θ . The Bayesian summarize all the available information

about θ through the posterior distribution using the Bayes theorem 1:

p(θ|r) =
p(θ)L(θ|r)

f(r)

∝ p(θ)L(θ|r) (2.11)

1Let us consider two random variable A,B such that P (B) 6= 0.

The conditional probabilities of A given B is

Pr(A|B) =
Pr(B|A)P (A)

Pr(B)
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where we can ignore f(r) because it does not depend on θ = {θ1, . . . , θh}.

The term L(θ|r) is the likelihood function, while the term p(θ) is called

prior distribution and summarize the subjective knowledge of θ (extra-data

information). Prior reflects any information the researcher has before seeing

the data. Different researchers could have different prior distributions or

different confidence levels about their subjective knowledge. The posterior

distribution summarizes all we know about θ, that is data and extra-data

information, and their contribution is proportional to the prior distribution

and the likelihood.

The choice of the prior is an important issue in Bayesian framework. Prior

distribution could take any functional form but, there is a particular class of

prior, called natural-conjugate prior, that are easy to deal with. Specifically,

when a natural conjugate prior is combined with the likelihood in equation

2.11 the posterior distribution takes the same functional form of the prior.

Once the joint posterior in equation 2.11 has been calculated, we need to

obtain the marginal posterior distribution of a single parameter to make

inference on it. This means that the following integral have to be solved

p(θi|r) =

∫ ∞
−∞

p(θ1, . . . , θh|r)dθ1 . . . dθi−1dθi+1 . . . dθh. (2.12)

Apart from a few simple cases, solve the integral 2.12 analytically is difficult

or even impossible. Several solutions have been proposed in the literature

to solve the integral above, but the predominant approach in the modern

Bayesian framework is posterior simulations.

In the following example, we consider not-independent and independent Nor-

mal Gamma as prior distributions and we see the additional complication

we have in the case of independent prior.

Example 22. Not independent Normal-Gamma vs Independent

Normal-Gamma.
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Let us consider the follow simple linear regression model

rt = µ+ εt ε ∼ N (0, σ2)

with rt, εt, µ ∈ R and t=1,. . . ,T. The parameter vector of this simple model

is clearly θ = {µ, σ2}. For technical reasons is easier to work with the

precision

h =
1

σ2
.

Let assume a non-independent Normal-Gamma prior distribution for µ and

h that is:

p(µ, h) = p(µ|h)p(h) where

µ|h ∼ N (µ0, h
−1σ2

0),

h ∼ G(ν0, δ0)

It is easy to show that Normal-Gamma distribution is a natural conjugate

prior, so the jointly posterior is also a Normal-Gamma distribution

µ, h|r ∼ NG(µ1, σ
2
1, ν1, δ1)

with

σ2
1 = (σ−2

0 + T )−1

µ1 = σ2
1(σ−2

0 µ0 + T µ̂)

ν1 = ν0 + T

δ1 = δ0 + ε̂′ε̂+ (µ̂− µ)′(Σ0 + T )−1(µ̂− µ)

where µ̂ is the OLS estimator of µ.

If we are interested in the marginal posterior distribution the integral 2.12

has to be calculated and we obtain:

µ|r ∼ t(µ1, δ1σ
2
1, ν1)

h|r ∼ G(ν1, δ1).
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In this simple case we are able to obtain analytically joint and marginal

posterior. However, if we also ask that µ and h are independent

p(µ, h) = p(µ)p(h) where

µ ∼ N (µ0, σ
2
0)

h ∼ G(ν0, δ0)

the situation is completely different. We are not able to find a well-know

distribution for the jointly posterior distribution but, the condition posteriors

are simple. It can be show that

µ|σ2, r ∼ N (µ1, σ
2
1) (2.13)

h|µ, r ∼ G(ν1, δ1), h =
1

σ2
(2.14)

where

σ2
1 = (σ−2

0 + Tσ−2)−1 (2.15)

µ1 = σ2
1(σ−2

0 µ0 + h
T∑
t=1

rt) (2.16)

ν1 = ν0 + T (2.17)

δ1 = δ0 +

T∑
t=1

(rt − µ)2 (2.18)

Observe that despite the similarity of the previous formulas, the latter equa-

tions 2.13 - 2.14 are not the marginal posterior distributions p(µ|r) and

p(h|r) but only the conditional posterior distributions p(µ|h, r) and p(h|µ, r)

The Gibbs-Sampling methodology allows to skip this problem and offers

an alternative approach to obtain the posterior marginal distributions with-

out knowing the posterior distribution 2.11 and without solving the integral

2.12
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2.4 Markov chain Monte Carlo methods: Gibbs

Sampling

Markov chain Monte Carlo (MCMC) methods are powerful tools of pos-

terior simulations and allow to sample from a target distribution by a

Markov chain. In many situations, Markov chain Monte Carlo methods

are the only possible choice to draw from a target distributions π∗. In the

Bayesian framework the target distribution is the posterior distribution of

the parameters. Markov chains Monte Carlo were introduced in the 50s by

[Metropolis,Rosenbluth,Teller 1953], who proposed an algorithm to simulate

multivariate discrete distributions and they found application in physics.

They become popular in Bayesian statistics at the early 1990s.

The output of those algorithms consists in a sample of correlated draws,

{θ̂1, θ̂2, . . . , θ̂k} from the target distribution π∗. A independent sample can

be obtain by splitting the sample in groups of L elements and keeping only

the first element of each group. The group size L depends on the auto-

correlations of the sample.

One of the most popular MCMC method is Gibbs Sampling algorithm, in-

troduced by [Geman and Geman]. It allows the estimation of the joint and

marginal posterior distribution only through the conditional posterior dis-

tributions.

Let the parameters space Θ be grouped into H blocks:

θ = (θ(1), θ(2), . . . , θ(H))
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If the complete set of conditional posterior densities is known:

p(θ(1)|θ(2), θ(3), . . . , θ(H))

p(θ(2)|θ(1), θ(3), . . . , θ(H))

. . . . . . . . . . . .

p(θ(H)|θ(1), θ(2, . . . , θ(H−1))

then Gibbs Sampling allows us to draw a sample (θ(1), θ(2), . . . , θ(H)) with-

out the joint and marginal posterior distributions. Specifically we draw

(θ(1), θ(2), . . . , θ(H)) from the conditional posterior distribution, using the

last update of each parameter.

Formally, given an arbitrary starting point

{θ(0)
(2), θ

(0)
(3), . . . , θ

(0)
(H)},

the Gibbs Sampling iterates S times the following steps,

• Draw θ
(s)
(1) from p(θ

(s)
(1)|θ

(s−1)
(2) , θ

(s−1)
(3) , . . . , θ

(s−1)
(H) ),

• Draw θ
(s)
(2) from p(θ

(s)
(2)|θ

(s)
(1), θ

(s−1)
(3) , . . . , θ

(s−1)
(H) ))

• . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Draw θ
(s)
(H) from p(θ

(s)
(H)|θ

(s)
(1), θ

(s)
(2) . . . , θ

(s)
(H−1))

This procedure, iterated for S sufficiently large, will yield a sequence

θ(1), θ(2), . . . θ(S). To eliminate the effect of the starting point, it is necessary

to eliminate the first S0 draw, called burn-in-replication. We also keep one

value every L to eliminate the dependent path of the output and generated

a i.i.d sample. So the final output of the Gibbs Sampling algorithm is

θ(s0), θ(s0+L), θ(s0+2L), . . . , θ(S) (2.19)

It can be show that 2.19 converge to the joint and marginal distribution for

j →∞
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2.4.1 Gibbs-Sampling in Linear Regression Models

Since conditional on St, equation 2.1 is a regression model with a known

dummy variable St, let explain Gibbs-Sampling procedure for the simple

linear regression model.

Univariate Case

Let us consider the simple linear regression model in 2.1 with K = 1

rt = µ+ εt ε ∼ N (µ, Inσ
2)

with r, ε, µ ∈ R and t = 1, . . . , T

The natural choice is to set H = 2 blocks with θ1 = µ and θ2 = h = 1
σ2 . Let

assume independent Normal-Gamma prior for µ and h

µ ∼ N (µ0,Σ0)

h ∼ G(ν0, δ0), h =
1

σ2

where the prior parameters µ0, σ0, ν0, δ0 are known. We have seen that

µ|σ2, r ∼ N (µ1,Σ1) (2.20)

h|µ, r ∼ G(ν1, δ1) (2.21)

where µ1, σ1, ν1, δ1 are expressed in equations 2.16, 2.15, 2.17 ,2.18. Given

the conditional posterior distributions, it is very easy to implement Gibbs-

Sampling. Let chose an arbitrary starting point, for example, h(0) = 1
σ2(0) .

For s = 1, . . . , S the following steps are repeated:

1 Draw µs from equation 2.20 conditional on σs−1

2 Draw h(s) = 1
σs from equation 2.21 conditional on µs

3 Set s = s+ 1 and go back to 1.

Once this procedure is finished we discard the first S0 value and keep one

value every L to deal with a i.i.d sample. We are now ready to make inference

on parameters.
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Multivariate Case

Let us consider the simple multivariate model in 2.1 with K > 1

rt = µt + εt ε ∼ NK(µ,Σ2)

with rt, εt, µ ∈ RK and t = 1, . . . , T . The natural extension of the indepen-

dent Normal-Gamma prior is the independent Normal-Wishart prior:

p(µ,H) = p(µ)p(H) where

µ ∼ NK(µ0,Σ0), Σ0 ∈ RK×K (2.22)

H ∼W (ν0, H0), H = Σ−1 (2.23)

It can be show that the conditional posterior of µ and H are,respectively,

Normal and Wishart distribution:

µ|H, r ∼ NK(µ1,Σ1) (2.24)

Σ1 = (Σ−1
0 + TH)−1

µ1 = Σ1(Σ−1
0 µ0 +H

T∑
i=1

ri)

H|µ, r ∼W(ν1,H1) (2.25)

ν1 = ν0 + T

H1 = [H−1
0 +

T∑
i=1

(ri − µ))2]−1

One the conditional posterior distributions are known, the Gibbs-Sampling

procedure can be implemented as in the univariate case.

2.5 Markov Switching Models and Gibbs Sampling

The last step is to consider Gibbs Sampling procedure for Markov Switching

models. Let us consider a simple Markov Switching model 2.1-2.3

rt = µSt + εt, εt ∼ N (0,ΣSt) t = 1, . . . , T

P (St = j|St−1 = i) = pij ∀i, j
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In the Bayesian approach both the parameters of the model, µS1 , µS2 , . . . , µSN ,

σS1 , σS2 ,ΣSN , pij with i, j = 1, . . . , N and the latent variables S1 . . . , ST are

viewed as random variable. Following [Kim and Nelson (1999)] it can be

show that the joint posterior distribution can be written as follow

p(S1, . . . , ST , µS1 , . . . , µSN , σS1 , . . . , σSN , pij)

= p(µS1 , . . . , µSN , σS1 , . . . , σSN |r̄T , S̄T )p(pij , |S̄T )p(S1, . . . , ST |r̄T )

where r̄T = {r1, . . . , rT } and S̄T = {S1, . . . , ST }. Thus, using an arbitrary

starting point for the parameters µ0
S1
, . . . , µ

(0)
SN
, σ

(0)
S1
, σ

(0)
S2
, p0
ij , the following

Gibbs steps can be repeated until convergence occurs:

1 Generate the block S1, . . . , ST from

p(S1, . . . , ST |, µS1 , . . . , µSN , σS1 , . . . , σSN , pij , r̄T )

2 Generate pij from

p(pij |r̄T )

3 Generate µS1 , . . . , µSN , σS1 , . . . , σSN from

p(µS1 , . . . , µSN , σS1 , . . . , σSN |r̄T , S̄T )

Note that is not necessary to implement the previous steps in the specific

order.

Step1: Generate S1, . . . , ST

In this step the conditional distribution of the block S1, . . . , ST conditional

all other parameters is calculated. Following [Kim and Nelson (1999)] it can

be show using the Markov property of St, that:

p(S1, . . . , ST |r1, . . . , rT ) = p(ST |r̄T )

T−1∏
t=1

p(St|St+1, r̄t)
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Thus, first of all we run the Hamilton Filter, (see 2.9) and save the UpDate

matrix:

Ξ̂ =



ξ̂T1|1

ξ̂T2|2

.

.

.

ξ̂TT |T


.

where

ξ̂t|t =


Pr(St = 1|r̄t; θ1)

Pr(St = 2|r̄t; θ2)

. . . . . .

P r(St = N |r̄t; θN ).

 .

We use the last Up-Date ξ̂T |T to generated ST . Specifically, using the inverse

transform method, we draw u ∼ U([0 1]) and set

ST =



1 if u ≤ Pr(ST = 1|r̄T )

2 if Pr(ST = 1|r̄T ) < u ≤ Pr(ST = 1|r̄T ) + P (ST = 2|r̄T )

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

N if
∑N−1

i=1 Pr(ST = i|r̄T ) < u ≤
∑N

i=1 Pr(ST = i|r̄T )

Next for t = T − 1, . . . , 1 using the Bayes theorem and the Markov property

we have

p(St|r̄T , St+1) ∝ p(St+1|St)p(St|r̄T ) (2.26)

where p(St+1|St) are the transition probabilities and p(St|r̄T ) the Up-Date.

Thus we are able to obtain P (St|r̄t, St+1) from equation 2.26 and we draw

St using again the inverse transform method.
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2.5.1 Step2: Generate Transition Probabilities

Since pij i, j = 1, . . . , N are probabilities, we would like that for all i, j 0 ≤

pij ≤ 1. Beta distribution ensures this feature and it is also self-conjugate.

So, let assume beta distribution prior:

pij ∼ β(uij , ūij)

where uij and ūij are known.

Let define the quantities p̄ii and p̄ij with i 6= j as follow:

p̄ii = P (St 6= i|St−1 = i) (2.27)

p̄ij = P (St = j|St−1 = i, St 6= i) (2.28)

We have that

pij = P (St = j|St−1 = i)

= P (St = j|St−1 = i, St 6= i)P (St 6= i|St−1 = i)

= p̄ij(1− pii) (2.29)

Moreover, let define the transition counter ηij and η̄ij .

ηij = #{transitions from St−1 = i to St = j}

and

η̄ij = #{transitions from St−1 = i to St 6= j}.

It can be show that ∀ i, j = 1, . . . , T

pii|S1, . . . , ST ∼ β(uii + nii, ūii + n̄ii)

and ∀ i = 1, . . . , T j = 1, . . . , T − 1

p̄ij |S1, . . . , ST ∼ β(uij + nij , ūij + n̄ij).

Once pii and p̄ij are generated, generation of the pij i 6= j is straightfor-

ward. From equation 2.29 we are able to calculate all the these posterior

distribution.
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2.5.2 Step3: Generate µS1 , µS2 , . . . , µSN , σS1 , σS2 , . . . , σSN

Conditional on the State St, the Markov Switching Models is reduced to

N simple linear regression model. So once we split the N subsamples rel-

ative to the N states, we can draw the parameters of the model like in

the previous section. Specifically , given an arbitrary starting point, for

example h
(0)
S1
, . . . , h

(0)
SN

, the Gibbs algorithms is performed for each State

St t = 1, . . . , N . From 2.16, 2.15, 2.17 and 2.18 the update of the parame-

ters for s = 1, . . . , S are

σ
2(s)
1St

= (σ−2
0 + TSth

(s−1)
St

)−1 (2.30)

µ
(s)
1St

= σ
2(s)
1St

(σ−2
0 µ0 + h

(s−1)
St

TSt∑
t=1

rSt) (2.31)

νSt = ν0 + TSt (2.32)

δ
(s)
St

= δ0 +

T∑
t=1

(rSt − µ
(s)
St

)2 (2.33)

where rSt are the returns consistent with the State St according to the

estimation in Step1 and TSt is the number of return in the State St.
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2.6 Markov Switching Results

In this section the results are displayed. Specifically, after a preliminary

analysis, we run a univariate Markov Switching model for each index and

multivariate Markov Switching model, in order to take the correlations

switching into account. Both univariate and multivariate Markov Switching

models are estimated through Gibbs Sampling algorithm. A state-dependent

trade rule is presented and compared with a buy-and-hold strategy, which

is the portfolio full invested into the market.

All routines were written in Matlab and all the algorithms were implemented

by the candidate. In the Appendix the key routines are presented.2

2.6.1 Data and Preliminary Analysis.

Our data consists of daily returns from Jan 1997 to May 2019 and the data

provider is Bloomberg. We analyzed different asset classes across different

geographic areas. More specifically, we worked on 4 equity indexes, 1 com-

modity future and 6 currencies. All prices are in local currency and all

currencies are expressed versus USD dollar. A complete list of the data is

displayed in the Table 2.1

Since we worked on daily returns quoted on different markets, we have to

Table 2.1: Asset Details
Equity Ticker Currency Currency Ticker Contry

SPX 500 SPX Index US Dollar Australian Dollar AUDUSD Australia

STOXX Europe 600 SXXP Euro Japanese yen JPYUSD Japan

MSCI Emerging Market Index MXEF US Dollar Brazilian real BRLUSD Brazil

Tokyo stock Price IndeX TPX Index Japanese yen Euro EURUSD Euro Zone

Commodity Ticker Currency Mexican peso MXNUSD Mexico

Crude Oil CL1 US Dollar Russian ruble RUBUSD Russia

handle the closing days of each market. We decided to align all indexes with

the US calendar, which is the most relevant market around the world. In

addition, in order to manage weekends data, we use the Bloomberg setup

2All the routine are available upon request
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to doawnload the trading days.

In the world of the emerging Currencies, given they are high linearly cor-

related, we selected that currencies with the greatest combination in terms

of higher liquidity and lower transaction costs. In addition, we decided to

leave out the British pound because the Brexit issue has altered its natural

pricing.

Table 2.2 shows the descriptive statistics of returns.

Statistics about skewness and kurtosis highlight the typical non-normal dis-

Table 2.2: Descriptive Statistics of Stock Returns

µ σ Skewness Kurtosis JB Test

SPX 0.027% 1.21% -0.05 11.15 Not Accept H0

SXXP 0.017% 1.23% -0.04 8.13 Not Accept H0

MXEF 0.027% 1.23% -0.5 11.09 Not Accept H0

TPX 0.017% 1.35% -0.18 9.44 Not Accept H0

CL1 0.054% 2.4% 0.15 7.2 Not Accept H0

AUDUSD 0.0063% 0.81% -0.15 11.74 Not Accept H0

JPYUSD 0.0058% 0.68% 0.41 8.9 Not Accept H0

BRLUSD -0.017% 1.07% -0.07 13.55 Not Accept H0

EURUSD 0.0035% 0.6% -0.07 4.5 Not Accept H0

RUBUSD -0.035% 1.43% 1.8 177 Not Accept H0

MXNUSD -0.015% 0.70% -0.62 13.78 Not Accept H0

tribution of returns with fat tails and asymmetry around the expected value.

This is confirmed by the Jarque-Brera test that strongly rejects the null hy-

pothesis of Normality. Volatilities are very different across asset classes

and moreover in Figure 2.1 the 252-rolling volatility of returns suggests the

presence of heteroskedasticity. In order to preliminary investigate the time-

variation of the volatility of returns, a GARCH analysis is performed. We

also consider the T-GARCH and E-GARCH extensions to take asymmetry

and leverage effects into account, where leverage effect indicates the situ-
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Figure 2.1: Rolling Volatility

ation where low volatility tends to produce further drop of volatility and

high volatility tends to increase volatility. In addition to the full sample

estimates, all estimates were also made recursively to test the persistence

of those effects. The heteroskedasticity is confirmed for all indexes by the

GARCH parameters. Moreover, in Figure 2.2 the full sample T-GARCH

and E-GARCH parameters are plotted and the presence of asymmetry and

leverage effects is pointed out. It is clear the difference between the so-

called carry trade currencies (AUD, MXN, RUB, BRL) and the safe cur-

rency (EUR, JPY). For the first group we have strong effects of asymmetry

and leverage while those effects are absent for Euro and Yen. In particular,

it is confirmed the nature of haven currency of the latter with an E-GARCH

parameter even positive. Volatility cluster also occurs in equity markets and

oil future.

Because the accommodative monetary policy of different central banks around

the world over the last ten years has artificially produced a global environ-
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Figure 2.2: T-GARCH and E-GARCH Parameters

ment of ultra-low interest rates, we decide to exclude Bonds from further

analysis.

Based on the previous analysis, we move forward describing returns ac-

cording to a 2-State Markov Switching Mixture of Normal Distribution. The

choice of dealing with 2 regimes is almost common in finance for at least

a couple of reasons: first of all, this solution is able to highlight clusters

in returns in a very intuitive and useful way by describing the pattern of

performances in terms of bull and bear market (Low Volatility and High

Volatility). Secondly, parameters of Markov Switching models tend to in-

crease quite rapidly when the number of regimes does increase, so we decided

to focus our attention on the 2-state version in order to deal with a limited

number of free parameters. So the 2-State representation is a powerful so-

lution to capture the non stationarity of returns with the advantage of the

limited number of unknown parameters.
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Let assume model 2.1,2.2,2.3 with N = 2:

rt = µSt + εt, εt ∼ N (0,ΣSt) t = 1, . . . , T

P (St = 1|St−1 = 1) = p11 P (St = 2|St−1 = 2) = p22

All estimates were made in a Bayesian framework, specifically we used the

Gibbs-Sampling methodology introduced in the previous chapter.

2.6.2 Univariate Markov Switching

First of all we estimate for each series an univariate Markov Switching model.

The first aim is to fix the prior distributions and their parameters. As we

explain in the previous chapter, it is useful to consider natural conjugate

priors. Let assume a Normal distribution for µ, a Gamma distribution for

h = 1
σ2 and a Beta distribution for the transition probabilities p11 and p22

as prior distributions:

µi ∼ N (µi0, σ
2
i0)

hi ∼ G(νi0, δi0) h =
1

σ2
i

p11 ∼ β(u11, u12)

p22 ∼ β(u22, u21)

where i = 1, 2. Once the prior distributions of the parameters are fixed,

prior means and variances have to be specified. Prior mean represents the

expectation of the parameters of interest, while the prior variance is the

confidence level of this expectation. Here, prior distributions are designed

to be quite uninformative. That is obtained setting parameters in a way that

the prior variance is quite large in order to keep the extra-sample information

under control when it is combined with the likelihood. Next we provide also

a sensitive variance analysis. As regards the mean, since we are working

with daily returns, the natural choice is to assume µ01 and µ02 close to zero,
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positive the former and negative the latter. From the Gamma distribution

we have that 3

E[hi] =
vi0
δi0
. (2.34)

The parameters of the Gamma distribution are handle using VIX index

levels. First off all, Figure 2.3 displays full sample SPX Index versus VIX
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Figure 2.3: Full sample VIX Index vs SPX Index

Index. It is clear that low levels of VIX coincide with SPX rally, while spike

of volatility are typical during drawdown. To set those levels we analyze

historical performances of VIX Index vs SPX Index in a presampling from

Jan 1990 to Dec 2002. Table 2.3 displays that when the SPX Index is

in uptrend VIX Index hits its lowest level, around 10%. While negative

performances of the SPX Index are accompanied by VIX levels structurally

3Let X ∼ G(ν, δ) we have

E[X] =
ν

δ

var(X) =
ν

δ2
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Table 2.3: SPX Index vs VIX Index
YoY Perf SPX Perf VIX Max VIX Min VIX Mean VIX

1990 -6.56% 53.02% 36.47 14.72 23.063

1991 26.31% -26.80% 36.20 13.95 18.385

1992 4.46% -34.90% 21.02 11.51 15.452

1991 26.31% -26.80% 36.20 9.31 18.385

1994 -1.54% 13.21% 23.87 9.94 13.926

1995 34.11% -5.15% 15.74 10.36 12.389

1996 20.26% 67.09% 21.99 12.00 16.442

1997 31.01% 14.77% 38.20 17.09 22.379

1998 26.67% 1.71% 45.74 16.23 25.603

1999 19.53% 0.90% 32.98 17.42 24.373

2000 -10.14% 8.97% 33.49 16.53 23.315

2001 -13.04% -11.36% 43.74 18.76 25.750

2002 -23.37% 20.25% 45.08 17.40 27.292

higher. During drawndown VIX Index achieves its maximum exceeding the

30% (see Table 2.4).

So, we suppose a VIX Level of 10% in Normal Volatility and a VIX level

of 30% in High Volatility. Thus, prior parameters on h1 and h2 are such

that

E[h1] =
v01

δ01
=

√
252

0.1

E[h2] =
v02

δ02
=

√
252

0.3

Finally, market experiences lead us to believe that the Normal Volatility is

the predominant state. Thus for the transition probabilities, priors param-

eters are set in order to fix the ergodic probability of the Normal Volatility

regime as the predominant one, for example 70% as suggested the empirical

evidence.

To check that the Gibbs Sampling procedure converges we compare the
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Table 2.4: VIX Index during SPX Index drawndown

YoY Max DD SPX Mean VIX during DD Max VIX during DD

1990 19.92% 26.97 36.47

1991 5.60% 17.30 18.38

1992 6.24% 17.42 20.15

1993 4.99% 13.13 15.66

1994 8.94% 14.82 23.87

1995 2.53% 12.13 14.55

1996 7.64% 16.86 21.55

1997 10.80% 21.54 31.12

1998 19.34% 28.25 44.28

1999 12.08% 24.02 28.75

2000 17.20% 23.26 33.49

2001 29.70% 24.66 43.74

2002 33.75% 26.64 45.08

results of H = 4 Gibbs Sampling with different starting point. The starting

points are drawn from the prior distribution. With h = 10.000 iterations we

obtain the same results in each Gibbs Sampling. The first 10% of the draws

is discarded in order to delete the effect of the starting point on the data

generating process. In addition, in order to generate a iid sample from the

posterior, we take a draw any 3 iterations.

The Gibbs Sampling output lead us to obtain point estimations µ1, µ2, σ1, σ2, π1, π2

and the estimation of the latent variable S1, . . . , ST . The latter allows us to

cluster returns in one of the two regimes in each t = 1, . . . , T .

Table 2.5 and Table 2.6 summarize the point estimates and the con-

fidence level of the parameters. Most indexes exhibit two states clearly

separated and Normal Volatility is the predominant state. In general, the

volatilities in High Volatility are twice those in Normal Volatility. Except

for Yen, the High Volatility regime is characterized by negative returns.
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Table 2.5: Univariate Markov Switching Results

µ1 µ2 σ1 σ2 π1 π2

SPX 0.074% -0.070% 0.70% 1.82% 67.7% 32.3%

SXXP 0.060% -0.097% 0.79% 1.89% 69.6% 30.4%

MXEF 0.097% -0.215% 0.82% 2.04% 76.4% 23.6%

TPY 0.060% -0.128% 0.97% 2.2% 77.2% 22.8%

CL1 0.091% -0.12% 1.83% 4.16% 82.5% 17.5%

AUDUSD 0.015% -0.054% 0.63% 1.60% 87.8% 12.2%

JPYUSD -0.015% 0.095% 0.52% 1.16% 80.85% 19.15%

BRLUSD 0.02% -0.1% 0.62% 1.76% 70.6% 29.4%

EURUSD 0.013% -0.014% 0.48% 0.83% 65.65% 34.35%

RUBUSD 0.06% -0.25% 0.40% 3.44% 83.2% 16.8%

MNXUSD 0.005% -0.1% 0.5% 1.27% 80.4% 19.6%

µ1 µ2 σ1 σ2

SPX [0.05%, 0.10%] [-0.19%, 0.05%] [0.67%, 0.72%] [1.72%, 1.92%]

SXXP [0.03%, 0.08%] [-0.24%, 0.04%] [0.75%, 0.82%] [1.80%, 2.01%]

MXEF [0.07%, 0.13%] [-0.33%, -0.09%] [0.79%, 0.84%] [1.91%, 2.13%]

TPX [0.03%, 0.15%] [-0.30%, 0.03%] [0.90%, 0.99%] [1.97%, 2.31%]

CL1 [0.06%, 0.12%] [-0.19%, -0.05%] [ 1.75%, 1.87%] [3.80%, 4.37%]

AUDUSD [-0.01%, 0.03%] [-0.44%, 0.14%] [0.60%, 0.65%] [1.44%, 1.71%]

JPYUSD [-0.03%, 0.002%] [-0.04%, 0.20%] [0.48%, 0.52%] [1.04%, 1.21%]

BRLUSD [0%, 0.04%] [-0.19%, -0.01%] [0.59%, 0.63%] [1.66%, 1.83%]

EURUSD [-0.006%, 0.03%] [-0.05%, 0.02%] [0.47%, 0.50%] [0.80%, 0.87%]

RUBUSD [-0.12%, 0.03%] [-0.43%, -0.02%] [0.38%, 0.42%] [3.24%, 3.64%]

MXNUSD [-0.01%, 0.11%] [-0.22%, 0.01%] [0.50%, 0.55%] [1.16%, 1.34%]

Table 2.6: Confidence Interval of posterior parameters (95%)

Figure 2.4 display that this regime corresponds to bear market (2000-2001,

2007-2008, 2011). We also observe that both states are highly persistent

with p11 > p22. This probabilities lead to an expected duration of Normal
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Figure 2.4: Normal Volatility and High Volatility

Volatility greater than that in High Volatility.

We highlight a clear split between the two states for the equity market (Fig-

ure 2.5 and Figure 2.6), with greater volatilities for MXEF index e TPX

index.

Among currencies we highlight the different split obtained for carry trade

and safe currencies. We point out that safe currencies, as Euro and Yen,

exhibit low volatilities. Euro do not exhibit a clear threshold between the

two states. Specifically, we have returns close to zero and the marginal pos-

terior distribution of µ2 overlaps the marginal posterior distribution of µ1

(see Table 2.5 and Figure 2.7). The volatilities are very similar in the two

states and moreover, the ergodic probabilities do not identify a predomi-

nant state. This is reflected in uniform returns in all the sample period

(Figure 2.8). The difference is more glaring for Yen where the dynamics of

expected returns of the two gaussian are opposite with respect to all other

asset classes. When the risk-off occurs, investors hedge their position taking
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Figure 2.5: Marginal posterior distribution of MXEF
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Figure 2.6: Marginal posterior distribution of SPX
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Figure 2.7: Marginal posterior distribution of EURUSD
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Figure 2.8: In blu Normal Volatility returns and in red High Volatilities

returns
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Figure 2.9: Marginal posterior distribution of BRLUSD

long position on Yen.

Figure 2.9 and 2.10 highlight an interesting picture for the carry trade cur-

rencies. They perform pretty well against the USD dollar in a Risk-On

environment when investors are willing in demanding risky asset, while they

suffer a lot when risk-aversion spikes suddenly and demand for safe assets

increases quite sharply. That explains why the High Volatility regime is re-

lated to the USD dollar appreciation, give its nature of typical safe currency

(Figure 2.10).

Skewness and Kurtosis statistics conditioning on any the State are calcu-

lated in Table 2.7 to check the Normality of returns in each regime. Skewness

statistic exhibits a typical Gaussian profile in both Normal and High Volatil-

ity, moreover the Skewnees test is in favor of Normality for all asset indexes

in both states. In Normal Volatility also the Kurtosis statistic assumes value

compatible with a Normal distribution (around k = 3). Note that Normal

volatility is the predominant State, Table 2.5 displays that the unconditional
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Figure 2.10: Normal Volatility and High Volatility

probabilities of this state, π1, are between 70% and 80%. This means that

the Gaussian is recovered in terms of state conditioned distribution (see Fig-

ure 2.11). This is a very important point and justify our choice of working

with a mixture of Normal distribution to describe the pattern of returns.

This framework is able to capture fat tails and asymmetry and recovers the

Normality conditional on any State. One of the most important result of

this solution is that we can apply all results in terms of portfolio construc-

tion, equilibrium and pricing which requires the assumption of Normality of

returns.

Our results are in line with [Bulla et al. 2011] and [Pereiro,Gonzalez (2015)].

The former assumed a Markov Switching model with N = 2 states and es-

timated the model by the method of maximum-likelihood. In particular the

results for SPX index are very similar. The latter used SETAR model to

test the existence of two or more regimes and carry out the existence two
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Figure 2.11: Normal Fit SPX Index in Normal volatility

Skewness1 Skewness2 Kurtosis1 Kurtosis2

SPX Index -0.001 0.002 3.589 6.225

SXXP Index -0.001 0.002 3.501 4.601

MXEF Index -0.001 -0.003 3.330 5.873

TPX Index 0.000 0.000 3.363 5.605

CL1 Comdty 0.000 0.011 3.389 4.136

AUDUSD Curncy 0.000 -0.001 3.359 5.813

JPYUSD Curncy 0.000 0.004 3.391 5.434

BRLUSD Curncy -0.001 0.001 3.477 6.560

EURUSD Curncy 0.000 0.001 3.325 3.599

RUBUSD Curncy 0.000 0.003 3.8 30

MXNUSD Curncy 0.000 -0.001 3.44 6.3

Table 2.7: Markov Switching Skewness and Kurtosis

different state for SPX Index and TPX Index. They also found the same

evidence for China.
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Normal Volatility High Volatility

10% 30%

20% 20%

15% 30%

20% 40%

Table 2.8: Different VIX Level used as Prior

To check the consistency of out estimation, we run Gibbs Sampling al-

gorithm with different prior parameters. Table 2.9 exhibits point estimation

of parameters for different variance prior means and large variance. Specifi-

cally, VIX levels, used as prior of expected value, are reported in Table 2.8.

We observe that the results remain unchanged for different values of VIX.

This is due to low confidence level on the prior of the expected value (large

prior variance). Specifically when the prior distribution is combined with

the likelihood the weight of the prior distribution is quite small. Similar

results are obtained changing the expected value of µ and both prior means

for µ and h.

The Bayesian framework enables the financial operators to take both their

market views and the sample data into account. It is important that the fi-

nancial operators are aware of the effect of the weight chosen for a subjective

view. Tables 2.10 shows how a strong prior on the prior mean requires that

a small variance prior is imposed to establishing itself on the sample data.

Suppose, for example, that an exceptional event as the US-China trade war,

lead a financial operator to a strong view of upside in case of agreement and

of a global risk-off in case of growing frictions between parties.

Table 2.10 provides an extreme scenario where µ1 = 3% and µ2 = −3%.

With this so strong view is necessary a very small variance to allow the pos-

terior to converge versus the prior. In this case the contribute of the data in

the posterior distribution is completely neutralized by the prior distribution.

This is a important warning for a financial operator because tells him that
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µ1 µ2 σ1 σ2 P 1 P 2

SPX Index 0.07% -0.07% 0.74% 1.86% 98.96% 97.78%

SPX Index 0.07% -0.07% 0.74% 1.86% 98.96% 97.77%

SPX Index 0.07% -0.07% 0.72% 1.84% 98.88% 97.73%

SPX Index 0.07% -0.07% 0.72% 1.87% 98.90% 97.63%

MXEF Index 0.10% -0.21% 0.82% 2.04% 98.70% 95.83%

MXEF Index 0.10% -0.22% 0.82% 2.04% 98.71% 95.79%

MXEF Index 0.10% -0.21% 0.82% 2.03% 98.73% 96.00%

BRLUSD Curncy 0.02% -0.11% 0.61% 1.76% 97.95% 95.12%

BRLUSD Curncy 0.02% -0.11% 0.61% 1.75% 98.00% 95.32%

BRLUSD Curncy 0.02% -0.11% 0.62% 1.79% 97.96% 94.94%

MXNUSD Curncy 0.05% -0.10% 0.49% 1.25% 98.52% 94.26%

MXNUSD Curncy 0.05% -0.10% 0.49% 1.27% 98.59% 94.25%

MXNUSD Curncy 0.04% -0.10% 0.50% 1.25% 98.68% 94.85%

MXNUSD Curncy 0.05% -0.11% 0.51% 1.34% 98.71% 93.94%

Table 2.9: Different Prior mean parameters for σ

his view is completely incompatible with the data.

2.6.3 Three State Univariate Markov Switching.

The choice of dealing with 2 regimes is well justified by the strong evidence

that returns exhibit clear cluster in terms of Low versus High Volatility

Regime. However we repeat the analysis using 3 regimes. We suppose a

Normal Volatility, High volatility and Ultra-High volatility state. As in the

previous case we deal with quite uninformative prior. Since also this anal-

ysis is provided with daily returns, we assume again µ01, µ02 and µ03 close

to zero, positive the former and negative the last two. We confirm a VIX

Level of 10% and 30% for Normal an High Volatility state and we suppose

a level of 60% for the ultra High Volatility. SPX Index results are provided

in Table 2.11, Table 2.12 and Figure 2.12.

Table 2.11 shows the point estimations of the parameters. Observe that

the Normal Volatility parameters remain unchanged respect to the 2-State

Markov Switching, while parameters of High Volatility and Ultra High Volatil-

ity identify two overlap regimes, Figure 2.12 shows that the two estimated
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µ1 µ2 σ1 σ2 P1 P2 σ0

SPX Index 0.07% -0.07% 0.73% 1.86% 98.96% 97.79% 3.00%

SPX Index 0.07% -0.07% 0.73% 1.86% 98.96% 97.78% 2.79%

SPX Index 0.08% -0.07% 0.71% 1.84% 98.84% 97.63% 2.57%

SPX Index 0.07% -0.07% 0.74% 1.86% 98.97% 97.79% 2.36%

SPX Index 0.07% -0.07% 0.73% 1.86% 98.96% 97.78% 2.15%

SPX Index 0.07% -0.07% 0.74% 1.86% 98.97% 97.80% 1.93%

SPX Index 0.07% -0.07% 0.73% 1.86% 98.96% 97.77% 1.72%

SPX Index 0.07% -0.07% 0.74% 1.86% 98.97% 97.78% 1.51%

SPX Index 0.08% -0.07% 0.71% 1.84% 98.84% 97.64% 1.29%

SPX Index 0.07% -0.06% 0.73% 1.86% 98.96% 97.78% 1.08%

SPX Index 0.07% -0.06% 0.73% 1.86% 98.96% 97.79% 0.86%

SPX Index 0.07% -0.05% 0.73% 1.86% 98.96% 97.77% 0.65%

SPX Index 0.07% -0.04% 0.74% 1.86% 98.97% 97.81% 0.44%

SPX Index 0.06% 0.06% 0.74% 1.87% 98.98% 97.80% 0.22%

SPX Index -2.93% 2.90% 2.75% 2.75% 51.96% 65.88% 0.01%

Table 2.10: Variance sensitive for µ

µ1 µ2 µ3 σ1 σ2 σ3

SPX Index 0.07% -0.09% -0.07% 0.72% 1.66% 2%

Table 2.11: Point estimation results 3-State Markov Switching

Normal are essentially the same. In others words these two regime have

the same characteristics and could be summarized in only one State. More-

over the transition probability p22 = 5% for the SPX Index and the number

of observations clustered in the High Volatility suggest that this is only a

transition state without own features.

Similar observation arise supposing an Ultra Low Volatility State as third

state.

S1 S2 S3 p22

SPX Index 70% 7% 23% 5%

Table 2.12: State frequency
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Figure 2.12: pdf of High Volatility vs pdf of Ultra High Volatility

The provided results legitimize the choice of two State corresponding to

Low Volatility and High Volatility. This choice not only is most intuitive

since the two regime are identified from a financial point of view (Risk-on

vs Risk-off) but also allows to take the parameters number under control.

2.6.4 Multivariate Markov Switching

The univariate Markov Switching models do not take into account the cor-

relations between asset classes. As the means and the volatilities, even the

correlations are not constant and depend on the current state. The knowl-

edge of the correlations is a fundamental issue in the construction of diversi-

fied trading strategy. Market experience lead us to believe that correlations

increase in High Volatility regime. As regard the number of state, previous

results have confirmed that the 2-State solution is a optimal trade-off be-

tween the number of unknown parameters and the catch of non-stationarity

features of daily returns.
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Thus, we perform a multivariate Markov Switching model which is esti-

mated according to Markov Chain Monte Carlo algorithms, in particular

Gibbs Sampling and we set the number of regimes equal to 2. As sad in

previous chapter, we suppose an independent Normal-Wishart distribution

for µ and Σ and a Beta distribution for the transition probabilities (see

equation 2.22, 2.23)

µi = N (µi0,Σi0)

Hi = W (νi0, Hi0) H = Σ−1

p11 ∼ β(u11, u12)

p22 ∼ β(u22, u21)

where µi ∈ RK , Hi ∈ RK×K and pii ∈ R with i = 1, 2 and K is the number

of assets. Given the size of the parameters space, we have decided to move

towards the alternative solutions:

1 Run the Gibbs Sampling supposing a proxy for S1, . . . , ST

2 Impose informative prior

In the first solution S1, . . . , ST are fixed equal to the estimated states for

the SPX Index in the univariate case. We chose the SPX Index because it

could be assumed as general proxy of market sentiment. This solution is

computationally simple but inflexible.

In the latter solution, let us consider a pre-sample composed of the first 500

observations r̄ps = {r1, . . . , r500}, where rt ∈ RK×1 is the vector of asset

returns in t = 1, . . . , 500. Using the states estimated for the SPX Index in

the univariate case, St, r̄t is divided in the two following sub-sample

r1 = {rt s.t St = 1, t = 1, . . . , 500}

r2 = {rt s.t St = 2, t = 1, . . . , 500}
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Thus µps1, µps2,Σps1 ans Σps2 are calculated from the two sub-sample and

the variance priors are set quite large but able to target the model. Here

again H = 4 Gibbs sampling are performed with different starting points.

With h = 100.000 iterations we obtain uniform results in all the Gibbs

sampling. The first 10% of the draws is discarded

Table 2.13 and Figure 2.13 display the point estimates of mean e volatility

Table 2.13: Multivariate Markov Switching Results

µ1 µ2 σ1 σ2

SPX 0.058% -0.080% 0.77% 1.95%

SXXP 0.065% -0.147% 0.81% 1.96%

MXEF 0.104% -0.187% 0.83% 1.91%

TPY 0.076% -0.168% 1.02% 2.03%

CL1 0.1% -0.095% 1.83% 3.47%

AUDUSD 0.04% -0.08% 0.6% 1.24%

JPYUSD -0.012% 0.03% 0.53% 0.90%

BRLUSD 0.02% -0.10% 0.72% 1.68%

EURUSD 0.01% -0.01% 0.53% 0.86%

RUBUSD 0.09% -0.08% 0.44% 1.34%

MNXUSD 0.01% -0.08% 0.53% 1.06%

vectors in the two states. The point estimations of ergodic probabilities are

π1 = 73.30%

π2 = 26.70%

The results are consistent with those in the univariate case and all the

previous considerations remain valid.

Let focus on the correlations of the two states. The correlations matrices are

given at Table 2.14 and 2.15. The High Volatility state is characterize by

an increase of correlations. For example, the correlations in High Volatility

between the SPX Index and other assets are, on average, 50%higher those in
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Normal Volatility. Thus, in High volatility the diversification could be only

apparent, because all assets tend to move in the same direction. We highlight

that the Japanese Yen is negative correlated with other Asset Class.

Volatility

AUDUSD
BRLUSD CL1

EURUSD
JPYUSD

MXEF

MXNUSD
RUBUSD SPX

SXXP TPX
0

0.01

0.02

0.03
Normal Volatility
High Volatility

Mean

AUDUSD
BRLUSD CL1

EURUSD
JPYUSD

MXEF

MXNUSD
RUBUSD SPX

SXXP TPX
-2

-1

0

1

2 10-3

Normal Volatility
High Volatility

Figure 2.13: Multivariate µ and σ
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SPX Correlations
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Figure 2.14: Correlations

JPY Correlations
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Figure 2.15: Correlations
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Table 2.14: Correlations in Normal Volatility

SPX SXXP MXEF TPX CL1 AUDUSD JPYUSD BRLUSD EURUSD RUBUSD MXNUSD

SPX 100% 56.06% 37.29% 9.94% 11.72% 24.55% -17.52% 29.42% 7.59% 22.74% 37.60%

SXXP 56.06% 100% 53.38% 23.47% 9.97% 14.82% -21.54% 17.75% -8.12% 17.98% 26.18%

MXEF 37.29% 53.38% 100% 43.35% 16.19% 33.17% -1.78 29.45% 17.93% 28.09% 26.20%

TPX 9.94% 23.47% 43.35% 100% 1.88% 4.47% -10.77% 2.69% -0.82% 2.44% 2.20%

CL1 11.72% 9.97% 16.19% 1.88% 100% 24.27% 1.79% 11.60% 15.30% 25.39% 17.71%

AUDUSD 24.55% 14.82% 33.17% 4.47% 24.27% 100% 32.31% 30.92% 57.98% 36.17% 35.39%

JPYUSD -17.52% -21.54% -1.78% -10.77% 1.79% 32.31% 100% 7.26% 37.87% 9.92% 0.70%

BRLUSD 29.42% 17.75% 29.45% 2.69% 11.60% 30.92% 7.26% 100% 23.58% 27.17% 27.17%

EURUSD 7.59% -8.12% 17.93% -0.82% 15.30% 57.98% 37.87% 23.58% 100% 35.70% 22.18%

RUBUSD 22.74% 17.98% 28.09% 2.44% 25.39% 36.17% 9.92% 27.17% 35.70% 100% 34.02%

MXNUSD 37.60% 26.18% 26.20% 2.20% 17.71% 35.39% 0.70% 43.93% 22.18% 34.02% 100%
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Table 2.15: Correlations in High Volatility

SPX SXXP MXEF TPX CL1 AUDUSD JPYUSD BRLUSD EURUSD RUBUSD MXNUSD

SPX 100% 59.80% 47.67% 13.05% 24.66% 53.30% -37.58% 42.43% 12.62% 23.30% 55.01%

SXXP 59.80% 100% 67.78% 36.25% 29.77% 41.78% -29.95% 34.45% 2.12% 22.29% 37.31%

MXEF 47.67% 67.78% 100% 59.91% 30.79% 51.49% -25.73 37.70% 17.89% 27.86% 36.61%

TPX 13.05% 36.25% 59.91% 100% 11.85% 21.52% -19.11% 8.45% 4.38% 9.67% 7.60%

CL1 24.66% 29.77% 30.79% 11.85% 100% 32.99% -11.75% 24.4% 20.52% 35.67% 27.21%

AUDUSD 53.3% 41.78% 51.49% 21.52% 32.90% 100% -20.66% 42.43% 52.42% 30.23% 50.35%

JPYUSD -37.58% -29.95% -25.73% -19.11% -11.75% -20.66% 100% -15.06% 17.53% -6.86% -22.36%

BRLUSD 42.43% 34.45% 37.70% 8.44% 24.4% 42.43% -15.06% 100% 22.85% 25.89% 53.72%

EURUSD 12.62% 2.12% 17.89% 4.38% 20.52% 52.42% 17.53% 22.85% 100% 21.41% 27.57%

RUBUSD 23.30% 22.29% 27.86% 9.67% 35.67% 30.23% -6.86% 25.89% 21.41% 100% 31.72%

MXNUSD 55.01% 37.31% 36.61% 7.60% 27.21% 50.35% -22.36% 53.72% 27.57% 31.72% 100%
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2.6.5 Regime-based Strategy

The analysis made in the previous section carries out the existence of two

states clearly separated. We want to investigate if the regime affects the

performance and the risk profile of each strategy. In this section we compare

a regime-based strategy against a simple buy-and-hold which is the portfolio

full invested into the market. This is the typical effort in financial industry in

order to evaluate the ability of the quantitative strategy to gain money and

avoid downtrend with respect to the buy-and-hold portfolio. The aims of

the trading strategy is twofold: on one hand, it aims to reduce volatility and

drawdown respect to a buy-and-hold strategy when the market moves down

and investors’ risk aversion increases dramatically as the demand for safe

assets. Secondly, it is important that the trading strategy is able to follow

the market during the Up-trend when the investors are in a ”risk-on” mood,

condition where the risk-appetite improves sharply and investors’ demand

for risky assets become supportive. First of all, the assets were divided in

two baskets: risky assets and defensive assets.

Table 2.16: Baskets
Risky Asset Defensive Asset

SPX 500,SXXP,MXEF,TPX,CL1 JPYUSD

AUDUSD,BRLUSD,RUBUSD,MXNUSD, EURUSD

The former is composed of equity indexes, oil futures and carry trade

currencies. Euro and Yen are in the defensive basket. This split was made

based on the volatility structure in High volatility. Recall that Euro and

Yen exhibit low volatilities even in this states. For example, the volatility

of the Yen is half of that of the SPX index.

A first estimate of the model parameters is made at the end the end of 2011.

Then they are kept constant for 1 year and updated every end of December.

We present in-sample and out-sample results, the latter since 2011. We use

the active parameters in each instant t to run the Hamilton Filter which
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Figure 2.16: Buy-and-hold-strategy

gives the probability to be in Normal and in High Volatility regime ( see

2.9).

First of all we studied the features of the two baskets in Normal and High

Volatility regime. Figure 2.16 exhibits the equally weighted portfolio of the

risky assets and of the defensive assets respectively. It is already clear the

difference nature of the two groups. Moreover, we split the EW strategies in

two sub-strategies that takes Long positions only in one state: EW Long in

Normal Volatility (EWLN) and EW Long in High Volatility (EWLH). With

respect to risky assets, the analysis highlights how a portfolio of risky assets

strongly outperform the overall equally-weighted portfolio when markets

are in normal volatility (Figure 2.17); in this environment it happens that a

portfolio of risky assets is able to reduce its volatility by 50% and to improve

impressively the active returns with respect to the overall global portfolio.

On the other hands, a portfolio of risky assets tends to exhibit absolute

negative performance when markets switch into the High Volatility regime
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(Table 2.17).
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Figure 2.17: Risky Asset

Table 2.17: Risky Assets
buy-and-hold buy in Normal buy in High

α 1.98% 9.75% -7.77%

TE 11.79% 6.64% 9.71%

SR 0.17 1.47 -0.80

Table 2.18: Defensive Asset
buy-and-hold buy in Normal buy in High

α -0.42% -1.99% 1.56%

TE 6.12% 4.12% 4.51%

SR -0.07 -0.48 0.35

With respect to defensive assets, we have an opposite picture : the port-

folio of defensive assets has a negative track record in normal volatility

because of a strong demand for risk by the market, but this portfolio is able

to provide a solid strong performance in high volatility with an important

control of the overall tracking error of the strategy (Figure 2.18, Table 2.18).
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Figure 2.18: Defensive Asset

The main results of this exercise is consistent with the evidence that mar-

kets demand of risky assets is particularly strong in the normal volatility

regime when the appetite for risk is structurally high, while investors tend

to sell risky assets when the volatility of returns is high, fueling risk aversion

sentiment and demand for safe assets.

Based on this results, we consider the following portfolio, called Markov

Switching Equally weighted portfolio (MSEW):

• Long position in the equally weighted portfolio of risky assets when

returns are in normal volatility.

• Long position in the equally weighted portfolio of defensive assets when

returns are in high volatility.

More specifically, we consider the system in Normal Volatility if the UpDate

of the Hamilton Filter is greater than 50%:

P (St = 1|r̄t; θj) > 50%.
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The full sample results are displayed in Figure 2.19 where we find the

Markov Switching EW (MSEW) portfolio versus the buy-and-hold EW port-

folio of all assets (EW). Observe that the MSEW portfolio outperform the

EW portfolio. The Sharpe ratio of the MSEW portfolio is twice that of the

EW portfolio (Table 2.19). Moreover the MSEW portfolio is able to avoid

the drawdown that are in EW portfolio.
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Figure 2.19: Markov Switching EW Portfolio vs EW Portfolio

Table 2.19: Markov Switching EW Portfolio vs EW Portfolio

Markov Switching EW Portfolio EW Portfolio

α 3.73% 1.51%

TE 8.52% 9.25%

SR 0.43 0.16

Figure 2.21 and Figure 2.22 display the year on year Information Ratio

(IR YoY) and the portfolio drawndown during years of negative performance

of the EW portfolio. It is pretty clear that the MSEW portfolio is able
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Figure 2.20: Markov Switching EW Portfolio vs EW Portfolio- Period 2013-

2019

to reduce dramatically the drawndown and improve by 50% the IR of the

strategy.

YoY IR MSEW EW

2014 -0.84 -1.67

2015 0.07 -0.81

2018 -0.55 -1.4

Table 2.20: Out of sample MSEW IR vs EW IR

Traditionally, the problem of this kind of smoothing strategies is the

inability to follow the market during the up-trend. Figure 2.23 shows that

MSEW strategy overcome this trap and thanks to the sensibility of the

Hamilton Filter, the Long position on risky asset are taken with a good

timing and so the portfolio is able to follow the up-trend of the market.

At the end we consider the transaction cost and compute the net IR.
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Figure 2.21: Negative IR YoY
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Figure 2.22: Bad years maximum Drawdown

Note that, the turnover of this strategy is quite low by definition, since we

are invested in the risky portfolio in the 75% of the time, as pointed out the
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Figure 2.23: Positive IR YoY

estimated ergodic probability in the previous section.

The assets that could more impact on the total cost of the strategies are

the carry trade currencies. However, recall that we choose the carry trade

currencies with the lower transaction cost and higher liquidity since they

are highly linearly correlated. Table 2.21 shows that the transaction costs

are under-control and the IR remains interesting.

This trading strategy could be linked with the strategy proposed by [Bulla et al. 2011].

They introduce an univariate state-based trading strategy that take long

position on one of the analyzed indexes in Normal Volatility and invest in

risk-free asset in high Volatility. As in our case, all these strategy reduce

the risk and outperform the corresponding indexes. However, Multivariate

Markov Switching model gives a global asset allocation and so a really di-

versified portfolio in Normal Volatility. Moreover, taking correlations into

account, it was possible to identify a investment solution more attractive

than the risk-free-strategy.
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Net IR Gross IR EW Net IR Gross IR EW

2000 -1.05 -0.92 -1.13 2010 1.15 1.26 1.00

2001 -0.98 -0.85 -1.22 2011 -1.30 -1.19 -0.39

2002 -0.30 -0.21 -0.88 2012 0.58 0.67 0.61

2003 2.44 2.59 2.33 2013 1.01 1.18 0.52

2004 1.90 1.98 1.49 2014 -0.96 -0.85 -1.66

2005 2.30 2.44 2.45 2015 0.01 0.07 -0.82

2006 1.21 1.29 1.11 2016 0.04 0.07 0.79

2007 1.20 1.27 1.39 2017 1.30 1.40 1.75

2008 -0.62 -0.56 -1.60 2018 -0.66 -0.55 -1.40

2009 0.58 0.66 1.66 2019 0.91 0.98 1.83

Table 2.21: Net IR vs Gross IR
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2.7 Conclusion

Returns of financial markets tend to change their patters over time in terms

of average returns, serial correlation and volatility. Typically, asset returns

are used to exhibit a stochastic behavior which is not consistent with a

Gaussian distribution, due to time-varying volatility, asymmetry of returns

and fat tails.

According to this picture, this study proposed a solution based on a Markov

Switching Mixture of Normal distributions in order to manage the non-

stationarity of returns. In this solution, returns are supposed to follow a

state-space representation where the unconditional likelihood of returns is

not normal but rather it is a weighted average of conditional normal dis-

tribution of each state with weights equal to the state’s probability. The

normal distribution of any state is well identified by a particular configura-

tion of parameters µ and σ.

After introducing the general aspects of Markov Switching Models, we im-

plemented a case study based on a 2 State-Markov Switching Mixture of

Normal distributions, where the first regime is linked to the Bull Market

scenario with positive returns in mean and low volatility across assets, while

the second is in connection with the Bear Market case with negative returns

in mean and high volatility.

In the multivariate case we highlight how the correlation between asset

classes tend to change quite sharply when the structure of returns moves

from one regime to another. In particular our study points out that a spike

of the general level of volatility of returns generates a strong rise in the cor-

relation between asset classes and that reduce quite dramatically the benefit

of the diversification. In this environment the portfolio construction without

taking into account this type of switching in the covariance matrix is not

able to produce the right allocation into defensive assets in order to reduce

the overall portfolio drawndown.
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In addition, the solution proposed in this work is able to recover the nor-

mality of returns conditional on the single state. This conditional normality

is relevant because it allows to deal with any king result based on the as-

sumption of normality and homoscedasticity.
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2011. Markov-switching asset allocation: Do profitable strategies exist?.

Journal of Asset Management 5:310-321

[Chevallier (2012)] Chevallier, J., 2012. Global imbalances, cross-market

linkages, and the financial crisis: A multivariate Markov switching anal-

ysis. Economic Modelling 29:943-973.

[Chib (2001)] Chib, S., 2001. Markov Chain Monte Carlo Methods: Com-

putation and Inference. Handbook of Econometrics

[Di Persio and Frigo (2016)] lib6] Di Persio, L., Frigo, M., 2016. Gibbs sam-

pling approach to regime switching analysis of financial time series.

Journal of Computational and Applied Mathematics 300,43-55

94



[Di Persio and Vettori (2014)] i Persio, L., Vettori, S., 2014. Markov Switch-

ing model analysis of implied volatility for market indexes with appli-

cation to S&P 500 and DAX. Journal of Mathematics

[Geman and Geman] Geman, S., Geman, D., 1984. Stochastic relaxation,

Gibbs distributions and Bayesian restoration of images. Transactions

on Pattern Analysis and Machine Intelligence 12: 609-628.

[Gelman and Rubin (1992)] Gelman, A., Rubin,D.B., 1992. Inference from

Iterative Simulation Using Multiple Sequences. Statistical Science

4:457-511

[Geweke and Whiteman ] Geweke, J.,Whiteman, C., 2006. Bayesian Fore-

casting. Handbook of Economic , vol 1 Elsevier B.V.

[Koop (2003)] Koop, G.,2003. Bayesian Econometric. Wiley

[Koop et al.(2007)] Koop, G., Poirier, D. J., Tobias, J.,L.,2007. Bayesian

Econometric Methods. Cambridge University Press

[Metropolis,Rosenbluth,Teller 1953] Metropolis N, Rosenbluth, A. W.,

Teller, A.H., Telle, E., 1953. Equations of the state calculations by

fast computing machine. Journal of Chemical Machine 21:1087-1092

[Pereiro,Gonzalez (2015)] Pereiro, L.E., Gonzalez-Rozada M., 2015. Fore-

casting Price in Regime-Switching Markets. The Journal of Portfolio

Management. 41: 133-139

[Guidolin et al. (2011)] Guidolin, M., Ria,F., 2011. Regime shifts in mean-

variance efficient frontiers: Some international evidence. Journal of As-

set Management 12,5,322-349.

[Hamilton 1989] Hamilton, J.,D., 1989 A new approach to the economic

analysis of nonstationary time series and the business cycle. Economet-

rica 57:357-384

95



[Johannes and Polson] , M., Polson, N., 2010. MCMC Methods for

Continuous-Time Financial Econometrics. Handbook of Financial

Econometrics: Applications

[Kim and Nelson (1999)] Kim, C., Nelson C., 1999. State-Space Models

with Regime Switching: Classical and Gibbs-Sampling Approaches with

Applications. MIT Press, Cambridge

[Timmermann (2000)] Timmermann, A., 2000. Moments of Markov switch-

ing models. Journal of Ecometrics 96:75-111

96



2.8 Markov Switching ΛV aR

In this section we use Markov Switching models for the estimation of the

Lambda Value at Risk. More specifically, Markov Switching models could

give the maximum flexibility to the ΛV aR since allow the use of an increas-

ing or decreasing Λ based of the Hamilton Filter UpDate in each t, in order

to take the number of overdraft under control and reduce the capital aside

which could be invested.

The ΛV aR introduced by [Frittelli et al.2014] and studied by [Burzoni et al. (2017)]

has theoretical interesting features, overcomes some lacks of V aR and sat-

isfies important property for a risk measure.

The construction and the backtesting of the ΛV aR are further key issues in

the validation of a risk measure. Recall that the ΛV aR is define as follow:

ΛV aR(F ) := − inf{x ∈ R : F (x) > Λ(x)}

where Λ : R → [λm, λM ] with 0 < λm ≤ λM < 1 is a right continuous

and monotone function. When the Λ function is constantly equal to some

λ ∈ (0, 1) it coincides with the definition of V aR with confidence level λ. In

other words, its confidence level Λ depends on the market returns instead

to be a constant λ.

It is clear that in the construction of the ΛV aR an important role is played

by the function Λ. One methodological proposal of ΛV aR estimation, called

dynamic benchmark approach was introduced by [Hitaj et al. (2018)]. The

function Λ is dynamic since is estimated in each t and it is calibrated through

the tail distributions of selected benchmarks. This makes ΛV aR sensitive

to markets changes. As regards the direction, they recommend to take a

decision conditioned on the markets status. Specifically, a decreasing Λ

is suggested in Normal Volatility and an increasing Λ in High Volatility.

However, a time series dynamic switching between the two direction of Λ

is not suggested. In this section we want to exploit at maximum level the
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flexibility of the ΛV aR and replicating the dynamic benchmark approach of

[Hitaj et al. (2018)] we want to add the possibility to use one of the possible

direction of Λ in each t. More specifically we have

ΛV aRt(Ft) := − inf{x ∈ R : Ft(x) > Λt(x)}

where

Λ is


increasing in High Volatility

decreasing in Normal volatility

where Ft = F (r|It−1) and It−1 is all the available information in t− 1. We

consider the system in High Volatility if the UpDate of the Hamilton Filter

is greater than 40%. This threshold was chosen to be enough conservative.

P (St = 2|r̄t; θj) > 40%.

In the next section we briefly recall the the dynamic benchmark approach

estimation and the backtesting procedure introduced by [Hitaj et al. (2018)]

and [Corbetta and Peri (2017)].

2.8.1 On the estimation and the backtesting of the ΛV aR

The dynamic benchmarks approach estimation process is based on the fol-

lowing steps:

1 Fix λm and ΛM

2 Decide the direction of Λ

3 Decide the functional form of Λ

4 Estimate the Λ parameters

Note that ΛM , called Λ confidence level, depend on the risk aversion of the

financial operator. As regarding the λm [Corbetta and Peri (2017)] suggest

to fix it equal to 0.005; The function form used in [Hitaj et al. (2018)] and

98



[Corbetta and Peri (2017)] is a linear interpolation of n points, (πi, λi) i =

1, . . . , n, in particular we have in the increasing case

Λ(x) =


λ1 x < π1∑n−1
i=1 1[πi,πi+1)

(
(x− πi)λi+1−λi

πi+1−πi
+ λi

)
π1 ≤ x < πn

λn x ≥ πn

and in the decreasing case

Λ(x) =


λn x < π1∑n−1
i=1 1[πi,πi+1)

(
(x− πi)λn−i−λn−i+1

πi+1−πi
+ λn−i+1

)
π1 ≤ x < πn

λ1 x ≥ λn

The estimation of the πi, i = 1, . . . , n are made on selected benchmarks

while a neutral approach is chosen for the λi, i = 1, . . . , n.

In the empirical application [Hitaj et al. (2018)] fix n = 4 as good trade off

trade off between the fitting accuracy and the number of unknown param-

eter. They set π1 as the minimum return of all benchmarks returns in the

window analysis and π2, π3 and π4 as the minimum, mean and maximum

λ% − V aR of all benchmarks. As regards the y-axix, λi are fixed equal to

equidistant points from λ1 and λ4.

Once the ΛV aR has been calculated a backtesting procedure is necessary to

evaluated the quality of the ΛV aR estimation.

The backtesting of a risk measure is based on the comparison of the real

returns,rt, with that estimated by the risk measure in t−1 for t. A violation

occurs when the risk measure forecast is not able to cover the realized return.

Specifically, let rt and yt the realized return and the forecast return at time

t = 1, . . . , T , a violation It occurs if rt < yt. To perform the backtesting of

risk measure, it is necessary to construct the sequence of a random variable

I1, . . . , IT such that

It =


1 rt < yt

0 otherwise
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Note that each It follows a Bernoulli distribution It ∼ B(λt). The flexibility

introduced by the function Λ lead to a sequence of violations that are not

identically distributed and so the standard procedure can not be directly

applied. [Corbetta and Peri (2017)] proposed some backtesting procedures

to check if the ΛV aR provides an accurate level of coverage. The authors

consider the following null vs alternative hypothesis:

H0 : λt = λ0
t ∀ t

H1 : λt > λ0
t for some t.

where λ0
t is the ΛV aR confidence level in t. One test proposed by the

[Corbetta and Peri (2017)] is based on the total number of violations in a

window

Z :=
T∑
t=1

It. (2.35)

Since It are not identically distributed we have that Z1 is a Poisson Binomial.

The critical region is given by

C = {z1 s.t. Pr(Z1 ≤ z1) > 1− α}

One important issue in implement this backtesting procedure is the calculus

of the cdf of the binomial Poisson. The direct calculus of this cdf needs

a too high computational time. Different solutions were proposed in the

literature: Normal approximation, recursive formula, close-form formula.

We follow [Hong (2013)] approach that propose a derivation of the exact

cdf of the Poisson Binomial through the discrete Fourier transform of the

characteristic function of the distribution. We implement [Hong (2013)]

algorithm in Matlab.

2.8.2 Empirical results

In this section the we compute the Markov Switching ΛV aR (1%−MSΛV aR)

and compare its forecast with the increasing 1% − ΛV aR. We calculate 1-
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day ΛV aR and 1-day MS ΛV aR over a time horizon of 250 days and we use

historical simulations.

The selection of the benchmarks is a question of primary concern. The

analyzed portfolio is multi-asset and multi-country portfolio. It is neces-

sary that the selected benchmarks are representative of all asset universe.

The univariate Markov switching pointed out essentially two groups of asset:

risky asset and defensive asset. The former group contains equity market, oil

future and carry trade currencies while Euro and Yen are part of the latter

group. We decide to select three benchmarks, two related with risky-asset

and one with defensive asset. Specifically we select as benchmarks MSCI

World Index, US dollar index and JP Morgan Emerging Market currencies

Index.

In each t the Hamilton Filter UpDate, calculated through a Markov Switch-

ing process, legitimizes the choice of one Λ direction since tells us if we are

in Normal or High Volatility. Moreover, since the 2-state Markov Switching

model highlights in any state a particular parameters configuration, the pa-

rameters of the trading strategy are estimated over the last 250 observation

of the regime active in that instant t.

Table 2.22 and Figure 2.24 show the results. Note the the number of viola-

tions are consistent with those of the 1%ΛV aR and during 2008 and 2011

the number of MS-ΛV aR violations is even smaller. Figure 2.24 shows that

the two versions of ΛV aR coincide, by construction for some period, but

the MS-ΛV aR is more reactive to switch in bull market and so reduce the

capital aside.

At the end a Year on Year backtesting procedure is performed and the MS-

ΛV aR has highest accuracy, we accept H0 in the 98% vs the 95% of the

usual ΛV aR.

This first application of the Markov Switching models to the process

estimation of the ΛV aR shows how the flexibility of the ΛV aR could be
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Year Violations 1%ΛV aR Violations 1%MSΛV aR

2003 1 1

2004 1 1

2005 1 1

2006 3 1

2007 1 1

2008 3 2

2009 1 0

2010 1 1

2011 1 0

2012 0 1

2013 0 0

2014 0 1

2015 2 2

2016 1 0

2017 0 0

2018 1 2

2019 0 0

Table 2.22: Number of Violations
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Figure 2.24: ΛV aR vs Markov Switching ΛV aR

exploited fully thought Markov Switching models. In this framework ΛV aR

is very reactive to the market changes due to the switching on the Λ direction

and the estimation of the empirical cdf of returns conditioned on the state.
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2.9 Appendix

In this section we provide the Univariata Markov Switching models estima-
tion and the Hamilton Filter.

c l e a r a l l

c l o s e a l l

c l c

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% In questo s c r i p t stimo i T+6 parametr i d i un Markov−Switching %

% un iva r i a to a t t r av e r s o Gibbs Sampling . %

% GIBBS STEPS: %

% 1− Genero g l i s t a t i . Posso g e n e r a r l i uno per vo l ta oppure l ’ i n t e r o , %

% blocco %

% 2− Genero l e p r o b a b i l i t d i t r a n s i z i o n e dat i g l i s t a t i %

% 3− Genero i paramentri d e l l e normal i de i due s t a t i da t i i da t i e g l i %

% s t a t i

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

d a t a s t a r t =729757;

%% 1) Carico l e s e r i e s t o r i c h e

cd ( ’Y:\ Chiara\TESI\Bloomberg DB ’ ) %%%%%%%%%%%%%%

load ( ’REPORT DB Tesi ’ ) %%%%%%%%%%%%%

DateList=REPORT DB Tesi . DateList ;

[ aa , idx2 ]=ismember ( da ta s ta r t , DateList ) ;

DateList=DateList ( idx2 : end ) ;

DB MMName=REPORT DB Tesi .DB MMName;

%% Cerco l ’ i n d i c e che vog l i o a n a l i z z a r e

idx=f ind ( strcmp ( ’SPX Index ’ ,DB MMName) ) ;

Y=REPORT DB Tesi .DB MM( idx2 : end , idx ) ;

c l e a r idx

%% V a r i a b i l i

Nstat i =2;

% Regr e s so r i

T=length (Y) ;

X=ones (T, 1 ) ;

%% 2) I n s e r i s c o i parametr i d e l l e p r i o r

% a ) Pr io r media −−> Normal

mu01=0.0005;

sigma01 =0.03; % vola

mu02=−0.001;

sigma02 =0.03;

% b) Pr io r P r e c i s i on −−> Gamma

VixlevelNormal =0.1/ sq r t ( 2 5 2 ) ;

h1=1/VixlevelNormal ˆ2 ;

v01=20;

de l ta01=v01/h1 ;

Vix leve lHigh =0.3/ sq r t ( 2 5 2 ) ;

h2=1/Vix leve lHigh ˆ2 ;

v02=20;

de l ta02=v02/h2 ;

%Pr ior Trans i t i on Probab i l i t y −−> Beta

u012=1;

u011 =(0.98 /0 .02)∗ u012 ;
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u021=1;

u022 =(0.95 /0 .05)∗ u021 ;

%% K numero di i t e r a z i o n i

NGibbs=4;

K Gibbs =10000;

kk Gibbs =1;

mu=ze ro s ( K Gibbs , Nstat i , NGibbs ) ;

sigma=NaN( K Gibbs , Nstat i , NGibbs ) ;

State=NaN(T, K Gibbs , NGibbs ) ;

P=NaN( K Gibbs , Nstat i , NGibbs ) ;

f o r i =1:NGibbs

% i

%% Estraggo d a l l e p r i o r g l i s t a r t i n g po int

mu1 start =0;

whi le mu1 start<=0

mu1 start=random ( ’ Normal ’ , mu01 , sigma01 ) ;

end

mu2 start =0;

whi le mu2 start>=0

mu2 start=random ( ’ Normal ’ , mu02 , sigma02 ) ;

end

h 1 s t a r t=random ( ’Gamma’ , v01 /2 ,2/ de l ta01 ) ;

s i gma1 s ta r t =0;

s i gma2 s ta r t =0; %%%%%%%%%%%%%%%%%%%%%

whi le s igma1 star t>=s igma2 s ta r t

s i gma1 s ta r t =1/ sq r t ( h 1 s t a r t ) ;

h 2 s t a r t=random ( ’Gamma’ , v02 /2 ,2/ de l ta02 ) ;

s i gma2 s ta r t =1/ sq r t ( h 2 s t a r t ) ;

end

p11 s t a r t=random ( ’ Beta ’ , u011 , u012 ) ;

p22 s t a r t=random ( ’ Beta ’ , u022 , u021 ) ;

whi le kk Gibbs<=K Gibbs

kk Gibbs

%% Multimove Gibbs−Sampling −−> Simulo S t con t = 1 , . . . ,T in b locco

% Due step : Calco lo l ’ ult imo UpDate a t t r av e r s o i l f i l t r o d i Hamilton e

% est raggo l ’ ult imo s ta to (Teo Trasformata inve r sa ) . Poi a catena

% genero g l i a l t r i S t da T− 1 . . . . 1

% 1) F i l t r o d i Hamilton

cd ( ’Y:\ Chiara\TESI\MarkovSwitching ’ )

[ UpDate , Pred i c t i on ]= Fi l t roHami l ton (Y, mu1 start , mu2 start , s i gma1 star t , . . .

s i gma2 star t , p11 s ta r t , p22 s ta r t , Nstat i ) ;

% U t i l i z z o i l Teo d e l l a t ras fo rmata inve r sa per e s t r a r r e l ’ ult imo

% stato−−> S T

u=rand ( 1 ) ;

i f u<=UpDate ( end , 1 )

State ( end , kk Gibbs , i )=1;

e l s e

State ( end , kk Gibbs , i )=2;

end

% Stimo da T−1 a 1 t u t t i g l i a l t r i s t a t i

f o r t=T−1:−1:1

i f State ( t +1,kk Gibbs , i )==1

probTrans aux=[ p11 s t a r t ;1− p22 s t a r t ] ;

e l s e

probTrans aux=[1−p11 s t a r t ; p22 s t a r t ] ;
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end

num=probTrans aux (1)∗UpDate ( t , 1 ) ;

den=ones (1 , Nstat i )∗ ( probTrans aux .∗UpDate ( t , : ) ’ ) ;

ProbStato t=num/den ;

% U t i l i z z o i l Teo d e l l a t ras fo rmata inve r sa per e s t r a r r e l o

% sta to S t

u=rand ( 1 ) ;

i f u<=ProbStato t

State ( t , kk Gibbs , i )=1;

e l s e

State ( t , kk Gibbs , i )=2;

end

end

%% Stimo l e p r o b a b i l i t d i Trans i z ione

% Calco lo n11 n12 n21 n22

n11=0;

n12=0;

n22=0;

n21=0;

f o r j =1:T−1

switch State ( j , kk Gibbs , i )

case 1

i f State ( j +1,kk Gibbs , i )==1

n11=n11+1;

e l s e

n12=n12+1;

end

case 2

i f State ( j +1,kk Gibbs , i )==2

n22=n22+1;

e l s e

n21=n21+1;

end

end

end

% Estraggo una beta

u11=u011+n11 ;

u12=u012+n12 ;

u22=u022+n22 ;

u21=u021+n21 ;

%es t raggo p11

P( kk Gibbs , 1 , i )=random ( ’ Beta ’ , u11 , u12 ) ;

%es t raggo p22

P( kk Gibbs , 2 , i )=random ( ’ Beta ’ , u22 , u21 ) ;

p11 s t a r t=P( kk Gibbs , 1 , i ) ;

p22 s t a r t=P( kk Gibbs , 2 , i ) ;

%% Stimo media e Pr e c i s i on de i due s t a t i .

%% Media

% mu S1

idx1=f ind ( State ( : , kk Gibbs , i )==1);

T1=length ( idx1 ) ;

mu1=( inv ( sigma01ˆ2)+ s i gma1 s ta r t ˆ−2∗(X( idx1 ) ’∗X( idx1 ) ) ) ˆ −1 . . .

∗( inv ( sigma01 ˆ2)∗mu01+s igma1 s ta r t ˆ−2∗(X( idx1 ) ’∗Y( idx1 ) ) ) ;

var1=( inv ( sigma01ˆ2)+ s i gma1 s ta r t ˆ−2∗(X( idx1 ) ’∗X( idx1 )))ˆ−1;

sigma1=sqr t ( var1 ) ;
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% whi le mu( kk Gibbs , 1 , i )<=0

mu( kk Gibbs , 1 , i )=random ( ’ Normal ’ ,mu1 , sigma1 ) ;

% end

mu1 start=mu( kk Gibbs , 1 , i ) ;

% mu S2

idx2=f ind ( State ( : , kk Gibbs , i )==2);

T2=length ( idx2 ) ;

mu2=( inv ( sigma02ˆ2)+ s i gma2 s ta r t ˆ−2∗(X( idx2 ) ’∗X( idx2 ) ) ) ˆ −1∗ . . .

( inv ( sigma02 ˆ2)∗mu02+s igma2 s ta r t ˆ−2∗(X( idx2 ) ’∗Y( idx2 ) ) ) ;

var2=( inv ( sigma02ˆ2)+ s i gma2 s ta r t ˆ−2∗(X( idx2 ) ’∗X( idx2 )))ˆ−1;

sigma2=sqr t ( var2 ) ;

mu( kk Gibbs , 2 , i )=random ( ’ Normal ’ ,mu2 , sigma2 ) ;

mu2 start=mu( kk Gibbs , 2 , i ) ;

%% Sigma

%sigma S1 $$$ occh io d i v i d e r e g l i s t a t i

v1=v01+T1 ;

de l ta1=de l ta01+(Y( idx1)−X( idx1 )∗mu( kk Gibbs , 1 , i ) ) ’∗ (Y( idx1)−X( idx1 )∗mu( kk Gibbs , 1 , i ) ) ;

h=random ( ’Gamma’ , v1 /2 ,2/ de l ta1 ) ;

s i gma1 s ta r t=1/ sq r t (h ) ;

sigma ( kk Gibbs , 1 , i )= s i gma1 s ta r t ;

% sigma S2

v2=v02+T2 ;

de l ta2=de l ta02+(Y( idx2)−X( idx2 )∗mu( kk Gibbs , 2 , i ) ) ’∗ (Y( idx2)−X( idx2 )∗mu( kk Gibbs , 2 , i ) ) ;

h=random ( ’Gamma’ , v2 /2 ,2/ de l ta2 ) ;

s i gma2 s ta r t=1/ sq r t (h ) ;

sigma ( kk Gibbs , 2 , i )= s i gma2 s ta r t ;

kk Gibbs=kk Gibbs +1;

end

kk Gibbs =1;

end

REPORT UnivariateMS SPX .mu=mu;

REPORT UnivariateMS SPX . sigma=sigma ;

REPORT UnivariateMS SPX .P=P;

REPORT UnivariateMS SPX . State=State ;

cd ( ’Y:\ Chiara\TESI\MarkovSwitching\UnivariateMS SCript\REPORT’ )

save ( ’ REPORT UnivariateMS SPX ’ , ’ REPORT UnivariateMS SPX ’ )

}}

{\ smal l{

f unc t i on [ UpDate , Pred i c t i on ]= Fi l t roHami l ton (Y,mu1 ,mu2 , sigma1 , sigma2 , p11 , p22 , Nstat i )

T=length (Y) ;

UpDate=ze ro s (T, Nstat i ) ;

Pred i c t i on=ze ro s (T, Nstat i ) ;

%% Sce lgo come Sta r t i ng point de l F i l t r o d i Hamilton l e e rgod iche

pi1=(1−p22)/(2−p11−p22 ) ;

p i2=(1−p11)/(2−p11−p22 ) ;

UpDate start =[ pi1 ; p i2 ] ;

P=[p11 1−p22 ; 1−p11 p22 ] ;

pd1 = makedist ( ’ Normal ’ ,mu1 , sigma1 ) ;

pd2 = makedist ( ’ Normal ’ ,mu2 , sigma2 ) ;

f o r i =1:T

Pred i c t i on ( i , : )=P∗UpDate start ;
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eta =[pdf (pd1 ,Y( i ) ) ; pdf (pd2 ,Y( i ) ) ] ;

Update num=Pred i c t i on ( i , : ) ’ . ∗ eta ;

Update den=ones (1 , Nstat i )∗ ( Pred i c t i on ( i , : ) ’ . ∗ eta ) ;

UpDate ( i , : )= Update num ./ Update den ;

UpDate start=UpDate ( i , : ) ’ ;

end
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