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Screw dislocation structure and mobility in body centered
cubic Fe predicted by a Gaussian Approximation Potential
Francesco Maresca1, Daniele Dragoni2,3, Gábor Csányi4, Nicola Marzari2 and William A. Curtin1

The plastic flow behavior of bcc transition metals up to moderate temperatures is dominated by the thermally activated glide of
screw dislocations, which in turn is determined by the atomic-scale screw dislocation core structure and the associated kink-pair
nucleation mechanism for glide. Modeling complex plasticity phenomena requires the simulation of many atoms and interacting
dislocations and defects. These sizes are beyond the scope of first-principles methods and thus require empirical interatomic
potentials. Especially for the technological important case of bcc Fe, existing empirical interatomic potentials yield spurious
behavior. Here, the structure and motion of the screw dislocations in Fe are studied using a new Gaussian Approximation Potential
(GAP) for bcc Fe, which has been shown to reproduce the potential energy surface predicted by density-functional theory (DFT) and
many associated properties. The Fe GAP predicts a compact, non-degenerate core structure, a single-hump Peierls potential, and
glide on {110}, consistent with DFT results. The thermally activated motion at finite temperatures occurs by the expected kink-pair
nucleation and propagation mechanism. The stress-dependent enthalpy barrier for screw motion, computed using the nudged-
elastic-band method, follows closely a form predicted by standard theories with a zero-stress barrier of ~1 eV, close to the
experimental value of 0.84 eV, and a Peierls stress of ~2 GPa consistent with DFT predictions of the Peierls potential.
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INTRODUCTION
Iron and iron-based alloys are among the most important
engineering materials for structural applications. Due to their
widespread use under a wide range of conditions, there is a strong
need to understand the atomic structures, motions, and interac-
tions among defects, such as vacancies, interstitials, dislocations,
surfaces, and interfaces.1–4 Accurate understanding can be
provided for some isolated defects using first-principles methods
such as density functional theory (DFT). However, important
macroscopic mechanical properties, such as yield stress, work-
hardening, ductility, fracture toughness, and response to radiation
exposure depend on defects’ interactions and motion. Studying
defect interactions generally requires simulations at scales far
larger than what is accessible using DFT with current high
performance computing. Accurate interatomic potentials that
enable large-scale atomistic simulations (molecular statics or
dynamics) of complex defect–defect interactions under stress and
at finite temperature would thus be extremely valuable. Insight
from such atomistic simulations could then further guide the
formulation of quantitative mechanistic theories that can predict
macroscopic behavior and that are based on the relevant
nanoscale defect–defect interaction mechanisms.
The mechanical strength and ductility of bcc iron are controlled

primarily by the stress- and temperature-dependent mobility of
screw dislocations.5 The mechanism of motion underlying this
mobility is the nucleation of kink pairs along the straight screw
dislocation, followed by lateral glide of the kinks, leading to the
advance of the dislocation to the next energy minimum (Peierls

valley) and the creation of a plastic slip equal to one Burgers
vector.6 Knowing the mechanism, theories exist that can use DFT-
computed inputs.7 However, as mentioned, direct DFT simulations
of the kink-pair nucleation process are not feasible due to the sizes
(tens of thousands of atoms) required for accurate modeling.
Unfortunately, existing analytical interatomic potentials are unable
to properly capture this crucial mechanism for the single-defect
problem, nor can they reproduce underlying DFT-computable
features such as the core structure and Peierls potential.8–13 If
these features are explicitly fitted in such potentials, vibrational
properties are not reproduced correctly.7 There are empirical
potentials that show the emergence of the kink-pair nucleation
mechanism, but at the same time they predict an incorrect core
structure, Peierls potential and slip plane.8,13–15

Quantum-mechanically based bond order potentials (BOP) have
been pursued as an alternative. BOP potentials show many
attractive features for Fe screw dislocations16 such as the non-
degenerate core structure, the single-hump Peierls potential, and
slip on {110}.17 Other features associated with screw dislocations
and motion, such as the generalized stacking fault γ surfaces and
non-Schmid effects were also investigated.17 However, the kink-
pair nucleation process has not yet been investigated for bcc Fe
with BOP potentials, although it has been studied with BOP for
non-magnetic bcc systems.18–20 While successful in many
respects, BOP remains computationally costly at the scales needed
for complex plasticity phenomena. Thus, there remains a large gap
between what can be studied via first-principles and what is
necessary for understanding plasticity problems. Here, we show
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that newly developed Gaussian Approximation Potential (GAP) for
α Fe (bcc, ferromagnetic)21 based on machine learning of an
extensive DFT data set can contribute to filling this gap.
This GAP potential was been developed in the GAP frame-

work,22,23 which uses kernel regression and the Smooth Overlap of
Atomic Positions (SOAP) to describe the neighbor environment of
atoms.24 The GAP potential has been constructed by training it
against a large number of atomic environments (~150,000)
computed using DFT, including pristine configurations, stacking
faults, free surfaces, vacancies, and interstitials. The resulting
potential was found to reproduce very accurately DFT vibrational
and thermodynamic properties, including equation of state,
phonon dispersions, elastic moduli, and thermal expansion.21

The potential can be used for system sizes well beyond the
capabilities of DFT (up to ~50,000 atoms in this study). Details can
be found in ref. 21 and are not repeated here. It is also important to
remember that while GAP potentials can fail when used to model
configurations that are well outside the training set, the under-
lying framework of GAP potentials includes built-in error indicators
to identify such situations. Furthermore, the GAP potential can
then be systematically improved by expanding the training set to
incorporate additional relevant atomic environments.
Here, we demonstrate that the current generation Fe GAP

potential can accurately predict all of the key features associated
with the screw dislocations in Fe, relative to DFT. Specifically, the Fe
GAP reproduces the DFT-computed core structure, Peierls potential,
and slip behavior. Moreover, it shows finite temperature screw
dislocation glide by nucleation and propagation of kink-pairs, as
envisioned by long-standing theories.25,26 Importantly, the predicted
stress-dependent enthalpy barrier for kink-pair nucleation agrees
well, quantitatively and qualitatively, with DFT computations and
theoretical models. Overall, this work, together with earlier valida-
tions, establishes Fe GAP as the first empirical potential to achieve
DFT accuracy for the crucial properties of screw dislocations in Fe,
thus enabling future application to many important dislocation/
defect problems relevant to the mechanical performance of bcc iron.
The remainder of this paper is organized as follows. Section

Results "Dislocation core structure and mobility" contains a
benchmark study on the screw dislocation core structure and
energetics, showing that the potential developed in ref. 21 can be
used for simulating kink-pair mechanism. Section Results "Kink-
pair nucleation and migration" analyzes the kink-pair nucleation
and migration by means of molecular dynamics simulations and
nudged-elastic-band computations.27 The main results of this
paper are summarized in the Discussion.

RESULTS
Dislocation core structure and mobility
Here, we simulate various aspects of the straight screw dislocation
behavior using the Fe GAP via molecular statics (MS) and

dynamics (MD) using the LAMMPS package.28 We use a periodic
array of dislocations (PAD) configuration (e.g. ref. 29), as described
in Methods. The simulation cells have dimensions (lx= 60a) × (ly=
2b) × (lz= 19c), where a ¼ ffiffiffiffiffiffiffiffi

2=3
p

a0 is the Peierls valleys spacing,
b ¼ ffiffiffi

3
p

=2a0 the Burgers vector magnitude, c ¼ a0=
ffiffiffi
2

p
the {101}

interplanar spacing, and a0 the lattice parameter, containing 2,400
atoms. An external stress is applied by assigning forces to the
upper and lower Z boundary atoms over a thickness of four
atomic layers. For a desired applied stress τ, the forces f and −f on
the top and bottom surfaces are

f ¼ τlx ly
n

; (1)

where n= 480 is the number of boundary atoms on the top or
bottom layer. Configurations of constant applied stress are
computed by relaxing atomic positions while holding the applied
boundary forces fixed.
Figure 1 shows the relaxed dislocation core structure at T= 0 K

and τ= 0 MPa, projected on to the X–Z plane, along with the
associated differential displacement map (DDM). Since screw
atomic displacements are along the line of the dislocation, the
arrows in the DDM indicate the relative out-of-plane (Y)
displacements between the two atoms on either end of the
arrow. The size of the arrows is normalized by b/3. Thus, following
any closed loop of projected atoms outside the dislocation core
yields a total magnitude of displacement of b. In agreement with
DFT calculations, the Fe GAP core is compact—a loop around the
three central atoms of the core yields magnitude b—and
symmetric or non-degenerate, lying in the so-called “easy” core
configuration6).
The T= 0 K Peierls stress is computed using molecular statics by

incrementally increasing the applied stress τ and relaxing the
structure. At the Peierls stress, the dislocation finds no equilibrium
configuration and glides steadily through the sample. The
computed Peierls stress is τP= 2.025 GPa (±5 MPa). Figure 1 also
shows the core structure and DDM computed for several applied
stresses approaching the Peierls stress. At low stress, there is no
visible change of the core structure, consistent with the
equilibrium core configuration being a deep energy minimum.
As the stress approaches τP, the core remains compact. This
observation supports DFT-based analyses in bcc Fe and transition
metals,30–32 which assume no core “degeneracy”, nor any new
intermediate structures as the core shifts under stress, and
especially no intermediate split core32 that is a common artifact
of most empirical potentials for pure Fe and bcc transition
metals.33

We further compute the Peierls potential, which is the energy
change of the straight dislocation line as it moves from the
minimum energy configuration towards the next minimum
(Peierls valley), at distance a= 0.94b along [121̄], at zero applied
stress. Since the core structure distorts as it moves from the local
minimum, the Peierls potential is computed using the climbing-

Fig. 1 Screw dislocation core as function of an applied stress. Differential displacement maps at the dislocation core are shown for the 〈111〉-
zone, as a function of the shear stress τ applied on the free surfaces. Circles represent atomic positions. Colors identify atomic positions in the
pristine bcc crystal, for one periodic unit cell (length b) along the dislocation line direction Y, where yellow atoms are taken as reference (Y=
0), red atoms are in position b/3 and gray in position 2b/3. The arrows are normalized by b/3 with a length b/3 scaled to connect neighboring
atoms. Arrows represent the displacement of atoms along [1̄11] in the relaxed screw field, computed with respect to the pristine bcc atomic
positions
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image nudged-elastic-band (NEB) method27 (see Methods sec-
tion), which yields the minimum-energy path (MEP) of the entire
system as it moves from an initial state to a final state. The
periodic dislocation line length remains 2b, which forces the
dislocation to remain straight along the entire MEP.
Figure 2 shows the Fe GAP Peierls potential per 1b dislocation

length. The key feature is that the potential has a single hump,
and thus no intermediate artificial minimum. This result is
consistent with the analysis of the core structures versus applied
stress.
Also shown in Fig. 2 is the DFT-computed Peierls potential and

the corresponding prediction of the Fe GAP model.21 Due to size
limitations, the DFT computation uses a special periodic quad-
rupolar unit cell involving two dislocations in which the total
dislocation/dislocation interactions, including periodic images,
lead to no net glide stress on the dislocations at the equilibrium
configuration. The Peierls potential calculation involves the
relative motion of the two dislocations and breaks the symmetry,
leading to additional energy contributions from the dislocation/
dislocation interactions. The result is a larger apparent Peierls
potential. The Peierls potential computed using Fe GAP in the
same quadrupolar cell is shown in Fig. 2, and the agreement with
the DFT is very good, especially considering that the training did

not include the Peierls potential but only the gamma surfaces in a
12-atom unit cell. This demonstrates that the true Peierls potential
must be computed in a much larger quadrupolar unit cell or by
adroit corrections of the direct calculation in small unit cells (see,
for example ref. 34).
Other DFT studies report a deduced Peierls potential that is

somewhat lower in energy than the results shown in Fig. 234), and
consequently also predict a lower Peierls stress and enthalpy
barrier. These differences can be ascribed to different details in the
DFT computations (pseudopotential, k-mesh density, convergence
tolerances, wave-function cutoff energies) and the type of MEP
calculations. Although quantitative differences between various
DFT studies are not relevant to the present work, it is useful to
point out that the Fe GAP potential was trained on an extensive
set of highly converged DFT computations,21 making use of a
pseudopotential that was shown to reproduce the reference zero-
temperature all-electron data.35 Hence, it is expected to faithfully
produce behavior consistent with such a reliable computational
protocol.
The results above show that the Fe GAP potential developed in

ref. 21 reproduces the DFT-predicted structure and energetics of
straight screw dislocations. This motivates examination of the
kink-pair mechanism and computation of the stress-dependent
energy barriers for kink-pair nucleation.

Kink-pair nucleation and migration
Having validated the Fe GAP against DFT and conventional
understanding for infinite straight dislocations, we now turn to the
actual mechanism of glide motion. This problem can only be
studied using interatomic potentials, due to the simulation cell
sizes required, and so is beyond current full DFT calculations.

Finite-temperature observations of kink-pair nucleation. We first
demonstrate that kink-pair nucleation and glide is observed in
direct finite-temperature molecular dynamics simulations. Such a
study is not influenced by a pre-ordained selection of the final
state of the system as imposed in NEB computations described in
the next section. We use the same orientation Xjj 121� �

, Yjj 111� �
,

and Zjj 101½ � and boundary conditions as specified in Methods. The
size of the simulation cell is expanded to contain N= 48,000
atoms with dimensions (lx= 60a) × (ly= 40b) × (lz= 19c) (Fig. 3a).
The larger dimensions are necessary to enable nucleation of the
correct kink-pair with minimal image stresses due to periodic and
free boundaries (Fig. 3b). Stress is applied on the upper and lower
Z surfaces as specified in previous Section. MD simulations are
performed at finite temperatures. Thus, the lattice constants and
cell dimensions are those appropriate to the temperature of

Fig. 2 Peierls potential at T= 0 K and zero applied stress. The Peierls
potential is shown as computed with the NEB method in the PAD
configuration (black line). The Peierls potential computed using DFT
in the quadrupolar cell is shown for comparison (red squares), and
computations with GAP in the same quadrupolar configuration are
also plotted (red line), as reported by ref. 21

Fig. 3 Dislocation slip at finite temperatures. a Computational cell (black lines), with the atoms out of local bcc symmetry shown (gray),
namely the free surfaces (top/bottom) and the dislocation core (in the middle of the simulation cell). b Atoms at the dislocation core during a
simulation snapshot, evidencing dislocation glide by kink-pair mechanism. c Atomistic displacement field evidencing slip along the (101) slip
plane. Crystallographic visualizations use OVITO54 and adaptive Common Neighbor Analysis (CNA),55 to label atoms according to local atomic
environments
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interest using the thermal expansion coefficient computed in
ref. 21

Figure 3 shows the results from one such simulation at T=
200 K. The dislocation begins to glide after 5 ps on the (101) plane
of maximum resolved shear stress at τ= 1.3 GPa. The large applied
stress is due to the short MD simulation time, and so is not the
relevant stress measured in experiments on much longer time
scales. The key observation here is that the glide plane is
consistent with DFT analyses,31,32 and the motion is initiated by
kink pairs. The kink-pairs nucleate somewhere along the line, and
then the kinks glide laterally along the line until, interacting via
their periodic images, they attract one another and annihilate,
leaving a straight dislocation line that has moved by a along the
glide plane. The glide continues by repetition of this unit process.
Gliding by kink-pair nucleation is consistent with long-standing
theories,25,26 and kink-pair nucleation and glide have been
observed with other potentials.8–10,12,13 This is the first observation
of such mechanism with an empirical potential that is quantita-
tively correct.

Enthalpy barrier versus applied stress. We now compute the
stress-dependent enthalpy barrier ΔH*(τ) for kink-pair nucleation.
This barrier controls the rate R of kink-pair nucleation at a given
stress τ and temperature T via an Arrhenius law,

R ¼ ν0exp
ΔH�ðτÞ
kBT

� �
, where kB is Boltzmann’s constant and ν0 an

appropriate attempt frequency. The temperature- and stress-
dependent plastic shear strain rate _γ then follows from Orowan’s
law36 as _γ � ρbðL=lnucÞaR, where ρ is the mobile dislocation
density, L/lnuc is the approximate number of independent kink-
pair nucleation sites of length lnuc available along each dislocation
segment of length L � 1=

ffiffiffi
ρ

p
and aR is the average dislocation

velocity. Inverting this relationship leads to the stress as a function
of temperature and strain rate.
Due to the work done by the applied field τ acting over the

activation area A of the kink-pair nucleus, W= τbA, the enthalpy
barrier is a function of the applied stress. To compute the barrier,
we again use the climbing image NEB method27 in the 48,000

atom PAD geometry to find the minimum energy path (MEP)
followed by the long dislocation line as it moves from an initial
state through the transition state to the final state. MEP
calculations are done as specified in Methods and Section Results
"Dislocation core structure and mobility", with the only difference
being that the dislocation length is 40b. Here, fixing the positions
of boundary atoms in each replica improves convergence speed,
but introduces an error due to the interaction of the non-straight
dislocation with the surface. The non-straight dislocation can,
however, be viewed as a straight dislocation plus a closed loop of
length equal to the kink-pair separation and of width a, and so
the image forces decrease fairly rapidly with the simulation-cell
size, as ≈(a/(lz/2))

−2. We have explicitly checked that this
boundary effect is negligible by comparing the barriers computed
at zero stress with fixed and free boundary atoms in the chosen
cell size.
The direct result of the NEB calculation at each applied stress τ

is the configurational energy VC(τ, ξi) as a function of the reaction
coordinate ξi ∈ [0,1] of replica i. This is not the desired enthalpy, as
the work done by the applied stress is not included. The NEB
enthalpy could be computed atomistically in principle, but this
functionality is not available in LAMMPS. To determine the
enthalpy from the NEB calculations, the work of the external
stress acting on the boundary atoms must be computed for each
replica. This work is equal to

Wextðτ; ξ iÞ ¼ fðτÞ � ½utðξ iÞ � ubðξ iÞ�; (2)

where ui (i= b, t) are vectors containing the displacements of all
boundary atoms on which forces are applied. As discussed above,
this method introduces an error due to the interaction with the
boundary, which is minor for the simulation cell size used.
From the replica configurational energy VC(τ, ξi) and the external

work Wext(τ, ξi), the replica enthalpy can be calculated7,8 as

Hðτ; ξ iÞ ¼ VCðτ; ξ iÞ �Wextðτ; ξ iÞ: (3)

At zero applied stress, this expression coincides with VC(ξi).
Figure 4a shows the enthalpy difference ΔH(τ,ξi)= H(τ, ξi)− H(τ, 0)

Fig. 4 Energy barrier as function of applied stress. a NEB calculations of the enthalpy difference as a function of the reaction coordinate ξ of
the NEB computations for different values of the applied stress. b Barrier height (from the NEB data, markers colored according to a) as a
function of applied stress, the line tension (LT) model by Dorn and Rajnak,26 and a Kocks’ law with exponents p= 0.77 and q= 1.3
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as a function of ξi for a range of applied stress τ from 0 up to the
Peierls stress. The path is not of direct importance, but shows the
expected behavior. At zero stress there is no strict maximum,
because the kink-pair elastic interaction scales logarithmically with
kink-pair separation. However, the difference in activation energy
between an infinite system and the cell size considered here is
negligible. Furthermore, in the finite periodic system, there are
kink–kink interactions due to the periodically repeated images of
the unit cell and these second interactions cancel due to
symmetry when the kink spacing is ly/2 and hence do not affect
the computed enthalpy maximum ΔH*(0). Therefore, this ΔH*(0) is
also essentially equal to the formation energy for two kinks.
The main quantity of interest is the enthalpy barrier ΔH*(τ),

which is the peak enthalpy along the minimum enthalpy path. The
enthalpy barrier versus applied stress is shown in Fig. 4b. As
anticipated, the barrier approaches zero as the stress τ approaches
τP, and does so in a smooth manner. This general behavior is
consistent with previous analyses based on different interatomic
potentials for iron.7–9,11,13

The enthalpy barrier for kink-pair nucleation as computed using
the Fe GAP can be further compared with the standard models for
the kink-pair nucleation mechanism in screw dislocations (Seeger
and co-workers,25,37,38 Dorn and Rajnak,26 Suzuki and co-workers39

and Brunner40) recently reviewed in ref. 6. We use the early line-
tension theory of Dorn and Rajnak, which has some intrinsic
simplifications by its neglect of (i) kink–kink interactions, (ii) the
dependence of line energy on dislocation character, (iii) the
dependence of Peierls potential on the applied stress, and (iv) the
asymmetry between left and right kinks.34,41 However, the model
can be calibrated to the computable quantities of the double-kink
formation energy, the Peierls stress, and the Peierls barrier (the
maximum of the Peierls potential, Fig. 2). Our aim here is to show
that our computed ΔH*(τ) follows the functional trends predicted
by this model but typical of all such models.
Dorn and Rajnak26 considered the dislocation as a line defect

moving in the Peierls potential VP(x) under the action of an
applied stress. A line energy Γ0 penalizes changes in length
relative to the straight dislocation. Thus, an energy functional for
the energy vs dislocation shape can be written down and the
saddle point (transition state) configuration can then be
determined. The final result of interest here is the enthalpy
barrier, given by

ΔH�ðτÞ ¼ 2
Z xc

x0

f½Γ0 þ VPðxÞ�2 � ½τbðx � x0Þ þ Γ0 þ VPðx0Þ�2g
1
2dx;

(4)

where VP(x) is the Peierls potential per unit dislocation length.
Also, x0 is the equilibrium configuration of the straight screw
dislocation at the applied stress τ, such that

τb ¼ ∂VPðxÞ
∂x

jx¼x0 ;
(5)

and xc is the extremum position of the kink bulge in the critical
configuration (transition state) at the applied stress τ, and emerges
from equilibrium conditions for the shape of the kink-pair (see 26).
The dislocation line energy Γ0 is related to the kink-pair formation
energy ΔH*(0) via

ΔH�ð0Þ ¼ 2Γ0

Z a=2

�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ0 þ VPðxÞ

Γ0

� �2

�1

s
dx: (6)

Here, we fit the Peierls potential VP(x) as a function of the
dislocation core coordinate x along the glide direction (barrier ΔEP
centered at coordinate x= 0) to the standard form26

VPðxÞ ¼ ΔEP
2

1þ α

4
þ cos

2πx
a

� �
� α

4
cos

4πx
a

� �	 

: (7)

We use α=−0.5965 to satisfy the simulated Peierls stress

τP ¼ 1
b

max

fx 2 ½�a=2; a=2�g

d
dx

VPðxÞ
	 


¼ 2:025GPa; (8)

with ΔEP obtained directly from the simulated Peierls potential
(Fig. 2). We then obtain Γ0 by integration of Eq. (4) with the
double-kink energy 2Uk set equal to our computed ΔH*(0).
The comparison between the computed enthalpy differences

ΔH*(τ) and the classical line tension (LT) model is shown in Fig. 4b.
There is close agreement between the classical model and the
directly computed activation barrier ΔH*(τ). The differences reflect
the approximate nature of the model, but are minimal. Thus, the
results here nicely support the LT model and justify previous
applications34 to obtain dislocation mobility laws by fitting to DFT
data.
Previous simulations and experiments have also been fit to

phenomenological models of the type proposed by Kocks42 and
widely used for describing thermally activated dislocation
behavior in many different circumstances. The general form of
the Kocks law is

ΔH�ðτÞ ¼ ΔH�ð0Þ 1� τ

τP

� �p	 
q
; (9)

where ΔH*(0), τP, p, and q are parameters that are either fit to
experimental/simulation data or are derived from approximate
models of the dislocation MEP. Here, we have already computed
the values of ΔH*(0) and τP, and so we only need to fit the
parameters p and q. The fitted result is shown in Fig. 4b, achieved
with p= 0.77 and q= 1.3. These values for (p,q) are close to typical
values fitted to experiments on bcc Ta (p= 0.748, q= 1.17243) and
bcc W (p= 0.86, q= 1.6944). As shown in ref. 45 fitting a Kocks’ law
to low-temperature experimental data on bcc Fe yields ΔH*(0)=
0.84 eV, τP= 0.363 MPa, p= 0.5 and q= 1. The major difference is
not in p and q but in the Peierls stress τP, which is ≈5 times smaller
than that predicted with either GAP Fe or DFT. This overprediction
of the Peierls stress in Fe by DFT and interatomic potentials is well
known and is not a specific feature of GAP Fe. Therefore, the GAP
Fe potential fits well within the scope of the existing under-
standing of the activation enthalpy versus stress.

DISCUSSION
We have shown that the Fe GAP potential is suitable for the
modeling of screw dislocations in Fe. This is a distinct achieve-
ment as the first empirical potential to capture all key features
related to screw dislocation glide in bcc Fe, including kink-pair
nucleation and propagation at finite stress and temperature. This
potential predicts the stress-free compact non-degenerate core
structure found in DFT; it predicts the single-hump Peierls
potential found in DFT; it does not form common artifact
structures such as the split/degenerate core at any applied
stresses up to the Peierls stress; and the screw dislocation glides
on {110} by the kink-pair mechanism as expected for Fe.
Furthermore, the stress-dependence of the enthalpy barrier for
kink-pair nucleation is consistent with long-standing theories.
These results encourage the use of the Fe GAP potential to study
many further issues regarding plasticity phenomena in bcc Fe.
In particular, the deviation between DFT and experimental

Peierls stresses at low T has been attributed to nuclear quantum
effects56 that are absent from DFT and classical simulations. With
the present potential, path integral molecular dynamics simula-
tions46 could be used to check this hypothesis in the future. Very
recent work in this direction has been shown by Freitas et al.47.
The deviation has also been attributed to the role played by non-
screw dislocations when considering expansion of an entire
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dislocation loop,48 and this can also be investigated in detail using
the GAP Fe potential.
The Fe GAP potential may also be used to identify the atomic-

scale origin of the change of slip mechanism at T ~ 250 K, which
was deduced with macroscopic tests in the seminal papers by
Brunner and Diehl49,50 and was more recently observed with
in situ TEM.51,52 Brunner and Diehl proposed that the origin of this
phenomenon is the change of elementary slip plane, and hence
fitted two models for elementary {110} and {112} slip below and
above 250 K, respectively, to reproduce the macroscopic response
of experiments. However, despite confirming a change of
mechanism, the transition to different elementary slip planes
was not observed in the recent in situ TEM by Caillard,51 who
instead interpreted the macroscopic {112} slip traces as being
composed of elementary {110} slip events. While GAP Fe has the
low-temperature discrepancy in Peierls stress, it can nonetheless
probe such slip transitions. GAP Fe can also be employed to
predict other parameters that arise in theories, such as the line
tension38,40 and kink-width,38–40 on top of the kink formation
enthalpy38–40, which has been computed here (equal to 0.5ΔH*(0)).
Finally, as noted at the outset, important plasticity phenomena

involve dislocation/defect interactions. With the success of GAP Fe
in describing what has been the most challenging feature of bcc
plasticity—proper behavior of the screw dislocation motion—the
study of dislocation interactions with point defects created by
irradiation,1 grain boundaries,2 cracks (especially dislocation
emission from cracks3), and twinning phenomena4 all appear as
avenues for future work. We close by reiterating that GAP
potentials may fail for new configurations well outside those of
the training set but that the GAP formalism enables the
identification of such situations and the GAP potential can be
systematically improved by expanding the training set to
encompass new types of atomic environments arising in such
future studies.

METHODS
Periodic array of dislocations (PAD) configuration
All atomistic simulations were performed using LAMMPS package.28 To
model screw dislocations, we use a periodic array of dislocations (PAD)
configuration (e.g. ref. 29). Samples are oriented with Xjj 121� �

, Yjj 111� �
,

and Zjj 101½ �, with periodic boundary conditions along X and Y, and Z
having imposed tractions. We insert a screw dislocation with line direction
along Y by imposing a linear displacement uy=−bx/lx for 0 < x < lx on all
atoms in the upper half of the simulation cell. Atomic positions are then
relaxed by using a combination of the FIRE algorithm53 and relaxation of
the cell dimensions until convergence is achieved (force tolerance 10−3 eV/
atom and stresses σXX, σXY, and σYY <10MPa). This configuration yields a
screw dislocation with periodic boundary conditions along the line
direction [1̄11] and glide direction [121̄], and slip plane normal direction
[101].

Nudged elastic band (NEB) calculations
In order to perform climbing-image nudged elastic band (NEB) calcula-
tions,27 we first compute the relaxed initial state as described in Methods
“Periodic array of dislocations (PAD) configuration”. The final state has the
same structure as the initial state but shifted by a relative to the initial
state. An initial path of intermediate configurations (replicas) is constructed
by linearly interpolating the atomic positions between the relaxed initial
and final configurations. Replica i is labeled by the reaction coordinate
ξ i ¼ ξik k2= ξendk k2, which is the ratio of the ‘2-norm ξik k2¼

ffiffiffiffiffiffiffiffiffiffiffi
ξi � ξi

p
of the

3N-dimensional vector ξi= {ui} containing all atomic displacements of the
ith replica (computed with respect to the atomic positions in the initial
replica ξinit) and the vector ξend of atomic displacements in the final state.
NEB computations are then performed, under the constraint of stress-free
boundaries. The force tolerance is set to 10−3 eV/Å and the NEB inter-
replica spring constant is set to k= 10−2 eV/Å2. The latter choice does not
affect results but optimizes convergence of the calculations.
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