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Introduction



Introduction and Context of Cluster Weighted Model

Keywords: Cluster Weighted Model, Mixture models, Model-based clustering.

1. Introduction

The exponential growth of data and its use in supporting business decisions has
challenged the processing and storage capabilities of modern information systems.
The ability to handle and managing large volumes of data has gradually turned to
a strategic one (Ivanov, 2016, ch. 15). A definition of what means the term “Big
Data” (Boyd and Crawford, 2012) is actually a subject of debate, however the 3V
framework has gained attention since it was introduced by Laney, 2001. In that
representation “Big Data” can be defined by three distinctive characteristics:

e Volume: the growing amount of data over time.

e Variety: the multitude of data sources (devices, sensors, media data, internet
data).

e Velocity: how fast the data is retrieved, stored and processed.

In last years many techniques have been developed in order to deal with “Big
data”, and essentially these techniques are based on identifying and describing
the variability present in the data following different approach. Some approaches
are more “data driven” and come from the world of machine learning and data
mining while others approaches are based on a model or more generally on a
mathematical relation that is tested on the observed data. Obviously, depending
on the specific application of interest, it is necessary to identify the approach that
is right for us and in particular the methods that allow to achieve the objectives
of the analysis in the fastest and most efficient way.

In this work the interest is to study and to develop new methods to manage com-
plex relationships hidden in the data by generalizing more traditional methods,
but at the same time without giving up on a model-based approach. Then, from
a statistical point of view, there are at least two important themes that should be
considered:

e Heterogeneity

e Significance
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Heterogeneity is very general term and it is used in contrast to homogeneity:
something that is homogeneous is uniform in composition and characteristics and
could be described with a unique and global model. In the presence of a large
amounts of data and, for a wide range of phenomena, it is natural to expect that
one global model does not apply to all data at the same time and, therefore, it is
not sufficient to adequately capture all the complexity within the data. Therefore,
the class of mixture models and generally the mixture analysis can be useful to
estimate local models that can combined together to describe the entire dataset.
Regarding the theme of statistical significance, it is well known that when we have
large data set, the significance tests associated with linear models refuses the null
hypothesis in all cases, and beyond certain threshold it is only the determining
factor of the test so that every explicative variable seems to be significant for
explaining the outcomes (Royall, 1986; Battle and Rakov, 1993). In particular,
statistical inference based on very large sample containing many heterogeneous
groups, leads to irrelevance of statistical testing because of the exceeding power.
In this sense the idea of fitting local models instead of a global model coming from
mixture analysis represents an advantage not only to deal with heterogeneity but
also to limit the problems related to the significance.

An extensive literature was developed in last years on the topic of finite mixture
models. These models provide a flexible framework to analyze and describe a
wide variety of random phenomena characterized by unobserved heterogeneity. A
simple picture in Fig. 1 shows that there are two groups of individuals, each one
with a different relation between a covariate x and a response variable y. Assuming
that no other covariates are available at individual level, it is evident that there are
probably one or more latent factors that characterize the population, so that we
observe two different trends and we need to capture them considering a suitable
class of models.

In mixtures of distributions, it is generally assumed that observed data X are in-
dependent and identically distributed from an unknown population density p(x; @)
with G latent groups; each group is represented by a mixture component p(z;8,).
The marginal density of X is be written as

p(w;0) = > mep(; 0,) (1)

where 7, > 0 are the mixture weights such that Zle g, = 1 and p(x;60,) is a
probability density function to describe the process that originates the observed
data which depends on a set of unknown parameters 8,. In mixtures of regressions,
a dependence between Y (response variable) and X (a covariate) is introduced
and a general mixture regression model can be defined as
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p(ylz;0) = > myp(ylz; 0,) (2)

In this models, the observations are assumed to arise from unobserved groups
in the population, and the two the main objectives of mixture analysis are to
identify the groups in the unknown population and to estimate the parameters
of the conditional-group regression function to understand the behaviors of the
process that generates observed data.

Figure 1: Example of mixture of regression where a latent variable split the population into
groups.
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A wide range of mixture models have been developed in literature and can be
considered to analyze data in which the presence of latent factors is suspected.
The main developments related to mixture models or more generally to model-
based clustering can be summarized in the following points:

e Finite mixtures of distributions (Everitt and Hand, 1981; McLachlan and
Peel, 2000; Bagnato et al., 2013)

e Finite mixtures of linear regressions (Wedel and DeSarbo, 1995; McLachlan,
2008): a set of covariates or explicative variables explain the means and/or
the variances of each component. See for example model (2) where the
conditional distribution p(y|x; 6,) depends on z.

e Finite mixtures of generalized linear models (Wedel and Kamakura, 2000;
Ng and McLachlan, 2008): to deal with different types of response variables,
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if Y belongs to the exponential family these models are an extension of
mixtures of regressions including the generalized linear model within each
mixture component.

e Finite mixtures of regressions with concomitant variables (Dayton et al.,
1998; Wedel, 2002): a set of covariates or explicative variables explains the
means and/or the variances of each component and the mixture’s weights
7y depend on a set (or subset) of covariates so that 7, = f,(x).

All the models listed above, consider the conditional distribution p(y|x) as weighted
sum of local conditional distributions p(y|xz,8,). However, in many cases, the
marginal distribution of the covariates takes an important role to split data into
clusters, therefore it would be advisable to incorporate this information directly
into the model. In Fig. 2 it is possible to see how the fitted model (a three
components linear mixture of regressions with concomitant variables) is not able
to identify the clusters although they are well separated from the point of view of
the marginal distribution of X.

Figure 2: A simulated data set where a three components linear mixture model with concomitant
variables is fitted. The marginal distribution of each group is not considered in detecting groups
showing, at least in this case, an incorrect detection and classification of the clusters.
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In this work we investigate a different approach with respect to those proposed in
the literature explained above.

The Cluster Weighted Modeling (CWM), is a framework that lets to take a step
forward with respect to the previous models, in particular it considers the un-
conditional distribution p(y, ) that is written as a proper weighted sum of local
models, and consequently does not model only the conditional distribution but
incorporates also the contribution of the marginal.

In the original formulation (Gershenfeld, 1997) this models has been proposed
as a machine learning technique applied in the field of analysis and prediction
of non-linear time series under linear and Gaussian assumptions in the context
of social media technology, with the aim to build a digital violin (Schoner, 2000;
Schoner and Gershenfeld, 2001). The CWM plans to write the joint distribution
X and Y as

pla,y) =Y mplyla, Q)p(|Sy) (3)

defined on some space () that can be partitioned into G groups Gy, ..., Gg, where
p(y|z, ) is the conditional distribution of Y| X = « in the group g and p(x|€2,)
is the marginal distribution of X in the group g. Starting from 2012, this frame-
work has been developed from a statistical point of view, with significant contri-
butions by prof. G. Vittadini, S. Ingrassia, A. Punzo and C. Minotti.

In Sect. 2 is summarized the history and the main evolution of CWM with
the main references in the published literature, while in Sect. 3 the proposed
developments in this work with an overview of the future developments.
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2. History and evolution of Cluster Weighted Model

A first exploration of the CWM applied to a statistical problem can be found in
Minotti and Vittadini, 2010 and Minotti, 2011 to compare institutional perfor-
mances in multilevel modeling. Strictly related to this, is the need to control the
numerosity of the population that has been highlighted in Vittadini et al., 2006
some years before.

The basic idea of these words, is that fitting a single global model could not be
sufficient to explain all the heterogeneity in the data and methods able to capture
local behavior are necessary.

In multilevel modeling for example, the observed heterogeneity is expressed in
terms of random intercepts and slopes, i.e. continuous latent variables that vary
between clusters. However we should take into account also the unobserved hetero-
geneity that represents qualitatively different relationships that can be captured
by latent variables (Muthén and Asparouhov, 2009). In such class of models
is possible to obtain a ranking of the first-level random effects units based on
confidence intervals (Goldstein, 2011), but the presence of high heterogeneity in
first-level units leads to large and overlapped uncertainty intervals. Then, mixture
models have an important role to play in multilevel regression analysis allowing
the heterogeneity to be investigated more fully and more correctly attributing
different portions of the heterogeneity to the different levels.

Coming back to the CWM, its first formulation in a statistical settings can be
found in Ingrassia et al., 2012, where has been shown that the CWM represents a
very general class of mixture models that includes finite mixtures of distributions,
finite mixtures of regressions and finite mixtures of regressions with concomitant
variables. In Fig. 3 and in the following subsections are summarized the main
developed extensions.
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Figure 3: Main history of CWM with new developments.
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2.1. Linear Gaussian CWM

The Linear Gaussian CWM (Ingrassia et al., 2012) is the first proposal of CWM
in a statistical setting. The model is defined as follows:

G
pla, 5 0) = > o6 (y: Byo + By, 02, ) du (w3 1, 5y) (4)
g=1

where ¢(+) denotes the probability density of Gaussian distributions. Both marginal
and conditional densities are assumed to be Gaussian, where

o X|[Qy ~ Ny ('“’97 29)
[ Y‘X =, Qg ~ N (6;],0 +ﬂ;m7052,g>

In case of classification problems each observation can be assigned to each group
according to the maximum posterior probability given by

7Tg¢ (y; 59,0 + /B;mv 0’527g> ¢d (m; Mg, Eg)
S 7 (3 Byo + By, 02,) da (%3 1, 3)

Has been proved that the linear Gaussian CWM is strictly related with traditional
mixture models, and under suitable assumptions model (4) leads to the same pos-
terior probability of many different mixture models, in particular finite mixtures
of Gaussian distributions, finite mixtures of regression models, and finite mixtures
of regressions with concomitant variables.

In Fig. 4 is shown an example of linear Gaussian CWM applied on real data; it
is possible to see for each cluster the marginal density estimated from the model
and the relation between the variables within each group.

p(Qylx,y) =
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Figure 4: Example of linear Gaussian CWM (Ingrassia et. al., 2012) with G = 4 components
applied on tourism data. The relationship between x and y is estimated within each mixture
component thanks to the conditional part Y|z while in the top of the figure is possible to see
the marginal distribution of X estimated by the model.
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2.2. Student-t CWM

The Student-t CWM (Ingrassia et al., 2012), provide a more robust fitting for
observations with heavier tails than normal or noise data. The model is defined
as

G
pla,y;0) =)yt (y; Byo + Bz, 0%, Cg> ta (25 gy, By, vg) (5)
g=1

where t4(-) denotes the d-dimensional probability density of the t-student distri-
bution. Both marginal and conditional densities are assumed to be ¢ distribution,
where

o X|Qy ~tq (“g? Egavg)

o VX ==z, Qy ~t (@],o + ,B;wa ng,ga Cg)
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The posterior probability to belong to the group to the g-th group is given by

Wgt (yv ﬁg,O + /8/9:137 052797 Cg) la (w; Ky, Ega vg)
p(Qlz,y) = =5 —
Eg:l Wgt (y7 69,0 + ,ng, Ug,g? Cg) la (.’E, l'l'ga Egu Ug)

2.3. CWM factor analyzer

The applicability of linear Gaussian CWM in high dimensional matrix of covariates
X can be a problem due to the number of parameters involved in the model:
(G-1)+G(p+2)+G[p+p(p+1)/2] where G is the number of latent groups
and p the number of covariates. To overcome this problem the CWM factor
analyzer (Subedi et al., 2013; Subedi et al., 2015), assumes a latent Gaussian
factor structure for X in each mixture component.

The factor regression model lets to write the matrix of covariates X such that

X=u+AU +e

where U ~ N,(0,1,) is a g-dimensional vector of latent factors, A a p x ¢ matrix
of factor loadings and e ~ N, (0, ), with ¥ = diag(¢{, ...,v;) independent of U
Then X ~ N,(i, AA" 4+ ¥) and the CWM factor analyzer can be written as

G
p(,5:0) = D 706 (4 B0 + By, 02, ) 6 (w511, AgA, + ¥5)  (6)
g=1

2.4. Polynomial Gaussian CWM

The polynomial Gaussian CWM (Punzo, 2014) allows to describe more complex
dependencies in each mixture component by considering a polynomial regression.
Actually this model is proposed in the bivariate case. The model is defined as

G
pla,y;0) = meo (v (@3 B,), 02) & (w3 1, 02 ) (7)
g=1

where i, (; 8,) = Yo f;#". As in linear Gaussian CWM both marginal and
conditional densities are assumed to be Gaussian, then

o X[, ~N (ug,a;g)

o Y|X =,Q, ~ N (y(2:8,),02)
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Figure 5: Example of polynomial CWM (Punzo, 2014, Sect. 7.2) with G = 2 components. A
flexible relationship between x and y is estimated within each mixture component. In the top
of the figure is possible to see the marginal distribution of X estimated by the model.
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2.5. Beta CWM

The beta CWM (Nieddu and Vitiello, 2014) brings mixtures of beta regression
into the CWM framework. Lets consider the beta distribution parameterized in
terms of the expected value p and a dispersion parameter ¢

['(¢) (ub=1)(1 _ o\ (A=w)g—1)
e LY ®)

The beta regression model is defined in each mixture component as

fbeta(y; 22 ¢) = P(

9(uy) = ' B, (9)

where g(-) : (0,1) — R. After choosing the link function g(-) the CWM with beta
components can be defined as

G
P, y:0) =) 7y foeta(Y|T, 11g, bg)ba (T 12y g B g) (10)

g=1

Note that the g, in foera(y|o, 119, ¢4) represents the expected value of the condi-
tional beta distribution while p,  in ¢4 (:1:; Hoy g Exyg) is the mean vector of the
d-dimensional Gaussian distribution for the marginal density of X.

2.6. Generalized Linear CWM

The generalized linear cluster weighted model (Ingrassia et al., 2015), introduces
a new extension where the conditional distributions in each component belong to
the exponential family; important sufficient condition for the identifiability are
also prooved. The model is defined as

G
pla,y:0) = mq (yle, &) p (o 1, By) (11)

where ¢(-) denotes the probability density of a distribution belonging to the ex-
ponential family.
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3. Proposed extensions and future developments

Despite the numerous extensions proposed, some problems related to the CWM
are still opened and there is a lot of work to do. In this work two main extensions
are proposed to deepen and at the same time to explore the range of applications
of this framework. The first considers the concept of non-parametric regression
involving the theory of Generalized Additive Models (Hastie et al., 1987; Wood,
2017) while the second explores the use of a proper subclass of beta regression
applied to mixture models.

The GAM-CWM (Generalized Additive Models within the CWM framework) is a
generalization of the linear Gaussian CWM and the polynomial Gaussian CWM,
that lets to model in a flexible way the relation between the covariates and the
variable of interest introducing smooth functions (i.e. splines).

Another proposed extension is related to the beta CWM. Although the beta CWM
has already been proposed (Nieddu and Vitiello, 2014) an useful improvement
plans to consider only a subset of the beta densities, in particular the subset of
unimodal beta densities. A problem that could arise in such types of mixtures
is due to the high flexibility of the beta distribution: when it is embedded in
a mixture component it may be too flexible due to the great variety of shapes
(including multi-modal shapes) so that it may be difficult to understand easily the
real meaning of each component. Starting from this consideration, and supported
by the work of Bagnato and Punzo, 2013 we explore the use of reparameterized
beta in the context of mixtures of regressions.

Finally, in the following point are summarized those that are considered to be the
most important themes to be explored in future works related to the proposed
extensions or more generally on the CWM in a whole:

e Diagnostics: it is quite evident the need to identify and develop a set of
instruments (including indices, statistics and graphic representations) to
improve the understanding of the phenomenon under analysis through the
CWM. For example, in case of classification problem, some indices could
be useful to understand the behaviors of the defined clusters from different
points of view.

e Big data: we need to study the behavior of the CWM with big data stress-
ing not only the sample size factor but also the increasing number of the
covariates. At the same time it is necessary to understand the robustness
of the model splitting the dataset in training / validation.

e Model selection: although this theme has already been taken into consider-
ation in numerous articles in the literature, we need to consider this topic
into a Big data problem. The BIC criterion for example, does not consider
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the performance of the model when the dataset is splitted in training and
validation. Then, we want to explore this aspect related to the choice of a
suitable model that show good performance on the validation data set and
at the same time is parsimonious in the number of parameter controlling
also for the overfitting.

e Applications: since most statistical tools have been developed to analyze
many types of variables, it is necessary to focus on specific applications
where the CWM could provide added value compared to existing models
and therefore assert itself not only as a good theoretical tool but as a key
tool for specific fields of applications.

e Software: CWM is an eminent member of the class of mixtures of regression
models with random covariates, but unfortunately there is a lack of support
in the most used software packages for statistical computing. Actually only
the R package flexCWM (Mazza et al., 2018) is available on CRAN to im-
plement the generalized linear CWM. In this work we include an extension
of lexCWM called flexCWMext (that will be published on CRAN in a few
months) to provide a support for the new extensions that are proposed, in
particular GAM-CWM and beta CWM. A future software implementation
could include all the CWM extensions in a unique global and flexible envi-
ronment and call C++ routines to minimize the computational time of the
estimation process.
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Generalized Additive Cluster Weighted Modeling

Abstract

An extension of mixture models with random covariates related to the linear Clus-
ter Weighted Model (CWM) is presented for model-based clustering applications.
The Generalized Additive Cluster Weighted Model (GAM-CWM) is a very flexible
model, able to capture complex relations between a response variable and a set
of covariates in each mixture component. Maximum likelihood estimates are pro-
vided via EM algorithm and a variant called adaptive EM is proposed to control
the flexibility of the model during the estimation process. With simulated and
real data we investigate performances, limits and benefits comparing this model
with other mixture models related to it.

Keywords: Mixture Models, Model-based Clustering, EM Algorithm, Beta
Distribution, Beta Regression, Cluster Weighted Model.

1. Introduction

In direct applications of statistical modeling, finite mixture models can be used for
model-based clustering assuming that each mixture component represent a group
in the original data, while in indirect application can be used as an alternative
of non parametric density estimation (Titteringhton et al., 1985, pp. 2-3 and
McLachlan and Peel, 2000, p. 8). If no exogenous variables explain the means
and variances of each component, we refer to unconditional mixtures called finite
mixtures of distributions (Everitt and Hand, 1981; McLachlan and Peel, 2000),
otherwise to the class of conditional mixture models considering finite mixtures
of regression models and mixtures of generalized linear models (McLachlan and
Peel, 2000); an extension of finite mixtures of regressions is called finite mixtures
of regression models with concomitant variables (Wedel, 2002), where the weights
of the mixture depend on a set of variables called concomitants.

In this article we focus on direct applications where, given a multivariate random
vector (Y, X)), the interest is to study the functional dependency of ¥ on X within
each mixture component.

A new class of mixtures of regression models initially proposed by Gershenfeld
(1997) and subsequently taken up in a statistical setting by Ingrassia et al., (2012)
called CWM allows to model the joint probability of a response variable and a set
of explanatory variables rather then only the conditional probability. The CWM,
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modeling the joint probability, shows better performance than mixture models
that consider only the conditional distribution, as well discussed and motivated
in the developed extensions among which the generalized CWM (Ingrassia et al.,
2012, Ingrassia et al., 2015, Mazza et al., 2018), factor CWM (Subedi et al., 2013;
Subedi et al., 2015). However, in many regressions mixture models as well as in
the developed CWM extensions, is assumed a linear form for the covariates; this
assumption in some applications may not be adequate and it would be wise to opt
for a more flexible model that can better capture complex relationships between
Y and X.

Motivated by these considerations, the theory of Generalized Additive Model
(GAM, Hastie and Tibshirani, 1987), that extends the generalized linear model
precisely with the aim of making it more flexible including a sum of smooth func-
tions of covariates can be grafted in the CWM framework. Some examples of
mixture models including the concept of additive models can be found in Conver-
sano et al., 2002 applied in a data-mining context and in modeling time course
gene expression data (Griin et al., 2012).

A first attempt to extend the linear Gaussian CWM considering a polynomial
model in each mixture component in order to deal with complex and nonlinear
relationships can be found in Punzo, 2012 for the bi-variate case (with only one
explicative variable). A polynomial model implies the definition of a polynomial
basis for the covariate, but unfortunately such type of basis could be a problem-
atic choice because as the dimension of the basis increases then the basis functions
become collinear, leading to correlated parameter estimators and numerical prob-
lems (Wood and Augustiner, 2002). For these reasons, a natural generalization of
CWM is proposed introducing a more flexible specification of the dependence of
the response on the covariates considering a smooth function rather then a poly-
nomial relationship, leading to a powerful and general class of models combining
the principles of CWM model with the GAM.

An useful statistical tool based on the deviance decomposition is considered to
measure the share of the deviance explained by the model with respect to the
total deviance. A three terms deviance decomposition of the total sum of squares
allows to investigate different aspects of the fitted model, in particular how much
the model is able to explain the between-group deviance and how much the intro-
duction of the covariates explains the variation in the dependent variable. We will
show how the deviance decomposition represents a key tool that can be directly
involved during the estimation of EM algorithm to improve the model’s fitting.
This work is organized as follows. In section 2 some examples are presented to
introduce this new approach from a qualitative and a graphical point of view; the
main concepts of smooth functions and additive models are recalled in section 3
while the CWM is defined in section 4 with the main theoretical properties. The
EM algorithm for the estimation of unknown parameter with some computational
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details is explained in section 5. The three way deviance decomposition is ex-
plained in section 6 and finally in section 7 many applications with simulated and

real data are discussed.

Table 1: Summary of the methodological context.

‘ Model

Pros

Cons

GAM
(Hastie and
Tibshirani, 1986)

- Flexible models that
includes smooth
function.

- Inadequate in cases
of heterogeneous
data.

Linear CWM
(S. Ingrassia et al.,
2012)

- Flexible and
powerful mixture
models.

- Adequate in case of
heterogeneous data.

Polynomial CWM
(Punzo, 2012)

- Flexible and
powerful mixture
models.

- Adequate in case of
heterogeneous data.

- Only polynomial
extension is
considered.

- Collinearity
problems.

- Developed only for
the bivariate case.

GAM-CWM - Flexible and
powerful mixture
models.

- Adequate in case of

heterogeneous data.

2. A motivating example

In this section a motivating example based on simulated data is provided before
introducing the new model from a theoretical point of view. The aim of this
section is to show some limitations of the competing models that have motivated
the identification of new solutions.

An artificial data set is generated with n = 600 observations with parameters
listed in Table 3. We consider the bivariate case where (Y, X) has joint probability
distribution p(z,y), X is a (n x 1) matrix, Y is a response variable with values
in R and suppose that the space (2 can be partitioned into G disjoint groups
(Q,...,Q¢) such that 2 = U ... UQg.

The GAM is a model where the relation between z; and y; is modeled in a flexible
way introducing a flexible function, for example a cubic regression splines function
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f(z;) (Wahba, 1991 and Gu, 2013) so that

vi = f(z;) + €

with €; ~ N(0,0?).

However, in many situations where a source of heterogeneity is not directly ob-
served in the data, it is possible to capture latent factors considering a finite
mixture of regression models where observations are assumed to arise from unob-
served groups in the population. For this purpose it can be considered a GAM-
MIX model (a mixture of GAM, Griin et al., 2012). Finally, the LIN-CWM is
a mixture model related to the class of CWM, where the joint probability of
p(zi, y;;0) is modeled for each mixture component by multiplying the marginal
group-density of x, p(x;|€,), with the conditional density p(y;|x;, ;). In Table 2
are summarized the models considered in this example.

Table 2: Probabilistic definition of GAM, GAM-MIX and LIN-CWM.

Model definition \ p(yilzi, ) \ p(x4]€2y) ‘
pGAM(yz‘|517i;G9) N(f($z‘)> 02) -
pGAM—MIX(yA%; 9) = Zgzl p(yi|xi7 Qg)ﬂg N(fg(xi)v U;) -
prin—cwm (T, yi; 0) = 25:1 pyilxi, Qg)p(a4|Qy)m, N(Bog + Big7i, 03) N (pg, ‘73)

Table 3: Original parameters for the simulation by cluster.

Parameter | Cluster 1 (red) | Cluster 2 (green) | Cluster 3 (black) |

Ty 3 I I
g 15 15 35
Gos 1 3 5
fq(2) 20 + 2(x — 15)? 3sin(z — 15) —1—3(z — 35)
- 2 2 2

As shown in Fig. 1, the 3 groups are well separated and present different shapes:
cluster 1 (red) can be described with a function of degree 2 because has a parabolic
shape, cluster 2 (green) has a sinusoidal shape while cluster 3 (black) can be
described with a straight line.

To fit these models a standard EM algorithm has been implemented in R Code
(R Core Team, 2011).

The GAM (Fig. 2, left), is able to describe the cluster 1 (black) while cluster 2
and 3, as they are overlapped, cannot be described in a proper way and it is quite
evident the need to consider a mixture models. The GAM-MIX (Fig. 2, right), on
the other hand, turns out to be excessively flexible and unable to describe correctly
the shape of each cluster: the excessive flexibility of such class of models can
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sometimes be a negative element, because if the fitting is not adequately controlled
during the EM algorithm the risks is to converge towards local minimum points.
One concrete possibility is to adopt a new strategy to fit the model controlling its
flexibility.

The original idea that will be discussed plans to estimate a less flexible model for
the first steps of the EM, at least until the clusters have been identified and in a
second time it is possible to increase its flexibility to improve the fitting and to
better capture local behaviors.

It immediate to notice how the LIN-CWM (Fig. 3) is able to separate the clusters.
However, this model well describes the cluster 1 while seems not be able to capture
local behaviors of cluster 2 and 3. Although the clusters have been properly
outlined, these components cannot be described with a linear model; for this
purpose we propose the GAM-CWM that should be enough flexible to identify
and describe accurately the shape of each cluster.
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Figure 1: Scatter plot of generated data. Cluster 1 in black, cluster 2 in red, cluster 3 in green.
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Figure 2: Estimated relationship for GAM and GAM-MIX.
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Figure 3: Estimated relationship for LIN-CWM.
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3. Smooth functions and Generalized Additive Models

Lets consider the following model for the i-th observation (i =1, ...,n):

yi = fx) + e (1)
where y; is the response variable, x; a covariate, ¢; ~ N(0,0%) and f(-) a function
with support S € R to be defined in order to obtain a linear model. A common
approach to define f(-) is to define linear combinations of a set of suitable functions
called basis. Let b;(x) the j-th basis function. The function f(-) can be defined
as

H
flx) = bi(z)B (2)
§=0
where 3 = (S, ..., Sy) are parameters to be estimated, by(z) = 1 (in order to
consider the intercept [3y) and H is the basis dimension. For example if f(x)
is believed to be a 3rd order polynomial, a polynomial basis for the space can
be defined setting by(z) = 1, bi(z) = z, by(x) = 2%, b3(x) = 23 then f(z) =
Z?:o bj(2)B; = Bo+xB1 +2%B2+2°B5 and the model (1) become y; = By + ;51 +
x2P9 + 2333 + €¢;. Cubic splines are an important class of splines composed by
several sections of cubic polynomials joined together with continuous the first and
the second derivatives. The points at which sections join are called knots of the
spline. Polynomial basis are generally useful in the neighborhood of a specified
point of the domain of the covariate but if the interest is in the whole domain
these basis may have some problem (Wood, 2006, ch. 3, p. 120-126; Wahba, G.
1990). Once the basis has been defined the model design matrix (a n x H matrix)
become

1 bl(l’l) bH<I'1)
Xp=1]1 : : :
The model (1) can be estimated minimizing 3" (f(x;) — y;)* using the least
squares approach but in this way is not possible to control the degree of model’s

smoothing. Usually, to control the degree of smoothing, a penalized regression
splines can be used to fit the model minimizing

g — XuBIP + A / J (0)de (3)

where s is the support of f(-) and A controls the trade off between model fit and
model smoothness (Fig. 4) that can be estimated with cross validation techniques.
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The extension of model (1) with p explanatory variables X = [1,x, ..., x,] leads
to an additive model that can be defined as

yi = filwi) + fa(@as) + o+ folops) + & (4)

= Y filw) + e
j=1

where f;(-) is the smooth function referred to z; and ¢ ~ N(0,0%). Supposing
that the basis dimension H is fixed for all the p covariates then the vector of
parameters become 3 = (84, B, ..., 8,) with dimension (1 x Hp).

As explained before, the estimation can be performed extending (3) in the case
with more than one explicative variable

p
ly =Xl + D% [ £ do 6)
=1 7%
where the design matrix now become a (n x Hp) matrix defined as

XI:[XLH Xj,H Xp,H]

with X, g the j-th model matrix referred to z; given a basis.

Generally, model (4) is not an identifiable model, unless each smooth is subject
to a centering constraint 1'X ; z3, = 0.

Finally, if the response variable comes from an exponential family distribution the
theory of generalized additive models follows from additive models as generalized
linear models follow from linear models, then the linear predictor >°*_, f;(z;.)
predicts some known smooth monotonic function of the expected value of the
response.
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Figure 4: Examples of penalized regression spline with four different values of the smoothing
parameter .
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4. Generalized Additive Cluster Weighted Model

In this section we define the GAM-CWM model. Let X is a n X p matrix of fixed
covariates and Y is a response variable belonging to exponential family, with joint
probability distribution p(x,y). Suppose that € can be partitioned into G disjoint
groups (€21, ..., Q) such that @ = Q;U...UQg. CWM models the joint probability
p(x,y) as follows:

Zp (yl@, 2)p(@|y)7, (6)

where p(y|z, €,) is the conditional den31ty of the response Y given the predictors
X and Qg, p(x|Qy) is the probability density of X = x given Q, and 7, = p(£,)
are the mixing weights of €2, so that 7, > 0 and Zngl 7y = 1 and finally 0 is the
set of all parameters in the model.

Lets focus now the attention on the conditional part of the model p(y|x,$,)
where the GAM models are involved. In order to deal with various response types
we assume that p(y|x, (2,) belongs to the exponential family. A monotone and
differentiable link function h(-) is introduced to relate p, = E(y|z, ;) to the
covariates through the relation

h(pg) = frg(w) + ..+ frg(zp)

= ij,g<xj)

We recall that f; ,(z;) depends on g because in the group g

H
o) =) bu(x;)Bhng
h=1

The interest is in the parameters 8 so that the distribution of Y| X = x,Q, will
be denoted with ¢(y|x, B, (;) where the parameter ¢, is an additional parameter
to take into account when a distribution from a two-parameter exponential family
is considered. Then, the generalized additive CWM can be defined as

G
Zq y|:c ﬂg7Cg (a:|¢g)ﬂ-9
g=1

Note that the marginal distribution of X, that depends on the type of the covari-
ates involved in the model, is generally indicated with p(z|tp,), where 1, include
all the unknown parameters that have to be estimated.
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In case of classification problem the posterior probability belonging to the g-th
group can be calculated with the maximum posterior probability as

p(x.y, Q) 4 (ylz, By ¢o) p(2|9,)m,
p(m7y) 25:1(] (y‘a:ngan) p(a:\z,bg)ﬂg

p(Qg|£B,y) =

5. Model Estimation

Given a sample of size n the model can be estimated with EM algorithm (Dempster
et al., 1977) to maximize the global log-likelihood function in order to obtain
maximum likelihood estimates for the unknown parameters. By controlling for
the basis dimension during the EM algorithm, it is possible to avoid the problem
that arises in Fig. 2 (right), and as highlighted before, the concept of deviance
decomposition is particularly useful for this purpose. The structure of the EM
is not different from the standard implementation, because the term adaptive is
referred to the value H (2) which determines only the size of the basis. Then we
describe in this section the EM algorithm on the iteration (k + 1) and in section
6 how control the modification of this value during EM.

Let z; a G-dimensional component label vector where the j-th element z;, is one
or zero if respectively the mixture component of (x;, ;)" is equal to j or not. The
log-likelihood for the defined model fixed G (the number of groups) is:

W) = Z Z zig In(mg) +

i=1 g=1

+ 0N zgIn (q(uilzi By, G)) + (7)

i=1 g=1

n G
+ D> mgn (pily,))

i=1 g=1

On the iteration (k + 1), the E-step requires the calculation of the conditional
expectation of the random variable Z;, related to each z;, given the augmented
data sample {(x1,v1,21), ..., (T, Yn, 2n)}. In particular, for i = 1,...,n and g =
1,...,G it follows that

ez B, 6 p(@il,)
By [Zig(i, yi)] = RO TG (8)
Zgzl Tg Q(yi’xin@g NG )p(wi’/l/)g)

= Tig
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which corresponds to the posterior probability that the observation («;, y;) belongs
to the g-th component of the mixture given the current 8% = (ﬂ(’“), ¢k, ¢(k)).
During the M-step, on the iteration (k4 1), the conditional expectation of 1(8*))
given the observed data is maximized with respect to 6.

n G
Q:;0%) = >3 "7V In(r,) + (9)

i=1 g—1

ZZ yz’wzn@g:Cg))

i=1 g=1

G
Z Y (p(ailap,)) +

n

=

The maximization of Q(6; B(k)) with respect to the mixture weights is standard
and can be obtained with Lagrangian multipliers as well as for the parameters v,

(Ingrassia et al., 2015). Finally, the maximization of Q(8; 0(1‘3)) with respect to 3,
and (, is equivalent to the maximization problem of a generalized additive model,
with the only dlfference that each observation contributed to the log-likelihood
with a known weight 7‘ ) (Wood, 2017, ch. 3).

5.1. Other computational details

Code for the EM has written in R (R Development Core Team, 2011) while the
GAM within each mixture component the function gam() of R package mgcv has
been used. Main computational issues involve the initialization of parameters for
the first step and the definition of a convergence criterion to stop the procedure.

e EM initialization: a standard initialization for EM is to defining starting
values for the unknown vector of parameters ¢». However, another approach
(McLachlan and Peel, 2000; Punzo 2012) is to specify the values of z,, for all
the observation. A random initialization can be repeated many times from

different random position selecting at the end the estimates that maximize
the log-likelihood (Leisch, 2004).

e Convergence criterion: Aitken acceleration (Aitken, 1927) can be involved
to take a decision about the convergence of the algorithm. It estimates the
asymptotic maximum of the log-likelihood at each iteration:

(k1) _ (k)

(h) —
1F) — [(-1)

a
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where [(%) is the log-likelihood value at iteration k. The asymptotic estimate
of the likelihood (Bohning et al., 1994) at iteration k + 1 is given by

[(k+1) (k)

(k+1) _ gk) &~ =07
IS M+ ot

In following simulations we stop the EM if () ) < ¢ = 0.05.

e Model selection: among different model selection criteria we consider the
Bayesian Information Criteria (BIC, Shwarz, 1978) and the Integrated Com-
plete Likelihood (ICL, Biernacki et al., 2000). In mixture models the BIC
as a model selection criterion has been proposed by Disgupta and Riftery,
1998 and is defined as:

~

BIC =2l(1) — nln(n)

where 7 is the number of free parameters included into the model. The ICL
can be approximated by

n G
ICL~BIC+ ) Y MAP(%4)In(2)

i=1 g=1

where
MAP — 1 max{zi?} occurs in component g
0 otherwise

6. Three way deviance decomposition and C-index

In this section we discuss a method that let to control the flexibility of the GAM-
CWM during EM to avoid some situations such as those described in section 2
and at the same time we investigate how some indices (in particular the C-index)
can be useful to evaluate the results from a clustering point of view.

6.1. Three way deviance decomposition

Although in penalized spline regression it is possible to control the degree of
smoothing of the model with the parameter A\ (see (5)) this is not enough when
a GAM is included into a mixture component because it is necessary to control
another important quantity that is the basis dimension (see the value H in (2)).
The idea is that the value H can gradually (or directed) be increased during the
EM algorithm described before, allowing the model to adapt to the clusters in the
data. Controlling the variance decomposition, it is possible to take a decision if
it is the time to increase the size of the basis.
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Let 2 z *) the value of zzg at the step k of EM algorithm; the total sum of squares of y

at step k, say TSS® . can be decomposed in the sum of two component: W.SS®)
represents the within-groups deviance, while the BSS®) is the between-groups
deviance:

TSS® = i (vi — )
=1 § .
= Z Z 2y (v —9)" + > 2y (0, —9)”

=1 g=1 i=1 g=1

= WSSk + BgSk

where ®
g o Zz 1 A'Lg yZ

g n ~(k

Z (k)

i=1“ig
n
_ D i1 Yi

Y
n

NG
Denoting with ,3; : the vector of estimates at step k and h(p,) the link function,
the WSS™®) term can be decomposed again as

WSS = 3734 [ ) + 1] 5

an gG1 n G 9
= D> >4 [yi— /ng} YD 2 5[ i) yg}
i=1 g=1 i=1 g=1

= WSS +wss®

Summarizing, the total variability of Y can be explained by the latent group
variable in BSS and the withing-group sum of squares W SS. In turn, the WSS
can be decomposed into WSSy predictable from the covariates and WSS, not
predictable from the covariates:
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rss® = 3 (wi-y)

=1

n G
= D A -9

i=1 g=1

n G 9
~(k k
DI AEIT)
i=1 g=1
n G 9
~(k k _
+ Z Z Zi(g) |:h‘<:u’§,g)) o y9i|

i=1 g=1

The EM algorithm can be initialized with a low size of the basis dimension say H
and let k* the step of the EM algorithm where |[BSS®*") — BSS*" ~1)| < ¢ (e fixed
sufficiently small). If this condition is verified, it means that the BS.S is stabilized
and the clusters have been identified by the model, because the between-group
deviance does not change yet over the iterations. At this point, it is possible
to increase the size of the basis to a new value H; > Hj so that the model can
specialize on the identified clusters and describe better local behaviors. An idea
of this process is explained in Fig. 5 where it is possible to see that when BSS is
stabilized around the 18th iteration (Fig. 5, column 3) is possible to increase the
flexibility of the model on the detected clusters.
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6.2. C-Index to measure clusters compactness
Many indices to measure different cluster’s behaviors have been developed; we
investigate now, how a global index that describes the quality of clustering can
be used operatively in the presented framework. Among these indices we selected
the C-index (Hubert and Schultz, 1976), that is based on the Euclidean distances
between the pairs of points inside each cluster. Let n, the number of observation
classified in the cluster g, in which there are ny(n, — 1)/2 pairs of distinct points.
Let Ny the number of such pairs (Ny = ZgG:l W ) and let Np =n(n—1)/2
the total number of pairs of distinct points in the whole data set. The C-index is
defined as

S — Shin
Smaa: - szn
where S is the sum of the Ny, distances between all pairs of points inside each
cluster, S,,;, is the sum of the Ny, smallest distances between all the Ny pairs of
points and finally S, is the sum of the Ny, largest distances between all the Ny
pairs of points.
The index is limited to the interval [0, 1] and should be minimized in order to
obtain compact clusters. In Fig. 6 are calculated the values of C-index varying
the assignment of the observations to the clusters.
Obviously, this index can be calculated considering the entire vector (Y, X)) of the
covariates and the outcome (say C'xy) but we can obtain also two C-indices: one
can describe the clusters from the point of view of the explicative covariates X
(say Cx) and the second from the point of view of the outcome variable Y (say

C = (10)

Cy). During the EM algorithm we can calculate C’g) and C)(/k) to evaluate how
evolves clusters compactness. Finally, this method can also be applied to compare
different models from a clustering point of view (Fig. 10).

Figure 6: C-index (C'x y) varying the assignment if the cluster.
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7. Illustrative examples

In this section we illustrate, through simulations and real applications, the behav-
iors of the proposed model.

7.1. Recalling the motivating example

Recalling the motivating example explained in section 2 it is immediately to ob-
serve (Fig. 7, right) as the GAM-CWM is able to capture local behaviors, in
particular the parabolic shape of cluster 2 (in red) and for the sinusoidal shape
of cluster 3 (in green). In Table 4 the BIC criterion shows that this model is
preferable compared to the LIN-CWM. However, at the same time, the three-way
deviance decomposition provides important information on how the models are
able to describe the clusters. In particular, the BSS is the same because the
three groups are well separated and in both cases clusters have been well iden-
tified. On the contrary, the within-group sum of squares is different, and the
difference is related to the better capacity of the GAM-CWM to capture local
behaviors, bringing an improvement of the 60% in terms of WSS, with respect
to the LIN-CWM.

In Fig. 8 are plotted the smooth functions f,(z) estimated for each cluster and
it is easy to recognize in the shape of these functions the functional relationship
between x and y.

In Fig. 9 it is visualized the variation of the quantities that make up the T'S.S
during the estimation algorithm. For LIN-CWM the EM converges around iter-
ation 20. For GAM-CWM (Fig. 9, below) the estimation process starts with an
upper bound of basis dimension fixed to Hy = 3. Once the BSS stabilizes the
upper bound is increased to H; = 10, allowing the WSS} to increase.

Some empirical tests suggest starting the algorithm with a low upper bound (Hy =
3 or Hy = 4) and then to increase it to a higher value. Finally, in Fig. 10 the
evolution of C-index is plotted during the EM algorithm for the three models.
Clearly the CWM reaches the minimum value possible of Cx and Cy while the
mixture of GAM does not detect the clusters.
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Table 4: Main descriptive statistics.

’ Measure \ LIN-CWM \ GAM-CWM ‘

LogLik
BIC
TSS
BSS
WSS

WSSy
WSS,

-3 529.28

-7 148.13

73 855.62
85.28%
14.72%
7.32%
7.40%

-3 325.49

-6 894.07

73 855.62
85.27%
14.73%
11.38%
3.31%

Table 5: Coefficients of GAM-CWM by cluster.

’ Coefficient \ Cluster 1 \ Cluster 2 \ Cluster 3 ‘

Bo 32.39 [ -163.42 | 4 946.79
Brg -0.75 14.67 | -302.34
Barg -0.4 -107.49 | 683.08
Bs.g 3.6 2491 | -637.81
Big -0.35 -114.81 | 810.77
Bs.4 1.63 -69.87 | 163.24
Bo.g -0.75 -120.8 | 1074.72
Brg -2.93 -63.62 | 2317.13
Bs.q -8.43 -15.31 | 33489
Bo.g -9.92 -6.95 | 1282.37
1o, -11.1 129.21 | -7 052.58
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Figure 9: Three-way deviance decomposition for LIN-CWM and GAM-CWM. The BSS is the
same for both models, while WSSy of GAM-CWM is major than LIN-CWM, because GAM
components are able to better describe local behaviors with respect to LIN-CWM. The vertical
line in GAM-CWM it is in correspondence of the iteration of EM algorithm where the upper

bound of the basis dimension increases (from 3 to 10).
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7.2. Artificial data simulation to compare GAM miztures

An artificial data simulation has been considered to compare three different mix-
ture models: a GAM-CWM with the basis dimension fixed to three (H = 3), an
adaptive GAM-CWM (with Hy = 3 and H; = 10) and finally a LIN-CWM.

The process to generate data is described in Table 6. Cluster 1 (red) and cluster
3 (green) have a parabolic shape, while cluster 2 (black) has a sinusoidal shape.
In Table 7 are synthesized the main measures to compare different models while
in Table 8 are explained the true classification rates. In Fig. 11 are plotted the
scatter plots and the estimated models varying the number of groups.

As can be seen in Fig. 11 (3rd column), the clusters are well identified in all the
three cases. We observe how the GAM-CWM is better suited to the data than the
model LIN-CWM. The three way deviance decomposition (Fig. 12, 3rd column)
shows a very similar profile for the GAM with the basis dimension fixed to 3 and
for the adaptive GAM where the basis dimension, after the stabilization of BSS
if fixed to 10. The WSSy is not different between these two models, meaning that
the part of the deviance explained by the fitted models is similar (62.12% and
62.22%). On the contrary the LIN-CWM, as expected from the Fig. 11 (right,
below), explains a lower quote of the WSS, (58.54%).

It is also interesting to note the behaviors of the models estimated with a smaller
number of clusters, in particular those with 2 clusters. In this case both GAMs
are able to explain a greater share of variability within data; the WSS, of GAM-
CWM explains respectively 43.70% and 47.66% of T'SS while the LIN-CWM only
8.48%.

It is straightforward to observe that according to the BIC criterion (Table 7) the
best performing model is the adaptive GAM-CWM.

Finally is interesting to see how the true classification rates are very high for all
the three estimated models.

Table 6: Parameter’s definition for the artificial data simulation.

Parameter Cluster 1 (red) Cluster 2 (black) Cluster 3 (green)
n 500 500 500
1 1 1
T 3 3 3
X Unif (15, 30) N(15,0 = 3) Unif(15,30)
fi(z) 20 + 2(z — 15)? + € | 200 + 10 sin(x — 25) + ¢ | 400 — (z — 15)? + €
€ N(0,0 = 10) N(0,0 = 10) N(0,0 = 10)
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Table 7: Main statistics about the simulation.

46

Model ‘ Measure ‘ g=1 g=72 g=3
LoglLik -13 716.9 -12 798.48 -11 455.47
BIC -27 470.37 -25 677.4 -23 035.27
TSS 1791 5271.64 | 17 915 271.64 | 17 915 271.64
Fixed GAM-CWM BSS 0% 35.35% 36.83%
WSS 100% 64.65% 63.17%
WSS 10.11% 43.70% 62.12%
WSS, 89.73% 20.91% 1.04%
LoglLik -13 716.32 -12 668.14 -11 331.49
BIC -27 520.41 -25 519.12 -22 940.89
TSS 17 915 271.64 | 17 915 271.64 | 17 915 271.64
Adaptive GAM-CWM BSS 0% 35.85% 36.88%
WSS 100% 64.15% 63.12%
WSS 9.87% 47.66% 62.22%
WSS, 89.66% 16.12% 0.87%
LoglLik -13 729.5 -13 507.56 -12 312.5
BIC -27 488.25 -27 080.94 -24 727.39
TSS 17 915 271.64 | 17 915 271.64 | 17 915 271.64
LIN-CWM BSS 0% 54.54% 36.32%
WSS 100% 45.46% 63.68%
WSS 8.75% 8.48% 58.54%
WSS, 91.25% 36.98% 5.14%

Table &: True classification rates.

Model TCR
GAM-CWM 0.980
Flexible GAM-CWM | 0.986
LIN-CWM 0.969
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7.8. Monthly Energy Consumption by Sector

This application focuses on monthly data available from January 1973 to Febru-
ary 2018 on U.S. primary and total energy consumption by sector (residential,
commercial, industrial and transportation). The energy consumption is measured
in BTU (British Thermal Unit). In this application a GAM-CWM is estimated
considering as response variable the total electric consumption in transportation
sector (say y) and the industrial consumption is taken as covariate (say z).
Graphical descriptive statistics are available in Fig. 13 and Fig. 14. The growing
consumer demand in transportation is quite evident from 1980 to 2008 while the
industrial consumption shows a slight deflection starting from the year 2000, with
an evident negative peak in correspondence of the global crisis of during 2008-
2010. The scatter plot in Fig. 14 shows the data considered to estimate the
GAM-CWM with cubic regression splines components.

Figure 13: Monthly energy consumption in transportation and industry from 1973 to 2018.
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We consider both the case with two clusters and three clusters, as three clusters are
selected according to the BIC criterion while the ICL suggests choosing 2 groups
(Table 9). The three way deviance decomposition (Fig. 15) and the evolution of
C-index during the EM algorithm (Fig. 16) show that the clusters are separated
along the y-axis and consequently the BSS is very high compared to the W §SS.
The BSS of the model with three groups is about 10% higher than the model
with two groups (Table 10).
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Figure 14: Scatter plot of monthly observations of industry and transportation consumption.
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The C-index of the model with 3 groups has a lower value (Cxy = 0.4) with
respect to the model with 2 groups (Cx = 0.45), therefore we can conclude that
the clusters identified by the model with 3 groups are more compact from the
point of view of z-axis.

This index, together with BIC, allows to justify the choice to consider three groups
instead of two.

Finally, in Table 11 are summarized the coefficients estimated from the model
with H; = 10 while in Fig. 17 we can see the estimated relation between x and y
from January 1973 to February 2018 with 2 and 3 groups.

From an econometric point of view it seems reasonable to consider 3 groups, as
at the same levels of industrial consumption, consumption in transports shows 3
patterns at 3 different levels. In Fig. 18 we can appreciate how each cluster is
related to a specific historic period: cluster 2 (in red) it is between 1973 and 1990,
cluster 1 (in black) between 1990 and 2000 while cluster 3 (in green) between
2000 and 2018. Moreover, it is interesting to note that in the cluster green (which
represents the most recent years) in correspondence with high levels of energy
consumption in the industrial sector corresponds to a decrease in consumption
in the transport sector. We could interpret this decrease as the result of policies
aimed to reduce the environmental impact and to increase the use of efficient
means of transport.
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Figure 15: Three way deviance decomposition evolution during EM convergence of the model
with two groups (on the left) and the model with three groups (on the right). The clusters are
well separated with respect to the outcome so that the BSS is very high compared to the WSS.
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Figure 16: C-index evolution during EM with three different initialization. The paths are
different but as we can see, at the convergence of EM the clusters have the same structure. On
the left the model with 2 groups, on the right the model with 3. As expected from the scatter
plot and from the three way deviance decomposition the clusters are separated along the y-axis
and then the evolution of C-index highlights this aspect.
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Table 9: BIC and ICL varying the number of groups.

’ Number of groups \ BIC ICL
1 -14 888.8 -14 888.8
2 -14 723.64 | -14 735.34
3 -14 714.73 | -14 750.05
4 -14 790.88 | -14 827.61
5 -14 841.49 | -14 939.33

Table 10: Three-way deviance decomposition with two and three groups.

’Metric\ 2 groups \ 3 groups ‘

TSS | 47 404 508 | 47 404 508
BSS | 76.61% | 86.46%
WSS | 23.39% | 13.54%
WSS, | 5.77% 1.05%
WSS, | 17.21% 9.31%

Table 11: Coefficients of GAM-CWM with three groups.

’ Coeflicient \ Cluster 1 \ Cluster 2 \ Cluster 3 ‘

Bo 1902.87 | 1642.79 | 2245.66
Big -80.63 57.95 -64.08
Bag -60.43 21.91 -37.34
Ba g -24.99 36.33 26.74
Bag -13.9 25.64 49.45
Bs.q 3.61 43.55 79.78
Bo.q 20.72 54.34 94.64
Brq 68.1 52.42 63.25
Bs.g 153.88 87.29 -36.13
Bo.g 273.55 | 105.36 | -31.26
B1o,9 -11.1 129.21 | -7052.58
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Figure 17: Marginal density of x on top and the estimated relation for each cluster with two
and three groups (respectively on the left and on the right).
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Figure 18: Transportation and industrial consumption during time with the clusters highlighted
from the model.
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8. Concluding remarks

An extension of the CWM model has been developed in order to deal with complex
and non linear relationship between outcome and covariates within each mixture
component introducing a GAM. The model has been introduced in terms of den-
sity estimation and applied to simulated and real data. Parameters estimation
can be achieved with a modification of EM algorithm introducing the three way
deviance decomposition as key instrument to avoid the convergence towards local
minimum and to choose when the model can specialize on data in order to capture
local behaviors. The applications on real and artificial data set show a clear added
value in terms of classification and interpretation of the results.

Regarding future research we will focus in some directions. First of all it is impor-
tant to identify appropriate fields of application where this methodology can be
applied for example in the environmental field where the presence of latent factor
and the need to develop flexible models are combined together. Moreover, it is
opportune to examine the theme of the choice of the sensitivity of the model and
at the same time evaluating the applicability of these models in the presence of
large number of covariates.
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Abstract

An extension of mixture models with random covariates related to the linear Clus-
ter Weighted Model (CWM) is presented for model-based clustering applications.
Beta regression is the standard approach to model a dependent variable with the
range in the unit interval [0, 1]. However, in some situations, a problem that could
arise is a direct consequence of the flexibility of the beta distribution. When it is
considered as a mixture component in a mixture model, it may be too flexible due
to the great variety of shapes (including multi-modal shapes) that can assume so
that it may be difficult to understand easily the real meaning of each component.
In this paper we developed an extension of the beta mixture models focusing on
the subset of unimodal beta distributions, with the aim of improving the inter-
pretation of each mixture component and then identifying better the respective
cluster in the population. Estimation is performed via maximum likelihood with
EM algorithm. Finally, with simulated and real data we investigate the perfor-
mances, limits and benefits comparing this model with other models related to
it.

Keywords: Mixture Models, Model-based Clustering, EM Algorithm, Beta
Distribution, Beta Regression, Cluster Weighted Model.

1. Introduction

Most of work published in the context of mixtures of distributions is related
to mixtures of normal densities to approximate a continuous distribution with
support S = R (McLachlan and Peel, 2000). However, this approach could not
be adequate if S C R due to the fact that we are allocating a probability mass
outside the support S; this problem is commonly called boundary bias.

In this work we are interested in situations where the data have support in the
standard unit interval [0,1] and for this reason a reasonable flexible family of
distributions that can be considered with support S € [0, 1] are the beta densities.
At the same time, we are interested in mixture models, where the aim is to capture
the effect of latent factors. In such class of models, the observations are assumed
to arise from unobserved groups in the population and the purpose of the analysis
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is to provide an estimate of the unknown parameters. However, a possible problem
that could arise in this context is a direct consequence of flexibility of the beta
distribution. When it is incorporated in a mixture component, if the estimated
model includes multi-modal shapes, it may be difficult to understand easily the
real meaning of each component, especially if each mixture component represent a
cluster in the population that generates observed data. For these reasons mixtures
of unimodal beta distributions have been developed (Bagnato and Punzo, 2012) to
overcome this problem and some applications are presented in Dean and Nugent,
2013 explaining the practical benefits of this approach.

In a regression application the problem highlighted above in the context of mix-
tures of distributions is the same. First of all we would like to avoid the usual
practice to perform a regression analysis where the dependent variable Y assumes
values in the standard unit interval transforming the response in such a way that
it takes values in the real line, and then apply a linear regression analysis (for
example applying to Y the logit transformation where Y,z = log (Y/(1 —Y))).
This approach, indeed, presents some problems (Ferrari et al., 2004), in particu-
lar: (1) distribution of rates and proportions are (generally) asymmetric so that
Gaussian approximations for interval estimation are not suitable; (2) regressions
coefficients are related to the mean of Y, and not to the mean of Y, (3) this
type of data are typically heteroskedastic. To overcome these problems a new
class of a regression models called beta regression has been proposed based on
the assumption that the response variable is beta distributed. One of the main
advantages of beta regression models is that parameters can be interpreted in
terms of the mean of Y and the model is naturally heteroskedastic.

Clearly, the beta regression model can be included in each mixture component
(Verkuilen et al., 2012, Grun et al., 2012) to take into account such heterogeneity
present in the data.

Motivated by these considerations we define, in the regression context, a new class
of mixture of regression models including unimodal beta densities as a reference
distributions instead of the more general class of general beta densities with the
aim of bringing the benefits of this parameterization also in the context of re-
gression. The developed methodology finds applications every time the variable
of interest takes values in the standard unit interval [0, 1], such as concentration
indices, proportions and rates in presence of unobserved heterogeneity (Barreto-
Souza and Simas, 2017; Huerta et al., 2018).

The reparameterized beta regression model can be applied as an alternative ap-
proach with respect to the standard beta regression and can be included in a
mixture model with reparameterized beta regression components.

In particular, in this work we are interested in the development of an eminent
member of the class of regression models with random covariates called Cluster
Weighted Model (CWM, Ingrassia et al., 2012) which recently becomes popular in
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statistics and data mining. In CWM the innovative approach consists in modeling
the joint probability of data rather than the conditional as in classical mixtures of
regressions: taking into account for the joint distribution of the response and the
covariates has been shown how the CWM represents an improvement both from
the point of view of the interpretation of the parameters and from the point of view
of the interpretation of the clusters with respect to the classical mixtures where
only the conditional density is modeled (McLachlan and Basford, 1998). Several
extensions and examples of CWM have been proposed in literature, including the
generalized CWM (Ingrassia et al., 2015), CWM with factor analyzer (Subedi et
al., 2013; Subedi et al., 2015) and the CWM beta regression (Nieddu and Vitiello,
2014).

In Table 1 is synthesized the general context where can be contextualized the
proposed model with pros and cons of each approach.

The work is organized as follows. In Sect. 2 motivating examples help to con-
textualize the approach proposed from a qualitative point of view, in Sect. 3
the model is defined. The EM algorithm for estimation of unknown parameter
with some computational details is explained in Sect. 4 and 5 while in Sect. 6
applications with simulated and real data are presented.
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Table 1: Summary of the methodological context.

Model

Pros

Cons

Beta regression
(Ferrari et al., 2004)

- Support of variable
of interest in [0, 1].

- Inadequate in cases
of heterogeneous
data.

Mixtures of beta
regressions
(Verkuilen et al.,
2012,

Grun et al., 2012)

- Support of variable
of interest in [0, 1].

- Adequate in case of
heterogeneous data.

- The wide flexibility
of beta distribution
could results in
multi-modal shapes,
making difficult the
interpretation of the
identified clusters.

Linear CWM - Flexible and - Support of variable
(Ingrassia et al., powerful mixture of interest in R.
2012) models. - Data transformation
- Adequate in case of | is required to treat
heterogeneous data. data in [0, 1].
Beta CWM - Flexible and - The wide flexibility

(Nieddu et al., 2014)

powerful mixture
models.

- Adequate in case of
heterogeneous data.

of beta distribution
could results in
multi-modal shapes,
making difficult the
interpretation of the
identified clusters.

Reparameterized beta
CWM

- Flexible and
powerful mixture
models with support
of variable of interest
in [0, 1].

- Adequate in case of
heterogeneous data.

61
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2. Motivating examples

In this section two motivating examples are provided before introducing the pro-
posed model from a theoretical point of view. We start with a mixture of distribu-
tions that shows the improvement brought by the use of a unimodal distribution,
while in the second example the same arguments are applied in the regression
context.

2.1. Miztures of reparameterized beta distributions

The first example consists in four simulations from a mixture of distributions. In
such type of applications, it is generally assumed that a vector of independent
and identically distributed @ = (x4, ..., z,) is sampled from a random variable X
with density f(z). Suppose that we have G latent groups, where each group is
represented by a mixture component f(z;0,) depending on a vector of unknown
parameter €,. The marginal density of X can be generally defined as

G
f(z) = Zﬂgf(IQ 6,)

where Zngl 7y = 1 and m, > 0. If the support of X is compact such that
X € [p,q], (p >0, ¢ > 0) the beta density is a very flexible family of distributions
that can be considered in such kind of applications which can assume a lot of
different shapes varying the parameter’s values. The beta density in each mixture
component, in the standard parameterization, is given by

f(x p ’q — —x(pg_l)(l _ m)(q!}_l) 1
‘ g 9) B(pg7Qg) ( )
where B(p,q) = %, I'(.) is the gamma function, p, > 0 and ¢, > 0; the
expected value and the mode are respectively
Py
Ey(X)=—""—
7(X) ——
pg -1
Modes(X) = ———
! Py +qg —2

From the standard theory if p, > 1 and ¢, > 1 the distribution (1) is unimodal
and the contrary if p, < 1 and ¢, < 1. In Fig. 1 are shown different shapes of
beta distribution varying the values of p, and g,.

The central point, is that it is possible to reparametrize the distribution (1) in
order to obtain a new family of unimodal beta distributions. This new fam-
ily is a subset of beta density depending on two parameters. The unimodal-
reparameterized beta distribution is given by
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xm/v(l _ x)(l—m)/v

fren(alm. v) = o STy 2)
m = —p -1
pt+q—2
. 1
ptq—2

where m € [0, 1] represents the mode and v the concentration around the mode
(Bagnato and Punzo, 2012). In Fig. 2 are shown different shapes of reparameter-
ized beta distribution.

Generally, in mixture analysis, it is assumed that each mixture component repre-
sents a cluster in the population. Therefore, the aim is to estimate the unknown
parameters in each mixture component in order to understand the mechanism that
generates the observed data. Thus, if the distribution f(z;6,) within a group g is
bimodal or (more generally) is not unimodal the interpretation of the component
as one-group cluster is not possible, making the interpretation of the single com-
ponent very difficult. For this reason unimodal component densities are generally
preferred in different kinds of applications (Dean, 2013).

Lets consider now the following simulation from a mixture with two components

f(z) = Zﬂgfrep(x5m97%> (3)

with n = 200 observations with parameters (mg, v,, 7,) synthesized in Table 2.
Data has been sampled from a unimodal beta mixture and we compare now the
parameter recovering with a mixture of reparameterized beta and a mixture of
beta showing how a mixture of beta presents some limitations in the identification
of the mixture components. In Table 3 and Table 4 are summarized the estimated
parameters while see Fig. 3 for graphical results. It is immediate to observe in
Fig. 3 how unimodal beta components are able to describe the mixture’s features
for all the four simulations while the standard parameterization provides a good
result only in simulation 2. Furthermore, abnormal behaviors for classical beta
mixture are present in simulations 1 and 4 where the model is not able to detect
the two clusters while in simulation 3 the first component can not capture the
behavior of the first cluster.



2 MOTIVATING EXAMPLES

Figure 1: Different shapes of beta densities (1) varying py and g¢q4.
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Table 2: Original parameters of a unimodal mixture model (3).

| Simulation | Mode (m) | Dispersion (v) | Weight () |

1

2
3
4

[0.05, 0.95]
[0.30, 0.70]
[0.20, 0.80]
[0.20, 0.80]

0.2,0.2]
0.2, 0.2|
0.1, 0.1]
0.1, 0.1]

[0.5, 0.5]
0.5, 0.5]
0.2, 0.8]
0.5, 0.5]

Table 3: Estimated parameters with a reparameterized beta mixture model (3).

| Simulation | Mode (m) | Dispersion (v) | Weight (r) |

1

2
3
4

[0.058, 0.935]
[0.236, 0.651]
[0.171, 0.796]
[0.172, 0.773)

[0.099, 0.232]
[0.038, 0.145]
[0.089, 0.096]
[0.055, 0.139)

[0.475, 0.524]
[0.383, 0.616]
[0.210, 0.789)
[0.455, 0.545]

Table 4: Estimated parameters with a beta mixture model (1).

| Simulation | p \ q | Weight (7) |
1 [0.664, ] [0.716, ] 1, 0]
2 [7.154, 5.492| | [20.904, 3.404| [0.4, 0.6]
3 [14.668, 1.256] | [4.319, 1.611] | [0.715, 0.285]
1 [1.280, -] [1.367, -] 1, 0]

65
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Figure 3: Graphical results of beta mixture (left) and a reparameterized beta mixture (right).
In red is traced the global density while in black the group-densities.
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2.2. Mizture of standard beta regressions

The same idea can be applied in the context of regression where a dependence
between Y (response variable) and X (covariate) is introduced. In this example
(without enter into details about the model) we consider the following mixture
models

G
flyle;0) = mof(ylz; 6,)

where the conditional distribution f(y|z;6,) is a beta regression model. In Table
4 are synthesized the original parameters for this simulation while in Fig. 5 is
easy to see how this model is not able to describe in a proper way the 2 clusters.

Figure 4: Original parameters if beta mixture regression.

| Cluster | Mode (my) | Dispersion (v,) | Weight (m,) | Covariate X |
1 0.2 0.05 0.5 N0, 1)
2 0.8 0.05 0.5 N(5,1)

Figure 5: Graphical results of estimated beta mixture model.
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3. CWM Definition

Let (X,Y) be a pair of a covariate vector X and Y a response variable defined
on some space €2, and assume that {2 can be partitioned into G groups G, ..., Gg.
CWM models the joint distribution p(x,y) of (X,Y) as a convex combination,
with weights 7y, ..., mg such that

G
p(x,y) = Z?Tgp(y|$=Qg)P(leg) (4)

where p(y|x, Q) is the conditional distribution of Y|z in the group g and p(x|,)
is the marginal distribution of X. Model (4) is the general specification of CWM.
This model represents a very general family of mixture models and moreover a
large class of mixture models can be generalized using (4) (Ingrassia et al., 2012;
Ingrassia et al., 2015; Mazza et al., 2018). Regarding the marginal distribution of
X if both discrete and continuous covariates are available the vector of covariates
can be written as X = (U,V), where U is a p-variate vector of continuous
covariates, and V is a ¢-variate vector of finite discrete covariates. Assuming
that U and V are locally independent (that is, they are independent within each
mixture component) model (4) can be written as

G
plxy) = Z map(y|x, ) p(2|y)

G
= Z mop(y|z, Qg)p(UW;)p(U; |‘/’3)
g=1

where p(uh/;é) is the marginal distribution of continuous covariates U depending
on a vector of unknown parameters '(p; and p(v; \1#3) is the marginal distribution of
discrete covariates V' in the g-th component. In case of classification problem, each
observation can be assigned to the group with the maximum posterior probability
calculated as

QO o _ p(w, Y, Qg) _ ng(y|a:, Qg)p<w|Qg)
P, y) p(z,y) ZgG:l map(ylx, Q)p(x|,)

forg=1,....G.

3.1. CWM with standard beta components

A first definition of the CWM with beta components can be found in Nieddu and
Vitiello, 2014. The beta density with support S = [0, 1] is defined as
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foeta(y5 0, q) = Cal g(p—’qy))q (5)

where Y € [0,1], p > 0, ¢ > 0 and B(.) is the beta function. If Y has density
defined in (5) then

p

pPq
(P+a)p+q+1)
A more useful parameterization (Ferrari and Cribari-Neto, 2004) can be obtained
by setting = p/(p+ q) and ¢ = p + ¢ in (5) leading to the following reparame-
terization:

Var(Y) =

['(¢) (1) (1-p)é—1)
y L=y 6
(-’ Y ©
where p € (0,1), ¢ > 0. With this parameterization if Y ~ Beta(u, ¢) then

Joeta(ys 11, ) = I

Efbeta (Y) = l’l’

]_ _
Vary,, (v) = M=)

(1+¢)

where p is the mean and ¢ is a dispersion parameter around the mean.
Given a set of covariates X and a random sample Y such that V;| X =x ~
Beta(p;, ¢), the beta regression is defined as

9(pi) = =8 (7)

where 3 = (B4, ..., Bx) is a vector of unknown regression coefficients and x; =
(i1, ..., 2) the vector of covariates. The function g(.) : (0,1) — R is the link
function, strictly increasing and twice differentiable such that u; = g~ (x;3).

As usual, maximizing the log likelihood function we obtain an estimate of the
vector of unknown parameters @ = (3, ¢). Including the density (6) in (4), the
beta CWM is defined, for the i-th observation, as

G

pCWM—beta(yia mz) = Z Trgfbeta(yi|wia :397 ¢g)p(uz|¢;)p(vu |¢£27) (8)

g=1
Also the dispersion parameter ¢ can be linked to the linear predictors defining a
function g;(¢;) = ;A strictly increasing and twice differentiable.



3 CWM DEFINITION 70

3.2. CWM with unimodal beta components

A general framework for univariate finite mixtures of densities with support Y €
[0, 00) parameterized in terms of modes and dispersion (around the mode) can be
found in Bagnato and Punzo, 2012. A finite mixture of distributions is defined as

G
fly;m,m,v) = Zﬂjfrep(% Mg, Vg)
g=1

where f,.,(-) is the unimodal component density belonging to a parametric family,
m = (myq,...,mg) the vector of modes and v = (vy,...,vg) is a vector of positive
parameters describing the concentration around the mode. Lets consider the
subclass of beta densities with support S = [0, 1] such that

m 1-—m

xv(l—x)
B(2+4+1,=241)

v

(9)

frep(y; m, U) -

where B(p,q) = %, m € [0,1] and v > 0.
Given the standard parameterization of beta distribution (1) it is possible to

obtain (9) according to the following transformation system:

—m — _p=1
71)_'—1 N m—p+q—2
:17m_|_1 v = 1

p+q—2

Since m € [0,1] and v > 0 the new parameterization coincides with (1) when
(p,q) € [1,00) x [1,00) and (p,q) # (1,1). Eq. (5) is unimodal if p > 1 and
q > 1, thus we are focusing on the subclass of unimodal beta densities, omitting
some shapes among which unlimited J-shaped, unlimited reverse J-shaped, the
U-shaped and the uniform density.

In order to obtain estimates (172, 0) for the unknown vector of parameters (m, v) is
possible to maximize numerically the following derivatives of log-likelihood func-
tion:

om

ol f(ym,v) %{[¢(“Tm+1)_¢(@+1)}+ (10)
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5lnf(§v;mav) _ %{{_¢<2“:1>}+ (11)
e ez
b o)~ (1 m) )

where 9(-) is the digamma function. If Y| X = x follows a reparameterized beta
distribution i.e. Y|X = & ~ Beta,e,(m;,v) than the unimodal beta regression
model can be defined, as explained before as

g(m:) = i3 (12)
Then, including the density (9) into (4) the CWM with unimodal beta component
is defined for the i-th observation as

G
Pew M—rep(Yi i) = Z T fren(YilTis By, Ug)p(uz‘W;)P(’Ui% W;) (13)
g=1

4. Maximum likelihood estimation (EM algorithm)

The model (13) can be estimated with EM algorithm (Dempster et al., 1977)
to maximize the log-likelihood function in order to obtain maximum likelihood
estimates for the unknown parameters. The likelihood once fixed the number of
components G is given by

n

G
L(g) = Z Zﬂgfrep(yi‘wiaﬁga ’Ug)p(uz’w;)p(lvw ”‘:bﬁ)

i=1 g=1

The complete log-likelihood for the defined model given the number of groups G
is:
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n G
10) = Y zgln(m) +

=1 g=1

n G
+ D zign (frep(yilei, By, vg)) + (14)

i=1 g=1

+ Z Z Zig In (p(uz|1p;))

i=1 g=1

n G
+ Z Z ZigIn (p(vz|¢3))

i=1 g=1

where z;, is the indicator variable that describes the individual membership to
the latent group, i.e. z;, = 1 if the individual ¢ belongs to the latent group g,
0 otherwise. On the iteration (k 4 1), the E-step requires the calculation of the
conditional expectation of the random variable Z;; related to each z;,, given the
augmented data sample {(x1,y1,21), ..., (Tn, Yn, 2n) }. It follows that

Eow [Zigl(®i, yi)] = i (15)
7 frep(il i, B, 08 )p(ui o) p(wy; |92 ®)
S 76 frep(wili, B 0§ ) p (i py ) p(ws: |12 *)
which corresponds to the posterior probability that the observation (z;, y;) belongs
to the g-th component of the mixture given the current %) = (ﬁ(’“)7 o) bk ,7/)2,(16)).

In the M-step, on the iteration (k4 1), the conditional expectation of (0™ given
the observed data is maximized with respect to 6. Let

ZZ ' In(r,) (16)

i=1 g=1

ZZ ln frep yl‘wlaﬁg7vg)) +
i=1 g=1

ZZ (p(wileby)) +

i=1 g=1

Z Z ; (k) ln vz|d)§))

i=1 g=1
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where TZ-(;) are the current expectation of z;, provided by (15). As the terms in (16)
have zero cross-derivatives, they can be maximized separately. The maximization
of Q(6; O(k)) with respect to the mixture weights is standard and can be obtained
with Lagrangian multipliers as well as for the parameters related to U and V
(Ingrassia et al., 2015). Finally, the maximization of Q(6; O(k)) with respect to

B, and v, is obtained solving the following equations:

n . 3
e :Zﬂwal” (ol B, 03)) —0
alg(k) — g alg(k)

n 1. 3K
al(e) :ZT(k)aln <f<y74’$z716g 7U9)> :O
u® ~ 2T N0

4.1. Computational details and initialization

Code for the EM has written in R (R Development Core Team, 2011). For the
conditional part Y| X = x with classical beta the function betareg() of R package
betareg (available on CRAN) has been used. The computational issues to discuss
involve the initialization of parameters and the definition of a convergence criterion
to stop the procedure.

A standard initialization for EM plans to randomly defining starting values for the
unknown vector of parameters 1. However, a possible approach (McLachlan and
Peel, 2000; Punzo, 2012) is to specify the values of z;, for all the observations. A
random initialization can be repeated many times from different random positions
selecting at the end the estimates that maximize the log-likelihood (Leisch, 2004).

4.2. Convergence criterion

Aitken acceleration (Aitken, 1926) can be used to make a decision about the
convergence of the algorithm. It estimates the asymptotic maximum of the log-
likelihood at each iteration:

J+1) (k)

L
[(k) — [(k—1)

alk) =

where {®) is the log-likelihood value at iteration k. The asymptotic estimate of
the likelihood (Bohning et al., 1994) at iteration k + 1 is given by
k+1) _ (k)
[(k+1) — (k) u
o0 1 —ak®

By default, in following simulations we stop the EM if I —1® < ¢ = 0.05
(McNicholas, 2010; Punzo, 2012).
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5. A simulation study

Monte Carlo simulations have been conducted to investigate parameters recovery
of the EM algorithm. The aim of this analysis is to check whether the EM algo-
rithm is able to recover the generating parameters, in particular if the mean of the
estimates across replications is statistically significantly different from the gener-
ating parameters. The variability of the estimates is another important quantity
to keep under control.

5.1. Design

Three different scenarios have been implemented varying the number of groups,
the number of observations and the relation between x and y in the linear predic-
tor. In order to analyze the impact of the number of observations n each scenario
is replicated with tho different sample size n = (500, 1000).

For each scenarios, and for each replication, the group membership z;, were ran-
domly generated from a multinomial distribution, while the values of x and y are
generating according to the parameters in Table 5.

The data have a very different configuration between scenarios (see Fig. 6); in
particular in scenario 1 data intersects to form a cross, in scenario 2 data are
unbalanced on the right tail of the distribution (see cluster black and green) while
in scenario 3 data are separated with respect to the covariate.

5.2. Measures for analysis

We consider the following quantities to measure the recovering of the originat-
ing parameters. The value R denotes the total number of replications, while g,
represent the estimated parameter for the replication » and [ the true parameter.

R

MSE(f) = [BJAS(B)] g %V(B)
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Figure 6: Example of a generated data with n = 1000 samples for each scenario.
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5.5. Resulls

Table 6, Table 7 and Table 8 report the results for scenarios 1, 2 and 3; within each
scenario the measures of BIAS, SV and MSE can be compared varying the cluster,
the number of observation and the relative parameter while in Fig. 7, Fig. 8 and
Fig. 9 the histograms of estimated values by cluster and by parameters explain
the variability of the estimates.

In all the considered simulations (1500 x 3 = 4500), convergence at the true
model was attained. In scenario 1 the BIAS and MSE are very low (practically
negligible) for all the estimated parameters and the histograms in Fig. 7 shows
how the estimate’s variability is low for all the parameters.

In scenario 2 (see Fig. 8), due to the configuration of the cluster 1 (green) the
parameters 5y and (5, show a magnitude of BIAS relatively higher than in scenario
1, due to the fact that the observations generated randomly at low values of z
make the estimation of the 2 parameters more variable; this fact is confirmed by
the histogram in Fig. 8 related to the parameter 3y in cluster 3 and (; in cluster
1. However, considering still the scenario 2, we note how in the conformation
of cluster 3, although similar to that of cluster 2, the values of BIAS are far
lower than in cluster 2 because at low values of x we have enough observations to
estimate more accurately the relationship between x and y.

Finally in scenario 3, as in scenario 1, there is no evidence of convergence problems.
Table 9 reports summary statistics about the true classification rates between the
simulations. We cannot compare directly the scenarios among them from the
point of view of cluster classification because they are characterized by a different
underlying overlap. However, for all the 3 scenarios, the true classification rates
are very high; it is interesting the impact of n that did not affect the mean of the
rates, and the std. dev. decreases as expected.
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Table 5: Simulation design parameters.
‘ Scenario ‘ Cluster ‘ Ty ‘ X g(my) ‘ v ‘
1 1 1/2 N(0,2) g(m;) =0+ 2z, 0.1
2 1/2 N(0,2) glm;) =0—1ux; 0.1
1 1/3 | Unif(0,10) gim;) =0+ 2z, 0.1
2 2 1/3 N(0,2) glm;) =-=5—1z; |0.1
3 1/3 N(15 2) glm;) =—=15+12z; | 0.1
5 1 2/3 N(0,2) g(m;)) =0+0.2z; |0.1
2 1/3 N(lO 2) g(m;) =5+ 2z, 0.1
Table 6: Parameters recovery for scenario 1.
Cluster 1 Cluster 2
‘ Parameter ‘ Measure | n = 500 ‘ n = 1000 | n = 500 ‘ n = 1000
BIAS 0.00272 | -0.00086 | -0.00256 | -0.00027
Bo SV 0.00423 | 0.00225 | 0.00146 | 0.00071
MSE 0.00423 | 0.00225 | 0.00146 | 0.00071
BIAS | -0.00366 | 0.00213 | -0.00123 | 0.00072
51 SV 0.00915 | 0.00435 | 0.00054 | 0.00024
MSE 0.00915 | 0.00435 | 0.00054 | 0.00024
BIAS | -0.00008 | -0.00002 | -0.00078 | -0.00031
v SV 0.00006 | 0.00003 | 0.00007 | 0.00004
MSE 0.00006 | 0.00003 | 0.00007 | 0.00004
Table 7: Parameters recovery for scenario 2.
Cluster 1 Cluster 2 Cluster 3
| Parameter | Measure | n =500 [ n=1000 [ n =500 [ n.=1000 | n =500 n = 1000
BIAS | -0.15147 | -0.16401 | 0.09576 | 0.09125 | -0.0029  0.01052
Bo SV 0.03661 | 0.01626 | 0.04085 | 0.02781 | 0.64143 0.3335
MSE 0.05948 | 0.04314 | 0.04994 | 0.03611 | 0.64016  0.33327
BIAS 0.2213 0.25206 | 0.01681 | 0.01613 | -0.00096 -0.00212
51 SV 0.09229 | 0.04433 | 0.00152 | 0.00107 | 0.00373  0.00194
MSE 0.14108 | 0.10782 0.0018 0.00133 | 0.00372  0.00194
BIAS 0.00129 | 0.00191 | -0.00299 | -0.00281 | -0.00159 -0.00134
v SV 0.00003 | 0.00002 | 0.00005 | 0.00011 | 0.00004  0.00002
MSE 0.00003 | 0.00002 | 0.00006 | 0.00012 | 0.00004 0.00002
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Table 8: Parameters recovery for scenario 3.

Cluster 1 Cluster 2

’ Parameter \ Measure | n = 500 \ n = 1000 | n = 500 \ n = 1000
BIAS | -0.00013 | -0.00058 | -0.00571 | -0.01113

5o SV 0.00103 | 0.00047 | 0.07328 0.0383
MSE 0.00103 | 0.00047 | 0.07317 | 0.03839

BIAS | -0.00092 | -0.00069 | -0.0003 | -0.00131

01 SV 0.00031 | 0.00015 | 0.00077 0.0004
MSE 0.00031 | 0.00015 | 0.00077 0.0004

BIAS 0.00017 | -0.00034 | -0.00077 | -0.00034

v SV 0.00005 | 0.00003 0.0001 0.00005
MSE 0.00005 | 0.00003 0.0001 0.00005

Figure 7: Histograms of estimated values for each parameter (by column) and for each cluster
(by row) for scenario 1.

cu:(o-0)
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Figure 8: Histograms of estimated values for each parameter (by column) and for each cluster

(by row) for scenario 2.
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Figure 9: Histograms of estimated values for each parameter (by column) and for each cluster

(by row) for scenario 3.
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Table 9: Mean and standard deviation of the true classification rates.

’ Scenario \ Statistic \ n = 500 \ n = 1000

min 0.8720 0.8830
1 mean 0.9033 0.9045
max 0.9260 0.9235
std. dev. | 0.0091 0.0066
min 0.9820 0.9883
5 mean 0.9954 0.9958
max 1 0.9997
std. dev. | 0.0025 0.0017
min 0.9880 0.9927
mean 0.9978 0.9978
3
max 1 1
std. dev. | 0.0017 0.0012
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6. Illustrative examples

After recalling the motivating example this section looks at applications of the
models on real data.

6.1. Recalling the motivating example

The limits shown in section 2 can be overcome considering the proposed model
(Fig. 11). It can be clearly seen that the clusters are well separated and well
described by the fitted model.

Figure 10: Estimated parameters with unimodal beta CWM.

’ Parameter \ Cluster 1 \ Cluster 2

T 0.5 0.5

Bo -1.498 2.100
By 0.099 -0.121
v 0.047 0.047

Figure 11: CWM estimated with unimodal beta components.
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6.2. USNEWS dataset

The USNEWS dataset (http://lib.stat.cmu.edu/datasets/colleges/) contains in-
formation on over 1300 American colleges and universities. This dataset is taken
from the 1995 U.S. News & World Report’s Guide to America’s Best Colleges. In
order to test the proposed methods, acceptance rates in American colleges have
been chosen as response variable with instate tuition feed and student/faculty
ration as covariates. In this example we compare 3 models: CWM with unimodal
beta, CWM beta and a mixture of beta regressions. In order to test the models in
both bivariate and multivariate case the outcome variable is explained considering
intuition, and intuition and study fact.

6.2.1. Univariate case

We start considering the relationship between the acceptance rate and tuition.
According to the values of BIC (Table 10) is possible to choose the number of
latent groups. In Fig. 11 are listed the estimated parameters while in Fig. 12 is
shown a graphical representation of each model.

According to the BIC, the CWM-rep model is more parsimonious about the num-
ber of latent clusters, identifying 3 clusters instead of 5 clusters identified by the
CWDM-beta model while the mixture of betas seems not to be able to separate the
clusters.

Given the classification provided by the CWM-rep the average values of acceptance
rate by cluster are 0.75 (cluster 3), 0.79 (cluster 2) and 0.54 (cluster 1). The
covariate seems to affect the response in cluster 1 and in cluster 3, where increasing
the values of  the acceptance rate decreases (Fig. 12). Clusters 1 and 2 include
mostly private institutions while cluster 3 contains public institutions.
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Figure 12: Marginal density of = and scatter plot with the line showing the estimated relation
between x and y with the reparameterized beta mixture CWM (left), CWM with beta regression

(center) and a mixture of beta regressions.
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Table 10: BIC values varying the number of cluster.

‘ Model ‘ Cluster ‘ BIC ‘

1 -6260.215
-5771.226
-5760.348
-6203.986
-6581.522
-6289.656
-5599.544
-9516.836
-9519.505
-5507.919
-1538.644
-1568.956
-1588.126
-1577.100
-1550.593

CWM rep.

CWM beta

Mixture of beta

U W RN O W N Ok W N

Table 11: Parameter estimated with reparameterized beta mixture.

] Model \ Parameter \ Cluster 1 \ Cluster 2 \ Cluster 3 \ Cluster 4 \ Cluster 5 ‘

T 0.082 0.565 0.353 _ _
B 3.801 1.770 2.570 _ _
CWAM rep. B 0192 | -0.007 | -0.409 _ -
v 0.160 0.106 0.171 ; ;

- 0.121 0.339 0.152 0.088 0.300

B 2.628 1.409 0.931 3.527 1.172

CWM beta B -0.087 | -0.116 0.006 -0.188 0.018

& 3.498 2.124 1.685 2.179 3.136
s 1 - - - -
. Bo 1.339 _ _ _ _
Mixture of beta 8 0.027 i i i i
¢ 0.745 _ _ _ _
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6.2.2. Bivariale case

Considering a model with two covariates the number of cluster changes only for
the CWM-rep model from 3 to 4 (Table 12). However, we can see (Table 13) how
cluster 1 weights relatively little compared to other clusters (0.027) and seems to
capture outliers observations. Fig. 13 shows the scatter plots and the marginal
distribution of the two covariates by cluster. We can see how the covariate study /-
fact rate does not vary much changing the cluster while instate tuition feed seems
to discriminate the clusters comparing the medians of the box-plots.

Figure 13: Marginal distribution of & by cluster.
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Table 12: BIC values varying the number of clusters.

‘ Model ‘ Cluster ‘ BIC ‘

1 -13704.43
-13185.65
-12893.64
-12600.91
-13208.21
-13758.35
-13075.88
-12324.38
-12256.17
-12241.86
-1535.26
-1558.24
-1571.88
-1556.29
-1537.24

CWM rep.

CWM beta

Mixture of beta

CU s W N O WN PO WD

Table 13: Estimated parameters.

| Model | Parameter | Cluster 1 [ Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 |
T 0.027 0.350 0.104 0.519 -
Bo -1.014 1.55 2.264 0.691 -
CWM rep. 51 0.112 -0.288 -0.185 0.037 -
5o 0.078 0.042 0.147 0.05 -
v 0.303 0.163 0.123 0.099 -
T 0.351 0.144 0.155 0.008 0.342
5o 1.766 2.727 0.15 1.456 0.905
CWM beta 551 -0.037 -0.159 0.055 -0.075 -0.087
B -4.502 -3.189 -3.904 -4.893 -3.663
[0) 32.283 9.412 8.63 7.118 8.474
s 1 - - - -
B, 1.176 ; ; ; ;
Mixture of beta 51 -0.0234 - - - -
5o 0.0089 - - - -
é 2.111 ; ; ; ;
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7. Conclusions

In this paper a new extension of CWM has been proposed to model an outcome
variable that takes values in the standard unit interval. This model represents
an alternative on the beta regression and in particular on the beta mixtures of
regressions taking into account for the marginal distribution of the covariates.
We shown how, in some cases, it is useful to opt for a unimodal beta distribution to
better identify and describe clusters. Among the possible future developments we
identify, from an inferential point of view the importance to deliver an adequate
inference for the parameters to assess the significance, while from a descriptive
point of view we should test the model capability to include and describe a large
number of covariates.
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flexCWMext: an extension of flexCWM package for CWM
Beta and CWM Generalized Additive Models

Abstract

Cluster Weighted Models (CWM) are mixtures of regressions models with random
covariates. In this paper we introduce a new R package called flexCWMext, devel-
oped to extend the features of flexCWM implementing the beta distribution and
the family of Generalized Additive Models in the CWM framework. The flexCWM
package has been recently developed to estimates some mixture models related to
the family of CWM. The presented package introduces three main extensions that
are not yet implemented: the GAM-CWM (CWM mixtures of generalized addi-
tive models) the BETA-CWM (CWM mixtures of beta regressions) and unimodal
BETA-CWM (CWM mixtures of unimodal beta regressions). The EM algorithm
is used to obtain maximum-likelihood estimates of the parameters and some ap-
plications to artificial and real dataset are presented to explain the features of this
package.

Keywords: Cluster Weighted Model, EM algorithm, Mixture models, GAM
mixture models, Beta regression models.

1. Introduction

This paper extends the flexCwM package (Mazza and Punzo, 2018), a recent R
package that implements a novel class of mixture models called Cluster Weighted
(CWM). The CWM factorizes the joint distribution p(zx,y) into the product of
the conditional distribution Y| X = @ and the marginal distribution of X with
the aim to capture latent sources of heterogeneity that split data into clusters.
In the R framework (R Core Team 2011) flexCwM is available to fit a large va-
riety of CWMs, in particular the package supports modeling of the conditioned
response variable by means of most important distributions of exponential fam-
ily (Gaussian, Gamma, Poisson, Binomial, t-Student). Covariates can be also of
mixed type: multivariate Gaussian, multinomial, binomial and Poisson. Although
the flexCWwM package allows to model a wide variety of phenomena is assumed a
linear form that describes the relation between a response variable and the co-
variates. Clearly this assumption, in some applications, may not be appropriate
and it would be wise to opt for a more flexible model able to capture in a proper
way complex relationships between the variables.
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Firstly, motivated by these considerations flexCWwMext born with the aim to extend
the £1exCWM package including a sum of smooth functions of covariates, introducing
the class of GAM models (Wood, 2017) within the CWM framework. This model
is called GAM-CWM. In R, mixtures of GAM models (Hastie and Tibshirani, 1987)
can be estimated with flexmix:FLXMRmgcv() (Grun and Leisch, 2008), however,
the excessive flexibility of GAM can sometimes be a negative element, so that if
the fitting process based on EM algorithm is not adequately controlled the risks
is to confuse the clusters bringing the model to converge in local minimum. One
possibility to control the model fitting (introduced in this package) is to control
the basis dimension during the EM algorithm. This procedure, that is involved
in the EM, is called “adaptive EM”. As will be detailed in the follows a three-way
deviance decomposition for mixtures of regressions models will be a key decision-
making tool to control such flexibility.

Secondly, another important extension lets to model a response variable Y € [0, 1].
The beta regression model (Ferrari and Neto, 2004) turns out to be a suitable
model in this context, however a problem that could arise in some cases is a direct
consequence of great flexibility of the beta distribution when it is embedded in
a mixture component. The beta distribution, in some cases, may be too flexible
due to the great variety of shapes (including multi-modal shapes) so that it could
be difficult to understand the real meaning of each component. For these reasons,
mixtures of reparameterized beta distributions has been developed (Bagnato and
Punzo, 2012) to overcome these problems and some interesting applications are
presented in Dean and Nugent, 2013. Motivated also by these considerations we
implement a new class of mixtures of regressions models involving uni-modal beta
densities. In this package three main functions has been implemented that lets to
estimate these models (Fig. 1):

o gam_cwm(): CWM with generalized additive models in each mixture compo-
nent.

e beta_cwm(): CWM with a beta regression component.
e rep_beta_cwm(): CWM with a unimodal beta regression component.

The paper is organized as follows. In Sect. 2 is specified the basic framework
with the three extension. Sect. 3 outlines the EM algorithm for estimation while
in Sect. 4 are illustrated some technical details related to computational and
operational aspects. Finally in Sect. 5 some examples with simulated and real
data are provided.
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Figure 1: Overview of the package structure.

Standard EM
gam_cwm( ) call—» mgcv:gam()
Adaptive EM
flexCwWMext - beta_cwm() call-» betareg:betareg() —| Standard EM
rep_beta_cwm() call—s (internal) —| Standard EM

2. Model specification

In this section the general CWM model (Gershenfeld, 1997; Ingrassia et al., 2012,
2014, 2015, Subedi et al., 2013; Subedi et al., 2015) is defined while the details of
the implemented extensions are defined in following subsections. Let X isan xp
matrix of covariates and Y is a response variable belonging to exponential family,
with joint probability distribution p(x,y). Suppose that (2 can be partitioned into
G disjoint groups (24, ..., Q2g) such that @ = Q; U...UQg. CWM models the joint
probability p(zx,y) as follows:

G
pla,y;0) =Y pyle, Q)p(x|Qy)T, (1)

where p(y|z, €,) is the conditional density of the response Y given the predictors
X and Q, p(x|€,) is the probability density of X given Qg , m, = p(€,) are the
mixing weights of ), so that 7, > 0 and Zle 7y = 1 and finally 0 is the set of all
parameters in the model. Defining in different ways the conditional distribution
p(y|z, ) is possible to obtain different models, in particular the mixture of GAM
and the beta regression.

In case of classification problem, the posterior probability belonging to the g-th
group can be calculated as

P,y ) plyle, Q)p(x[Q)m,
p(@y) S pyle, Q)p(x|2)T,

p(Qqlx,y) =

forg=1,....G.
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2.1. CWM miztures of Generalized Additive Models

Lets focus the attention on the conditional part of the model p(y|z, €2,) where the
GAM models are involved. In order to deal with various response types we assume
that p(y|x, ;) belongs to the exponential family. A monotone and differentiable
link function A(-) is introduced to relate p, = E(y|x, Q) to the covariates through
the relation

hpg) = frg(@1) + .. + fpg(ap) = ijng

where f;,(-) is the smooth function referred to the covariate x; within the group
g. A common approach to specify f(-) is to define linear combinations of a set
of suitable functions called basis. Let b;(z) the j-th basis function. The function
fig(x) can be defined as the following linear combination

H
fig(25) ij ;) Bj.g (2)
7=0

where 3 = (S, ..., By) are parameters to be estimated, by(z) = 1 (in order to
consider the intercept 3y) and H is the basis dimension. Because the interest is in
the parameters 3 the distribution of Y| X = z, Q, will be denoted as q(y|z, B,, ()
where the parameter (, is an additional parameter to take into account when a

distribution from a two-parameter exponential family is considered. Then, the
generalized additive CWM is defined as

G
= q(ylz, By, G) p(lag)m,
g=1

and the log-likelihood is

0o) = Z Z zig In(mg) +

i=1 g—l

+ ZZzzgln (ysl2s; By, Go)) + (3)
i=1 g=1
n G

+ YY)z In (p(i|oy))
i=1 g=1

In a mixture model context the basis dimension H (2) should be controlled, to
prevent the model converging towards local minimum points. With a modification
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of EM algorithm that we called adaptive EM algorithm it is possible to starting the
algorithm with a low value of H and then increase it to better capture the relation
between X and Y and at the same time to avoid the convergence towards local
minimum points. The three way deviance decomposition (Sect. 4.1) is directly
involved in the estimation process as a decision tool to choose the step when is
useful to increase the flexibility.

The function gam_cwm() in flexCWMext estimates the model calling the function
mgev:gam() within each mixture component during the EM algorithm. Each pa-
rameter available in mgev:gam() can be specified in the function gam_cwm(). Some
additional parameters for this function are detailed in Table 2. The function
mgcv:s() can be used in the formula specification of flexCWMext to specify the
basis and the smooth functions.

2.2. CWM miztures of Beta Regression Models

A first definition of the CWM with beta components can be found in Nieddu and
Vitiello, 2014. The beta density with support S = [0, 1] is defined as

Joeta(y; 0, @) = v él(p_’qy))q (4)

where Y € (0,1), p > 0, ¢ > 0 and B(.) is the beta function. If Y has density
defined in (4) then

p
EY) =

pq
(p+a)Plp+a+1)
A more useful parameterization (Ferrari and Cribari-Neto, 2004) can be obtained
by setting = p/(p+ q) and ¢ = p + ¢ in (4) leading to the following reparame-
terization:

Var(Y) =

L'(9) (no-1) ((1-w)9-1)
Y L=y 5
(@ -ma’ Y ©
where p € (0,1), ¢ > 0. With this parameterization if Y ~ Beta(u, ¢) then

fbeta(y; 22 ¢> = 1—\(

Efbeta (Y) = /‘L

1 _
Vary,, (v) = ME=#)

(1+¢)

where p is the mean and ¢ is a dispersion parameter around the mean.
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Given a set of fixed covariates and a random sample Y;, ¢ = 1,...,n, such that
Yi|X =« ~ Beta(u;, ¢), the beta regression is defined as

9(w) = ;8 (6)

where 8 = (1, ..., ) is a vector of regression coefficients and x; = (21, ..., T;1,)
the vector of covariates. The function ¢(.) : (0,1) — R is the link function,
strictly increasing and twice differentiable such that y; = g~ '(z;3). Then, the
CWM with beta components is defined as

G
Pew M—beta(Yi i) = Z T foeta(Yil T, By, 0g)D(2i] ) (7)
g=1

The complete log-likelihood for the defined model is:

n G
1(6) = D > zgln(m) +

i=1 g=1

n G
+ D> zign (freralwilzi, By, 69)) + (8)

i=1 g=1
n G

+ YD mgn(p(xiley))
i=1 g=1

The function beta_cwm() estimates the model calling the function betareg:betareg()
within each mixture component during the EM algorithm.

2.3. CWM mixtures of Reparameterized Beta

Given the standard parameterization of beta distribution (4) it is possible to
obtain (9) according to the following transformation system:

_m _ _p—1
p="4+1 N m = =
:1_Um~|—1 v=—

T ptq—2

1—m

v (l—z)
B(2+1,=m41)
Since m € [0,1] and v > 0 the new parameterization coincides with (4) when
(p,q) € [1,00) x [1,00) and (p,q) # (1,1). Eq. (4) is unimodal if p > 1 and
q > 1, thus we are focusing on the subclass of unimodal beta densities, omitting

(9)

frep(y; m, U) =
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some shapes among which unlimited J-shaped, unlimited reverse J-shaped, the
U-shaped and the uniform density.

It follow that if Y|X = & ~ Beta,ep(m;,v) than the unimodal beta regression
model can be defined as

g(m;) = z;3 (10)
Finally, the CWM with unimodal beta components is defined for the i-th obser-
vation as

G
pew M—rep(Yis Ti) = Z T frep(Yil T By, vg)p(i|atg) (11)
g=1

and the complete log-likelihood for the defined model is

0o) = Z Z zig In(mg) +

i=1 g=1

n G
+ D>z (frep(wili Byvg)) + (12)

i=1 g=1

n G
+ YD s (p(a|ey))

i=1 g=1

3. Maximum likelihood estimation with EM algorithm

The flexCWMext package implements (as flexCWM) the EM algorithm (Dempster et
al., 1977) to maximize the global log-likelihood function in order to obtain max-
imum likelihood estimates for the unknown parameters. Let z; a k-dimensional
component label vector in which the jth element z;; is one or zero if respec-
tively the mixture component of (z;,y;)’ is equal to j or not. On the itera-
tion (k + 1), the E-step requires the calculation of the conditional expectation
of the random variable Z;, related to each z;, given the augmented data sample
{(x1,y1,21), -, (0, Yn, 2n)}- In particular, for ¢ = 1,....n and ¢ = 1,...,G it
follows that

(k) (k) ~(k)
- . . )] — mg fwili,Bg Gy IP(®ilorg) —
o GAM-CWM: Ee(k) [Zzg|<xz>yz)} 5;:1 Wék)f(yikczy f;k)7 (gk))p(mi‘ag) Tij
(k) (k) (k)
_ . . . . — Tg f(y’i|mi’ﬁg ’¢g )p(mi‘ag) — )
e BETA-CWM: Eyu) [Zzg|($z>yz>] ?:17Tgk>f(yi|$i7 ® 500 (il crg) Tij
®) £l B9 0 (sl
e REP-BETA-CWM: Ejyu) [Zy|(2:, )] = — ot dWilzeBs v Dp(wies)

“, ) fyile:, B o p(ailag) Y
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In the M-step, on the iteration (k+1), the conditional expectation of [(8*)) given
the observed data say Q(0; O(k)) is maximized with respect to 6.

The maximization of Q(6; O(k)) with respect to the mixture weights is standard
and can be obtained with Lagrangian multipliers as well as for the parameters o
(Ingrassia et al., 2015). In case of generalized additive model the maximization
of Q(6; G(k)) with respect to (8,,(,) is equivalent to the maximization problem
of a GAM with the only difference that each observation ¢ contributed to the
log-likelihood with a known weight 7' (Wood 2017, ch. 3), and the same for the
beta regression. Finally, in the case of reparameterized beta regression, the max-
imization of Q(8;0™) with respect to (B,,vy) is obtained solving the equations:

2”1: (k)aln (frep(yi|xi76;k)7v9)) 0
—= Ti =
. g aﬁ(k‘)

n (k)aln (frep(yi’xiu@ék)avg))

4. Some computational and operational aspects

In general, all computational details (EM initialization, convergence and model
selection) are almost the same implemented in the package flexCWM. We start in-
troducing the concept of three way deviance decomposition involved in the GAM-
CWM.

4.1. Three way deviance decomposition

In the GAM-CWM, the value H that represent the basis dimension can be in-
creased during the EM algorithm allowing the model to better adapt to the clusters
presents in the data, in particular, controlling for the variance decomposition is
possible to take a decision if it is the time to increase the size of the basis. Let
21(;) the value of z;4 at the step k of EM algorithm; the total sum of squares of y at
step k, say T'SS™ can be decomposed in the sum of two component: W SS®*) ex-
plains the within-groups deviance, while the BSS®*) explains the between-groups
deviance:

n

Tss® = > (wi-9)’

i=1
n G
= ZZ*’“ (g — 5"+ D> 20 (7, — )
i=1 g=1 i=1 g=1

= WSS® 4+ BSs®
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where ®
— Zi:1 éig Yi
Yg s 50

i=1 ~ig

_ ?:Z/i
B v
n

o (k
Denoting with ﬁ(g : the vector of estimates at step k and h(u,) the link function
(introduced before), the WSS®) term can be decomposed again as

n G
Wss® = S50 [y — h(ul) + nul)] - 5,
G

i=1 g=1

Zn ZG A(k) CNER Z A(k) ky - 17
= Zig |:yl - h(ﬂ’@g >:| + Zig |:h<:u7,,g) - yg:|

i=1 g=1 i=1 g=1

= WSS +wss®

Summarizing, the total variability of Y can be explained by the latent group
variable G in BSS and the withing-group sum of squares W SS. In turn, the
WSS can be decomposed into WSSy predictable from the covariates X and
WSS, not predictable from the covariates; summarizing:

rSSH = 3 (w0’

i=1
n G
~(k) /- _
= D> A W -9+
=1 g=1
n G 9
~(k k
b S [ b))
i=1 g=1
n G 9
~(k k _
i=1 g=1

The adaptive EM algorithm can be initialized with a low size of the basis dimen-
sion say Hy and let k* the step of the EM algorithm where | BSS*) —BSS* 1| <
e (e fixed sufficiently small). If this condition is verified it means that the BSS is
stabilized over the iterations and the clusters have been identified by the chosen
model. At this point it is possible to increase the size of the basis to a new value
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H, > Hj so that the model can specialize on the previously identified clusters and
describe better local behaviors.

The function plotDeviance applied to a gam_cwm() object return the plot of these
three quantities during the EM steps.

4.2. C-Index to evaluate cluster’s compactness

A wide range of indices to measure different cluster’s behaviors has been devel-
oped; in particular we investigate how a global index that describes the quality of
clustering can be operatively used in the presented framework. Among different
indices we selected the C-index (Hubert and Schultz, 1976), that is based on the
Euclidean distances between the pairs of points inside each cluster. Let ng4 the
number of observation classified in the cluster g, in which there are ny(n, —1)/2
pairs of distinct points. Let Ny, the number of such pairs (Ny = 25:1 M )
and let Ny = n(n — 1)/2 the total number of pairs of distinct points in the whole
data set. The C-index is defined as

C’ -
Smax - Smin

(13)
where S is the sum of the Ny, distances between all pairs of points inside each
cluster, S,,;, is the sum of the Ny smallest distances between all the Ny pairs of
points and finally S, is the sum of the Ny, largest distances between all the Ny
pairs of points.

The index is limited to the interval [0, 1] and should be minimized in order to
obtain compact clusters. Obviously, the index can be calculated considering the
entire vector (Y, X) of the covariates and the outcome (say Cx y) but we can
obtain also two C-indices: one can describe the clusters from the point of view of
the explicative covariates X (Cx) and the second from the point of view of the
outcome variable Y (Cy). During the EM algorithm we can calculate C%) and

C}(,k ) to evaluate how the observations are assigned to each cluster.
The function plotC_Index lets to visualize the evolution of this index during the
EM.

4.3. EM initialization

As concern the EM initialization, the same initialization strategies available in
flexCWM have been implemented in this package. The initializations are based
on providing initial quantities z§°) = (zﬁ)), s zz(g ), © = 1,..,n at the first step of
the algorithm.

e "random.soft": the k values in z§0> are generated from a uniform distribution

(see stat:runif()) and normalized in order to sum to 1.
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e "random.hard": each zl(-o) is extracted from a multinomial distribution with
probabilities (1/G,...,1/G) (see vstat:rmultinom())

)

e "manual": the values of z§° are manually provided by the user

e "kmeans": the function stat:kmeans()provides hard values of zl(-o)

e "mclust": the function mclust:Mclust() provides soft values for zgo) fitting
of an unconstrained mixture of Gaussian distributions.

4.4. Convergence criterion

Aitken acceleration (Aitken, 1926) can be used to take a decision about the conver-
gence of the algorithm and based on this estimate it is possible to take a decision
whether or not stopping the algorithm. It estimates the asymptotic maximum of
the log-likelihood at each iteration:

k+1 k
o = 0 -1
(k) — [(k=1)

where (%) is the log-likelihood value at iteration k. The asymptotic estimate of
the likelihood (Bohning et al., 1994) at iteration k + 1 is given by

(k1) _ (k)
1—a

In following simulations we stop the EM if lé’éﬂ) — 1) < ¢ (McNicholas, 2010;
Punzo, 2012).

) — )

4.5. Model selection

The number of component G is treated as a fixed a prior: quantity. In most
applications this quantity is unknown, so it is possible to select the appropriate
G considering likelihood-based method. Among different model selection criteria
we consider the BIC and the Integrated Complete Likelihood. In mixture model
the BIC as a model selection criterion is defined as:

~

BIC =2[(6) — nln(n)

where 7 is the number of free parameters included into the model.
The ICL is given by

n k
ICL=BIC+) > MAP(%,)In(%)

i=1 g=1

where
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MAP — {1 max{z;y} occursin component g

0 otherwise

5. Package description

In this section we provide the main features implemented in the package with
three applications with simulated and real data. A list of common arguments is
available in Table 1 while in Table 2 are listed the specific parameters involved in
the function gam_cwm().

Table 1: List of arguments of the functions gam_cwm(), beta_cwm() and rep_beta_cwm().

‘ Argument ‘ Description ‘

formula An optional object of class formula, the symbolic
description of the model to be fitted.

data An optional data.frame object containing the data to
fit the model.

Y An optional vector of outcome variable to describe.

X An optional vector or matrix of covariates.

groups An integer that specifies the number of components

Xnorm, Xbin,
Xpois, Xmult

ATT_threshold

(cluster).

Optional matrices containing concomitant variables
with normal, binomial, Poisson and multinomial
distributions.

initialization | Initialization strategy for the EM algorithm. It can be:
random.soft, random.hard, manual, kmeans and mclust.

start.z Matrix of dimension (n x k) of soft or hard
initialization. This matrix is considered only if
initialization="manual".

seed Seed for the random number generator in case of
random initializations.

iter.max Maximum number of EM iterations. Default value is

200.
Value of € in the Aitken acceleration procedure.

Default value is 1.0E04.
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Table 2: List of specific arguments for the functions gam_cwm().

‘ Argument ‘ Description ‘
gamma The same of parameter available in mgew:gam();
increase this beyond 1 to produce smoother
models.
increase_flex Logical; if TRUE then the basis dimension increases

to the max_basis_dimension (see the parameter H
in (2)) once the BSS_threshold has reached.
max_basis_dimension | The dimension of the basis used to represent the
smooth term. See the parameter £k in mgew:s().
BSS_threshold If |IBSS®) — BSS*=1| < BSSthreshold than the
the parameter k£ in mgew:s() is set equal to the
max_basis_dimension up to convergence of EM.
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Table 3: Other auxiliary functions.

103

‘ Argument ‘ Description ‘
getMetrics Returns main metrics of an estimated model:
e LLK: log-likelihood.

BIC: Bayesian information criterion.
ICL: Integrated Completed Likelihood.
TSS: total sum of squares.

BSS: between-groups sum of squares.
WSS: within-groups sum of squares.

WSS_£: within-groups sum of squares
explained by the chosen model.

WSS_e: within-groups sum of squares
residual.

C_index: the C-index.

C_index_X: the C-index calculated on the
covariates X.

C_index_Y: the C-index calculated on Y.
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Table 4: Other auxiliary functions.

Function ‘ Description ‘

rUnimodalBeta Generate random data from a mixture of unimodal
beta distributions. The parameters are:

e modes: vector of modes.
e dispersion: vector of dispersion parameters.
e weights: mixture weights.

e n: total sample size.

plotDeviance This function plot the components of the total sum of
squares during the estimation process. Actually
available only for gam_cwm().

e model: estimated model object.

e add_plot: if the resulting plot should be added to
an existing plot.

e main: title of the plot.

e flex_line: plot a vertical line at the point where
the flexibility if the model increases.

e iter: plot the iterations of the EM from the first
up to that specified in this parameter.

plotC_Index This function plots the evolution of C-index during the
EM algorithm.
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5.1. A simulation with GAM-CWM

The first tutorial uses a generated dataset according to the parameters explained
in Table 5 with the aim of explaining how to estimate a GAM-CWM and at the
same time showing some limitations of GAM mixtures. This bi-variate dataset
consists in 3 groups well separated with different shapes (Fig. 2): cluster 1 (red)
can be described with a function of degree 2 because has a parabolic shape, cluster
2 (green) has a sinusoidal shape while cluster 3 (black) can be approximated with
a straight line.

Table 5: Parameter’s definition for artificial data simulation.

Parameter | Cluster 1 (red) Cluster 2 (black) | Cluster 3 (green)
n 500 500 200
1 1 1
mj 3 5 5
X Unif(15,30) N(15,0 = 3) Unif(15,30)
fi(x) 20 4+ 2(z — 15)? | 200 + 10 sin(x — 25) | 400 — (z — 15)?
€ N(0,0 = 10) N(0,0 = 10) N(0,0 = 10)

#-- Data genmeration from GAM CWN
R> n <- 200

R> x1 <- rnorm(n,15)

R> y1 <- 20 + 2x%(x1-15)"2+rnorm(n,0,2)
R> gl <- rep(l,n)

R> x2 <- rnorm(mn,15,sd=3)

R> y2 <- 3%s8in(x2-15)+rnorm(n,0,2)

R> g2 <- rep(2,n)

R> x3 <- rnorm(n,35,5)

R> y3 <- -1%(x3-35)+rnorm(n,0,2)

R> g3 <- rep(3,n)

R> d <- data.frame(y=c(yl,y2,y3),x=c(x1,x2,x3),g=c(gl,g2,g3))

#-- Estimation of GAM-CWM with adaptive EN

R> gam_cwm <- gam_cwm(y~s(x,bs="cr",k=3),data=d,
Xcont="x",groups=3,
initialization="random.soft",increase_flex=T,
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max_basis_dimension=10)

#-- Estimation of GAM-CWM with standard EYM (not adaptive)

R> gam_cwm_standEM <- gam_cwm(y~s(x,bs="cr",k=20),data=d,
Xcont="x",groups=3,
initialization="random.soft",increase_flex=F)

#-- Parameter estimated by cluster
R> gam_cwm$estim

[[11]

Family: gaussian
Link function: identity

Formula:

v s{x, bs = "cr")

Estimated degrees of freedom:
3.01 total = 4.01

GCV score: 1.278723

[([2]]

The model can be estimated with the gam_cwm() function. Within each mixture
component the function mgev:gam() is called and for the specification of the model
we need a GAM formula object, which provides the definition of a smooth function
calling the function mgcv:s() thus, we can easy define the type of smooth function
to use specifying the parameter bs (see ?s for details). We estimated a model with
three groups, starting the EM with a basis dimension fixed to 3 (H = 3).

In Fig. 3 it is straightforward to note that the fit of the adaptive EM is better:
the BSS on the right is very high compared to the one on the left showing how
the model is able to capture a large part of the variance explained by the latent
variable. At the same time the WSS on the right is low as expected. Finally the
vertical line in the graph on the right it is in correspondence of the iteration where
the basis dimension increases (from Hy = 3 to H; = 10).

The evolution of the values of C-index is plotted in Fig. 4 during the EM algo-
rithm. Clearly the GAM-CWM with the adaptive EM reaches the minimum value
possible of C'x and Cy while the standard EM does not detect the clusters.
Finally, with the following code we can obtain the deviance-decomposition plot
and the main metrics related to the estimated model.
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#-- Plot of the three way deviance decomposition
R> plotDeviance (gam_cwm_standEM,F,"",T,1:40)
R> plotDeviance (gam_cwm,F,"" ,T,1:40)

R> getMetrics (mod_GAM)

LLK BIC TSS BSS WSS WSS _f
WSS_e
"_-3325.49" " _-6894.07" "73855.62" "85.27%" "14 . 73%" "11.38%"
"3.31%"

R> getMetrics(mod_GAM_standEM)

LLK BIC TSS BSS WSS WSS_f
WSS_e
"-3423.5" "-7281.98" "73855.62" "37.89%" "g2.11%" "58.4%"
"3.56%"

R> plotC_Index(gam_cwm_standEM)
R> plotC_Index(gam_cwm)

Figure 2: Scatter plot of generated data and estimated models. GAM-CWM with standard EM
is on the left while GAM-CWM with adaptive EM on the right.
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Figure 3: Three way deviance decomposition for non-adaptive EM (left) and adaptive EM
(right).
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Figure 4: The evolution of C-index’s values during the EM algorithm comparing the standard
EM (on the left) with the adaptive EM (on the right).
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5.2. Dataset AIRPORT

The airport dataset contains information about 22 Italian’s airport from 2010 to
2015. Many different KPIs are collected for each airport, among which the total
number of passengers, the share between national and international passengers,
the different sources of revenues and other performance KPIs related to economics
aspects. For this tutorial we choose two quantitative variables with the with the
aim of showing how the GAM-CWM can also be used for exploratory analysis;
the revenues per passenger is the outcome variable explained by the percentage
of international passengers on the total. The aim of the analysis is to detect some
clusters in the data and if some differences between airports are present.

First of all we start the analysis choosing the number of groups according to the
BIC criterion. The best model according to the BIC criterion provides 4 groups.
We start estimating the model defining:

#-- Data 2mport
data(Airports)

d <- Airports

d$y <- d$REVENUES.PAX

d$x <- d$INTERNATIONAL.PAX

R> mod_GAM <- gam_cwm(y~s(x,bs="cr",k=2),data=d,Y=d%y,
Xcont=d$x,groups=4,initialization="random.soft",

increase_flex=T,max_basis_dimension=5)

R> mod_GAM4$BIC
[1] -1866.122

R> getMetrics (mod_GAM4)

LLK BIC TSS BSS WSS WSS_f
WSS_e
"-857.73" "-1866.12" "2871.48" "24.8%" "75.2%" "55.89%"
"18.75%"

We can identify (Fig. 5) two compact clusters in black and blue. The labels
are composed concatenating the name of the airport preceded by the macro area
where the airport is located (North, Center or South of Italy).

The cluster in black is defined by airports only in the south of Italy characterized
by low percentage of international passengers and a low revenues per passenger.
Clusters in green and red are more heterogeneous. In this two clusters the revenues
per passenger directly increases with the percentage of international passengers.

Finally the cluster in red contains the most important Italian’s airport, including
Milano Malpensa and Roma Fiumicino, characterized by high levels of interna-
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tional passengers.

The three way deviance decomposition (Fig. 6) show that the latent variable, in
this example, is not able to capture a large part of the total sum of squares, but
the model GAM-CWM lets to capture in a good way the relation between x and
y (WSSy = 55.89%) within each cluster.

The evolution of C-index is available in Fig. 7, where the same model with
different number of latent groups are compared. Models with 4 and 5 latent
groups show good clustering performance and considering at the same time the
BIC criterion which takes into account also for the number of parameters to be
estimated, we can choose the model with 4 latent groups.

Figure 5: Estimated GAM-CWM with 4 clusters for Airport dataset.
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Figure 6: Three way deviance decomposition.
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5.3. A simulation with beta CWM and reparameterized beta CWM

This tutorial uses generated data (Fig. 8) from a unimodal mixture beta regression
that can be easily generated with the function rUnimodalBeta. The model can be
easily estimated with the following code:

#-- Generation of random dataset

R> set.seed(12345)

R> n <- 100

R> y1 <- rUnimodalBeta(modes=.2,dispersion=.05,weights=1,n)
R> y2 <- rUnimodalBeta(.8,.05,1,n)

R> x1 <- rnorm(n)

R> x2 <- rnorm(n,b)

R> d <- data.frame(x=c(x1,x2),y=c(yl,y2))

R> d$group <- c(rep(1,100),rep(2,100))

#-- Plot of the generated data
R> plot(d$x,d$y,pch=19,col=d$group,xlab="X",ylab="Y")

#-- Estimation of the unimodal beta mixture model
R> rep_cwm <- rep_beta_cwm(Y=d$y,X=d$x,Xcont=d$x,
groups=2,init="kmeans")

#-- Parameter estimated by cluster
R> rep_cwm$estim

Cluster_1 Cluster_2
beta_0 -1.49814531 2.10002823
beta_1 0.09878130 -0.12072375
v 0.04768849 0.04726329

R> table(rep_cwm$cluster)
1 2
100 100

The results of the functions rep_beta_cwm and beta_cwm is a list with the main
quantities stored during the EM algorithm:

e estim: data.frame with the estimated parameters, respectively the coeffi-
cients and the dispersion parameters.

e Xnorm_par: list containing the estimated parameters for Xnorm.
e Xbin_par: list containing the estimated parameters for Xbin.

e Xpois_par: list containing the estimated parameters for Xpois.
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e z: matrix of estimated posterior probabilities.

cluster: classification vector of length n.

LLK: log-likelihood values stored during EM.

BIC: Bayesian information criterion.

e ICL: integrated complete likelihood.

Xmult_par: list containing the estimated parameters for Xmult.
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With the same data is possible to estimate a CWM with beta components. In
this case in each component the function betareg: :betareg() is called.

#-- Estimation of the beta CWM

R> beta_cwm <- beta_cwm(Y=d$y,X=d$x,Xcont=d$x,groups=2,

init="random.soft")

R> mod$estim

[[1]1]

Call:
betareg(formula = formula, data = data, weights

Coefficients (mean model with logit link):
(Intercept) X
-1.5814 0.6369

Phi coefficients (precision model with identity
(phi)
47.36

[[2]]

Call:
betareg(formula = formula, data = data, weights

Coefficients (mean model with logit link):
(Intercept) X
-0.9988 0.3802

Phi coefficients (precision model with identity

= w, type

link):

= w, type

link):

IIML II)

IIML II)
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(phi)
8.437
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To obtain details about the model estimated within each mixture component is
possible to access to each element through the following command. It is important
to note that the p-values are computed assuming that the posterior probabilities
Ziq are given, then they should be considered in an exploratory manner.

R> summary (mod$estim[[1]])

Call:
betareg(formula = formula, data

Standardized weighted residuals
Min 1Q Median 3Q
-1.3074 -0.5339 -0.0050 0.5361

data,

Max
1.2652

weights

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|zl)
<2e-16 x*xx*x%
<2e-16 *x*x*

0.06110
0.01894

(Intercept) -1.58141
p:¢ 0.63690

-25.88
33.62

W,

type

Phi coefficients (precision model with identity link):
Estimate Std. Error z value Pr(>|z]|)

(phi) 47 .364 7.695

Signif. codes: O ’*x%xx’ 0.001 ’xx’ 0.01

6.155 7.52e-10 *xx*xx

’x? 0.05

Type of estimator: ML (maximum likelihood)

Log-likelihood: 110.8 on 3 Df
Pseudo R-squared: 0.752

Number of iterations: 29 (BFGS) + 3 (Fisher scoring)

)

0.1

[N}

IIML ll)

1
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5.4. USNEWS dataset

The last tutorial focus on a real application of the Beta CWM considering the
USNEWS dataset (http://lib.stat.cmu.edu/datasets/colleges/) containing infor-
mation on over 1300 American colleges and universities. This dataset is taken
from the 1995 U.S. News & World Report’s Guide to America’s Best Colleges.
The acceptance rates in American colleges have been chosen as response variable
with instate tuition feed as covariates.

According to the BIC, the reparameterized beta CWM is more parsimonious about
the choice of number of latent clusters, identifying 3 clusters instead of the 5
clusters that are identified by the CWM-beta.

#-- Estimation of the beta CWM

R> data(colleges)

R> d <- colleges

R> rep_beta_cwm <- rep_beta_cwm(¥Y=d$y,X=d$instate,
Xcont=d$instate,groups=3,
init="random.soft")

#-- Parameter estimated by cluster
R> rep_beta_cwm$estim
Cluster_1 Cluster_2 Cluster_3

beta_0 3.801 1.770 2.571
beta_1 -0.193 -0.007 -0.409
\ 0.160 0.106 0.171

R> table(rep_beta_cwm$cluster)
1 2 3
104 712 445

R> plotModel (rep_beta_cwm)

Given the classification provided by the model the average values of acceptance
rate by cluster are 0.75 (cluster 3 in green), 0.79 (cluster 2 in red) and 0.54 (cluster
1in black). The covariate seems to affect the response in cluster 1 and in cluster 3,
where increasing the values of instate tuition the acceptance rate decreases (Fig.
9). Clusters 1 and 2 include mostly private institutions while cluster 3 contains
public institutions.
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Figure 8: Generated data from a unimodal CWM mixture.
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Figure 9: USNEWS model between instate tuition and acceptance rate.
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6. Conclusions

Cluster Weighted Model is a new class of mixtures of regressions with random
covariates. In this paper we have introduced an extension of flexCWM package to
increase the chances of applications of the CWM where the response variable is
beta-distributed and introducing the GAM models in the CWM framework.

The package offers three main functions to estimate these models and at the
same time some additional tools are provided to facilitate the evaluation of the
performances from different point of view.

Some future improvements concern the introduction of parallel methods for esti-
mating the models in order to reduce the computational time and to develop new
indices and new visualizations to facilitate the evaluation and interpretation of
the results.

7. References

|1] Bagnato, L., & Punzo, A. (2013). Finite mixtures of unimodal beta and
gamma densities and the k-bumps algorithm. Computational Statistics,
28(4), 1571-1597.

[2] Dean, N., & Nugent, R. (2013). Clustering student skill set profiles in a unit
hypercube using mixtures of multivariate betas. Advances In Data Analysis
& Classification, 7(3).

|3] Ferrari, S. L., & Cribari-Neto, F. (2004). Beta Regression for Modeling Rates
and Proportions. Journal Of Applied Statistics, 31(7), 799-815.

[4] Gershenfeld, N. (1997). Nonlinear Inference and Cluster-Weighted Modeling.
Annals Of The New York Academy Of Sciences, 808(1).

[5] Grun, B., & Leisch, F. (2008). FlexMix Version 2. Finite Mixtures with Con-
comitant Variables Varying and Constant Parameters. Journal of Statistical
Software, 28(4), 1-35.

|6] Hastie, T., & Tibshirani, R. (1987). Generalized Additive Models: Some
Applications. Journal Of The American Statistical Association, 82(398).

|7] Ingrassia, S., Minotti, S., & Vittadini, G. (2012). Local Statistical Modeling
via a Cluster-Weighted Approach with Elliptical Distributions. Journal Of
Classification, 29(3), 363-401.

|8] Ingrassia, S., Minotti, S. C., & Punzo, A. (2014). Model-based clustering via
linear cluster-weighted models. Computational Statistics and Data Analysis,
71, 159-182.



7 REFERENCES 118

[9] Ingrassia, S., Punzo, A., Vittadini, G., & Minotti, S. (2015). The Generalized
Linear Mixed Cluster-Weighted Model. Journal Of Classification, 32(1), 85-
113.

[10] R Development Core Team (2011). R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[11] Subedi, S., Punzo, A., Ingrassia, S., & McNicholas, P. D. (2013). Clustering
and Classification via Cluster-Weighted Factor Analyzers. Advances in Data
Analysis and Classification., 7(1).

[12] Subedi, S., Punzo, A., Ingrassia, S., & McNicholas, P. D. (2015). Cluster-
weighted t-factor analyzers for robust model-based clustering and dimension
reduction. Statistical Methods and Applications 24(4), 623-649.

[13] Wood, S. N. (2017). Generalized additive models: an introduction with R.
Boca Raton. CRC Press.



