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Spinning neutron stars acquire a quadrupole moment due to their own rotation. This quadratic-in-
spin, self-spin effect depends on the equation of state (EOS) and affects the orbital motion and rate of
inspiral of neutron star binaries. Building upon circularized post-Newtonian results, we incorporate
the EOS-dependent self-spin (or monopole-quadrupole) terms in the spin-aligned effective-one-body
(EOB) waveform model TEOBResumS at next-to-next-to-leading (NNLO) order, together with other
(bilinear, cubic and quartic) nonlinear-in-spin effects (at leading order, LO). We point out that the
structure of the Hamiltonian of TEOBResumS is such that it already incorporates, in the binary black
hole case, the recently computed [Levi and Steinhoff, arXiv:1607.04252] quartic-in-spin LO term.
Using the gauge-invariant characterization of the phasing provided by the function Qω = ω2/ω̇ of
ω = 2πf , where f is the gravitational wave frequency, we study the EOS dependence of the self-spin
effects and show that: (i) the next-to-leading order (NLO) and NNLO monopole-quadrupole correc-
tions yield increasingly phase-accelerating effects compared to the corresponding LO contribution;
(ii) the standard TaylorF2 post-Newtonian (PN) treatment of NLO (3PN) EOS-dependent self-spin
effects makes their action stronger than the corresponding EOB description; (iii) the addition to the
standard 3PN TaylorF2 post-Newtonian phasing description of self-spin tail effects at LO allows one
to reconcile the self-spin part of the TaylorF2 PN phasing with the corresponding TEOBResumS one
up to dimensionless frequencies Mω ' 0.04 − 0.06. Such a tail-augmented TaylorF2 approximant
then yields an analytically simplified, EOB-faithful, representation of the EOS-dependent self-spin
phasing that can be useful to improve current PN-based (or phenomenological) waveform models
for inspiralling neutron star binaries. Finally, by generating the inspiral dynamics using the post-
adiabatic approximation, incorporated in a new implementation of TEOBResumS, one finds that the
computational time needed to obtain a typical waveform (including all multipoles up to ` = 8) from
10 Hz is of the order of 0.4 sec.

I. INTRODUCTION

Neutron stars (NSs) are self-gravitating bodies inside
which matter is compressed to very high densities. Grav-
itational wave (GW) signals can be used to put con-
straints on the equation of state (EOS) of degenerate
matter in these extreme environments. In fact, when a
NS is part of a binary system, their mutual tidal interac-
tion deform the stars, affecting the dynamics of the sys-
tem and the emitted GWs. On August 17, 2017, the first
binary neutron star (BNS) inspiral has been detected by
the LIGO-Virgo interferometers [1]. One of the impor-
tant outcomes of this discovery was the measurement of
the neutron star radii and EOS from the GW signal [2, 3]
obtained by extracting from the data the tidal polariz-
abilities (or deformabilities) related to the NS Love num-
bers [4–7].

When NSs are spinning, the rate of the inspiral can be
modified by an additional EOS-dependent effect, since
each NS acquires a quadrupole moment due to its own ro-
tation. The importance of such spin-induced-monopole-

quadrupole effects on BNS inspirals was pointed out
long ago [8] and recently revived [9] in a data-analysis
context, emphasizing that it is important to incorpo-
rate such self-spin terms in BNS waveform templates
to avoid parameter biases in the case of highly spin-
ning BNS systems. In addition, it was also recently
pointed out that self-spin effects might be useful to
test the binary black hole nature of the compact ob-
jects [10, 11]. Consistently with these findings, the anal-
ysis of GW170817 was done with waveform models that
do include EOS-dependent self-spin effects. These were
incorporated in resummed form in the SEOBNRv4T [12]
and TEOBResumS [13] effective one body (EOB) mod-
els and in TaylorF2-like post-Newtonian (PN) form in
the PhenomPv2NRTidal model [14, 15]. Both descrip-
tions have their drawbacks and can be improved. On
the one hand, the PhenomPv2NRTidal description is in-
corporating self-spin terms up to next-to-leading order
(NLO), but it is biased by the fact that the PN approx-
imation breaks down at some stage in the relativistic
regime close to merger. On the other hand, the EOB
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description is robust up to merger, but only the leading
order (LO) self-spin effects (both in the EOB Hamilto-
nian and flux) were included in the models. Although one
of the main results of Ref. [15] was to show good con-
sistency between TEOBResumS and PhenomPv2NRTidal,
this was not a precise apple-with-apple comparison be-
cause of the additional NLO self-spin effects included
in PhenomPv2NRTidal and not in TEOBResumS. Further-
more TEOBResumS is actually taking into account an in-
finite number of self-spin tail terms (in the waveform
and flux), that are absent in PhenomPv2NRTidal, so that
the precise question about which model is analytically
more complete requires an elaborate study. In par-
ticular, none of the current waveform models that use
a 3.5PN-accurate inspiral description (like TaylorF2 or
PhenomPv2NRTidal [15]) are using the EOS-dependent
3.5PN-accurate self-spin tail term, although it is available
analytically [13]. Such a term can be obtained by suitably
expanding the EOB energy and flux along circular orbits,
adapting the procedure of Ref. [16] (see also [7]), that al-
lowed one to cross check the 4.5PN, nonspinning, tail
term in the flux formerly obtained from an ab initio PN
calculation [17]. Finally, we mention that state-of-the-
art NR simulations of coalescing BNSs [18–24] are cur-
rently barely able to resolve spin-quadratic effects close
to merger [25, 26] and are too short to measure their
cumulative effect during many inspiral orbits. As a con-
sequence, we can only rely on analytical models for their
description for LIGO/Virgo targeted analyses.

The purpose of this paper is then to address and an-
swer the questions that remained open in Refs. [13, 15].
We do so by extending the EOS-dependent self-spin sec-
tor of TEOBResumS to NLO and next-to-next-to-leading
order (NNLO), suitably recasting in EOB form recent
PN calculations of Levi and Steinhoff [27–29]. For sim-
plicity, this is done in the circular approximation by ex-
ploiting the gauge-invariant relation between energy and
angular momentum rather than by deriving the explicit
canonical transformation that maps the Arnowitt-Deser-
Misner (ADM) Hamiltonian [30] into the EOB Hamilto-
nian. This new knowledge allows us to produce a con-
sistent phasing comparison with the TaylorF2 approxi-
mant. We find that the phase accelerating effect of the
spin-induced quadrupole moment terms is enhanced by
the NLO contribution, although the magnitude of the ef-
fect as predicted by TEOBResumS is always smaller than
in the corresponding TaylorF2 description. Remarkably,
a TaylorF2 approximant that also incorporates the LO
self-spin tail effect yields a self-spin phasing that is essen-
tially equivalent to the NLO TEOBResumS one up to fre-
quency Mω ' 0.05 independently of the EOS choice. We
also show that the LO quartic-in-spin effects entering the
circularized Hamiltonian recently computed by Levi and
Steinhoff [29] are already contained in the TEOBResumS
Hamiltonian of Ref. [31] in the black-hole (BH) case, due
to the use of the centrifugal radius. The corresponding
correction to the centrifugal radius yielded by the oc-
tupolar and hexadecapolar EOS-dependent spin-induced

effects (in the non binary BH case) is explicitly obtained.
The paper is organized as follows: Section II builds

upon Ref. [13] and describes how spin-quadratic (and
spin-quartic) terms are incorporated in the Hamilto-
nian of TEOBResumS, computing the additional correc-
tions to the centrifugal radius rc [31]. Section III sum-
marizes the spin sector of the, closed form, frequency
domain, waveform approximant TaylorF2. The predic-
tions of TEOBResumS and of TaylorF2 for what concerns
the monopole-quadrupole effects are compared in Sec. IV.
Section V collects some concluding remarks. The paper
ends with three appendices: Appendix A presents a few
suggestions about how incorporating the cubic-in-spin
dynamical effects of [29] within the EOB Hamiltonian;
Appendix B illustrates the performance of the (high-
order) post-adiabatic dynamics, as discussed in Ref. [32],
to efficiently compute long-inspiral BNS waveform. In
particular, we find that the computational time needed
for generating a typical (time-domain) BNS waveform
(summed over all multipoles up to ` = 8 inclueded) from
10 Hz is of the order of 0.4, that goes down to 0.1 sec
from 20 Hz. Appendix C re-expresses our results in terms
of different spin variables. If not otherwise specified, we
use units with G = c = 1.

II. NONLINEAR-IN-SPIN EFFECTS WITHIN
TEOBRESUMS

The EOS-dependent self-spin contribution at LO in
TEOBResumS was discussed extensively in Sec. IIIB of
Ref. [13] to which we refer the reader for further details.
Our notation follows [13]. We consider binary systems
in which the two bodies are labeled by (A,B). Their
masses and dimensional spins are denoted MA,B (with
MA ≥ MB) and SA,B ≡ MA,BaA,B respectively. The
total mass is M = MA + MB and the reduced mass
µ = (MAMB)/M . We also introduce the mass ratio
q ≡ MA/MB ≥ 1, the symmetric mass ratio ν = µ/M ,
the mass fractions XA,B ≡ MA,B/M and the shorthand

XAB ≡ XA − XB =
√

1− 4ν. Finally, we make use of
the dimensionless spin variables ãi ≡ ai/M ≡ Si/(MiM)
together with their symmetric and antisymmetric combi-
nations1 ã0 = ãA + ãB and ãAB = ãA − ãB .

A. Hamiltonian: quadratic-in-spin terms

In TEOBResumS [13, 35], which is limited to the case
of spin-aligned (nonprecessing) binaries, spin-quadratic
effects are treated introducing the “centrifugal radius”
rc, considered as a function of the Boyer-Lindquist-type

1 Note the difference between ãi ≡ ai/M and the usually intro-
duced dimensionless spin âi ≡ χi ≡ ai/Mi. Note also that in
Refs [13, 33, 34] we had denoted ã0 as â0.
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EOB radial variable r, and of the spin variables. For
BBHs, the function rc(r, ãA, ãB) incorporates both LO
and NLO spin-quadratic effects [35–37]; by contrast only
LO spin-quadratic effects were considered for extended
objects like NSs [13]. We hence start by generalizing the
expression of the centrifugal radius in order to take into
account both NLO and NNLO, EOS-dependent, self-spin
effects, exploiting the PN-expanded results of Refs. [27–
29]. The generalized formula for the centrifugal radius
that formally takes into account both NLO and NNLO
spin-quadratic effects reads

r2
c (r, ãA, ãB)NNLO = r2+ã2

Q

(
1 +

2

r

)
+
δa2

NLO

r
+
δa2

NNLO

r2
,

(1)
where we are using a dimensionless radial coordinate r ≡
R
M , and we introduced the effective spin variable

ã2
Q ≡ CQAã2

A + 2ãAãB + CQB ã
2
B . (2)

CQA and CQB are coefficients that parametrize the
quadrupolar deformation acquired by the NSs due to
their own rotation. For binary black holes, CQi = 1, so
ã2
Q reduces to ã2

0. The parameters δa2
NLO and δa2

NNLO en-
code the NLO and NNLO spin-spin information respec-
tively. As mentioned above, working in the circular ap-
proximation for simplicity, we compute them exploiting
the functional relation between binding energy and or-
bital angular momentum, that is explicitly given, in PN-
expanded form, in Refs. [27–29]. In practice, one com-
putes the PN-expanded EOB dynamics along circular or-
bits, that will explicitly depend on (δa2

NLO, δa
2
NNLO), and

then fixes these coefficients by comparison with the PN-
expanded relation of Ref. [29].

To do so, let us recall the main elements of the Hamil-
tonian of TEOBResumS that are useful for this calcula-
tion. Since we are considering nonprecessing systems,
the dynamics is described by the dimensionless phase-
space variables (r, pr∗ , ϕ, pϕ). We use ϕ to denote the
orbital phase, while the (dimensionless) radial and angu-
lar momentum are respectively defined as pr∗ = PR∗/µ
and pϕ = Pϕ/(µM). The µ-rescaled EOB Hamiltonian
then reads

ĤEOB =
HEOB

µ
=

1

ν

√
1 + 2ν

(
Ĥeff − 1

)
, (3)

where Ĥeff = Ĥorb
eff +pϕG̃, i.e., the sum of a orbital (even

in spin) and spin-orbit (odd in spin) term. Here G̃ ex-
plicitly reads

G̃ = GSŜ +GS∗ Ŝ∗, (4)

where Ŝ ≡ (SA + SB)/M2 and Ŝ∗ ≡ [(MB/MA)SA +
(MA/MB)SB ]/M2. As in previous work, the functions
(GS , GS∗) are written in Damour-Jaranowski-Schäfer

gauge [38, 39], which means gauging away the depen-
dence on the angular momentum pϕ so that they de-
pend only on u ≡ 1/r and on pr∗ . The explicit ex-
pressions of (GS , GS∗) can be found in Refs. [35, 39].
These expression only retain, in the spin-orbit part of the
Hamiltonian, terms that are linear in the spins. How-
ever, the complete TEOBResumS model is based on the
prescription of Refs. [13, 31, 40] to effectively incorpo-
rate, in resummed form, also higher odd-powers of the
spins (spin-cubed, spin5 etc.) by suitably replacing the u-
dependence of the functions (GS , GS∗) with dependence
on uc. We shall see in Sec. II B below that TEOBResumS
delivers a reasonable approximation to the actual LO
spin-cubic part of the ADM Hamiltonian of Ref. [29].
In Appendix A we give possible EOB transcriptions of
the results of [29].

The orbital part of the effective Hamiltonian reads

Ĥorb
eff =

√
p2
r∗ +A

(
1 + p2

ϕu
2
c + z3 p4

r∗u
2
c

)
, (5)

with z3 = 2ν(4 − 3ν) and uc ≡ 1/rc. A is the effec-
tive metric potential, whose PN expansion in the non-
spinning limit is

APN
orb(u) = 1− 2u+ 2νu3 + νa4u

4

+ ν
(
ac5 + alog

5 log(u)
)
u5 +O[u6]. (6)

The PN coefficients that appear above explicitly read

a4 =
94

3
− 41

32
π2,

ac5 =− 4237

60
+

2275

512
π2 +

256

5
log 2 +

128

5
γ

−
(

221

6
− 41

32
π2

)
ν,

alog
5 =

64

5
, (7)

where γ = 0.57721 . . . is Euler’s constant. In
TEOBResumS, this effective metric is resummed using a
Padé approximant, namely

Aorb(u) = P1
5[APN

orb(u)]. (8)

When spins are present, the metric is built upon the Kerr
one and reads

A(u;Si) =
1 + 2uc
1 + 2u

Aorb(uc). (9)

We hence start considering circular orbits (pr∗ = 0) and
compute the circular angular momentum, j, using the
condition ∂uĤeff = 0, that yields the following equation{[(

Au2
c

)′]2 − 4Au2
c

(
G̃′
)2
}
j4

+

[
2A′

(
Au2

c

)′ − 4A
(
G̃′
)2
]
j2 + (A′)

2
= 0, (10)

where the prime indicates (·)′ ≡ ∂u(·). By expanding the
solution of Eq. (10) in series of u and up to the second
order in spin one obtains
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j(u) =
1√
u

+
3

2

√
u− 3

8
(7ã0 +XAB ãAB)u+

[
27

8
− 3

2
ν + ã2

Q

]
u3/2

+

[(
−87

16
+

11

8
ν

)
ã0 −

(
33

16
+

1

8
ν

)
XAB ãAB

]
u2

+

[
135

16
+

(
−433

12
+

41

32
π2

)
ν +

441

128
ã2

0 +
1

2
ã2
Q +

(
9

128
− 9

32
ν

)
ã2
AB +

63

64
XAB ã0ãAB +

5

4
δa2

NLO

]
u5/2

+

[(
−63

4
+

505

16
ν +

25

64
ν2

)
ã0 +

(
−63

8
+

55

16
ν − 5

64
ν2

)
XAB ãAB

]
u3

+

[
2835

128
−
(

3029

120
+ 32γ +

3503

2048
π2 + 64log(2) + 16log(u)

)
ν +

(
539

12
− 205

128
π2

)
ν2

+

(
4095

256
− 231

64
ν

)
ã2

0 −
(

9

8
− 9

4
ν

)
ã2
Q +

(
207

256
− 51

16
ν − 3

16
ν2

)
ã2
AB

+

(
1017

128
− 3

16
ν

)
XAB ã0ãAB −

19

8
δa2

NLO +
3

2
δa2

NNLO

]
u7/2 +O

[
u4
]
. (11)

This truncated series can be inverted so to obtain u(j), which reads

u(j) =
1

j2
+

3

j4
− 3

4
(7ã0 +XAB ãAB)

1

j5
+
(
18− 3ν + 2ã2

Q

) 1

j6

+

[(
−465

8
+

11

4
ν

)
ã0 −

(
87

8
+
ν

4

)
XAB ãAB

]
1

j7

+

[
135 +

(
−311

3
+

41

16
π2

)
ν +

441

8
ã2

0 + 22ã2
Q +

(
9

8
− 9

2
ν

)
ã2
AB +

63

4
XAB ã0ãAB +

5

2
δa2

NLO

]
1

j8

+

[(
−1269

2
+

1273

8
ν +

25

32
ν2

)
ã0 +

(
−531

4
+

103

8
ν − 5

32
ν2

)
XAB ãAB

]
1

j9

+

[
1134−

(
163063

120
+ 64γ − 31921

1024
π2 + 128log(2) + 64log (1/j)

)
ν +

(
1321

12
− 205

64
π2

)
ν2

+

(
9009

8
− 1155

16
ν

)
ã2

0 +

(
234− 45

2
ν

)
ã2
Q +

(
261

8
− 2073

16
ν − 15

4
ν2

)
ã2
AB

+

(
1557

4
− 15

4
ν

)
XAB ã0ãAB + 29 δa2

NLO + 3 δa2
NNLO

]
1

j10
+O

[
j−11

]
. (12)

By placing this expanded expression of u into the EOB
Hamiltonian, one can finally obtain the gauge-invariant
relation between the binding energy and angular momen-
tum. The binding energy per reduced mass is in fact de-
fined as Eb = (E −M)/µ, where E = νĤEOB, and is
given as a polynomial in inverse powers of j, i.e.,

Eb(j) = − 1

2j2

(
1 +

8∑
n=1

cn
jn

+O
[
j−9
])

. (13)

Explicitly, from the expansion of the EOB Hamiltonian
along circular orbits we get
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Eb(j) =− 1

2j2

{
1 +

1

4
(9 + ν)

1

j2
− 1

2
(7ã0 +XAB ãAB)

1

j3

+
1

8

[
81− 7ν + ν2 + 8ã2

Q

]
1

j4
− 3

8
[(81 + ν) ã0 + (15 + ν)XAB ãAB ]

1

j5

+

[
3861

64
−
(

8833

192
− 41

32
π2

)
ν − 5

32
ν2 +

5

64
ν3 +

441

16
ã2

0 +

(
17

2
+
ν

2

)
ã2
Q +

(
9

16
− 9

4
ν

)
ã2
AB

+
63

8
XAB ã0ãAB + δa2

NLO

]
1

j6
+

1

16

[(
−4293 + 822ν − 5ν2

)
ã0 +

(
−891 + 42ν − 5ν2

)
XAB ãAB

] 1

j7

+

[
53703

128
−
(

989911

1920
+

128

5
γ − 6581

512
π2 +

256

5
log(2) +

128

5
log (1/j)

)
ν +

(
8875

384
− 41

64
π2

)
ν2

− 3

64
ν3 +

7

128
ν4 +

(
14679

32
− 385

32
ν

)
ã2

0 +

(
603

8
− 29

8
ν +

3

8
ν2

)
ã2
Q +

(
423

32
− 1669

32
ν − 23

8
ν2

)
ã2
AB

+

(
2529

16
+

53

16
ν

)
XAB ã0ãAB +

(
19

2
+
ν

2

)
δa2

NLO + δa2
NNLO

]
1

j8
+O

[
j−9
]}

, (14)

where we see that the c6 and c8 coefficients explicitly
depend on δa2

NLO and δa2
NNLO. The corresponding quan-

tities in Eq. (5.3) of Ref. [28], once expressed in our spin
variables2, explicitly read

(
cSS
6

)L−S
=

1

16

{
(375 + 8ν) ã2

0 + 8 (−23 + ν) ã2
Q + (7− 52ν) ã2

AB +XAB

[
130 ã0ãAB + 16

(
CQAã

2
A − CQB ã2

B

)]}
,

(15)(
cSS
8

)L−S
=

1

112

{
−
(
51369− 2743ν + 21ν2

)
ã2

0 +
(
13182− 1066ν + 42ν2

)
ã2
Q −

(
5205 + 6292ν + 329ν2

)
ã2
AB

+XAB

[
13 (1380 + 7ν) ã0ãAB + (1716 + 56ν)

(
CQAã

2
A − CQB ã2

B

)]}
. (16)

Comparing Eqs. (15) and (16) to Eq. (14) one obtains

δa2
NLO =− 33

8
ã2

0 + 3ã2
Q −

1

8
(1 + 4ν) ã2

AB

+XAB

[
1

4
ã0ãAB +

(
CQAã

2
A − CQB ã2

B

)]
,

(17)

2 Note that Ref. [28] uses as dimensionless spin variables

some quantities, SL−S
i , that correspond to our Si/(MAMB).

Furthermore, their deformation coefficients are denoted by
(CES2 , CBS3 , CES4 ), in order to highlight the spin order and
their electric/magnetic behavior. In our convention, they corre-
spond to (CQ, COct, CHex) respectively, which puts the accent
on the multipole of the deformation. We also note that the λ
constants by Marsat (see Sec. B of Ref. [41]) are the same as
Levi and Steinhoff’s CBS3 and our COct’s.

and

δa2
NNLO =−

(
4419

224
+

1263

224
ν

)
ã2

0 +

(
387

28
− 207

28
ν

)
ã2
Q

+

(
11

32
− 127

32
ν +

3

8
ν2

)
ã2
AB

+XAB

[
−
(

29

112
+

21

8
ν

)
ã0ãAB

+
163

28

(
CQAã

2
A − CQB ã2

B

)]
. (18)

1. Binary black hole limit

The BH case is recovered imposing CQA = CQB = 1 or,
equivalently, ã2

Q = ã2
0 and

(
CQAã

2
A − CQB ã2

B

)
= ã0ãAB .
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This yields

δa2
BBH NLO =− 9

8
ã2

0 −
1

8
(1 + 4ν) ã2

AB +
5

4
XAB ã0ãAB ,

(19)

δa2
BBH NNLO =−

(
189

32
+

417

32
ν

)
ã2

0

+

(
11

32
− 127

32
ν +

3

8
ν2

)
ã2
AB

+

(
89

16
− 21

8
ν

)
XAB ã0ãAB . (20)

Eq. (19) agrees with the result for the same quantity
obtained in Ref. [35] (see Eq. (60) there) with a differ-
ent method (see also [42]). The impact of the newly
computed δa2

NNLO in BBH systems will be analyzed else-
where.

B. Hamiltonian: cubic-in-spin terms already
included in TEOBResumS

The LO cubic-in-spin contribution to the PN-expanded
Hamiltonian (and thus on the Eb(j) curve) was derived
in Ref. [28]. This contribution is not fully incorporated in
the current version of TEOBResumS. However, one should
be aware that some cubic-in-spin terms are already in-
cluded in the model, because they naturally arise due to
the presence of uc in the gyro-gravitomagnetic functions
GS and GS∗ that enter the spin-orbit sector of the Hamil-
tonian (see Sec. II A). It is then interesting to check how
these terms, that are guessed by the resummed structure
of the Hamiltonian, do compare with the exact result of
Ref. [28]. We now redo the calculations of Sec. II A, this
time keeping the cubic-in-spin terms, whose LO enters
in the coefficient of j−9 in the gauge-invariant relation
Eb(j). In TEOBResumS, the former is given by(

c
S3
LO

7

)TEOBResumS
= −

(
67

4
ã0 +

13

4
XAB ãAB

)
ã2
Q. (21)

By contrast, the PN-expanded result from Ref. [28] reads(
c
S3
LO

7

)L−S

=− (2COctA + 15CQA + 3XABCQA) ã3
A

− [30 + 21CQA +XAB (6− 3CQA)] ã2
AãB

− [30 + 21CQB −XAB (6− 3CQB)] ãAã
2
B

− (2COctB + 15CQB − 3XABCQB) ã3
B ,

(22)

which is qualitatively different from Eq. (21) above be-
cause of the presence of the spin-induced octupolar mo-
ments COctA,B . Comparing Eqs. (21) and (22), we
see that TEOBResumS does not automatically predict
(through the definition Eqs. (1), (2) used to incorpo-
rate spin-quadratic couplings) the needed PN LO spin-
cubic terms. We have, however, checked that the coeffi-

cients entering the two expressions are numerically suffi-
ciently close to lead to nearly equivalent physical predic-
tions. This is especially evident in the BBH case when
COctA,B = CQA,B = 1. In this case the above equations
read

(
c
S3
LO

7

)TEOBResumS
=−

(
67

4
ã0 +

13

4
XAB ãAB

)
ã2

0, (23)(
c
S3
LO

7

)L−S

=− (17ã0 + 3XAB ãAB) ã2
0, (24)

with a fractional difference of 1/68 ≈ 1.47% between the
first coefficients and 1/12 ≈ 8.3% for second ones. In
practice, the Hamiltonian of TEOBResumS incorporates
this approximate description of cubic-in-spin terms, as
well as higher-order odd powers of the spins due to its
resummed structure. In Appendix A we propose possible
EOB transcriptions of the full cubic-in-spin information
of Ref. [28].

C. Hamiltonian: quartic-in-spin terms

The quartic-in-spin contribution to the PN-expanded
Eb(j) curve was also computed by Levi and Steinhoff [29].
This corresponds to a 4PN effect, i.e., it enters at or-
der 1/j10. We can thus slightly modify the procedure of
Sec. II A above so to apply it also to the recovery of the
spin-quartic EOS-dependent terms. We introduce a new
parameter δa4

LO in the definition of r2
c that now reads

r2
c = r2 + ã2

Q

(
1 +

2

r

)
+
δa2

NLO

r
+
δa2

NNLO

r2
+
δa4

LO

r2
. (25)

We then proceed and compute the same formulas we
showed before consistently keeping all the quartic-in-spin
term. The LO quartic-in-spin term, O(1/j8) in Eb(j)
reads (

c
S4
LO

8

)TEOBResumS
= 3ã4

Q + δa4
LO. (26)

The corresponding term from Ref. [27] reads

(
c
S4
LO

8

)L−S

=
3

4

(
3C2

QA + CHexA

)
ã4
A

+ 3 (3CQA + COctA) ã3
AãB

+ 9 (CQACQB + 1) ã2
Aã

2
B

+ 3 (3CQB + COctB) ãAã
3
B

+
3

4

(
3C2

QB + CHexB

)
ã4
B , (27)

where COct and CHex are the spin-induced octupolar and
hexadecapolar moments quoted above. From these two
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equation one obtains

δa4
LO =

3

4

(
CHexA − C2

QA

)
ã4
A

+ 3 (COctA − CQA) ã3
AãB

+ 3 (CQACQB − 1) ã2
Aã

2
B

+ 3 (COctB − CQB) ãAã
3
B

+
3

4

(
CHexB − C2

QB

)
ã4
B . (28)

To our knowledge CQ and COct have been calculated us-
ing numerical approaches [43–45]; by contrast, current
knowledge about CHex relies on both the slow-rotation
approximation (if the NS dimensionelss spin is smaller
than 0.3) and on numerical calculations otherwise [46].
All this knowledge (notably recasted in terms of EOS
quasi-universal relations [46–48] with the NS Love num-
bers [4, 6, 49–51]) allows us to evaluate also the impact
δa4

LO on the BNS phasing. Before doing so, we note

that in the BH limit (when CQ = COct = CHex = 1)
δa4

LO vanishes. It is remarkable that the resummed EOB
Hamiltonian, thanks to the use of the deformed Kerr
structure provided by the EOB centrifugal radius [31], is
proven to correctly incorporate, at the LO, the quartic-
in-spin behavior. We also point out, in passing, that the
same structure is present also in the EOB Hamiltonian
of Refs. [52–54], and thus the quartic-in-spin terms at
LO are also present in the SEOBNRv4 corresponding EOB
model [55]

D. Waveform and flux

Recently, Marsat and Bohé have also computed sev-
eral terms quadratic in spin entering the post-Newtonian
waveform [56]. Their work is yet unpublished, but they
kindly gave us access to their most recent results. We
report below the corresponding contributions to the fac-
torized waveform amplitude, as the EOS-dependent gen-
eralization of Eqs. (39), (43), (44) and (45) of Ref. [34].

ρSS,LO
22 =

1

2
ã2
Qx

2, (29)

ρSS,NLO
22 =

{
−187

252
ã2

0 +

(
1

7
+

27

56
ν

)
ã2
Q +

(
19

252
− 5

18
ν

)
ã2
AB +XAB

[
2

9
ã0ãAB +

55

84
(CQAã

2
A − CQB ã2

B)

]}
x3, (30)

f̃SS,LO
21 =

[
−19

8
ã0ãAB − (CQAã

2
A − CQB ã2

B) +XAB

(
−ã2

0 +
3

2
ã2
Q −

1

8
ã2
AB

)]
x2, (31)

f̃SS,LO
31 =

[
−4(CQAã

2
A − CQB ã2

B) +
3

2
XAB ã

2
Q

]
x2, (32)

f̃SS,LO
33 =

3

2
XAB ã

2
Qx

2. (33)

For this work, all these new terms (due to Marsat and
Bohé) are incorporated in the flux and waveform of
TEOBResumS.

Let us finally comment about the cubic-in-spin terms,
that, at leading order, contribute to both the ` = m = 2
and to the ` = 2, m = 1 quadrupolar modes. The
corresponding contribution to the flux was obtained by
S. Marsat in Ref. [41]. In Ref. [34] this information
(though restricted to the BBH case) was incorporated in
the EOB waveform. Although the results of this paper
are obtained by omitting such LO spin-cube contribution,
let us write here the full terms entering ρS22 and f̃S21, that
reduce to part of Eqs. (39) and (43) of Ref. [34] in the

black hole limit CQA = CQB = COctA = COctB = 1.

ρS
3

22 =

{(
19

12
CQA − COctA −

1

4
CQAXAB

)
ã3
A

+

[
19

6
− 17

12
CQA −

(
1

2
− 1

4
CQA

)
XAB

]
ã2
AãB

+

[
19

6
− 17

12
CQB +

(
1

2
− 1

4
CQB

)
XAB

]
ãAã

2
B

+

(
19

12
CQB − COctB +

1

4
CQBXAB

)
ã3
B

}
x7/2,

(34)

f̃S
3

21 =

(
3

2
ã2

0 −
3

4
ã2
Q

)
ãAB x5/2. (35)
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III. POST-NEWTONIAN PHASING
DESCRIPTION

A. Reminder on the the TaylorF2 phasing
approximant

In the previous section, we have extensively discussed
the spin-quadratic (and spin-quartic) contributions in
both the Hamiltonian and waveform/flux of TEOBResumS.
Inspecting the expressions for, e.g., (δa2

NLO, δa
2
NNLO) one

sees that there are several terms that involve (CQA, CQB)
and thus take into account the effect due to the spin-
induced quadrupole moments both in the dynamics and
in the radiation (cf. Eqs. (29)-(33)). In this section, we
move to the PN-based equivalents of these effects within
the TaylorF2 phasing approximant [57]. Although our
final goal is to compare the effect of the spin-induced
quadrupole moment in TaylorF2 and in TEOBResumS, here
we aim at being as general as possible. So, for complete-
ness we collect all currently available spin-dependent an-
alytical information that allows us to push the complete
spin sector of the TaylorF2 approximant up to 4PN ac-
curacy. This means considering linear and quadratic-in-
spin effects that also involve tail terms.

Given the energy flux F(v) and energy E(v) of a binary

on circular orbits (expressed as functions of v ≡ (MΩ)
1
3 ,

where Ω is the orbital frequency), the phase of the Fourier
transform of the signal is obtained by the following inte-
gral (see, e.g., Eq. (3.5) of Ref. [57])

Ψ(f) = 2πftref − φref + 2

∫ vref

vf

(v3
f − v3)

E′(v)

F(v)
dv, (36)

which assumes the validity of the stationary phase ap-
proximation. In short, when this approximation holds,
the phase of the time-domain Fourier transform is the
Legendre transform of the quadrupolar time domain
phase φ(t), that is given by

Ψ(f) = 2πftf − φ(tf )− π/4, (37)

where tf is the solution of the equation 2πf =
[dφ(t)/dt]t=tf . Using in Eq. (36) the PN-expanded ex-
pression for E′(v)/F(v) defines the TaylorF2 phasing ap-
proximant. TaylorF2 is typically used at 3.5PN accuracy
for the orbital and spin-orbit part, while the spin-spin
part is limited to 3PN order. It was used in this form for
GW data-analysis purposes (see, e.g., [1, 2]). The com-
plete extension of the approximant at 4PN is currently
not possible since the calculation of the ν-dependent part
of the energy fluxes is currently incomplete. However,
there are higher-order terms in TaylorF2, those involv-
ing the tail terms, that are analytically known. For ex-
ample, Ref. [16] showed how the 4.5PN-accurate term
of the energy flux, that is a pure tail term, can be ob-
tained exactly by PN-expanding the EOB energy flux.
Applying the same procedure, one can have access to the
3.5PN-accurate, LO, spin-spin tail term as well as to the
4PN-accurate, NLO, spin-orbit tail term. The spin-spin

and spin-orbit tail terms in the flux (and TaylorF2) are
presented here for the first time. After the integration
of Eq. (36) the 4PN-accurate spin-dependent part of the
phasing reads

ΨF2
4PN,spin(f) = 2πftc − ϕc −

π

4

+
3

128ν
(πfM)−5/3

8∑
i=0

ϕi(πfM)i/3.

(38)

As mentioned above, the orbital (spin-independent) part
has the same structure, but the 4PN term is currently
incomplete, so we omit its discussion here. Following the
procedure of Ref. [16], we construct the PN-expanded
total energy flux starting from the EOB-resummed pre-
scription [58]

F =

∞∑
`=2

m∑
`=−m

FNewt
`m F̂`m (39)

using the orbital dynamical information at the consistent
PN order [59–63], the spin information given in Ref. [64]
and the new spin waveform results computed by Marsat
(Eqs. (18)-(22) from Sec. II D, [16, 34, 65]). The relation
between the dynamics, the EOB residual relativistic am-
plitudes (which can be derived from the PN waveforms)
and the flux is given in Ref. [58], and we reproduce it
here for completeness:

F̂`m =
(
S

(ε)
eff

)2

|T`m|2(ρ`m)2`. (40)

In this equation, S
(ε)
eff is the effective source, that is the ef-

fective EOB energy along circular orbits Êeff(x) ≡ Eeff/µ
when ε = 0 (`+m=even) or the Newton-normalized or-
bital angular momentum when ε = 1 (`+m=odd).

B. Extracting tail effects from the EOB resummed
tail factor T`m

Of crucial importance for our present purpose is the
(complex) tail factor T`m that resums an infinite number
of leading logarithms (see Refs. [58, 66]). This factor au-
tomatically incorporates tail effects that can be extracted
from it and added to the lower-order PN results.

Expanding the formula (40) multipole by multipole
and then summing all the contributions up to ` = 4,
one obtains the following expression for the 3.5PN spin-
quadratic tail term in the flux

F̂SS,tail
3.5PN =

(
8ã2
Q +

1

8
ã2
AB

)
π x7/2, (41)

which reduces to Eq. (26) of Ref. [16] in the BH case,
when ã2

Q = ã2
0. Adding this new piece to Eq. (4.14)

of Ref. [64], one obtains a full 3.5PN flux that is used,
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together with the energy given by Eq. (3.33) of the same
reference, to compute the 3.5PN accurate spin-spin tail
term at NLO (entering the ϕ7 coefficient in Eq. (38), as
detailed below) by solving the integral given by Eq. (36).

This resummed tail expansion procedure can be ap-
plied also to the spin-orbit analogue of the flux. As we
did previously, the fact that the EOB-resummed tail am-
plitude T`m contains and infinite amount of PN informa-
tion when expanded, using consistently the ρ`m and f̃`m
information computed from Eqs. (29)-(33) and the point-
mass ones from [34, 65], we can compute again Eq. (40),
but this time, for what concerns the dynamics, we add
to the orbital information of Refs. [59–62] the spin-orbit
one of Refs. [41, 67]. The spinning angular momentum at
NLO in the spin-orbit coupling is given by Eq. (3.12) of
Ref. [68]. This time we use the spin residual relativistic
waveform amplitudes up to ` = 4, and the purely orbital
ones from ` = 5 to ` = 7, truncating at the right PN
order being careful to account for the relative order of
the Newtonian prefactors in the process (see Appendix

of [34]). Like in Ref. [16], the m = even flux informa-
tion of the ` = 7 multipoles is out of one PN order with
respect to the result we are searching for, so can be ne-
glected in this computation. The new result obtained
this way yields 3

FSO,tail
5PN =

[(
220103

1512
+

8421757

72576
ν − 9491453

18144
ν2

)
ã0

+

(
55499

3024
+

1149163

72576
ν − 4993897

36288
ν2

)
XAB ãAB

]
πx5,

(42)

and gives access to the new 4PN spin-orbit terms in the
ϕ8 coefficient in the PN-SPA phase.

C. Final 4PN-accurate TaylorF2 phasing
coefficients

The complete calculation, at 4PN-accuracy, gives

ϕSO
3 =

94

3
ã0 +

19

3
XAB ãAB , (43)

ϕSS
4 =− 50ã2

Q −
5

8
ã2
AB , (44)

ϕSO
5 =− [1 + log (πfM)]

[(
554345

2268
+

55

9
ν

)
ã0 +

(
6380

81
+

85

9
ν

)
XAB ãAB

]
, (45)

ϕSS; SOtail

6 = π

(
1880

3
ã0 + 130XAB ãAB

)
+

(
15635

21
+ 120ν

)
ã2
Q −

5570

9
ã2

0

−
(

40795

2016
+

1255

36
ν

)
ã2
AB +XAB

[
−250

9
ã0ãAB +

2215

12

(
CQAã

2
A − CQB ã2

B

)]
, (46)

ϕSStail; SO
7 =− π

(
400ã2

Q +
15

2
ã2
AB

)
+

(
−8980424995

1524096
+

6586595

1512
ν − 305

72
ν2

)
ã0

+

(
−7189233785

3048192
+

458555

6048
ν − 5345

144
ν2

)
XAB ãAB , (47)

ϕSOtail
8 = π[1− log (πfM)]

[(
2388425

2268
− 9925

27
ν

)
ã0 +

(
1538855

4536
− 19655

756
ν

)
XAB ãAB

]
, (48)

where we have explicitly emphasized in the definition of
each term its spin-orbit, spin-spin or spin-tail character.
Note that ϕ6 and ϕ7 receive contributions from both tail
and non-tail terms. The (ϕSStail

7 , ϕSOtail
8 ) terms are com-

puted here from the first time.

3 By PN consistency, this procedure yields lower PN spin-orbit
terms that are well known in literature. Note also that the test-
particle limit of (42) (in which ã0 = ãABXAB = ãA) agrees with
the result of Ref. [69], namely 23605

144
ãAπx

5.

D. Isolating the EOS-dependent
quadrupole-monopole terms

From the result above we can finally isolate the EOS-
dependent quadrupole-monopole terms (i.e., those pro-
portional to CQi). These terms are the main focus of the
present paper. Multiplying by the Newtonian prefactor
(see also [13]) one obtains, at 3.5PN order,

ΨQM
SS = ΨQM,LO

SS + ΨQM,NLO
SS + ΨQM,tail

SS , (49)
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which can be explicitly written as

ΨQM,LO
SS =− 75

64ν

(
ã2
ACQA + ã2

BCQB
)(Mω

2

)−1/3

,

(50)

ΨQM,NLO
SS =

1

ν

[(
45

16
ν +

15635

896

)
(CQAã

2
A + CQB ã

2
B)

+
2215

512
XAB(CQAã

2
A − CQB ã2

B)

](
Mω

2

)1/3

,

(51)

ΨQM,tail
SS =− 75

8ν
π
(
ã2
ACQA + ã2

BCQB
)(Mω

2

)2/3

(52)

where we replaced the circularized quadrupolar gravita-
tional wave frequency Mf by Mω = 2πMf . The LO
(2PN) term has been derived from the SPA phase origi-
nally computed by Poisson [8].

Le us now concentrate on the gauge-invariant descrip-
tion of the phasing of the case of our interest, i.e., Eqs
(50), (51) and (52). Following previous practice (see
Ref. [13] and references therein) we do so by the Qω
function that is defined, for any Fourier-domain phase,
as

ω2 d
2Ψ(ω)

dω2
= Qω(ω), (53)

where we identify the time domain and frequency do-
main circular frequencies, i.e., ωf = ω(t). The integral
of Qω per logarithmic frequency yields the phasing accu-
mulated by the evolution on a given frequency interval
(ωL, ωR). The quadrupole-monopole contribution to the
PN-expanded Qω we are interested in here is given by
the following three terms

QSSQM
ω = QSSQM,LO

ω +QSSQM,NLO
ω +Q

SSQM,tail
ω (54)

that explicitly read

QSSQM,LO
ω =− 25

48ν

(
ã2
ACQA + ã2

BCQB
) (ω

2

)−1/3

,

(55)

QSSQM,NLO
ω =− 1

ν

[(
5

8
ν +

15635

4032

)
(CQAã

2
A + CQB ã

2
B)

+
2215

2304
XAB(CQAã

2
A − CQB ã2

B)

](ω
2

)1/3

,

(56)

Q
SSQM,tail
ω =

25

12ν
π
(
ã2
ACQA + ã2

BCQB
) (ω

2

)2/3

. (57)

The aim of the next section will be to investigate how this
function compares with the analogous quantity obtained
from TEOBResumS with all the spin-dependent informa-
tion detailed in the previous section.

IV. RESULTS: GAUGE-INVARIANT PHASING
COMPARISONS OF THE EOS-DEPENDENT

SELF-SPIN EFFECTS

Reference [13] presented a preliminary comparison be-

tween the various PN truncations of the Q
SSQM
ω writ-

ten above and the corresponding quantity computed
using from the time-domain waveform generated by
TEOBResumS including only the self-spin information at
LO in both the Hamiltonian and waveform/flux, see
Fig. 14 there. The main outcome of this preliminary
comparison was to show, for an illustrative BNS config-
uration, the consistency between the PN and EOB de-
scriptions, especially at low frequencies, with the latter
being slightly more phase-accelerating than the former.
In this respect, Refs. [13, 15] showed the existence of
a nonnegligible difference with respect to the TaylorF2
phasing with NLO (i.e., 3PN) self-spin effects. However,
Ref. [15], see Sec. VI there, stressed that a more definitive
assessment of the EOB/PN performances would need the
incorporation of the NLO information in TEOBResumS.
We shall do so here, closely following what was done in
Ref. [13]. To start with, we work at NLO in the self-spin
within TEOBResumS, adding the corresponding terms to
both the Hamiltonian and the multipolar waveform am-
plitude (and flux). For definiteness, we consider a few
BNS configurations, that we list in Table I, ranging from
stiffer to softer EOS. Similarly, we mainly explore values
of the spins that are compatible with those expected for
BNSs. However, to stretch the limits of the model, we
also consider a fast-spinning configuration, with χA = 0.8
and χB = 0.4. We note that, although such a configura-
tion is unlikely to exist in a realistic binary system, these
spin magnitudes values were considered in the parame-
ter estimation of GW170817 when considering high-spin
priors analyses [1, 2].

The Qω(ω) is computed (from the time-domain phas-
ing) in the same way as briefly described in Ref. [13],
though here we pushed the lower frequency limit down
to 5Hz, so as to unambiguously identify the frequency
region were the EOB and PN curve converge together.
The code we used to do so is TEOBResumS v0.1 that
improves over v0.0 (see Ref. [13]) because of the pres-
ence of the nonlinear spin terms discussed here4 The
same terms are also implemented in v1.0 which addi-
tionally contains the updated tidal model of Ref. [70]
and the post-adiabatic approximation to efficiently com-
pute long inspirals [32] (see Appendix B for additional de-
tails). With TEOBResumS v0.1 is is easy to compute such
a long waveform with reasonable efficiency. In practice,
it is convenient to join together the waveforms computed
on three different frequency intervals. The intervals are
chosen in a way that the two pieces overlap on a com-
mon frequency interval. Table II illustrates our choices

4 Note that v0.1 also implements by default the EOS-dependent
quartic-in-spin terms of Sec. II C.
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No. EOS MA MB q ≡MA/MB χA χB ΛA ΛB CQA CQB Mωmrg ∆EOBφ

SLy-q1-sA01-sB01 Sly 1.35 1.35 1 0.1 0.1 389.96 389.96 5.48 5.48 0.1344 −2.04

SLy-q1-sA005-sB005 Sly 1.35 1.35 1 0.05 0.05 389.96 389.96 5.48 5.48 0.13446 −0.51

SLy-q1.2-sA005-sA008 Sly 1.6573 1.354 1.224 0.05 0.08 382.7 1312.1 5.45 7.99 0.12155 −1.04

Ms1b-q1-sA01-sB01 Ms1b 1.35 1.35 1 0.1 0.1 1545 1545 8.40 8.40 0.10616 −3.06

Ms1b-q1-sA005-SB005 Ms1b 1.35 1.35 1 0.05 0.05 1545 1545 8.40 8.40 0.10616 −0.76

H4-q1.25-sA005-sB008 H4 1.91 1.528 1.25 0.05 0.08 499.6 1986 5.92 9.06 0.11508 −1.08

TABLE I. BNS configurations used in this paper. From left to right the columns report: the name of the configurations;
the individual masses; the mass ratio; the individual spins, tidal parameters and spin-induced quadrupole moments, that are
obtained with the universal relations of [47, 48]. Then, Mωmrg denotes the dimensionless GW frequency at the EOB BNS
merger, conventionally defined as the peak of the ` = m = 2 waveform amplitude. The last column lists the accumulated phase
from 10 Hz to BNS merger due to the presence of the self-spin effects. For obtaining these numbers only the NLO self-spin
terms, both in waveform and Hamiltonian, were included in TEOBResumS.
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FIG. 1. Left panel: Sly EOS, MA = MB = 1.35, χA = χB = 0.1 and CQA = CQB = 5.48. Right panel: Ms1B EOS,
MA = MB = 1.35, χA = χB = 0.1 and CQA = CQB = 8.40. The grey vertical lines correspond to 50, 400, 800 and 1200 Hz

respectively. The additional Q
SSQM,tail
ω term in TaylorF2 is crucial to get an excellent agreement between the PN-expanded

and EOB phasing for most of the inspiral.

for one specific configuration, SLy-q1.2-sA005-sA008 in
Table I, and lists: the different running times τ (in-
cluding the time needed to write the file on disk); the
sampling ∆t/M ; and the various intervals (in radius)
where the EOB dynamics is evolved. As explained in
Ref. [13], in order to explore the low-frequency regime
one has to avoid the time-domain oversampling of the
waveform that naturally occurs from the ODE solver. To
remove this, the raw time-domain waveform phase is ad-
ditionally downsampled and its derivatives smoothed in
order to get a clean and nonoscillatory Qω function. The
procedure is tedious, but straightforward and it is done
separately on different frequency intervals, with the final

results eventually joined together. To isolate the, CQi-
dependent only, QSS

ω contribution within TEOBResumS we
perform, for each configuration, two different runs, one
with CQi 6= 0 another one with CQi = 0. In both cases
we compute the time-domain Qω and finally calculate

QTEOBResumS,SS
ω = Q

TEOBResumSCQi 6=0

ω −Q
TEOBResumSCQi=0

ω .
(58)

Illustrative results are shown in Fig. 1 for the
two configurations SLy-q1-sA01-sB01 (left panel) and
Ms1b-q1-sA01-sB01 (right panel). Each panel is sep-
arated into two subpanels: the top part reports QSS

ω ,
with the EOB and the three different PN truncations;
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FIG. 2. Closeness of the tail-completed TaylorF2 description
of the phasing to the EOB one, even when rather high values
of the individual spins are considered.

TABLE II. Configuration SLy-q1.2-sA005-sA008 in Table I.
Indicative time, τ , obtained with the v0.1 version of the pub-
lic implementation of TEOBResumS, needed for obtaining the
complete waveform, from 5Hz up to merger. To ease the com-
putation (and to reduce the high-frequency noise due to the
oversampling of the inspiral part), the waveform is computed
joining together three pieces (starting at rmax and ending at
rmin) obtained with different sampling rates ∆t. Note that
the value of τ also takes into account the time needed to ac-
tually write the data on disk. Runs on an Intel Core i5-8250
(1.6GHz) and 8GB RAM. The code was compiled with the
g++ GNU compiler using O3 optimization.

f0 [Hz] rmax rmin ∆t−1 [Hz] ∆t/M τ [sec]

5 264.11 80 100 674.2 102.177

20 104.81 8 10000 6.742 1.622

200 22.58 merger 100000 0.674 1.4832

the bottom panel reports the differences ∆QEOBPN
ω ≡

QSSEOB
ω −QSSPN

ω . To orient the reader, the vertical lines
superposed to the plot correspond to 50, 400, 800 and
1200 Hz. As mentioned in Ref. [13] the comparison be-
tween the time-domain EOB Qω and the frequency do-
main PN-expanded Qω is meaningful as long as the SPA
holds. In other words, this is true until the adiabatic pa-
rameter given by 1/Qω is small enough. We will briefly
comment about this at the end of the section.

The main conclusions we draw from figure Fig. 1 are:
(i) the EOB description of the self-spin effects at NLO

0.02 0.04 0.06 0.08 0.1 0.12
-0.5

-0.4

-0.3

-0.2

-0.1

0

EOB: LO
EOB: NLO
EOB: NNLO
PN: LO (2PN)
PN: NLO (3PN)
PN: LO+NLO+Tail (3.5PN)

FIG. 3. The effect of the NNLO self-spin term incorporated in
the EOB Hamiltonian for one of the configurations of Table I.
Although the NNLO term results in an acceleration of the
inspiral with respect to the NLO model, the curve is still
above the NLO PN-expanded TaylorF2 one.

is more phase-accelerating than the LO one (both PN
or EOB, cf. Fig. 14 of Ref. [13]); (ii) it is however
less phase-accelerating than the standard TaylorF2 NLO
one. This seems to corroborate the suggestion made in
Sec. VI of Ref. [15] that part of the phasing accumulated
by this approximant is due to its PN-nature. Since, a
priori, tidal effects might be degenerate with self-spin ef-
fects (since they both accelerate the phasing), the use
of the 3PN Taylor-expanded approximant may introduce
biases in the measurement of the tidal parameters. This
will deserve further investigations in the future; (iii) on
the other hand, our comparisons show that the TaylorF2
phasing augmented with the tail factor is fully consistent
with the EOB-resummed description up to frequencies
∼ 600 Hz. We have checked that the importance of the
self-spin tail term in reconciling the TaylorF2 with the
EOB phasing description remains essentially the same
when changing the BNS model, though it slightly de-
teriorates when the individual spins are increased. For
example Fig. 2 refers to the SLy-q1-sA04-sB08 config-
uration, with χA = 0.4 and χB = 0.8, which illustrates
the ability of the tail-completed TaylorF2 approximant to
reasonably agree with the EOB phasing even in difficult
corners of the parameter space.

Let us now explore the implications of the NNLO self-
spin correction to rc. [We recall that the corrections to
rc only enter the Hamiltonian, and do not concern the
waveform.] This is done in Fig. 3, which refers to config-
urations SLy-q1.2-sA005-sB008, i.e., an unequal-mass
binary with physically motivated values of the spins and
medium values of (CQA, CQB). The NNLO term yields
an additional acceleration of the phasing. However, the
corresponding modification of the NLO curve is smaller
than the modification of the LO curve brought by the
NLO contributions. [This intuitively suggests some type
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of convergence of the EOB Qω curves as the amount of
analytical information is increased.] Since the calculation
of the self-spin terms in the energy flux (and waveform)
is currently not available at NNLO, we cannot include in
Fig. 3 the corresponding TaylorF2 curve. This raises the
issue of knowing to which extent the NNLO curve rep-
resents a faithful representation of the complete self-spin
effects. We can venture an answer based on the knowl-
edge of what happens at NLO. Indeed, in the latter case
one finds that the effect of the NLO waveform ampli-
tude terms is almost negligible: the Qω curve obtained
by switching off these terms is essentially superposed to
the one with the NLO waveform corrections. Based on
this finding, we expect that a similar situation will hold
at the NNLO level.

Let us finally get an idea of the effect of the com-
plete quartic-in-spin term once included into rc. This
can be done evaluating numerically COct and CHex using
the quasi-universal fits of Eq. (90) of Ref. [46]. Consid-
ering again the configuration SLy-q1.2-sA005-sB008 of
Fig. 3 above, one notes that the NNLO spin-square effect
is determined by the coefficient δa2

NNLO ' 0.108 entering
rc. For the same configuration, the quartic-in-spin LO
coefficient of Eq. (28), that can be seen as a correction to
δa2

NNLO, numerically reads δa4
LO ' 3.05 × 10−4, so that

its effect would be completely negligible on the phasing
analysis of Fig. 3. One also easily checks that one would
need to have χA = χB ≈ 0.29 so to have δa4

LO ≈ 0.1,
thus yielding a phasing correction, at the Qω level, com-
parable to the δa2

NNLO displayed in Fig. 3.

V. CONCLUSIONS

We have incorporated the EOS-dependent self-spin
terms (or monopole-quadrupole effects) in TEOBResumS
at NLO (i.e., at 3PN order, in both the Hamiltonian and
the flux) and at NNLO (4PN order, though only in the
Hamiltonian, since the corresponding information in the
flux is not available yet). Following previous work [13],
this was done through a modification of the centrifugal
radius function rc(r, ãi), which now depends on the spin-
induced quadrupole moments.

Our main findings can be summarized as follows:

(i) Using the Qω gauge-invariant description of the
phasing, we have found that, once incorporated in
the EOB formalism, NLO self-spin effects during
the late inspiral are more phase accelerating than
the LO ones (consistent with the corresponding PN
behavior) but at the same time different and less
phase accelerating than the corresponding PN de-
scription at NLO expressed through the TaylorF2
approximant. We have verified this to be the case
for a few (though illustrative) EOS choices and bi-
nary parameters

(ii) The resummed EOB self-spin phasing during the
inspiral can be well approximated by augmenting

the TaylorF2 approximant by the LO self-spin tail
term. The resulting approximant delivers a simple
phasing expression that is consistent with the EOB
one up to dimensionless frequency up to Mω ' 0.06

(iii) In general, the fact that the PN prediction is al-
ways more phase accelerating than the EOB one
may have consequences on the estimate of these
effects on real data, especially in the case of fast
spinning BNS [9] made by recycled NS. This also
indicates that current waveform models, notably
PhenomPv2 NRTidal [15], that incorporate self-spin
effects and that have been used for the analysis of
GW170817, should be updated accordingly. This
may eventually affect the evaluation of the system-
atics due to waveform models in the analysis of
GW170817.

(iv) Similarly, it will also be interesting to repeat the
parameter estimation of GW170817 performed in
Ref. [2] using TEOBResumS using the current version
of the model that incorporates up to NNLO, EOS-
dependent, self-spin effects. Note that this will
also imply incorporating more, point-mass, spin-
dependent terms than those currently present in
the model.

(v) We have illustrated how to consistently compare
the EOB and TaylorF2 phasing, notably in the low-
frequency regime, using the Qω(ω) function. In the
present paper this comparison was restricted to the
quadrupole-monopole part of the phasing. It would
be interesting to generalize it to the other parts, so
to have in hands precise comparisons between the
orbital, spin-orbit or spin-spin parts. We postpone
such a comparison to future work.
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Appendix A: Cubic-in-spin terms within the EOB
Hamiltonian

In this Appendix, we discuss preliminary ways of incor-
porating in the EOB Hamiltonian the LO cubic-in-spin
contributions to the dynamics derived in Ref. [28].

As briefly mentioned in the main text, let us first re-
call that in TEOBResumS some contributions cubic in spin
are already incorporated in the EOB Hamiltonian via
the presence of uc(r, ãi)-dependent factors in the gyro-
gravitomagnetic functions GS and GS∗ parametrizing
the spin-orbit sector of the Hamiltonian (see Sec. II A).
Indeed, we have u2

c = u2(1 + (spin− quadratic)O(u2))
so that the linear-in-spin couplings defined by GS(uc)
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and GS∗(uc) automatically contain some O(u5) spin-
cubic contributions. However, one checks (see main text,
Eqs. (21)-(22)) that the spin-cubic terms thereby already
incorporated in the Hamiltonian are not the ones needed
from the results of Ref. [28]. This remark suggests a
way of incorporating the needed spin-cubic terms in a
resummed manner, namely to introduce new definitions
of the function uc(r, ãi) to be used as inputs in modified
definitions of the gyro-gravitomagnetic functions GS and
GS∗ . Say

GS = 2uu2
c,GS

ĜS(uc),

GS∗ =
3

2
(u2
c,GS∗

)3/2ĜS∗(uc),

(A1)

where ĜS(uc) = 1 +O(uc) and ĜS∗ = 1 +O(uc) are PN
correcting factors [35, 39]. [The arguments uc entering

ĜS(uc) and ĜS∗(uc) can be taken as being any variable
such that u2

c = u2(1 + (spin− quadratic)O(u2)).] We
found that this possibility a priori involves six parame-
ters, parametrizing the two different spin-quadratic ex-
pressions separately entering the modified definitions of
r2
c,GS

= r2 + spin− quadratic(1 + O(u)) and r2
c,GS∗

=

r2 + spin− quadratic(1 + O(u)), modelled on Eqs. (1),
(2). This leaves the freedom to arbitrarily choose two
among these six parameters. This freedom of choice can
be used to simplify the resulting definitions. We have
explored this avenue. However, at this stage we did not
find a unique, convincing way of simplifying the two spin-
quadratic expressions entering r2

c,GS
and r2

c,GS∗
. We leave

further studies along this avenue to future work.
Without committing ourselves to any specific re-

summed way of incorporating spin-cubic terms in the
EOB Hamiltonian, we wish, however, to display here the
full information needed for such definitions. To do this
we will parametrize the spin-cubic contributions in the
following 4-parameter, non-committal form

HSO = pϕ

[
G̃(u, ãi) +

(
b30ã

3
A + b21ã

2
AãB

+ b12ãAã
2
B + b03ã

3
B

)
u5

]
, (A2)

where

G̃(u, ãi) = 2u3ĜS(u)Ŝ +
3

2
u3ĜS∗(u)Ŝ∗. (A3)

We then follow the procedure described in Section II
to determine the four parameters b30, b21, b12, b03 entering
this parametrization. By calculating the corresponding

modified version of c
S3
LO

7 and comparing it to Eq. (21),
we obtain the simple expressions

b30 = COctA − 3CQA,

b21 = − 6,

b12 = − 6,

b03 = COctB − 3CQB . (A4)

Let us note that if we consider the BH limit where
CQ = COct = 1 the needed modified spin-orbit coupling
takes the very simple form

HSO BBH = pϕ

[
G̃(u)− 2(Ŝ + Ŝ∗)

3u5
]
. (A5)

Let us also note that if we insist on utilizing the full
TEOBResumS structure, keeping the cubic-in-spin terms
that come from the use of rc(r, ãi), as defined in Eq. (1)
above, we must modify the expressions of the parameters
b30, b21, b12, b03 into

b′30 = COctA −
7

8
CQA −

1

8
XABCQA,

b′21 = − 7

4
+

17

8
CQA −XAB

(
1

4
− 1

8
CQA

)
,

b′12 = − 7

4
+

17

8
CQB +XAB

(
1

4
− 1

8
CQB

)
,

b′03 = COctB −
7

8
CQB +

1

8
XABCQB . (A6)

In that case, the BBH case leads to the following very
simple correction to the spin-sector implied by the cur-
rent TEOBResumS model:

HSO BBH = pϕ

[
G̃+

1

4
(Ŝ + Ŝ∗)

2Ŝ∗u
5

]
. (A7)

We postpone a comparison of the various avenues men-
tioned here to a later work.

Appendix B: Post-adiabatic dynamics

The EOB/PN comparisons done in the main text em-
ploy TEOBResumS v0.1, that was implemented in C++.
An equivalent, though tidally enhanced model (see [70])
and computationally more efficient version of the model
(implemented in C) is v1.0. All our codes are publicly
available at

https://bitbucket.org/account/user/eob_ihes/projects/EOB

TEOBResumS v1.0 optionally implements the post-
adiabatic (PA) approximation to efficiently deal with the
long inspiral phase [32]. Following the logic of Appendix
B of Ref. [70], we here present the performance of the PA
evolution in the case of spinning neutron stars. The result
presented here are obtained incorporating (i) NLO spin-
quadratic information in the waveform and (ii) NNLO
spin-quadratic information in the Hamiltonian. This
should be considered as the default choice in TEOBResumS
for what concerns spinning BNS. Optionally, it is possible
to switch on the EOS-dependence in the quartic-in-spin
correction to rc, Eq. (28), though this does not come as
default choice in the code.

Within TEOBResumS, the dynamics of a binary system
is usually determined by numerically solving the four Or-
dinary Differential Equations (ODEs) of the Hamiltonian

https://bitbucket.org/account/user/eob_ihes/projects/EOB
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relative dynamics. The time needed to solve these ODEs
usually weighs as the main contribution to the wave-
form evaluation time. Using this C-implementation of
TEOBResumS, a typical time-domain BNS waveform re-
quires ∼ 1 sec to be generated starting from a GW fre-
quency of 10 Hz by means of standard Runge-Kutta in-
tegration routines with adaptive step-size that are pub-
licly available through the GNU Scientific Library (GSL).
Thus, ODE integration as is cannot be used in parameter
estimation runs that require the generation of 107 wave-
forms. Reference [32] proposed a method of reducing
the evaluation time by making use of the PA approxima-
tion to compute the system dynamics. In Ref. [70] we
restricted to non spinning BNS and we showed, for the
first time, how a waveform obtained from the complete
ODE evolution compares with a waveform obtained by
stitching the PA dynamics to the complete dynamics for
the last few orbits up to merger (as suggested in [32]).
For completeness, we here present the same comparison
for two illustrative, spinning, BNS systems.

Let us briefly summarize the approach of Ref. [32].
The PA approximation to the EOB dynamics was intro-
duced in Refs. [71, 72] (and expanded in Refs. [73, 74])
and is currently used to initialize the relative dynamics
in TEOBResumS with negligible eccentricity. Using this
approximation, it is possible to analytically compute the
radial and angular momentum of a binary system, un-
der the assumption that the radiation reaction force is
small. This is true in the early inspiral phase and pro-
gressively loses validity when the two objects get close.
The approach starts by considering the conservative sys-
tem, when the flux is null, and then computes the suc-
cessive corrections to the momenta. We denote as nPA
the n-th order iteration of this procedure. Practically,

f0 [Hz] r0 rmin Nr ∆r τ8PA [sec] τODE [sec]

20 112.81 12 500 0.20 0.03 0.53

10 179.02 12 830 0.20 0.05 1.1

TABLE III. Performance of TEOBResumS v1.0 for a BNS sys-
tem with 1.35M� + 1.35M�, SLy EOS and χA = χB = 0.1.
The waveform for the χA = χB = −0.1 case is a little shorter
but the evaluation times are comparable to the ones showed
in the table. f0 and r0 denote the initial GW frequency and
radial separation. The 8PA dynamics is computed on a grid
with Nr points and grid separation ∆r that ends at rmin and
then is completed by the standard ODE one. The evalua-
tion times τ are determined using a standard Intel Core i7,
1.8GHz and 16GB RAM. The code is compiled with the GNU
gcc compiler using O3 optimization.

to compute the PA dynamics, we first build a uniform
radial grid from the initial radius r0 to an rmin up un-
til which we are sure the approximation holds. We then
analytically compute the momenta that correspond to
each radius at a chosen PA order. Finally, we determine
the full dynamics recovering the time and orbital phase
by quadratures. From rmin we can then start the usual
ODE-based dynamics using the PA quantities as initial
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FIG. 4. Comparison between the waveforms (obtained sum-
ming all modes up to `max = 8, see Eq. (B1)) computed solv-
ing the ODEs with the GSL rk8 routine with adaptive step-
size and the PA waveform completed with the same ODE
solver after r < rmin. We have considered BNS systems
with 1.35M� + 1.35M� and SLy EOS (see first row of Ta-
ble I), starting at initial frequency 10 Hz. Dimensionless
spins are χA = χB = 0.1 (top) and χA = χB = −0.1 (bot-
tom). The parameters used for the PA run are listed in Ta-
ble III. The dashed grey line marks the stitching point, rmin,
between the PA and ODE-based dynamics. Given the wave-
form strain as h ≡ Ae−iφ, we defined the phase difference as
∆φODE−8PA ≡ φODE−φ8PA and the fractional amplitude dif-
ference as ∆AODE−8PA ≡ (AODE − A8PA)/AODE. The larger
differences at the beginning of the evolution are partly due to
the fact that the complete ODE is started using only 2PA-
accurate initial data.

data as it is usually done (at 2PA order) in TEOBResumS.
With this method one can avoid to numerically solving
two Hamilton equations (those for the momenta), while
the orbital phase and time can be obtained by quadra-
tures over a rather sparse radial grid.

Figure 4 displays the performance of the PA approx-
imation (at 8PA order) for two, illustrative, spinning
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f0 [Hz] r0 τ int8PA [sec] τ intODE [sec]

20 112.81 0.10 0.64

10 179.02 0.37 1.70

TABLE IV. Performance of the TEOBResumS v1.0 when the
final waveform is interpolated on a time grid evenly sampled
at 1/(4096 Hz). We use the standard spline interpolation rou-
tine implemented in the GSL library. The considered system
coincides with the one of Table III.

BNS systems with 1.35M�+1.35M� and SLy EOS. The
figure shows the distance-normalized waveform strain
h ≡ R(h+ − ih×), where we recall that the multipolar
decomposition of the waveform reads

R(h+ − ih×) =

`max∑
`=2

∑̀
m=−`

h`m −2Y (θ,Φ), (B1)

where h`m are the waveform (complex) multipoles and

−2Y (θ,Φ) are the s = −2 spin-weighted spherical har-
monics (that are here evaluated at θ = Φ = 0). In
fig. 4 we evaluate h with `max = 8, i.e. retaining in the
waveform the same 35 multipoles that are used to com-
pute the EOB radiation reaction. For each binary, each
subpanel displays the the waveform fractional-amplitude
difference (top), phase difference (medium) and real part
of the waveform strain. The left columns offer a global
view, while the right columns focus on the last few GW
cycles up to merger. The vertical dashed line marks the
time where the PA evolution is stitched to the ODE evo-
lution for the last orbits where the PA approximation
breaks down. Table III highlights the performances of
TEOBResumS v1.0 for such a case. Note that the initial
radius is determined by solving the circular Hamilton’s

equations instead of relying on the Newtonian Kepler’s
law, as discussed in Sec. VI of Ref. [13].

The waveform computed using the PA dynamics (com-
pleted with the ODE for the last few orbits) only takes
around 50 milliseconds to be evaluated. Such a time is
comparable to the one needed by the surrogate models
that are currently being constructed in order to reduce
waveform evaluation times (see e.g. [75]) and that, typ-
ically, only involve the ` = m = 2 mode. Finally, Ta-
ble IV illustrates the performance of TEOBResumS when
the waveform of above, which is obtained on a nonuni-
form temporal grid (because the corresponding radial
grid is evenly spaced), is interpolated on an evenly spaced
time grid, sampled at ∆t−1 = 4096 Hz, that is usually
neecessary to compute the Fourier transform with stan-
dard algorithms. It is remarkable that the generation
time of the full multipolar waveform is below 1 sec also
when the starting frequency is 10 Hz. Such interpolation
is done with the spline interpolant that is freely avail-
able in the GSL library and looks to be the main routine
responsible for the computational cost of the waveform
generation. We expect this can be further speed up ex-
ploting vectorization or shared memory parallelization.
Similarly, one expects that the number of radial grid-
points needed might be lowered further by adopting a
quadrature formula at higher order (now a third-order
one is implemented, following Ref. [32]) to recover the
orbital phase and time. Such technical improvements
will be explored extensively in forthcoming works.

Appendix C: Using Ŝ and Ŝ∗ as spin variables.

For completeness, we report here the results of Sec. II
using Ŝ and Ŝ∗ as spin variables. First, the newly com-
puted δa2

NLO and δa2
NNLO are written as quadratic forms

in (S, S∗) as
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δa2
NLO =

1

1− 4ν

{
[−4 + 9ν + (2− 5ν) (CQA + CQB) + (2− ν)XAB (CQA − CQB)] Ŝ2

+

[
−9

2
+ 11ν + (1− ν) (CQA + CQB)− (1 + ν)XAB (CQA − CQB)

]
Ŝ2
∗

+ [−2 + 22ν − 6ν (CQA + CQB)− 2νXAB (CQA − CQB)] ŜŜ∗

}
, (C1)

δa2
NNLO =

1

1− 4ν

{[
− 275

14
+

561

14
ν +

675

14
ν2

+

(
275

28
− 1633

56
ν +

207

28
ν2

)
(CQA + CQB) +

(
275

28
− 533

56
ν

)
XAB (CQA − CQB)

]
Ŝ2

+

[
−153

8
+

173

4
ν +

381

14
ν2 +

(
4− 47

8
ν +

207

28
ν2

)
(CQA + CQB)−

(
4 +

17

8
ν

)
XAB (CQA − CQB)

]
Ŝ2
∗

+

[
−25

2
+

4727

56
ν − 163

14
ν2 −

(
387

14
− 207

14
ν

)
ν (CQA + CQB)− 163

14
νXAB (CQA − CQB)

]
ŜŜ∗

}
. (C2)

Note that the use of (S, S∗) leads to formally singular
terms when ν = 1/4. This singularity is actually reab-

sorbed by (Ŝ, Ŝ∗) when the limit is done carefully taking
into account the various mass terms. From these equa-
tions, one can obtain the orbital angular momentum j as
a function of u, namely
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j(u) =
1√
u

+
3

2

√
u− 3

(
Ŝ +

3

4
Ŝ∗

)
u

+

{
− 27

8
− 3

2
ν +

1

1− 4ν

[
−2ν +

(
1

2
− ν
)

(CQA + CQB) +
1

2
XAB (CQA − CQB)

]
Ŝ2

+
1

1− 4ν

[
−2ν +

(
1

2
− ν
)

(CQA + CQB)− 1

2
XAB (CQA − CQB)

]
Ŝ2
∗+

+
2

1− 4ν
[1− 2ν − ν(CQA + CQB)] ŜŜ∗

}
u3/2 +

[(
−15

2
+

5

4
ν

)
Ŝ +

(
−27

8
+

3

2
ν

)
Ŝ∗

]
u2

+

{
135

16
+

(
−433
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. (C3)

Similarly, the inverse expression can be written as
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. (C4)

Finally, the gauge-invariant link between the binding energy and the orbital angular momentum becomes
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B. Brügmann, Phys.Rev. D86, 044030 (2012),
arXiv:1205.3403 [gr-qc].

[20] D. Radice, L. Rezzolla, and F. Galeazzi,
Mon.Not.Roy.Astron.Soc. 437, L46 (2014),
arXiv:1306.6052 [gr-qc].

[21] S. Bernuzzi, A. Nagar, T. Dietrich, and T. Damour,
Phys.Rev.Lett. 114, 161103 (2015), arXiv:1412.4553 [gr-
qc].

[22] D. Radice, L. Rezzolla, and F. Galeazzi,
Proceedings, Numerical Modeling of Space Plasma Flows (ASTRONUM-2014): Long Beach, CA, USA, June 23-27, 2014,
ASP Conf. Ser. 498, 121 (2015), arXiv:1502.00551 [gr-
qc].

[23] S. Bernuzzi and T. Dietrich, Phys. Rev. D94, 064062
(2016), arXiv:1604.07999 [gr-qc].

[24] D. Radice, S. Bernuzzi, and C. D. Ott, Phys. Rev. D94,
064011 (2016), arXiv:1603.05726 [gr-qc].

[25] S. Bernuzzi, T. Dietrich, W. Tichy, and B. Brügmann,
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