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We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics

(MHD) equationswithin theWHISKY code. The numericalmethod adopted exploits the properties of implicit-

explicit Runge-Kutta numerical schemes to treat the stiff terms that appear in the equations for large electrical

conductivities. Using tests in one, two, and three dimensions, we show that our implementation is robust and

recovers the ideal-MHD limit in regimes of very high conductivity. Moreover, the results illustrate that the

code is capable of describing scenarios in a very wide range of conductivities. In addition to tests in flat

spacetime, we report simulations of magnetized nonrotating relativistic stars, both in the Cowling approxi-

mation and in dynamical spacetimes. Finally, because of its astrophysical relevance and because it provides a

severe tested for general-relativistic codes with dynamical electromagnetic fields, we study the collapse

of a nonrotating star to a black hole. We show that also in this case our results on the quasinormal mode

frequencies of the excited electromagnetic fields in the Schwarzschild background agree with the perturba-

tive studies within 0.7% and 5.6% for the real and the imaginary part of the ‘ ¼ 1 mode eigenfrequency,

respectively. Finally we provide an estimate of the electromagnetic efficiency of this process.
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I. INTRODUCTION

Magnetic fields play an important role in several
astrophysical scenarios, many of which involve also the
presence of compact objects such as neutron stars (NSs)
and black holes (BHs), whose accurate description requires
the numerical solution of the equations of general relativ-
istic magnetohydrodynamics (GRMHD).

In most of these phenomena, such as for the interior
dynamics of magnetized stars, or for the accretion of matter
onto BHs, the electrical conductivity of the plasma is
extremely high and the ideal-MHD approximation, in which
the conductivity is actually assumed to be infinite, repre-
sents a very good approximation. In this case, the magnetic
flux is conserved and the magnetic field is frozen in the fluid,
being simply advected with it. Following this approxima-
tion, several numerical codes solving the equations of
general-relativistic ideal-MHD have been developed over
the years [1–13]. By construction, therefore, the ideal-MHD
equations neglect any effect of resistivity on the dynamics.
In practice, however, even in the scenarios mentioned above,
there will be spatial regions with very hot plasma where the
electrical conductivity is finite and the resistive effects, most
notably, magnetic reconnection, will occur in reality. Such
effects are expected to take place, for example, during the
merger of two magnetized NSs or of binary system com-
posed by a NS and a BH, or near the accretion disks of active
galactic nuclei, and could provide an important contribution
to the energy losses from the system.

The importance of resistivity effects can be easily
deduced from the evolution of a current sheet in high but

finite conductivity. Under these conditions, several insta-
bilities can take place in the plasma and release substantial
amounts of energy via magnetic reconnection [14], as
frequently observed, for example, in solar flares [15].
The study of reconnection in relativistic phenomena is
instead important to try to explain the origin of flares in
relativistic sources, such as blazars [16] and magnetars
[17]. It is not surprising then that several groups have
developed in the recent years numerical codes to solve
the equations of special and general relativistic resistive
MHD [18–24].
There are several processes involving compact objects,

such as NSs and BHs, where resistive effects could play
an important role. These include the interaction of the
magnetospheres of two NSs in a binary before the merger,
the stability of the magnetosphere that may be produced
around the hypermassive neutron star (HMNS), or the
stability of the magnetic field within the torus that will
be produced once the HMNS collapses to a black hole.
In all of these scenarios, the ideal-MHD limit may not be
sufficient to study those physical processes which involve
reconnection or the presence of anisotropic resistivities.
So far, the problem of dealing with regions which are
magnetically dominated (i.e. with small ratio of fluid pres-
sure over magnetic pressure) has been avoided by burying
the magnetic fields inside the stars, where the ideal-MHD
limit is a very good approximation [25–31] and therefore
neglecting any effect that could come from the magnetic
field evolution in the NS magnetosphere. To improve on
the ideal-MHD description, it is possible to employ the
equations of general relativistic resistive MHD. These
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equations provide a complete MHD description and a
mathematical framework that can be used to study both
the regions with a high conductivity, such as the NS
interior, the magnetosphere (if present), accretion disks,
etc, and regions with small conductivity, such as the mag-
netosphere exterior in electrovacuum. Moreover, when the
conductivity is set to zero, Maxwell equations in vacuum
are recovered [19], thus allowing for the study of the
magnetic field evolution also well outside the NS magne-
tosphere. This is particularly important, since several
recent works have claimed that the interaction of magnetic
fields surrounding BNS and NS-BH systems may lead to
strong electromagnetic emissions [32], and even affect the
dynamics of these systems (see [33], but also [34] for a
different conclusion). In order to verify such predictions, it
is therefore important to be able to accurately follow the
dynamics of the magnetic fields in the region surrounding
these compact binaries and this cannot be done in the limit
of ideal MHD. Last but not least, binary mergers are also
thought to be behind the central engine of short gamma-ray
bursts (GRBs) [30,35–37] and the accurate study of the
magnetic field both before and after merger could provide
insights on current observations.

We present the first fully general-relativistic resistive
MHD code in a 3þ 1 decomposition of spacetime. We
extended the ideal GRMHD WHISKY code to include the
general relativistic version of the resistive MHD formalism
presented in Ref. [19]. This new version of the WHISKY

code can handle different values of the conductivity going
from the ideal-MHD limit (for very high conductivities) to
resistive and electrovacuum regimes (obtained respectively
with low and zero conductivity).1 The code implements
state-of-the-art numerical techniques and has been tested
in both fixed and dynamical spacetimes. In particular we
show the first fully general relativistic simulation of a
magnetized NS collapse to BH using resistive MHD to
accurately follow the dynamics of magnetic fields both
inside and outside the NS.

The paper is organized as follows. In Sec. II we describe
the general relativistic resistive MHD equations, in Sec. III
the main numerical methods used to solve them, and in
Sec. IV our numerical tests. In Sec. V we summarize and
conclude.

Throughout this paper we use a spacelike signature of
ð�;þ;þ;þÞ and a system of units in which c ¼ G ¼
M� ¼ 1. We also note that a factor 2:03� 105 s�1 is
needed to convert the conductivity � to cgs units, while a
factor 1:456� 103 cm5 g�1 s�2 is needed to convert the
polytropic K to cgs units. Greek indices are taken to run
from 0 to 3, Latin indices from 1 to 3 and we adopt the
standard convention for the summation over repeated
indices.

II. MATHEMATICAL SETUP

We next describe our extension of the special-relativistic
resistive MHD formalism presented in Ref. [19] to a
general relativistic MHD framework. A similar (but inde-
pendent) extension has been presented recently in [24],
which describes the first 3þ 1 general-relativistic resistive
MHD implementation in fixed spacetimes.

A. The magnetohydrodynamic equations

The complete set of relativistic MHD equations result
from the combination of the conservation of rest mass

r�ð�u�Þ ¼ 0; (1)

and the conservation of energy and momentum

r�T
�� ¼ 0: (2)

The stress-energy tensor for a magnetized perfect fluid is
given by

T�� � ½�ð1þ �Þ þ p�u�u� þ pg�� þ F�
�F��

� 1

4
g��F

��F��; (3)

where the rest mass density �, the specific internal energy
�, the pressure p and the velocity u� describe the state
of the fluid, and are usually referred to as the ‘‘primitive’’
variables. We write the pressure p as a function p ¼
pð�; �Þ and it is a property of the type of fluid considered.
The velocity of the fluid can be decomposed as

u� ¼ Wðn� þ v�Þ; (4)

where v� corresponds to the three-dimensional velocity
measured by Eulerian observers moving along a four-vector
n� normal to the spacelike hypersurface in a 3þ 1 decom-

position of spacetime (i.e., v�n� ¼ 0). Notice that the time

component of the four-velocity is not independent due to
the normalization relation u�u� ¼ �1, so that

W ��n�u
� ¼ ð1�viv

iÞ�1=2; ui ¼W

�
vi��i

�

�
; (5)

where W is the Lorentz factor.
The 3þ 1 decomposition of the conservation laws (2)

and (3) provides the evolution equations for the fluid
variables D, U, Si, which come from the following projec-
tions of the stress-energy tensor

D � �W; (6)

U � hW2 � pþ 1

2
ðE2 þ B2Þ; (7)

Si � hW2vi þ �ijkE
jBk; (8)

Sij � hW2vivj þ 	ijp� EiEj � BiBj þ 1

2
	ijðE2 þ B2Þ;

(9)
1Hereafter, when referring to conductivity we will effectively

refer to isotropic conductivity.
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where 	ij is the usual spatial part of the metric and where

we have introduced the specific enthalpy h¼�ð1þ�Þþp.
The conserved rest-mass density D, the energy density U
and the momentum Si are usually referred to as the
‘‘conserved’’ quantities since they can be shown to satisfy
conservation laws in flat spacetimes [38]. In general, it is
more convenient to describe the energy conservation in
terms of the quantity 
 ¼ U�D, which allows to recover
the Newtonian limit of the energy density.

B. The Maxwell equations

Given a four-metric tensor g��, the dynamics of the

electromagnetic fields is described by the extended
Maxwell equations [19,39]

r�ðF�� þ g��c Þ ¼ I� � �n�c ; (10)

r�ð�F�� þ g���Þ ¼ ��n��; (11)

where F�� is the Maxwell tensor, �F�� is the Faraday
tensor, I� is the electric current and �, c are two auxiliary
scalar variables added to the Maxwell equations to control
the constraints for the magnetic and electric part, respec-
tively. We note that the use of Eq. (11) allows us not to
use other constraint-preserving approaches such as the
constrained-transport schemes described in [40]. In vacuum
or highly magnetized plasmas, where the electric and mag-
netic susceptibilities of the medium vanish, the Faraday
tensor can be written as the dual of the Maxwell tensor,

�F�� ¼ 1

2
�����F��; (12)

with ����� � 
����=
ffiffiffiffiffiffiffi�g

p
, with 
���� being the Levi-

Civita symbol, and g the determinant of the four-metric.
These tensors can be decomposed in terms of the electric
and magnetic fields measured by an observer moving along
a normal direction n� as

F�� ¼ n�E� � n�E� þ �����B�n�; (13)

�F�� ¼ n�B� � n�B� � �����E�n�: (14)

Following the same decomposition, the electric current
I� can be written as

I� ¼ n�qþ J�; (15)

where q and J� are the charge density and the current for
an observer moving along n�, respectively. Using these
definitions and performing a 3þ 1 decomposition of the
Eqs. (10), (11), and (15) with respect to the normal vector
n�, we arrive to the following evolution equations:

ð@t �L�ÞEi � �ijkrjð�BkÞ þ �	ijrjc

¼ �trKEi � �Ji; (16)

ð@t �L�Þc þ �riE
i ¼ �q� ��c ; (17)

ð@t �L�ÞBi þ �ijkrjð�EkÞ þ �	ijrj� ¼ �trKBi; (18)

ð@t �L�Þ�þ �riB
i ¼ ����; (19)

where the scalar fields �, c measure the deviation from
the constrained solution. More specifically, the scalar �
drives the solution of Eq. (19) towards the zero-divergence
condition riB

i ¼ 0, while the scalar c drives the solution
of Eq. (17) towards the condition riE

i ¼ q. This driving
is exponentially fast and over a timescale 1=�. This ap-
proach, named hyperbolic divergence cleaning in the con-
text of ideal MHD, was proposed in Ref. [39] as a simple
way of solving the Maxwell equations and enforcing the
conservation of the divergence-free condition for the mag-
netic field and has been extended to the resistive relativistic
case in Ref. [19]. More on the notation of Eqs. (16)–(19):
L is the Lie derivative along the shift vector �i, while � is
the lapse function in a standard 3þ 1 decomposition of
spacetime [41].
A consequence of the Maxwell equations is the conser-

vation of electric charge

r�I
� ¼ 0; (20)

which provides an evolution equation for the charge
density

ð@t �L�Þqþrið�JiÞ ¼ �Kq: (21)

Finally, a relation for the current as a function of the
other fields is needed in order to close the system. Ohm’s
law provides a prescription for the spatial conduction
current. For simplicity, and because we are here interested
mostly in idealized tests, we will consider here an isotropic
scalar Ohm law,

Ji ¼ qvi þW�½Ei þ �ijkvjBk � ðvkE
kÞvi�; (22)

where the conductivity � is chosen to be either a constant
or a function of the rest-mass density. We note that
this prescription is far from being realistic and normally
a more general, tensorial conductivity prescription ��� ¼
���ðD;E; BÞ is to be sought, starting from microphysical

considerations (see [42] for a recent discussion).

C. The full set of evolution equations

Combining the MHD and Maxwell equations we obtain
the following set of evolution equations, which we write in
flux-conservative form as

@tð ffiffiffiffi
	

p
BiÞ þ @kð��k ffiffiffiffi

	
p

Bi þ ��ikj
ffiffiffiffi
	

p
EjÞ

¼ � ffiffiffiffi
	

p
Bkð@k�iÞ � �

ffiffiffiffi
	

p
	ij@j�; (23)
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@tð ffiffiffiffi
	

p
EiÞ þ @kð��k ffiffiffiffi

	
p

Ei � ��ikj
ffiffiffiffi
	

p
BjÞ

¼ � ffiffiffiffi
	

p
Ekð@k�iÞ � �

ffiffiffiffi
	

p
	ij@jc � �

ffiffiffiffi
	

p
Ji; (24)

@t�þ @kð��k�þ �BkÞ ¼ ��ð@k�kÞ þ Bkð@k�Þ
� �

2
ð	lm@k	lmÞBk � ���;

(25)

@tc þ @kð��kc þ �EkÞ
¼ �c ð@k�kÞ þ Ekð@k�Þ

� �

2
ð	lm@k	lmÞEk þ �q� ��c ; (26)

@tð ffiffiffiffi
	

p
qÞ þ @k½ ffiffiffiffi

	
p ð��kqþ �JkÞ� ¼ 0; (27)

@tð ffiffiffiffi
	

p
DÞ þ @k½ ffiffiffiffi

	
p ð��kDþ �vkDÞ� ¼ 0; (28)

@tð ffiffiffiffi
	

p

Þ þ @kf ffiffiffiffi

	
p ½��k
þ �ðSk � vkDÞ�g

¼ ffiffiffiffi
	

p ð�SlmKlm � Sk@k�Þ; (29)

@tð ffiffiffiffi
	

p
SiÞ þ @k½ ffiffiffiffi

	
p ð��kSi þ �SkiÞ�

¼ ffiffiffiffi
	

p �
�

2
Slm@i	lm þ Sk@i�

k � ð
þDÞ@i�
�
: (30)

III. NUMERICAL SETUP

This new version of the WHISKY code implements
several numerical methods that have been successfully
used in its ideal-MHD version [11,29], but it also imple-
ments new numerical algorithms which are instead needed
in order to handle the evolution in time of the resistive
MHD equations. Here we briefly summarize the numerical
methods that are in common with the ideal-MHD version
of WHISKY [11,27,29,43], while in the following section we
provide a more detailed description of the new algorithms
that have been implemented.

The evolution of the spacetime is obtained using the
CCATIE code, a three-dimensional finite-differencing code

providing the solution of a conformal traceless formulation
of the Einstein equations [43]. The general-relativistic
RMHD Eqs. (23)–(25) and (28)–(30) are solved instead
using high-resolution shock-capturing schemes (HRSC)
[44]. As its ideal-MHD counterpart, also the WHISKYRMHD

code implements several reconstruction methods, such as
total-variation-diminishing (TVD) methods, essentially-
non-oscillatory (ENO) methods [45], and the piecewise
parabolic method (PPM) [46]. The Harten-Lax-van Leer-
Einfeldt (HLLE) approximate Riemann solver [47] has been
used to compute the fluxes in all the results presented here.
Since the code is based on the CACTUS [48] computational
framework, it can also use adaptive mesh refinement (AMR)
via the CARPET driver [49].

A. IMEX Runge-Kutta methods

The general-relativistic RMHD equations in high-
conductivity media contain stiff terms which make the
time evolution with an explicit time integrator very ineffi-
cient, if not impossible. The prototype of the stiff system of
partial differential equations can be written as

@tU ¼ FðUÞ þ 1

"
RðUÞ; (31)

where U is the state vector composed of all the evolution
variables in Eqs. (23)–(30), and " � 1=� > 0 is the re-
laxation time. In the limit of " ! 1, the second term on
the right-hand side of Eq. (31) becomes negligible and
the system is then hyperbolic with a spectral radius ch
(i.e., with ch being the absolute value of the maximum
eigenvalue). In the opposite limit of " ! 0 the first term on
the right-hand side of Eq. (31) vanishes and the system is
clearly stiff, since the timescale " of the relaxation (or stiff
term) RðUÞ is very different from the speeds ch of the
hyperbolic (or non-stiff) part FðUÞ.
Stiff systems of this type can be solved efficiently by

a combination of implicit and explicit time integrators.
In particular, the IMEX Runge-Kutta scheme consists in
applying an implicit discretization to the stiff terms and an
explicit one to the non-stiff terms. When applied to the
system (31) it takes the form [50]

UðiÞ ¼ Un þ �t
Xi�1

j¼1

~aijFðUðjÞÞ;þ�t
XN
j¼1

aij
1

"
RðUðjÞÞ

Unþ1 ¼ Un þ �t
XN
i¼1

~!iFðUðiÞÞ þ�t
XN
i¼1

!i

1

"
RðUðiÞÞ;

(32)

where UðiÞ are the auxiliary intermediate values of the

Runge-Kutta time integrator. The matrices ~A ¼ ð~aijÞ,
~aij ¼ 0 for j � i and A ¼ ðaijÞ, are N � N matrices such

that the resulting scheme is explicit in F and implicit in R.
An IMEX Runge-Kutta scheme is characterized by these
two matrices and the coefficient vectors ~!i and !i, e.g.,
~!3 ¼ ð0; 1; 0; 0Þ and !3 ¼ ð0; 1� a; a; 0Þ. Since the sim-
plicity and efficiency of solving the implicit part at each
step is of great importance, it is natural to consider
diagonally-implicit Runge-Kutta schemes for the stiff
terms, i.e., (aij ¼ 0 for j > i). The matrices of coefficients

are reported in Table I.
Our approach to the solution of the potentially stiff set

of general-relativistic RMHD equation consists therefore
in the use of the IMEX RK method introduced above, with
a third-order RK integrator. For the particular set of
Eqs. (23)–(30), the evolved fields can be split into stiff
terms V ¼ f ffiffiffiffi

	
p

Eig and into nonstiff terms W¼f ffiffiffiffi
	

p
Bi;

c ;�;
ffiffiffiffi
	

p
q;

ffiffiffiffi
	

p

;

ffiffiffiffi
	

p
Si;

ffiffiffiffi
	

p
Dg.

The evolution of the electric field (24) can become
stiff depending on the value of the conductivity � ¼ 1="
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in the Ohm law (22). Its right-hand side can be split into
potentially stiff terms and regular ones,

@tð ffiffiffiffi
	

p
EiÞ ¼ Fi

E þ Ri
E; (33)

where we have introduced the factor 1=" on the definition
of Ri

E and

Fi
E ¼ �@k½��k ffiffiffiffi

	
p

Ei � ��ikj
ffiffiffiffi
	

p
Bj� � ffiffiffiffi

	
p

Ekð@k�iÞ
� �

ffiffiffiffi
	

p
	ij@jc � �

ffiffiffiffi
	

p
qvi; (34)

Ri
E ¼ ��

ffiffiffiffi
	

p
W�½Ei þ �ijkvjBk � ðvkE

kÞvi�: (35)

In order to evolve this system numerically, the fluxes
fF
; FSi ; FDg have to be computed at each substep. This
implies that the primitive quantities f�; p; vi; Ei; Big have
to be recovered from the conserved fields f ffiffiffiffi

	
p

D;
ffiffiffiffi
	

p

;ffiffiffiffi

	
p

Si;
ffiffiffiffi
	

p
Ei;

ffiffiffiffi
	

p
Big. With the exception of very simple

EOSs, this recovery cannot be done analytically, and it
is instead necessary to solve a set of algebraic equations
via some root-finding iterative procedure, which we will
describe below.
Before that, we note that the solution of the conserved

quantities f ffiffiffiffi
	

p
D;

ffiffiffiffi
	

p

;

ffiffiffiffi
	

p
Si;

ffiffiffiffi
	

p
Big at time t ¼ ðnþ 1Þ�t

is obtained by simply evolving the Eqs. (28)–(30) and (23).
However, the same procedure for the electric field leads
only to an approximate solution f ~Eig containing only the
explicit terms. The full solution, involving also the poten-
tially stiff terms, requires therefore the inversion the
implicit equation (24), which depends on the velocity vi

and the fields fBi; ~Eig. In the case of the scalar Ohm law
(22), the stiff part is linear in Ei, so a simple analytic
inversion can be performed

Ei ¼ M�1ðvjÞ½ ~Ei þ ��SEðvj; BjÞ�; (36)

where �� � aii�t�W� and the inversion matrix is
given by

M ¼
1þ ��ð1� vxv

xÞ � ��ðvyv
xÞ � ��ðvzv

xÞ
� ��ðvxv

yÞ 1þ ��ð1� vyv
yÞ � ��ðvzv

yÞ
� ��ðvxv

zÞ � ��ðvyv
zÞ 1þ ��ð1� vzv

zÞ

2
664

3
775: (37)

The recovery procedure is similar to the one presented in
Ref. [19] and can be summarized in the following steps:

(1) Consider an initial guess for the electric field. Some
possible options are its value in the previous time
step, its approximate value in the current time step
~Ei, or the ideal MHD value Ei ¼ ��ijkvjBk, where

vj is the velocity in the previous time level.

(2) Subtract the electromagnetic field contributions
from the conserved fields, namely, compute

~
 ¼ 
� 1

2
ðE2 þ B2Þ; (38)

~S i ¼ Si � �ijkE
jBk: (39)

(3) Perform the recovery as in the nonmagnetized
case. The EOS can be used to write the pressure as
a function of the conserved quantities and the un-
known x ¼ hW2, so that the definition of 
 can be
written as

fðxÞ ¼
�
1� �� 1

W2�

�
xþ

�
�� 1

�W
� 1

�
D

þ �� �p

�ð�p � 1ÞK
�
D

W

�
�p � ~
; (40)

which must vanish for the physical solutions. Here
�p and � are the adiabatic indices corresponding to

an ideal gas and a polytropic EOS, respectively,
while K is the polytropic constant. By setting
� ¼ 1 we recover the simple polytropic EOS, while
the ideal EOS can be recovered by setting �p ¼ �.

(4) A solution of the function fðxÞ ¼ 0 can be found
numerically by means of an iterative Newton-
Raphson solver. The initial guess for the unknown
x is given by the previous time step.

(5) After each step of the Newton-Raphson solver,
update the values of the fluid primitives,

vi ¼
~Si
x
; W2 ¼ x2

x2 � ~S2
; � ¼ D

W
; (41)

TABLE I. Tableau for the ‘‘explicit’’ matrix ~A (left) and for the
‘‘implicit’’matrixA (right) ina IMEX-SSP3(4,3,3)L-stable scheme.

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

1=2 0 1=4 1=4 0

0 1=6 1=6 2=3

a a 0 0 0

0 �a a 0 0

1 0 1� a a 0

1/2 b c 1=2� b� c� a a

0 1=6 1=6 2=3

a ¼ 0:24169426078821.
b ¼ 0:06042356519705.
c ¼ 0:12915286960590.
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p ¼ �� 1

�

�
x

W2
� �

�
þ ð�p � �ÞK��p

�ð�p � 1Þ ; (42)

and then invert the electric field according to (36).
(6) Iterate steps 2–5 until the difference between two

successive values of x and the electric field fall below
a given threshold, usually of the order of 10�10.

The electric charge density is a nonstiff evolution
variable and can either be computed using the evolution
equation (27) or using the constraint,

q ¼ riE
i: (43)

Note that this latter approach is considerably simpler and
avoids the complications arising from the large gradients of
the currents across, for instance, a stellar surface; for this
reason it is the one we adopt in our evolutions. In particu-
lar, the system of equations we are solving includes
Eqs. (23)–(25) and (28)–(30), and therefore the state vector
U is composed of variables with stiff terms V ¼ f ffiffiffiffi

	
p

Eig
and nonstiff terms W ¼ f ffiffiffiffi

	
p

Bi;�;
ffiffiffiffi
	

p

;

ffiffiffiffi
	

p
Si;

ffiffiffiffi
	

p
Dg in

their evolution equations. If useful, the total electric charge
can be computed through a volume integral of the electric
charge density in the same manner as for the total rest
mass.

The previous procedure converges quickly in the high-
conductivity regions if the ideal MHD solution is chosen as
an initial guess, and in the intermediate conductivity regions
if the initial guess is given by the approximate electric field
~Ei. In general, & 5 iterations are sufficient for intermediate
conductivities, while & 70 iterations are usually necessary
in the regions with high conductivity. In those situations
when the convergence occasionally fails, e.g., near stellar
surface, we treat the corresponding cell as if belonging to the
atmosphere. All in all, the solution of the resistive MHD
equations for a nontrivial fully general-relativistic test such
as an oscillating magnetized star, is about three times more
expensive than the equivalent simulation run within an
ideal-MHD approach.

IV. NUMERICAL TESTS AND RESULTS

In this extended Section we report the numerical results
obtained in one-, two-, and three-dimensional tests, which
confirm that our implementation is correct and provides
the expected results in a large range of conductivities.
More specifically, the one-dimensional tests involve (i) a
large-amplitude circularly polarized (CP) Alfvén wave to
validate that our implementation matches the ideal-MHD
results in the high conductivity regime, (ii) the evolution of
a self-similar current sheet, which tests our implementation
in the intermediate conductivity regime, and (iii) a collec-
tion of shock-tube tests involving a range of uniform
and nonuniform conductivities. In these particular tests we
also examine the zero-conductivity regime, where the
electromagnetic fields are expected to follow the vacuum

Maxwell equations and hence behave as propagating
waves.
Following the one-dimensional tests, we then present

two and three-dimensional tests, which include the standard
cylindrical and spherical explosion tests, which we consider
in the case of very large conductivities in order to test the
ideal-MHD limit of our equations. Finally, in addition to the
tests above, which are performed in a flat spacetime, we
have performed three different sets of simulations involving
spherical magnetized stars in general relativity. The first
setup consists in a spherical (TOV) star with prescribed
magnetic fields confined initially in the interior of the star.
The second set involves the evolution of a magnetized star
with initial data generated by the LORENE library and having
a dipolar magnetic field that extends also outside the star. As
a conclusive three-dimensional test we consider the gravi-
tational collapse of a nonrotating star to a black hole, where
the initial data is again generated by the LORENE library [51].
With the exception of the collapsing star, where we have

used a polytropic EOS, all simulations reported here have
employed an ideal gas (�-law) EOS

p ¼ ��ð�� 1Þ; (44)

with � ¼ 2 for the one-dimensional tests and � ¼ 4=3 for
the two and three-dimensional tests. In addition, for the
evolution of the stable magnetized stars we have adopted a
� ¼ 2. As mentioned above, the collapse of the unstable
magnetized star has been followed using a polytropic EOS,
p ¼ K��, with � ¼ 2. Finally, to ensure a divergence-free
magnetic field with our implementation of the hyperbolic
divergence-cleaning approach, we have set the damping
coefficient � to be one everywhere.

A. One-dimensional test problems

1. Circularly polarized Alfvén waves

The present test has been discussed in detail in Ref. [10]
and it computes the propagation of a large-amplitude
circularly polarized Alfvén wave through a uniform
background magnetic field B0. For the purpose of this
test, we set a very high conductivity � ¼ 106 in order to
recover the ideal-MHD limit. Since the propagating wave
is expected to be the advected initial profile, it is conve-
nient to apply periodic boundary conditions and compare
the evolved profile after one full period with the initial one,
in order to check the accuracy of our implementation.
In particular, we consider a CP Alfvén wave with a

normalized amplitude 
A traveling along positive x axis,
in a uniform backgroundmagnetic fieldB0 with components

Bi ¼ fB0; 
AB0 cos ½kðx� vAtÞ�; 
AB0 sin ½kðx� vAtÞ�g:
(45)

For simplicity, we take vx ¼ 0 and write the remaining
velocity components as
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vy ¼ �vAB
y=B0; vz ¼ �vAB

z=B0; (46)

where

v2
A¼

2B2
0

�hþB2
0ð1þ
2

AÞ

2
41þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
2
AB

2
0

�hþB2
0ð1þ
2

AÞ
�
2

s 3
5�1

:

(47)

By setting � ¼ p ¼ 
A ¼ 1 and B0 ¼ 1:1547, we fix the
Alfvén velocity to vA ¼ 0:5. Therefore, in a computational
domain centered at x ¼ 0 with x 2 ½�0:5; 0:5�, we expect
the wave to return to its initial position after one full period
t ¼ L=vA ¼ 2. The comparison of the numerical solution
with the initial condition (45) at t ¼ 0 gives us a measure of
the error.

In principle, the resistive MHD formalism would allow
us to recover the ideal-MHD limit only for an infinite
conductivity. In practice, however, the use of a conductiv-
ity as large as � ¼ 106 is sufficient to obtain a solution that
converges to the ideal-MHD one with increasing resolu-
tion. As a result, we have chosen to perform simulations
with a uniform conductivity of � ¼ 106, using the follow-
ing resolutions: �x ¼ f1=50; 1=100; 1=200g.

In Fig. 1 we show the component By at time t ¼ 2,
corresponding to one full period. By superimposing the
results at t ¼ 2 with the initial data at t ¼ 0, it is evident
that the numerical solution of the resistive MHD equations
tends to the ideal-MHD exact solution for a high-enough
conductivity and resolution.2 We have used both a linear
reconstruction with monotonized-central (MC) slope lim-
iter and the second order PPM reconstruction. The numeri-
cal solution converges to the exact one at second order
when using PPM reconstruction and at second order with
the linear reconstruction, exactly the same convergence
rates than with the original ideal MHD system imple-
mented in WHISKYMHD.

2. Self-similar current sheet

We next consider a test that involves the evolution of a
self-similar current sheet, as proposed in Ref. [18]. This
setup is useful for testing codes which solve the resistive
MHD equations with a moderate conductivity regime,
which we set to be � ¼ 100.

In practice, the initial data consists in a magnetic field
solely in the y-direction which changes sign in a thin
current layer. Provided that the initial solution is in equi-
librium (i.e., the pressure and density are constant, and the
velocity is zero) and that the magnetic pressure is much
smaller than the fluid pressure everywhere, then the evo-
lution of the magnetic field is given by the simple diffusion

equation @tB
y � ð1=�Þ@2xBy ¼ 0, which will be responsible

for the diffusive expansion of the current layer in response
to the physical resistivity (we are also assuming that
Ei ¼ 0 ¼ @tE

i). Under these simplified assumptions, the
analytical solution of the diffusion equation is given, for
t > 0, by

Byðx; tÞ ¼ B0Erf

�
1

2

ffiffiffiffi
�

�

r �
; (48)

where � � t=x2 and Erf is the error function. Clearly, as
the evolution proceeds, the current layer expands in a
self-similar fashion.
Following [18,19], we use as initial data the analytic

solution (48) at t ¼ 1 and set the density and pressure to
be uniform with � ¼ 1 and p ¼ 50 respectively, while
keeping the components of the electric field and velocity
to zero initially.3 In our calculations we have used a com-
putational domain with extents x ¼ y ¼ z 2 ½�5; 5� with a
resolution of �x ¼ 1=200. Furthermore, a linear recon-
struction method was adopted with the further application
of the MC limiter.
In Fig. 2 we present the results we obtained by solving

numerically the resistive MHD equations and the com-
parison with the exact solution (48) at t ¼ 10 (black solid
line). Clearly, the numerical solution (red dashed line) is
indistinguishable from the analytic one, thus providing
convincing evidence that the code can accurately describe
resistive evolutions with intermediate values of the
conductivity.

FIG. 1 (color online). Circularly polarized Alfvén wave. By

component of the magnetic field for three different resolutions
�x ¼ f1=50; 1=100; 1=200g, together with the exact initial solu-
tion (black solid line). Clearly, the numerical solution provided
by the resistive MHD implementation and the exact one overlap
for a uniform conductivity � ¼ 106 and the highest resolution.

2We recall that here the solution is referred to as exact
because it is the solution of the exact Riemann problem,
although it is still a numerical solution with a nonzero error;
see discussion in [11].

3Note that (48) is an exact solution only in the limit of infinite
pressure [24].
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3. Shock-tube tests

We next consider the shock-tube test presented in [52]
and then modified in [53] to validate our code in the
ideal-MHD limit. The cases under investigation involve
the numerical evolution of discontinuous initial data for a
variety of uniform and density-dependent conductivities
parametrized by a reference conductivity �0. More spe-
cifically, the initial data consists of a discontinuity at
x ¼ 0:5 and left (L) and right (R) states given by

ð�L; pL; B
y
LÞ ¼ ð1:0; 1:0; 0:5Þ;

ð�R; pR; B
y
RÞ ¼ ð0:125; 0:1;�0:5Þ;

while all other variables are set to zero. The ideal-MHD
evolution of the aforementioned setup with Bx ¼ 0 leads to
two fast waves, one rarefaction propagating to the left and
a shock propagating to the right of the discontinuity. The
solution of this test in the ideal-MHD limit exists and
is found in the exact ideal-MHD Riemann solver provided
by Ref. [53]. For the rest of the one-dimensional tests,
any comparison between the solution of the resistive
MHD equations in the high-conductivity regime and the
exact solution of the ideal-MHD equations is performed
with data obtained from the publicly available code [53].
All tests have been performed employing a linear recon-
struction method with further application of the MC slope
limiter.

As a first setup of our shock-tube tests, we consider the
case of a uniform high conductivity � ¼ �0 ¼ 106 and, in
analogy with the Alfvén-wave test in the high-conductivity
regime, we verify that the solution of the coupledMaxwell-
hydrodynamics equations tends to the ideal-MHD exact

solution [53] as the resolution is increased. Figure 3 reports
the magnetic field component By at t ¼ 0:4 for the three
resolutions �x ¼ f1=100; 1=200; 1=400g considered. The
high-resolution result matches the exact ideal-MHD solu-
tion so well that is difficult to distinguish them, thus
providing the first evidence that our implementation is
robust also in the presence of discontinuities.
As a second setup of the shock-tube tests, we consider

the case in which the conductivity is still uniform in space,
but of different strength. In particular, we perform the same
test for � ¼ f0; 10; 102; 103; 106g, while keeping the reso-
lution fixed at �x ¼ 1=200. Figure 4 reports different

FIG. 2 (color online). Self-similar current sheet. By component
of the magnetic field at the initial t ¼ 1 and final time t ¼ 10.
The exact solution at t ¼ 1 is shown with a dashed blue line. The
solution given by the analytic expression (48) at t ¼ 10 (black
solid line) is indistinguishable from the numerical solution
obtained form the resistive MHD equations (red dashed line).

FIG. 3 (color online). Shock-tube tests. By component of the
magnetic field at t ¼ 0:4 for different resolutions �x ¼
f1=100; 1=200; 1=400g. The highest resolution �x ¼ 1=400
matches the exact ideal-MHD solution remarkably well.

FIG. 4 (color online). Shock-tube tests. By component of the
magnetic field for conductivities �0 ¼ f0; 10; 102; 103; 106g at
t ¼ 0:4 and resolution �x ¼ 1=200. For �0 ¼ 0 the magnetic
field is governed by a wavelike equation, corresponding to the
solution of the Maxwell equations in vacuum.
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solutions of the magnetic-field component By given by the
resistive MHD equations with different values of �0. It is
important to note here that the solutions change smoothly
from the ideal-MHD solution computed for �0 ¼ 106, to
the wavelike solution for�0 ¼ 0, which corresponds to the
propagation of a discontinuity at the speed of light, corre-
sponding to a solution of the vacuum Maxwell equations.
The ability of treating the two extreme behaviours of
the Maxwell-MHD equations via a resistive treatment is
an essential feature of our approach and a fundamental one
in the description of the dynamics of magnetized binary
neutron stars.

As a final setup our of our suite of shock-tube test, we
have considered the same initial data but now prescribed
a nonuniform conductivity given by the expression

� ¼ �0

�
D

D0

�
	
; (49)

where, however, D0 ¼ 1 (since v ¼ 0, � ¼ 1) and 	 is an
integer exponent we vary in the range 	 2 ½0; 12�. These
prescription above introduces nonlinearities with respect to
the conserved rest-mass densityD and provides an intuitive
way of tracking the dense fluid regions. It leads to low
values of the conductivity in places were the plasma is
tenuous and high values in more dense regions, which will
prove very useful later on when evolving magnetized stars.

Following [19], we adopt the same initial data as before,
however this time we change the exponent 	 of Eq. (49)
while maintaining the value of conductivity to �0 ¼ 106.

The results of this last test are reported in the left panel
of Fig. 5, which shows the profile of the conductivity at
t ¼ 0:4 for different values of the power-law exponent, i.e.,
	 ¼ f0; 6; 9; 12g. Clearly, the conductivity follows the evo-
lution of the rest-mass density, with a left-going rarefaction

wave and right-going shock. It is interesting to note that
our approach is able to track even very large variations in
the conductivity, with jumps as large as eleven orders of
magnitude across the computational domain. The right
panel of Fig. 5, on the other hand, reports instead the
magnetic field-component By at t ¼ 0:4 for the same initial
conditions. As imposed by Eq. (49), the solution in the
leftmost part of the computational domain, where the rest-
mass density is very high, is controlled by a very high
conductivity, which tends to�0 ¼ 106. In turn, this implies
that the solution for the magnetic field should approach the
ideal-MHD limit in that region. On the other hand, in the
rightmost region, where the rest-mass density is very low,
the conductivity is correspondingly small and tending to
zero for high values of 	. In such regions, therefore, the
magnetic field is expected to behave as a wave, thus
explaining the appearance of a moving peak for 	 ¼ 12.
Overall, this suite of shock-tube tests, demonstrates that

our numerical implementation is able to treat both uniform
and nonuniform conductivity profiles in one dimensional
tests, independently of the steepness of the profiles and
even in the presence of shocks.

B. Multidimensional tests

We now focus on multidimensional tests that involve
shocks in several directions, such as the two-dimensional
cylindrical explosion and the three-dimensional spherical
explosion test suggested in Ref. [1]. Despite the fact that
there is no analytical solution for any of these tests, even in
the ideal-MHDcase, the symmetries of the problem can be of
great help in verifying that the numerical implementation is
correct and that it preserves the expected symmetries. Our
approach in these testswill be therefore that of comparing the
solution of the same multidimensional test as obtained with

FIG. 5 (color online). Shock-tube tests. The left panel shows the conductivity profile at t ¼ 0:4 for nonuniform conductivity with
different power laws, i.e., 	 ¼ f0; 6; 9; 12g. The 	 ¼ 0 case corresponds to the high-conductivity regime of the resistive MHD
equations. The right panel reports instead the By component of magnetic field for the same initial conditions as in the left one.
The leftmost region tends to the ideal MHD solution, while the rightmost tends to the vacuum solution for 	 ¼ 12.
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the ideal-MHD code presented in [11] and our new resistive
WHISKYRMHD code in the limit of very high conductivities.

The initial electric field is computed in such a way that it
satisfies the ideal-MHDcondition, i.e.,Ei ¼ ��ijkvjBk, and

all the tests have been performed adopting a linear recon-
struction method and the minmod slope limiter.

1. Cylindrical blast wave

In the two-dimensional cylindrical blast-wave problem,
we adopt a square domainwith 200 grid cells per direction, in
a range of ð�6:0; 6:0Þ � ð�6:0; 6:0Þ. The setup of the prob-
lem consists of three regions. The innermost region with
0 � r � 0:8, for which the pressure and the density are set
to p ¼ 1, � ¼ 0:01, respectively, the intermediate region

which extends from 0:8< r < 1:0 where r � ðx2 þ y2Þ1=2
both the pressure and the density exponentially decrease, and
the outermost region which is filled with an ambient plasma
with p ¼ 0:001, � ¼ 0:001 and occupies the domain 1:0 �
r � 6:0. The initial magnetic field is along the x-direction
with an initial magnetic field strength of B0 ¼ 0:05.

The numerical results are presented in Fig. 6, where we
show that the magnetic field solution is regular everywhere
and that there are no visible artifacts that could indicate a
possible symmetry error in our implementation. Furthermore,
when one-dimensional cuts of the resistive solution are
plotted against the ideal-MHD solution obtained with the
code presented in [11], the agreement is extremely good
(this is not shown in Fig. 6).

2. Spherical blast wave

In the three-dimensional spherical blast-wave problem,
the grid structure is similar, but the domain is now within
the ranges ð�6:0; 6:0Þ � ð�6:0; 6:0Þ � ð�6:0; 6:0Þ. The
problem setup consists of the same three regions as in the
cylindrical blast wave problem, although here the radius r
refers to the spherical-polar radial coordinate, and not to

the cylindrical radius, i.e., r � ðx2 þ y2 þ z2Þ1=2.

The corresponding solution of the spherical blast-wave
problem in the ðx; yÞ plane is essentially identical to the one
already reported in Fig. 6 and for this reason we do not
show it here. What we do show in Fig. 7, however, are one-
dimensional cuts along the z direction of the pressure p and
of the Lorentz factor W as computed with the ideal-MHD
code (blue dotted line) and the resistive MHD code (black
dashed line). This comparison, which is not expected to be
exact given that the resistivity is large but not infinite,
provides convincing evidence of the ability of our imple-
mentation to accurately describe higher-dimensional
discontinuous flows in the high-conductivity regime (the
relative difference in the solutions is at most, i.e., at the
shock, of 	7% and of 	0:1% on average).

C. Nonrotating magnetized stars

In the following section we present the numerical results
obtained from the evolution of nonrotating spherical stars
in the presence of electromagnetic fields and for a variety
of conductivities. Since our stars are nonrotating there are
no charges to support the development of a magnetosphere.
Therefore, describing the exterior as an electrovacuum is a
valid approximation for a magnetized star that has lost its
magnetosphere. In order to model both the interior and the
exterior of the star, we prescribe a spatial dependence of
the electrical conductivity such that the ideal-MHD limit is
recovered in the deep interior of the star (which is expected
to be an excellent conductor) and such that the electro-
vacuum limit is recovered outside the star, where the
density and the isotropic conductivity is expected to be
negligibly small.
This behaviour can be easily achieved assuming that

the conductivity tracks the (conserved) rest-mass density,
thus insuring a smooth transition between the two regimes.
In practice, we have experimented with functional
prescriptions of the type

� ¼ �0 max ½ð1�Datmo=DÞ; 0�2; (50)
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FIG. 6 (color online). Left panel: Snapshot of the magnetic field component Bx in the ðx; yÞ plane at t ¼ 4:0; Right panel: Snapshot
of the magnetic field component By in the ðx; yÞ plane at t ¼ 4:0.
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where � ’ �0 is the conductivity in the regions of large
rest-mass density (� ¼ �0 at the stellar center) and � ¼ 0
in the atmosphere, where we set the conserved rest-mass
density to its uniform valueD ¼ Datmo. In our calculations
we normally set �0 ¼ 106 in dimensionless code units, or
equivalently in cgs units �0 ¼ 2:03� 1011 s�1, and Datmo

to be about ten orders of magnitude smaller than the value
of D at the center of the star. Furthermore, in the atmo-
sphere we set the fluid velocity to zero and since � ¼ 0
there, the electric and magnetic fields are evolved via the
Maxwell equations with zero currents (electrovacuum).
The charges in the atmosphere are computed again using
Eq. (43) and lead to a net electric flux which is extremely
small when compared to the magnetic flux (see comment
on the right panel of Fig. 16).

This nonuniform conductivity prescription allows us to
provide effective boundary conditions at the surface of the
star for the exterior electrovacuum solution similar to those
in Refs. [54,55], but without the limitations of using an
analytical solution for the interior of the star or the further
complications of finding a suitable matching between the
electromagnetic fields of the interior ideal-MHD solution
and the exterior one. All the simulations reported hereafter

have been performed adopting the PPM reconstruction
scheme, for relativistic stars whose initial properties are
summarized in Table II.

1. Stable star with confined magnetic fields

For the sake of simplicity, we consider as initial data
spherical stars in equilibrium to which a poloidal magnetic
field confined to the stellar interior is superimposed (see,
e.g., [56–58]). While the hydrodynamical quantities are
consistent solutions of the Einstein equations, the magnetic
field is added a posteriori, with a consequent violation of
the Einstein constraint equations at the initial time [41].
In practice, however, this violation is always very small,
even for the largest fields, and is quickly dominated by the
violations introduced by the standard evolution.
The toroidal vector potential that generates the poloidal

interior magnetic field is expressed as [11]

A� ¼ r2 max ½AbðP� PcutÞ; 0�2; (51)

where Pcut is about 4% the central pressure Pc. The star,
initially computed with a polytropic EOS with � ¼ 2,K ¼
100, has a gravitational massM ¼ 1:40M� and is endowed

FIG. 7 (color online). Left panel: One-dimensional cuts along the z-direction and at t ¼ 4:0 of the pressure. The black dashed line
corresponds to the resistive code (the WHISKYRMHD code), while the blue dotted line corresponds to the ideal-MHD code,
(the WHISKYMHD code). Right panel: The same as in the left panel but for the Lorentz factor.

TABLE II. Properties of the magnetized star models used in the simulations. The columns report: the ADM and baryon masses in
units of solar masses MADM and Mb respectively, the circumferential equatorial radius of the star in kilometers Req, the polytropic

constant K, the polytropic index �, the value of the magnetic field in Gauss at the center of the star Bc, the number of refinement levels,
the number of grid points on the finest level N, the number of grid points across the star Nstar for the different resolutions considered,
the computational grid outer boundary in kilometers Rout.

Star type MADM½M�� Mb½M�� Req [km] K � Bc½G�
Number of

levels N Nstar Rout [km]

Confined fields 1.40 1.51 12.00 100.0 2 1012 4 80, 120, 160 56, 80, 112 141.81

Extended fields 1.33 1.37 32.56 372.0 2 2:4� 1014 4 120 84 354.51

Unstable model 2.75 2.89 16.30 364.7 2 5� 1015 5 272 216 241.07
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with a poloidal magnetic field of strengthBc ¼ 1012G at the
center of the star and � � pmag=p ¼ 4:49� 10�13, with

pmag the magnetic pressure. The magnetic field in the at-

mosphere is initially zero. For all of the evolutions presented
hereafter we have used an ideal-fluid EOS with � ¼ 2.

We first examine the evolution of the magnetized star in
the fixed spacetime of the initial solution (Cowling-
approximation). In the left panel of Fig. 8 we show with
thin solid, dashed and dotted lines the evolution of the
central rest-mass density normalized to its initial value
�c;0 in thin colored lines. The tests were performed using

three spatial resolutions of�x ¼ f0:443; 0:295; 0:222g km,
corresponding, respectively, to N ¼ f80; 120; 160g points
across the finest AMR grid, which extends up to Rout ¼

17:72 km. As customary in this type of tests, stellar
oscillations are triggered by the truncation error and their
amplitude decreases as the numerical resolution is in-
creased. The importance of the test rests, therefore, in the
calculation of the eigenfrequencies of the oscillations,
which we find to be in very good agreement (within
0.14% precision for the f mode) with those computed via
perturbative analyses (not shown here) and with other

hydrodynamics and ideal-MHD codes [11,59]. In addition,
a comparison with the ideal-MHD code [11] shows a
similar agreement in the evolution of the rest mass density,
indicating that the oscillations are tracked correctly by
our resistive MHD implementation.
We next examine the same scenario, but in a fully

dynamical spacetime and find also in this case a very
good agreement with the ideal MHD solution. Still in the
left panel of Fig. 8 we report with thick solid, dashed and
dotted lines the evolution of the central rest-mass central
density in a dynamical spacetime for different resolutions.
As well known from perturbation theory, the eigenfrequen-
cies of oscillations are in this case lower but what is
relevant to note is that the secular evolution in both the
fixed and dynamical spacetimes are very similar, with
variations in the central density that is less than a couple
of percent over tens of dynamical timescales.
The middle panel of Fig. 8 displays instead the evolution

of the central value of the magnetic field, where lines of
different color refer to different resolutions (which have
been checked to yield a convergence order of	1:7), while
the thickness marks whether we are considering a fixed or a

FIG. 8 (color online). Left panel: Evolution of the central rest-mass density of a nonrotating magnetized star for both the Cowling
approximation (C, thin lines) and a dynamical spacetime (D, thick lines). Different line types mark different resolutions: dashed light
blue �x ¼ 0:443 km, dotted dark blue �x ¼ 0:295 km, continuous black �x ¼ 0:222 km.Middle panel: The same as the left one but
for the central magnetic field. Right panel: The same as the middle one but different values of the conductivity �0. All lines refer to a
resolution of �x ¼ 0:222 km.
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dynamical spacetime (thin for the Cowling approximation
and thick for a full general-relativistic evolution).

On the other hand, Fig. 9 reports the power spectral
density computed from the evolution of the central

rest-mass density in the left panel of Fig. 8. Different line
types refer to different resolutions and the dotted vertical
lines mark the eigenfrequencies obtained from linear per-
turbation theory. The match between the numerical and
perturbative results is clearly excellent and the differences
in the fundamental mode at the highest resolution are at
most & 0:5%.
We also note that, as for the central rest-mass density, the

evolution of the central magnetic field is accompanied by
a secular drift towards lower values, and this is mostly the
result of the intrinsic numerical resistivity (we recall that
these tests have been performed with the resistive code but
for very large conductivities and hence in a virtual ideal-
MHD regime). Clearly, the numerical resistivity decreases
with resolution and this is exactly what the behaviour in the
middle panel shows. It is interesting to note that while with
sufficient resolution the resistive losses saturate to about
20% of the original magnetic field over	12 ms, these can
be very large for low resolution and dissipate up to 	85%
of the initial magnetic field over the same time-span. These
numerical resistive losses should be compared with the
ones introduced instead by the physical resistivity and which
can of course bemuch larger. This is shown in the right panel
of Fig. 8, which is the same as the middle one, but where we
have used the highest resolution (i.e., �x ¼ 0:222 km) and
varied the strength of the physical resistivity from�0 ¼ 106

to�0 ¼ 102. Because the fluid velocities are essentially zero
at this resolution, the magnetic-field evolution follows a

FIG. 9 (color online). Power spectral density of a full general-
relativistic evolution of the central rest-mass density for a stable
star with confined magnetic fields. Different line types refer to
different resolutions. Shown with dotted vertical lines are the
eigenfrequencies obtained from linear perturbation theory.
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FIG. 10 (color online). Two-dimensional cuts on the ðx; zÞ plane of the solution of the rest-mass density (color code from white to red)
and the magnetic field lines at times t ¼ 0, 9.88, and 18.59 ms. The evolution refers to a nonrotating star in a dynamical spacetime.
Note that although the magnetic field is contained in the star initially, it diffuses out as a result of numerical and physical resistivity.
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simple diffusion equation with a Ohmic decay timescale
which scales linearly with 1=�. This is indeedwhat is shown
in the right panel of Fig. 8, where, after the initial transient,
the solution settles to an exponential decay and where the
magnetic field can be reduced of almost two orders of
magnitude over 12 ms in the case of �0 ¼ 102.

Finally, we show in Fig. 10 two-dimensional cuts on the
ðx; zÞ plane of the rest-mass density (shown in a color code
from white to red) and of the magnetic field lines for an
oscillating star; the three panels refer to times t ¼ 0, 9.88,
and 18.59 ms, respectively. It is important to remark that
although we start with a magnetic field that is initially
confined inside the star, the inevitable presence of a small
but finite numerical resistivity and our choice of a nonzero
physical conductivity near the surface of the star [we recall
that our conductivity follows the profile given in Eq. (50)],
induce a slow but continuous ‘‘leakage’’ of the magnetic
field, which leaves the star and fills the computational
domain. Because the external magnetic field is essentially
with a zero divergence and with a vanishingly small
Laplacian (we recall that in the stellar exterior the resis-
tivity is zero and the Maxwell equations tend to the those in
vacuum), it is to a very good approximation a potential
field, as shown by the clean dipolarlike structure. Clearly,
the numerical Ohmic diffusion timescale increases with
resolution and therefore the relaxation of the magnetic field
to a stationary dipolarlike structure takes place on longer
timescales for the high-resolution simulation. It is useful to
point out that our star will in general be subjected to the
Tayler instability. However, in this test the Alfvén time-
scale is much longer than the resistive and dynamical
timescales and therefore we can only capture resistive
effects. Phenomena that take place on the usual MHD
timescales will be investigated in future work.

We note that evolving these stars over long timescales
while setting the atmosphere velocities to zero leads to an
artificial increase in the central magnetic field. This is
because the outer envelopes of the star expand, while fluid

elements in the inner part move towards the center. Since
the magnetic field lines in the ideal-MHD approximation
are tied to the fluid motion, the central magnetic field will
artificially increase even though the total electromagnetic
energy of the star remains conserved. Because the use of
a zero velocity in the atmosphere is inevitable to avoid
spurious accretion of matter onto the star, the results pre-
sented in Fig. 8 should be taken to be valid only as long
as the central magnetic field does not increase and this
happens at 7 ms in the worst case.

2. Stable star with extended magnetic fields

We next consider initial data for a spherical magnetized
star with a poloidal magnetic field extending outside the
star, as generated by the MAGSTAR code from LORENE

library [51]. The external magnetic field is dipolar and is
computed by solving the Maxwell equations in vacuum,
with boundary conditions given by the interior poloidal
magnetic field. This solution is fully consistent with the
Einstein equations and it provides accurate measurements
of the stellar deformations in response to either rapid
rotation or large magnetic fields [60]. More specifically,
we have considered a nonrotating star modeled initially as
polytrope with � ¼ 2 and K ¼ 372, having a gravitational
massM ¼ 1:33M�, and endowed with a poloidal magnetic
field of strength Bc ¼ 2:4� 1014 G. The magnetic field in
the atmosphere is given by the electrovacuum solution,
which has a dipolar structure. The evolutions have been
carried out in a computational domain with outer boundary
at Rout ¼ 
354:51 km and a resolution of �x ¼
0:738 km, corresponding to 60 points covering the positive
part of finest grid which extends up to r ¼ 44:28 km.
Figure 11 displays in its left and middle panels two-

dimensional cuts on the ðx; zÞ plane of the rest-mass density
(shown in a color code from white to red) at the initial
and final times, i.e., t ¼ 0 ms and t ¼ 37:23 ms. A rapid
comparison among the two panels clearly shows the ability
of the code to reproduce stably over this timescale the
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FIG. 11 (color online). Left and middle panels: Evolution of the magnetic field lines displayed at times t ¼ 0 ms and t ¼ 37:23 ms.
The rest mass density is also shown with purple-red-yellow colors. Right panel: The top part shows the evolution of the magnetic flux
computed across a hemispheric surface at a radius r ¼ 132:94 km, while the bottom part shows the power spectral density of the rest-
mass density (black solid line) and of the magnetic flux (blue dotted line).
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evolution of this oscillating star also when the magnetic
field extends in its exterior.4 The right panel of Fig. 11, on
the other hand, shows in its top part the evolution of the
magnetic flux computed across a hemispheric surface at a
radius r ¼ 132:94 km, which shows signs of oscillations.
We have computed the power spectrum of these oscilla-
tions and compared it with the corresponding one obtained
for the central rest-mass density. The results of this

comparison are shown in the bottom part of the right panel,
with a black solid line referring to the rest-mass density a
blue dotted line to the magnetic flux. The very good
agreement between the two implies that the oscillations
observed in the magnetic flux are essentially triggered by
the oscillations in the rest-mass density.

3. Magnetized collapse to a black hole

Our final and most comprehensive test is represented
by the collapse to a BH of a magnetized nonrotating star.
This is more than a purely numerical test as it simulates a
process that is expected to take place in astrophysically
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FIG. 12 (color online). Two-dimensional cuts on the ðx; zÞ plane of the collapse to a BH of a magnetized NS. Shown with colors are
the rest-mass density (color code from white to red) and the radial Poynting vector (color code from blue to green) in units of 1034,
while thin lines reproduce the magnetic-field lines. The different snapshots refer to times t ¼ 0, 0.32, 0.57, 0.65, 1.0 and 1.1 ms, and an
apparent horizon is marked with a thin red line starting from t ¼ 0:57 ms. Note that all the matter is accreted into the hole and that a
quadrupolar QNM ringdown is clearly visible in the Poynting flux.

4We note that our star will in general be unstable to the Tayler
instability but also that this will develop on a timescale that is
* 104 times larger than the one considered here [61,62].
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realistic conditions, such as those accompanying the
merger of a binary system of magnetized neutron stars
[26,27], or of an accreting magnetized neutron star. The
interest in this process lays in that the collapse will not
only be a strong source of gravitational waves, but also of
electromagnetic radiation, that could be potentially detect-
able (either directly or as processed signal). The magne-
tized plasma and electromagnetic fields that surround the
star, in fact, will react dynamically to the rapidly changing
and strong gravitational fields of the collapsing star and
respond by emitting electromagnetic radiation. Of course,
no gravitational waves can be emitted in the case consid-
ered here of a nonrotating star, but we can nevertheless
explore the electromagnetic emission and assess, in par-
ticular, the efficiency of the process and thus estimate how
much of the available binding energy is actually radiated in
electromagnetic waves. Our setup also allows us to inves-
tigate the dynamics of the electromagnetic fields once a
BH is formed and hence to assess the validity of the no-hair
theorem, which predicts the exponential decay of any
electromagnetic field in terms of quasinormal mode
(QNM) emission from the BH [63,64].

Ours is not the first detailed investigation of this process
and relevant previous studies are that in Ref. [54] and the
more recent one in Ref. [55]. However, our approach
differs from previous ones in that it correctly describes

the gravitational dynamics of a collapsing fluid (the semi-
analytical work in Ref. [54], in fact, considered the more
rapid collapse of a dust sphere, for which the
Oppenheimer-Snyder (OS) analytic solution can be used
[65]) and does not require any matching of the solution
near the stellar surface (the fully relativistic work in
Ref. [55] had to resort to an ingenious matching between
the interior ideal-MHD solution and a force-free one in
the magnetosphere), leaving the complete evolution of the
electromagnetic fields to our prescription (50) of a nonuni-
form conductivity. Indeed, our solution in the case of
vanishing conductivity and charges is expected to be
locally that in electrovacuum, and thus to be very similar
to the force-free one with vanishing charges and currents.
However, these two limits will differ in regions where
B2 � E2 < 0 and where an anomalous resistivity appears,
leading to different global solutions at later times. Since we
can handle such resistive regions, this test illustrates the
capabilities of our resistive implementation and serves as
an improved approach to this astrophysical scenario than
the one in [55], although it is still rather crude.
In practice, we have considered the evolution of a non-

rotating neutron star with a gravitational mass of 2:75M�,
which is chosen to sit on the unstable branch of the
equilibrium configurations and is endowed with an initial
poloidal magnetic field of strength Bc ¼ 5� 1015 G
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FIG. 13 (color online). The same as the three bottom panels of Fig. 12 but with a linear scale of 15:07 km to highlight the dynamics
near the horizon. It is now very clear that a closed set of magnetic field lines is built just outside the horizon at t ¼ 1:0 ms, that is
radiated away as QNM of the BH.
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extending also in the exterior space. As for the previous
stellar solutions, we use a polytropic EOS with � ¼ 2 and
K ¼ 364:7 for the initial data and continue to use this is
entropic EOS also for the subsequent evolution. The evo-
lutions have been carried out in a computational domain
with outer boundary at Rout ¼ 
241:07 km and a resolu-
tion of �x ¼ 0:111 km, corresponding to 272 points
covering the finest grid which extends up to 
15:07 km.

Because the magnetic energy is only a small fraction of
the binding energy, the hydrodynamical and spacetime
evolution of the fluid star as it collapses to a BH is very
similar to the unmagnetized case and this has been
discussed in great detail in [66]. The most important

difference, therefore, is in the dynamics of the magnetic
field, and this is shown in Fig. 12, which reports two-
dimensional cuts on the ðx; zÞ plane of the collapse to a
BH of a magnetized NS. Shown with colors are the rest-
mass density (color code from white to red) and the radial
Poynting vector (color code from blue to green), while thin
solid lines reproduce the magnetic-field lines.
At early times the star remains close to its initial state

with the exception of a small transient induced by trunca-
tion error, which produces a small radiative outburst at t &
0:3 ms. As the instability to gravitational collapse devel-
ops, there is a rearrangement of the external electromag-
netic fields, driven by a toroidal electric field E� � �vrB�
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FIG. 14 (color online). The same as in Fig. 12, but where in addition to the rest-mass density (color code from white to red) and the
magnetic-field lines (thin solid lines) we show the electrically-dominated regions (i.e., B2 � E2 < 0, color code from light blue to
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GENERAL-RELATIVISTIC RESISTIVE . . . PHYSICAL REVIEW D 88, 044020 (2013)

044020-17



produced in the interior of the perfectly conducting star,
and which is continuous across the stellar surface. As the
collapse proceeds, the rest-mass density in the center and
the curvature of the spacetime increase until an apparent
horizon is found at t ¼ 0:57 ms and is marked with a thin
red line in Fig. 12 (we have used the apparent-horizon
finder described in [67]).

As the stellar matter is accreted onto the BH (the rest-
mass outside the horizon Mb;out ¼ 0 is zero by t *
0:62 ms), the external magnetic field which was anchored
on the stellar surface becomes disconnected, forming
closed magnetic-field loops which carry away the electro-
magnetic energy mostly in the form of dipolar radiation.
This process, which has been described through a simpli-
fied nonrelativistic analytical model in Ref. [55], predicts
the presence of regions where jEj> jBj as the toroidal
electric field propagates outwards as a wave. This process
can be observed very clearly in Fig. 13, which displays the
same three bottom panels of Fig. 12 on a smaller scale of
only 15.07 km to highlight the dynamics near the horizon.
In particular, it is now very clear that a closed set of
magnetic field lines is built just outside the horizon at
t ¼ 1:0 ms, that is radiated away. Note also that our choice
of gauges (which are the same used in [68]) allows us to
model without problems also the solution inside the appar-
ent horizon. While the left panel of Fig. 13 shows that most
of the rest-mass is dissipated away already by t ¼ 0:65 ms
(see discussion in [69] about why this happens), some of
the matter remains on the grid near the singularity, anchor-
ing there the magnetic field which slowly evolves as shown
in the middle and right panels. A complementary view of
the collapse process is also offered by Fig. 14, which
reports, in addition to the rest-mass density (color code
from white to red) and the magnetic-field lines (thin solid
lines), also the electrically-dominated regions (i.e., B2 �
E2 < 0, color code from light blue to white). The larger
scales used in this case makes it easier to follow the
dynamics of the closed field lines that once produced
near the horizon, propagate as dipolar radiation at infinity.

The total electromagnetic luminosity Lrad emitted
during the collapse and computed as a surface integral of
the Poynting flux over a spherical surface at 88.63 km,
computed through equation

LradðrÞ ¼ 4
Z �=2

�¼0

Z �=2

�¼��=2
�Tr

t r
2 sin �d�d�; (52)

is shown in the top panel of Fig. 15. Note the presence of a
rise during the collapse and of several pulses after the
stellar matter has been accreted onto the black hole. The
vertical dotted line represents the time at which the appar-
ent horizon is first found, while the vertical dashed line
corresponds to the time at which all the matter is within the
horizon (i.e.Mb;out ¼ 0). The peaks in the electromagnetic

luminosity correspond to the closed magnetic-field loops
that disconnect from the star and transport electromagnetic

energy. The bottom panel of Fig. 15, on the other hand,
reports the evolution of the total electromagnetic energy
lost in radiation Erad computed through

EradðrÞ ¼
Z
t
Lraddt (53)

and when normalized to the value of the initial magnetic
energy outside the star, E0. Our results indicate, therefore,
a total electromagnetic efficiency which is ’ 5%; this
result is smaller than the estimate made in Ref. [54] (which
was of ’ 20%), but, besides the different initial data used,
this difference can be easily accounted for by the fact that
the gravitational collapse simulated here is considerably
slower (and hence inefficient) than the OS one computed in
[54], where matter is free falling. Our efficiency is also
smaller than the one computed in Ref. [55] and which is
	16% once the same definition for E0 is used. However,
many other factors could be behind this difference,
e.g., differences in the initial data (use of a dipole every-
where in contrast to a dipole only outside the star as in our
case), differences in the stellar models, differences in the
numerical approach (treatment of the surface of the star of
the transition between ideal and force-free MHD), and that
our stellar exterior is electrovacuum and not force free.
A closer comparison between the two approaches will be
carried out in a separate work.
After BH formation, the luminosity decreases exponen-

tially in a fashion which is typical of the QNM ringing of
an electrovacuum electromagnetic field in a Schwarzschild
BH spacetime. These QNMs are clearly visible also in the
(absolute value of the) magnetic flux,

FIG. 15 (color online). Top panel: Luminosity calculated at a
distance r ¼ 88:63 km from the compact object. The black dotted
line represents the time at which the apparent horizon is formed
and the black dashed line corresponds to the time at which all the
matter is well within the horizon. Bottom panel: Evolution of the
total radiated energy normalized to the initial magnetic energy.
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�BjhemðrÞ ¼ 2
Z �=2

�¼0

Z �=2

�¼��=2
Brr2 sin �d�d�; (54)

shown in the left panel of Fig. 16, fromwhich a comparison
with the perturbative expectations can be made. More
specifically, by fitting the harmonic oscillations of the
ringdown and the exponential decay we have computed
the frequencies of the ‘‘ringing-down’’ magnetic-field flux
for the ‘ ¼ 1 mode to be ! ¼ 0:344054–i6:46731 kHz,
corresponding to a nonrotating black hole of 2:74M�. The
agreement with the analytical value is excellent, with a
relative error of only 	0:7% for the real part of the
frequency and 	5:6% for the imaginary one [70].

Finally, as a measure of the accuracy of our simulation
we can compare the magnetic flux with the corresponding
electric flux, which should vanish in the continuum limit
since no net electric charge should be present. This is
indeed the case, as can be deduced from the right panel
of Fig. 16, which reports the two fluxes normalized to the
initial magnetic flux. Note that the electric flux is about 30
orders of magnitude smaller than the magnetic flux before
BH formation, increasing after an apparent horizon is
found, but remaining 15–10 orders of magnitude smaller.

V. CONCLUSIONS

We have introduced a general-relativistic resistive MHD
formalism as an extension of the special relativistic resis-
tive MHD formalism reported in Ref. [19] for a 3þ 1
decomposition of the spacetime. Our numerical implemen-
tation has been made within the CACTUS computational
infrastructure as a continuation of the already existing

general-relativistic hydrodynamics code WHISKY [59,66]
and of the ideal-MHD code WHISKYMHD [11].
Our numerical approach exploits implicit-explicit (IMEX)

methods and allows us to treat astrophysical problems in
which different spatial regions fall into different regimes
of conductivities. The flexibility introduced by using the
Runge-Kutta will allow us to consider not only more general
Ohm laws and a variety of astrophysical dynamos [24,71],
but also to use better dispersion relations as in [22], to
calculate the velocities in the HLLE method and to describe
more accurately also the nonrelativistic limit.
Our implementation has been tested for a number of

stringent tests and its robustness has been verified. The
special-relativistic tests involved the propagation of circu-
larly polarized Alfvén waves, the evolution of current
sheets and shock-tubes in one dimension, cylindrical and
spherical explosion tests in two and three dimensions
respectively, the evolution of stable and the collapse of
unstable magnetized stars in dynamical spacetime. We
have compared our numerical results either with the ana-
lytical solution (in the cases where one exists), or with the
numerical ideal-MHD solution (in the limit of high con-
ductivity), proving that our implementation is suitable to
describe regions with a wide range of conductivities, with
or without large discontinuities and shocks.
We have also considered genuinely general-relativistic

tests in terms of the evolution of nonrotating magnetized
stars either with fixed or fully dynamical spacetimes. Our
stars have been endowed with magnetic fields of varying
strength, either confined in their interior or permeating
also the exterior space, and have been modeled with a
nonuniform conductivity that allows us to recover the

FIG. 16 (color online). Left panel: QNM ringdown of the magnetic field as measured through the magnetic flux at r ¼ 36:93 km.
Again, the black dotted line represents the time at which the apparent horizon is formed and the black dashed line corresponds to the
time at which all the matter is well within the horizon; the dot-dashed line represents instead our fit to an exponential decay. Right
panel: Logarithm of the absolute values of the magnetic and electric fluxes as normalized to the initial magnetic flux.
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ideal-MHD limit in the interior of the star and such the
electrovacuum limit outside the star. All of our results
indicate that the resistive implementation is able to follow
the evolution of the oscillations triggered by the small
truncation errors and that the associated eigenfrequencies
match well those either reported with other hydrodynamics
and ideal-MHD codes [11,72] or from perturbation theory.

Finally, we have considered the challenging and com-
prehensive test represented by the gravitational collapse of
a magnetized nonrotating star to a BH. This scenario has
an astrophysical interest of its own as it could lead to the
emission of electromagnetic radiation, potentially detect-
able. Indeed we have found that as the collapse proceeds,
electrically dominated regions develop and lead to the
development of magnetic-field loops that propagate at the
speed of light, carrying away electromagnetic energy. Up
to 5% of the initial magnetic energy can be lost in this way
and the following evolution of the magnetic field follows
a clean exponential decay, as expected by an electromag-
netic perturbation in a Schwarzschild spacetime. The
match of the measured QNMs and the perturbative predic-
tions is well of a few percent or less.

Our new code is now ready to be applied to study a
variety of astrophysical scenarios. These include the mod-
eling of the magnetosphere that could be produced after the
merger of binary neutron stars, or when the hypermassive
neutron star collapses to a BH and is surrounded by a hot
torus. The work in Ref. [30] has already reported that under
these conditions strong magnetic fields can be produced
and that a jetlike magnetic structure can develop. It is
exciting to consider whether the resistive losses that are
expected in the process will provide sufficient energy to
launch of a powerful jet, not yet observed in Ref. [30]. Also
of great interest is to study BH magnetospheres and the
origin of jets so as to answer the question of whether an
ergosphere is critical for the development of the Blandford-
Znajek mechanism. Finally, our approach is also well
suited to study the properties of accretion disk onto BHs
and to elucidate the role that resistive losses play on the
whole energetic budget. We will report on these applica-
tions in forthcoming works.
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APPENDIX: CONVERGENCE TESTS

In this section we study the convergence properties of
our numerical implementation. In general, for smooth data,
one can study the self-convergence order of a flux-
conservative scheme by just comparing the L1-norm of
the relative errors of the solution for at least three different
resolutions and by checking that the rescaled absolute
errors lie almost on top of one another. In this way we
can infer the convergence order of our method by solving
the following equation,

kBy
LR � By

MRk1
kBy

MR � By
HRk1

¼ �x�LR � �x�MR

�x�MR ��x�HR

where � is the convergence order, and plot it as a function
of time. Since in the tests considered here we always
double the resolution we expect the scaling factor to be
equal to 2�. Since there exist no well-posed convergence
tests in resistive relativistic MHD we choose to perform
self-convergence tests for three different resolutions for a
variety of one-dimensional setups.
We report the convergence order of our scheme as a

function of time for some of the tests presented in
(Sec. IVA). More specifically, we examine the evolution
of a CP-Alfvén wave (Sec. IVA1) to infer the convergence
order of our method in the high conductivity and nearly
ideal-MHD regime and the evolution of the self-similar
current sheet presented in Sec. IVA2) to check the low-
to-medium conductivity � ¼ 100 regime for three resolu-
tions. Finally we repeat the same calculations for the
shocktube tests in the high/low conductivity regime

FIG. 17 (color online). Convergence tests. Absolute errors of
the solution of the y component of the magnetic field By along x
for different resolutions rescaled by a factor of four (as dictated
by our scheme) regarding the one-dimensional Alfvén-wave test
we have performed in flat spacetime (Sec. IVA1) for a uniform
conductivity � ¼ 106.
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presented in Sec. IVA3 in order to check how the code
behaves in the presence of discontinuities.

In Fig. 17 we depict the absolute pointwise error of the
solution of the y-component of the magnetic field By (jBy

1 �
By
2j) regarding the CP-Alfvén wave for resolutions with 50

and 100 number of points along x, and 100 and 200with blue
and magenta colors respectively, rescaled with the appropri-
ate factors. The convergence order as a function of time
for this test is shown in the left panel of Fig. 18. Taking the
average over time we conclude that our implementation
in the high conductivity regime converges at an order of
2.05 and agrees with the anticipated value for the linear
reconstruction scheme employed (linear reconstruction
with a monotonized central-differences slope limiter [73]).

In the right panel of Fig. 18 we show again the
convergence order of our scheme as a function of time in
the medium-low conductivity regime regarding the evolu-
tion of a current sheet. The resolutions considered for
this test are 50, 100 and 200 points along the x-axis.
The average convergence order for the current sheet test
is 2.03. Our method is once again second order accurate as
expected for a linear reconstruction scheme with a van
Leer-type slope limiter [44] and smooth initial data.
We have also studied the convergence of our method for

initial data containing a contact discontinuity, namely the
shocktubes presented in (Sec. IVA3). The fact that the
location of the shock strongly depends on the resolution
adopted in the initial data makes it impossible to recover

FIG. 18 (color online). Left panel: Convergence order as a function of time for the one-dimensional Alfvén-wave test we have
performed in flat spacetime (Sec. IVA1) for a uniform conductivity � ¼ 106. The average convergence order is 2.05. Right panel: The
same as in the left one, but for the one-dimensional current-sheet test in Sec. IVA2 for a uniform conductivity � ¼ 100. The average
convergence order is 2.03.

FIG. 19 (color online). Convergence Tests.We report the convergence order as a function of time for the one-dimensional shocktube
tests we have performed in flat spacetime (Sec. IVA3) for � ¼ 106, � ¼ 10 and for a nonuniform power-law conductivity with
�0 ¼ 106 and 	 ¼ 9, respectively. The convergence order as given by taking the average of the convergence order over time for these
three different tests (from left to right) is 0.87, 0.76, 0.91, respectively.
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exactly first order convergence at shocks, since the test is
not well-defined. Therefore, the convergence order of our
scheme drops to almost first order, as expected for the
numerical techniques adopted in this code as is shown in
Fig. 19. The tests involve the evolution of a shocktube in
the high conductivity regime � ¼ 106 (left panel), in the
low conductivity regime (central panel) � ¼ 10 and the
evolution of a nonuniform power-law conductivity with
�0 ¼ 106 and 	 ¼ 9 (right panel).

Since the initial data for the last two tests are not con-
sistent with the choice of conductivity, the errors intro-
duced already at initial data spoils the convergence order
computed at the first timesteps. The solution subsequently

relaxes to a stable configuration with a more or less con-
stant convergence order. Thus, it makes sense to compute
the average convergence order only after t ¼ 0:05 when
the solution has already relaxed to a consistent solution
of the equations. For these last three tests we have consid-
ered resolutions of 100, 200 and 400 points along the
x-axis. The average convergence order of the shocktube
tests in the uniform high/low conductivity regime is
0:87=0:76, while adopting a conductivity power-law pre-
scription yields an average convergence order of 0.91.
The reconstruction scheme adopted in this set of tests is
linear with a monotonized central-differences slope limiter
function (MC) [73]).

[1] S. S. Komissarov, Mon. Not. R. Astron. Soc. 303, 343
(1999).

[2] S. Koide, K. Shibata, and T. Kudoh, Astrophys. J. 495,
L63 (1998).

[3] L. Del Zanna, N. Bucciantini, and P. Londrillo, Astron.
Astrophys. 400, 397 (2003).

[4] C. F. Gammie, J. C. McKinney, and G. Tóth, Astrophys. J.
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