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A B S T R AC T

Remote Sensing (RS) data have been successfully exploited in the last decades
to monitor vegetation due to their inherent capacity of providing repeated and
spatially-distributed quantitative information about vegetation properties in a cost-
effective way. However, until recently, most of the studies focused on describing
the structural and biochemical properties of vegetation rather than on understand-
ing of its functioning. Nowadays, the challenges imposed by global change on the
ecosystem functioning are fostering research towards a deeper understanding of
the vegetation dynamics and of the imprint of plants on the Earth system.

In the last decade, RS of sun-induced chlorophyll fluorescence (F) emerged as
a novel and promising tool for assessing plant functional status. F is a weak elec-
tromagnetic signal emitted by the core of the photosynthetic machinery in the red
and far-red spectral regions (∼650-800 nm) as a side product of light absorption.
The potential of F relies on the relationship between photochemistry and the en-
ergy dissipation pathways: since photochemistry competes with F emission and
heat dissipation for the same excitation energy, F can provide information on the
actual functional status of vegetation.

The main aim of this Ph.D. research was to exploit optical data (i.e., reflectance
and fluorescence) to advance the understanding of vegetation functioning and of
its variability across space. In particular, the work aimed at better understanding
the link between vegetation optical properties, plant traits (PTs) and ecosystem
functional properties (EFPs) in a case study represented by a mid-latitude forest
ecosystem. For this purpose, innovative RS techniques as well as process-based
models were exploited to infer information about the vegetation functioning from
fine and ultra-fine spectral resolution optical measurements acquired with the Hy-

Plant airborne imaging spectrometer. The analyses were carried out following two
main work streams: i) the investigation of the spatial relationship between F and
EFPs (e.g., light use efficiency) in order to better understand the variability of the
ecosystem functioning at regional scale; ii) the analysis of the potential of F as a
synthetic descriptor of the functional diversity of the ecosystem.

Results provided evidence of the effectiveness of F as a tool for assessing vegeta-
tion functioning, but also pointed out the complexity of the link existing between
F, PTs and EFPs and the need to integrate different RS derived products to obtain
an unambiguous interpretation of the F signal. In particular, results showed that:
i) F can be related to the spatial variability of the EFPs, thus demonstrating that

xi



this link usually observed in the temporal domain holds in the spatial domain;
ii) F is a more powerful tool compared to traditional reflectance-based indices for
explaining the functional diversity.

Overall, the results obtained in this thesis advance the understanding of the
complex relationship between F and vegetation functioning by adding new in-
sights into the critical role of the spatial heterogeneity in controlling the carbon
uptake. Further research in this direction constitutes a high priority for improving
the understanding of the imprint of plants on the global carbon balance and the
prediction of their response to the global change.



1 I N T R O D U C T I O N

Remote Sensing (RS) of sun-induced chlorophyll fluorescence (F) emitted by ter-
restrial vegetation emerged in the last decade as a novel and promising tool for
measuring plants functioning (e.g., Porcar-Castell et al. 2014). Traditional RS based
on the analysis of the radiation reflected by vegetation has been providing valu-
able quantitative information about vegetation for decades (Thenkabail, Lyon, and
Huete, 2011; Verrelst et al., 2015a, 2018). In this respect, the strength of RS relies in
its intrinsic capacity of providing repeated and spatially-distributed information
about vegetation properties in a costly-effective way. However, due to the inherent
characteristics of reflectance-based RS, most of the studies focused in the past on
characterising the structural and biochemical properties of vegetation rather than
on understanding its functioning.

Nowadays, the global change is determining unprecedented pressures on the
functionality of the ecosystems, to a degree that threatens their capacity to provide
services (Ciais et al., 2013; Zhu et al., 2016). Because of the major role played by the
terrestrial ecosystems in the global carbon dynamics (Beer et al., 2010; Heimann
and Reichstein, 2008), the quantification of their imprint on the biosphere dynam-
ics is critical to assess vegetation-climate feedbacks. Unlike traditional reflectance-
based RS, RS of F has the potential of accomplishing this goal.

F is a faint electromagnetic signal that originates from the core of the photosyn-
thetic machinery as a side product of light absorption (Papageorgiou and Govin-
djee, 2004). During photosynthesis, chlorophyll molecules absorb the incoming
sunlight in the photosynthetically active radiation (PAR) region (400-700 nm). The
fate of this energy is threefold. In optimal conditions, the majority of the absorbed
energy is stored as chemical energy in energy-rich organic compounds, a process
known as Photochemical Quenching (PQ). The fraction of energy that is not used
for PQ is rapidly dissipated in order to avoid the generation of radicals that can
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damage the photosynthetic apparatus. Over time, plants evolved two alternative
pathways to release the excess of absorbed PAR: the Non-Photochemical Quench-
ing (NPQ), which refers to a non-radiative dissipation as heat, and F, which refers
to light emission in the red and far-red spectral regions (i.e., 650-800 nm), with
two emission peaks located at ∼685 nm and ∼740 nm. Since PQ, NPQ and F emis-
sion are in direct competition for the same excitation energy, the variation in the
efficiency of each process affects the others (Baker, 2008). This link constitutes the
rationale underlying the use of F to infer information about plant functional status
and overwhelmingly motivates the interest posed by the RS scientific community
in exploring the F signal over the last years.

Passively detecting F is challenging because it requires disentangling the weak
F signal from the upwelling reflected radiation, but it can be achieved exploiting
narrow dark regions of the solar and atmospheric spectrum where the irradiance is
strongly attenuated (Moya et al., 1998; Plascyk, 1975; Sioris, Bazalgette Courrèges-
Lacoste, and Stoll, 2003). The retrieval of F at the far-red emission peak has been
proved to be feasible exploiting high spectral resolution radiance measurements
collected with spectrometers mounted on multiple platforms: from the top-of-
canopy (e.g., Damm et al. 2010; Guanter et al. 2013; Rossini et al. 2016, 2010), to
the Unmanned Aerial Vehicle (UAV) (e.g., Garzonio et al. 2017; Zarco-Tejada et
al. 2013), to the airborne (e.g., Colombo et al. 2018; Damm et al. 2014; Rascher
et al. 2015; Rossini et al. 2015; Zarco-Tejada et al. 2013) to the satellite scale (e.g.,
Frankenberg et al. 2011; Guanter et al. 2012, 2014; Joiner et al. 2011; Sun et al. 2018,
2017). Conversely, the detection of red F has been restricted to a more limited
number of studies primarily because of the technical constraints related to the
retrieval, but recent literature demonstrated its feasibility at different scales (e.g.,
Fournier et al. 2012; Joiner et al. 2016; Liu et al. 2017; Rossini et al. 2016, 2015).

While considerable advances have been achieved in the quantification of F due
to the refinement of the retrieval algorithms as well as to the technical improve-
ment of the sensors in terms of spectral resolution and signal-to-noise ratio, the
unambiguous interpretation of the signal still constitutes a major challenge. Sev-
eral recent studies showed that remotely sensed F can be effectively used for
tracking physiological dynamics of vegetation (e.g., Guanter et al. 2014; Li, Xiao,
and He 2018; Rossini et al. 2015; Sun et al. 2017; Wieneke et al. 2016; Yang et al.
2015). These studies provided empirical evidence of the relationship between mea-
sured F and photochemistry in determined conditions. However, while decades
of research based on active fluorescence measurements led to a mechanistic under-
standing of this link at the sub-cellular and leaf level (Baker, 2008; Genty, Briantais,
and Baker, 1989; Porcar-Castell et al., 2014), the relationship is not well established
at the canopy scale yet. This ambiguity is caused by multiple reasons. Firstly, the
amount of energy re-emitted as F also depends on a number of non-physiology
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related factors (Porcar-Castell et al., 2014; Verrelst et al., 2015b). Among these,
the spatio-temporal variation of plant traits (PTs) - i.e. the morphological, struc-
tural, biochemical and phenological attributes characterising vegetation (Violle et
al., 2007) - e.g. leaf chlorophyll content (LCC), leaf area index (LAI) and maxi-
mum carboxylation capacity (Vcmax) as well as the illumination conditions affect
the F signal emitted by vegetation. Secondly, the reabsorption and scattering of F
within the leaf and the canopy influence the amount of F that is detected remotely.
Thirdly, the spatial and temporal scales at which the relationship is investigated
influence its behaviour. These factors confound the link between F and photosyn-
thesis, either masking or misleadingly emphasizing the variation of F and thus
leading to potentially erroneous conclusions. For these reasons, it appears critical
to take all of them into account to effectively relate F to meaningful descriptors
of the ecosystem processes (i.e., the ecosystem functional properties (EFPs) (Re-
ichstein et al., 2014). The EFPs are directly related to the ecosystem functioning.
For this reason, it is critical to characterise their spatial and temporal variability in
order to explain and monitor the ecosystem capacity of providing services.

Since the variability of the ecosystem functioning is strongly determined by the
spatial and temporal variation of PTs, a robust, accurate and operational mapping
of PTs is critical for investigating the the ecosystem dynamics and their response to
a changing climate (Chapin et al., 2000; Reichstein et al., 2014). In this regard, con-
siderable efforts have been posed over the last decades in the development and
testing of retrieval approaches to translate optical RS observations into PTs, in-
cluding parametric and non-parametric regressions, physically-based models and
hybrid methods (Verrelst et al. (2015a, 2018) for a review). Among these, the re-
trieval based on radiative transfer models is generally considered one of the most
reliable and generic methods being founded on a physical relationship between
the measured radiometric signal and the characteristics of the vegetation medium
(Houborg et al., 2015; Verrelst et al., 2015c). However, the operational mapping
of PTs remains a challenge since the quantitative estimation of PTs from optical
data is ill-posed and hampered by several confounding factors, e.g., the canopy
structure, the influence of the atmosphere, the illumination conditions and the
sun-sensor geometries (Houborg et al., 2015; Malenovský et al., 2013; Wang et al.,
2018; Zarco-Tejada et al., 2004). For these reasons, it is critical to investigate strate-
gies to regularise the inversion in order to mitigate the drawbacks of ill-posedness
and reduce the uncertainties in the PTs quantification (Baret and Buis, 2008; Com-
bal et al., 2002; Houborg et al., 2015; Verrelst et al., 2014, 2015c).

Due to the recognised influence of the PTs variability on the ecosystem dynam-
ics, the concept of ecosystem functioning has been recently associated to the con-
cept of functional diversity. As a matter of fact, multiple experimental studies
found a positive relationship between ecosystem productivity and plant diversity
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(Balvanera et al., 2006; Cardinale et al., 2011; Hooper et al., 2005), that can be
explained by a higher efficiency in the resources utilization and by an increased
ecosystem stability. Based on this link, the relationship between biodiversity and
ecosystem functioning has emerged as a critical issue in ecological and environ-
mental studies during the last decade (Loreau et al., 2001). Conversely to the
traditional concept of biodiversity which refers to the taxonomic diversity (i.e., the
diversity in terms of species composition and abundance), the functional diversity
considers the variability of the PT mean and variance due to differences among
organs, individuals, or species (Musavi et al., 2015). The exploitation of the link
between functional diversity and ecosystem functioning depends on the efficiency
of mapping the functional diversity across space. Due to the close relationship be-
tween PTs and EFPs, several approaches based on mapping the variability of PTs
have been proposed recently to quantify the functional diversity (Mouchet et al.,
2010; Petchey and Gaston, 2006; Schneider et al., 2017). These kind of approaches,
besides providing information on the variability of PTs, do not provide a direct
link to the EFPs. Conversely, the relation of F to both the variability of PTs and
the physiology suggests its potential as a novel synthetic metric for mapping the
functional diversity.

1.1 O B J E C T I V E S

The main objective of this Ph.D. was the exploitation of hyperspectral remotely
sensed data in the optical domain to advance the understanding of vegetation
functioning. In particular, this research explored the relationship between vegeta-
tion optical properties of vegetation, PTs and EFPs describing the ecosystem func-
tioning measurable from RS. The link between PTs, EFPs and vegetation optical
properties was analysed and fully explained using a high spectral and spatial res-
olution dataset of RS data collected in the same focus area (i.e., a temperate forest
ecosystem) with multiple sensors. In particular, the research focused on the use of
innovative RS techniques applied to reflectance and fluorescence airborne-derived
images as well as of state-of-the-art process-based models.

The specific objectives of this research can be summarised as follows:

i. To map the distribution of the dominant tree species in a mixed forest ecosys-
tem using multi-temporal hyperspectral images acquired with the APEX air-
borne sensor (Chapter 2);

ii. To explore the spatial relationship between red and far-red F derived from
high spatial and spectral resolution data collected with the HyPlant airborne
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sensor over a forest ecosystem and process-based EFP estimates obtained
driving an ecophysiological model with airborne-derived spatially resolved
PTs (Chapter 3);

iii. To test the potential of a novel indicator of the functional diversity in a forest
ecosystem based on the use of entropy metrics applied to HyPlant-derived
far-red F images (Chapter 4).

1.2 T H E S I S O U T L I N E

This Ph.D. thesis is organised as a collection of three scientific papers, each one
presented in a dedicated chapter with its own introduction, material and methods,
results, discussion, conclusions and references.

Although with different research questions and objectives, all the analyses pre-
sented in this thesis are based on a dataset acquired during a field campaign sup-
porting the selection of the FLuorescence EXplorer (FLEX) satellite mission as the
8th Earth Explorer mission of the European Space Agency (ESA). The campaign
was organised in 2013 in the Hardt forest, a mid-latitude mixed forest located in
Alsace, France. A comprehensive dataset including airborne hyperspectral acquisi-
tions using the APEX and HyPlant imaging sensors, UAV acquisitions and ground
measurements for calibration and validation activities was collected during the
campaign and constitutes the source of all the analyses presented in this thesis.

Chapter 1 is a general introduction, in which the framework of the Ph.D. project
and the overall and specific objectives are presented.

In Chapter 2, the activities addressing the first objective of this Ph.D. research,
aiming at mapping the distribution of the dominant tree species within the Hardt
forest based on APEX data are presented. The classification of remotely sensed
images is a widespread topic in remote sensing. In this study, the potential of
using airborne images acquired in correspondence of different phenological stages
was evaluated.

In Chapter 3, the second objective of this Ph.D. research is presented. The study
focused on four main activities: firstly, the retrieval of ground-validated maps
of F at the red and far-red emission peaks from HyPlant ultra-fine resolution im-
ages using spectral fitting methods; secondly, the retrieval of ground-validated
maps of key PTs from HyPlant hyperspectral reflectance using an optimised inver-
sion of radiative transfer models; thirdly, the modelling of gross primary produc-
tivity (GPP), absorbed photosynthetically active radiation (APAR) and light use
efficiency (LUE) using a process-based model driven with the obtained airborne-
derived PTs; fourthly, the analysis of the variability of the ecosystem functioning
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at detailed scale by exploring the spatial relationship between measured F and
modelled GPP, APAR and LUE.

In Chapter 4, the outcomes of the activities addressing the third objective of
this thesis are presented. This study explored the possibility of defining a novel
indicator of the ecosystem functional diversity based on F. To this end, traditional
and innovative entropy metrics were applied to F, to a traditional vegetation index
calculated on reflectance (i.e., NDVI) and to a map of functional traits obtained
as a combination of key PTs retrieved using radiative transfer model inversion.
The results were compared to investigate if F can be a better descriptor of the
functional diversity compared to traditional indices.

Chapter 5 concludes this thesis by summarising the main findings of this re-
search and proposing suggestions for future work.



2 F O R E S T S P E C I E S M A P P I N G U S I N G

A I R B O R N E H Y P E R S P E C T R A L A P E X

DATA

A B S T R AC T

1 Accurate mapping of forest species is a very important task in relation to
the increasing need to better understand forest ecosystem role within environ-
mental dynamics. Objective of this work is the investigation of the potential of
a multi-temporal hyperspectral dataset for the production of a thematic map of
the dominant species in the Forêt de Hardt (France). Hyperspectral data were col-
lected in June and September 2013 using the Airborne Prism EXperiment (APEX)
sensor covering the visible, near-infrared and shortwave infrared spectral regions
with a spatial resolution of 3 × 3 m. The map was realized by means of a max-
imum likelihood supervised classification. The classification was first performed
on June and September images separately and then on the two images together.
Class discrimination was performed using as input three spectral indices com-
puted as ratios between red edge bands and a blue band for each image. The
map was validated using a testing set selected on the basis of a random strati-
fied sampling scheme. Results showed that the algorithm performances improved
from an overall accuracy of 59.5% and 48%, for the June and September images
respectively, to an overall accuracy of 74.4%, with producer’s accuracy ranging
from 60% to 86% and a user’s accuracy ranging from 61% to 90% when both im-
ages (June and September) were combined. This study demonstrates that the use
of multi-temporal high-resolution images acquired in two different vegetation de-
velopment stages (i.e., 17th June 2013 and 4th September 2013) allows to obtain

1 The content of this chapter is published on Miscellanea Geographica - Regional Studies on Develop-
ment as: Tagliabue, G., Panigada, C., Colombo, R., Fava, F., Cilia, C., Baret, F., Vreys, K., Meuleman,
K., Rossini, M. 2016, "Forest species mapping using airborne hyperspectral APEX data", Miscellanea

Geographica, Regional Studies on Development, vol. 20, no. 1, pp. 1-6
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accurate (overall accuracy 74.4%) local-scale thematic products in an operational
way.

2.1 I N T R O D U C T I O N

Forests play a key role in local and global scale environmental dynamics, there-
fore, the temporal and spatial monitoring of their functioning is critical for the
purpose of efficient and sustainable management (Linke et al., 2006). In this con-
text, remote sensing (RS) is a very useful tool compared with traditional surveying
techniques, as it allows the production of large scale digital thematic maps in a fast
and accurate way (Franklin, 2001; Panigada et al., 2010). In particular, the compo-
sition and distribution of forest ecosystems is a fundamental factor within carbon,
nitrogen and water biogeochemical cycles. For this reason, the accurate mapping
of forest species is a very important task. In the last few years, several studies have
been carried out using different RS sensors, evaluating the potentialities of both
passive sensors (i.e., multispectral and hyperspectral sensors) and active systems
(i.e., Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR)
systems).

In case of sparse canopy, such as urban vegetation (Alonzo, Bookhagen, and
Roberts, 2014) and Savannah (Cho et al., 2012; Colgan et al., 2012), or dense
canopy characterized by species with different heights or dominated by definable
growth stages (Dalponte, Bruzzone, and Gianelle, 2008, 2012; Jones, Coops, and
Sharma, 2010; Kempeneers et al., 2014), best results in species classification were
obtained by integrating hyperspectral data with the information about tree height
and canopy structure supplied by LiDAR data. Conversely, in mixed forests with
closed canopy and a single dominant layer Ghosh et al. (2014) evidenced that the
canopy height provided by LiDAR data did not affect significantly the mapping
accuracy. In these conditions, the use of hyperspectral data alone showed good
results using either a traditional algorithm such as Maximum Likelihood (ML) ap-
plied on selected indices in order to reduce spectral dimensionality (Boschetti et
al., 2007; Pandey, Tate, and Balzter, 2014), or more sophisticated approaches such
as the vector machines (Marcinkowska et al., 2014), with higher accuracy level
for higher spatial resolution (Baldeck et al., 2015; Clark, Roberts, and Clark, 2005;
Dalponte et al., 2013).

The objective of this study was to investigate the operational use of Airborne
Prism EXperiment (APEX) images for tree species mapping in a complex mixed
forest ecosystem. APEX images were acquired on the Forêt de Hardt (Mulhouse,
France) with a spatial resolution of 3 m in June and September 2013. Given the fact
that an image segmentation to detect single tree crowns was not feasible in a closed
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canopy forest at this spatial resolution, pixel based classification algorithms were
investigated. The possibility to improve species spectral discrimination through
the combination of the spectral information derived from images acquired during
two different phenological development stages (i.e., growing season and incipient
senescence) was evaluated and results were discussed.

2.2 M AT E R I A L A N D M E T H O D S

2.2.1 Remotely sensed data collection and processing

Remotely sensed data were acquired with the hyperspectral airborne push broom
imaging spectrometer Airborne Prism EXperiment (APEX), developed by a Swiss-
Belgian consortium on behalf of the European Space Agency (ESA). APEX covers
a wide spectral range from the visible to the shortwave infrared region of the
spectrum (380-2500 nm) with 288 narrow bands, which allows a detailed charac-
terization of the spectral response of different surfaces.

Data were acquired over the Forêt de Hardt on 17th June 2013 and 4th Septem-
ber 2013 at 12:30±30 local solar time (LST), with APEX flying at about 6000 m

height, which results in a 3 m ground spatial resolution. To cover the entire study
area, 7 flight lines with 30% lateral overlap were planned with a track in the prin-
cipal solar plane (195.3°), in order to minimize shadow effects.

Radiometric calibration of the APEX data was performed through a dedicated
software developed and maintained by the APEX consortium, using as input the
calibration cubes generated from data collected before the flight season on the
APEX Calibration Home Base (Deutsches Zentrum für Luft- und Raumfahrt (DLR),
Oberpfaffenhofen, Germany) and the dark current data collected in-flight. Follow-
ing the regular radiometric calibration, a vicarious calibration was applied to the
spectral regions suffering from slightly higher calibration uncertainties, i.e., the re-
gion around 1030 nm and the end of the SWIR (1300-2500 nm). This was based on
four artificial targets (two black, one grey and one white) made of PVC coated can-
vas material (’Odyssey’ trademark material, from Kayospruce Ltd., UK) and some
‘pseudo-invariant’ features: concrete, asphalt with different brightness and pit ma-
terial. Their radiance and reflectance were measured with an ASD spectrometer
simultaneously with the APEX overflights.

Spectral misregistrations were detected for every across track pixel, following a
spectrum-matching technique (Gao, Montes, and Davis, 2004) that was applied on
the continuum removed at sensor radiance across selected atmospheric absorption
features.
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Geometric processing of the APEX data was performed by means of direct geo-
referencing, using a dedicated software developed by VITO (Vlaamse Instelling
voor Technologisch Onderzoek). Direct georeferencing requires the knowledge of
the position and look direction of the sensor, and the elevation data to adjust for
the topographic relief.

The position and orientation of each image scan line was obtained from the post-
processed GPS (Global Positioning System) and IMU (Inertial Measurement Unit)
data. Angular offsets in X, Y and Z directions between the APEX and IMU frame
were determined through a boresight calibration and accounted for in the bore-
sight misalignment angles. The elevation data were originated from a DTM (Dig-
ital Terrain Model) of the Mulhouse region at 25 m horizontal resolution. From
this data, the geographic location and the sun-viewing geometry was calculated
for every image pixel. The resulting absolute geolocation accuracy was found to
be at sub-pixel level.

The data were projected to UTM zone 32N, WGS84, with a spatial resolution of 3

× 3 m. The USGS (United States Geological Survey) GCTP (General Cartographic
Transformation Package) was used for the coordinate projection, while the nearest
neighbour method was applied for the spatial resampling.

2.2.2 Species classification method

The forest species map was realized on the North portion of the Forêt de Hardt,
where the ground surveys were conducted. A spectral endmember set was se-
lected in order to train the algorithm to identify and assign all the pixels of the
image to the proper class, as required by a supervised classification approach. The
tree species present in the study area were identified by forest experts through a
ground survey conducted over an extensive area. The forest experts visually evalu-
ated the species composition in 42 elementary sampling units (ESU) of 20 × 20 m,
considering all the species representing more than 5% of the leaf area of the ESU.
The centre of the ESU was geo-located by means of a high precision global posi-
tioning system Trimble Geo-XT (Trimble, California, USA). Out of the dominant
species found, five - hornbeam (Carpinus betulus L.), oak (Quercus petraea (Matt.)
Liebl., Quercus robur L.), linden (Tilia L.) and pine (Pinus L.) – were identified as
the most present. These forest species together represent on average the 93% of
each ESU. Therefore, they were accounted in the production of the forest species
map. Other species were not taken into account due to the fact that they were
identified only in few ESU (e.g., maple - Acer campestre L., Acer platanoides L.) or
they were mainly found as single trees (e.g., larch - Larix decidua Mill.). The end-
member set was selected on the APEX images by integrating visual interpretation
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of high resolution orthophotos and ground surveys. It included a total of ∼400

pixels distributed among the four forest species. For each species, homogeneous
polygons composed of ten to twelve pure vegetation pixels – selected on two to
three crowns, based on the crown dimension – were defined within several ESU
(Table 1). An example of crown pixel selection is depicted in Figure 1. Each
polygon was considered as a separate spectral class in the classification process in
order to take into account the intrinsic spectral variability of the species over the
study area. The spectral classes belonging to the same species were then merged
in the post-classification process. Quercus petraea (Matt.) Liebl. and Quercus robur

L. were considered as the same classification unit (Table 1), due to their spectral
similarity. An additional class “shadow”, that accounts for the plant inter-crown
shadows, was included in the spectral endmember set. Hence, the spectral end-
member set was used to train a ML algorithm to distinguish the different forest
species. Solely spectral indices (i.e., APEX band ratios) based on the red edge por-
tion of the spectrum (i.e., 680-750 nm) were used as input of the ML algorithm,
in order to avoid information redundancy that may decrease the classification ac-
curacy (Hughes, 1968). The spectral indices selected in this study were proposed
by Boschetti et al. (2007) in a previous work on the classification of deciduous tree
species in the Ticino Park (Italy) using airborne hyperspectral data (Boschetti et al.,
2007). Three indices expressed as band ratios between APEX bands 45 (659.2 nm),
58 (701.6 nm) and 68 (740.2 nm) and band 7 (480.8 nm) were calculated on June
and September APEX radiance images. The indices selected were located in the
red edge because spectral differences in this region mirror differences in photo-
synthetic pigments and canopy greenness that vary between species and within
their phenological cycle (Filella and Penuelas, 1994; Horler, Dockray, and Barber,
1983; Hu et al., 2008; Zarco-Tejada and Miller, 1999). The ratio with the blue band
is useful to correct for atmospheric effects.

The multi-temporal endmember set used to train the ML algorithm is shown
in Figure 2). Since APEX images were acquired in two different vegetation phe-
nological development stages, the classification was first performed on June and
September images separately and then on the jointed images in order to assess the
improvement on the classification accuracy of the multitemporal information. The
maps obtained were slightly filtered in order to improve the clarity of the thematic
product; isolated pixels were identified by the sieve class function (ENVI 5.0, ITT
Visual Information Solution, Boulder, USA). Then, a majority analysis was used to
assign these spurious pixels to the major class considering a 3 × 3 kernel.

Finally, the maps were validated using a testing set composed of 250 pixels
selected on the basis of a random stratified sampling scheme, taking into account
the unequal distribution of the classes. The number of testing pixels for each
class reflected the size of that class: 90 testing pixel were randomly selected for
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Table 1: Characteristics of the endmember set: for each class, the number of ESUs in which pixels to assembly the spectral
endmember set were selected and the number of pixels per ESU collected are reported.

Forest species Classification unit N of ESU N of pixels per ESU

Carpinus betulus L. Hornbeam 12 10

Quercus robur L.,
Oak 4 10

Quercus petraea (Matt.) Liebl.
Tilia L. Linden 2 12

Pinus L. Pine 6 10

- Shadow 3 50



CHAPTER 3 13

Figure 1: Example of the spectral endmember collection for the training of the Maximum
Likelihood (ML) algorithm: pure crown pixel of hornbeam (yellow) and oak
(cyan) identified on a) high resolution orthophoto and b) APEX false colour
image (APEX bands 92, 42, 16).

hornbeam, 100 for oak, 20 for linden, 20 for pine and 20 for shadow. The testing
pixels were labelled by visual interpretation of high resolution orthophotos and
used as ground truth in the validation process. The classification performances
were then evaluated by computing the Overall Accuracy (OA), the Producer’s
Accuracy (PA) and the User’s Accuracy (UA) of the map. OA was calculated as the
ratio between the sum of pixels that are classified in the correct class and the total
number of testing pixels. PA refers to the probability that the classifier has labelled
a pixel into a class given that the ground truth is that class. It was computed for
each class as the ratio between the number of correctly classified pixels and the
total number of testing pixels for that class. UA refers to the probability that a
pixel belong to a class given that the classifier has labelled it into that class. It was
calculated for each class as the ratio between the number of correctly classified
pixels and the total number of pixels that were assigned to that class.
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Figure 2: Spectral endmember set used to train the Maximum Likelihood (ML) algorithm
in order to classify the different forest species.
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2.3 R E S U LT S

The classification process enabled the production of thematic maps of the most
present forest species in the Forêt de Hardt. The classification accuracy was as-
sessed on the maps obtained using as input: i) only the image acquired in June,
ii) only the image acquired in September, and iii) June and September images
together. Results of the classification performed with only one image as input,
showed better results with the June image (OA = 59.5%), than with the September
one (OA = 48%). This may be explained by the fact that the vegetation in June is
in its maximum seasonal development stage and the illumination conditions are
better (i.e., maximum solar elevation that minimizes shadows effects). June im-
age, though, did not allow an accurate classification of linden, that showed high
commission errors with hornbeam (UA = 36%), while in September the incom-
ing senescence allowed a better discrimination of linden from hornbeam (UA =
53%). The use of both images improved significantly the classification result (OA
= 74.4%), confirming that the use of multitemporal images supplies additional
information, leading to a better spectral class discrimination. PA and UA also
showed an improvement for all the classes, with PA ranging from 60% to 86%
and UA ranging from 61% to 90%, except for pine PA that decreased from 85%
to 80%. This may be again explained by the lighting conditions that were not op-
timal in September, with shadow effects affecting the conifer canopies more than
deciduous ones.

The confusion matrix obtained crossing the ground truth data with the results
of the multi-temporal classification is shown in Table 2. An example of the best
classification result obtained using the multi-temporal information is depicted in
Figure 3. The map shows a sharp predominance of hornbeam-oak association,
climax of the area, while the distribution of pine and linden is more restricted.
In previous studies, higher accuracy levels were achieved in case of higher spa-
tial resolution (1 m or less), with OA close to 90% for pixel-based classifications,
and up to 95% when individual tree classification was conducted (Baldeck et al.,
2015; Clark, Roberts, and Clark, 2005; Dalponte et al., 2013). OA consistent with
our results are shown in previous studies with lower spatial resolution (> 3 m).
Boschetti et al. (2007) in a similar mixed forest ecosystem evidenced that classes
with lower accuracy are those whose fragmentation is higher, such as the typical
association Quercus robur L.-Carpinus betulus L.. This is confirmed by our results:
the commission error between oak and hornbeam classes is in fact higher com-
pared to the one with other classes (i.e., pine and linden). Marcinkowska et al.
(2014) used APEX images with spatial resolution up to about 2 m to map vege-
tation communities more than single tree species, confirming that, at this spatial
resolution, it is worth to scale up at community level more than at tree species level
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Table 2: Confusion matrix obtained crossing the reference data with the classification result. In each cell the value is expressed
as number of pixels (top) and percentage (bottom). The last line and column represent Producer’s Accuracy (PA) and
User’s Accuracy (UA) respectively.

Testing set

A
P

E
X

cl
as

si
fi

ca
ti

on

Hornbeam Oak Linden Pine Shadow Tot UA

Hornbeam
78 9 3 0 0 90 78/90

70.91% 12.68% 15.79% 0% 0% 36% 86.67%

Oak
30 61 3 1 5 100 61/100

27.27% 85.92% 15.79% 5% 16.67% 40% 61%

Linden
2 1 13 1 3 20 13/20

1.82% 1.41% 68.42% 5% 10% 8% 65%

Pine
0 0 0 16 4 20 16/20

0% 0% 0% 80% 13.33% 8% 80%

Shadow
0 0 0 2 18 20 18/20

0% 0% 0% 10% 60% 8% 90%

Tot
110 71 19 20 30 250

100% 100% 100% 100% 100% 100%

PA
78/110 61/71 13/19 16/20 18/30 OA = 74.4%
70.91% 85.92% 68.42% 80% 60% k = 0.6374
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Figure 3: Example of the thematic map that represents the four most common dominant
tree species in the Forêt de Hardt.
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in order to improve vegetation mapping accuracy. Despite this, the use of multi-
temporal images allowed to obtain a reliable thematic product, which quality can
also be visually appreciated (Figure 4).

2.4 C O N C L U S I O N S

In this paper, APEX images at 3 m resolution were used to map forest species in
the Forêt de Hardt (Mulhouse, France), a mixed forest ecosystem. The use of an
operational algorithm, the ML, was improved by the selection of spectral bands
combined in ratio indices sensitive to plant pigment content. We demonstrated
that the combination of multi-temporal images in the classification process led to
a good accuracy level (OA = 74% in forest species mapping. Conversely, with only
one APEX overpass and a spatial resolution of 3 m the accuracy level of species
classification was significantly lower (OA < 60%). As a matter of fact, the avail-
ability of two images: the first one acquired when vegetation was in its maximum
development stage and the second one when senescence was incoming, allowed
the detection of variations in the spectral response linked to species-specific phe-
nological development that improved significantly the map accuracy. However,
we underline that a flight later in the season would be suggested in order to em-
phasise the spectral differences between oak and hornbeam. The use of the multi-
temporal information was made possible by the high APEX absolute geo-location
accuracy (i.e., sub-pixel level), that ensured a good overlapping of the images ac-
quired at different moments. This confirmed the good quality of APEX data and
its valuable use in forest applications. In order to improve the classification accu-
racy through the mapping of individual trees a higher spatial resolution (about 1

m) is suggested.
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Figure 4: Detail of the thematic product obtained: a) Forest species map; b) High resolu-
tion orthophoto of the same area.





3 E X P L O R I N G T H E S PAT I A L

R E L AT I O N S H I P B E T W E E N
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F L U O R E S C E N C E A N D

P R O C E S S - B A S E D G P P E S T I M AT E S I N

A F O R E S T E C O S Y S T E M

A B S T R AC T

1 Terrestrial gross primary productivity plays an essential role in the global
carbon cycle, but the quantification of the spatial and temporal variations in pho-
tosynthesis is still largely uncertain. Our work aimed at investigating the potential
of remote sensing to provide new insights into the plant actual photosynthesis at
fine spatial resolution. This was achieved exploiting high-resolution images ac-
quired with the FLEX airborne demonstrator HyPlant. The sensor was flown over
a mixed forest and the images collected were elaborated to obtain two indepen-
dent estimates of plant photosynthesis. Firstly, maps of sun-induced chlorophyll
fluorescence (F), a novel indicator of plant photosynthetic activity, were success-
fully obtained at both the red and far-red peak (r2 = 0.74, p < 0.001 and r2 = 0.73, p
< 0.001, respectively, compared to top-of-canopy ground-based measurements ac-
quired synchronously with the overflight) over the forested study area. Secondly,
maps of gross primary productivity (GPP) and absorbed photosynthetically active
radiation (APAR) were derived using a customised version of the coupled bio-
physical model Breathing Earth System Simulator (BESS). The model driven with
airborne-derived maps of key forest traits (i.e., leaf chlorophyll content (LCC) and
leaf area index (LAI)) and meteorological data provided a high-resolution snap-
shot of the variables of interest across the study site. LCC and LAI were accurately
estimated (RMSE = 5.66 µg cm−2 and RMSE = 0.51 m2m−2, respectively) through

1 The content of this Chapter has been submitted to Remote Sensing of Environment as: Tagliabue,
G., Panigada, G., Dechant, B., Baret, F., Cogliati, S., Colombo, R., Migliavacca, M., Rademske, P.,
Schickling, A., Schüttemeyer, D., Verrelst, J., Rascher, U., Ryu, Y., Rossini, M. “Exploring the spatial
relationship between airborne-derived red and far-red sun-induced fluorescence and process-based
GPP estimates in a forest ecosystem” and is currently under review.
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an optimised Look-Up-Table based inversion of the PROSPECT-4-INFORM radia-
tive transfer model, ensuring the accurate representation of the spatial variation of
these determinants of the ecosystem’s functionality. The spatial relationships be-
tween measured F and modelled BESS outputs were then analysed to interpret the
variability of ecosystem functioning at regional scale. Results showed that far-red
F is significantly correlated with GPP (r2 = 0.46, p < 0.001) and APAR (r2 = 0.43, p <
0.001) in the spatial domain, and that this relationship is nonlinear. Conversely, no
statistically significant relationships were found between red F and GPP or red F
and APAR (p > 0.05). The spatial relationships found at high resolution constitute
a valuable insight into the critical role of the spatial heterogeneity in controlling
the carbon uptake, entailing the need to take it into account at coarser resolution.

3.1 I N T R O D U C T I O N

Photosynthesis is the primary process supporting life on Earth. Terrestrial
plants exchange CO2 with the atmosphere through this process, thereby playing
a major role within the global carbon cycle (Beer et al., 2010; Heimann and Reich-
stein, 2008). The carbon sequestration capacity is the result of complex and inter-
connected dynamics that counterpose in a delicate balance (Cao and Woodward,
1998; Schimel, 1995). Global change is altering this balance, with consequences
on the functioning of the Earth system (Ciais et al., 2013; Zhu et al., 2016). This
is fostering the quantification of the exact magnitude of these processes, which is
still largely unknown (Heimann and Reichstein, 2008; Schimel et al., 2015).

Recent advances in remote sensing of sun-induced chlorophyll fluorescence (F)
disclosed unprecedented opportunities in the large-scale monitoring of terrestrial
vegetation. F is a faint electromagnetic signal emitted in the red and far-red spec-
tral regions (i.e., 650-800 nm) by the core of the photosynthetic machinery to dis-
sipate the excess of absorbed solar radiation (Papageorgiou and Govindjee, 2004).
Photochemistry competes with heat dissipation and F emission for the absorbed
radiation. Therefore, measurements of energy de-excitation pathways (i.e., fluo-
rescence and heat dissipation) are expected to provide an indirect assessment of
photochemical efficiency (Baker, 2008). This link constitutes the rationale behind
the use of F to infer the actual functional status of the photosynthetic machinery.

Although there is a solid evidence of this relationship at sub-cellular to leaf scale
due to considerable efforts undertaken using active fluorescence techniques (Baker,
2008; Genty, Briantais, and Baker, 1989; Porcar-Castell et al., 2014), the relation-
ship between passive fluorescence and photosynthesis at the canopy scale is still
hazy and the underlying mechanisms need to be fully understood. Lately, various
studies showed strong empirical linear relationships (even though in some cases
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biome dependent) between F and gross primary production (GPP), which repre-
sents the carbon fixation by terrestrial plants via photosynthesis (e.g., Frankenberg
et al. 2011; Guanter et al. 2012; Li, Xiao, and He 2018; Sun et al. 2017; Yang
et al. 2015), but several knowledge gaps still exist. The majority of these stud-
ies was based on the exploitation of space-based retrievals of F from high spec-
tral resolution spectrometers onboard satellites deployed for atmospheric studies,
e.g., the Global Ozone Monitoring Experiment 2 (GOME-2) (Munro et al., 2016),
the TANSO Fourier Transform Spectrometer (Hamazaki, Kaneko, and Kuze, 2004)
and the Orbiting Carbon Observatory-2 (Frankenberg et al., 2015). These sensors
opened the possibility to observe F from space but their coarse spatial resolution
- from 2 to 80 km - and in some cases sparse spatial sampling is unsuitable to
capture the heterogeneity of terrestrial ecosystems. This aspect strongly limited
the investigation of the spatial variability of F and GPP.

GPP is the most direct available proxy of photosynthesis, but the uncertainties
related to its modelling at the global scale hamper an accurate quantification of
the imprint of plants on the carbon cycle. Current models for the quantification of
terrestrial GPP (e.g., Beer et al. 2010; Jung et al. 2011; Knorr 2000; Ryu et al. 2011;
Tol et al. 2009; Tramontana et al. 2016) are characterised by an advanced process
understanding. However, uncertainties in the carbon flux modelling come from
the structure of the model employed, the quality of the meteorological forcings and
most importantly, from the adequacy of the model parameterisation. Regardless of
the typology (i.e., data-driven or process-based model), the effectiveness of these
models is in fact severely conditioned by the accuracy of the input parameters
(Friedlingstein et al., 2014; Houborg et al., 2015; Jung et al., 2007), that vary across
space and over time (Rogers et al., 2017).

Incorporating into the models accurate spatially and temporally resolved plant
trait-related information might bridge this gap. As a matter of fact, the variability
of plant traits (e.g., leaf chlorophyll content (LCC), leaf area index (LAI)) consti-
tutes a determinant of the ecosystem functionality, that must be taken into account
to better constrain the flux estimation (Bodegom et al., 2012; Butler et al., 2017).
Regardless of its importance, this aspect was mostly neglected in previous studies
due to the lack of adequate spatio-temporal data. The increasing availability of
remote sensing (RS) observations might overcome this limitation, as RS is capable
of providing plant trait-related information at suitable temporal and spatial scales
(Homolová et al., 2013; Schimel et al., 2015).

The retrieval of plant traits from RS observations advanced significantly over
the last decades due to a considerable effort posed in the development and testing
of multiple retrieval methods (for a review, see Verrelst et al. 2015a, 2018). Among
the retrieval algorithms, the inversion of physically-based radiative transfer mod-
els (RTMs) is generally considered the most reliable approach (Atzberger et al.,
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2015; Dorigo et al., 2007). RTMs exploit physical laws to describe the interactions
between the incident solar radiation and the vegetation medium. Being based on
a physical relationship between measured radiometric signal and plant traits, the
inversion of these models constitutes an accurate, robust and generic approach
for plant trait retrievals (Atzberger et al., 2015; Dorigo et al., 2007; Houborg et al.,
2015; Verrelst et al., 2015c).

Regardless of the progresses achieved, the retrieval of plant traits remains chal-
lenging. Their quantitative estimation is hampered by the influence of various
confounding factors (Wang et al., 2018; Zarco-Tejada et al., 2004). In physically-
based frameworks, the main challenge is represented by the regularisation of the
undetermined and ill-posed nature of the inverse problem (Houborg et al., 2015).
Multiple combinations of plant traits might yield analogous simulated spectra, re-
sulting in non-unique solutions. Furthermore, the uncertainties affecting both the
model and the data may be source of large inaccuracies in the modelled reflectance
(Baret and Buis, 2008; Combal et al., 2002; Houborg et al., 2015). Hence, adequate
model parameterisation and regularisation strategies are critical to mitigate the
drawbacks of ill-posedness and to obtain trustworthy results (Combal et al., 2002;
Houborg, Fisher, and Skidmore, 2015; Verrelst et al., 2014, 2015c). Several studies
recognised the importance i) of using prior information to reduce the variability of
the input parameters (e.g., Baret and Buis 2008; Darvishzadeh et al. 2008; Malen-
ovský et al. 2006; Meroni, Colombo, and Panigada 2004), ii) of adding noise to
the simulated spectra to account for uncertainties in both the model and the data
(e.g., Kötz et al. 2005; Richter et al. 2009) and iii) of using multiple solutions of
the inversion to regularise the inversion (e.g., Atzberger and Richter 2012; Com-
bal et al. 2002; Kötz et al. 2005). Conversely, the impact of using alternative cost
functions to match simulated and measured reflectance has been poorly investi-
gated (Rivera et al., 2013; Verrelst et al., 2014). In this framework, this work aimed
at investigating the potential of RS to provide new insights into the actual plant
photosynthesis. High-resolution airborne hyperspectral images acquired with the
HyPlant sensor (Rascher et al., 2015) over a mixed forest were used to provide two
independent estimates of plant photosynthesis: red and far-red F on the one hand,
GPP on the other. This comprehensive high-resolution analysis was made possible
by the characteristics of the HyPlant sensor, deployed as airborne demonstrator of
the forthcoming FLuorescence EXplorer (FLEX) satellite (Drusch et al., 2017): the
sensor was in fact specifically designed to acquire simultaneously sub-nanometric
spectral information in the 650-800 nm spectral region and hyperspectral informa-
tion between 400 and 2500 nm, providing the means to retrieve F as well as to
obtain hyperspectral reflectance.

We explored the possibility to:
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i. Obtain high resolution ground-validated maps of both red and far-red F
from airborne ultra-fine spectral resolution imagery using the spectral fitting
method (SFM) (Cogliati et al., 2015);

ii. Obtain high resolution ground-validated maps of key forest traits (i.e., LCC
and LAI) from airborne hyperspectral imagery through an optimised RTM
inversion;

iii. Obtain high resolution maps of GPP, absorbed photosynthetically active ra-
diation (APAR) and light use efficiency (LUE) through a modelling approach
based on the use of the aforementioned airborne-derived spatially resolved
traits to drive a process-based ecophysiological model - the Breathing Earth
System Simulator (BESS) (Jiang and Ryu, 2016; Ryu et al., 2011) - with the
ultimate goal of:

iv. Exploring the spatial relationship between measured F and modelled BESS
outputs at high resolution, in order to interpret the variability of ecosystem
functioning at regional scale.

3.2 DATA A N D M E T H O D S

3.2.1 Study Site

The study was conducted on a mid-latitude plain mixed forest (Hardt Forest)
located in France (47°48’29" N, 7°26’53" E; Mulhouse; Alsace). The analysis focused
on an area of ∼90 ha located in the northern part of the forest, corresponding to a
subset of the total area covered by the airborne overpasses (Figure 5). The climate
of the region is temperate, with an average temperature of 22◦C in summer and
of 4 ◦C in winter. The mean annual rainfall is 680 mm distributed throughout the
year, with a prevalence between May and August.

The forest covers ∼13000 ha and is relatively managed, with stands of at least
500 m size characterised by a relatively large variability in terms of forest age.
Overall, the fraction of deciduous and coniferous tree species is about 90% and
10%, respectively. The dominant canopy layer is characterised by the presence
of European hornbeam (Carpinus betulus L.), pedunculate and sessile oak (Quercus

robur L., Quercus petraea (Matt.) Liebl.), field maple (Acer campestre L.), small-leaved
linden (Tilia cordata Mill.), Scots pine (Pinus sylvestris L.) and European larch (Larix

decidua Mill.).



26 CHAPTER 2

Figure 5: a) Location of the Hardt Forest in Alsace, France; b) Hardt Forest and location of
the HyPlant flightline used in this study (RGB true colour composite); c) Zoom
of the HyPlant image and location of the sites where top-of-canopy spectral
measurements were collected (purple dots).
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3.2.2 Field spectral measurements and plant traits data collection

A field campaign aiming at near-simultaneously collecting spectral measure-
ments, plant traits and ancillary meteorological data was conducted in the summer
of 2013.

Top-of-canopy high resolution radiance measurements were acquired on 16th June 2013-
17th June 2013 and 2nd July 2013 around midday (10:00-15:00 solar time) un-
der clear-sky conditions using portable spectroradiometers operating in the vis-
ible and near-infrared regions. The system included three different instruments
(HR4000, HR4000, QE65000; Ocean Optics, Dunedin, USA) characterised by differ-
ent spectral ranges and resolutions: the first one covering the spectral range 350-
1050 nm with a full width at half maximum (FWHM) of 1 nm for reflectance and
vegetation indices computation; the second (spectral range 700-800 nm, FWHM =
0.1 nm) and third (spectral range 657-740 nm, FWHM = 0.25 nm) ones specifically
designed for the retrieval of sun-induced chlorophyll fluorescence at the O2-A and
O2-B absorption bands, respectively.

The system was housed in a thermally regulated Peltier box (model NT-16; Mag-
apor, Zaragoza, Spain) and manually operated from the top of a mobile hydraulic
platform to measure top-of-canopy reflectance and fluorescence of the represen-
tative tree species of the Hardt forest in six sampling sites. The measurements
were acquired from nadir using bare optical fibers with an angular field of view
of 25° mounted at the end of a 2.5 m long arm held at a height of 3.7-5 m above
the canopy, corresponding to a sampling area of 1.7-2.3 m diameter. The arm was
manually rotated horizontally to allow the alternative observation of the vegetated
target to measure the upwelling radiance and of a levelled calibrated white refer-
ence panel (Spectralon; Labsphere, North Sutton, USA) to measure the incident
solar radiation.

The spectral data were acquired through the 3S software (Meroni and Colombo,
2009), sandwiching each measurement of the vegetated target between two mea-
surements of the white reference panel, and collecting the dark current of the in-
struments at the beginning of each set of measurements. The collected data were
processed with a dedicated IDL (ITT Visual Information Solutions, Boulder, USA)
application described in Meroni et al. (2011). F687 and F760 were estimated by ex-
ploiting the spectral fitting method described in Meroni et al. (2010) and Cogliati
et al. (2015).

Field measurements were acquired in correspondence of Elementary Sampling
Units (ESUs) of 20 × 20 distributed all over the study area in order to sample
a wide range of different forest species and conditions. The ESUs were selected
by forest experts along the forest tracks, at about 50 m distance from the path.
The centre of each ESU was tracked with a high precision Trimble Geo-XT GPS
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(Trimble, Sunnyvale, USA). Species composition and crown condition were visu-
ally evaluated by the forest experts in correspondence of 42 ESUs. All the species
representing more than 5% of the dominant layer of the ESU were considered in
the estimation of the species composition. LCC was estimated by destructive sam-
pling of leaves collected from different forest species located in 12 ESUs, followed
by pigment quantification by UV-VIS spectroscopy. At least 10 leaves were sam-
pled for each species of the ESUs (n ≈ 250). The leaf samples were collected from
sunlit leaves sampled by shooting with guns at the top branches and were imme-
diately placed into sealed plastic bags and stored under -80◦C until the laboratory
biochemical analysis. The pigments were extracted using hydroxide carbonate
magnesium buffered with acetone and absorbance was measured at 645 nm, 662

nm and 710 nm using a UVIKON XL spectrophotometer (BioTek Instruments,
Winooski, USA) to determine LCC (Lichtenthaler and Buschmann, 2001). LAI was
estimated by means of digital hemispherical photos acquired within 14 ESUs using
a Sigma camera (Sigma Corporation, Ronkonkoma, USA) equipped with a fisheye
lens. The images - 7 looking upward per each plot - were processed with the CAN-
EYE (https://www4.paca.inra.fr/can-eye/CAN-EYE-Home/Welcome) software to
estimate LAI. The clumping effect was taken into account by multiplying the ef-
fective LAI by the clumping index (Chen and Black, 1992) computed using the
logarithm gap fraction averaging method (Lang and Yueqin, 1986).

3.2.3 Airborne hyperspectral images acquisition and pre-processing

The airborne data were acquired using the hyperspectral imaging sensor Hy-

Plant (Rascher et al., 2015). HyPlant is made up of two modules: i) the Dual
Channel Imager (DUAL) is a hyperspectral imaging spectrometer with 624 spec-
tral channels covering the visible, near-infrared and shortwave infrared (VIS-NIR-
SWIR) spectral regions (370-2500 nm) at a full-width at half maximum (FWHM)
of 4.0 nm (VIS-NIR) - 13.3 nm (SWIR); ii) the Fluorescence Imager (FLUO) is a
high-performance hyperspectral imaging spectrometer with 1024 spectral chan-
nels providing contiguous spectral information in the wavelength range 670-780

nm with a FWHM of ≈ 0.25 nm. Both the DUAL and the FLUO sensors are
line-imaging push-broom scanners with an angular field of view of 32.3°.

HyPlant was flown over the study site on board a Cessna Grand Caravan C208B
on 16th June 2013 around solar noon (12:30±1 CEST (Central European Summer
Time)) under clear sky conditions. The flight was conducted heading 195° at an
average altitude of 600 m above the ground level, resulting in a pixel size of 1 m.

The pre-processing of the airborne data was performed using the CaliGeo soft-
ware (Specim Ltd, Oulu, Finland). HyPlant raw data were corrected for dark cur-

https://www4.paca.inra.fr/can-eye/CAN-EYE-Home/Welcome
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rent, radiometrically calibrated and georectified using as input the information
recorded by HyPlant position and attitude sensor. The DUAL data were then at-
mospherically corrected using the ATCOR-4 atmospheric radiative transfer code
to obtain top-of-canopy radiance and reflectance.

3.2.4 HyPlant data product generation

3.2.4.1 Sun-induced chlorophyll fluorescence retrieval

The images collected by the FLUO module were processed with a dedicated
processing-chain specifically developed to retrieve F from HyPlant observations.
The SFM retrieval approach, originally developed for FLEX (Cogliati et al., 2015),
was adapted to HyPlant ultra-fine resolution data at both the O2-B and O2-A ab-
sorption bands to derive red and far-red F maps (Cogliati et al., 2018). This ap-
proach allowed decoupling F and surface reflected radiance spectra from upward
radiance spectra detected by the HyPlant FLUO module. The rationale behind
the SFM relies on mathematical functions to model canopy reflectance and fluo-
rescence spectra at the different wavelengths. The exploitation of the full set of
spectral bands provided by HyPlant sensor reduces the overall impact of instru-
mental noise and allows estimating a higher number of model parameters describ-
ing the fluorescence/reflectance spectra. The SFM method was implemented and
tested for processing HyPlant images collected during the campaign, following the
surface-atmosphere coupled RT scheme proposed in Verhoef, Tol, and Middleton
(2018) and adapted to airborne observations. In fact, the reflectance and fluores-
cence spectral function parameters were directly estimated comparing forward RT
model simulations with HyPlant radiance spectra at-sensor level. The forward RT
model used for processing HyPlant images was limited to estimating surface pa-
rameters (i.e., reflectance and fluorescence), while the atmospheric variables were
kept constant to pre-defined values. The atmospheric transfer functions (i.e., path
radiance, spherical albedo and upward/downward transmittance) used in the for-
ward RT model were computed by MODTRAN5. The atmospheric model input
parameters were derived from sunphotometer measurements collected simultane-
ously to HyPlant observations. The retrieval algorithm included a preliminary
characterisation of instrumental signal distortions such as spectral-shift and band-
width on image column base (i.e., sensor across-track). The red and far-red F at the
O2-A and O2-B bands, respectively, were estimated by analysing each O2 absorp-
tion band independently. The output of the SFM consists of two distinct images,
in which the red (684-697 nm) and far-red (750-777 nm) spectra (with a spectral
sampling interval resampled to 1nm in order to reduce the output data volume)
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are provided in physical units (mWm−2 sr−1 nm−1). For further analysis, the F
values at 687 nm (F687) and 760 nm (F760) were used in this study.

The maps were finally validated comparing the airborne with the ground-based
retrievals obtained from top-of-canopy spectral measurements collected over six
selected forest targets. The ground targets were precisely identified on the image
with the help of RGB images acquired with a drone and statistics were extracted
from regions of interest of 3 × 3 pixels for comparison against the ground-based
measurements.

The fluorescence yields (Fy687 and Fy760) were calculated as the ratio between
F687 and F760 and APAR (µmol photonm−2 s−1) for each pixel of the image. Be-
fore the calculation, F687 and F760 radiances were converted to µmolm−2 s−1 using
a specific wavelength-dependent coefficient. The resulting Fy687 and Fy760 maps
refer to the emission at 687 nm and 760 nm, respectively, and are thus expressed
as sr−1 nm−1.

3.2.4.2 Plant traits retrieval

In order to obtain accurate high-resolution maps of key plant traits from HyPlant

DUAL imagery, a physically based approach was chosen. A systematic evaluation
of the RTM parameterisation and of the Look-Up-Table (LUT) based inversion
strategy was conducted, in order to propose a reproducible approach that could
provide accurate and reliable plant trait retrievals in forest ecosystems, to be used
for different purposes. In this case, the inversion strategy was optimised for the
retrieval of LCC and LAI, two key traits for the following modelling step using
BESS.

Among the variety of existing RTMs, the canopy level INvertible FOrest Re-
flectance Model (INFORM) (Atzberger, 2000; Schlerf and Atzberger, 2006) cou-
pled with the leaf level PROSPECT-4 model (Feret et al., 2008; Jacquemoud and
Baret, 1990) was chosen in this study because of its suitability in simulating forest
canopy reflectance while preserving a relative simplicity. INFORM is a hybrid
model combining the strengths of the turbid-medium and geometric-optical radia-
tive transfer models. It couples the SAILH model (Kuusk, 1991; Verhoef, 1984) that
simulates the radiative transfer within the turbid-medium canopy layer with the
FLIM model (Rosema et al., 1992) to account for geometric aspects such as the leaf
clumping inside the tree crowns and the crown geometry. The model simulates the
forest reflectance in the spectral range 400-2500 nm as a function of several leaf-
level (i.e., leaf chlorophyll content (LCC), leaf dry matter content (LDMC), leaf
water content (LWC), leaf structural parameter (N)) as well as canopy-level (i.e.,
LAI of the single trees, LAI of the understory (LAIu), average leaf angle (ALA),
tree height (h), crown diameter (cd), stem density (sd)) input parameters, besides
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other parameters describing the sun-sensor geometries and irradiance conditions
(i.e., sun zenith angle (Θs), observer zenith angle (Θo), relative azimuth angle (Φ),
fraction of diffuse radiation (skyl)).

A global sensitivity analysis (GSA) (Saltelli et al., 2010; Verrelst, Rivera, and
Moreno, 2015) was carried out in order to examine the response of the model to
the variation of each of its input parameters. This allows to identify the parameters
that are less-influential on the modelled reflectance, that can be thereafter set to
fixed values in order to reduce the number of unknown variables maximising the
predictive power of the model. A total of 2000 simulations were run, varying
each parameter according to all the possible variability in the study site. The GSA
results were used to improve the parameterisation of the RTM: the less influential
parameters on the modelled reflectance were set to constant values, while the other
input parameters were varied within ranges defined according to prior knowledge
of the study site. The range and distribution of the RTM input parameters used
for the generation of the LUT are shown in Table 3. The model was then run in
forward mode to generate a LUT of 30000 simulated reflectance spectra obtained
by all the possible combinations between the input parameters.

The inversion strategy was optimised by testing the effect of three regularisation
options on the retrieval performances: i) the use of different cost functions, ii) the
addition of Gaussian noise to the simulated spectra and iii) the use of multiple
solutions of the inversion.

Multiple cost functions introduced in Leonenko, Los, and North (2013) and
exploited in Rivera et al. (2013) were tested, in order to identify the ones that min-
imise the mismatch between measured and simulated spectra. The cost functions
belong to different fields of mathematics and statistics and can be grouped into
three broad families: information measures, M-estimates and minimum contrast
estimates.

All these metrics are used to minimise the distance D[M, S] between two func-
tions M = (m(λ1),m(λ2), . . . ,m(λn)) and S = (s(λ1), s(λ2), . . . , s(λn)), represent-
ing the shape of the measured (M) and simulated (S) reflectance spectra at the
wavelength λn, but different metrics describe D in distinctive ways.

With the information measures (e.g., Kullback Leibler divergence, Pearson chi-
square, harmonique Toussaint measure), M and S are considered as probability
distributions and their divergence is measured. M-estimates (e.g., least square
estimator) are maximum likelihood-based distances based on the search of the
minima of sums of M and S functions. They are the most widely used and are
generally considered robust estimators, but they can give suboptimal results when
their assumptions are violated (e.g., errors not-normally distributed). With mini-
mum contrast estimates (e.g., contrast function), M and S are described as spectral
density functions to be minimised. The list and mathematical formulation of the



3
2

C
H

A
P

T
E

R
2

Table 3: Range and distribution of the input parameters of the PROSPECT-4-INFORM model used for the generation of a Look-
Up-Table (LUT) of 30000 simulated spectra. (*µ = mean, σ = standard deviation).

Variable Unit Range Distribution

P
R

O
SP

E
C

T-
4 LCC Leaf chlorophyll content µg cm−2 10-70 Gaussian (µ = 40, σ = 25)

LWC Leaf water content cm 0.006-0.015 Sobol
LDMC Dry matter content g cm−2 0.003-0.015 Sobol

N Leaf structural parameter - 1.5 -

IN
FO

R
M

LAI Leaf Area Index m2m−2 1.5-8 Gaussian (µ = 4, σ = 2)
LAIu Leaf area index of understory m2m−2 0.5-2.5 Sobol

sd Stem density trees ha−1 200-400 Sobol
cd Crown diameter m 3-9 Sobol
h Tree height m 20 -

ALA Average leaf inclination deg 45 -
θs Sun zenith angle deg 31 -
θo Observer zenith angle deg 0 -
φ Azimuth angle deg 128 -

skyl Fraction of diffuse radiation - 0.1 -
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metrics selected in this study is reported in Table 4. For a more detailed descrip-
tion of the cost function families and of each estimator refer to Leonenko, Los, and
North (2013). Gaussian noise ranging from 0 to 10% (with step 1%) was added
to the simulated reflectance spectra in order to consider the uncertainties affecting
the model and the measured data, and 0 to 20 (with step 1) solutions of the best
matching modelled spectra were averaged to mitigate the effect of ill-posedness.

The retrieval workflow was performed within ARTMO v. 3.23 (Automated Ra-
diative Transfer Models Operator; http://ipl.uv.es/artmo/) (Rivera et al., 2013;
Verrelst et al., 2011), a graphic user interface software package running in MAT-
LAB (The MathWorks, Inc., Natick, USA) that includes a suite of leaf and canopy
RTMs. ARTMO streamlines the model configuration, running and output storage,
thus facilitating the handling and processing of high dimensional spectral data.

The standard fitting statistics such as coefficient of determination (r2), root mean
square error (RMSE), relative RMSE (rRMSE) (i.e., RMSE/mean of measured val-
ues), bias (i.e., mean of estimated values – mean of observed values) and relative
bias (rbias) (i.e., bias/mean of estimated values) between measured and simu-
lated LCC and LAI were computed to evaluate the performances of the differ-
ent RTM inversion strategies tested. The leave-one-out cross-validated statistics
(r2CV ; RMSECV ) were also computed to compare the prediction performance of
the different model implementations.

3.2.4.3 BESS parameterisation strategy and GPP, APAR & LUE estimation

The Breathing Earth System Simulator (BESS) (Jiang and Ryu, 2016; Ryu et al.,
2011) was used to derive a snapshot of instantaneous GPP over the study area at
the time of the HyPlant overflight.

BESS is a biophysical model developed to monitor carbon and water fluxes us-
ing multi-source remotely sensed data at moderate spatial resolution (1-5 km). The
model couples a 1-dimensional atmospheric radiative transfer module to compute
direct and diffuse radiation in the PAR and NIR spectral regions (Kobayashi and
Iwabuchi, 2008; Ryu et al., 2018), a two-leaf and two-stream canopy radiative trans-
fer model to compute the absorbed PAR and NIR radiation by sunlit and shaded
leaves, respectively (Pury and Farquhar, 1997; Ryu et al., 2011), and an integrated
carbon assimilation-stomatal conductance-energy balance model (Ball, 1988; Paw
and Gao, 1988) to compute GPP and ET. In its original configuration, BESS uses as
input MODIS atmosphere (e.g., cloud optical thickness, aerosol optical thickness,
water vapour, ozone) and land products (e.g., LAI, land cover, albedo in the PAR
and NIR spectral regions) as well as other satellite data (e.g., OCO-2-NOAA data
to derive CO2 concentration maps; Shuttle Radar Topography Mission (SRTM)
data to take into account the effect of altitude on the incoming radiation).

http://ipl.uv.es/artmo/
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Table 4: Selected cost functions (CF) for the description of the distance D[M,S] between measured (M =

(m(λ1),m(λ2), . . . ,m(λn))) and simulated (S = (s(λ1), s(λ2), . . . , s(λn))) reflectance spectra. The CFs are grouped in
three broad families: information measures, M-estimates and minimum contrast estimates.

CF family CF Formula
M

-e
st

.

RMSE D[M,S] =

√∑λn
λi=1(m(λi)−s(λi))2

n

Geman-McClure D[M,S] =
∑λn

λi=1
(m(λi)−s(λi))

2

1+(m(λi)−s(λi))2

In
fo

rm
at

io
n

m
ea

su
re

s

Kullback-Leibler D[M,S] =
∑λn

λi=1m(λi)ln
(m(λi)

s(λi)

Jeffreys-Kullback-Leibler D[M,S] =
∑λn

λi=1(m(λi) − (s(λi))(ln(m(λi)) − ln(s(λi)))

Neyman χ-square D[M,S] =
∑λn

λi=1
(m(λi)−s(λi))

2

s(λi)

K-divergence Lin D[M,S] =
∑λn

λi=1m(λi)ln
(2m(λi))

m(λi)+s(λi)

L-divergence Lin
D[M,S] =

∑λn

λi=1m(λi)ln(m(λi) + s(λi)ln(s(λi) −m(λi)

+s(λi))ln
(m(λi)+s(λi))

2

Harmonique Toussaint D[M,S] =
∑λn

λi=1m(λi) −
(2m(λi)s(λi))

m(λi)+s(λi)

Negative exponential disparity D[M,S] =
∑λn

λi=1 s(λi)(exp(−
(m(λi)−s(λi)

s(λi)
) − 1)

Bhattacharyya divergence D[M,S] = −log(1+
∑λn

λi=1

√

m(λi)s(λi) −
1
2
(m(λi) + s(λi)))

Shannon
D[M,S] = −

∑λn

λi=1
m(λi)+s(λi)

2
log

m(λi)+s(λi)
2

+1
2
(
∑λn λi = 1m(λi)log(m(λi)) +

∑λn

λi=1s(λi)log(s(λi)))

M
in

co
n

tr
.

es
t. K(x) = (log(x))2 D[M,S] =

∑λn

λi=1(log(m(λi)) − log(s(λi)))
2

K(x) = log(x) + 1/x D[M,S] =
∑λn

λi=1(log
s(λi)

m(λi)
+

m(λi)

s(λi)
) − 1

K(x) = −log(x) + x D[M,S] =
∑λn

λi=1(−log
s(λi)

m(λi)
+

s(λi)

m(λi)
) − 1

K(x) = x(log(x)) − x D[M,S] = 1+
∑λn

λi=1
s(λi)

m(λi)
(log

s(λi)

m(λi)
− 1)



CHAPTER 2 35

For this study, BESS was customised to ingest HyPlant high-resolution (1 m)
products and atmospheric constraints obtained from meteorological data collected
in the field, outputting a BESS-GPP map at the time of HyPlant’s overflight at high
spatial resolution.

Four HyPlant-derived spatially resolved products were used to feed BESS: two
broadband reflectance maps and two key plant trait maps. Broadband reflectance
was calculated from the DUAL hyperspectral reflectance cube with a weighted
average after a regular spectral resampling (1 nm spectral interval) in the VIS
(400-700 nm) and NIR (841-876 nm) spectral regions, respectively. Maximum car-
boxylation rate normalised to 25◦C (Vcmax25) and LAI were derived from the
RTM inversion. While LAI is a direct output of the RTM, Vcmax25 was empiri-
cally inferred from LCC using a linear relationship for broadleaved forest species
found by Croft et al. (2017). This study found a strong linear relationship (r2 =
0.78, p < 0.001) between the two variables across three growing seasons consider-
ing four different deciduous tree species, demonstrating that LCC can be a reliable
proxy for modelling Vcmax. Vcmax25 map was then derived from the LCC map
obtained as output of the RTM inversion according to Eq. 1 (Croft et al., 2017):

Vcmax25 = 1.3 ∗ LCC+ 3.72 (1)

Additionally, atmospheric forcings such as air temperature, pressure, column
water vapour, relative humidity and aerosol optical thickness were obtained from
punctual measurements acquired with a Microtops II sunphotometer (Solar Light
Company, Glenside, USA). The incident solar irradiance during the overpass was
collected in the spectral region 350-2500 nm with a calibrated FieldSpec 4 (ASD
Inc., Longmont, USA) measuring over a levelled white Spectralon (Labsphere,
North Sutton, USA).

3.2.5 HyPlant data product comparison

The outputs obtained from HyPlant DUAL and FLUO images (e.g., GPP, F687,
F760) were inter-compared by fitting regression models between pairs of variables.
The statistical analysis was performed in R (R Core Team, 2018) and aimed at test-
ing different models to find the best fit. The independency of observations condi-
tion required in regression analysis is not met in case of spatial-autocorrelation in
the data, meaning that clusters of data points present numerical similarity because
of their spatial proximity (Haining, 1980). The spatial dependency implicates that
part of the information within the dataset is repeated and therefore redundant. In
order to detect a possible violation of the independency assumption, an analysis of
the semivariograms of the images was performed. Based on the results of this anal-
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ysis, all the airborne-derived products were aggregated at tree crown level (i.e., all
the pixels belonging to the same tree crown were averaged) for spatial comparison
instead of performing a pixel by pixel comparison. Besides overcoming the issues
related to the spatial dependency, this approach allowed reducing noise in the
data and mitigating the slight geometric mismatch between the images recorded
from the HyPlant DUAL and FLUO modules.

3.3 R E S U LT S

3.3.1 HyPlant data products

3.3.1.1 Red & far-red F maps

The high-spatial resolution F687 and F760 maps obtained over the forest using the
SFM implemented for the processing of HyPlant imagery are shown in Figure 6.

Overall, the magnitude of F760 ranged from 0 to 2.5 mW m−2 sr−1 nm−1, with
a frequency peak around 1.5 mW m−2 sr−1 nm−1, while F687 ranged from 0 to
2 mW m−2 sr−1 nm−1, with values around 0.8 mW m−2 sr−1 nm−1 occurring
most frequently. These values were consistent throughout the image and coherent
with the ones usually observed in forested areas using ground-based measure-
ments. The spatial patterns were meaningful for both F687 and F760: higher flu-
orescence was observed in the sunlit part of the canopy, lower fluorescence was
observed in the inter-crown gaps and non-fluorescing targets such as bare soil and
asphalt exhibited near-zero values. On the other hand, F687 was characterised by
a higher noise in the retrieval which resulted into a remarkable ‘salt-and-pepper’
effect on the map. A quantitative evaluation of the SFM performance in estimat-
ing F was carried out comparing the airborne with the ground-based retrievals
measured in correspondence of six selected targets (Figure 7).

The comparison showed consistency between airborne and ground F measured
both in the red and far-red regions of the spectrum for different canopies. The
linear models fitted between airborne and ground-based observations were statis-
tically significant (p < 0.05) and showed the effectiveness of the SFM in F687 (r2

= 0.75; RMSE = 0.42 mW m−2 sr−1 nm−1) and F760 (r2 = 0.74; RMSE = 0.43

mW m−2 sr−1 nm−1) retrievals. In terms of absolute values, a systematic overes-
timation of F687 measured from HyPlant compared to the ground references was
recorded (bias = 0.41 mW m−2 sr−1 nm−1; rbias = 52%). This effect was smaller
in F760 retrieval (bias = 0.27 mW m−2 sr−1 nm−1; rbias = 17%).
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Figure 6: a) F687 and b) F760 maps obtained from HyPlant FLUO hyperspectral radiance using the spectral fitting method (SFM).
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Figure 7: Comparison between ground-based and airborne a) F687 and b) F760 retrievals in correspondence of different forest
species. The solid line corresponds to the linear model fitted between the paired variables. The dotted line represents
the 1:1 line.
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3.3.1.2 Plant trait maps

The results of the GSA performed on the coupled PROSPECT-4-INFORM model
are shown in Figure 8. For each input parameter of the RTM, the obtained total-
order sensitivity index (SI) was expressed in percentage as a function of the wave-
length. The analysis revealed a small influence of the leaf structural parameter
(N), tree height (h) and average leaf inclination (ALA) across the entire spectrum.
These parameters were therefore set to constant values in order to allow maximis-
ing the variability of the other input variables.

The LCC and LAI maps at high spatial resolution obtained as output of the
RTM-based retrieval from HyPlant DUAL imagery are shown in Figure 9.

Strong correlations were found between measured and predicted values of LCC
and LAI (Table 5, Figure 10), demonstrating that the inversion of the INFORM
model constrained with various regularisation techniques yields accurate retrievals
of plant traits in forest ecosystems.

LCC was most accurately retrieved using a logarithmic minimum contrast cost
function based on the minimisation of the distance (contrast) between a parametric
model and a non-parametric spectral density (Leonenko, Los, and North, 2013).
The best fitting (r2 = 0.65, p < 0.001; n = 21) was obtained using the mean of the
ten best solutions and no addition of random noise to the simulations. The use
of a divergence measure cost function formalised by Kullback and Leibler (1951),
based on the minimisation of the distance between two probability distributions,
showed the best performances in the retrieval of LAI. As for the retrieval of LCC,
the best results were obtained using ten best solutions and no addition of random
noise (r2 = 0.72, p < 0.001; n = 14). The summary statistics in fitting and cross-
validation of the linear regressions between measured and estimated LCC and
LAI are reported in Table 5. The scatterplots showing the measured LCC and LAI
values against the predicted ones are reported in Figure 10.

Overall, LCC and LAI showed reasonable value distributions and meaningful
spatial patterns within the complex mixed forest ecosystem (Figure 9). The LCC
and LAI spatial patterns showed some similarities, but they were not totally cor-
related (r2 = 0.5, p < 0.001). Based on the species distribution in the study area
obtained from the classification performed in Tagliabue et al. (2016) using APEX
airborne data, it was observed that field maple and small-leaved linden were the
species characterised by the highest LCC values, even though the differences com-
pared to the other species were not significant. LAI showed a larger inter-species
variability, with the highest value for small-leaved linden and the lowest for Scots
pine. In general, LCC did not differ significantly in regeneration and mature
stands, while LAI was higher in regeneration stands.
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Figure 8: Results of the GSA of the coupled PROSPECT-4-INFORM radiative transfer
model. The total-order sensitivity index (SI) is expressed in % for each input
parameter as a function of the wavelength. The acronyms in the legend cor-
respond to leaf structural parameter (N), leaf chlorophyll content (LCC), leaf
water content (LWC), leaf dry matter content (LDMC), leaf area index (LAI),
leaf area index of the understory (LAIu), average leaf inclination (ALA), stem
density (sd), tree height (h) and crown diameter (Cd).
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Figure 9: a) LCC and b) LAI high-resolution maps obtained from HyPlant DUAL data through LUT-based inversion of the
coupled PROSPECT-4-INFORM radiative transfer model using the optimal inversion strategy.
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Table 5: Summary of statistics in fitting (r2, RMSE, rRMSE, bias, rbias) and cross-validation (r2CV ; RMSECV ) of the comparison
between measured and estimated LCC and LAI values.

Plant trait r2 r2CV RMSE RMSECV rRMSE bias rbias

LCC 0.65 0.58 5.66 (µg cm−2) 3.96 (µg cm−2) 15 (%) 2.61 (µg cm−2) 7 (%)
LAI 0.72 0.47 0.51 (m2m−2) 0.57 (m2m−2) 14 (%) 0.04 (m2m−2) 1 (%)
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Figure 10: Comparison between ground-based measurements and HyPlant estimates of a) LCC and b) LAI. The solid lines
correspond to a linear model fitted between the paired variables. The dotted lines represent the 1:1 lines.
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3.3.1.3 GPP, APAR & LUE maps

The incorporation of spatialised maps of key plant traits into the process-based
BESS model allowed obtaining spatial maps of GPP, APAR and LUE at high spatial
resolution (Figure 11).

The map of instantaneous GPP showed values ranging from 0 µmolCO2m
−2 s−1

for bare soil up to ∼30 µmolCO2m
−2 s−1 for dense vegetation. The regeneration

areas, where trees were planted with higher density and both LCC and LAI were
higher, were clearly distinguishable in the image due to their larger CO2 assimi-
lation. In the mature stands, the crown-shadow patterns were more evident and
the GPP values were generally lower, even though with a noticeable variability
across the image. It is worth noting that, due to the nature of the model and the
available input data, the obtained modelled GPP was considerably driven by LAI
and Vcmax25 (r2 = 0.94 and r2 = 0.68, respectively, p < 0.001). However, LAI and
Vcmax25 were only weakly related (r2 = 0.5, p < 0.001).

APAR varied from 0 to ∼1900 µmol photonm−2 s−1 and showed consistent
patterns with GPP (r2 = 0.82, p < 0.001), despite a lower variability for high APAR
values. LUE, obtained as the ratio between modelled GPP and APAR, ranged from
0 to ∼0.018 µmolCO2 µmol photon−1 and appeared strongly related to both the
GPP (r2 = 0.76, p < 0.001) and APAR maps (r2 = 0.8, p < 0.001).

3.3.2 Linking measured F and modelled BESS-GPP, -APAR & -LUE

The analysis of the semivariograms of the images obtained from HyPlant re-
vealed the presence of a clear spatial autocorrelation in the data. This effect exists
within a range from 0 to 10-15 m, as it can be gathered from the range (i.e., the
distance expressed in meters at which the semivariogram levels) of the semivar-
iogram function showed in Figure 12. This distance corresponds to the average
diameter of the tree crowns, indicating that there is a high similarity among pixels
of the same crown. For this reason, the spatial relationships between the airborne-
derived outputs showed hereafter refer to the data aggregated at tree crown level.

The spatial relationships between F687 and F760 retrieved from HyPlant ultra-fine
spectral resolution radiance data and GPP, APAR and LUE obtained as outputs of
the BESS model driven with airborne-derived data are shown in Figure 13. In the
scatterplots, each data point is the average of all the sunlit pixels of the same tree
crown.

Different regression models were tested between the paired variables. Overall,
the best fit was found when using a logarithmic model, that allowed describing the
nonlinearity of the relationships. A positive logarithmic relationship was found
between F760 and GPP (r2 = 0.46, p < 0.001), F760 and APAR (r2 = 0.43, p < 0.001)
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Figure 11: a) GPP, b) APAR and c) LUE maps obtained from the BESS model driven with airborne-derived high-resolution maps.
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Figure 12: Semivariogram functions of the a) F760 and b) GPP images expressed as a
function of the distance (m). The red dashed lines represent the range of the
semivariogram functions.

and between F760 and Vcmax25 (r2 = 0.17, p < 0.001). Conversely, no significant re-
lationship was found between F687 and GPP, F687 and APAR or F687 and Vcmax25
(p > 0.05). The analysis of the logarithmic regression between LUE and the red
(Fy687) and far-red (Fy760) F yields revealed an opposite nature of the two rela-
tionships: Fy760 showed a positive correlation with LUE (r2 = 0.19, p < 0.001),
while Fy687 and LUE were found to be negatively correlated (r2 = 0.25, p < 0.001)
(Figure 13 d, h).

3.4 D I S C U S S I O N

The quantitative estimation of vegetation traits is required in a variety of eco-
logical applications. Regardless the considerable advances achieved through the
development and testing of a wide range of leaf as well as canopy-level retrieval
methods (Verrelst et al., 2015a), their quantification from remotely sensed data re-
mains challenging. The inference of these traits is in fact concealed by confounding
factors related to the canopy (e.g., canopy structure, background influence, illumi-
nation effects), the atmosphere (Houborg, Fisher, and Skidmore, 2015; Malenovský
et al., 2013) and the sun-sensors geometries, that might introduce large inaccura-
cies in the retrieved traits. The inversion of physically based RTMs is generally
recognised as a reliable and accurate approach (Atzberger et al., 2015; Dorigo
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Figure 13: Relationships at tree crown level between: a) F687 and GPP, b) F687 and APAR, c) F687 and Vcmax25, d) Fy687 and
LUE, e) F760 and GPP, f) F760 and APAR, g) F760 and Vcmax25 and h) Fy760 and LUE. The colour scale represents the
point density. The solid curves correspond to a logarithmic model fitted between the paired variables.
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et al., 2007). However, the use of regularisation strategies is critical to mitigate
the drawbacks of ill-posedness and to obtain trustworthy results (Combal et al.,
2002; Verrelst et al., 2014). In this study, LCC was accurately estimated with an
r2 of 0.65 and RMSE of 5.66 µg cm−2 (refer to Table 5 for the complete summary
of statistics) by inverting the canopy-level INFORM model coupled with the leaf-
level PROSPECT-4 model. Previous studies conducted in similar contexts showed
estimation accuracies ranging from ∼4.5 to ∼13.5 µg cm−2 depending on the inver-
sion strategy, sensor configuration and study site characteristics. Croft et al. (2013)
obtained an accuracy of 6.42 µg cm−2 (r2 = 0.62) inverting the PROSPECT-4Scale
model (Chen and Leblanc, 1997) in a mixed forest site using MERIS satellite data,
that degraded to 10.45 µg cm−2 (r2 = 0.41) when inverting the model on CASI
airborne hyperspectral data. Croft et al. (2015) further achieved an accuracy of
7.05-13.40 µg cm−2 (r2 = 0.79-0.38) using the same model in a follow-up study.
Inverting the PROSPECT-DART model (Gastellu-Etchegorry et al., 1996) in conif-
erous sites, Hernández-Clemente, Navarro-Cerrillo, and Zarco-Tejada (2014) and
Malenovský et al. (2013) obtained LCC estimates with an RMSE of 5.03 µg cm−2

(r2 = 0.54) and of 2.27-12.30 µg cm−2 (r2 = 0.72-0.41), respectively. It is worth not-
ing that none of the aforementioned studies tested the use of regularisation options
to constrain the model inversion apart from the use of prior information to restrict
the variability of the model input parameters. In this study, LAI was estimated
using the same LUT-parameterisation as for LCC of the coupled PROSPECT-4-
INFORM model, obtaining an r2 of 0.72 and RMSE of 0.5 m2m−2 (refer to Table
5 for the complete summary of statistics) compared to the ground measurements.
Similar results were obtained inverting the INFORM model in broadleaved as well
as coniferous forests by Wang et al. (2018) (RMSE = 0.43 m2m−2; r2 = 0.63), Yang
et al. (2011) (RMSE = 0.41 m2m−2; r2 = 0.74), Atzberger (2000) (r2 = 0.57) and
Schlerf and Atzberger (2006) (RMSE = 0.58 m2m−2; r2 = 0.73). The latter au-
thors achieved lower accuracies (RMSE = 0.58 m2m−2; r2 = 0.51-0.57) using the
same model applied on multi-directional CHRIS-PROBA satellite data Schlerf and
Atzberger (2012). Similar results were achieved using different RTMs, e.g. Omari
et al. (2013) inverted the PROFLAIR model (White, Miller, and Chen, 2001) in a
broadleaf-dominated forest obtaining an estimation accuracy of 0.47 m2m−2 (r2 =
0.59) and Banskota et al. (2015) used DART to estimate LAI in a deciduous forest
with an accuracy of 0.5-0.74 m2m−2 (r2 = 0.6-0.64). Overall, the LAI estimation
accuracy reported in literature ranges between ∼0.4 and ∼0.9 m2m−2. A system-
atic assessment of using different strategies for minimising the ill-posedness of the
inversion has not been performed in studies conducted in forest ecosystems yet.
However, it can be grasped from the previous works that the use of even few regu-
larisation options (e.g., prior information about the input parameters, multiple best
solutions of the inversion, ecological rules to exclude unrealistic solutions) usually
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leads to more accurate LAI retrievals. In this study, the coupled PROSPECT-4-
INFORM model was successfully inverted providing reliable LCC and LAI spa-
tialised maps in a mixed forest site. Besides the representativeness of the model,
which provides a fair compromise between realism and simplicity, the parameteri-
sation of the model to generate the LUT and the recourse to regularisation options
were found to be advisable to obtain accurate retrievals, as highlighted in anal-
ogous studies conducted on crops (Verrelst et al., 2015c). The prior knowledge
about the variability of the model input parameters allowed excluding unlikely
combinations that constitute a source of error and unnecessarily increase the LUT
size. Likewise, the global sensitivity analysis allowed an optimised model pa-
rameterisation: redundant information in the LUT due to multiple combinations
carrying the same information was avoided, while the variability of most sensitive
model parameters was maximised.

Consistently with the findings of Wang et al. (2018), who performed a sensitiv-
ity analysis of the PROSPECT-5-INFORM model, the leaf water content and leaf
dry matter content showed a great influence on the modelled canopy reflectance
(Figure 8). In addition, a great contribution of LCC to the variation of canopy
reflectance was observed in the visible part of the spectrum, which was not con-
sidered in Wang et al. (2018). At the canopy level, the most affecting variables
across the spectrum were LAI (understory and overstory) and crown diameter,
while the stem density had a moderate influence on the output. This is not in
complete agreement with the aforementioned study, but the authors suggested a
mutual compensation between the three canopy structural parameters. Since the
stem density did not vary much in our study site, it is likely that this resulted into
a larger influence of LAI. Leaf structural parameters, canopy height and average
leaf inclination, which showed a negligible effect on the reflectance variation, were
fixed to maximise the predictive power of the model. Regarding the LUT-based
inversion strategy, various optimisation options were tested in this work, includ-
ing the use of different cost functions to match measured and modelled spectra,
the addition of gaussian noise to the simulated data and the use of multiple solu-
tions of the inversion. Our results showed a considerable impact of the choice of
the cost function used to minimise the distance between the measured and simu-
lated spectra on the retrieval of both LCC and LAI. As observed by Verrelst et al.
(2014) in a study focused on the LUT-based retrieval of LCC and LAI in crops, we
found that the use of the classical RMSE always led to sub-optimal results. The
use of multiple best solutions also improved the estimates, although not being as
impacting as the choice of the cost function. The addition of random noise to the
simulations did not affect the retrieval in our case.

Beyond focusing on the retrieval of reflectance-based products, this work aimed
at analysing the spatial variability of red and far-red sun-induced chlorophyll flu-
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orescence across the study site, which constitutes a more direct proxy of the veg-
etation functional state (Wieneke et al., 2016). F687 and F760 were estimated using
the spectral fitting methods with an r2 of 0.75 and 0.74 (p < 0.05), respectively, as
assessed from the comparison against the ground-based measurements. The SFM
was exploited for the first time in this study to map the distribution of F at both
the emission peaks over a forest area. F quantification using the SFM offers several
advantages compared to other retrieval methods, e.g., the exploitation of the oxy-
gen absorption bands, where the signal is proportionally stronger than in the solar
Fraunhofer lines, and the physically-based nature that makes it independent from
the observed scene. On the other hand, the SFM approach requires a rigorous
atmospheric correction scheme, which is not needed when using other methods
(e.g., Singular Vector Decomposition, improved Fraunhofer Line Discrimination)
exploiting the dark lines in the solar spectrum (e.g., Damm et al. 2014; Guanter
et al. 2012).

The recognised challenges posed by the retrieval of red F (e.g., the narrower
shape of the O2-B band compared to O2-A and the overall lower signal detectable
from above due to the reabsorption within the leaf and the canopy) resulted into a
higher uncertainty in the retrieval of F687, which appeared noisier than F760 at full
resolution (1 m). However, the aggregation of the data at crown level for further
analysis reduced this issue as a consequence of noise averaging.

Recently, F has been exploited to study photosynthetic activity of vegetation
from RS. This is based on the mechanistic link between F emission, photochemistry
and heat dissipation. However, this relationship is multifaceted and multiple gaps
still need to be filled to have an unbiased understanding of the link between F
and GPP. In particular, it remains unclear what is the nature of the relationship
between far-red F and GPP at high spatial resolution. The relationship between
red F and GPP remains even more ambiguous. To address these questions, we
used the BESS model to derive GPP, APAR and LUE over the study site and to
get insights into the relationships between red, far-red F and these variables at the
tree crown level.

The high-resolution GPP, APAR and LUE maps obtained driving the model with
airborne-derived inputs, taking into account inevitable model simplifications, are
representative of the instantaneous carbon uptake, light absorption and light use
efficiency at the time of HyPlant’s overpass. BESS is a process-based model, and
its performances in predicting GPP were comprehensively evaluated in Ryu et al.
(2011), Jiang and Ryu (2016) and Whitley et al. (2016). Ryu et al. (2011) validated
the model at the global scale against eddy covariance (EC) tower flux data from
33 FLUXNET sites covering a broad range of plant functional types. The strong
linear relationship found with modelled GPP (r2 = 0.86, rbias = 5%) at annual com-
posite provided experimental evidence of the model capacity to produce accurate
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GPP estimates. Further evaluation of the model was carried out in Jiang and Ryu
(2016) by means of a comparison against a set of 113 FLUXNET sites distributed
worldwide in the period 2000-2015. The results at both 8-daily and annual com-
posites confirmed the reliability of the model in predicting GPP (r2 = 0.67 and
r2 = 0.93, respectively, compared to flux measurements). In Whitley et al. (2016),
BESS was benchmarked against a set of models of increasing complexity, showing
consistent performances with other terrestrial biosphere models. With respect to
the ordinary BESS implementation, the differences in our study mainly reside in
the high-spatial resolution data used to feed the model and in the snapshot na-
ture of the analysis. The unavailability of EC tower data in the study site limited
our possibility to directly compare HyPlant-BESS outputs with ground-based flux
estimates, anyhow, a proper validation would have not been feasible even in case
of their availability. The flux tower information is in fact a point measurement,
which is valuable for monitoring the temporal variation of the carbon fluxes but is
difficult to exploit for assessing their spatial variability. Because of the high-detail
nature of this snapshot analysis and the data available, a more feasible option to
check the model performances was the comparison between modelled variables
and proxies of these variables that can be remotely sensed. As shown in Figure 14,
BESS-fAPAR (i.e., fraction of APAR, calculated as ratio between BESS-APAR and
incoming PAR) was found to be highly correlated to VIs which are well-known
to be related to the fraction of absorbed PAR. BESS-fAPAR showed the strongest
correlation with VIs such as NDVI (Rouse, Haas, and Deering, 1974) (r2 = 0.86, p
< 0.001) and NDVIre (Gitelson and Merzlyak, 1994) (r2 = 0.86, p < 0.001), which
are sensitive to the photosynthetic component of the canopy. Conversely, the cor-
relation with VIs related to the totality of the canopy such as NDSI (Inoue et al.,
2008) was found to be lower (r2 = 0.63, p < 0.001). This further supports the correct
representation of the carbon fluxes by the model, since the modelled APAR that is
used to estimate GPP is representative of canopy component which is effectively
involved in photosynthesis.

The soundness of HyPlant-BESS results was made possible by the accurate spa-
tial representation of LAI and LCC (from which Vcmax25 was empirically derived)
obtained through RTM inversion. These two variables constitute the two main
drivers of BESS according to the sensitivity analysis performed in Ryu et al. (2011).
Some potential uncertainties in GPP modelling can be associated with the use of
LCC to infer Vcmax25.

The relationship between far-red F and GPP has been shown to be strong in
several studies conducted at different spatio-temporal scales over different vegeta-
tion types. Multiple studies exploiting satellite data showed a linear relationship
between global scale annual averages of spaceborne F retrievals and data-driven
upscalings of GPP from EC tower measurements (Frankenberg et al., 2011; Guan-
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Figure 14: Relationships at tree crown level between BESS derived fAPAR and VIs: a)
BESS-fAPAR and NDVIre; b) BESS-fAPAR and NDSI.

ter et al., 2014; Joiner et al., 2011). However, different results were obtained in
studies conducted at local and regional scales as well as modelled data. Several
authors found nonlinear and ecosystem-specific relationships (e.g., Damm et al.
2015; Goulas et al. 2017; Zhang et al. 2016), revealing that this link is more com-
plex at finer spatial resolution. As a matter of fact, this relation is the reflection of
a complex interplay between species-specific functional traits and of the different
functional strategies used to balance the photochemical and non-photochemical
light dissipation (Tol et al., 2014). In addition, the distribution of the absorbing
and scattering elements within the canopy determines the canopies to act as pho-
ton traps (Knyazikhin et al., 2013; Lewis and Disney, 2007). As a consequence,
the escape probability of photons is a function of the complexity of the canopy
architecture. All these factors modulate the F signal detected by the sensor, that
in turn might be nonlinearly correlated with GPP when the scale of observation
allows appreciating these effects.

Working at individual tree crown scale, we found a statistically significant pos-
itive nonlinear relationship between measured F760 and modelled GPP (r2 = 0.46,
p < 0.001), confirming the previous findings and demonstrating that even in a
snapshot case an empirical relationship between the spatial variation of the two
variables exists. However, the pronounced scattering of the data points suggests
that there are other factors affecting the relationship that are apparently masked
when working at broader spatial and/or temporal scales. To understand whether
this actually depends on the scale of observation, the effect of spatial degradation
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was tested on our data by aggregating HyPlant high resolution images at increas-
ing spatial resolutions (i.e., 10 m-20 m-40 m-80 m) (Figure 15). In contrast with
the results showed in Figure 13, where the data were aggregated at crown level,
the spatial aggregation exercise showed in Figure 15 provides an insight on situa-
tions that could be potentially observed at satellite scale, where the coarser spatial
resolution does not allow working at individual crown level anymore.

The clear progressive decrease of the scattering along with the increase of the
correlation (i.e., r2 = 0.29 at 10 m resolution and r2 = 0.52 at 80 m resolution)
suggests that the averaging of the spatial heterogeneity effectively improves the
relationship between F and GPP. It can be also noticed that the relationship tends
to become more linear as the spatial resolution increases, which is somewhat sim-
ilar to what Damm et al. (2015) and Zhang et al. (2016) observed in the temporal
dimension and might be explained by the reduction of the variability across the
study site and by the changing impact of the confounding effects of canopy struc-
ture at coarser spatial resolution. A similar correlation was observed between
F760 and APAR (r2 = 0.43, p < 0.001). APAR has been shown to be the main
driver of F760 temporal variability because of its large variation (Koffi et al., 2015;
Li, Xiao, and He, 2018; Miao et al., 2018; Rossini et al., 2010; Yang et al., 2018;
Yang et al., 2015). To disentangle such influence of APAR in the relation between
F760 and GPP, the relationship between Fy760 (F760 /APAR) and LUE (GPP/APAR)
was examined, revealing a significant positive nonlinear correlation (r2 = 0.19, p
< 0.001) between the two variables. This result is consistent with the findings of
Verma et al. (2017), Yang et al. (2015), and Zhang et al. (2016), supporting the hy-
pothesis that F760 contains information not only on APAR, but on both the terms
that constitutes the equation GPP = APAR × LUE. Other studies conducted in
the temporal domain found an opposite behaviour. For example, a recent work
conducted by Yang et al. (2018) in a rice paddy site found that far-red F is a bet-
ter proxy of APAR than GPP at high temporal resolution, suggesting a different
meaning of the relationship between F, GPP and APAR in the spatial and tempo-
ral domain. Regarding F emitted in the red region, some studies suggested that
it might be a more sensitive indicator of plants’ photosynthetic activity due to the
greater contribution of photosystem II in this region (Baker, 2008; Porcar-Castell
et al., 2014; Verrelst et al., 2015b). Following this hypothesis, simulation studies
conducted using the SCOPE model (Tol et al., 2009) showed that the relationship
between red F and GPP should be similar or even better than the one observed
between far-red F and GPP (Verrelst et al., 2016; Zhang et al., 2016). However, the
few studies that exploited real red F observations to validate this finding showed
contradictory results. While in Cheng et al. (2013) red F performed better than
far-red F in predicting GPP, Goulas et al. (2017) and Liu et al. (2017) concluded
that far-red F is a better proxy of GPP, especially when considering canopies with
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Figure 15: Relationship between F760 and BESS-GPP at increasing spatial aggregation: a) 10 m, b) 20 m, c) 40 m and d) 80 m.
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varying biochemical and structural composition. This is supported by the mod-
elling results of Du et al. (2017) and Liu et al. (2018), that show a heavily scattered
relationship between red F and APAR compared to the one between far-red F and
APAR, because of the greater influence of LCC and LAI variation. In our study,
no significant correlation was found between the spatial variability of F687 and
GPP and APAR. Yet, interestingly a statistically significant negative correlation
emerged when normalising both red F and GPP by APAR (r2 = 0.25, p < 0.001).
To the best of our knowledge, whilst both positive and negative correlations were
shown to be possible between Fy760 and LUE depending on the energy partition-
ing (Miao et al., 2018), no previous study investigated the relationship between
Fy687 and LUE. Hence, further studies need to be performed in order to be able
to interpret this finding. A possible explanation could be related to the role of
reabsorption within the canopy, which has a strong effect on red F while almost
not affecting far-red F.

3.5 C O N C L U S I O N S

In this study, HyPlant airborne high-resolution images acquired over a mixed
forest ecosystem were exploited to obtain and analyse the spatial intra- and inter-
variability of different variables related to vegetation biochemical, structural and
functional state. Firstly, LCC and LAI, two key variables in vegetation-related
studies, were estimated with accuracy of 5.66 µg cm−2 and 0.51 m2m−2, respec-
tively, by inverting the coupled PROSPECT-4-INFORM radiative transfer model.
The high accuracy of the two spatialised products as well as their consistent spa-
tial patterns were made possible by an optimal parameterization and inversion
strategy applied on HyPlant hyperspectral data. Secondly, high-resolution maps
of sun-induced chlorophyll fluorescence, an indicator of plants’ photosynthetic ac-
tivity, were obtained for the first time at both the red and far-red peaks over a
forested area. The comparison against top-of-canopy measurements acquired at
the same time of the overpass highlighted the accuracy of the estimates, demon-
strating the reliability of the SFM retrievals (r2 = 0.73 at O2-B band; r2 = 0.74

at O2-A). Third, the spatialised plant traits obtained through RTM inversion were
successfully exploited to drive a customised version of the Breathing Earth System
Simulator (BESS), which provided GPP, APAR and LUE maps. These maps consti-
tute an independent measure of the spatial variability of the instantaneous carbon
fluxes and light absorption at the time of HyPlant overflight. BESS-GPP and APAR
showed a nonlinear positive - even though scattered - correlation with F760 (r2 =
0.46 and r2 = 0.43, respectively). In addition, a positive nonlinear correlation was
found between Fy760 and LUE (r2 = 0.19). This result showed that this relationship,
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usually observed in the temporal domain, can hold in the spatial domain at the
scale of individual tree crowns. At the same time, it entailed the need of taking
into account the spatial variability, since it revealed that the relationship between F
and GPP can be more complex at more detailed scale. BESS-GPP, APAR and LUE
were also compared against F in the red region, showing more unexpected results.
No significant correlation was in fact found between F687 and GPP or APAR, while
a negative correlation was observed between Fy687 and LUE (r2 = 0.25).

Jointly, our results provided insights into the critical role of the spatial hetero-
geneity in controlling the carbon fluxes, highlighting the importance of using high
spatial resolution RS data to grasp the complexity of the terrestrial ecosystem dy-
namics. Furthermore, they pointed out the need to integrate different RS derived
products to obtain a comprehensive picture of the vegetation related processes.
Further research in this direction constitutes a high priority for advancing the
understanding of terrestrial ecosystem dynamics and prediction of their future
responses to a changing climate.
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F L U O R E S C E N C E A S A P R OX Y O F

F U N C T I O N A L D I V E R S I T Y

A B S T R AC T

1 Over the last decades, the increasing anthropogenic pressure and the climate
change deeply modified the ecosystems functioning impacting biodiversity. Be-
cause of the ecological relevance of biodiversity loss, understanding the relation-
ship between biodiversity and ecosystem functioning as well as monitoring bio-
diversity changes became key research objectives. In this framework, the devel-
opment of tools capable of providing repeated and spatially-resolved information
about biodiversity appears critical. Due to its inherent capacity of providing large-
scale and temporally continuous information in a time- and cost-effective way,
remotely sensed surface reflectance data have been used increasingly for this pur-
pose over the last years. However, the objective is still far to be reached. In
this work, we examined for the first time the potential of sun-induced chlorophyll
fluorescence (F) as a novel indicator of the functional diversity of terrestrial ecosys-
tems. This was achieved exploiting high spatial resolution images acquired with
the FLEX airborne demonstrator HyPlant. HyPlant was flown in 2013 over a tem-
perate forest ecosystem characterized by a relevant variability in terms of forest
species and management stages. Different approaches were tested to quantify
the functional diversity based on reflectance and fluorescence data. We used the
Shannon’s index and the Rao’s Q diversity to measure the heterogeneity across
the study site. The two metrics, which differ from each other due to the fact
that the Rao’s Q diversity explicitly takes into account the numeric value of each

1 The content of this Chapter belongs to a manuscript that is currently in preparation and will be
submitted to Remote Sensing of Environment as: Tagliabue, G., Panigada, C., Celesti, M., Cogliati,
S., Colombo, R., Migliavacca, M., Rascher, U., Rocchini, D., Schüttemeyer, D., Rossini, M. "Sun-
induced fluorescence as a proxy of functional diversity".
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pixel, were calculated likewise from a traditional reflectance-based vegetation in-
dex (i.e., Normalised Difference Vegetation Index (NDVI)) and from F retrieved
at 760 nm using the spectral fitting method. The entropy patterns obtained were
compared against a functional diversity map used as a reference. Results showed
a strong underestimation of the functional diversity when using NDVI as input
for the entropy calculation. In particular, the low NDVI-based entropy observed
in the regeneration stands of the forest evidenced that NDVI cannot grasp the
variability of the functional diversity. Conversely, F-based entropy showed a fair
agreement with the patterns observed in the reference map. The results obtained
demonstrated that F might be a powerful tool for assessing the ecosystem func-
tional diversity, opening new perspectives for monitoring biodiversity at different
spatial and temporal scales.

4.1 I N T R O D U C T I O N

Anthropogenic activities and climate change are impacting biodiversity caus-
ing so called “global biodiversity crisis”. This is of particular interest because of
the ecosystem capacity of providing services (Cardinale et al., 2011; Koh et al.,
2004; Lausch et al., 2016) and of the relationship between biodiversity and ecosys-
tem functioning (Balvanera et al., 2006; Schulze and Mooney, 1993; Tilman, Isbell,
and Cowles, 2014), stability (Isbell et al., 2015; Musavi et al., 2017) and resilience
(Schwalm et al., 2017), despite contrasting positions in literature (Grossiord et al.,
2014). For this reason, the international community is engaging urgent action to
avert biodiversity loss and degradation of ecosystem services, as framed e.g. in
the European Biodiversity Strategy for 2020. In this context, the capacity of moni-
toring biodiversity across space and over time in a reliable and consistent way is
critical, but this objective is still far to be reached (Pettorelli et al., 2017).

In the last few years, the usefulness of passive remote sensing (RS) observations
has been largely investigated (Kuenzer et al., 2014; Nagendra, 2001; Schweiger
et al., 2018). RS, due to its capacity of providing large-scale, long-term consis-
tent information about the Earth, is inherently characterised by a huge potential
in the detection, quantification, assessment and forecasting of biodiversity at the
global scale Kuenzer et al., 2014; Pettorelli et al., 2016. So far, research has mainly
focused on three approaches: i) mapping plant species or functional types; ii) map-
ping habitats and iii) establishing a direct relationship between biodiversity (either
taxonomic or to less extent functional) and RS data (Asner et al., 2017; Gholizadeh
et al., 2019, 2018; Nagendra, 2001; Schneider et al., 2017). The latter approach
is usually either based i) on the use of inverse radiative transfer modelling and
dimensionality reduction methods (Asner et al., 2017; Schneider et al., 2017) or
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ii) on the concept of spectral variation hypothesis (Palmer et al., 2002). This the-
ory states that the biodiversity signal is encoded in the spectral variability, and
therefore the larger is the spectral heterogeneity across space, the higher is biodi-
versity. Based on this hypothesis, different approaches were proposed to quantify
the spatial heterogeneity and thus biodiversity.

During the last decade, the relationship between biodiversity and ecosystem
functioning emerged as a central issue in ecological studies (Loreau et al., 2001).
The link has been established based on experimental studies showing a positive
relationship between ecosystem productivity and plant diversity (Balvanera et al.,
2006; Cardinale et al., 2011; Hooper et al., 2005), and underlies a broad definition
of biodiversity, i.e., refers to the functional diversity. In particular, conversely to
the traditional concept of biodiversity which refers to the taxonomic diversity (i.e.,
the diversity in terms of species composition and abundance), the functional diver-
sity considers the variability of plant traits (PTs), which varies within species and
constitutes a determinant of the ecosystem functioning (Diaz et al., 2007; Musavi
et al., 2015; Ruiz-Benito et al., 2014; Tilman et al., 1997).

The exploitation of the link between functional diversity and ecosystem function-
ing depends on the efficient mapping of the functional diversity across space. To
this purpose, various measures have been proposed over the last years (Mouchet
et al., 2010; Petchey and Gaston, 2006; Schneider et al., 2017). These approaches
are primarily based on continuous mapping the PTs variability, which is justi-
fied by the relationship between PTs and ecosystem functional properties (EFPs),
which are descriptors of the ecosystem functioning (Reichstein et al., 2014). In
this direction, due to its close relationship with both the variability of PTs and the
vegetation functioning, sun-induced chlorophyll fluorescence (F) might be a novel
and powerful synthetic metric for inferring the functional diversity.

In this framework, the objective of this study was to test the potential of a novel
approach based on the use of remotely sensed F for the assessing the functional
diversity. As far as we know, this is the first attempt trying to couple F with the
concept of spectral variation hypothesis. We aimed at answering the following
research question:

• Is sun-induced chlorophyll fluorescence a valuable information to improve
functional diversity mapping compared to state of the art measures based
on reflectance?

To achieve this objective, high-resolution airborne images acquired with the Hy-

Plant airborne imaging sensor (Rascher et al., 2015) over a temperate mixed forest
ecosystem were used to map the functional diversity using different approaches:
the potential of F was compared against the use of a traditional vegetation indices
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(VIs) commonly used in ecology (Rouse, Haas, and Deering, 1974). In addition,
different metrics for the estimation of the spatial heterogeneity were tested, and
their advantages and drawbacks discussed.

4.2 DATA A N D M E T H O D S

4.2.1 Study Site

The site selected for this study is the Hardt Forest, a temperate forest located in
France (47°48’29" N, 7°26’53" E; Mulhouse; Alsace). The analysis was limited to a
subset of the forest (i.e., ∼90 ha) covered by the HyPlant overpasses.

The Hardt Forest is dominated by the presence of broadleaved species (∼90%),
with a sparse presence of deciduous and evergreen coniferous ones (∼10%). The
most common species in the main canopy layer are: European hornbeam (Carpi-

nus betulus L.), pedunculate and sessile oak (Quercus robur L., Quercus petraea

(Matt.) Liebl.), field maple (Acer campestre L.), small-leaved linden (Tilia cordata

Mill.), Scots pine (Pinus sylvestris L.) and European larch (Larix decidua Mill.). As
a result of the management, the forest is structured in stands of at least 500 m

minimum dimension which are characterised by a relative variability in terms of
management stages.

The region where the forest is located is temperate, with an average temperature
of 22◦C in summer and of 4◦C in winter. The mean annual rainfall is 680 mm, with
a maximum typically between May and August.

A field campaign aiming at collecting spectral measurements, PTs and ancil-
lary meteorological data in the time window of the airborne acquisitions was con-
ducted in the summer of 2013. For a detailed description of the ground and
airborne data acquisition and pre-processing refer to Paragraphs 3.2.2 and 3.2.3 of
Chapter 3, respectively.

4.2.2 Forest species mapping

The reflectance cube obtained from the DUAL module of HyPlant was used
to map the forest species distribution over the study site. The classification was
performed with a supervised machine learning method, targeting seven different
tree species (i.e., Carpinus betulus L., Quercus robur L., Quercus petraea (Matt.) Liebl.,
Acer campestre L., Tilia cordata Mill., Pinus sylvestris L., Larix decidua Mill.) grouped
into six classes: ”Hornbeam”, ”Oak”, ”Maple”, ”Linden”, ”Pine” and ”Larch”.
An additional class named ”Defoliated trees” was defined in order to detect trees,



CHAPTER 4 61

mainly hornbeams and maples, affected by crown defoliation due to an infestation
of caterpillars at the time of the campaign. Mature and regeneration patches of the
forest were classified separately. This choice was motivated by the high variability
of the spectral signal among trees of the same species at different development
stage, caused by differences in the leaf biochemical properties as well as in the
canopy architecture. The classification scheme described hereafter was repeated
likewise for both, masking out alternatively either the mature or the regeneration
stands.

The training set was prepared selecting pure spectral endmembers for each class
by integrating the knowledge derived from the field surveys and the visual inter-
pretation of high resolution orthophotos and RGB images acquired from UAV.
These endmembers consisted of polygons targeting pure tree crowns over a wide
patch of the study area in order to capture the intra-specific spatial variability.
Depending on the occurrence of the species and the crown size, 15 to 30 poly-
gons, each consisting of 6 to 10 pixels, were collected for each class, constituting a
training set of ∼700 pixels.

The training set was used to train a support vector machine (SVM) algorithm
with a radial basis function kernel (Vapnik, 1995) at clustering the pixels into the
defined classes. The SVM is a non-parametric classifier based on the statistical
learning theory proposed by Vapnik and Chervonenkis (1971). The rationale of
the classifier is to try to separate the classes by defining an optimal n-dimensional
hyperplane that maximises the distance from the closest data points, referred to as
support vectors, through the minimisation of a cost function (Vapnik, 1995). The
SVM algorithms have been used increasingly in RS in the last few years because of
their effectiveness and suitability in handling high-dimensional data (Melgani and
Bruzzone, 2004; Mountrakis, Im, and Ogole, 2011; Pal and Mather, 2005). In partic-
ular, they have been extensively applied for tree species classification in different
biomes using hyperspectral data, showing outperforming accuracies compared to
other classification methods (Dalponte et al., 2009, 2013; Feret and Asner, 2013;
Melgani and Bruzzone, 2004; Pal and Mather, 2004). A relevant property of the
SVMs, making them suitable for hyperspectral data classification, is their low sen-
sitivity to the so-called Hughes phenomenon (Hughes, 1968). This effect consists
in a decrease of the classification accuracy when the ratio between the number
of input features and training samples outreaches a certain threshold, due to the
fact that the estimation of the classifier parameters (e.g., the estimation of the
covariance matrices in the case of the Maximum Likelihood classifier) becomes
complicated. This phenomenon, which is frequent in RS applications because the
availability of training samples is usually limited, is critical when using hyper-
spectral data since it requires using feature reduction techniques at the cost of a
loss of information and time. The SVMs proved to be unaffected by this issue
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(Camps-valls and Bruzzone, 2005; Melgani and Bruzzone, 2004; Pal and Mather,
2004; Waske and Benediktsson, 2010), hence, all the features were used as input
for the classifier.

For the accuracy assessment, a testing set composed of ∼400 pixels was selected
on the image using a random stratified sampling scheme. In order to ensure the
representativeness of the testing sample for all the classes, the number of testing
samples was defined for each class according to the relevance of the class. Each
testing sample was labelled through visual interpretation and used as ground
truth in the validation process. The standard accuracy metrics (i.e., overall accu-
racy (OA), producer’s accuracy (PA) and user’s accuracy (UA)) were calculated
from the confusion matrix generated by crossing the classification result with the
ground truths.

4.2.3 Far-red F retrieval

F was retrieved at the far-red emission peak (i.e., 760 nm) from HyPlant ultra-
fine resolution observations using a dedicated processing-chain. The retrieval is
based on the SFM approach (Cogliati et al., 2015) adapted to HyPlant data to derive
a F at the O2-A absorption band (i.e., F760). The rationale behind the SFM relies
on the exploitation of mathematical functions to model the canopy reflectance
and fluorescence spectra at the different wavelengths in order to decouple the F
signal from the reflected radiance. In the current implementation, the spectral
function parameters used to model reflectance and fluorescence were estimated
directly comparing HyPlant at-sensor radiance with forward RT simulations. Con-
versely, the atmospheric input parameters were derived from sunphotometer mea-
surements collected synchronously to the HyPlant overpasses. The maps were
ground-validated by comparing the airborne retrievals with ground-based spectral
measurements collected over six selected forest targets. For a detailed description
of the retrieval scheme refer to Paragraph 3.2.4.1 of Chapter 3.

4.2.4 Diversity measures from reflectance and fluorescence RS data

The heterogeneity across the study area was measured using three different met-
rics related to the diversity: the species richness, the Shannon’s index (Shannon,
1948) and the Rao’s Q diversity (Rao, 1982). The species richness was calculated as
number of different tree species within the considered kernel based on the species
classification map. The Shannon’s index (H) was calculated as in Eq. 2, where p is
the relative proportion of the i-th value within the considered kernel.
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H = −

n∑

i=1

pi lnpi (2)

The Shannon’s entropy is non-dimensional, namely it just accounts for the rel-
ative abundance of pixel values, without considering their distance in a spectral
space. To solve this issue, the Rao’s Q diversity (Q) has been proposed in RS appli-
cations (Rocchini, Marcantonio, and Ricotta, 2017), since it discriminates between
different i values and was calculated as in Eq. 3, where dij is the dissimilarity
between two values i and j based on the Euclidean distance.

Q =

n∑

i=1

n∑

j=1

dijpipj (3)

The two entropy measures (i.e., H and Q) were calculated likewise from the re-
flectance and fluorescence-based maps of the study area. The NDVI index (Rouse,
Haas, and Deering, 1974) was selected as a synthetic descriptor of vegetation based
on reflectance, while F760 was used as fluorescence-based metric. In addition, the
Shannon’s index was calculated from the species classification map.

The NDVI and F760 maps were converted to 8 bits and re-scaled between 0

and 1 before calculating entropy to harmonize the range and variability of the two
variables. Moreover, the inter-crown shadows were masked using a threshold on
red and near-infrared reflectance. A moving kernel approach was used to derive
the Shannon and Rao’s indices over the whole NDVI and F760 images: the metrics
were calculated within a kernel of 3 × 3, 5 × 5 and 9 × 9 pixels iteratively for each
pixel of the matrices. The coding was performed in R (R Core Team, 2018) using
a user-defined function for the Shannon’s index and the spectralrao function
stored in the GitHub repository https://github.com/mattmar/spectralrao for
the Rao’s Q calculation (Rocchini, Marcantonio, and Ricotta, 2017).

4.2.5 Functional diversity metrics

To obtain an independent measure of the functional diversity over the study
area, four key PTs were selected and mapped using the airborne hyperspectral
data. Based on their ecological relevance, we selected leaf chlorophyll content
(LCC), leaf area index (LAI), leaf water content (LWC) and leaf dry matter con-
tent (LDMC). The selected traits were retrieved from the DUAL hyperspectral re-
flectance cube through a Look-Up-Table (LUT) based inversion of the coupled leaf
and canopy PROSPECT-4-INFORM radiative transfer model (RTM) (Atzberger,
2000; Jacquemoud and Baret, 1990). The RTM was parameterised based on previ-
ous knowledge about the variability of the model input parameters in the forest

https://github.com/mattmar/spectralrao
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and on the results of a global sensitivity analysis. The model was run in forward
to generate a LUT of 30000 simulated spectra. Hence, the traits of interest were
retrieved by inverting the model with a LUT-based approach. Regularisation op-
tions were used to minimise the drawbacks of ill-posedness: LCC was retrieved
using a logarithmic minimum contrast cost function (Leonenko, Los, and North,
2013) and averaging the first ten solutions of the inversion; LAI was retrieved with
a divergence measure cost function formalised by Kullback and Leibler (1951) and
averaging the ten best solutions; LWC and LDMC were obtained using the Root
Mean Square Error (RMSE) as cost function and averaging the ten best solutions.
For a thorough description of the RT model and of the retrieval strategy refer to
Paragraph 3.2.4.2 of Chapter 3.

A Principal Component Analysis (PCA) was used to combine LCC, LAI, LWC
and LDMC and to remove the statistical redundancy in the multiple selected traits.
Because of the different units, the traits were re-scaled between 0 and 1 before ap-
plying the PCA. Following the same approach as for NDVI and F760, the Rao’s Q
diversity was calculated over the entire image using the R spectralrao function.
The mode multidimension was set to use multiple matrices as input for the diver-
sity calculation. We selected the first three PC, that together explained 96% of the
total variance of the four selected PTs.

4.3 R E S U LT S

4.3.1 Forest species map and species diversity

The classification process applied on HyPlant high-resolution imagery enabled
to produce a thematic map of the distribution of the main tree species in the Hardt
forest (Figure 16a).

Table 6 shows the confusion matrix obtained crossing the ground truths with
the classification results. The overall accuracy (OA) obtained was 75.1%, while the
producer’s (PA) and user’s (UA) accuracies ranged between 60-93% and 63-97%,
respectively, depending on the considered class. Scots pine was mapped with the
highest accuracy due to its spectral dissimilarity compared with the broadleaves,
which were characterised by a higher misclassification. The defoliated tree class
showed a high UA (89.2%), but the low PA (58.6%) highlighted that the defoli-
ated trees were sometimes not identified, probably depending on the degree of
defoliation.

The thematic product obtained highlighted a non-homogeneous abundance and
distribution of the different forest species. Overall, the most common species were
oak and hornbeam, but the two species were characterised by a different spatial
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Figure 16: a) Thematic map of the dominant tree species in the Hardt forest obtained with the support vector machine (SVM)
algorithm; b) Species richness calculated from the species map using a kernel of 3 × 3 pixels; c) Shannon’s index
calculated from the species map using a kernel of 3 × 3 pixels.
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Table 6: Confusion matrix obtained from the validation scheme. Columns represent the true classes while rows represent the
classification results. The user’s (UA) and producer’s (PA) accuracies are reported in the last column and row, respec-
tively. The overall accuracy (OA) is also displayed.

Ground Truth

SV
M

cl
as

si
fi

ca
ti

on

Hornbeam Oak Linden Maple Pine Def. trees Tot UA
Hornbeam 78.4% 4.9% 0% 0% 0% 14% 19% 75.3%

Oak 16.2% 77.5% 12.5% 0% 7.1% 24% 30.9% 63.2%
Linden 1.3% 8.8% 76.8% 6.2% 0% 0% 13.6% 78.2%
Maple 2.7% 5.9% 10.7% 93.7% 0% 2% 11.4% 65.2%
Pine 0% 0% 0% 0% 85.7% 1% 9.1% 97.3%

Def. trees 1.3% 2.9% 0% 0% 7.1% 58.6% 16.1% 89.2%
Tot 100% 100% 100% 100% 100% 100% 100%
PA 78.4% 77.5% 76.8% 93.7% 85.7% 58.6% OA = 75.1%
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distribution. While oaks were found to prevail over hornbeams in the mature
forest, the regeneration areas were overwhelmingly dominated by hornbeam. Pine
was fairly common but mainly limited to confined patches of the forest (e.g., the
managed patch in the northern patch of the study area). Maple, linden and larch
presented a scattered distribution throughout the entire forest. The defoliated trees
were widespread across the mature forest, while almost absent in the regeneration
stands.

The species richness and the Shannon’s index calculated from the species map
are shown in Figure 16b and Figure 16c, respectively. Both these diversity metrics
based on the spatial distribution of the tree species across the site showed a low
heterogeneity and range of variation across space. The patterns are consistent in
the two images and reflect a poor biodiversity in the study site in terms of species
composition.

4.3.2 Shannon’s diversity

The Shannon’s index maps obtained from NDVI and F760 using a kernel of 3

× 3 pixels are shown in Figure 17a and Figure 17b, respectively. In both cases, a
low variability of the index was observed, with generally high entropy values all
over the forest. Such a relative homogeneity is the result of a low sensitivity of
the Shannon’s index due to the large variability of NDVI and F760 values across
space. This is particularly evident in the Shannon’s entropy calculation based on
F760, where the index is nearly everywhere close to saturation.

4.3.3 Rao’s Q diversity

An RGB composite of the principal components (PCs) obtained from the PCA
analysis calculated on the PTs (i.e., LCC, LAI, LWC and LDMC) is shown in Fig-
ure 18a. LCC, LAI, LWC and LDMC used as input of the PCA have a mean and
standard deviation of 0.48±0.10, 0.46±0.18, 0.50±0.08 and 0.48±0.06, respectively,
when scaled between 0 and 1. The frequency histograms of the re-scaled traits are
shown in Figure 18b, Figure 18c, Figure 18d and Figure 18e.

Different patterns in the forest were clearly distinguishable in the map (Fig-
ure 18). These patterns are related to the diversity in terms of the biochemical and
structural traits mapped and reflect the differences in the ecological functioning.
Magenta-orange areas correspond to high values in the first PC, which is strongly
related to LAI and moderately correlated with LCC and LWC. These patches corre-
spond to regeneration areas of the forest, where trees are younger and the canopy
density is higher. The mature part of the forest is dominated by green-bluish
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Figure 17: Shannon’s index maps calculated from a) NDVI and b) F760 using a kernel of
3 × 3 pixels.
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Figure 18: a) RGB composite of the first three Principal Components (PC) derived from the analysis performed on leaf chloro-
phyll content (LCC), leaf area index (LAI), leaf water content (LWC) and leaf dry matter content (LDMC) derived
from the airborne imaging spectroscopy. The colours are the result of the combination of the first (PC1), second (PC2)
and third (PC3) principal component in the R, G and B channels, respectively. The histograms show the distribution
of b) LCC, c) LAI, d) LWC and e) LDMC scaled between 0 and 1 across the entire image.
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colours, indicating a high influence of the second and partly the third PC. The
second PC is positively correlated with LCC and negatively correlated with LWC
and LDMC, while it is not correlated with LAI. The third PC is strongly driven
by the LDMC alone. The effect of the third PC is dominant in the conifers, which
appear light-blue in the image. The subregions marked in the image are represen-
tative of three different conditions encountered across the area: subset A marks an
area at the edge between the regeneration and mature forest, where the managed
plantation is characterised by high values in the first and second PC; subset B is
a 100% mature forest area where the canopy is complexly structured and subset
C marks a mixed regeneration/mature forest area where the regeneration stand
presents high values in the first and third PC and the mature stand has a different
species composition compared to subset A.

The functional diversity map obtained applying the Rao’s Q diversity metric to
the first three PC is shown in Figure 19a. The patterns reveal a high diversity in
the forest, highlighting the presence of patches characterised by different entropy.
The highest Rao’s Q values are observed in the regeneration stands of the forest,
which are also characterised by a considerable spatial variability. In contrast, the
mature forest appears in general more homogeneous, but high diversity spots can
also be observed. The use of kernels of increasing size (up to 9 × 9 pixels) to
calculate the Rao’s Q diversity did not significantly affect the observed entropy
patterns (r2 = 0.92 and r2 = 0.71 comparing the Rao’s Q calculated using a kernel
of 3 × 3 against kernels of 5 × 5 and 9 × 9, respectively).

The diversity maps obtained calculating the Rao’s Q diversity from the NDVI
and F760 maps are shown in Figure 19b and Figure 19c, respectively. NDVI-based
Rao’s Q was characterised by generally low values across the entire image. In
particular, very low entropy was observed in the regeneration stands, with Rao’s
Q values of ∼5000. The highest diversity was observed in correspondence of the
mature areas of the forest characterised by a significant presence of coniferous
species, e.g., the stand in the northern part of the image and the area on the left
respect to the regeneration patch in the central part of the image. In these areas,
the Rao’s Q diversity reached values up to ∼35000. F760-based Rao’s Q presented a
larger heterogeneity across the image. The regeneration stands showed the highest
entropy (∼150000), while the lowest entropy was observed in the coniferous stands
(∼50000). Overall, the diversity was considerably higher compared to NDVI-based
Rao’s Q.

Figure 20 shows a zoom of the Rao’s Q diversity based on PC, NDVI and F760 in
correspondence of subsets A, B and C. In addition, for a more quantitative evalua-
tion of the patterns observed in the images, the spatialised residuals of the linear
models fitted between NDVI and PC based Rao’s Q, and between F760 and PC
based Rao’s Q were plotted. The distribution of negative (blue bubbles) and pos-
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Figure 19: Rao’s Q diversity metric calculated from a) PC, b) NDVI and c) F760 using a kernel of 3 × 3 pixels.
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Figure 20: Rao’s Q diversity calculated from PC, NDVI and F760 in correspondence of subset A, B and C using a 3 × 3 pixels
kernel. In the last two columns, the spatialised residuals between NDVI and PC-based Rao’s Q and between F760 and
PC-based Rao’s Q are plotted. The bubbles (blue for negative residuals, red for positive residuals) are overlaid to a
grey-scale image of the corresponding subset.
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itive (red bubbles) residuals in the three subsets was generally consistent in the
two models fitted, however, a significant difference in terms of absolute residuals
was observed. The model fitted between the Rao’s Q diversities calculated on PC
and NDVI was overall characterised by larger residuals (i.e., bigger bubbles) com-
pared to the one fitted between PC and F760-based Rao’s Q diversities (i.e., smaller
bubbles). The residuals were mainly negative for both NDVI and F760-based Rao’s
Q diversity in correspondence of the regeneration stands of the forest, while both
positive and negative residuals were observed in the mature forest. The correla-
tion between PC and NDVI-based diversity was statistically significant in subset
B (r = 0.30, p < 0.001), whereas it was non-significant in subset A and C (p > 0.1).
Conversely, the correlation between PC and F760-based diversity was statistically
significant in all the subsets (r = 0.46, r = 0.57 and r = 0.56 in subset A, B and C,
respectively).

4.4 D I S C U S S I O N A N D C O N C L U S I O N S

Measuring biodiversity across space and over time is a pivotal objective in ecol-
ogy. In this respect, RS can be a powerful tool as it provides the means to overcome
several drawbacks related to the traditional biodiversity estimation from field data.
However, there is no agreement yet on the RS data and metrics to be used to infer
biodiversity from remote, as well as the pros and cons of different products (i.e.,
reflectance, VIs and F) to map biodiversity. In this study, we tested different ap-
proaches based on the exploitation of different kinds of RS data as well as on the
use of different metrics to quantify biodiversity.

Firstly, a traditional approach based on the semi-automatic classification of air-
borne images was used to map the tree species in the study area. The classifica-
tion allowed a proper discrimination of the different forest species in the area, as
emerged from the accuracy assessment. An OA of 75.1% was obtained, indicating
a solid performance of the SVM algorithm in discriminating the different forest
species in a complex environment characterised by a large spatial heterogeneity.
In this regard, the high spatial resolution of HyPlant data (1 m) was critical to help
dealing with the spatial variability by reducing the occurrence of spectral mixing
among the classes. Based on the classification results, the species richness and
the Shannon’s index were calculated to evaluate the taxonomic diversity across
the study area. This traditional approach of assessing biodiversity provides infor-
mation about the distribution of species based on their taxonomic identity and
can be relevant for e.g. monitoring the biodiversity patterns and detect species
changes or losses over time. However, it cannot provide any information about
the intra-specific variability in functional traits, which constitute a determinant of
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the functional diversity and it is more related to ecosystem stability rather than
taxonomic diversity alone. As a matter of fact, the functional traits might vary
within the same species as much as between different species; vice versa, different
species might be characterised by similar functional traits thus not contributing to
the functional diversity (Schneider et al., 2017). Therefore, disregarding the intra-
specific variability might strongly either masking or emphasizing the functional
diversity. Schneider et al. (2017) further suggested that in relatively species-poor
temperate forests, such as the one analysed in this study, ignoring the functional di-
versity typically leads to a strong underestimation of biodiversity. This statement
was confirmed by our findings, which showed that the use of diversity metrics
based on the species composition led to diametrically opposed results compared
to their application to remotely sensed spatially continuous variables grasping the
intra-specific variability of PTs.

However, applying the entropy metrics to continuous RS data under the spectral
variation hypothesis (Palmer et al., 2002) only partially allows overcoming the
limitations related to neglecting the intra-specific variability of functional traits.
Two other critical aspects must be considered for properly mapping the functional
diversity: the entropy metric to be used to infer the functional diversity and the
RS data to be used as input for the calculation.

Concerning the first point, the possible drawbacks related to the entropy metric
selected need to be addressed. As it can be observed in Figure 17, the Shannon’s
index was overall characterised by high values all over the images and the diversity
patterns were not easily inferable. This depends upon the fact that the Shannon’s
index only relies on the relative proportion of each value encountered within the
kernel, without considering its numerical value. Therefore, values that are similar
but numerically different are considered different in the calculation, so that the
index quickly tends to saturate. In our case, this issue was emphasised by the
high spatial heterogeneity of the input data (i.e., NDVI and F760), that is related to
both the high resolution of the data and the complexity of the forest canopy.

Consistently with the findings of Rocchini, Marcantonio, and Ricotta (2017) and
Rocchini et al. (2018), we found the Rao’s Q diversity to be a better indicator of
the spatial heterogeneity over simpler diversity metrics. The Rao’s Q takes into
account the pairwise numerical difference between the values encountered within
the kernel, thus allowing to assign a different entropy to two values that are not
identical but similar from two values that are numerically distant. Respect to the
Shannon’s index, the Rao’s Q diversity allowed to meaningfully emphasize the
entropy patterns in the images by flattening the high entropy values determined
by small variations of the values encountered within the kernel while amplifying
the real differences.
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As regards the second point, it must be considered that RS offers a variety of
different tools. So far, different approaches have been proposed to synthesize the
intra-specific variability of PTs, e.g., the use of VIs related to the vegetation struc-
ture and greenness (Rocchini et al., 2018; Rocchini, Marcantonio, and Ricotta, 2017)
and the use of spatialised retrievals of PTs (Schneider et al., 2017). Regardless of
the methodology used to quantify biodiversity, both the approaches are essentially
based on reflectance, i.e., on the amount of radiation reflected by vegetation as a
function of its biochemical and structural properties. In this study, we tested a com-
pletely novel approach for assessing biodiversity based on the exploitation of the
F signal emitted by vegetation. The potential of using F compared to a traditional
VI such as NDVI was strongly demonstrated by the results obtained. As a matter
of fact, the functional diversity patterns obtained calculating entropy on F760 were
found to be significantly related to the ones obtained applying the metric on the
PC synthesizing the variability of PTs (r = 0.52, p < 0.001). Conversely, the patterns
obtained applying the metric on NDVI were not significantly correlated (p > 0.1)
with the functional diversity map used as a reference. In terms of patterns, the
comparison between the Rao’s Q calculated on PC, NDVI and F760 clearly shows
that NDVI strongly underestimates the functional diversity across all the study
area. This is particularly evident in the regeneration areas, where the low entropy
based on NDVI calculation shows that NDVI cannot grasp the variability of the
functional diversity. This effect is emphasized in these regeneration patches of
the forest probably due to the saturation of NDVI. This suggests that F760 might
be a powerful tools for estimating the functional diversity especially in contexts
where vegetation is characterised by a high biomass and greenness (e.g., forest
ecosystems).

The potential of F760 in predicting the functional diversity is partially explained
by the strong influence of the variability of PTs on the F signal. However, the
fact that F is also an indicator of the plant functional activity suggests that F
might be an even most powerful tool for studying the link biodiversity-ecosystem
productivity compared to the use of PTs.





5 C O N C L U S I O N S

The main objective of this Ph.D. was to advance the understanding of vegetation
functioning by using multi-source remotely sensed data in the optical domain. The
link between vegetation optical properties, PTs and EFPs was analysed and fully
explained exploiting multi-source high-spectral and spatial resolution remotely
sensed data acquired on the same focus area (i.e., a forest ecosystem).

To achieve this objective, I addressed different approaches for studying vege-
tation remotely, from a more traditional one based on the mapping of the forest
species using semi-automatic classification techniques, to innovative ones based
on the exploration of the potential of F for inferring information about the ecosys-
tem functioning. These works were presented in Chapter 2, 3 and 4 of this thesis,
respectively. The main outcomes of each chapter are summarised below, together
with some concluding remarks and potential future perspectives of this work.

5.1 M A I N R E S U LT S

The use of multi-temporal hyperspectral images acquired with the APEX air-

borne sensor allows an accurate and operational mapping of the species distri-

bution in complex forest ecosystems.

This result is the main outcome of the study presented in Chapter 2, aimed at
mapping the spatial distribution of the dominant forest species in the Hardt for-
est based on APEX hyperspectral airborne data. In this study, the forest species
were mapped using a maximum likelihood classifier applied to spectral indices
calculated on APEX reflectance. The combination of multi-temporal images im-
proved the classification accuracy. As a matter of fact, the highest accuracy (74.4%)
was obtained combining the APEX images acquired in June and September 2013,
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while the accuracy significantly decreased when using one image at a time (<
60%). This is explained by the fact that the use of images acquired in different
phenological stages allows capturing characteristic spectral responses related to
species-specific phenological behaviours. For this reason, it is useful to exploit
images acquired in different phenological stages in order to enhance the differ-
ences among spectrally similar forest species and better discriminate them using
semi-automatic routines. Results highlighted the possibility of obtaining accurate
thematic maps of the species distribution in a rather straightforward way. This
methodology might be operationally used to monitor the variation of the forest
composition over time, allowing to detect changes and track the evolution of the
forest.

The spatial patterns of far-red F derived from high-spatial and spectral reso-

lution airborne data are non-linearly correlated to process-based GPP estimates

obtained driving an ecophysiological model with airborne-derived PTs.

These results emerged from the study presented in Chapter 3, which explored
the spatial relationship between two independent measures of photosynthesis: F
on the one hand, GPP on the other. In this study, a comprehensive analysis of the
forest optical and functional properties was carried out, allowing a full explanation
of the spatial variability of the forest functioning. Firstly, this study demonstrated
the feasibility of obtaining reliable F retrievals at both the red and far-red emis-
sion peaks (r2 = 0.74, p < 0.001 and r2 = 0.73, p < 0.001, respectively, compared to
ground-based retrievals) over a forested area using spectral fitting methods. Sec-
ondly, it showed the possibility of obtaining accurate retrievals of key PTs (RMSE =
5.66 µg cm−2, RMSE = 0.51 m2m−2 for LCC and LAI, respectively) using an opti-
mised inversion of a forest radiative transfer model and of using these forest traits
to drive the estimation of GPP and APAR using a process-based model. Thirdly, it
demonstrated that the spatial relationship between far-red F and GPP and APAR is
statistically significant and nonlinear (r2 = 0.46, p < 0.001 and r2 = 0.43, p < 0.001,
respectively), while the spatial relationship between red F and GPP or APAR is
non-significant (p > 0.1). These results constitute a valuable and novel insight into
the spatial variability of the forest ecosystem functions, providing evidence of the
critical role of the spatial heterogeneity in controlling the carbon uptake. Despite
being mostly neglected in previous studies due to the coarse spatial scale imposed
by the spaceborne F retrievals currently available, this aspect is key to unravel the
complex relationship between F and photosynthesis.

The heterogeneity of far-red F derived from high-spatial and spectral resolu-

tion airborne data is significantly related to functional diversity.
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This result is the outcome of the study presented in Chapter 4, which investi-
gated the possibility of exploiting F heterogeneity as a measure of the functional di-
versity of terrestrial ecosystems from remote. In this study, different approaches to
quantify biodiversity were evaluated. Firstly, traditional metrics describing species
richness and abundance were calculated on the species distribution map. When
repeated images are acquired over the same area, this information might be valu-
able to monitor changes in the forest composition over time. However, this kind
of approach has strong inherent limitations related to impossibility of providing
information about the intra-specific variability of the functional traits, which is a
determinant of the functional diversity. Being the functional diversity a relevant
aspect in ecology due to its relation to the ecosystem functioning, as a second step
entropy metrics calculated on reflectance and fluorescence were tested to quantify
it. Results showed the Rao’s Q diversity is a powerful measure of the spatial het-
erogeneity compared to simpler metrics which only take into account the relative
proportion of different numerical values. In addition and more interestingly, re-
sults showed that the functional diversity patterns obtained calculating the Rao’s Q
diversity on F are better related to the functional map used as reference compared
to the ones obtained applying the same metric on a traditional reflectance-based
vegetation index (i.e., NDVI). In particular, results showed a strong underestima-
tion of the functional diversity based on NDVI across the juvenile stands of the
forest, evidencing that NDVI cannot grasp the variability of functional diversity.
The results obtained in this study demonstrated for the first time the potential of
F as a measure of ecosystem functional diversity, opening new interesting perspec-
tives for the investigation of the relationship between biodiversity and ecosystem
productivity at multiple spatial and temporal scales.

5.2 C O N C L U D I N G R E M A R K S A N D O U T L O O K

In this Ph.D. thesis, multiple approaches for assessing vegetation functioning
were evaluated and discussed. Through the three studies carried out, vegetation
was characterised from the structural, biochemical and functional point of view,
providing a thorough understanding of the forest status. This was made possible
by the integration of multi-source RS data, as well as by the exploitation of dif-
ferent RS techniques and physically-based models. Overall, the results obtained
effectively demonstrated the strength of hyperspectral remotely sensed imagery
for inferring information about vegetation. In particular, results foster the use of F
as a measure of plant functional status in light of the positive relations found be-
tween F and ecosystem productivity as well as between F and functional diversity,
which is potentially another way of inferring information about the ecosystem
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productivity. While the majority of the studies analysed the relation between F
and photosynthesis in the temporal dimension, this thesis focused on the spatial
one, adding a small contribution towards the complete understanding of the mul-
tifaceted nature of the relationship between F and ecosystem functioning. This
aspect is particularly important in perspective of the actual (e.g., OCO-2) and fu-
ture (e.g., FLEX) availability of spaceborne sensors capable of providing spatially
resolved F retrievals at finer resolution (up to 300 m) compared to the ones ex-
ploited so far.

The enhanced understanding of the link between vegetation optical properties
measured from remote, PTs and descriptors of the ecosystem processes will allow
a more operational use of remotely sensed data for observing vegetation function-
ing, which is a key challenge for establishing feedbacks between the biosphere
and climate systems.
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