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Abstract. In this paper we derive inferential results for a new index of in-

equality, specifically defined for capturing significant changes observed both

in the left and in the right tail of the income distributions. The latter shifts

are an apparent fact for many countries like US, Germany, UK, and France

in the last decades, and are a concern for many policy makers. We propose

two empirical estimators for the index, and show that they are asymptotically

equivalent. Afterwards, we adopt one estimator and prove its consistency and

asymptotic normality. Finally we introduce an empirical estimator for its vari-

ance and provide conditions to show its convergence to the finite theoretical

value. An analysis of real data on net income from the Bank of Italy Survey

of Income and Wealth is also presented, on the base of the obtained inferential

results.
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1 Introduction

In view of measuring economic inequality in a society, suppose that we are interested,

for instance, in incomes. Let X be an ’income’ random variable with non negatively

supported cdf F (x).
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Next, define Q(p) = F−1(p) = inf{x : F (x) ≥ p, p ∈ [0, 1]} as the p-th quantile of

X, and suppose that X possesses a finite mean

µF =

∫ ∞
0

xF (dx) =

∫ 1

0

F−1(p)dp.

The Lorenz curve, introduced by Lorenz (1905), is an irreplaceable tool in this domain.

It is defined by

lF (p) =
1

µF

∫ p

0

F−1(t)dt. (1.1)

The curve lF (p) expresses the share of income possessed by the p% poorer part of popula-

tion. It has been expressed firstly by Pietra (1915, with English translation now available

as Pietra, 2014), and mathematically formulated as in (1.1) by Gastwirth (1971).

In the following we will also employ mF (p) = 1− lF (1−p), which provides the share of

income owned by the richer p% of the population. Obviously, mF (p) is the curve obtained

by applying a central symmetry to lF (p), with respect to the center of the unit square, as

shown in Figure 1.1 and allows us also to rephrase the Gini into GF =
∫ 1

0
(mF (p)−lF (p))dp.

We recall that the Gini can be rephrased as the weighted average of all comparisons made
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Figure 1.1: Curves lF (p) and mF (p)

among the mean income of the poorest and the overall mean (Greselin et al. 2012, Greselin

2014). When dealing with skewed distributions, as it is the case for many economic size

distributions, the median should be preferred to the mean, in such a way that Gastwirth

(2014) proposed to modify the Gini accordingly.

Very recently, motivated by the observed shifts toward the extreme values in income

distributions, a new focus is introduced in Gastwirth (2016), almost contemporarily to
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Davydov and Greselin (2016). Policy makers are nowadays interested in understanding

what happens in the more critical portions of the population, as significant changes have

been observed both in the left and in the right tail of the income distributions in countries

like US, Germany, UK, France in the last decades. Notice that the classical Lorenz curve

provides useful pointwise information with reference to poorest people, while on the other

hand, as L(p) approaches 1 as p approaches 1, it does not display the variation within

the upper end (f.i., top 5% or 1%) of the distribution clearly. The novel approach is to

consider equally sized and opposite groups of population, and compare their mean income.

Aiming at contrasting the economic position of the group of the poorer p% to the one of

the p% of the richest, the following inequality curve has been introduced

DF (p) =
mF (p)− lF (p)

mF (p)
. (1.2)

In the case of perfect equality, each fraction p of population has same mean income, hence

DF (p) = 0 for all p ∈ [0, 1]. While the income distribution moves toward more variability,

the mean income µFmF (p)
p

of the p% of richest people will be moving far from the mean

income µF lF (p)
p

of the p% of poorest part of the population, and DF (p) raises toward 1.

Hence, we can represent the pointwise measure of inequality in the population by plotting

DF (p).

Naturally, we can summarize all the information given by the curve DF (p) in a single

measure of inequality DF , by taking the expected value

DF =

∫ 1

0

DF (p)dp. (1.3)

Notice that DF is the area between the observed inequality curve DF (p) and the curve of

perfect equality, which is the horizontal line passing through the origin of the axes.

The structure of the paper is as follows. Section 2 introduces two estimators for the new

inequality measure, and provide reasons for selecting them in view of their main purpose.

The third section, which is the core of the paper, states the main inferential results,

in more detail we will show the consistency of the estimators, state their asymptotical

distribution, and the asymptotic negligibility of their difference. We also introduce an

empirical estimator for the variance, and establish its convergence to the finite variance

of the estimator. Some lemmas useful for the inferential theory have been presented in

Section 4, along with their proof. Section 5 shows how the inferential results can be

employed to develop an analysis on real income data. Final considerations are given in

Section 6.
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2 Estimators

Economic data on the entire (or complete) population is rarely available, so most studies

are based on data obtained from well-designed sample surveys. Hence we usually have to

estimate summary measures from samples. We introduce here two empirical estimators,

say D̂n and D̃n for estimating DF . The first one is derived, in a very natural way,

by replacing the population cdf F (x) and mean value µF in (1.3) by their empirical

counterparts Fn(x) = 1
n

∑n
i=1 1[0,x]

(
Xi

)
, and Xn = 1

n

∑n
i=1Xi, and then considering the

empirical Lorenz curve, say

ln(p) =
1

Xn

∫ p

0

F−1n (s)ds, and its dual mn(p) =
1

Xn

∫ 1

1−p
F−1n (s)ds,

as follows

D̂n =

∫ 1

0

mn(p)− ln(p)

mn(p)
dp (2.1)

:= 1−
∫ 1

0

Gn(p)dp

where we set Gn(p) = ln(p)/mn(p).

Then, the second estimator is defined in terms of the order statistics X1:n ≤ · · · ≤ Xn:n

of the i.i.d. sample X1, X2, ..., Xn drawn from X, therefore we define

D̃n = 1− 1

n

n∑
i=1

∑i
k=1Xk:n∑n

k=n−i+1Xk:n

:= 1− 1

n

n∑
i=1

Gn(i/n) (2.2)

where Gn(i/n) expresses the ratio between the mean income of the poorest i and of the

richest i elements in the sample.

We will show later, in Theorem 3.5, that the two estimators D̂n and D̃n are asymp-

totically equivalent. While the estimator D̂n is suitable for developing inferential results,

D̃n is much simpler when it comes to implement code for the analysis of real data.

3 Inferential results

In this Section we will present our main results, starting from the consistency of the

estimator D̂n, next we state its asymptotic normal distribution, and then we deal with

its variance estimation. Finally, we will show the asymptotic equivalence of the two

estimators D̃n and D̂n.
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Unless explicitly stated otherwise, we assume throughout that the cdf F (x) of X is a

continuous function. This is a natural choice when modeling income or wealth distribu-

tions, and for many other economic size distributions.

3.1 Consistency of D̂n

Theorem 3.1. D̂n is a consistent estimator for DF .

Proof. From the normalized definition of the empirical Lorenz curve and its dual, say

ln(p) and mn(p), it is useful here to introduce their absolute versions, given by Ln(p) =∫ p
0
F−1n (s)ds and Mn(p) =

∫ 1

1−p F
−1
n (s)ds. We may rephrase D̂n as

D̂n =

∫ 1

0

Mn(p)− Ln(p)

Mn(p)
dp (3.1)

For all p ∈ [0, 1], we have that Ln(p) converges, with probability 1, uniformly to

L(p) =
∫ p
0
F−1(s)ds (see Goldie, 1977). With the same approach, we have that Mn(p)

converges, with probability 1, uniformly to M(p) =
∫ 1

1−p F
−1(s)ds. As L(p) ≤M(p), due

to the Lebesgue dominated convergence theorem we get the thesis.

3.2 Asympthotic normality of the estimator D̂n

Theorem 3.2. If the moment E|X|2+δ is finite for some δ > 0, then we have the asymp-

totic representation

√
n
(
D̂n −D

)
=

1√
n

n∑
i=1

h(Xi) + oP(1), (3.2)

where oP(1) denotes a random variable that converges to 0 in probability when n → ∞,

and

h(Xi) =

∫ +∞

0

[
1[0,x] (Xi)− F (x)

]
ω
(
F (x)

)
dx

with the weight function ω(t) = ω1(t) + ω2(t), where

ω1(t) =

∫ 1

t

1

M(s)
ds and ω2(t) =

∫ t

0

L(1− s)
[M(1− s)]2

ds. (3.3)

Corollary 3.3. Under the conditions of Theorem 3.2, we have that D̂n is asymptotically

normally distributed, that is

√
n
(
D̂n −D

)
=⇒
n→∞

N (0, σ2
F ),
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where

σ2
F =

∫ ∞
0

[∫ y

0

F (x)ω
(
F (x)

)
dx

] (
1− F (y)

)
ω
(
F (y)

)
dy.

The proof follows immediately from (3.2) by applying the Central Limit Theorem of

P. Lévy.

Proof of Theorem 3.2

From the definition of D̂n and D, we get

√
n
(
D̂n −D

)
= −
√
n

∫ 1

0

[
Ln(t)

Mn(t)
− L(t)

M(t)

]
dt

= −
√
n

∫ 1

0

Ln(t)− L(t)

M(t)
dt+

√
n

∫ 1

0

L(t) [Mn(t)−M(t)]

[M(t)]2
dt+Rn(t) (3.4)

where the remainder term is given by Rn(t) = R
(1)
n +R

(2)
n and

R(1)
n =

√
n

∫ 1

0

(
Ln(t)− L(t)

)( 1

M(t)
− 1

Mn(t)

)
dt, (3.5)

R(2)
n =

√
n

∫ 1

0

L(t)

M(t)

(
1

Mn(t)
− 1

M(t)

)(
Mn(t)−M(t)

)
dt. (3.6)

We will later show (Lemma 4.1 and 4.2, respectively) that R
(1)
n and R

(2)
n are of order

oP(1). The proof follows the approach of Greselin, Pasquazzi and Zitikis (2010), to state

the asymptotic normality for the Zenga inequality index (Zenga, 2007). Hence we now

proceed our analysis of the first two terms in (3.4), by using the Vervaat process

Vn(p) =

∫ p

0

(
F−1n (t)− F−1(t)

)
dt+

∫ F−1(p)

0

(
Fn(x)− F (x)

)
dx (3.7)

and its dual,

V ∗n (p) =

∫ 1

p

(
F−1n (t)− F−1(t)

)
dt+

∫ ∞
F−1(p)

(
Fn(x)− F (x)

)
dx (3.8)

for which we know that V ∗n (p) = −Vn(p). For mathematical and historical details on the

Vervaat process, see Zitikis (1998), Davydov and Zitikis (2004), and Greselin et al. (2009).

Now, denoting the uniform on [0, 1] empirical process by en(p) =
√
n(Fn(F−1(p))−p) and

using one property of the Vervaat process, namely

√
nVn(p) ≤ |en(p)||F−1n (p)− F−1(p)|, (3.9)

we find a bound for the first term in (3.4) as follows

−
√
n

∫ 1

0

Ln(t)− L(t)

M(t)
dt =

√
n

∫ 1

0

1

M(t)

[∫ F−1(t)

0

(
Fn(x)− F (x)

)
dx

]
dt+O(R(3)

n )
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where

R(3)
n = −

√
n

∫ 1

0

1

M(t)
Vn(t) dt

≤
∫ 1

0

1

M(t)
|en(t)|

∣∣F−1n (t)− F−1(t)
∣∣ dt.

We will later show (Lemma 4.3) that R
(3)
n = oP(1).

Now we deal with the second term in (3.4), and we obtain, using similar arguments

as before

√
n

∫ 1

0

L(t) [Mn(t)−M(t)]

[M(t)]2
dt

= −
√
n

∫ 1

0

L(t)

[M(t)]2

[∫ +∞

F−1(1−t)

(
Fn(x)− F (x)

)
dx

]
dt+O(R4

n),

where

R(4)
n =

√
n

∫ 1

0

V ∗n (1− t) L(t)

[M(t)]2
dt

≤
∫ 1

0

|en(t)|
∣∣F−1n (t)− F−1(t)

∣∣ L(t)

[M(t)]2
dt.

In Lemma 4.4 we show that R
(4)
n = oP(1), therefore we have

√
n
(
D̂n −D

)
=
√
n

∫ 1

0

1

M(t)

[∫ F−1(t)

0

(
Fn(x)− F (x)

)
dx

]
dt

−
√
n

∫ 1

0

L(t)

[M(t)]2

[∫ +∞

F−1(1−t)

(
Fn(x)− F (x)

)
dx

]
dt+ oP(1). (3.10)

We notice that the first term in the right hand side of equation (3.10) could be rewritten

as

√
n

∫ 1

0

1

M(t)

[∫ F−1(t)

0

(
Fn(x)− F (x)

)
dx

]
dt

=
√
n

∫ 1

0

(∫ +∞

0

(
Fn(x)− F (x)

)
1[0,F−1(t)](x)dx

)
1

M(t)
dt

=
√
n

∫ +∞

0

(∫ 1

0

(
Fn(x)− F (x)

)
1[F (x),1](t)

1

M(t)
dt

)
dx

=
√
n

∫ +∞

0

(
Fn(x)− F (x)

)(∫ 1

F (x)

1

M(t)
dt

)
dx

=
1√
n

n∑
i=1

h1(Xi)
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where

h1 (Xi) =

∫ +∞

0

[
1[0,x] (Xi)− F (x)

]
ω1

(
F (x)

)
dx,

and

ω1 (t) =

∫ 1

t

1

M(s)
ds.

For the second term in the right hand side of equation (3.10), using the change of variable

t = 1− s, we obtain:

−
√
n

∫ 1

0

L(1− s)
[M(1− s)]2

[∫ +∞

F−1(s)

(
Fn(x)− F (x)

)
dx

]
ds = − 1√

n

n∑
i=1

h2(Xi),

where

h2 (Xi) =

∫ +∞

0

[
1[0,x] (Xi)− F (x)

]
ω2

(
F (x)

)
dx,

and

ω2 (t) =

∫ t

0

L(1− s)
[M(1− s)]2

ds =

∫ 1

1−t

L(s)

[M(s)]2
ds.

This completes the proof of Theorem 3.2.

3.3 Convergence of the empirical variance

We deal here with the theoretical variance V ar
(
h(X1)

)
, that is

σ2
F =

∫ ∞
0

[∫ y

0

F (x)ω
(
F (x)

)
dx

] (
1− F (y)

)
ω
(
F (y)

)
dy (3.11)

and its empirical counterpart

σ2
n =

∫ ∞
0

[∫ y

0

Fn(x)ω
(
Fn(y)

)
dx

] (
1− Fn(y)

)
ω
(
Fn(y)

)
dy. (3.12)

Let x0 ≥ 0 be the minimum value in the support of F (x), i.e. the value such that F (y) = 0

for y < x0 and F (y) > 0 if y > x0. Analogously, let T0 be maximum value in the support

of F (x), i.e. such that F (x) < 1 ∀x < T0 and F (T0) = 1. Notice that we may have

T0 = +∞. Then we have

• Fn(x) = 0 ∀x < x0 because X ≥ x0 a.s.,

• σ2
F =

∫∞
x0

[. . .] . . . dy,

• σ2
n =

∫∞
x0

[. . .] . . . dy.

Therefore, without loss of generality, we can take x0 = 0.
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Theorem 3.4. Assume that E|X|2+δ < +∞ for some δ > 0. Then, we have a.s.

σ2
n −→

n→∞
σ2
F . (3.13)

Proof. The proof is composed by three steps.

Step 1 :

For all ε, T such that 0 < ε < T < T0, we will show that, with probability 1, for almost

all y ∈ [ε, T ], and with ω(t) = ω1(t) + ω2(t) given by (3.3) we have∫ y

0

Fn(x)ω
(
Fn(y)

)
dx −−−→

n→∞

∫ y

0

F (x)ω(F (x)) dx. (3.14)

We begin by the study of the first part of (3.14) related to ω1(t), i.e.∫ y

0

Fn(x)ω1(Fn(x)) dx =

∫ y

0

∫ 1

0

1[Fn(x),1](s)Fn(s)
1

Mn(s)
ds dx :=

∫ y

0

∫ 1

0

ψn(x, s) ds dx.

We know that

• as Fn(x)→ F (x) a.s. (uniformly), we have the convergence 1[Fn(x),1](s)→ 1[F (x),1](s)

with probability 1 for almost all s ∈ [0, 1] and x ∈ R+,

• ∀s ∈ [0, 1] and with probability 1, we have that

Mn(s) =

∫ 1

1−s
F−1n (y)dy −−−→

n→∞

∫ 1

1−s
F−1(y)dy = M(s),

• Mn(s) ≥ sXn ∀s ∈ [0, 1].

As Xn → µF a.s., with probability 1 there exists a constant C > 0 such that

ψn(x, s) ≤ 1[Fn(x),1](s)Fn(x)
1

sXn

≤ C.

Hence, Lebesgue theorem gives (3.14), with ω replaced by ω1.

Now we consider the second part of (3.14), where ω2(t) takes the place of ω:∫ y

0

Fn(x)ω2(Fn(x)) dx =

∫ y

0

∫ 1

0

1[0,Fn(x)](s)Fn(x)
Ln(1− s)
[Mn(s)]2

ds dx :=

∫ y

0

∫ 1

0

ψ̃n(x, s) ds dx

and observe that

• 1[0,Fn(x)](s)→ 1[0,F(x)](s) with probability 1 for almost all s ∈ [0, 1] and x ∈ R+,
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• ∀s ∈ [0, 1], with probability 1, we have that Ln(1− s)→ L(1− s), and Mn(1− s)→

M(1− s),

• Ln(1− s) ≤M(1− s) ∀s ∈ [0, 1].

Therefore

ψ̃n(x, s) ≤ 1[0,Fn(x)](s)Fn(x)
1

Mn(1− s)

≤ 1[0,Fn(x)](s)Fn(x)
1

(1− s)Xn

≤ Fn(x)(
1− Fn(x)

)
Xn

≤ 1(
1− Fn(T )

)
Xn

→ 1(
1− F (T )

)
µF

< +∞.

Once more using Lebesgue theorem we get ∀y ≤ T∫ y

0

Fn(x)ω2(Fn(x)) dx
a.s.−→

∫ y

0

F (x)ω2(F (x)) dx

which completes the proof of (3.14).

Step 2 :

For all ε, T such that 0 < ε < T < T0 and given

σ2
n[ε, T ] =

∫ T

ε

Ψn(y)dy

where

Ψn(y) =

[∫ y

0

Fn(x)ω
(
Fn(x)

)
dx

] (
1− Fn(y)

)
ω
(
Fn(y)

)
,

we will show that, with probability 1,

σ2
n[ε, T ] −−−→

n→∞
σ2[ε, T ]. (3.15)

Due to the previous step, for every y we know that Ψn(y) converges, with probability 1,

to

Ψ(y) =

[∫ y

0

F (x)ω
(
F (x)

)
dx

] (
1− F (y)

)
ω
(
F (y)

)
.

We have shown that, with probability 1,

lim sup
n

(
sup
ε≤x≤T

Fn(x)ω
(
Fn(x)

))
≤
(

1 +
1

1− F (T )

)
1

µF
,

and using

ω1

(
Fn(y)

)
=

∫ 1

Fn(y)

1

Mn(s)
ds ≤ 1

Fn(y)Xn

,
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it follows that we have a.s.

lim sup
n

(
sup
ε≤y≤T

ω1

(
Fn(y)

))
≤ 1

F (ε)µF
.

Hence

lim sup
n

(
sup
ε≤x≤T

Ψn(y)

)
≤ y

(
1 +

1

1− F (T )

)(
1

F (ε)
+

1

1− F (T )

)
1

µ2
F

. (3.16)

Observing now that the function at the right hand side in (3.16) is integrable on [ε, T ],

we can apply Lebesgue’s dominated convergence theorem and prove (3.15).

Step 3 :

To complete the proof of Theorem 3.4 we need to obtain a bound for the integrals σ2
n[0, ε]

and σ2
n[T,∞]. We use the following more delicate estimation of ω(t), for all γ > 0: there

exists a positive constant Cγ such that

ω(t) ≤ Cγ
µF

1

tγ(1− t)γ
. (3.17)

Indeed, as L(t) ≤ tµF ≤M(t), for t ∈ [0, 1], we have

ω1(t) ≤
1

µF

∫ 1

t

1

s
ds =

1

µF
| ln t|.

and

ω2(t) ≤
1

µF

∫ t

0

1

1− s
ds =

1

µF
| ln(1− t)|.

Hence, for every γ > 0, there exists a constant 0 < Cγ < +∞, depending only on γ, such

that for all t ∈ (0, 1)

ω1(t) ≤
Cγ
µF tγ

, ω2(t) ≤
Cγ

µF (1− t)γ
,

which jointly give the estimation (3.17).
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For γ ≤ 1/2, we have

σ2
n[0, ε] =

∫ ε

0

[∫ y

0

Fn(x)ω
(
Fn(x)

)
dx

] (
1− Fn(y)

)
ω
(
Fn(y)

)
dy

≤
∫ ε

0

[∫ y

0

Fn(x)
Cγ

F γ
n (x)

(
1− Fn(x)

)γ
Xn

dx

] (
1− Fn(y)

) Cγ

F γ
n (x)

(
1− Fn(x)

)γ
Xn

dy

≤
C2
γ

X
2

n

∫ ε

0

[∫ y

0

Fn(x)1−γdx

] (
1− Fn(y)

)1−2γ
Fn(y)−γ dy

≤
C2
γ

X
2

n

∫ ε

0

y F 1−2γ
n (y)

(
1− Fn(y)

)1−2γ
dy

≤
C2
γ

X
2

n

∫ ε

0

y dy

=
ε2C2

γ

2 X
2

n

. (3.18)

We have similarly

σ2
n[T,∞] ≤

C2
γ

X
2

n

∫ ∞
T

yF 1−2γ
n (y)

(
1− Fn(y)

)1−2γ
dy

≤
C2
γ

X
2

n

∫ ∞
T

y
(
1− Fn(y)

)1−2γ
dy. (3.19)

Let us introduce a new probability space (Ω̃, F̃ , P̃) and a new random variable Y ,

taking the values Xi, for i = 1, . . . , n, such that P̃
(
Y = Xi

)
= 1

n
. Then

1− Fn(y) = P̃ {Y > y}

≤ Ẽ|Y |2+p

y2+p

=
1

y2+p

{
1

n

n∑
i=1

X2+p
i

}
.

If p ≤ δ then, due to the strong law of large numbers,

1

n

n∑
i=1

X2+p
i

a.s.−→ E|X|2+p < +∞,

hence, with probability 1, we have

lim sup
n

σ2
n[T,∞] ≤

C2
γ

µ2
F

E(X2+δ)

∫ ∞
T

y(1−(1−2γ)(2+δ))dy. (3.20)
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Observing now that, for γ < δ/[2(2 + δ)], the integral
∫∞
T
y(1−(1−2γ)(2+δ))dy converges,

and defining β such that
(
1− (1− 2γ)(2 + δ)

)
= −(1 + β), then (3.20) takes the form

lim sup
n

σ2
n[T,∞] ≤

C2
γ

µ2
F

E(X2+δ)
1

β T β
. (3.21)

Evidently, replacing Fn(x) by F (x) in (3.18) and (3.21), we obtain their theoretical

counterparts

σ2
F [0, ε] ≤ ε2

2

C2
γ

µ2
F

, (3.22)

and

σ2
F [T,∞] ≤

C2
γ

µ2
F

E(X2+δ)
1

β T β
. (3.23)

Now, collecting the bounds (3.18) and (3.22), the convergence stated in (3.15), and

finally bounds (3.21) and (3.23) from the three steps

lim sup
n

∣∣σ2
n − σ2

F

∣∣
≤ lim sup

n

∣∣σ2
n[0, ε]− σ2

F [0, ε]
∣∣+ lim sup

n

∣∣σ2
n[ε, T ]− σ2

F [ε, T ]
∣∣+ lim sup

n

∣∣σ2
n[T,∞]− σ2

F [T,∞]
∣∣

≤ ε2
C2
γ

µ2
F

+
2

β

C2
γ

µ2
F

E(X2+δ)
1

T β
. (3.24)

Taking ε→ 0 and T →∞ in (3.24), we arrive at (3.13).

Having established the consistency and asymptotic normality for the estimator D̂n,

we would like to prove similar properties for the second estimator D̃n defined in (2.2).

To do this, we will focus on their difference ∆n := D̂n − D̃n and prove its asymptotic

negligibility.

Theorem 3.5. If the moment E|X|2+δ is finite for some δ > 0, then we have

√
n|∆n|

p−→ 0. (3.25)

Before proving Theorem 3.5, it is worth to state two useful Corollaries.

Corollary 3.6. If the moment E|X|2+δ is finite for some δ > 0, then we have

√
n(D̃n −DF ) =⇒ N (0, σ2

F ) (3.26)

where σ2
F = V ar

(
h(X1)

)
is the theoretical variance.
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Corollary 3.7. Under the same assumptions, we have also

√
n

(D̃n −DF )

σn
=⇒ N (0, 1) (3.27)

where σ2
n is the empirical counterpart for σ2

F given by (3.12).

The same is true if we replace D̃n by D̂n.

Proof. (of Theorem 3.5). Let ε := εn = mn

n
∼ n−α−1/2, where 0 < α < δ

2(2+δ)
. We have

|∆n| ≤

∣∣∣∣∣
∫ ε

0

Gn(t)dt− 1

n

mn∑
i=1

Gn(i/n)

∣∣∣∣∣+

∣∣∣∣∣
∫ 1

ε

Gn(t)dt− 1

n

n∑
i=mn+1

Gn(i/n)

∣∣∣∣∣
≤ 2ε+

∣∣∣∣∣
n∑

i=mn+1

∫ i/n

(i−1)/n
[Gn(t)−Gn(i/n)] dt

∣∣∣∣∣
≤ 2ε+ ω

[ε,1]
Gn

(1/n) (3.28)

where ω
[ε,1]
Gn

is the modulus of continuity of Gn on the interval [ε, 1] given by

ω
[ε,1]
Gn

(h) = sup
ε≤t, s≤1, |t−s|≤h

|Gn(t)−Gn(s)|.

Let t ∈ [(i− 1)/n, i/n], then

|Gn(t)−Gn(i/n)| =

∣∣∣∣ Ln(t)

Mn(t)
− Ln(i/n)

Mn(i/n)

∣∣∣∣
≤ 1

Mn(t)
|Ln(t)− Ln(i/n)|+ Ln(i/n)

Mn(t)Mn(i/n)
|Mn(i/n)−Mn(t)|

≤ 2

t Xn

ω
[ε,1]
Ln

(1/n), (3.29)

where we used Mn(s) = 1−Ln(1− s) and the inequalities Ln(s) ≤Mn(s), s Xn ≤Mn(s)

that hold true ∀s ∈ [0, 1]. From the bounds in (3.28) and (3.29) we get

|∆n| ≤ 2ε+
2

εXn

ω
[ε,1]
Ln

(1/n). (3.30)

As for t ∈ [(i− 1)/n, i/n]

|Ln(t)− Ln(i/n)| =
∫ i/n

t

F−1n (s)ds = Xi:n(i/n− t) ≤ 1

n
Xi:n,

we get

ω
[ε,1]
Ln

(1/n) ≤ 1

n
max

mn≤k≤n
Xk:n ≤

1

n
Mn where Mn = max

k≤n
Xk:n.
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Therefore, due to (3.30), we obtain

√
n|∆n| ≤

2

nα
+

2Mn

Xn n1/2−α
.

As 2/nα → 0 and Xn → µF , it is sufficient to state the convergence in probability of

Mn/n
1/2−α to 0. We have, for t > 0 :

P
{

Mn

n1/2−α ≥ t

}
= P

{
Mn ≥ tn1/2−α} ≤ nP

{
X ≥ tn1/2−α}

≤ n
E|X|2+δ

(tn1/2−α)2+δ
−−−→
n→∞

0

as we have chosen α < δ
2(2+δ)

.

4 Proofs

Lemma 4.1. Under the conditions of Theorem 3.2, we have that

R(1)
n = oP(1).

Proof. We estimate R
(1)
n by splitting the integral in two parts, by choosing ρ ∈ (0, 1)

R(1)
n =

√
n

∫ 1

0

(
Ln(t)− L(t)

)( 1

M(t)
− 1

Mn(t)

)
dt

=
√
n

∫ ρ

0

. . . dt+
√
n

∫ 1

ρ

. . . dt

:= R(1,1)
n +R(1,2)

n . (4.1)

We now look for getting a bound for R
(1,1)
n and initially deal with its first part, given by

√
n

∫ ρ

0

(
Ln(t)− L(t)

) 1

M(t)
dt. (4.2)

Provided that t < ρ, we have that M(t) ≥ t F−1(1− ρ), and

√
n

∫ ρ

0

1

t

∣∣Ln(t)− L(t)
∣∣dt

=
√
n

∫ ρ

0

1

t

{
Vn(t)−

∫ F−1(t)

0

[
Fn(x)− F (x)

]
dx

}
dt

=
√
n

∫ ρ

0

1

t
Vn(t)dt−

√
n

∫ ρ

0

1

t

{∫ F−1(t)

0

[
Fn(x)− F (x)

]
dx

}
dt. (4.3)

Now we consider the lefthand term in (4.3), and set

Kn = sup
t∈(0,1)

|en(t)|
t1/2−ε(1− t)1/2−ε

, (4.4)
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where en(t) =
√
n
(
Fn(F−1(t))− t

)
. We know that (see (9.2) in Greselin et al. 2010)

Kn = OP(1). (4.5)

Therefore, employing the inequality in (3.9) related to the Vervaat process, and choosing

ε such that 0 < ε < 1
2
, we obtain

√
n

∫ ρ

0

1

t
Vn(t)dt ≤

∫ ρ

0

1

t
|en(t)||F−1n (t)− F−1(t)| dt

≤ Kn

∫ ρ

0

1

t
t1/2−ε(1− t)1/2−ε

∣∣F−1n (t)− F−1(t)
∣∣ dt

≤ Kn

∫ ρ

0

1

t1/2+ε
∣∣F−1n (t)− F−1(t)

∣∣ dt.
As |F−1n (t)−F−1(t)| ≤ F−1n (ρ)+F−1(ρ)

a.s.−→ 2F−1(ρ), by Lebesgue dominated convergence

theorem the integral∫ ρ

0

1

t1/2+ε
∣∣F−1n (t)− F−1(t)

∣∣ dt a.s.−→ 0 as n→∞.

Hence

√
n

∫ ρ

0

1

t
Vn(t)dt = oP(1).

The righthand term in (4.3) may be estimated as follows∫ ρ

0

1

t

{∫ F−1(t)

0

√
n
∣∣Fn(x)− F (x)

∣∣dx}dt
≤ Kn

∫ ρ

0

1

t

{∫ F−1(t)

0

F (x)1/2−ε
(
1− F (x)

)1/2−ε
dx

}
dt

≤ Kn

∫ ρ

0

1

t
t1/2−ε

{∫ +∞

0

(
1− F (x)

)1/2−ε
dx

}
dt

≤ C1Kn

∫ ρ

0

t−1/2−εdt = C1Knφ(ρ) (4.6)

for all 0 < ε < 1/2, where we set φ(ρ) =

∫ ρ

0

t−1/2−εdt, and C1 =
∫ +∞
0

(
1−F (x)

)1/2−ε
dx <

+∞. The latter quantity is finite, due to the existence of the 2 + δ moment of X.

To complete the analysis of R
(1,1)
n we have to deal now with its second part, given by

√
n

∫ ρ

0

(
Ln(t)− L(t)

) 1

Mn(t)
dt. (4.7)

As Mn(t) ≥ tF−1n (1− ρ) for t ∈ [0, 1] and F−1n (1− ρ)
a.s.−→F−1(1− ρ), the bound for (4.7)

can be found by following the same steps as for (4.2).
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We continue our proof now by finding a bound for the second term R
(1,2)
n in (4.1). As

ρ ≤ t ≤ 1, then

M(t) ≥
∫ 1

1−ρ
F−1(s)ds > 0

and

Mn(t) ≥
∫ 1

1−ρ
F−1n (s)ds ≥

∫ 1

1−ρ
F−1(s)ds+ oP(1).

Therefore, setting Hn := sup
s∈[1−ρ,1]

1

Mn(s)M(s)
= OP(1), we have

√
n

∫ 1

ρ

∣∣Ln(t)− L(t)
∣∣∣∣Mn(t)−M(t)

∣∣dt
≤ Hn

√
n

∫ 1

ρ

∣∣Ln(t)− L(t)
∣∣∣∣Mn(t)−M(t)

∣∣dt. (4.8)

We observe that (4.8) is oP(1) if the following two equalities hold true:

√
n
∣∣Xn − µF

∣∣ ∫ 1

ρ

∣∣Ln(t)− L(t)
∣∣ dt = oP(1), (4.9)

and
√
n

∫ 1

ρ

∣∣Ln(t)− L(t)
∣∣ ∣∣Ln(1− t)− L(1− t)

∣∣ dt = oP(1), (4.10)

by recalling that

Mn(t)−M(t) = (Xn − µF )− [Ln(1− t)− L(1− t)] (4.11)

due to

Xn − µF =

∫ 1−t

0

[
F−1n (s)− F−1(s)

]
ds+

∫ 1

1−t

[
F−1n (s)− F−1(s)

]
ds.

To get (4.9), remark that
√
n
∣∣Xn − µF

∣∣ = OP(1), and∫ 1

ρ

∣∣Ln(t)− L(t)
∣∣ dt

≤
∫ 1

0

∫ t

0

∣∣F−1n (s)− F−1(s)
∣∣ds dt

≤
∫ 1

0

∣∣F−1n (s)− F−1(s)
∣∣ ds = oP(1).

Finally, to get (4.10), we begin with the inequality

√
n

∫ 1

ρ

∣∣Ln(t)− L(t)
∣∣ ∣∣Ln(1− t)− L(1− t)

∣∣ dt
≤
√
n

∫ 1

ρ

[
Ln(t)− L(t)

]2
dt,
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and use the following bound for the latter integrand

√
n
[
Ln(t)− L(t)

]2 ≤ 2
√
n
[
Vn(t)

]2
+ 2
√
n

{∫ F−1(t)

0

∣∣Fn(x)− F (x)
∣∣dx}2

.

Recalling that

√
n

∫ 1

ρ

[
Vn(t)

]2
dt = oP(1),

and exploiting (4.4) we get

√
n

{∫ F−1(t)

0

∣∣Fn(x)− F (x)
∣∣dx}2

=
1√
n

{∫ F−1(t)

0

√
n
∣∣Fn(x)− F (x)

∣∣dx}2

≤ Kn
1√
n

{∫ F−1(t)

0

F (x)1/2−ε
(
1− F (x)

)1/2−ε
dx

}2

≤ Kn
1√
n

(∫ +∞

0

(
1− F (x)

)1/2−ε
dx
)2

= oP(1).

Integrating in dt on [ρ, 1] we hence obtain the desired bound.

From the previous estimates it follows that ∀ρ : 0 < ρ < 1 we have

R(1)
n = Un(ρ) + Tn(ρ),

where

Un(ρ) = oP(1), Tn(ρ) ≤ C1Kn φ(ρ), with Kn = OP(1) and φ(ρ)
ρ→0−→ 0.

Fixing ε > 0, let C > 0 be such that P {|Kn| > C} < ε ∀n, and let ρε > 0 be such that

for ρ < ρε we have φ(ρ) < ε/2C1C. Then, having

P
{
R(1)
n > ε

}
≤ P {Un(ρ) > ε/2}+ P {Tn(ρ) > ε/2} ,

we get, for ρ < ρε,

lim sup
n

P {Tn(ρ) > ε/2} ≤ P
{
|Kn| >

ε

2C1φ(ρ)

}
≤ P {|Kn| > C} < ε,

which finally gives R
(1)
n = oP(1).

Lemma 4.2. Under the conditions of Theorem 3.2, we have that

R(2)
n = oP(1).
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Proof. We start from the definition of R
(2)
n in (3.6) here recalled for convenience

R(2)
n =

√
n

∫ 1

0

L(t)

M(t)

(
1

Mn(t)
− 1

M(t)

)(
Mn(t)−M(t)

)
dt.

Observing that L(t) ≤M(t) for t ∈ [0, 1] and using (4.11) to rewrite
(
Mn(t)−M(t)

)
, the

proof can be established following the proof of Lemma (4.1) with minor modifications.

Lemma 4.3. Under the conditions of Theorem 3.2, we have that

R(3)
n = oP(1).

Proof. We estimate R
(3)
n by splitting it in two integrals as follows

R(3)
n =

∫ 1

0

1

M(t)
|en(t)|

∣∣F−1n (t)− F−1(t)
∣∣ dt

=

∫ 1/2

0

. . . dt+

∫ 1

1/2

. . . dt

:= R(3,1)
n +R(3,2)

n . (4.12)

Let us consider the first term R
(3,1)
n and observe that

1

M(t)
≤ 1

F−1(1
2
) t

where we assume that F−1(1
2
) > 0, otherwise we may replace F−1(1

2
) by F−1(a) > 0,

with a ∈ (0, 1) appropriately chosen. Hence, by choosing ε ≤ 1
2
, and recalling that

en(t) =
√
n
(
Fn
(
F−1(t)

)
− t
)
, we arrive at

R(3,1)
n ≤ 1

F−1(1
2
)

∫ 1/2

0

1

t

√
n |Fn(F−1(t))− t| |F−1n (t)− F−1(t)|

t1/2−ε(1− t)1/2−ε
t1/2−ε(1− t)1/2−εdt

≤ Kn

F−1(1
2
)

∫ 1/2

0

1

t1/2+ε
∣∣F−1n (t)− F−1(t)

∣∣ = oP(1).

as Kn = OP(1) and F−1n (t)
a.s.−→F−1(t) for t ∈ [0, 1].

Now we deal with R
(3,2)
n , i.e. the second term in (4.12). Observing that M(t) =∫ 1

1−t F
−1(s)ds ≥

∫ 1

1/2
F−1(s)ds = c > 0, we obtain

R(3,2)
n ≤ 1

c

∫ 1

1/2

|en(t)|
∣∣F−1n (t)− F−1(t)

∣∣ dt
≤ Kn

c

∫ 1

1/2

∣∣F−1n (t)− F−1(t)
∣∣ dt = oP(1).
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Lemma 4.4. Under the conditions of Theorem 3.2, we have that

R(4)
n = oP(1).

Proof. We will deal with R
(4)
n , as for the previous Lemma, by splitting it as follows

R(4)
n =

∫ 1

0

|en(1− t)|
∣∣F−1n (t)− F−1(t)

∣∣ L(t)

[M(t)]2
dt

=

∫ 1/2

0

. . . dt+

∫ 1

1/2

. . . dt

:= R(4,1)
n +R(4,2)

n (4.13)

and we initially consider R
(4,1)
n . Observing that M(t) ≥ tF−1(1/2) for t < 1/2, we have

R(4,1)
n ≤ Kn21/2−ε

F−1(1/2)

∫ 1

0

/2t−1/2−ε
∣∣F−1n (t)− F−1(t)

∣∣ dt = oP(1).

Finally, the result on R
(4,2)
n comes from observing that for t ∈ (1/2, 1) there exists a

constant C such that M(t) ≥ C, and that supt∈(0,1) en(1− t) ≤ Kn, we have

R(4,2)
n ≤ Kn

C

∫ 1

1/2

∣∣F−1n (t)− F−1(t)
∣∣ dt = oP(1),

due to the assumption on the second (hence the first) moment finite on X.

5 The new inequality measure on real data

The purpose of this section is to show, through a real data application, the theoretical

results obtained in the previous sections. We employ the Bank of Italy Survey on House-

hold Income and Wealth (hereafter named by its acronym, SHIW) dataset, published in

2016. This survey contains information on household post-tax income and wealth in the

year 2014, covering 8,156 households, and 19,366 individuals. The sample is representa-

tive of the Italian population, which is composed of about 24,7 million households and

60,8 million individuals. The SHIW provides information on each individual’s Personal

Income Tax net income, but does not contain the corresponding gross income. We em-

ploy an updated version of the microsimulation model described in Morini and Pellegrino

(2016) to estimate the latter for each taxpayer. A comparison of the results from the

microsimulation model with the official statistics published by the Italian Ministry of Fi-

nance (2016) shows that the distribution of gross income and of net tax, according to

bands of gross income and type of employment, are close to each other. The empirical
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analysis we develop here is based on the observed net income from the SHIV, while tax

data and gross income arise from the microsimulation model.

To appreciate the asymptotic results of Section 3 on the empirical estimator D̃n, we

calculate four types of confidence intervals: the normal, the basic, the percentile and the

BCa confidence intervals. After drawing the bootstrap samples, the empirical estimator

is evaluated at each sample, and Figure 5.1 show the histograms of the obtained values

when considering Gross Income in panel (a), Net Income in panel (b) and Taxes in panel

(c). While inequality estimators have a skewed distribution in case of low sample size,

here the accuracy of the normal approximation is apparent, due to the large sample size.

As a further check of the quality of the first order approximation, Figure 5.2 shows the

Q-Q plots obtained for the three cases.
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Figure 5.1: Histograms for D̃n on Gross Income in panel (a), on Net Income in panel (b) and on Taxes

in panel (c)
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Figure 5.2: Q-Q plots for D̃n vs Gaussian quantiles on Gross Income in panel (a), on Net Income in

panel (b) and on Taxes in panel (c)
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Figure 5.3: Confidence Intervals for D̃n on Gross Income, on Net Income and on Taxes

Finally, from Figure 5.3 we observe that the four methods for constructing Confidence

Intervals have a substantial agreement. They all agree in assuring that there is a statis-

tically significant increase in inequality when passing from Net Income to Gross Income

(the redistributive effect of taxation) and from Gross Income to Taxes. We recall that

adjusted percentile methods (also named BCa) for calculating confidence limits are in-

herently more accurate than the basic bootstrap and percentile methods (Davison and

Hinkley, 1997).

6 Concluding remarks

Moved from the considerations that nowadays, in many developed countries, the more

critical (i.e the extremes) portions of the population are facing great reshaping of their

economic situation, a new index for measuring inequality have been proposed in Davydov

and Greselin (2016). In the cited paper, a discussion of the properties of the index has been

given, to motivate its introduction in the literature and to show its descriptive features.

Inferential results for the index were still missing, and this paper is a first contribution to

fill the gap. After proposing two empirical estimators, we have shown their asymptotic
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equivalence. Then, consistency and asymptotic normality for the first estimator have been

derived. We also proved the convergence of the empirical estimator for the variance to its

finite theoretical value. Finally, we used the new statistical inferential results to analyze

data on Net Income from the Bank of Italy Survey on Household Income and Wealth,

and to compare them with Gross Income and Taxes.
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