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Abstract. Topical profiling of the datasets contained in the Linking Open Data (LOD) cloud has been of interest since such
kind of data became available within the Web. Different automatic classification approaches have been proposed in the past, in
order to overcome the manual task of assigning topics for each and every individual (new) dataset. Although the quality of those
automated approaches is comparably sufficient, it has been shown, that in most cases a single topical label per dataset does not
capture the topics described by the content of the dataset. Therefore, within the following study, we introduce a machine-learning
based approach in order to assign a single topic, as well as multiple topics for one LOD dataset and evaluate the results. As
part of this work, we present the first multi-topic classification benchmark for LOD cloud datasets, which is freely accessible. In
addition, the article discusses the challenges and obstacles, which need to be addressed when building such a benchmark.
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1. Introduction

In 2006, Tim-Berners Lee [5] introduced the Linked
Open Data paradigm. It refers to a set of best practices
for publishing and connecting structured data on the
Web. The adoption of such best practices assures that
the structure and the semantics of the data are made
explicit which is also the main goal of the Semantic
Web. Datasets, which should be published as Linked
Data, need to comply to a set of rules to ensure an easy
discoverability, as well as an easy way to query infor-
mation within the dataset [6]. Therefore, LOD datasets

*Corresponding author. E-mail: spahiu@disco.unimib.it.

should be published adopting W3C1 standards in the
RDF2 format and providing a SPARQL3 endpoint to
query them. Over the last few years, the overall spread
of datasets being part of the LOD cloud has increased
from 12 datasets in 2007, to more than 1 000 datasets
as of April 2014 [35], where the overall number is con-
stantly increasing. These datasets4 cover different do-
mains which is shown by the different colors in the
LOD cloud described in Fig. 1. Although publishing

1https://www.w3.org/
2https://www.w3.org/RDF/
3http://www.w3.org/TR/rdf-sparql-query/
4http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
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such amounts of data adopting the principles of Linked
Data has many advantages, its consumption is still lim-
ited.

The process of exploring Linked Data for a given
topic is long and not intuitive. In an ideal scenario, a
user decision whether to use a dataset or not, is based
on the information (e.g., topic) provided in the meta-
data. In this setup, no initial querying of the informa-
tion contained in the dataset is required. But especially
in those cases when datasets do not provide metadata
information about their topic/s, a lot of exploration
steps are required in order to understand if the infor-
mation contained in the dataset is useful or not.

The datasets in the LOD cloud 2014 belong to dif-
ferent domains, with social media, government data,
and publications data being the most prominent areas
[35]. For every dataset in the cloud, the topic is either
assigned by verifying its content or by accessing the
metadata assigned by the publisher. Up until now, top-
ical categories have been manually assigned to LOD
datasets either by the publishers of the datasets them-
selves via the datahub.io dataset catalog or by the
authors of the LOD cloud [35]. For some datasets pub-
lished as LOD such as Linked Movie Database5, or
GeoNames6 the metadata is completely missing, while
for some others e.g., DBpedia7 the topics it covers are
not explicitly described.

The topic of a dataset can be defined as the subject
of the dataset, i.e. the subject or theme of a discourse
of one of its parts.

It is very important to have a classification of
datasets according to their topical domain not only to
judge whether it is useful for the use case at hand or not
but also as shown in [35], it is often interesting to ana-
lyze characteristics of datasets clustered by topical do-
mains, so that trends and best practices that exist only
in a particular topical domain can be identified. Link
discovery also can be supported by knowing the topic
of the dataset. Datasets that share the same topic, prob-
ably share equivalent instances. Topical classification
is also important for coloring of the Linked Data cloud
as in Figure 1, which marks datasets according to their
topical domain.

Even though the importance of topic profiling of
Linked Data is undoubtful, it has not yet received suf-
ficient attention from the Linked Data community and
it poses a number of unique challenges:

5http://www.linkedmdb.org/
6http://www.geonames.org/
7http://www.dbpedia.org

– Linked Data comes from different autonomous
sources and is continuously evolving. The de-
scriptive information or the metadata depend on
the data publishers’ will. Often publishers are
more interested in publishing their data in RDF
format and do not focus sufficiently on the right
meta information. Moreover, data publishers face
difficulties in using appropriate terms for the data
to be described. Apart from a well-known group
of vocabularies, it is difficult to find vocabularies
for most of the domains that would be a good can-
didate for the dataset at hand, as evaluated in [42].

– Billions of triples is a daunting scale that poses
very high performance and scalability demands.
Managing the large and rapidly increasing vol-
ume of data is being a challenge for developing
techniques that scale well with the volume of data
in the LOD cloud.

– The high volume of data demands that data con-
sumers develop automatic approaches to assign
the topic of the datasets.

– Topic profiling techniques should deal with struc-
tural, semantic and schema heterogeneity of the
LOD datasets.

– Querying or browsing data in the LOD cloud is
challenging, because the metadata is often not
structured and not in a machine-readable format.
A data consumer who wants to select for exam-
ple, all datasets that belong to the media category
faces such challenge.

Topic profiling approaches can be evaluated with
topic benchmarking datasets. In general, benchmarks
provide an experimental basis for evaluating software
engineering theories, represented by software engi-
neering techniques, in an objective and repeatable
manner [14]. A benchmark therefor is defined as a
procedure, problem, or test that can be used to com-
pare systems or components to each other or to a stan-
dard [31]. A benchmark represents research problems
of interest and solutions of importance in a research
area through the definition of the motivating compar-
ison, task sample and evaluation measures [36]. The
capability to compare the efficiency and/or effective-
ness of different solutions for the same task is a key
enabling factor in both industry and research. More-
over, in many research areas the possibility to repli-
cate existing results provided in the literature is one of
the pillars of the scientific method. In the ICT field,
benchmarks are the tools which support both compari-
son and reproducibility tasks. In the database commu-
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nity, the benchmark series defined by the TPC8 is a
very famous example. Topic benchmarks over Linked
Data are important for several reasons; (i) they allow
developers to assess the performance of their tool; (ii)
help to compare the different available tools that ex-
ist and evaluate the suitability for their needs; and (iii)
researchers can address new challenges. Despite the
importance of such needs, topic benchmarking over
Linked Data is relatively new. This is also reflected in
the fact that there is no gold standard for topic classifi-
cation of LOD datasets as described in Section 10.

This paper presents our experience in designing and
using a new benchmark for multi-topic profiling and
discuss the choke points which influence the perfor-
mance of such systems. In [25], we investigated to
which extent we can automatically classify datasets
from the LOD cloud into a single topic category.
We make use of the LOD cloud data collection of
2014 [35] to train different classifiers for determining
the topic of a dataset. In this paper, we also report the
results achieved from the experiments for single-topic
classification of LOD datasets [25], with the aim to
provide the reader a complete view of the datasets, ex-
periments and analysis of the results. Learning from
the results of the previous experiments as most of the
datasets expose more than one topic, we further in-
vestigate the problem of multi-topic classification of
LOD datasets by extending the original benchmark by
adding to some of the datasets more than one topic.
Results of this new benchmark are not satisfactory due
to the nature of the content of selected datasets and
the topics’ choice (taken for the original benchmark).
We provide a comprehensive analysis of the challenges
and line out our learned lessons on this very complex
and relevant task. The benchmark, together with var-
ious feature extracted from the different datasets, as
well as the results of our experiments (described in this
paper) are publicly available. We hope to help the LOD
community to improve existing techniques for topic
benchmark creation and evaluation and encourage new
research in this area.

The remaining of the article is organized as follows:
In Section 2, we give the definition for topic; single
and multi-topic classification. Section 3 describes the
criteria for developing a sufficient and comprehensive
benchmark and how our benchmark meets such cri-
teria. In Section 4, the methodology for creating the
benchmark is discussed, where the following section

8http://www.tpc.org

reports the data corpus that was used in our experi-
ments. Section 6 describes the extraction of different
features that characterize the LOD datasets and intro-
duces the different classification algorithms used for
the classification. Section 7 discusses the performance
metrics used to evaluate our benchmark. In Section 8,
we present the result of the experiments in order to
evaluate the benchmark for multi-topic classification.
Section 9 reports the analysis of the results in depth
and the lessons learned, while in Section 10 the state-
of-the-art in topic profiling and topic benchmarking
are discussed. Finally, in Section 11, we draw conclu-
sions and present future directions.

2. Topic Definition

Given a large RDF dataset with heterogeneous con-
tent, we want to derive the topic or topics that can be
understood as the subject/s of the dataset by using dif-
ferent feature vectors that describe the characteristics
of the data.

Definition 1 (Topical category) Given a set of RDF
triples (s, p, o), a topic T is a label l j from a set of
labels L = { l1, l2, ...lp } that describes the content of
the dataset relating it with a specific area of the real
world. Often a dataset can have more than one topic
meaning that a subset of labels lk ⊆ L, where k = 1..p
is the set of p possible topics.

Definition 2 (Single-topic classification) Given a set
{ D1, D2, ...DN } of datasets, where each Di is associ-
ated with a feature vector xi= (xi1, xi2, ... xiM), the pro-
cess of assigning only a single label l j from the set of
labels { l1, l2, ...lp } to Di, is called single-topic classi-
fication.

Definition 3 (Multi-topic classification) Given a set
{ D1, D2, ...DN } of datasets, where each Di is asso-
ciated with a feature vector xi= (xi1, xi2, ... xiM), the
process of assigning a subset of labels lk ⊆ L to Di, is
called multi-topic classification.

For creating the diagram in Fig. 1, the newly discov-
ered datasets were manually annotated with one of the
following topical categories: media, government, pub-
lications, life sciences, geographic, cross-domain, user
generated content, and social networking [35].

The media category contains datasets providing infor-
mation about films, music, TV and radio pro-
grammes, as well as printed media. Some datasets
in this category are the dbtune.org music
dataset, the New York Times dataset, and the BBC
radio and television program datasets.
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The government category contains Linked
Data published by federal or local gov-
ernments, including a lot of statistical
datasets. Examples of the datasets in this
category include the data.gov.uk and
opendatacommunities.org dataset.

The publications category holds information library
datasets, information about scientific publica-
tions and conferences, reading lists from univer-
sities, and citation database. Prominent datasets
in this category include German National Library
dataset, the L3S DBLP dataset and the Open Li-
brary dataset.

The geographic category contains datasets like
geonames.org and linkedgeodata.org
comprising information about geographic
entities, geopolitical divisions and points of
interest.

The life science category comprises biological and
biochemical information, drug-related data, and
information about species and their habitats. Ex-
amples of datasets that belong to this category are
Drugbank FU-Berlin, Geospecies and Biomodels
RDF.

The cross-domain category includes general knowl-
edge bases such as DBpedia or UMBEL, linguis-
tic resources such as WordNet or Lexvo, as well as
product data.

The user-generated content category contains data
from portals that collect content generated
by larger user communities. Examples in-
clude metadata about blogposts published as
Linked Data by wordpress.com, data about
open source software projects published by
apache.org, scientific workflows published by
myexperiment.org, and reviews published
by goodreads.com or revyu.com.

The social networking category contains people pro-
file as well as data describing the social ties
among people. In this category individual FOAF
profiles are included, as well as data about the in-
terconnections among users of the distributed mi-
croblogging platform StatusNet.

3. Desiderata for Benchmark

Benchmarking is the continuous, systematic pro-
cess of measuring one’s output and/or work processes
against the toughest competitors or those recognized
best in the industry [9]. The benefits of having a bench-
mark are many among which:

(1) It helps organizations understand strengths and
weaknesses of solutions.

(2) By establishing new standards and goals a
benchmark helps in better satisfying the cus-
tomers’ needs.

(3) Motivates to reach new standards and to keep on
new developments.

(4) Allows organizations to realize what level(s) of
performance is really possible by looking at oth-
ers.

(5) Is a cost-effective and time-efficient way of es-
tablishing innovative ideas.

[36] describes seven properties that a good bench-
mark should consider; accessibility, relevance, afford-
ability, portability, scalability, clarity and solvability.
In the following, we describe each of the aspects in
building our benchmark.

Accessibility: One of the most important character-
istics of the benchmark is to make it easy to ob-
tain and use. The data and the results need to be
publicly available so that anyone can apply their
tools and techniques on the benchmark and com-
pare their results with others. This characteristic
is very important because it allows users to easily
interpret benchmark results.

Relevance: A good benchmark should clearly de-
fine the intended use and the applicable scenarios.
Our benchmark is understandable to a large audi-
ence and covers the topics that already exist in the
Linked Open Data cloud.

Affordability: The developed benchmark’s cost
should be affordable and comparable to the value
of the results. To complete the benchmark for a
single combination of the workload takes 15 to
240 minutes.

Portability: The tasks consist of stand-alone Java
projects containing required libraries, making
thus the platform portability not a challenge for
our benchmark.

Scalability: The benchmark should be scalable to
work with tools and techniques at different levels
of maturity.

Clarity: The documentation for the bench-
mark should be clear and concise. The
documentation for the topic bench-
marking of LOD dataset is provided at
https://github.com/Blespa/TopicalProfiling for
evaluation and comparison to ensure repeatability
and disclosure. Along with the benchmark we
provide also an analysis as part of the benchmark
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materials in order to solve those issues which do
not follow classification rules.

Solvability: The benchmark should produce a good
solution. The proposed benchmark resolves the
task of multi-topic classification of LOD datasets,
a task that is achievable but not trivial. Thus, our
benchmark provides an opportunity for systems
to show their capabilities and their shortcomings.

4. Benchmark Development Methodology

The development of the topic benchmark results in
the creation of three elements:

Data corpus the set of RDF datasets used by the
benchmark.

Workload which defines the set of operations that the
system under benchmarking has to perform dur-
ing the benchmark execution.

Performance metrics which are used to measure
quantitatively the performance of the systems.

On one hand, a benchmark models a particular sce-
nario, meaning that the users of the benchmark must
be able to understand the scenario and believe that this
use case matches a larger class of use cases appear-
ing in practice. On the other hand, a benchmark ex-
poses technology to overload. A benchmark is valu-
able if its workload stresses important technical func-
tionality of the actual systems called choke points. In
order to understand and analyze choke points an inti-
mate knowledge of the actual system architecture and
workload is needed. In this paper, we identify and ana-
lyze choke points of the topic benchmarks and discuss
the possibilities to optimize such benchmarks. Choke
points can ensure that existing techniques are present
in a system, but can also be used to reward future sys-
tems that improve performance on still open technical
challenges [2].

For the single topic classification we used as bench-
mark the information that is currently used in the LOD
cloud, as the topic for each dataset was manually as-
signed, while for the multi-topic classification due to
the lack of presence of a benchmark we create one.
Based on the results of the single-topic classification of
LOD datasets, for the development of the multi-topic
benchmark we consider some criteria for the selection
of the datasets such as; size, number of different data-
level descriptors (called feature vectors, see section
6.1), and non-overlap of topics.

We select 200 datasets randomly from the whole set
of datasets contained in the LOD cloud of 2014. In
the selection of the datasets, we consider small-size
datasets (less than 500 triples), medium-size datasets
(between 501 and 5 000 triples) and big-size datasets
(more than 5 000 triples). As we investigate schema
level information we also take into consideration the
number of different attributes for each feature vector
used as input in our approach. For example, if a dataset
uses less than 20 different vocabularies it is considered
in the group of weak-schema descriptors; using be-
tween 20 and 200 different vocabularies are considered
lite-schema descriptors and datasets that make use of
more than 200 vocabularies are categorized as strong-
schema descriptors.

Another criteria for building our benchmark is the
non-overlap of topics. The distinction between two
topical categories in the LOD cloud social networking
and user-generated content is not straightforward as it
is not clear what datasets should go into each of them.
User-generated content can cover different topical do-
mains thus to avoid misclassification of datasets we re-
move this category from the list of topical categories
for LOD datasets. We face the same problem when
classifying datasets into the cross-domain category and
any other category. Because under the cross-domain
category, also datasets in life science domain, or media
domain can be categorized, we removed this category
from the list of topics that we used for the multi-topic
classification of LOD datasets. From eight categories
in the single topic experiments, in the multi-topic clas-
sification we have only six categories life science, gov-
ernment, media, publications, social networking and
geographic.

Two researchers were involved for this task. They
independently classified datasets in the LOD into more
than one category. To assign more than one topical cat-
egory to each dataset the researchers could access the
descriptive metadata published into Mannheim Linked
Data Catalog9 which represents the metadata in the
form of tags. Also, they had the possibility to take a
deeper look inside the data itself. From the results, the
researchers had an inter-rater agreement of 95.64%.
Cases for which the assigned topics differ between the
two researchers were further discussed with two pro-
fessors.

Table 1 shows the distribution of the number of
datasets by the number of topics. As we can see, in our

9http://linkeddatacatalog.dws.informatik.uni-mannheim.de/
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Table 1
Distribution of number datasets per number of topics

Number of topics 1 2 3 4 5

Number of datasets 85 87 22 4 2

benchmark for the multi-topic classification, most of
the datasets have one or two topics, while less than 3%
of the datasets have more than four topics.

The benchmark that we build for the multi-topic
classification of LOD datasets is available for further
research in this topic10.

5. Data Corpus

In order to build up the benchmark, which is de-
scribed within this article, we made use of the crawl
of Linked Data referred to April 2014 by [35]. The au-
thors used the LD-Spider crawler originally designed
by [16], which follows dataset interlinks to crawl LOD.
The crawler seeds originate from three resources:

(1) Datasets from the lod-cloud in datahub.io
datasets catalog, as well as other datasets marked
with Linked Data related tags within the same cat-
alog

(2) A sample from the Billion Triple Challenge
2012 dataset11

(3) Datasets advertised since 2011 in the mailing
list of public-lodw3.org

The crawled data contained 900 129 documents de-
scribing 8 038 396 resources with altogether around
188 million RDF triples. To group all the resources
in datasets, it was assumed that all the data originat-
ing by one pay-level domain (PLD) belong to a sin-
gle dataset. The gathered data originates from 1 024
different datasets from the Web and is publicly avail-
able12. Figure 2 shows the distribution of the number
of resources and documents per dataset contained in
the crawl.

The authors of the 2014 LOD cloud [35] make a
distinction between the two categories user-generated
content and social networking. Datasets in the first cat-
egory focus on the actual content while datasets in the
second category focus on user profiles and social ties.

10https://github.com/Blespa/TopicalProfiling
11http://km.aifb.kit.edu/projects/btc-2012/
12http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-

RDB/

The distribution of categories within the datasets of
the LOD cloud is shown in Figure 3. As we can see,
the cloud is dominated by datasets from the social net-
working category, followed by government datasets.
Only less than 25 datasets are included in the cloud for
each of the domains media and geographic. The top-
ical category is manually assigned to each dataset in
the LOD cloud thus we consider it as a gold standard
for our experiments. The imbalance needs to be taken
into account for the later model learning, as some clas-
sification algorithms tend to predict better for stronger
represented classes.

6. Workload

In the following, we describe in detail the process
of feature extraction, which we apply for our task in
assigning more than one topic to LOD datasets. First,
we present the created feature vectors, which were ex-
tracted from the datasets. In the second part of this sec-
tion we describe the classification algorithms, as well
as the sampling and normalization techniques which
were used.

6.1. Feature Vectors

For each of the datasets contained in our collection,
we derive attributes/features from ten different sources
(e.g., the URI of the dataset, or the used vocabulary)
which are described in the following:

Vocabulary Usage (VOC): As vocabularies mostly
describe a set of classes for a particular domain,
e.g. foaf for describing persons, or bibo for
bibliographic information, we assume that the vo-
cabularies used by a dataset form a helpful in-
dicator for determining the topical category of
the dataset. We extract the predicates and classes
which represent the set of terms of the vocabular-
ies used by the dataset. We determine the vocab-
ularies by aggregating the namespaces of these
terms. We then sum up the number of occurrences
resulting in a total of 1 453 vocabularies.

Class URIs (CURI): As a more fine-grained feature,
the rdfs:Class and owl:Class which are
used to describe entities within a dataset might
provide useful information to determine the top-
ical category of the dataset. Thus, we extract all
used classes of the datasets in the cloud and gen-
erate 914 attributes.
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Fig. 2. Distribution of the number of resources and documents (log scale) per dataset contained in the crawl

Fig. 3. Topics Distribution within LOD Cloud Datasets

Property URIs (PURI): Beside the class information
of an entity, it might also help to have a look at
the properties which are used to describe it. For
example, it might make a difference, if people in
a dataset are annotated with foaf:knows state-
ments or if their professional affiliation is pro-
vided. To leverage this information, we collect all
the properties which are used within one dataset
from the crawled data. This feature vector con-
sists of 2 333 attributes.

Local Class Names (LCN): Different vocabularies
might contain synonymous (or at least closely
related) terms that share the same local name but
differ in their namespaces, e.g. foaf:Person
and dbpedia:Person. Creating correspon-
dences between similar classes from different
vocabularies reduces the diversity of features,
but, on the other hand, might increase the number
of attributes which are used by more than one
dataset. As we lack correspondences between
all the vocabularies, we bypass this by using
only the local names of the classes, meaning
vocab1:Country and vocab2:Country
are mapped to the same attribute. We used a

simple regular expression to determine the local
class name checking for #, : and / within the
class URI. By focusing only on the local part
of a class name, we increase the number of
classes that are used by more than one dataset
in comparison to CURI and thus generate 1 041
attributes for the LCN feature vector.

Local Property Names (LPN): Using the same as-
sumption as for the LCN feature vector, we also
extract the local name of each property that
is used by a dataset. This results in treating
vocab1:name to vocab2:name as a single
property. We use the same heuristic for the ex-
traction as for the LCN feature vector and gener-
ated 3 493 different local property names which
are used by more than one dataset, resulting in an
increase of the number of attributes in compari-
son to the PURI feature vector.

Text from rdfs:label (LAB): Beside the vocabu-
lary level features, the names of the described
entities might also indicate the topical domain
of a dataset. We thus extract objects (values) of
rdfs:label properties, lowercase them, and
tokenize the values at space characters. We fur-



Pr
ep

rin
tDRAFT

B. Spahiu et al. / 9

ther exclude tokens shorter than three and longer
than 25 characters. Afterward, we calculate the
TF-IDF [17] value for each token while exclud-
ing tokens that appear in less than 10 and in max-
imal 200 datasets, in order to reduce the influence
of noise. This results in a feature vector consist-
ing of 1 440 attributes. For LAB, we could only
gather data for 455 datasets, as the remaining did
not make use of the rdfs:label property.

Text from rdfs:comment (COM): We also ex-
tract the values describing entities using the
rdfs:comment property. We extract all values of
the comment property and process them in the
same way as with the LAB feature. All values
are lowercased and tokenized at space characters,
after which all tokens shorter than 3 characters
or longer than 25 characters are filtered out. This
property is used by only 252 datasets and not by
all datasets in the cloud. This feature vector con-
sist of 1 231 attributes. In contrast to the LAB fea-
ture vector, we did not filter out tokens that were
used by less than ten datasets or more than 200
datasets, because the number of the datasets that
make use of the rdfs:comment is only 252 in
whole LOD cloud.

Vocabulary Description from LOV (VOCDESC):
LOV website provide metadata about the vocab-
ularies found in the LOD cloud. Among other
metadata, LOV also provides the description
in natural language for each vocabulary. From
this description a user can understand in which
domain she could use such vocabulary. On the
LOV website, there exist 581 different vocabu-
laries13, while in the LOD cloud, as described in
the VOC feature vector there are 1 453 different
vocabularies. From 1 453 vocabularies in LOD,
only 119 have a description in LOV, thus for
1 334 vocabularies used in LOD we do not have
a description in natural language.

Top-Level Domains (TLD): Another feature which
might help to assign datasets to topical categories
is the top-level domain of the dataset. For in-
stance, government data is often hosted under
the .gov top-level domain, whereas library data
might be found more likely on .edu or .org
top-level domains14.

13Numbers here refer to the version of LOV in the time when
experiments for the topic classification were running (June 2016).

14We restrict ourselves to top-level domains, and not public suf-
fixes.

In & Outdegree (DEG): In addition to vocabulary-
based and textual features, the number of out-
going RDF links to other datasets and incoming
RDF links from other datasets could provide use-
ful information for datasets classification. This
feature could give a hint about the density of the
linkage of a dataset, as well as the way the dataset
is interconnected within the whole LOD cloud
ecosystem.

We extract all the described feature vectors sepa-
rately from the crawled data. We are able to gather all
features (except for LAB and COM) for 1 001 datasets.

6.2. Classification Approaches

The classification problem has been widely stud-
ied in the database [22], data mining [29], and infor-
mation retrieval communities [18]. In general the dis-
cussed approaches aim at finding regularities in pat-
terns in empirical data (training data). The problem of
classification is formally defined as follows: given a
set of training records D= {X1, X2,...Xn}every record
should be labeled with a class value drawn from a set
of l different discrete values indexed by {1, 2,...l}. We
choose to test different classification approaches. Al-
though there are a large number of alternative classi-
fication algorithms available, we selected the ones for
which the need for tuning is not too large, as for ex-
ample the support vector machines because we do not
want to overfit our learners by parameter tuning. The
overfitting occurs when a model learns the detail and
noise in the training data to the extent that it negatively
impacts the performance of the model on new data,
thus is not reliable in making predictions.

k-Nearest Neighbor: kNN is one of the oldest non-
parametric classification algorithms [4]. The
training examples are vectors described by n di-
mensional numeric attributes. In kNN classifica-
tion an object is classified by a majority vote of its
neighbors, with the object being assigned to the
class most common among its k-nearest neigh-
bors measured by a distance function. Choosing
the right k value is done by inspecting the dataset
first. In our experiments, based on some prelim-
inary experiments on a comparable but disjunct
set of data, we found that a k equal to 5 per-
forms best. As we already know the model that
was used to classify the original data in our gold
standard a k equal to 5 performs better with re-
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spect to the original model. Euclidean measure is
a good distance measure to use if data in input are
of similar type, e.g., all data is measured by the
same metric such as heights and widths. On the
other hand, Jaccard distance is a good measure
when the data in input are of different types, e.g.,
data are measured by different metrics such as
age, weights, gender, etc. For this reason we used
Euclidean-similarity for the binary term vectors
and Jaccard-similarity for the relative term oc-
currence vectors as it will be described in 6.4.

J48 Decision Tree: Decision Trees are a powerful set
of classification algorithms that run a hierarchical
division of the underlying data. The most known
algorithms for building decision trees are Clas-
sification Trees, Regression Trees [20], ID3, and
C4.5 [30]. The decision tree is a tree with deci-
sion nodes which have two or more branches and
leaf nodes that represent a classification or a de-
cision. Splitting is based on the feature that gives
the maximum information gain or uses entropy to
calculate the homogeneity of a sample. The leaf
node reached is considered the class label for that
example. We use the Weka implementation of the
C4.5 decision tree called J48. Many algorithms
try to prune their results. The idea behind prun-
ing is that apart from producing fewer and more
interpreted results, the risk of overfitting to the
training data is also reduced. We build a pruned
tree, using the default settings of J48 with a con-
fidence threshold of 0.25 with a minimum of two
instances per leaf.

Naive Bayes: As a last classification algorithm, we
use Naive Bayes. A Naive Bayesian [33] model
is easy to build, with no complicated iterative pa-
rameter estimation which makes it particularly
useful for very large datasets. It is based on
Bayes’ theorem with independence assumptions
between predictors. It considers each feature to
contribute independently to the probability that
this example is categorized as one of the labels.
Naive Bayes classifier assumes that the effect of
the value of a predictor (x) on a given class (c) is
independent to the values of other predictors. This
assumption is called class conditional indepen-
dence. Although this classifier is based on the as-
sumption that all features are independent, which
is mostly a rather poor assumption, Naive Bayes
in practice has shown to be a well-performing ap-
proach for classification [40]. Naive Bayes needs
less training data and is highly scalable. More-

over, it handles continuous and discrete data and
is not sensitive to irrelevant features making it ap-
propriate for the Linked Data domain.

6.3. Sampling techniques

The training data is used to build a classification
model, which relates the elements of a dataset that we
want to classify to one of the categories. In order to
measure the performance of the classification model
build on the selected set of features, we use cross-
validation. Cross-validation is used to assess how the
results of the classification algorithm will generalize
to an independent dataset. The goal of using cross-
validation is to define a dataset to test the model
learned by the classifier in the training phase, in or-
der to avoid overfitting. In our experiments, we used
a 10-fold cross-validation, meaning that the sample
is randomly partitioned into ten equal sized subsam-
ples. Nine of the ten subsamples are used as training
data, while the other left is used as validation data. The
cross-validation process is then repeated ten times (the
folds), with each of the ten subsamples used exactly
once as the validation data. The ten results from the
different folds can be averaged in order to produce a
single estimation. As we described in Section 5, the
number of datasets per category is not balanced and
over half of them are assigned to the social networking
category. For this reason we explore the effect of bal-
ancing the training data. Even though there are differ-
ent sampling techniques, as in [11], we explored only
three of them:

Down sampling: We down sample the number of
datasets used for training until each category is
represented by the same number of datasets; this
number is equal to the number of datasets within
the smallest category. The smallest category in
our corpus is geographic with 21 datasets.

Up sampling: We up sample the datasets for each cat-
egory until each category is at least represented
by the number of datasets equal to the number of
datasets of the largest category. The largest cate-
gory is social networking with 520 datasets.

No sampling: We do not sample the datasets, thus we
apply our approach in the data where each cate-
gory is represented by the number of datasets as
in the distribution of LOD in Fig. 3.

The first sampling technique, reduces the chance to
overfit a model into the direction of the larger repre-
sented classes, but it might also remove valuable infor-
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mation from the training set, as examples are removed
and not taken into account for learning the model. The
second sampling technique, ensures that all possible
examples are taken into account and no information
is lost for training, but creating the same entity many
times can result in emphasizing this particular part of
the data.

6.4. Normalization techniques

As the total number of occurrences of vocabularies
and terms is heavily influenced by the distribution of
entities within the crawl for each dataset, we apply two
different normalization strategies to the values of the
vocabulary-level features VOC, CURI, PURI, LCN,
and LPN:

Binary version (bin): In this normalization technique
the feature vectors consist of 0 and 1 indicating
the presence and the absence of the vocabulary or
term.

Relative Term Occurrence (rto): In this normaliza-
tion technique the feature vectors captures the
fraction of the vocabulary or term usage for each
dataset.

Table 2 shows an example how we create the binary
(bin) and relative term occurrence (rto) given the term
occurrence for a feature vector.

Table 2
Example of bin and rto normalization

Feature Vectors Version
Feature Vector

t1 t2 t3 t4
Term Occurrence 10 0 2 6

Binary (bin) 1 0 1 1

Relative Term Occurrence 0.5 0 0.1 0.4

7. Performance Metrics

The objective of multi-label classification is to build
models able to relate objects with a subset of labels,
unlike single-label classification that predicts only a
single label. Multi-label classification has two major
challenges with respect to the single-label classifica-
tion. The first challenge is related to the computational
complexity of algorithms. Especially when the num-
ber of labels is large, then these approaches are not ap-
plicable in practice. While the second challenge is re-
lated to the independence of the labels and also some

datasets might belong to a very large number of labels.
One of the biggest challenges in the community is to
design new methods and algorithms that detect and ex-
ploit dependencies among labels [23].

[38] provides an overview of different algorithms
used in the multi-label classification problem. The
most straightforward approach for the multi-label clas-
sification is the Binary Relevance (BR) [39]. BR re-
duces the problem of multi-label classification to mul-
tiple binary classification problems. Its strategy in-
volves training a single classifier per each label, with
the objects of that label as positive examples and all
other objects as negatives. The most important disad-
vantage of the BR, is the fact that it assumes labels to
be independent. Although BR has many disadvantages,
it is quite simple and intuitive. It is not computation-
ally complex compared to other methods and is highly
resistant to overfitting label combinations, since it does
not expect examples to be associated with previously-
observed combinations of labels [32]. For this reason
it can handle irregular labeling and labels can be added
or removed without affecting the rest of the model.

Multi-label classifiers can be evaluated from differ-
ent points of view. Measures of evaluating the per-
formance of the classifier can be grouped into two
main groups: example-based or label-based [39]. The
example-based measures compute the average differ-
ences of the actual and the predicted sets of labels
over all examples, while the label-based measures de-
compose the evaluation with respect to each label. For
label-based measures we can use two metrics; macro-
average in Equation 1 and micro-average given in
equation 2. Consider a binary evaluation measure B(tp,
tn, fp, fn) that is calculated based on the number of
true positives (tp), true negatives (tn), false positives
(fp) and false negatives (fn). Let tpl, f pl, tnl and f nl

be the number of true positives, false positives, true
negatives and false negatives after binary evaluation
for a label l. The macro-average averages the mea-
sures label-wise, while micro-average merges all la-
bel predictions and computes a single value over all
of them. Macro-average measures give equal weight
to each label, and are often dominated by the perfor-
mance on rare labels. In contrast, micro-average met-
rics gives more weight to frequent labels. These two
ways of measuring performance are complementary to
each other, and both are informative [23]. For this ex-
periment we report the micro-average measure for pre-
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cision (P), recall (R) and the harmonic mean between
them, the F-measure (F).

Bmacro =
1

p

p∑
l=1

B(tpl, f pl, tnl, f nl) (1)

Bmicro = B(
p∑

l=1

tpl,

p∑
l=1

f pl,

p∑
l=1

tnl,

p∑
l=1

f nl) (2)

8. Benchmark Evaluation

In the first part of this section, we report the results
of our experiments for the single topic classification
task, using different sets of features as well as differ-
ent supervised algorithms. On the one hand, the exper-
iments show the capability of our benchmark for the
single-topic classification challenges and on the other
hand, lay the foundation for the next task; the multi-
topic classification. The respective experiments and re-
sults are then described and presented in the second
part of this section.

8.1. Single-topic classification

In a first step, we report the results for the experi-
ments for single-topic classification of LOD datasets.
This challenge has already been addressed in our pre-
vious work [25]. First, we report the results of our
experiments training different feature vectors in sep-
aration in Section 8.1.1. Afterward, we combine all
feature vectors for both normalization techniques and
train again our classification algorithms considering
the three sampling techniques and report the results in
section 8.1.2.

8.1.1. Results of Experiments on Single Feature
Vectors

For the first experiment, we train a model to classify
LOD datasets in one of the eight categories described
in Section 5. In this experiment we consider VOC,
LCN, LPN, CURI, PURI, DEG, TLD and LAB fea-
ture sets applying the approach described in Section 6.
For the above mentioned feature sets, we train the
different classification techniques as depicted in Sec-
tion 6.2 with different sampling techniques (cf. Sec-
tion 6.3) and different normalization techniques (cf.
Section 6.4).

In Table 3 we report the results (accuracy) of the
different feature sets based on the selected algorithms
(using 10-fold cross-validation) with and without sam-
pling. Majority Class is the performance of a default
baseline classifier always predicting the most domi-
nant topic in the corpus: social networking. As a gen-
eral observation, the schema-based feature sets (VOC,
LCN, LPN, CURI, PURI) perform on a similar level,
where LAB, TLD and DEG show a relatively low per-
formance and in some cases are not at all able to beat
the trivial baseline. Classification models based on the
attributes of the LAB feature vector perform on aver-
age (without sampling) around 20% above the majority
baseline, but predict still in half of all cases the wrong
category. Algorithm-wise, the best results are achieved
either using the J48 algorithm (belonging to the group
of decision trees) without balancing (maximal accu-
racy 80.59% for LCNrto) or the k-NN algorithm, also
without balancing for the PURIbin and LPNbin feature
vectors. Comparing the two balancing approaches, we
see better results using the up sampling approach for
almost all feature sets (except VOCrto and DEG). In
most cases, the category-specific performance of the
smaller categories is higher when using up sampling.
Using down sampling the learned models make more
errors when predicting the more dominant topics in the
corpus. Furthermore, when comparing the results of
the models learned on data without applying any sam-
pling approach, with the best model trained on sam-
pled data, the models applied on non-sampled data are
more accurate except for the VOCbin feature vectors.
We see that the balanced approaches are in general
making more errors when trying to predict datasets for
the larger categories, like social networking and gov-
ernment.

8.1.2. Results on Experiments of Combined Feature
Vectors

In the second experiment, we combine all attributes
from all feature sets that we used in the first experiment
and train classification models.

As before, we generate a binary and relative term
occurrence version of the vocabulary-based features.
In addition, we create a second set (binary and relative
term occurrence), where we omit the attributes from
the LAB feature sets, as we want to measure the influ-
ence of this particular feature, which is only available
for less than half of the datasets. Furthermore, we cre-
ate a combined set of feature vectors consisting of the
three best performing feature vectors from the previous
section.
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Table 3
Single-topic classification results on single feature vectors
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Table 4 reports the results for the five different com-
bined feature vectors:

ALLrto: Combination of the attributes from all eight
feature vectors, using the rto version of the
vocabulary-based features (This feature vector is
generated for 455 datasets).

ALLbin: Combination of the attributes from all eight
feature vectors, using the bin version of the
vocabulary-based features (This feature vector is
generated for 455 datasets).

NoLabrto: Combination of the attributes from all fea-
tures, without the attributes of the LAB feature
vectors, using the rto version.

NoLabbin: Combination of the attributes from all fea-
tures, without the attributes of the LAB feature
vectors, using the bin version.

Best3: Includes the attributes from the three best per-
forming feature vectors from the previous sec-
tion based on their average accuracy: PURIbin,
LCNbin, and LPNbin

We can observe that when selecting a larger set of
attributes, our model is able to reach a slightly higher
accuracy of 81.62% than using just the attributes from
one feature vector (80.59%, LCNbin). Still, the trained
model is unsure for certain decisions and has a stronger
bias towards the categories publications and social net-
working.

8.2. Multi-topic classification

In this section, we report the results from the exper-
iments for multi-topic classification of LOD datasets.
First, we report the results of using the different feature
sets in separation, similar as we did for the single-topic
classification in Section 8.2.1. Afterward, we report
the results of experiments combining attributes from
multiple feature sets in Section 8.2.2.

8.2.1. Results of Experiments on Single Feature
Vectors

In this section, we report the results for classifying
LOD datasets in more than one topical category de-
scribed in Section 2, that we define as multi-topic clas-
sification of LOD datasets.

Similarly, as for the single topic experiments, we
also apply our classification algorithms on different
feature vectors, taking into account also the different
sampling and normalization techniques described in
Section 6.3 and Section 6.4. Also for the multi-topic
classification of LOD datasets, we use a 10-fold cross-
validation. For our first experiment, we consider the
LCN, LPN, CURI and PURI feature vectors as from
the results of the experiments on the single topic clas-
sification they perform better with respect to the other
feature vectors.

Table 5 and Table 6 show the micro-accuracy in
terms of precision, recall and F-measure achieved by
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Table 4
Single-topic classification results on combined feature vectors

Classification Accuracy in %
Approach ALLrto ALLbin NoLabrto NoLabbin Best3

kNN (no sampling) 74.93 71.73 76.93 72.63 75.23

kNN (down sampling) 52.76 46.85 65.14 52.05 64.44

kNN (up sampling) 74.23 67.03 71.03 68.13 73.14

J48 (no sampling) 80.02 77.92 79.32 79.01 75.12

J48 (down sampling) 63.24 63.74 65.34 65.43 65.03

J48 (up sampling) 79.12 78.12 79.23 78.12 75.72

Naive Bayes (no sampling) 21.37 71.03 80.32 77.22 76.12

Naive Bayes (down sampling) 50.99 57.84 70.33 68.13 67.63

Naive Bayes (up sampling) 21.98 71.03 81.62 77.62 76.32

Table 5
Multi-topic classification results on single feature vectors

Micro -averaged measure
Classification CURI LCN
Approach bin rto bin rto
Approach P R F P R F P R F P R F

kNN (no sampling) 0.66 0.20 0.31 0.65 0.18 0.29 0.68 0.21 0.32 0.34 0.25 0.29

kNN (down sampling) 0.58 0.21 0.31 0.55 0.02 0.28 0.53 0.22 0.31 0.68 0.19 0.30

kNN (up sampling) 0.47 0.31 0.38 0.44 0.30 0.36 0.46 0.29 0.36 0.45 0.28 0.34

J48 (no sampling) 0.54 0.16 0.25 0.57 0.15 0.23 0.58 0.17 0.27 0.59 0.15 0.23

J48 (down sampling) 0.46 0.19 0.27 0.35 0.22 0.27 0.47 0.21 0.29 0.34 0.22 0.27

J48 (up sampling) 0.50 0.20 0.28 0.51 0.18 0.26 0.50 0.21 0.29 0.52 0.18 0.27

Naive Bayes (no sampling) 0.41 0.53 0.46 0.45 0.41 0.43 0.41 0.56 0.47 0.45 0.40 0.42

Naive Bayes (down sampling) 0.35 0.46 0.39 0.41 0.41 0.41 0.38 0.42 0.40 0.39 0.41 0.40

Naive Bayes (up sampling) 0.41 0.53 0.46 0.45 0.41 0.43 0.41 0.56 0.47 0.45 0.40 0.42

Average (no sampling) 0.54 0.30 0.34 0.56 0.25 0.32 0.56 0.31 0.35 0.46 0.27 0.31

Average (down sampling) 0.46 0.29 0.32 0.44 0.22 0.32 0.46 0.28 0.33 0.47 0.27 0.32

Average (up sampling) 0.46 0.34 0.37 0.47 0.30 0.35 0.46 0.35 0.37 0.47 0.29 0.34

our classification algorithms. Focusing on the algo-
rithms, the best results precision-wise are achieved us-
ing k-NN, without sampling with a P = 0.68, R = 0.21
and F = 0.32 trained on LCN binary. When focusing on
the harmonic mean between precision and recall, the
best results are achieved using Naive Bayes, trained on
the same feature vector (LCN) using binary normal-
ization. For the same feature vector and classification
algorithm, the results achieved are in similar level for
both sampling techniques; no sampling and up sam-
pling; P = 0.41, R = 0.56 and F = 0.47. Sampling-wise,
the results achieved by the down sampling are lower
than the two other techniques. Also, normalization-
wise there is a mixture in the results depending on the
classification algorithm and the feature vector used as
input.

8.2.2. Results of Experiments for Combined Feature
Vectors

In the second experiment for the multi-topic classi-
fication of LOD datasets, we combine the feature vec-
tors that we used in the first experiment and train again
our classification algorithms. Table 7 shows the results

of ALL feature vector and the combination CURI and
PURI, as well as LCN and LPN.

From the results we can observe that when select-
ing a larger set of attributes, our model is not able
to reach a higher performance than using only the at-
tributes from one feature vector (P = 0.68, R = 0.21, F
= 0.32). Our models are precision-oriented and reach
a satisfying precision but the recall is very low, which
means that our models are not able to retrieve the right
topic for the LOD datasets. The highest performance
for the experiments taking a combination of features
as input is achieved by training LCN and LPN binary
vectors as input for Naive Bayes with no sampling data
P = 0.42, R = 0.48 and F = 0.45.

The proposed method scales well with respect to
the number of features used as input to the classifier.
The experiments were run on a Macbook Pro on a 2.9-
GHz Intel i7 Intel core processor with 8 GB of RAM.
The fastest experiment took about 15 minutes training
kNN on all features vector on down-sampling on bi-
nary normalization technique. The longest experiment
took about 4 hours (240 minutes) trained using J48 de-
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Table 6
Multi-topic classification results on single feature vectors

Micro -averaged measure
Classification PURI LPN
Approach bin rto bin rto
Approach P R F P R F P R F P R F

kNN (no sampling) 0.61 0.21 0.31 0.64 0.19 0.29 0.61 0.20 0.30 0.60 0.19 0.29

kNN (downsampling) 0.52 0.22 0.31 0.58 0.19 0.29 0.55 0.22 0.32 0.56 0.21 0.30

kNN (upsampling) 0.47 0.29 0.36 0.46 0.26 0.33 0.49 0.27 0.35 0.48 0.26 0.34

J48 (no sampling) 0.58 0.24 0.34 0.59 0.24 0.34 0.57 0.24 0.34 0.59 0.24 0.34

J48 (down sampling) 0.36 0.40 0.38 0.45 0.26 0.33 0.46 0.29 0.36 0.39 0.29 0.33

J48 (up sampling) 0.53 0.27 0.35 0.55 0.27 0.36 0.56 0.29 0.39 0.54 0.27 0.36

Naive Bayes (no sampling) 0.61 0.21 0.31 0.64 0.19 0.29 0.61 0.20 0.30 0.60 0.19 0.29

Naive Bayes (down sampling) 0.52 0.22 0.31 0.58 0.19 0.29 0.55 0.22 0.32 0.56 0.21 0.30

Naive Bayes (up sampling) 0.47 0.29 0.36 0.46 0.26 0.33 0.49 0.27 0.35 0.48 0.26 0.34

Average (no sampling) 0.60 0.22 0.32 0, 62 0, 21 0, 31 0, 60 0, 21 0, 31 0.60 0, 21 0, 31

Average (down sampling) 0.47 0.28 0.33 0.54 0.21 0.30 0.52 0.24 0.33 0.50 0.24 0.31

Average (up sampling) 0.49 0.28 0.36 0.49 0.26 0.34 0.51 0.28 0.36 0.5 0.26 0.35

cision tree on all features vector on up-sampling on
relative term occurrence normalization technique. The
complexity of algorithms such as kNN, Naive Bayes
and J48 is linear with respect to the number of features
in input. While in the latest version of LOD (April
2017) the number of datasets has increased with over
than 50%, there is a need on further verifying the num-
ber of the new features with respect to the version of
LOD used in this paper. However dimensionality re-
duction techniques such as features selection, or ex-
traction can be applied in order to reduce the number
of features in consideration for the classifier.

9. Lessons Learned

In the following, we discuss the results achieved by
our experiments and analyze the most frequent errors
of the best performing approaches.

9.1. Single-topic classification

The best performing approach is achieved by ap-
plying Naive Bayes trained on the attributes of the
NoLabbin feature vector using up sampling. This ap-
proach achieves an accuracy of 81.62%. We take a
closer look at the confusion matrix of the second ex-
periment described in Table 8, where on the left side
we list the predictions by the learned model, while the
head names the actual topical category of the dataset.
As observed in the table, there are three kinds of errors
which occur more frequently than ten times.

The most common confusion occurs for the publi-
cation domain, where a larger number of datasets are
predicted to belong to the government domain. A rea-

son for this is that government datasets often contain
metadata about government statistics which are rep-
resented using the same vocabularies and terms (e.g.,
skos:Concept) that are also used in the publication
domain. This makes it challenging for a vocabulary-
based classifier to distinguish those two categories
apart. In addition, for example the http://mcu.es/
dataset of the Ministry of Culture in Spain was man-
ually labeled as publication within the LOD cloud,
whereas the model predicts government which turns
out to be a borderline case in the gold standard (infor-
mation on the LOD cloud). A similar frequent prob-
lem is the prediction of life science for datasets in
the publication category. This can be observed, e.g.,
for the http://ns.nature.com/publications/, which de-
scribes the publications in Nature. Those publications,
however, are often in the life sciences field, which
makes the labeling in the gold standard a borderline
case.

The third most common confusion occurs between
the user-generated content and the social network-
ing domain. Here, the problem is in the shared use
of similar vocabularies, such as foaf. At the same
time, labeling a dataset as either one of the two is of-
ten not so simple. In [35], it has been defined that
social networking datasets should focus on the pre-
sentation of people and their inter-relations, while
user-generated content should have a stronger focus
on the content. Datasets from personal blogs, such
as www.wordpress.com however, can convey both as-
pects. Due to the labeling rule, these datasets are la-
beled as user-generated content, but our approach fre-
quently classifies them as social networking.
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Table 7
Multi-topic classification results on combined feature vectors
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In summary, while we observe some true classifi-
cation errors, many of the mistakes made by our ap-
proach actually point at datasets which are difficult to
classify, and which are rather borderline cases between
two categories.

Table 8
Confusion Matrix for the NoLABbin feature vector.
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social networking 489 4 5 10 2 4 11 1

cross-domain 1 10 3 1 1 0 1 1

publication 8 10 54 9 4 4 2 2

government 3 4 14 151 1 2 0 2

life science 5 3 12 0 72 2 5 5

media 6 3 4 1 1 7 2 0

user-generated content 6 1 1 2 0 2 26 0

geographic 1 5 1 5 1 0 0 8

9.2. Multi-topic classification

In the following, we discuss the results achieved
by our experiments on the multi-topic classification
of LOD datasets and analyze the most frequent errors
of the best performing approach. As from the results
on Section 8.2.1 and Section 8.2.2 for the multi-topic
classification of LOD datasets the best performing ap-
proach in terms of harmonic mean is achieved training
the LCN using Naive Bayes on no sampling data with
a performance of P=0.41, R=0.56 and F=0.47. Con-
sider the problem of classifying the datasets with two
topics, e.g., media and social networking. A represen-
tative example is the bbc.co.uk/music dataset, which in
our gold standard is labeled with both topics. Our clas-
sifier predicts it as belonging to only media category.
This dataset except of including music data, contains
also other social networking data as a result of the pos-
sibility to sign up and create a profile, follow other peo-
ple or comment in different music posts. For this rea-
son we classify this dataset in our gold standard also
as belonging to the social networking category. The
classifier failed to classify the second topic because
the vocabularies and classes used in this dataset belong
mostly to the bbc vocabulary which is used 8 798 times
in the datasets belonging to bbc.co.uk/music domain,
and is not used in any other dataset belonging to me-
dia category. Because the classifier learned the social
networking category from datasets that make no use of
such vocabulary it is difficult for it to classify also the
bbc.co.uk/music into the social networking category.
The other vocabularies used by bbc are RDF (2 667),
RDFS (781), OWL (134) and PURL (14). Similar to
bbc also the dataset linkedmdb.org uses 23 964 times
only one vocabulary which is LinkedMDB vocabulary.
This vocabulary is not used by any other dataset. An-
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other example to emphasis this choke point is the case
of http://semanticweb.cs.vu.nl/ which makes use of the
Semantic Wiki Vocabulary and Terminology 141 248

times. This vocabulary is not used in any other dataset
belonging to the media category.

Consider the problem of classifying the datasets
with three labels, e.g., government, publication and
geographic. One of the datasets belonging to these
topics is europa.eu. Our model classifies it as be-
longing to publication and government. The model
is not able to predict geographic as the third topic.
Even though this dataset contains some geograph-
ical data for all countries in the European Union,
for example http://europa.eu/european-union/about-
eu/countries/member-countries/italy_en the amount of
geographic data with respect to the government and
publication data is smaller. In this small amount of ge-
ographical data, the classifier could not find similar at-
tributes as those used for training, considering them to
be noise and not assigning a topic.

For the datasets that have more than three topics, it
is even harder for the classifier to predict all labels, es-
pecially if there are few examples (instances) belong-
ing to each topic and if they use similar vocabularies
to define also instances that belong to other topics.

The results discussed above indicate that only
schema-level data are not a good input to the classi-
fiers. For this reason we also exploit the text informa-
tion in these datasets extracting the LAB and COM
feature vectors as described in Section 6.1. Later, we
manually checked the text from LAB and COM fea-
ture vectors for the datasets in the gold standard to un-
derstand if this information could be a good input. We
were able to find significant text only for 15 datasets
(out of 200 in the gold standard) while for all the oth-
ers, the text was not in English, or rather it contained
acronyms, or was encoded. The number of datasets
containing significant text is very low thus, we did not
further continue testing LAB and COM feature vectors
as input for the classifier for the multi-topic classifica-
tion of LOD datasets.

Except of LAB and COM, also the VOCDES feature
vector was not considered in our experiments. From
1 438 vocabularies that are used in LOD, only 119 have
a description in LOV. From 119 vocabularies with a de-
scription, 90 of them are used in less than ten datasets,
while 5 of them are used in more than 200 datasets. For
this reason we did not use the description of vocabu-
laries in LOV as a feature vector for our classifiers.

In Table 9 we summarise the errors and possible so-
lutions in determining the datasets to use for bench-
marking LOD.

10. Related Work

Topical profiling has been studied in data mining,
database, and information retrieval communities. The
resulting methods find application in domains such
as documents classification, contextual search, content
management, product classification and review anal-
ysis [1,27,3,28,24,37]. Although topical profiling has
been studied in other settings before, only a few meth-
ods exist for profiling LOD datasets. These methods
can be categorized based on the general learning ap-
proach that is employed into the categories unsuper-
vised and supervised, where the first category does
not rely on labeled input data, the latter is only appli-
cable for labeled data. Moreover, existing approaches
consider schema-level [12,8,19] or data-level informa-
tion [10,13] as input for the classification task. In [34]
the topic extraction of RDF datasets is done through
the use of schema and data level information.

The authors of [12] try to define the profile of
datasets using semantic and statistical characteristics.
They use statistics about vocabulary, property, and
datatype usage, as well as statistics on property val-
ues, such as average strings length, for characterizing
the topic of the datasets. For classification, they pro-
pose a feature/characteristic generation process, start-
ing from the top discovered types of a dataset and gen-
erating property/value pairs. In order to integrate the
property/value pairs they consider the problem of vo-
cabulary heterogeneity of the datasets by defining cor-
respondences between terms in different vocabularies.
This can be done by using ontology matching tech-
niques. Authors intended to align only popular vocab-
ularies. They have pointed out that it is essential to au-
tomate the feature generations and proposed the frame-
work to do so, but do not evaluate their approach on
real-world datasets. Also, considering only the most
popular vocabularies, makes this framework not appli-
cable to any dataset or to datasets that belong to any
kind of domain. In our work, we draw from the ideas
of [12] on using schema-usage characteristics as fea-
tures for the topical classification, but focus on LOD
datasets.

Authors in [10] propose the application of aggre-
gation techniques to identify clusters of semantically
related Linked Data given a target. Aggregation and
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Table 9
Evaluation of benchmark criteria

Benchmarking criteria Benchmark issues
Errors Recommendations

Size small feature vectors to learn the classifier use mid or big size datasets
Schema-level descriptors very specific feature vectors used for different topics use of specific feature vectors for specific topic
Topic overlap topic overlap, e.g., between social networking and media label datasets with specific and non-overlapping topics

abstraction techniques are applied to transform a ba-
sic flat view of Linked Data into a high-level thematic
view of the same data. Linked Data aggregation is per-
formed in two main steps; similarity evaluation and
thematic clustering. This mechanism is the backbone
of the inCloud framework [10]. As an input, the sys-
tem takes a keyword-based specification of a topic of
interest, namely a real-world object/person, an event, a
situation, or any similar subject that can be of interest
for the user and returns a part of the graph related to
the keyword in input. Authors claim that they evalu-
ated the inCloud system by measuring user satisfaction
and system evaluation in terms of accuracy and scala-
bility but do not provide any experimental data. In our
approach we do not imply any matching algorithm, but
use schema-based information to assign the topic.

[8] introduced an approach to detect latent topics
in entity relationships. This approach works in two
phases: (1) A number of subgraphs having strong re-
lations between classes are discovered from the whole
graph, and (2) the subgraphs are combined to generate
a larger subgraph, called summary, which is assumed
to represent a latent topic. Topics are extracted from
vertices and edges for elaborating the summary. This
approach is evaluated using DBpedia dataset and ex-
plicitly omits any kind of features based on textual rep-
resentations and solely relies on the exploitation of the
underlying graph. Thus, for datasets that do not have
a rich graph, but instances are described with many
literal values, this approach cannot be applied. Differ-
ently from [8], in our approach we extract all schema-
level data. In this approach only strong relations be-
tween classes are discovered from the whole graph,
while in our approach we do not consider the relation
between classes but extract all classes and all proper-
ties used in the dataset.

In [13], authors propose an approach for creating
dataset profiles represented by a weighted dataset-
topic graph which is generated using the category
graph and instances from DBpedia. In order to create
such profiles, a processing pipeline that combines tai-
lored techniques for dataset sampling, topic extraction
from reference datasets, and relevance ranking is used.

Topics are extracted using named-entity-recognition
techniques, where the ranking of the topics is based on
their normalized relevance score for a dataset. These
profiles are represented in RDF using VOID vocab-
ulary and Vocabulary of Links15. The accuracy for
the dataset profiles is measured using normalized dis-
counted cumulative gain which compares the ranking
of the topics with the ideal ranking indicated by the
ground truth. The use of the normalized discounted cu-
mulative gain is supported by the fact that in these pro-
files the number of topics for each dataset is higher
than in our case, thus the ranking is important, while
in our approach we do not focus on the ranking of the
topics but rather in identifying them. Differently from
the approach proposed in this paper, we do not use any
entity-recognition techniques but rather use schema-
level information and different algorithms for the topic
classification of LOD datasets.

Automatic identification of topic domains of the
datasets utilizing the hierarchy within Freebase dataset
is presented in [19]. This hierarchy provides back-
ground knowledge and vocabulary for the topic labels.
This approach is based on assigning Freebase types
and domains to the instances in an input LOD dataset.
The main challenge in this approach is that it fails to
identify the prominent topic domains if in Freebase
there are no instances that match entities in the dataset.

Some approaches propose to model the documents
(text corpora) containing natural language as a mix-
ture of topics, where each topic is treated as a prob-
ability distribution over words such as Latent Dirich-
let Allocation (LDA) [7], Pachinko Allocation [21] or
Probabilistic Latent Semantic Analysis (pLSA) [15].
As in [34], authors present TAPIOCA16, a Linked Data
search engine for determining the topical similarity be-
tween datasets. TAPIOCA takes as input the descrip-
tion of a dataset and searches for datasets with sim-
ilar topics which are assumed to be good candidates
for linking. Latent Dirichlet Allocation (LDA) is used
to identify the topic or topics of RDF datasets. For

15http://data.linkededucation.org/vol/
16http://aksw.org/Projects/Tapioca.html
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the probabilistic topic-modelling based approach two
types of information are used; instances and the struc-
ture of RDF datasets. The metadata comprises classes
and properties used in the dataset, removing the classes
and properties of most known vocabularies such as
RDF, RDFS, OWL, SKOS and VOID because they do
not provide any information about the topic. By ex-
tracting this structural metadata from a dataset TAPI-
OCA transforms it into a description of the topical
content of the dataset. As described by the authors,
the challenge is to search for a good number of top-
ics and how to handle classes and properties in other
languages rather than English. Thus, picking a good
number of topics has a high influence on the model ’s
performance.

11. Conlusions

A benchmark is a mandatory tool in the toolbox
of researchers allowing us to compare and reproduce
the results of different approaches by researchers all
over the world. In this paper, we discussed the prob-
lem of the creation and evaluation of a benchmark
for multi-topic profiling for datasets being part of the
LOD cloud. Comparing the performance of the multi-
label classification (multiple topics get assigned to
one dataset) with the performance of the single-label
classifcation approach (only one topic gets assigned),
we identify that on our benchmark this task shows
larger challenges as the latter one. The error analysis
of the misclassified cases showed that many datasets
use same or very similar feature sets to describe enti-
ties. Moreover, the distribution of the datasets for each
topical category highly influences the classifier. The
distribution of instances belonging to different topics
within a dataset is also highly influencing the classi-
fier. If the dataset contains only a few instances belong-
ing to a topic, our classifier consider this information
as noise. The multi-topic benchmark is heavily imbal-
anced, with roughly half of the data belonging to the
social networking domain. Moreover, some datasets
belonging to a specific topic such as bbc.co.uk belong-
ing to the media category, make use of specific vocab-
ularies such as bbc vocabulary. Our learning classi-
fier learned the model on specific vocabularies, thus it
fails to assign the same topical category also to other
datasets belonging to the same category but not using
such vocabularies.

As future work, when regarding the problem as
a multi-label problem, the corresponding approach

would be a classifier chains, which make a prediction
for one category after the other, taking the prediction
for the first category into account as features for the
remaining classifications [41]. Another direction is the
application of stacking, nested stacking or dependent
binary methods [26].
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