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Abstract. We introduce the nonconforming Virtual Element Method (VEM) for the

approximation of second order elliptic problems. We present the construction of the

new element in two and three dimensions, highlighting the main differences with the

conforming VEM and the classical nonconforming finite element methods. We provide

the error analysis and establish the equivalence with a family of mimetic finite difference

methods. Numerical experiments verify the theory and validate the performance of the

proposed method.

1. Introduction

Methods that can handle general meshes consisting of arbitrary polygons or polyhedra

have received significant attention over the last years. Among them the Mimetic Finite

Difference (MFD) method [6] that has been successfully applied to a wide range of sci-

entific and engineering applications (see, for instance, [17, 31, 37, 32] and the references

therein). However, the construction of high-order MFD schemes is still a challenging

task even for two- and three-dimensional second-order elliptic problems. For example,

the two-dimensional MFD scheme in [5] could be seen as the high-order extension of the

lower-order scheme given in [13]. A straightworward extension of [5] to three dimensions

would lead to a clumsy discretization involving a huge number of degrees of freedom

that ensure conformity of the approximation. By relaxing the conformity condition, a

simpler MFD scheme has been proposed in [30] for three dimensional elliptic problems.

Lately, there have been introduced other relevant approaches for handling general meshes

[23, 24, 22].

Very recently, in the pioneering work [7], the basic principles of the virtual element

method (VEM) have been introduced. The VEM allows one to recast the MFD schemes

[13, 5] as Galerkin formulations. The virtual element methodology generalizes the “clas-

sical” finite element method to mesh partitions consisting of polygonal and polyhedral

elements of very general shapes including non-convex elements. In this respect, it shares

with the MFD method the flexibility of mesh handling. Unlike the MFD method, the

VEM provides a sound mathematical framework that allows to devise and analyze new

schemes in a much simpler and elegant way. The name virtual comes from the fact that

the local approximation space in each mesh polygon or polyhedron contains a space of

polynomials together with some other functions that are solutions of particular partial dif-

ferential equations. Such functions are never computed and similar to the MFD method,

the VEM can be implemented using only the degrees of freedom and the polynomial part

of the approximation space. We refer to [9] for the implementation details.
1
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Despite of its infancy, the conforming VEM laid in [7] has been already extended to a

variety of two dimensional problems: plate problems are studied in [16], linear elasticity in

[8], mixed methods for H(div; Ω)-approximations are introduced in [14], and very recently

the VEM has been extended to simulations on discrete fracture networks [10]. In [2],

further tools are presented that allow us to construct and analyze the conforming VEM

for three dimensional elliptic problems. The definition of the three dimensional virtual

element spaces in [2], requires the use of the two dimensional ones.

In this paper, we develop and analyze the nonconforming VEM for the approximation

of second order elliptic problems in two and three dimensions. We show that the proposed

method contains the MFD schemes from [30]. In contrast to the conforming VEM, our

construction is done simultaneously for any dimension and any approximation order.

To put this work in perspective, we present below a brief (non exhaustive) overview of

nonconforming finite element methods.

1.1. Overview of nonconforming finite element methods. Nonconforming finite

elements were first recognized as a variational crime; a term first coined by Strang in

[40, 41]. In the case of second order elliptic problems, the approximation space has some

continuity built in it, but still discrete functions are not continuous. Still, that relaxed

continuity (or crime) has proved its usefulness in many applications, mostly related to

continuum mechanics, in particular, for fluid flow problems [29, 38] (for moderate Reynolds

numbers) and elasticity [25, 36].

The construction, analysis and understanding of nonconforming elements have received

much attention since their first introduction for second order elliptic problems. In two

dimensions, the design of schemes of order of accuracy k ≥ 1 was guided by the patch-test,

which enforces continuity at k Gauss-Legendre points on edge. Due to different behavior

of odd and even polynomials, the construction of schemes for odd and even k is different,

with the latter case demanding much more elaborated arguments. Furthermore, the shape

of the elements (triangular or rectangular/quadrilateral) adds additional complexity to

the construction of nonconforming elements [38] (the result of having an odd or even

number of edges in the element leads to a different construction). For the Stokes problem

with the Dirichlet boundary conditions, Crouzeix and Raviart proposed and analyzed the

first order (k = 1) nonconforming finite element approximation of the velocity field in

[21], which is now know as the Crouziex-Raviart element. The extension to degree k = 3

was given in [20], while the construction for degree k = 2 was introduced in [27]. In all

cases, the inf-sup stable Stokes pair is formed by considering discontinuous approximation

for the pressure of one degree lower.

Already in the 80’s, an equivalence between mixed methods and a modified version

of nonconforming elements of odd degree has been established in [3, 33] and exploited

in the analysis and implementation of the methods. The author of [19], inspired by [3],

has studied the hybridization of the mixed Hellan-Herrmann-Johnson method (of any

degree) for the approximation of a fourth order problem. As a byproduct of the analyzed

postprocessing technique (that uses the gradient of the displacement which would play
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the role of the velocity field in the Stokes problem), a construction of nonconforming

elements of any degree k is provided. Again, this construction distinguishes between odd

and even degrees. Although the details are for the fourth order problem, the strategy can

be adapted to other elliptic problems. For k = 1, 3, the nonconforming element coincides

with the construction given in [21, 20] for the Stokes problem. For even k, in addition to

the moments of order k−1 on each edge, an extra degree of freedom is required to ensure

unisolvence. In the case k = 2 the resulting nonconforming local finite element space has

the same dimension but is different to the one proposed in [27] where it is constructed by

adding a nonconforming bubble to the second order conforming space.

Over the last years, further generalizations of the nonconforming elements have been

still considered by several authors; always distinguishing between odd and even degrees. In

[39, 4] a construction similar to the one given in [19] is considered for the Stokes problem.

A rather different approach is considered in [34]. Finally, while the extension to three

dimensions is simple for k = 1, already for k = 2, the construction of a nonconforming

element becomes cumbersome [26].

1.2. Main contributions. In this paper, we extend the virtual element methodology by

developing in one-shot (no special cases) a nonconforming approximation of any degree

for any spatial dimension and any element shape. For triangular meshes and k = 1, 2, the

proposed nonconforming VEM has the same degrees of freedom as the related noncon-

forming finite element in [19]. For quadrilaterals and k = 1, the degrees of freedom are

the same as that in [38]. The three main contributions of the present work are as follows.

(i) The nonconforming VEM is constructed for any order of accuracy and for arbitrarily-

shaped polygonal or/and polyhedral elements. It also provides a simpler construction on

simplicial meshes and quadrilateral meshes.

(ii) Unlike the conforming VEM [2], the nonconforming VEM is introduced and analyzed

at once for two and three dimensional problems. This simplifies substantially its analysis

and practical implementation.

(iii) We prove optimal error estimates in the energy norm and (for k ≥ 2) in the L2-

norm. The analysis of the new method is carried out using techniques already introduced

in [7, 8] and extending the results well known in the finite element method to the virtual

approach. As the byproduct of our analysis, we provide the theory for the MFD schemes

in [30].

To convey the main idea of our work in a better way and to keep the presentation simple,

we consider the Poisson problem with a constant diffusion tensor. However, all results

apply (with minor changes) to more general second order problems with smoothly varying

coefficients. This latter case will be addressed in the section of numerical experiments.

The outline of the paper is as follows. In Section 2 we formulate the problem and

introduce the basic setting. In Section 3 we introduce the nonconforming VEM. Section 4

is devoted to the error analysis of the nonconforming approximation. In Section 5 we

establish the connection with the nonconforming MFD method proposed in [30]. In

Section 6 we show the performance of the method in numerically solving the Poisson
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problem with constant and variable diffusion coefficients. In Section 7 we offer some final

remarks and discuss the perspectives for future work and developments.

2. Continuous problem and basic setting

In this section we present the basic setting and describe the continuous problem.

Notation: Throughout the paper, we use the standard notation of Sobolev spaces,

cf. [1]. Moreover, for any integer ` ≥ 0 and a domain D ∈ Rm with m ≤ d, d = 2, 3,

P`(D) is the space of polynomials of degree at most ` defined on D. We also adopt the

convention that P−1(D) = {0}.

2.1. Continuous problem. Let the domain Ω in Rd with d = 2, 3 be a bounded open

polytope with boundary ∂Ω, e.g., a polygonal domain with straight boundary edges for

d = 2 or a polyhedral domain with flat boundary faces for d = 3. Let f be in L2(Ω) and

consider the model problem:

−∆u = f in Ω,(2.1)

u = g on ∂Ω.(2.2)

Let Vg = {v ∈ H1(Ω) : v|∂Ω = g} and V = H1
0 (Ω). The variational formulation of

problem (2.1)-(2.2) reads as

(2.3) Find u ∈ Vg such that: a (u, v) = 〈f, v〉 ∀v ∈ V,

where the bilinear form a : V × V → R is given by

a (u, v) =

∫
Ω

∇u · ∇v dx ∀u, v ∈ V,(2.4)

and 〈·, ·〉 denotes the duality product between the functional spaces V ′ and V . The

bilinear form in (2.4) is continuous and coercive with respect to the H1
0 -seminorm (which

is a norm in V by Poincaré inequality); therefore, the Lax-Milgram theorem ensures the

well posedness of the variational problem and the existence of a unique solution u ∈ V to

(2.3).

2.2. Basic setting. We describe now the basic assumptions of the mesh partitioning and

introduce some further functional spaces.

Let {Th}h be a family of decompositions of Ω into elements K and let Eh denote the

skeleton of the partition, i.e., the set of edges/faces of Th. By Eoh and E∂h we will refer to

the set of interior and boundary edges/faces, respectively. Following [7, 2] we make the

following assumptions on the family of partitions:

(A0) Assumptions on the family of partitions {Th}h: we assume that there exists

a positive % > 0 such that

• for every element K and for every edge/face e ⊂ ∂K, we have: he ≥ %hK ,

• every element K is star-shaped with respect to all the points of a sphere of radius

≥ %hK ;
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• for d = 3, every face e ∈ Eh is star-shaped with respect to all the points of a disk

having radius ≥ %he.

The maximum of the diameters of the elements K ∈ Th will be denoted by h. For every

h > 0, the partition Th is made of a finite number of polygons or polyhedra.

We introduce the broken Sobolev space for any s > 0

Hs(Th) =
∏
K∈Th

Hs(K) =
{
v ∈ L2(Ω) : v|K ∈ Hs(K)

}
,

and define the broken Hs-norm

(2.5) ‖v‖2
s,Th =

∑
K∈Th

‖v‖2
s,K ∀ v ∈ Hs(Th) ,

and for s = 1 the broken H1-seminorm

(2.6) |v|21,h =
∑
K∈Th

‖∇v‖2
0,K ∀ v ∈ H1(Th) .

When s = 0 we will prefer the notation ‖v‖0,Ω instead of ‖v‖s,Th . Let e ⊂ ∂K+ ∩ ∂K−

be an edge/face in Eoh. For v ∈ H1(Th), by v± we denote the trace of v|K± on e taken

from within the element K± and by n±e we denote the unit normal on e in the outward

direction with respect to K±. We then define the jump operator as:

(2.7) [[ v ]] = v+n+
e + v−n−e on e ∈ Eoh and [[ v ]] = vne on e ∈ E∂h ,

where on boundary edges/faces we have defined it as the normal component of the trace

of v.
It is convenient to introduce a subspace of H1(Th) with some continuity built in. For

any integer k ≥ 1, we define

(2.8) H1,nc(Th; k) =

{
v ∈ H1(Th) :

∫
e

[[ v ]] · ne q ds = 0 ∀ q ∈ Pk−1(e), ∀e ∈ Eh
}
.

Although for discontinuous functions | · |1,h is only a semi-norm, for v ∈ V and v ∈
H1,nc(Th) it is indeed a norm. In fact, a standard application of the results in [11] shows

that a Poincaré inequality holds for functions in H1,nc(Th) (already with k = 1), i.e, there

exists a constant CP > 0 independent of h such that

(2.9) ‖v‖2
0,Ω ≤ CP |v|21,h ∀ v ∈ H1,nc(Th) .

Therefore, with a small abuse of notation we will refer to the broken semi-norm as a norm.

Remark 2.1. The space H1,nc(Th; 1) (i.e., k = 1), is the space with minimal required

continuity to ensure that the analysis can be carried out.

Finally, the bilinear form a(·, ·) can be split as:

(2.10) a (u, v) =
∑
K∈Th

aK(u, v) where aK(u, v) =

∫
K

∇u · ∇v dx ∀u, v ∈ V.
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3. Nonconforming virtual element method

In this section we introduce the nonconforming virtual element method for the model

problem (2.1)-(2.2), which we write as the Galerkin approximation:

(3.1) Find uh ∈ V k
h,g such that: ah (uh, vh) = 〈fh, vh〉 ∀vh ∈ V k

h ,

where V k
h ⊂ H1,nc(Th; k) is the global nonconforming virtual element space; V k

h,g is the

affine space required by the numerical treatment of the Dirichlet boundary conditions;

ah(·, ·) and 〈fh, ·〉 are the nonconforming approximation to the bilinear form a(·, ·) and

the linear functional 〈f, ·〉, respectively.

We start by describing the local and global nonconforming virtual element spaces,

denoted by V k
h (K) and V k

h , respectively. We then construct the discrete bilinear form

ah(·, ·) and the forcing term fh, discussing also their main properties for the analysis of

the resulting approximation. Through the whole section, we follow the basic ideas given

in [7, 2], trying to highlight the main differences with the present case.

3.1. The local nonconforming virtual element space V k
h (K). We need to introduce

some further notation. For a polygon or polyhedron K with n edges/faces we denote

by xK its center of gravity, by |K| its d-dimensional measure (area for d = 2, volume

for d = 3) and by hK its diameter. Similarly, for each edge/face e ⊂ ∂K, we denote

by xe its midpoint/barycenter, by |e| its measure and by he its diameter. As before, nK
denotes the outward unit normal on ∂K and ne refers to the unit vector normal to e,

whose orientation is fixed once and for all.
For k ≥ 1, we define the local non-conforming virtual element space of order k associated

with the polygon/polyhedron K as the finite dimensional space

(3.2) V k
h (K) =

{
v ∈ H1(K) :

∂v

∂n
∈ Pk−1(e) ∀e ⊂ ∂K, ∆v ∈ Pk−2(K)

}
,

with the usual convention that P−1(K) = {0}.

For k = 1, the local virtual element space V 1
h (K) consists of functions v for which the

normal derivative ∂v
∂n

is constant (and possibly different) on each e ⊂ ∂K and that are

harmonic inside K, i.e., ∆ v = 0. The dimension of V 1
h (K) is equal to n, the number of

edges/faces of K.

For k = 2, the space V 2
h (K) consists of functions v for which the normal derivative

along the edges/faces e ∈ ∂K is a linear polynomial and, inside K, are such that ∆v is

constant. A simple counting reveals that the dimension of V 2
h is dn+ 1.

For each polygon/polyhedron K, the dimension of V k
h (K) is given by

(3.3) NK =

{
nk + (k − 1)k/2 for d = 2,

nk(k + 1)/2 + (k − 1)k(k + 1)/6 for d = 3.



THE NONCONFORMING VIRTUAL ELEMENT METHOD 7

k = 1 k = 2 k = 3 k = 4

Figure 3.1. Degrees of freedom of a triangular cell for k = 1, 2, 3, 4; edge
moments are marked by a circle; cell moments are marked by a square.

k = 1 k = 2 k = 3 k = 4

Figure 3.2. Degrees of freedom of a quadrilateral cell for k = 1, 2, 3, 4; edge
moments are marked by a circle; cell moments are marked by a square.

k = 1 k = 2 k = 3 k = 4

Figure 3.3. Degrees of freedom of a hexagonal cell for k = 1, 2, 3, 4; edge
moments are marked by a circle; cell moments are marked by a square.

Let s = (s1, . . . , sd) be a d-dimensional multi-index with the usual notation that |s| =∑d
i=1 si and xs =

∏d
i=1 x

si
i where x = (x1, . . . , xd) ∈ Rd. For ` ≥ 0, the symbols M`(e)

and M`(K) denote the set of scaled monomials on e and K:

(3.4) M`(e) =

{(
x− xe
he

)s
, |s| ≤ `

}
and M`(K) =

{(
x− xK
hK

)s
, |s| ≤ `

}
.

In V k
h (K) we can choose the following degrees of freedom:

(i) all the moments of vh of order up to k − 1 on each edge/face e ∈ ∂K:

(3.5) µk−1
e (vh) =

{
1

|e|

∫
e

vhmds, ∀m ∈Mk−1(e)

}
∀e ⊂ ∂K;
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Figure 3.4. Degrees of freedom of a tetrahedral cell for k = 1, 2, 3, 4; face
moments are marked by a circle; cell moments are marked by a square. The
numbers indicates the number of degrees of freedom (1 is not marked in the
plot for k = 1).
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Figure 3.5. Degrees of freedom of a cubic cell for k = 1, 2, 3, 4; face moments
are marked by a circle; cell moments are marked by a square. The numbers
indicate the number of degrees of freedom (1 is not marked in the plot for
k = 1).

(ii) all the moments of vh of order up to k − 2 on K:

(3.6) µk−2
K (vh) =

{
1

|K|

∫
K

vhm dx, ∀m ∈Mk−2(K)

}
.

For k = 1, 2, 3, 4, the degrees of freedom are shown for a triangular, a quadrilateral and an

hexagonal element in Figs. 3.1-3.3, and for a tetrahedral and a cubic element in Figs.3.4-

3.5.
Observe that the dimension NK given by (3.3) coincides with the total number of

degrees of freedom defined in (3.5)-(3.6). They are indeed unisolvent for the local space

V k
h (K) as we show next:

Lemma 3.1. Let K be a simple polygon/polyhedron with n edges/faces, and let V k
h (K)

be the space defined in (3.2) for any integer k ≥ 1. The degrees of freedom (3.5)-(3.6) are

unisolvent for V k
h (K).
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Proof. Notice, that we cannot proceed as for the unisolvence proofs in finite elements,

since V k
h (K) would typically contain functions that are not polynomial. Still, we need to

show that for any vh ∈ V k
h (K) such that

(3.7) µk−1
e (vh) = 0 ∀ e ⊂ ∂K and µk−2

K (vh) = 0

then vh = 0. To do so, we use the Divergence Theorem (with vh ∈ V k
h (K) and so

∂vh
∂n
∈ Pk−1(e) on each e ⊂ ∂K and ∆v ∈ Pk−2(K)) to get

(3.8)

∫
K

|∇vh|2dx = −
∫
K

vh ∆ vh dx+
∑
e∈∂K

∫
e

vh
∂vh
∂n

ds = 0 ,

where we have set the right hand side equal to zero using the fact that the degrees of

freedom of vh vanish from (3.7). Hence ∇vh = 0 in K and so vh = constant in K. But,

since µ0
e(vh) = 0 (the zero-order moment on each e ⊂ ∂K vanishes), we deduce that

vh = 0 in K. �

Remark 3.2. The degrees of freedom of the method (3.5)-(3.6) are defined by using the

monomials inMk−1(e) andMk−2(K) as basis functions for the polynomial spaces Pk−1(e)

and Pk−2(K). This special choice of the basis functions gives the method an inherent hier-

archical structure with respect to k, which may be useful for an efficient implementation.

However, the construction of the element is independent of such choice and, in principle,

any other basis (properly defined and scaled) could be used to define the degrees of freedom.

3.2. The global nonconforming virtual element space V k
h . We now introduce the

nonconforming (global) virtual element space V k
h of order k. For every decomposition Th

into elements K (polygons or polyhedra) and for every K ∈ Th, we consider the local

space V k
h (K) with k ≥ 1 as defined in (3.2). Then, the global nonconforming virtual

element space V k
h of order k is given by

V k
h =

{
vh ∈ H1,nc(Th; k) : vh|K ∈ V k

h (K) ∀K ∈ Th
}
.(3.9)

Arguing then as for a single element, we can compute the degrees of freedom of the

global space:

NTh =

{
Nedges k +Nelements (k − 1)k/2 for d = 2,

Nfaces k(k + 1)/2 +Nelements (k − 1)k(k + 1)/6 for d = 3,
(3.10)

where Nelements denotes the total number of elements K of the partition Th and Nedges and

Nfaces refer to the total number of edges (in d = 2) and faces (in d = 3), respectively; they

are the cardinality of the set Eh.
Arguing again as for a single element, as degrees of freedom for the global space V k

h we

can take:

(i) the moments of vh of order up to k−1 on each (d−1)-dimensional edge/face e ∈ Eh:

(3.11) µk−1
e (vh) =

{
1

|e|

∫
e

vhmds, ∀m ∈Mk−1(e), ∀e ∈ Eh
}

;
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(ii) the moments of vh of order up to k−2 on each d-dimensional element K ∈ Th:

(3.12) µk−2
K (vh) =

{
1

|K|

∫
K

vhm dx, ∀m ∈Mk−2(K), ∀K ∈ Th
}
.

As it happens for the local space V k
h (K), the dimension N tot given in (3.10) coincides

with the total number of degrees of freedom (3.11)-(3.12). The unisolvence for the local

space V k
h (K) given in Lemma 3.1, implies the unisolvence for the global space V k

h . Since

the proof is essentially the same, we omit it for conciseness.

3.3. Approximation properties. Following [7], we now revise the local approximation

properties by polynomial functions and functions in the virtual nonconforming space. In

the former case, the approximation is the same as for the finite elements. In the latter case,

the discussion is similar as for conforming VEM. We briefly recall both for completeness

of exposition and future reference in the paper.

Local approximation. In view of the mesh regularity assumptions (A0), there exists

a local polynomial approximation wπ ∈ Pk(K) for every smooth function w defined on

K. According to [12] for star-shaped elements and the generalization to the general

shaped elements satisfying (A0) found in [6, Section 1.6], the polynomial wπ has optimal

approximation properties. Thus, for every w ∈ Hs(K) with 2 ≤ s ≤ k + 1 there exists a

polynomial wπ in Pk(K) such that

(3.13) ‖w − wπ‖0,K + hK |w − wπ|1,K ≤ ChsK |w|s,K ,

where C is a positive constant that only depends on the polynomial degree k and the

mesh regularity constant %. The proof of the above approximation result can be done by

proceeding as for classical finite elements (see, for instance, [42], which can be used taking

into account (2.9)). Following always [42] one can trace how the constant C depends on

the constants appearing in hypothesis (A0) ρ, ρe and the ratio between the maximum

and minimum diameter of the star-shaped element. We refer to [42] for the explicit

expressions.

Interpolation error. Following essentially [7, 2] we can define an interpolation op-

erator in V k
h having optimal approximation properties. The idea is to use the degrees

of freedom without requiring an explicit construction of the basis functions associated

with them, since, unlike the finite element method, they are not needed for implementing

or constructing the method. We assume that we have numbered the degrees of freedom

(3.11)-(3.12) from i = 1, . . . NTh , and that we have the canonical basis associated or in-

duced by them (even if we do not compute such basis!). Let χi(·) denote the operator

that associates the i− th degree of freedom χi(v) with each smooth enough function v:

(3.14) v → χi(v) = i-th degree of freedom of v ∀i = 1, . . . NTh ,

and {ψi} denote the set of the “canonical” shape functions of V k
h satisfying the condition

χi(ψj) = δij for i, j = 1, . . . , NTh . Then, from the previous construction of the space, it
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follows easily that for any v ∈ H1,nc(Th; k) there exists a function vI ∈ V k
h such that

(3.15) χi(v − vI) = 0 ∀ i = 1, . . . NTh .

This is enough to guarantee that we can apply the classical results of approximation. In

particular, there exists a constant C > 0 independent of h and such that for every h > 0,

every K ∈ Th, every s with 2 ≤ s ≤ k+1, and every v ∈ Hs(K) the “interpolant” vI ∈ V k
h

given through (3.15) satisfies:

(3.16) ‖v − vI‖0,K + hK |v − vI |1,K ≤ ChsK |v|s,K .

The proof of the above approximation result can be done by proceeding as in [35, Propo-

sition 4.2] together with estimate (3.13) and classical results from finite elements.

3.4. Construction of the virtual bilinear form ah. We now tackle the second part

of the definition of the nonconforming virtual discretization (3.1). The goal is to define

a suitable symmetric bilinear form ah : V k
h × V k

h −→ R that enjoys good stability and

approximation properties and is computable over all the functions in V k
h . To this end, we

first split ah(·, ·) as we did for a(·, ·) in (2.10):

ah (uh, vh) =
∑
K∈Th

aKh (uh, vh) ∀uh, vh ∈ V k
h ,

with aKh : V k
h (K) × V k

h (K) −→ R denoting the restriction of ah(·, ·) to the local space

V k
h (K). Then, we look at the local construction of aKh (·, ·).
We start by noticing that on each element K, for p ∈ Pk(K) and vh ∈ V k

h (K) we can

compute exactly aK(p, vh) by using only the local degrees of freedom given in (3.5)-(3.6).

In fact, since

(3.17) aK(p, vh) =

∫
K

∇p · ∇vh dx = −
∫
K

vh ∆p dx+

∫
∂K

vh
∂p

∂n
dx ,

we only needs to observe that the two integrals on the right hand side are determined

exactly by the degrees of freedom (3.5)-(3.6), without requiring any further explicit knowl-

edge of the function vh in K.

Now, to construct ah(·, ·), always following [2], we first define a projection operator that

can be thought of as the Ritz-Galerkin projection in finite elements. Let Π∇K : H1(K)→
Pk(K) be defined by

(3.18)

∫
K

∇(Π∇K(vh)− vh) · ∇q dx = 0 ∀q ∈ Pk(K), ∀vh ∈ V k
h (K)

together with the condition∫
∂K

(Π∇K(vh)− vh) ds = 0 if k = 1,(3.19)

∫
K

(Π∇K(vh)− vh) dx = 0 if k ≥ 2.(3.20)



12 B. AYUSO DE DIOS, K. LIPNIKOV, AND G. MANZINI

Note that Π∇K(v) is indeed computable for any v ∈ V k
h from the degrees of freedom (3.5)-

(3.6) in view of (3.17) and the symmetry of the bilinear form. Also, Π∇K is the identity

operator on Pk(K), i.e., Π∇K
(
Pk(K)

)
= Pk(K).

We then define for every uh, vh ∈ V k
h (K) the bilinear form

(3.21) aKh (uh, vh) = aK(Π∇K(uh),Π
∇
K(vh)) + SK(uh − Π∇K(uh), vh − Π∇K(vh)),

where the term SK(·, ·) is a symmetric bilinear form whose matrix representation in the

canonical basis functions {ψi} of V k
h (K) is spectrally equivalent to the identity matrix

scaled by the factor γK defined as:

(3.22) γK = hd−2.

Thus, for every function vh in V k
h (K), it holds that

SK(vh, vh) ' hd−2vthvh(3.23)

where vh is the vector collecting the degrees of freedom of vh. The scaling of SK guarantees

that

(3.24) c∗a
K(vh, vh) ≤ SK(vh, vh) ≤ c∗aK(vh, vh) ∀vh ∈ ker(Π∇K),

for two positive constants c∗ and c∗ independent of h.

We now show that the construction of aKh (·, ·) guarantees the usual consistency and

stability properties in VEM:

Lemma 3.3. For all h > 0 and for all K ∈ Th, the bilinear form aKh (·, ·) defined in (3.21)

satisfies the following consistency and stability properties :

• k-Consistency:

(3.25) aKh (p, vh) = aK(p, vh) ∀p ∈ Pk(K), ∀vh ∈ V k
h (K).

• Stability: there exists two positive constants α∗ and α∗ independent of mesh size

h but depending on the shape regularity of the partition such that

(3.26) α∗a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗aK(vh, vh) ∀vh ∈ V k

h (K).

Proof. The k-consistency property in (3.25) follows immediately from definition (3.21)

and the fact that Π∇K is the identity operator on Pk(K). Since Π∇KPk(K) = Pk(K), it

follows that SK(p−Π∇K(p), vh−Π∇K(vh)) = 0 for every p ∈ Pk(K) and every vh ∈ V k
h (K).

So, using the definition of Π∇K and the definition (3.21) we have

aKh (p, vh) = aK(Π∇K(p),Π∇K(vh)) = aK(p,Π∇K(vh)) = aK(p, vh),

which gives (3.25) and proves the k-consistency property.
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To show (3.26), from the definition of aKh (·, ·) given in (3.21), the symmetry of the

bilinear form and (3.24), we have

aKh (vh, vh) ≤ aK(Π∇K(vh),Π
∇
K(vh)) + c∗aK(vh − Π∇K(vh), vh − Π∇K(vh))

≤ max(1, c∗)
(
aK(Π∇K(vh),Π

∇
K(vh)) + aK(vh − Π∇K(vh), vh − Π∇K(vh))

)
= α∗aK(vh, vh),

and

aKh (vh, vh) ≥ aK(Π∇K(vh),Π
∇
K(vh)) + c∗a

K(vh − Π∇K(vh), vh − Π∇K(vh))

≥ min(1, c∗)
(
aK(Π∇K(vh),Π

∇
K(vh)) + aK(vh − Π∇K(vh), vh − Π∇K(vh))

)
= α∗a

K(vh, vh),

which shows (3.26) with α∗ = min(1, c∗) and α∗ = max(1, c∗) and concludes the proof. �

Cauchy-Schwarz inequality, together with (3.26) and the boundedness of the local con-

tinuous bilinear form give

aKh (uh, vh) ≤ (aKh (uh, uh))
1/2(aKh (vh, vh))

1/2 ≤ α∗(aK(uh, uh))
1/2(aK(vh, vh))

1/2

= α∗‖∇uh‖0,K‖∇vh‖0,K(3.27)

which establishes the continuity of aKh .

3.5. Construction of the right-hand side term 〈fh, ·〉. The forcing term is con-

structed in the same way as it is done for the conforming VEM. The idea is to use

whenever possible the degrees of freedom (3.12) to compute fh exactly. Denoting by

P`K : L2(K) −→ P`(K) the L2-orthogonal projection onto the space P`(K) for ` ≥ 0, we

define fh at the elemental level by:

(3.28) fh|K =

{
P0
K(f) for k = 1 ,

Pk−2
K (f) for k ≥ 2 .

∀K ∈ Th .

In the definition above for k ≥ 2, the right hand side 〈fh, vh〉 is fully computable for the

functions in V k
h since:

〈fh, vh〉 =
∑
K∈Th

∫
K

Pk−2
K (f)vh dx =

∑
K∈Th

∫
K

fPk−2
K (vh) dx ,

which is readily available from (3.12).

For k = 1 and each K ∈ Th we first define:

(3.29) ṽh|K =
1

n

∑
e∈∂K

1

|e|

∫
e

vhds ≈ P0
K(vh) ,

and notice that ṽh|K is a first-order approximation to P0
K(vh) = 1

|K|

∫
K
vhdx, i.e., we have

that
∣∣ṽh|K−P0

K(vh)
∣∣ ≤ Ch|v|1,K . Then, the idea is to use ṽh to compute the approximation
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to the right hand side of (3.1):

〈fh, vh〉 =
∑
K∈Th

∫
K

P0
K(f)ṽh dx ≈

∑
K∈Th

|K|P0
K(f)P0

K(vh) .

Notice that the computation of the right-most term above would require the knowledge

of the average value of vh on each element K and such information is, in principle, not

available. Therefore, we approximate P0
K(vh) by using the numerical quadrature rule de-

fined by ṽh that only uses the moments µ0
e(vh) in (3.5).

Furthermore, in both cases k ≥ 2 and k = 1, an estimate for the error in the approxi-

mation is already available by using the definition of the L2-projection, Cauchy-Schwarz

and standard approximation estimates [18]. For k ≥ 2 and s ≥ 1 one easily has

|〈f, vh〉 − 〈fh, vh〉| =

∣∣∣∣∣∑
K∈Th

∫
K

(f − Pk−2
K (f))vh dx

∣∣∣∣∣
=

∣∣∣∣∣∑
K∈Th

∫
K

(f − Pk−2
K (f)) (vh − P0

K(vh)) dx

∣∣∣∣∣
≤
∥∥ f − Pk−2

K (f)
∥∥

0,Ω

∥∥ vh − P0
K(vh)

∥∥
0,Ω

≤ Chmin (k,s) |f |s−1,Th |vh|1,h .

For k = 1, the definition of fh together with using repeteadly the definition of the L2-

projection, Cauchy-Schwarz inequality and standard approximation estimates, give

|〈f, vh〉 − 〈fh, ṽh〉| =

∣∣∣∣∣∑
K∈Th

∫
K

(
f vh − P0

K(f)ṽh
)

dx

∣∣∣∣∣
≤

∣∣∣∣∣∑
K∈Th

∫
K

(
f − P0

K(f))vh
)

dx

∣∣∣∣∣+

∣∣∣∣∣∑
K∈Th

∫
K

P0
K(f) (vh − ṽh) dx

∣∣∣∣∣
≤

∣∣∣∣∣∑
K∈Th

∫
K

(
f − P0

K(f)
) (
vh − P0

K(vh)
)

dx

∣∣∣∣∣+ ‖P0
K(f)‖0,Ω‖vh − ṽh‖0,Ω

≤
∥∥P0

K(f)− f
∥∥

0,Ω
‖P0

K(vh)− vh ‖0,Ω + Ch‖f‖0,Ω|vh|1,h

≤ Ch (‖f‖0,Ω + |f |s−1,Th )|vh|1,h .

We finally mention that the estimate

‖vh − ṽh‖ ≤ Ch‖v‖1,h

was already indicated in [30]. We collect the results for k = 1 and k > 1 in the following

lemma.
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Lemma 3.4. Let k, s ≥ 1, V k
h the virtual element space defined by (3.9), f ∈ Hs−1(Ω),

fh ∈ (V k
h )
′

defined as in (3.28). For any vh ∈ V k
h it holds:

|〈f, vh〉 − 〈fh, vh〉| ≤

{
Ch (‖f‖0,Ω + |f |s−1,Th )|vh|1,h for k = 1,

Chmin (k,s) |f |s−1,Th |vh|1,h for k > 1.
(3.30)

3.6. Construction of the boundary term. In the case of non-homogenous Dirichlet

boundary conditions, we need to construct the corresponding boundary term. We de-

fine gh = Pk−1
e (g) and observe that in view of the degrees of freedom (3.11), with such

definition the boundary term will be fully computable. Indeed,

(3.31)

∫
E∂h

ghvh ds =
∑
e∈E∂h

∫
e

Pk−1
e (g)vh ds =

∑
e∈E∂h

∫
e

gPk−1
e (vh) ds ∀ vh ∈ V k

h .

4. Error Analysis

In this section we present the error analysis in the energy- and L2-norm for the non-

conforming virtual element approximation (3.1) to the model problem (2.3).

We start by noticing that the nonconformity of our discrete approximation space V k
h ⊂

H1,nc(Th; k) * H1(Ω) introduces a kind of consistency error in the approximation to the

solution u ∈ V . In fact it should be noticed that using (2.10) together with standard

integration by parts give

a(u, v) =
∑
K∈Th

∫
K

−(∆u)vdx+
∑
K∈Th

∫
∂K

∂u

∂nK
v ds

= (f, v) +Nh(u, v) ∀ v ∈ H1,nc(Th; 1) .(4.1)

For u ∈ Hs(Ω), s ≥ 3/2, the term Nh can be rewritten using (2.7) as:

(4.2) Nh(u, v) =
∑
K∈Th

∫
∂K

∂u

∂nK
v ds =

∑
e∈Eh

∫
e

∇u · [[ v ]] ds.

The term Nh measures the extent to which the continuous solution u fails to satisfy the

virtual element formulation (3.1). In that respect, it could be regarded as a consistency

error although it should be noted that such inconsistency here (as for the nonconforming

finite element method) is due to the fact that the test functions vh ∈ Vh * V , and therefore

an error arises when using the variational formulation of the continuous solution (2.3).

We now provide an estimate for the term measuring the nonconformity. We have the

following result

Lemma 4.1. Assume (A0) is satisfied. Let k ≥ 1 and let u ∈ Hs+1(Ω) with s ≥ 1 be the

solution of (2.3). Let v ∈ H1,nc(Th; 1) as defined in (2.8). Then, there exists a constant

C > 0 depending only on the polynomial degree and the mesh regularity such that

(4.3) |Nh(u, v)| ≤ Chmin(s,k)‖u‖s+1,Ω|v|1,h

where Nh(u, v) is defined in (4.2).
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Proof. The proof follows along the same line as the one for the classical nonconforming

methods. We briefly report it here for the sake of completeness. From the definition of the

space H1,nc(Th; k) with k = 1, the definition of the L2(e)-projection and Cauchy-Schwarz

we find

|Nh(u, vh)| =

∣∣∣∣∣∑
e∈Eh

∫
e

(
∇u− Pk−1

e (∇u)
)
· [[ vh ]] ds

∣∣∣∣∣
=

∣∣∣∣∣∑
e∈Eh

∫
e

(
∇u− Pk−1

e (∇u)
)
·
(
[[ vh ]]− P0

e ([[ vh ]])
)
ds

∣∣∣∣∣
≤
∑
e∈Eh

∥∥∇u− Pk−1
e (∇u)

∥∥
0,e

∥∥[[ vh ]]− P0
e ([[ vh ]])

∥∥
0,e

,(4.4)

where P`e : L2(e) −→ P`(e) is the L2-orthogonal projection onto the space P`(e) for ` ≥ 0.

Using now standard approximation estimates (see [18]) we have for each e = ∂K+ ∩
∂K−, ∥∥∇u− Pk−1

e (∇u)
∥∥

0,e
≤ Chmin(s,k)−1/2‖u‖s+1,K+∪K− ,∥∥[[ vh ]]− P0

e ([[ vh ]])
∥∥

0,e
≤ Ch1/2‖∇vh‖0,K+∪K− .

Hence, substituting the above estimates into (4.4) and summing over all elements, the

proof is concluded. �

Remark 4.2. To obtain at least an estimate of first order of the term Nh(u, v), notice

that the proof of Lemma 4.1 requires further regularity (at least u ∈ H2(Ω)) than the

one that problem (2.1)-(2.2) might have (as for instance in the case f ∈ H−1(Ω) or even

f ∈ L2(Ω) and the domain not convex or with a second order problem with a jumping

coefficient K). We have followed the classical line for the error analysis to keep the

presentation of the method simpler. Of course one might consider the extension of the

results in [28] to estimate the nonconformity error arising in the nonconforming virtual

approximation. We wish to note though, that such extension will require to have laid for

virtual elements, some results on a-posteriori error estimation. While that would be surely

possible and it might merit further investigation, it is out of the scope of this paper and

we feel that by sticking to the present proof, we are able to convey in a better way (and

with a neat presentation) the novelty and new idea of the paper.

We have the following result.

Theorem 4.1. Let (A0) be satisfied and let u be the solution of (2.3). Consider the

nonconforming virtual element method in (3.1), with V k
h given in (3.9) and with ah(·, ·)

and fh ∈ (V k
h )
′

defined as in Section 3. Then, problem (3.1) has a unique solution

uh ∈ V k
h . Moreover, for every approximation uI ∈ V k

h of u and for every piecewise

polynomial approximation uπ ∈ Pk(Th) of u, there exists a constant C > 0 depending only
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on α∗ and α∗ in (3.26) such that the following estimate holds

(4.5) |u−uh|1,h ≤ C(|u−uI |1,h+ |u−uπ|1,h+ sup
vh∈V k

h

| < f − fh, vh > |
|vh|1,h

+ sup
vh∈V k

h

Nh(u, vh)
|vh|1,h

) .

Furthermore, if f ∈ Hs−1(Ω) with s ≥ 1, then we also have

(4.6) |u− uh|1,h ≤ Chmin (k,s)(‖u‖1+s,Ω + ‖f‖s−1,Ω) .

Proof. We first establish the existence and uniqueness of the solution to (3.1). From

(3.27), (3.26) and (2.6) we easily have coercivity and continuity of the global discrete

bilinear form in H1,nc(Th; k) (and in particular in V k
h ⊂ H1,nc(Th; k)),

(4.7)
ah(v, v) ≥ α∗a(v, v) ≥ Csα∗|v|21,h ∀ v ∈ H1,nc(Th; k),

|ah(u, v)| ≤ α∗|u|1,h|v|1,h ∀u, v ∈ H1,nc(Th; k).

With fh ∈ (V k
h )
′

and the Poincaré inequality (2.9), a direct application of Lax-Milgram

theorem guarantees existence and uniqueness of the solution uh ∈ V k
h of (3.1).

We now prove the error estimate. We first write u− uh = (u− uI) + (uI − uh) and use

triangle inequality to bound

(4.8) |u− uh|1,h ≤ |u− uI |1,h + |uh − uI |1,h .

The first term can be estimated using the standard approximation (3.16) and so it is

enough to estimate the second term on the right hand side above. Let δh = uh−uI ∈ V k
h .

Using the continuity (3.27) and the k-consistency several times

α∗|δh|21,h = α∗a(δh, δh) ≤ ah(δh, δh)

= ah(uh, δh)− ah(uI , δh)

= (fh, δh)−
∑
K∈Th

aKh (uI − uπ, δh)−
∑
K∈Th

aKh (uπ, δh)

= (fh, δh)−
∑
K∈Th

aKh (uI − uπ, δh)−
∑
K∈Th

aK(uπ, δh)

= (fh, δh)−
∑
K∈Th

aKh (uI − uπ, δh) +
∑
K∈Th

aK(u− uπ, δh)− a(u, δh)

= (fh, δh)− a(u, δh)−
∑
K∈Th

aKh (uI − uπ, δh) +
∑
K∈Th

aK(u− uπ, δh)

= (fh, δh)− (f, δh)−Nh(u, δh)−
∑
K∈Th

aKh (uI − uπ, δh)

+
∑
K∈Th

aK(u− uπ, δh)(4.9)

where in the last step we have used (4.1) to introduce the consistency error. The proof

is then concluded by estimating each of the terms in the right hand side above and
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substituting in (4.8). Last part of the theorem, follows by using Lemmas 3.4 and 4.1 to

bound the terms on the right hand side of (4.5). �

Remark 4.3. Theorem 4.1 is the corresponding abstract result to [7, Theorem 3.1]. As

commented before, the term Nh measures the extent to which the continuous solution u

fails to satisfy the virtual element formulation (3.1); measures the non-conformity of the

approximation. In this respect, this result could be regarded as the analog for the VEM of

the Strang Lemma for the finite element method.

4.1. L2(Ω)-error analysis. We now report the L2 error analysis of the proposed noncon-

forming VEM. It follows closely the L2-error analysis for classical nonconforming methods.

Theorem 4.2. Let Ω be a convex domain and let Th be a family of partitions of Ω

satisfying (A0). Let k ≥ 1 and let u ∈ Hs+1(Ω), s ≥ 1 be the solution of (2.3) and let

uh ∈ V k
h be its nonconforming virtual element approximation solving (3.1). Then, there

exists a positive constant C depending on k, the regularity of the mesh and the shape of

the domain such that

‖u− uh‖0,Ω ≤ Ch(|u− uh|1,h + |u− uπ|1,h) + C(h2 + hmin (2,k̄+1))‖f − fh‖0,Ω

+ Chmin (k,s)+1‖u‖s+1,Ω .(4.10)

where k̄ = max{k − 2, 0}.

Proof. We consider the dual problem: find ψ ∈ H2(Ω) ∩H1
0 (Ω) solution of

−∆ψ = u− uh in Ω, ψ = 0 on ∂Ω .

From the assumptions on the domain, the elliptic regularity theory gives the inequality

‖ψ‖2,Ω ≤ C‖u − uh‖0,Ω where C depends on the domain only through the domain’s

shape. Let ψI ∈ V k
h and ψπ ∈ Pk(Th) be the approximations to ψ satisfying (3.16) and

(3.13).Then, integrating by parts we find

‖u− uh‖2
0,Ω =

∫
Ω

−∆ψ(u− uh) dx

=
∑
K∈Th

∫
K

∇ψ · ∇(u− uh) dx+
∑
K∈Th

∫
∂K

∂ψ

∂n
(u− uh) ds

= a(ψ − ψI , (u− uh)) + a(ψI , (u− uh)) +Nh(ψ, u− uh) .(4.11)

We now estimate the three terms above. The estimate for the first one follows from
the continuity of a(·, ·) together with the approximation properties (3.16) of ψI and the

a-priori estimate of ψ

|a(ψ − ψI , u− uh)| ≤ C|ψ − ψI |1,h|u− uh|1,h ≤ Ch‖u− uh‖0,Ω|u− uh|1,h .

Last term is readily estimated by means of Lemma 4.1 with k = s = 1 (since obviously

u− uh ∈ H1,nc(Th; 1)), giving

|Nh(ψ, u− uh)| ≤ Ch‖ψ‖2,Ω|u− uh|1,h ≤ Ch‖u− uh‖0,Ω|u− uh|1,h .



THE NONCONFORMING VIRTUAL ELEMENT METHOD 19

To estimate the second term in (4.11) we use the symmetry of the problem together with

(3.1) and (4.1) to write

a(ψI , u− uh) = a(u, ψI)− a(uh, ψ
I)

= Nh(u, ψI) + 〈f, ψi〉 − a(uh, ψ
I) + ah(uh, ψ

I)− ah(uh, ψI)

= Nh(u, ψI) + 〈f − fh, ψI〉+
(
ah(uh, ψ

I)− a(uh, ψ
I)
)

= T0 + T1 + T2(4.12)

To conclude we need to estimate each of the above terms. For the first one, we first notice

that from the definition (4.2) and the regularity of ψ, one obviously has Nh(u, ψ) = 0.

Hence, a standard application of Lemma 4.1 together with the approximation properties

(3.16) of ψI and the a-priori estimate of ψ, gives

|T0| = |Nh(u, ψI)| = |Nh(u, ψI − ψ)| ≤ Chmin (k,s)‖u‖s+1,Ω|ψI − ψ|1,h

≤ Chmin (k,s)+1‖u‖s+1,Ω‖u− uh‖0,Ω .(4.13)

The last two terms in (4.12) can be bounded as in [8]. Here, we report the proof for

the sake of completeness. For T1, using the L2-orthogonal projection, and denoting again

k̄ = max{k − 2, 0}, we find

T1 =
∑
K∈Th

(∫
K

(f − fh)(ψI − ψ)dx+

∫
K

(f − fh)(ψ − P k̄K(ψ))dx

)
≤ ‖f − fh‖0,Ω(‖ψI − ψ‖0,Ω + ‖ψ − P k̄K(ψ)‖0,Ω)

≤ C(h2 + hmin (2,k̄+1))‖f − fh‖0,Ω‖u− uh‖0,Ω .(4.14)

As regards T2, we use the symmetry together with the k-consistency property twice,

and the definition of the norm (2.6)

T2 = ah(uh, ψ
I)− a(uh, ψ

I) =
∑
K∈Th

(
aKh (uh − uπ, ψI)− aK(uh − uπ, ψI)

)
=
∑
K∈Th

(
aKh (uh − uπ, ψI − ψπ)− aK(uh − uπ, ψI − ψπ)

)
≤ |uh − uπ|1,h|ψh − ψπ|1,h .

Each of the above terms can be readily estimated by adding and subtracting u and ψ:

|uh − uπ|21,h ≤
∑
K∈Th

(
‖∇(uh − u)‖2

0,K + ‖∇(u− uπ)|20,K
)

|ψh − ψπ|21,h ≤
∑
K∈Th

(
‖∇(ψh − ψ)‖2

0,K + ‖∇(ψ − ψπ)|20,K
)
≤ Ch2‖u− uh‖2

0,Ω ,

where in the last step we have also used the standard approximation properties (3.13)

and (3.16). With the above estimates, the bound for the term T2 finally reads

T2 ≤ Ch‖u− uh‖0,Ω(|u− uh|1,h + |u− uπ|1,h)
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Plugging now the estimates for T0, T1 and T2 into (4.12) we finally get:

‖u− uh‖0,Ω ≤ Ch(hmin (k,s)+1‖u‖s+1,Ω + |u− uh|1,h + |u− uπ|1,h) + C(h2

+ hmin (2,k̄+1))‖f − fh‖0,Ω ,

which concludes the proof.

�

5. Connection with the nonconforming MFD method [30]

In this section, we discuss the relationship between the proposed nonconforming VEM

and the nonconforming MFD method in [30]. Throughout this section we will use the

notation of [9]. Also, we will omit the element index K from all the matrix symbols.

The stiffness matrix MVEM of the nonconforming VEM is formally defined as

aKh (uh, vh) = vThM
VEMuh,

where vh and uh are algebraic vectors collecting the degrees of freedom of functions vh
and uh, respectively. We enumerate the whole set of nK,k scaled monomials used in (3.5)

and (3.6) to define the degrees of freedom by local indices i and j (resp., mi and mj)

ranging from 1 to nK,k.

To compute the stiffness matrix, we need two auxiliary matrices B and D. The j-th

column of matrix B, for j = 1, . . . , nK , is defined by

B1j =


∫
∂K

ψj ds = 0 if k = 1,∫
K

ψj dx = 0 if k ≥ 2,

(5.1)

Bij =

∫
K

∇mi · ∇ψj dx, i = 2, . . . , nK,k.(5.2)

The j-th column of matrix D, for j = 1, . . . , NK , collects the degrees of freedom of the

j-th monomials and is defined by:

Dij = χi(mj), i = 1, . . . , nK .(5.3)

Now, we consider the matrices G = BD, Π∇ = DG−1B and G̃, which is obtained from

matrix G by setting its first row to zero. The VEM stiffness matrix is the sum of two

matrices, MVEM = MVEM
0 + MVEM

1 , which are defined by the following formula:

MVEM = (G−1B)T G̃(G−1B) + (I−Π∇)TS(I−Π∇),(5.4)

where I is the identity matrix and S is the matrix representation of the bilinear form

SK . The first matrix term corresponds to the consistency property and the second term

ensures stability. According to (3.22), we can set

S = hd−2I.(5.5)

Since the choice of SK is not unique, so is the choice of S; therefore, we have a family of

virtual element schemes that differ by matrix S.
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The mimetic stiffness matrix considered in [30] has the same structure, MMFD = MMFD
0 +

MMFD
1 , and the two matrices MMFD

0 and MMFD
1 are also related to the consistency and

stability properties. In particular, matrix MMFD
1 is given by:

MMFD
1 =

(
I−Π⊥

)
U
(
I−Π⊥

)
,(5.6)

where Π⊥ = D(DTD)−1DT is the orthogonal projector on the linear space spanned by the

columns of matrix D and U is a symmetric and positive definite matrix of parameters.

Since both the VEM and the MFD method use the same degrees of freedom, they must

satisfy the same conditions of consistency and stability. Moreover, the matrices MMFD
0

and MVEM
0 are uniquely determined by the consistency condition (the exactness property

on the same set of polynomials of degree k); thus, they must coincide. Consequently, the

virtual and mimetic stiffness matrices may differ only for the stabilization terms MVEM
1

and MMFD
1 . The relation between MVEM

1 and MMFD
1 is established by the following lemma.

Lemma 5.1. (i): For any mimetic stabilization matrix of the form (5.6), we can

find a matrix S such that MVEM
1 and MMFD

1 coincide.

(ii): For any virtual element stabilization matrix as the second term in the right-

hand-side of (5.4), we can find a matrix U such that MMFD
1 and MVEM

1 coincide.

Proof. (i) A straightforward calculation shows that

Π∇Π⊥ = Π⊥,
(
Π∇
)T

Π⊥ =
(
Π∇
)T
, Π⊥Π∇ = Π∇.(5.7)

We take S = MMFD
1 . Using (5.7) yields:

MVEM
1 =

(
I−Π∇

)T (
I−Π⊥

)
U
(
I−Π⊥

)
(I−Π∇) = MMFD

1 .

(ii) The relations in (5.7) imply that
(
I−Π⊥

) (
I−Π∇

)T
=
(
I−Π∇

)T
. The assertion of

the lemma follows by taking

U = (I−Π∇)TS(I−Π∇) = MVEM
1 .

This proves the assertion of the lemma. �

Remark 5.2. An effective and practical choice in the mimetic technology (see [30]) is

provided by taking U = ρI where ρ is a scaling factor defined as the mean trace of MMFD
0 .

This implies that MMFD
1 = ρ

(
I−Π⊥

)
.

6. Numerical Experiments

The numerical experiments presented in this section are devoted to verify the theory

presented in the previous sections.

To study the accuracy of the method we solve the diffusion equation on the domain

Ω =]0, 1[×]0, 1[ using both constant and variable diffusion coefficients. For the constant

coefficient case we consider problem (2.1)-(2.2), while for the variable coefficient case,
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the Laplace operator “∆u” in equation (2.1) is substituted by the more general elliptic

operator “div(Λ∇u)”, where Λ is the full diffusion tensor given by

Λ(x, y) =

 1 + y2 −xy

−xy 1 + x2

 .

The forcing term f in (2.1) and the boundary function g in (2.2) are set so that the exact

solution of the problem is given by:

u(x, y) = sin(2πx) sin(2πy) + x6 + y6.

We consider four different sequences of five meshes, labeled by {Th}(1)
h , {Th}(2)

h , {Th}(3)
h ,

and {Th}(4)
h , respectively. Figs. 6.1(a)-6.1(d) show the first and second mesh of each

sequence (left and right plot, respectively). The meshes in {Th}(1)
h are built as follows.

First, we determine a primal mesh by remapping the position (x̂, ŷ) of the nodes of a

uniform square partition of Ω by the smooth coordinate transformation (see [15]):

x = x̂+ 0.1 sin(2πx̂) sin(2πŷ),

y = ŷ + 0.1 sin(2πx̂) sin(2πŷ).

The corresponding mesh of {Th}(1)
h is built from the primal mesh by splitting each quadri-

lateral cell into two triangles and connecting the barycenters of adjacent triangular cells

by a straight segment. The mesh construction is completed at the boundary by con-

necting the barycenters of the triangular cells close to the boundary to the midpoints of

the boundary edges and these latters to the boundary vertices of the primal mesh. The

meshes in {Th}(2)
h are built by partitioning the domain Ω into square cells and relocating

each interior node to a random position inside a square box centered at that node. The

sides of this square box are aligned with the coordinate axis and their length is equal to

0.8 times the minimum distance between two adjacent nodes of the initial square mesh.

The meshes in {Th}(3)
h are obtained by filling the unit square with a suitably scaled non-

convex octagonal cell, which is cut at the domain boundaries to fit into the unit square

domain. The meshes in {Th}(4)
h are obtained by partitioning Ω by squares, each one di-

vided into two triangles. All the meshes are parametrized by the number of partitions in

each direction. The starting mesh of every sequence is built from a 5 × 5 regular grid,

and the refined meshes are obtained by doubling this resolution.

For k ≥ 1, we measure the relative errors

EL2 =

(∑
K∈Th ‖u− Π∇Kuh‖2

0,K

)1/2

‖u‖0,Ω

and

EH1 =

(∑
K∈Th |u− Π∇Kuh|21,K

)1/2

|u|1,Ω
.
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Thus, on every element K ∈ Th, error EL2 compares the exact solution u of problem (2.1)-

(2.2), and Π∇Kuh, the projection of the virtual element solution uh of the discrete prob-

lem (3.1) onto Pk(K). Similarly, on every element K ∈ Th, error EH1 compares ∇u and

∇Π∇Kuh. These relative errors are used to depict the convergence diagrams ( mesh size pa-

rameter h versus error) in Figs 6.2-6.4 and Figs 6.6. In Fig. 6.7 is depicted the convergence

diagram, number of degrees of freedom versus error. In each figure, the EL2 convergence

diagram is given on the left, and on the right the corresponding EH1-convergence diagram.

From the a priori analysis of Section 4, errors EL2 and EH1 must decrease proportionally

to hk+1 and hk, respectively, when we apply the VEM of order k, i.e., the VEM using the

virtual element space V h
k . Accordingly, the experimental slopes for EL2 and EH1 must be

closed to k + 1 and k when we plot the error curves versus the mesh size parameter h.

Instead, these slopes must be closed to (k + 1)/2 and k/2 when we plot the error curves

versus the number of degrees of freedom (as is done in Fig. 6.7) because this latter is

roughly proportional to h−1/2. As can be observed from the graphics, for the different

values of the polynomial degree k, the method converges as predicted by the theory. To

ease the verification, the theoretical convergence rates are indicated by a number shown

near the triangle depicted for each curve.

Figures 6.2, 6.3, and 6.4 show the error curves when we solve (2.1)- (2.2), i.e., the Poisson

problem with constant coefficients, on the mesh families {Th}(1)
h , {Th}(2)

h and {Th}(3)
h ,

respectively. Figures 6.5 shows the error curves when we solve the Poisson problem with

the variable diffusion tensor Λ using mesh family {Th}(1)
h . The experimental convergence

rates are in good agreement with the theoretical ones for all such calculations.

Figures 6.6 and 6.7 compare the accuracy of the non-conforming VEM with different

non-conforming finite element implementations with respect to h and the number of de-

grees of freedom (notice the fractional convergence rates in this latter figure for the reason

that we explained above). For comparison’s sake, we solved problem (2.1)-(2.2) on the

sequence of triangular meshes {Th}(4)
h . The errors curves of the non-conforming VEM are

displayed by solid lines, while those of the non-conforming FEM by dashed lines. For the

comparison test, we implemented the Crouziex-Raviart FEM [21] for k = 1, the Fortin-

Soulie FEM [27] for k = 2, the Crouzeix-Falk [20] for k = 3, and the non-conforming finite

element methods introduced by Baran-Stoyan [4] for k = 4 and 5. As in almost all the

cases the error curves for the non-conforming VEM and FEM are indistinguishable, we

conclude that the performance of the non-conforming VEM is almost always comparable

to the performance of the non-conforming FEM that has the same order of accuracy. The

only case where the performance of the non-conforming VEM seems to be inferior to that

of the corresponding FEM is for k = 1. Notice that in such a case, the VEM is penalized

by the fact that it requires one more internal degrees of freedom in each triangle as is

shown in Fig. 3.1.

Finally, it is worth mentioning that in a preliminary stage of this work, the consistency

of the nonconforming VEM of order k, i.e., the exactness of the method for polynomial
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solutions of degree k, has been tested numerically by solving problem (2.1)-(2.2) with

boundary and source data determined by u(x, y) = xk+yk. To this purpose, we considered

a wider set of polygonal meshes (including the four considered above) and values of k from

1 to 5. In all the cases, the magnitude of the errors EkL2 and EkH1 was comparable to the

arithmetic precision, thus confirming the k-consistency property stated in (3.25). These

results are not reported here.
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(a) Meshes of smoothly remapped hexagons ({Th}(1)
h )

(b) Meshes of randomized quadrilaterals ({Th}(2)
h )

(c) Meshes of regular non-convex octagons ({Th}(3)
h )

(d) Meshes of regular triangular cells ({Th}(4)
h )

Figure 6.1. The first two meshes of each mesh sequence that are used in
the convergence and comparison tests of the numerical experiment section.
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Figure 6.2. Relative error curves with respect to the mesh size h for the nu-
merical solution of the Poisson problem with constant diffusion coefficients
on a sequence of meshes of smoothly remapped hexagons, see Fig. 6.1-(a).
The VEM is based on the polynomials of degree k = 1 (circles), k = 2
(squares), k = 3 (diamonds), k = 4 (triangles), k = 5 (stars).
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Figure 6.3. Relative error curves with respect to the mesh size h for the nu-
merical solution of the Poisson problem with constant diffusion coefficients
on a sequence of meshes of randomized quadrilateral cells, see Fig. 6.1-(b).
The VEM is based on the polynomials of degree k = 1 (circles), k = 2
(squares), k = 3 (diamonds), k = 4 (triangles), k = 5 (stars).
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Figure 6.4. Relative error curves with respect to the mesh size h for the nu-
merical solution of the Poisson problem with constant diffusion coefficients
on a sequence of meshes of regular non-convex octagons, see Fig. 6.1-(c).
The VEM is based on the polynomials of degree k = 1 (circles), k = 2
(squares), k = 3 (diamonds), k = 4 (triangles), k = 5 (stars).

10-210-1100
10-12

10-10

10-8

10-6

10-4

10-2

100

2

3

4

5

6

mesh size h

A
p
p
ro

x
im

a
ti
o
n

E
rr
o
r
E
L
2

10-210-1100
10-12

10-10

10-8

10-6

10-4

10-2

100

1

2

3

4

5

mesh size h

A
p
p
ro

x
im

a
ti
o
n

E
rr
o
r
E
H

1

Figure 6.5. Relative error curves with respect to the mesh size h for the
numerical solution of the Poisson problem with variable diffusion coefficients
on a sequence of meshes of smoothy remapped hexagons, see Fig. 6.1-(a).
The VEM is based on the polynomials of degree k = 1 (circles), k = 2
(squares), k = 3 (diamonds), k = 4 (triangles), k = 5 (stars).
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Figure 6.6. Relative error curves for VEM (solid) and non-conforming FEM
(dashed) with respect to the mesh size h for the numerical solution of the
Poisson problem with constant diffusion coefficients on a sequence of regular
meshes of triangles, see Fig. 6.1-(d). The schemes use polynomials of degree
k = 1 (circles), k = 2 (squares), k = 3 (diamonds), k = 4 (triangles), k = 5
(stars).
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Figure 6.7. Relative error curves for VEM (solid) and non-conforming FEM
(dashed) with respect to the number of degrees of freedom for the numerical
solution of the Poisson problem with constant diffusion coefficients on a
sequence of regular meshes of triangles, see Fig. 6.1-(d). The schemes use
polynomials of degree k = 1 (circles), k = 2 (squares), k = 3 (diamonds),
k = 4 (triangles), k = 5 (stars).
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7. Conclusions

In this work, we introduced the non-conforming virtual element method (VEM) for an

elliptic equation. The VEM allows us to built arbitrary order schemes on shape-regular

polygonal and polyhedral meshes that may include non-convex and degenerate elements.

In contrast to the non-conforming finite element method, the construction of the VEM is

done at once for any degree k ≥ 1 and any element shape. Another advantage of the virtual

element framework is ability to carry out theoretical analysis for complex meshes reusing

many existing functional analysis tools. We have shown the optimal convergence estimates

in the energy and L2 norms. We also established an algebraic equivalence of the VEM

and the mimetic finite difference method from [30]. Numerous numerical results presented

here verify our theoretical conclusions and show that the new method is competitive with

“classical” nonconforming finite element schemes with the same accuracy.

Acknowledgements

The first author is in-debt with Proff. F. Brezzi and D. Marini from Pavia, for

the multiple and fruitful discussions and specially for the encouragement to carry out

this work. The work of the first author was partially supported by KAUST grants

BAS/1/1636 − 01 − 01 and Pocket ID 1000000193. She thanks KAUST for the support

and hospitality, where part of the work was completed while she was Research Scientist

with Peter Markowich. The work of the second and third authors were partially sup-

ported by the Laboratory Directed Research and Development Program (LDRD), U.S.

Department of Energy Office of Science, Office of Fusion Energy Sciences, and the DOE

Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied

Mathematics Research, under the auspices of the National Nuclear Security Administra-

tion of the U.S. Department of Energy by Los Alamos National Laboratory, operated by

Los Alamos National Security LLC under contract DE-AC52-06NA25396.

References

[1] R. A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publish-

ers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.

[2] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, and A. Russo. Equivalent projectors for virtual

element methods. Comput. Math. Appl., 66(3):376–391, 2013.

[3] D. N. Arnold and F. Brezzi. Mixed and nonconforming finite element methods: implementation,

postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér., 19(1):7–32, 1985.

[4] A. E. Baran and G. Stoyan. Gauss-legendre elements: A stable, higher order non-conforming finite

element family. Computing, 79(1):1–21, 2007.

[5] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. Arbitrary-order nodal mimetic discretizations of

elliptic problems on polygonal meshes. SIAM Journal on Numerical Analysis, 49(5):1737–1760, 2011.

[6] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. The Mimetic Finite Difference Method, volume 11

of Modeling, Simulations and Applications. Springer-Verlag, New York, I edition, 2013.

[7] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic principles

of virtual element methods. Math. Models Methods Appl. Sci., 23(1):199–214, 2013.

[8] L. Beirão da Veiga, F. Brezzi, and L. D. Marini. Virtual elements for linear elasticity problems.

SIAM J. Numer. Anal., 51(2):794–812, 2013.



30 B. AYUSO DE DIOS, K. LIPNIKOV, AND G. MANZINI

[9] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The hitchhiker’s guide to the virtual

element method. Mathematical Models and Methods in Applied Sciences, 24(08):1541–1573, 2014.

[10] F. Benedetto, S. Berrone, S. Pieraccini, and S. S. The virtual element method for discrete fracture

network simulations. submitted, 2014.
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