RÖVER'S SIMPLE GROUP IS OF TYPE F_{∞}

JAMES BELK AND FRANCESCO MATUCCI

Abstract

We prove that Claas Röver's Thompson-Grigorchuk simple group $V \mathcal{G}$ has type F_{∞}. The proof involves constructing two complexes on which $V \mathcal{G}$ acts: a simplicial complex analogous to the Stein complex for V, and a polysimiplical complex analogous to the Farley complex for V. We then analyze the descending links of the polysimplicial complex, using a theorem of Belk and Forrest to prove increasing connectivity.

1. Introduction

Let $V \mathcal{G}$ be the group of homeomorphisms of the Cantor set generated by Thompson's group V and Grigorchuk's first group \mathcal{G}. This group was considered by Claas Röver, who proved that $V \mathcal{G}$ is finitely presented and simple [26], and also that $V \mathcal{G}$ is isomorphic to the abstract commensurator of \mathcal{G} [27.

Recall that a group G has type \boldsymbol{F}_{∞} if there exists a classifying space for G with finitely many cells in each dimension. The three Thompson groups F, T, and V have type $F_{\infty}[4,7]$, as do many of their variants such as the generalized groups $F_{n, k}, T_{n, k}$ and $V_{n, k}$ [4], certain diagram groups [12] and picture groups [14], braided Thompson groups [8], higher-dimensional groups $n V$ [16, 20], and various other generalizations [1, 10, 11, 15, 21, 22].

We prove the following theorem.
Main Theorem. Röver's group $V \mathcal{G}$ has type F_{∞}.
Our basic approach is quite similar to that used in 8 for the braided Thompson groups and in [16] for the higher-dimensional groups $n V$. Specifically, we begin by constructing a ranked poset \mathcal{P} on which $V \mathcal{G}$ acts, and we show that the geometric realization $|\mathcal{P}|$ is contractible. Next, we construct a contractible $V \mathcal{G}$-invariant subcomplex $X_{\text {Stein }}$ of $|\mathcal{P}|$, which we refer to as the Stein complex (see [28]), and we analyze the descending links of $X_{\text {Stein }}$ with respect to the filtration induced by the rank.

Our methods for analyzing the descending links are new, and are simpler than those used in [16]. Specifically, we show that the Stein complex $X_{\text {Stein }}$ is a simplicial subdivision of a certain complex $X_{\text {poly }}$ whose cells are products of simplices. The descending links for this complex are flag complexes, and we use a simple combinatorial criterion (Theorem 6.2) due to Belk and Forrest to prove that the connectivity of these flag complexes approaches infinity.

Nekrashevych [23] has introduced a generalized family over Röver-type groups, obtained by combining a generalized Thompson's group $V_{n, 1}$ with any self-similar group acting on an infinite rooted n-ary tree. Unfortunately, our proof is very

[^0]dependent on specific properties of the Grigorchuk group, and does not generalize in an obvious way to the Nekrashevych family of groups. In particular, we use the fact that Grigorchuk's group \mathcal{G} is generated by a finite subgroup together with certain elements of V. There are other self-similar groups with analogous properties, e.g. the Gupta-Sidki groups, and it should be possible to modify our proof to work for these as well.

During the preparation of this manuscript, the authors became aware of some overlapping work by Geoghegan and Bartholdi [18]. Using somewhat different techniques, they prove that every Röver-type group has type F_{∞}, provided that the underlying self-similar group is contracting.

2. Notation and Background

In this section we recall the necessary background material for Thompson's group V, the first Grigorchuk group \mathcal{G}, and Röver's group $V \mathcal{G}$. We also extend V and $V \mathcal{G}$ to groupoids \mathfrak{V} and $\mathfrak{V G}$, respectively, which we will be using to define our complexes. We present many results without proof, but in most cases the proofs can be found in either [24] (for results on \mathcal{G}), [9] (for results on V), or [26] (for results on $V \mathcal{G}$)

We will use the following notation.

- Throughout this paper functions are assumed to act on the left, with the product $f g$ denoting the composition $(f g)(x)=f(g(x))$.
- For each $n \in \mathbb{N}$, let $C(n)$ denote the disjoint union of n copies of the Cantor set. These will be the objects of the groupoids \mathfrak{V} and $\mathfrak{V G}$. The first of these objects $C(1)$ is the "canonical" Cantor set, on which both Thompson's group V and Grigorchuk's group \mathcal{G} act by homeomorphisms.
- If $f: C(m) \rightarrow C\left(m^{\prime}\right)$ and $g: C(n) \rightarrow C\left(n^{\prime}\right)$ are homeomorphisms, their direct sum is the homeomorphism

$$
f \oplus g: C(m+n) \rightarrow C\left(m^{\prime}+n^{\prime}\right)
$$

which maps the first m Cantor sets of the domain to the first m^{\prime} Cantor sets of the range via f, and maps the remaining n domain Cantor sets to the remaining n^{\prime} range Cantor sets via g.

- If $\alpha \in S_{n}$ is a permutation, the corresponding permutation homeomorphism $p_{\alpha}: C(n) \rightarrow C(n)$ is the homeomorphism that permutes the Cantor sets of $C(n)$ according to α.
- Let $x: C(1) \rightarrow C(2)$ denote the split homeomorphism, which maps the first half of $C(1)$ to the first Cantor set of $C(2)$, and maps the second half of $C(1)$ to the second Cantor set of $C(2)$.
Note that conjugating a direct sum of homeomorphisms of $C(1)$ by a permutation homeomorphism permutes the components of the sum, i.e.

$$
\left(f_{1} \oplus \cdots \oplus f_{n}\right) p_{\alpha}=p_{\alpha}\left(f_{\alpha(1)} \oplus \cdots \oplus f_{\alpha(n)}\right)
$$

for any homeomorphisms $f_{i}: C(1) \rightarrow C(1)$ and any $\alpha \in S_{n}$.
2.1. Thompson's group V and the groupoid \mathfrak{V}. For $n \in \mathbb{N}$ and $i \in\{1, \ldots, n\}$, let $x_{i}^{(n)}: C(n) \rightarrow C(n+1)$ denote the i th split homeomorphism, i.e.

$$
x_{i}^{(n)}=\operatorname{id}_{i-1} \oplus x \oplus \operatorname{id}_{n-i}
$$

where id_{k} denotes the identity map on $C(k)$.
Note 2.1. We will usually omit the parenthesized superscripts on split homeomorphisms, e.g. writing x_{3} instead of $x_{3}^{(5)}$. In this case, the domain and range of x_{3} must be determined from context.

We will refer to any composition of split homeomorphisms as a binary forest. If $f: C(m) \rightarrow C(n)$ is a binary forest, the m Cantor sets in the domain of f are called roots, and the n Cantor sets in the range are called leaves. A binary forest whose domain is $C(1)$ (so there is only one root) is called a binary tree.

We can use binary forests to expand permutations, as described in the following proposition.
Proposition 2.2. Let $\alpha \in S_{m}$ be a permutation, and let $f: C(m) \rightarrow C(n)$ be a binary forest. Then there exists a binary forest $f^{\prime}: C(m) \rightarrow C(n)$ and a permutation $\alpha^{\prime} \in S_{n}$ so that $f p_{\alpha}=p_{\alpha^{\prime}} f^{\prime}$.

Let \mathfrak{V} be the groupoid with objects $\{C(n) \mid n \in \mathbb{N}\}$ generated by all split homeomorphisms and all permutation homeomorphisms. Geometrically, elements of \mathfrak{V} can be thought of as braided diagrams (see [19]) or equivalently as abstract strand diagrams (see [2]). The following proposition is well-known.

Proposition 2.3. Every element of \mathfrak{V} can be written as $f_{2}^{-1} p_{\alpha} f_{1}$, where f_{1} and f_{2} are binary forests and α is a permutation.

In particular, every element of \mathfrak{V} that maps $C(1)$ to $C(1)$ can be written as $t_{2}^{-1} p_{\alpha} t_{1}$, where t_{1} and t_{2} are binary trees and α is a permutation. The group of all such homeomorphisms is known as Thompson's group \boldsymbol{V}.
2.2. Grigorchuk's Group. Let σ, b, c, and d be the homeomorphisms of $C(1)$ defined by the following equations

$$
\sigma=x^{-1} p_{(12)} x, \quad b=x^{-1}(\sigma \oplus c) x, \quad c=x^{-1}(\sigma \oplus d) x, \quad d=x^{-1}(\mathbb{1} \oplus b) x
$$

where $\mathbb{1}$ denotes the identity homeomorphism on $C(1)$. Note that these equations define b, c and d uniquely through recursion.

The group $\mathcal{G}=\langle\sigma, b, c, d\rangle$ is known as the first Grigorchuk group. See [24] for a general introduction to \mathcal{G}, including the following proposition.

Proposition 2.4. The generators σ, b, c, and d all have order two. Moreover, the four element set

$$
K=\{\mathbb{1}, b, c, d\}
$$

is a subgroup of \mathcal{G} isomorphic to the Klein four-group.
Now, if g is any element of Grigorchuk's group, then either

$$
x g=\left(g_{1} \oplus g_{2}\right) x \quad \text { or } \quad x g=p_{(12)}\left(g_{1} \oplus g_{2}\right) x
$$

for some $g_{1}, g_{2} \in G$. More generally, we can expand g along any binary tree, as described in the following proposition.

Proposition 2.5. If $g \in \mathcal{G}$ and $t: C(1) \rightarrow C(n)$ is a binary tree, then

$$
t g=p_{\alpha}\left(g_{1} \oplus \cdots \oplus g_{n}\right) t^{\prime}
$$

for some binary tree $t^{\prime}: C(1) \rightarrow C(n)$, some $g_{1}, \ldots, g_{n} \in \mathcal{G}$, and some permutation $\alpha \in S_{n}$.

More generally, if $g_{1}, \ldots, g_{m} \in \mathcal{G}$ and $f: C(m) \rightarrow C(n)$ is a binary forest, then

$$
f\left(g_{1} \oplus \cdots \oplus g_{n}\right)=p_{\alpha}\left(g_{1}^{\prime} \oplus \cdots \oplus g_{n}^{\prime}\right) f^{\prime}
$$

for some binary forest $f^{\prime}: C(m) \rightarrow C(n)$, some $g_{1}^{\prime}, \ldots, g_{n}^{\prime} \in \mathcal{G}$, and some permutation $\alpha \in S_{n}$.

The following proposition states that any element of \mathcal{G} can be expanded to a particularly simple form.

Proposition 2.6. Let $g \in \mathcal{G}$. Then there exist binary trees $t_{1}, t_{2}: C(1) \rightarrow C(n)$ so that

$$
g=t_{2}^{-1} p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) t_{1}
$$

for some $\alpha \in S_{n}$ and $k_{1}, \ldots, k_{n} \in\{\mathbb{1}, b, c, d\}$.
Proof. Recall that \mathcal{G} is a contracting self-similar group with nucleus $\{\mathbb{1}, \sigma, b, c, d\}$ (see [23]). It follows that any $g \in \mathcal{G}$ can be written in the form

$$
g=t^{-1} p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) t
$$

where $t: C(1) \rightarrow C(n)$ is a binary tree, $\alpha \in S_{n}$, and $k_{1}, \ldots, k_{n} \in\{\mathbb{1}, \sigma, b, c, d\}$. If any of the k_{i} 's are equal to σ, we can split the corresponding leaves to obtain the desired form.

Corollary 2.7. Let $g_{1}, \ldots, g_{m} \in \mathcal{G}$. Then there exists a pair of binary forests $f_{1}, f_{2}: C(m) \rightarrow C(n)$ so that

$$
g_{1} \oplus \cdots \oplus g_{m}=f_{2}^{-1} p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) f_{1}
$$

for some $\alpha \in S_{n}$ and $k_{1}, \ldots, k_{n} \in\{\mathbb{1}, b, c, d\}$.
2.3. Röver's group $V \mathcal{G}$ and the groupoid $\mathfrak{V G}$. Röver's group $V \mathcal{G}$ is the group of homeomorphisms of $C(1)$ generated by the elements of V and the elements of \mathcal{G}. More generally, Röver's groupoid $\mathfrak{V G}$ is the groupoid generated by the elements of \mathfrak{V} and the elements of \mathcal{G}. Roughly speaking, $\mathfrak{V G}$ is the groupoid consisting of all homeomorphisms $C(m) \rightarrow C(n)$ that locally look like elements of $V \mathcal{G}$.
Proposition 2.8. Every element of Röver's groupoid $\mathfrak{V G}$ has the form

$$
f_{2}^{-1} p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) f_{1}
$$

where f_{1} and f_{2} are binary forests, $\alpha \in S_{n}$, and $k_{1}, \ldots, k_{n} \in\{\mathbb{1}, b, c, d\}$.
In particular, every element of Röver's group $V \mathcal{G}$ has the form

$$
t_{2}^{-1} p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) t_{1}
$$

where $t_{1}, t_{2}: C(1) \rightarrow C(n)$ are binary trees, $\alpha \in S_{n}$, and $k_{1}, \ldots, k_{n} \in\{\mathbb{1}, b, c, d\}$.
Proof. By Proposition 2.3, elements of \mathfrak{V} have the required form. Similarly, by Proposition 2.6. every element of \mathcal{G} also has the required form. Hence, to complete the proof we just show that the products of two elements in $\mathfrak{V} \mathcal{G}$ in the required form still has the correct shape. Consider then a product of the form

$$
f_{2}^{-1} p_{\alpha}\left(k_{1} \oplus \ldots \oplus k_{n}\right) f_{1} h_{2}^{-1} p_{\beta}\left(\ell_{1} \oplus \ldots \oplus \ell_{m}\right) h_{1}
$$

Since $f_{1} h_{2}^{-1} p_{\beta} \in \mathfrak{V}$, by Proposition 2.3 there exist binary forests \widetilde{f}_{1} and \widetilde{h}_{2} and a permutation γ so that $f_{1} h_{2}^{-1} p_{\beta}=\widetilde{h}_{2}^{-1} p_{\gamma} \widetilde{f}_{1}$. Then the above product can be written

$$
f_{2}^{-1} p_{\alpha}\left(k_{1} \oplus \ldots \oplus k_{n}\right) \widetilde{h}_{2}^{-1} p_{\gamma} \widetilde{f}_{1}\left(\ell_{1} \oplus \ldots \oplus \ell_{m}\right) h_{1}
$$

Next, by Proposition 2.5. we know that $\tilde{f}_{1}\left(\ell_{1} \oplus \cdots \oplus \ell_{m}\right)=p_{\delta}\left(g_{1} \oplus \cdots \oplus g_{r}\right) f_{1}^{\prime}$ for some binary forest f_{1}^{\prime}, some permutation p_{δ}, and some $g_{1}, \ldots, g_{r} \in \mathcal{G}$, so the above product can be written

$$
f_{2}^{-1} p_{\alpha}\left(k_{1} \oplus \ldots \oplus k_{n}\right) \widetilde{h}_{2}^{-1} p_{\epsilon}\left(g_{1} \oplus \ldots \oplus g_{m}\right) h_{1}^{\prime}
$$

where $h_{1}^{\prime}=f_{1}^{\prime} h_{1}$ and $p_{\epsilon}=p_{\gamma} p_{\delta}$. Repeating the same step on the left and applying Proposition 2.2, we can rewrite this product as

$$
F_{1}^{-1} p_{\zeta}\left(g_{1}^{\prime} \oplus \ldots \oplus g_{m}^{\prime}\right) p_{\epsilon}\left(g_{1} \oplus \ldots \oplus g_{m}\right) h_{1}^{\prime}
$$

where F_{1} is a binary forest, p_{ζ} is a permutation, and $g_{1}^{\prime}, \ldots, g_{m}^{\prime} \in \mathcal{G}$. Moving the p_{ϵ} to the left and combining the direct sums gives the form

$$
F_{1}^{-1} p_{\eta}\left(g_{1}^{\prime \prime} \oplus \ldots \oplus g_{m}^{\prime \prime}\right) h_{1}^{\prime}
$$

where $p_{\eta}=p_{\zeta} p_{\epsilon}$ and $g_{i}^{\prime \prime}=g_{\gamma(i)}^{\prime} g_{i}$. This almost has the correct form-the only trouble is that $g_{1}^{\prime \prime}, \ldots, g_{m}^{\prime \prime}$ are arbitrary elements of \mathcal{G}. However, by Proposition 2.7 , we know that

$$
\left(g_{1}^{\prime \prime} \oplus \ldots \oplus g_{m}^{\prime \prime}\right)=F_{2}^{-1} p_{\theta}\left(k_{1}^{\prime} \oplus \cdots \oplus k_{r}^{\prime}\right) F_{3}
$$

for some $k_{i}^{\prime} \in\{\mathbb{1}, b, c, d\}$, some permutation θ and some binary forests F_{2} and F_{3}. Then the original product can be written

$$
F_{1}^{-1} p_{\epsilon} F_{2}^{-1} p_{\theta}\left(k_{1}^{\prime} \oplus \cdots \oplus k_{r}^{\prime}\right) F_{3} h_{1}^{\prime}
$$

Moving the F_{2}^{-1} to the left and combining like terms gives an expression in the desired form.

3. The Poset of Expansions

In this section we define a poset \mathcal{P} on which Röver's group $V \mathcal{G}$ acts, and we show that the resulting geometric realization $|\mathcal{P}|$ is contractible.

For each n and each $i \in\{1, \ldots, n\}$, let $\sigma_{i}^{(n)}, b_{i}^{(n)}, c_{i}^{(n)}$, and $d_{i}^{(n)}$ denote the homeomorphisms that act as σ, b, c, or d, respectively, on the i th Cantor set, and act as the identity elsewhere. As with the split homeomorphism $x_{i}^{(n)}$, we will usually drop the parenthesized superscripts for these maps (writing only σ_{i}, b_{i}, c_{i}, or d_{i}), in which case the domain must be determined from context.

Recall that \mathcal{G} has a subgroup $K=\{\mathbb{1}, b, c, d\}$ isomorphic to the Klein four-group. For each n, let K_{n} denote the natural copy of the wreath product $K \imath S_{n}$ acting on $C(n)$. That is, let

$$
K_{n}=\left\{p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) \mid \alpha \in S_{n} \text { and } k_{1}, \ldots, k_{n} \in K\right\}
$$

If $f: C(1) \rightarrow C(n)$ is an element of Röver's groupoid, let

$$
[f]=K_{n} f=\left\{k f \mid k \in K_{n}\right\}
$$

and let \mathcal{P} be the set of all such cosets. We shall refer to elements of \mathcal{P} as vertices, with the rank of a vertex $[f]$ being the number of Cantor sets in the range of f.

Definition 3.1. Let $v, w \in \mathcal{P}$. We say that w is a splitting of v if there exists a homeomorphism $f: C(1) \rightarrow C(n)$ in $\mathfrak{V G}$ and an $i \in\{1, \ldots, n\}$ so that

$$
v=[f] \quad \text { and } \quad w=\left[x_{i} f\right]
$$

We say that w is an expansion of v, denoted $v \leq w$, if there exists a sequence of vertices $u_{1}, \ldots, u_{m} \in \mathcal{P}$ such that $u_{1}=v, u_{m}=w$, and each u_{i+1} is a splitting of u_{i}.

Note that \mathcal{P} forms a ranked poset under the expansion relation \leq.
Proposition 3.2. The poset \mathcal{P} is a directed set. That is, any two vertices in \mathcal{P} have a common expansion.

Proof. Let $[g]$ be a vertex in \mathcal{P}. By Proposition 2.8 , we know that

$$
g=f^{-1} p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) t
$$

for some binary forest f, some binary tree t, some permutation $\alpha \in S_{n}$, and some elements $k_{1}, \ldots, k_{n} \in K$. Since f is a composition of split homeomorphisms, the vertex $[f g]$ is an expansion of $[g]$. But

$$
[f g]=\left[p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) t\right]=[t]
$$

since $p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) \in K$. Thus every vertex in \mathcal{P} has an expansion which is just a binary tree. But clearly any two binary trees have a common expansion.

Let $|\mathcal{P}|$ denote the geometric realization of the poset \mathcal{P}, i.e. the simplicial complex whose vertices are elements of \mathcal{P}, with simplices corresponding to finite chains $v_{1}<\cdots<v_{k}$.

Corollary 3.3. The geometric realization $|\mathcal{P}|$ of \mathcal{P} is contractible.
Proof. It is well known that the geometric realization of any directed set is contractible. See [17, Prop. 9.3.14] for a proof.

Note that Röver's group $V \mathcal{G}$ acts on the vertex set \mathcal{P} on the right by precomposition, i.e. $[f] g=[f g]$ for all $f: C(1) \rightarrow C(n)$ in $\mathfrak{V G}$ and $g \in V \mathcal{G}$. It follows that $V \mathcal{G}$ acts simplicially on $|\mathcal{P}|$.

Proposition 3.4. Under the action of $V \mathcal{G}$, each vertex in $|\mathcal{P}|$ has finite stabilizer.
Proof. If $[f]$ is any vertex of rank n, then the stabilizer of $[f]$ is precisely the group $f^{-1} K_{n} f$. This is isomorphic to the wreath product $K \ S_{n}$, which is finite of order $n!\cdot 4^{n}$.

Unfortunately, the complex $|\mathcal{P}|$ is too large for us to successfully apply Brown's criterion [4]. As with other Thompson-like groups, it will be necessary to consider a certain subcomplex of $|\mathcal{P}|$, which we will define in the next section.

4. The Stein Complex

In this section we define a locally finite $V \mathcal{G}$-invariant subcomplex $X_{\text {Stein }}$ of $|\mathcal{P}|$, and we prove that $X_{\text {Stein }}$ is contractible. The complex $X_{\text {Stein }}$ is the analog of the complexes for F, T, and V introduced by Stein in 28. Similar complexes were introduced in 8 and [16] for the braided Thompson groups $B V$ and the higherdimensional Thompson groups $s V$, respectively.

Before defining $X_{\text {Stein }}$, we need some more information about splittings. Although we have defined splittings using the split homeomorphisms $x_{i}^{(n)}$, the form of a splitting may depend on a chosen representative f. For example, if $[f]$ is a vertex of rank n, then $b_{i} f$ is also a representative for $[f]$. But

$$
x_{i}^{(n)} b_{i}^{(n)}=\sigma_{i}^{(n+1)} c_{i+1}^{(n+1)} x_{i}^{(n)}
$$

SO

$$
\left[x_{i} b_{i} f\right]=\left[\sigma_{i} c_{i+1} x_{i} f\right]=\left[\sigma_{i} x_{i} f\right]
$$

where the last equality follows from the fact that $c_{i+1} \in K_{n+1}$. We conclude that $\left[\sigma_{i} x_{i} f\right]$ is a splitting of $[f]$.

The following proposition shows that these are the only "unusual" splittings.
Proposition 4.1. Let $[f]$ be a vertex in \mathcal{P} of rank n. Then every splitting of $[f]$ has the form

$$
\left[x_{i} f\right] \quad \text { or } \quad\left[\sigma_{i} x_{i} f\right]
$$

for some $i \in\{1, \ldots, n\}$
Proof. Let g be any other representative for $[f]$. Then $g \in K_{n} f$, so

$$
g=p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) f
$$

for some $\alpha \in S_{n}$ and $k_{1}, \ldots, k_{n} \in K$. If $i \in\{1, \ldots, n\}$, then

$$
x_{i} g=x_{i} p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{n}\right) f
$$

But $x_{i} p_{\alpha}=p_{\beta} x_{j}$ for some $\beta \in S_{n+1}$, where $j=\alpha^{-1}(i)$. So

$$
\left[x_{i} g\right]=\left[p_{\beta} x_{j}\left(k_{1} \oplus \cdots \oplus k_{n}\right) f\right]=\left[x_{j}\left(k_{1} \oplus \cdots \oplus k_{n}\right) f\right]
$$

Since $k_{j} \in\{\mathbb{1}, b, c, d\}$, we conclude that $\left[x_{i} g\right]$ is either $\left[x_{j} f\right],\left[x_{j} b_{j} f\right],\left[x_{j} c_{j} f\right]$, or $\left[x_{j} d_{j} f\right]$. We already know that $\left[x_{j} b_{j} f\right]=\left[\sigma_{j} x_{j} f\right]$, and similarly
$\left[x_{j} c_{j} f\right]=\left[\sigma_{j} d_{j+1} x_{j} f\right]=\left[\sigma_{j} x_{j} f\right] \quad$ and $\quad\left[x_{j} d_{j} f\right]=\left[b_{j+1} x_{j} f\right]=\left[x_{j} f\right]$.
Thus, there are exactly two ways to split the i th Cantor set of f : we can compose with either x_{i} or $\sigma_{i} x_{i}$. By Proposition 3.2 , these two splittings $\left[x_{i} f\right]$ and $\left[\sigma_{i} x_{i} f\right]$ must have a common expansion. Indeed, $\left[x_{i} x_{i} f\right]$ is an expansion of them both, since

$$
\left[x_{i} \sigma_{i} x_{i} f\right]=\left[p_{(i i+1)} x_{i} x_{i} f\right]=\left[x_{i} x_{i} f\right]
$$

To clarify the situation further, the following picture shows a portion of \mathcal{P} lying above the vertex $[f]$.

This prompts the following definition.

Definition 4.2. Let $v, w \in \mathcal{P}$. We say that w is a double splitting of v if there exists an $f: C(1) \rightarrow C(n)$ in $\mathfrak{V} \mathcal{G}$ so that

$$
v=[f] \quad \text { and } \quad w=\left[x_{i} x_{i} f\right]
$$

for some $i \in\{1, \ldots, n\}$.
As the following proposition shows, double splittings do not have the same ambiguity as single splittings.

Proposition 4.3. Let $[f]$ be a vertex in \mathcal{P} of rank n. Then every double splitting of $[f]$ has the form $\left[x_{i} x_{i} f\right]$ for some $i \in\{1, \ldots, n\}$.
Proof. Following the proof of Proposition 4.1, we find that the only possible double splittings of $[f]$ are $\left[x_{i} x_{i} f\right],\left[x_{i} x_{i} b_{i} f\right],\left[x_{i} x_{i} c_{i} f\right]$, and $\left[x_{i} x_{i} d_{i} f\right]$. But

$$
\left[x_{i} x_{i} b_{i} f\right]=\left[x_{i} \sigma_{i} c_{i+1} x_{i} f\right]=\left[p_{(i i+1)} c_{i+2} x_{i} x_{i} f\right]=\left[x_{i} x_{i} f\right]
$$

and

$$
\left[x_{i} x_{i} c_{i} f\right]=\left[x_{i} \sigma_{i} d_{i+1} x_{i} f\right]=\left[p_{(i i+1)} d_{i+2} x_{i} x_{i} f\right]=\left[x_{i} x_{i} f\right]
$$

and

$$
\left[x_{i} x_{i} d_{i} f\right]=\left[x_{i} b_{i+1} x_{i} f\right]=\left[b_{i+2} x_{i} x_{i} f\right]=\left[x_{i} x_{i} f\right]
$$

We are now ready to define the complex $X_{\text {Stein }}$.
Definition 4.4. If $[f]$ is a vertex in \mathcal{P} of rank n, an elementary expansion of $[f]$ is any vertex of the form

$$
\left[\left(u_{1} \oplus \cdots \oplus u_{n}\right) f\right]
$$

where each $u_{i} \in\left\{\mathbb{1}, x, \sigma_{1} x, x_{1} x\right\}$.
That is, an elementary expansion of $[f]$ is obtained by splitting or double splitting some of the Cantor sets in the range of f. Note that this definition does not depend on the chosen representative f.

Definition 4.5. A simplex $v_{1}<\cdots<v_{n}$ in $|\mathcal{P}|$ is called an elementary simplex if v_{n} is an elementary expansion of v_{1}. The Stein complex $X_{\text {Stein }}$ for $V \mathcal{G}$ is the subcomplex of $|\mathcal{P}|$ consisting of all elementary simplices.

We wish to prove that $X_{\text {Stein }}$ is contractible. To do so, consider the intervals in \mathcal{P}, which are subsets of the form

$$
[u, w]=\{v \in \mathcal{P} \mid u \leq v \leq w\}
$$

We wish to prove that every nonempty interval $[u, w]$ in \mathcal{P} contains a maximum elementary expansion of u, which we refer to as the elementary core of the interval. That is, $v_{0} \in[u, w]$ is the elementary core of $[u, w]$ if v_{0} is an elementary expansion of u, and v_{0} is a common expansion of all elementary expansions of u contained in $[u, w]$.

Lemma 4.6. Let $v \in \mathcal{P}$ be a vertex of the form $\left[\left(g_{1} \oplus \cdots \oplus g_{n}\right) f\right]$, where g_{1}, \ldots, g_{n} and f are homeomorphisms in $\mathfrak{V G}$. Then the expansions of v are precisely the vertices of the form $\left[\left(h_{1} \oplus \cdots \oplus h_{n}\right) f\right]$, where each $\left[h_{i}\right]$ is an expansion of $\left[g_{i}\right]$.

Proof. Note first that v itself has the required form, with $h_{i}=g_{i}$ for each i. By Proposition 4.1, each subsequent splitting is just a composition by x_{i} or $\sigma_{i} x_{i}$, and is therefore equivalent to a splitting of one of the h_{j} 's.

Lemma 4.7. Let $\mathbb{1}$ denote the identity map on $C(1)$, let $u=[\mathbb{1}]$, and let w be an expansion of u. Then the interval $[u, w]$ has an elementary core.

Proof. There are only four elementary expansions of $[\mathbb{1}]$, as shown in the following picture.

Thus it suffices to prove that $\left[x_{1} x\right] \in[u, w]$ whenever $[x] \in[u, w]$ and $\left[\sigma_{1} x\right] \in[u, w]$.
Suppose that $[x] \in[u, w]$ and $\left[\sigma_{1} x\right] \in[u, w]$, so $[x] \leq w$ and $\left[\sigma_{1} x\right] \leq w$. Note that [$\mathbb{1}]$ has only six expansions of rank two or less:

If w is an expansion of $\left[x_{1} x\right]$ then we are done, so suppose instead that w is a common expansion of $\left[\sigma_{1} x_{1} x\right]$ and $\left[\sigma_{2} x_{1} x\right]$. Note that

$$
\sigma_{1} x_{1} x=(\sigma \oplus \mathbb{1} \oplus \mathbb{1}) x_{1} x \quad \text { and } \quad \sigma_{2} x_{1} x=(\mathbb{1} \oplus \sigma \oplus \mathbb{1}) x_{1} x
$$

Since $\left[\sigma_{1} x_{1} x\right] \leq w$, Lemma 4.6 tells us that

$$
w=\left(f_{1} \oplus f_{2} \oplus f_{3}\right) x_{1} x
$$

where

$$
[\sigma] \leq\left[f_{1}\right], \quad[\mathbb{1}] \leq\left[f_{2}\right], \quad \text { and } \quad[\mathbb{1}] \leq\left[f_{3}\right]
$$

But since $\left[\sigma_{2} x_{1} x\right] \leq w$, we also know that

$$
[\mathbb{1}] \leq\left[f_{1}\right], \quad[\sigma] \leq\left[f_{2}\right], \quad \text { and } \quad[\mathbb{1}] \leq\left[f_{3}\right]
$$

Then $\left[f_{1}\right],\left[f_{2}\right]$, and $\left[f_{3}\right]$ are all expansions of $[\mathbb{1}]$, and therefore w is an expansion of $\left[(\mathbb{1} \oplus \mathbb{1} \oplus \mathbb{1}) x_{1} x\right]=\left[x_{1} x\right]$ by Lemma 4.6 .
Proposition 4.8. Every nonempty interval $[u, w]$ in \mathcal{P} has an elementary core.
Proof. Let $f \in \mathfrak{V G}$ so that $u=[f]$. Since w is an expansion of u, we know that

$$
w=\left[\left(g_{1} \oplus \cdots \oplus g_{n}\right) f\right]
$$

for some expansions $\left[g_{1}\right], \ldots,\left[g_{n}\right]$ of $[\mathbb{1}]$, where n is the rank of $[f]$. For each i, the interval $\left.[\mathbb{1}],\left[g_{i}\right]\right]$ has an elementary core $\left[h_{i}\right]$ by Lemma 4.7. where each h_{i} is in $\left\{\mathbb{1}, x, \sigma_{1} x, x_{1} x\right\}$. We claim that $v_{0}=\left[\left(h_{1} \oplus \cdots \oplus h_{n}\right) f\right]$ is an elementary core for $[u, w]$.

First note that v_{0} is an elementary expansion of u. Now let v be any elementary expansion of u such that $v \in[u, w]$. We know that

$$
v=\left[\left(h_{1}^{\prime} \oplus \cdots \oplus h_{n}^{\prime}\right) f\right]
$$

for some $h_{1}^{\prime}, \ldots, h_{n}^{\prime} \in\left\{\mathbb{1}, x, \sigma_{1} x, x_{1} x\right\}$. Since $v \leq w$, we also know that $\left[h_{i}^{\prime}\right] \leq\left[g_{i}\right]$ for each i. Then $\left[h_{i}^{\prime}\right]$ is an elementary expansion of $\mathbb{1}$ and $\left[h_{i}^{\prime}\right] \in\left[[\mathbb{1}],\left[g_{i}\right]\right]$, so $\left[h_{i}^{\prime}\right] \leq\left[h_{i}\right]$ for each i. By Lemma 4.6, it follows that $v \leq v_{0}$.

Note that the elementary core of $[u, w]$ is only equal to u in the case where $u=w$. For the following proof, we need a proposition of Quillen's.

Proposition 4.9. Let X be a poset, and suppose there exists an element $x_{0} \in X$ and a function $f: X \rightarrow X$ so that

$$
x \geq f(x) \leq x_{0}
$$

for all $x \in X$. Then the geometric realization $|X|$ is contractible.
Proof. See [25], Section 1.5.
We say that an interval $[v, w]$ in \mathcal{P} is non-elementary if $v \leq w$ and w is not an elementary expansion of v.

Lemma 4.10. Let $[u, w]$ be a non-elementary interval in \mathcal{P}, and let

$$
(u, w)=\{v \in \mathcal{P} \mid u<v<w\} .
$$

Then the geometric realization $|(u, w)|$ is contractible.
This proof is the same as the proof in Lemma 2.4 of [16], which itself derives from the proof of the lemma in Section 4 of [5].

Proof. Let v_{0} be the elementary core of $[u, w]$, and note that $v_{0} \in(u, w)$ since w is not an elementary expansion of u. For each $v \in(u, w)$, let $f(v)$ be the elementary core of the interval $[u, v]$, and note that $f(v)$ is always an element of (u, w). Moreover, $f(v) \leq v$ and $f(v) \leq v_{0}$ for all $v \in(u, w)$, and therefore $|(u, w)|$ is contractible by Proposition 4.9 .

Proposition 4.11. The complex $X_{\text {Stein }}$ is contractible
Again, this proof is the same as the proof in Corollary 2.5 of 16, which itself derives from a proof in 5].

Proof. Define the length of a non-elementary interval $[v, w]$ in \mathcal{P} to be the difference of the ranks of v and w. Suppose we start with $X_{\text {Stein }}$, and attach the geometric realizations $|[v, w]|$ of non-elementary intervals in \mathcal{P} increasing order of length. Clearly each $|[v, w]|$ is contractible. Moreover, each $|[v, w]|$ is being attached along $|[v, w)| \cup|(v, w]|$, which is simply the suspension of $|(v, w)|$. Since $|(v, w)|$ is contractible by Lemma 4.10, it follows that $|[v, w)| \cup|(v, w]|$ is contractible, and therefore attaching $|[v, w]|$ does not change the homotopy type. But the end result of attaching all of these complexes is $|\mathcal{P}|$, which is contractible by Corollary 3.3, so $X_{\text {Stein }}$ must itself be contractible

5. A Polysimplicial Complex

In this section, we introduce a polysimplicial complex $X_{\text {poly }}$ of which $X_{\text {Stein }}$ is a simplicial subdivision. Here the word polysimplex refers to any Euclidean polytope obtained by taking a product of simplices. Thus a polysimplicial complex is an affine cell complex whose cells are polysimplices, with the property that the intersection of any two non-disjoint cells is a common face of each.

Note 5.1. This notion of a polysimplicial complex is more general than the one introduced by Bruhat and Tits in [6] and used in the theory of buildings. In particular, we place no requirements on the dimensions of the polysimplices, and we do not require the existence of galleries joining pairs of cells.

Polysimplicial complexes are a common generalization of simplicial complexes and cubical complexes. Note that cubes are indeed polysimplicial, being products of 1-simplices. The polysimplicial complex $X_{\text {poly }}$ that we will define can be viewed as an analogue for $V \mathcal{G}$ of Farley's cubical complexes for F, T, and V (see [12, 13]). The Stein complexes for the Brin-Thompson groups $n V$ defined in [16] are also simplicial subdivisions of polysimplicial complexes, and the approach we use here to analyze the descending links of $X_{\text {poly }}$ would work just as well for these complexes.

We begin by defining a collection of simplicially subdivided polysimplices within our complex $X_{\text {Stein }}$.

Definition 5.2. Let $[f]$ be a vertex of rank n in $X_{\text {Stein }}$, and for each $i \in\{1, \ldots, n\}$ let S_{i} be one of the following sets:

$$
\{\mathbb{1}\}, \quad\{\mathbb{1}, x\}, \quad\left\{\mathbb{1}, x, x_{1} x\right\}, \quad\left\{\mathbb{1}, \sigma_{1} x\right\}, \quad\left\{\mathbb{1}, \sigma_{1} x, x_{1} x\right\}, \quad \text { or } \quad\left\{\mathbb{1}, x_{1} x\right\} .
$$

Then the corresponding basic polysimplex in $X_{\text {Stein }}$, denoted psim $\left(f, S_{1}, \ldots, S_{n}\right)$, is the full subcomplex of $X_{\text {Stein }}$ spanned by the following set of vertices:

$$
\left\{\left[\left(u_{1} \oplus \cdots \oplus u_{n}\right) f\right] \mid u_{i} \in S_{i} \text { for all } i\right\}
$$

Each basic polysimplex has the combinatorial structure of a simplicial subdivision of a polysimplex. In particular,

$$
\operatorname{psim}\left(f, S_{1}, \ldots, S_{n}\right) \cong \Delta^{d_{1}} \times \cdots \times \Delta^{d_{n}}
$$

where $\Delta^{d_{i}}$ denotes a simplex of dimension $d_{i}=\left|S_{i}\right|-1$.
Note that if f and f^{\prime} are two representatives for the same vertex, then every basic polysimplex $\operatorname{psim}\left(f^{\prime}, S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right)$ can be written as $\operatorname{psim}\left(f, S_{1}, \ldots, S_{n}\right)$ for some sets S_{1}, \ldots, S_{n}. That is, the basic polysimplices based at a vertex $[f]$ do not depend on the chosen representative f.

Lemma 5.3. The intersection of two non-disjoint basic polysimplices is a common face of each.

Proof. Let $P=\operatorname{psim}\left(f, S_{1}, \ldots, S_{m}\right)$ and $Q=\operatorname{psim}\left(g, T_{1}, \ldots, T_{n}\right)$ be two basic polysimplices with nonempty intersection. Define a binary operation \wedge on the vertices of P by the formula

$$
\left[\left(s_{1} \oplus \cdots \oplus s_{m}\right) f\right] \wedge\left[\left(s_{1}^{\prime} \oplus \cdots \oplus s_{m}^{\prime}\right) f\right]=\left[\left(\min \left(s_{1}, s_{1}^{\prime}\right) \oplus \cdots \oplus \min \left(s_{m}, s_{m}^{\prime}\right)\right) f\right]
$$

and define a similar binary operation on the vertices of Q. We claim that the two definitions of \wedge agree on the vertices of $P \cap Q$.

Let v and v^{\prime} be vertices of $P \cap Q$. Note that the definition of \wedge is preserved by restrictions to faces. Therefore, without loss of generality, we may assume that $v \wedge v^{\prime}=[f]$ in P, and $v \wedge v^{\prime}=[g]$ in Q. Then

$$
v=\left[\left(s_{1} \oplus \cdots \oplus s_{m}\right) f\right]=\left[\left(t_{1} \oplus \cdots \oplus t_{n}\right) g\right]
$$

for some $s_{i} \in S_{i}$ and $t_{i} \in T_{i}$, and similarly

$$
v^{\prime}=\left[\left(s_{1}^{\prime} \oplus \cdots \oplus s_{m}^{\prime}\right) f\right]=\left[\left(t_{1}^{\prime} \oplus \cdots \oplus t_{n}^{\prime}\right) g\right]
$$

for some $s_{i}^{\prime} \in S_{i}$ and $t_{i}^{\prime} \in T_{i}$. Then

$$
\begin{aligned}
& \left(s_{1} \oplus \cdots \oplus s_{m}\right) f
\end{aligned}=p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{r}\right)\left(t_{1} \oplus \cdots \oplus t_{n}\right) g, ~\left(s_{1}^{\prime} \oplus \cdots \oplus s_{m}^{\prime}\right) f=p_{\beta}\left(k_{1}^{\prime} \oplus \cdots \oplus k_{p}^{\prime}\right)\left(t_{1}^{\prime} \oplus \cdots \oplus t_{n}^{\prime}\right) g
$$

for some $k_{1}, \ldots, k_{r}, k_{1}^{\prime}, \ldots, k_{p}^{\prime} \in K$ and permutations α and β. Solving for $f g^{-1}$ in both of these equations gives

$$
\begin{aligned}
f g^{-1}=\left(s_{1} \oplus \cdots \oplus s_{m}\right)^{-1} & p_{\alpha}\left(k_{1} \oplus \cdots \oplus k_{r}\right)\left(t_{1} \oplus \cdots \oplus t_{n}\right) \\
& =\left(s_{1}^{\prime} \oplus \cdots \oplus s_{m}^{\prime}\right)^{-1} p_{\beta}\left(k_{1}^{\prime} \oplus \cdots \oplus k_{p}^{\prime}\right)\left(t_{1}^{\prime} \oplus \cdots \oplus t_{n}^{\prime}\right)
\end{aligned}
$$

Now, since $v \wedge v^{\prime}=[f]$, we know that $\min \left(s_{i}, s_{i}^{\prime}\right)=\mathbb{1}$ for each i, so either $s_{i}=\mathbb{1}$ or $s_{i}^{\prime}=\mathbb{1}$ for each i, and the same holds true for t_{i} and t_{i}^{\prime}. Since s_{i} or s_{i}^{\prime} is $\mathbb{1}$ for each i, the function $f g^{-1}$ must be nonexpanding. But since t_{i} or t_{i}^{\prime} is $\mathbb{1}$ for each i, the inverse $g f^{-1}$ is similarly nonexpanding, so $f g^{-1}$ is an isometry. It follows that $m=n$. Indeed, since s_{i} or s_{i}^{\prime} is $\mathbb{1}$ for each i, the element ${f g^{-1} \text { must map each }}^{\text {m }}$ of the n Cantor sets of $C(n)$ to another via an element of K, so

$$
f g^{-1}=p_{\gamma}\left(k_{1}^{\prime \prime} \oplus \cdots \oplus k_{n}^{\prime \prime}\right)
$$

for some permutation γ and some $k_{1}^{\prime \prime}, \ldots, k_{n}^{\prime \prime} \in K$. This proves that $[f]=[g]$, and therefore the two definitions of \wedge agree on $P \cap Q$.

Now, let v be the vertex $v_{1} \wedge \cdots \wedge v_{k}$, where v_{1}, \ldots, v_{k} are the vertices of $P \cap Q$. Then v must be a vertex of $P \cap Q$, and indeed is a minimum for the vertices of $P \cap Q$. Note that the full subcomplex of P spanned by the vertices of P that are greater than or equal to v is a face of P, and similarly the full subcomplex of Q spanned by the vertices of Q that are greater than or equal to Q is a full subcomplex of Q. Therefore, without loss of generality, we may assume that $[f]=[g]=v$. Indeed, we may as well assume that $f=g$. Then

$$
P \cap Q=\operatorname{psim}\left(f, S_{1} \cap T_{1}, \ldots, S_{m} \cap T_{m}\right)
$$

which is a common face of each.
Proposition 5.4. The basic polysimplices in the Stein complex $X_{\text {Stein }}$ form a polysimplicial complex $X_{\text {poly }}$, which has $X_{\text {Stein }}$ as a simplicial subdivision.

Proof. Note first that each simplex of $X_{\text {Stein }}$ lies in the interior of a unique basic polysimplex. Specifically, given a k-simplex $\Delta=\left(v_{0}<\cdots<v_{k}\right)$ in $X_{\text {Stein }}$, let f be a representative for v_{0}. Then each vertex v_{i} of this simplex has the form

$$
v_{i}=\left[\left(u_{i, 1} \oplus \cdots \oplus u_{i, n}\right) f\right]
$$

for some $u_{i, j} \in\left\{\mathbb{1}, x, \sigma_{1} x, x_{1} x\right\}$, so Δ is contained in the interior of the basic polysimplex $\operatorname{psim}\left(f, S_{1}, \ldots, S_{n}\right)$, where each $S_{j}=\left\{u_{0, j}, u_{1, j}, \ldots, u_{k, j}\right\}$.

It should be clear from the definition that each face of a basic polysimplex is again a basic polysimplex. Furthermore, Lemma 5.3 shows that the intersection of two non-disjoint basic polysimplices is a common face of each. We conclude that $X_{\text {poly }}$ is a polysimplicial complex.

Note that the vertices of $X_{\text {poly }}$ are all the elements of \mathcal{P} (i.e. the same vertices as $X_{\text {Stein }}$) and each edge of $X_{\text {poly }}$ corresponds to either a splitting or a double splitting of a vertex in \mathcal{P}. Note also that elements of $V \mathcal{G}$ map basic polysimplices to basic polysimplices, and therefore $V \mathcal{G}$ acts on the complex $X_{\text {poly }}$.

Remark 5.5. There is a natural way to combine the polysimiplices of $X_{\text {poly }}$ to form cubes, e.g. by combining each pair of triangles

$$
\operatorname{psim}\left(f,\left\{\mathbb{1}, x, x_{1} x\right\},\{\mathbb{1}\}, \ldots,\{\mathbb{1}\}\right) \quad \text { and } \quad \operatorname{psim}\left(f,\left\{\mathbb{1}, \sigma_{1} x, x_{1} x\right\},\{\mathbb{1}\}, \ldots,\{\mathbb{1}\}\right)
$$

to form a square. However, this does not result in a cubical complex $X_{\text {cube }}$. For example, assuming f has rank at least 2 , the square defined above will share three vertices with the square obtained by combining

$$
\operatorname{psim}\left(g,\left\{\mathbb{1}, x, x_{1} x\right\},\{\mathbb{1}\}, \ldots,\{\mathbb{1}\}\right) \quad \text { and } \quad \operatorname{psim}\left(g,\left\{\mathbb{1}, \sigma_{1} x, x_{1} x\right\},\{\mathbb{1}\}, \ldots,\{\mathbb{1}\}\right)
$$

where $g=x_{1}^{-1} p_{(23)} x_{1} f$. This violates the definition of a cubical complex.
Because a polysimplicial complex is an affine cell complex, we can apply BestvinaBrady Morse theory [3] to $X_{\text {poly }}$. This is based on the following definition.

Definition 5.6. Let X be an affine cell complex. A Morse function on X is a $\operatorname{map} \phi: X \rightarrow \mathbb{R}$ such that
(1) ϕ restricts to a non-constant affine linear map on each cell of X of dimension one or greater, and
(2) the image under ϕ of the 0 -skeleton of X is discrete in \mathbb{R}.

If ϕ is a Morse function on X and $r \in \mathbb{R}$, the sublevel complex $X \leq r$ is the subcomplex of X consisting of all cells that are contained in $\phi^{-1}((-\infty, r])$. If v is a vertex in X, the descending link of v is its link in the corresponding sublevel complex:

$$
\operatorname{lk} \downarrow(v)=\operatorname{lk}\left(v, X^{\leq \phi(v)}\right)
$$

Note that, if X is a polysimplicial complex, then the descending link of any vertex v in X is a simplicial complex. If X itself is not simplicial, this descending link cannot be viewed as a subcomplex of X. For example, although each vertex of $\mathrm{lk} \downarrow(v)$ corresponds to a vertex of $X^{\leq \phi(v)}$ that is adjacent to v, two such vertices are connected by an edge in $\mathrm{lk} \downarrow(v)$ if and only if the corresponding vertices of $X \leq \phi(v)$ lie in a common 2 -cell containing v.

By now, the following combination of the Bestvina-Brady Morse lemma 3 with Brown's criterion [4] is standard.

Theorem 5.7. Let G be a group acting cellularly on a contractible affine cell complex X, and let $\phi: X \rightarrow \mathbb{R}$ be a Morse function on X. Suppose that:
(1) Each sublevel complex $X^{\leq r}$ has finitely many orbits of cells.
(2) The stabilizer of each vertex in X is finite.
(3) For each $k \in \mathbb{N}$, there exists an $r \in \mathbb{R}$ so that the descending link of each vertex in $\phi^{-1}([r, \infty))$ is k-connected.
Then G has type F_{∞}.
Now, define a Morse function ϕ on our polysimplicial complex $X_{\text {poly }}$ by defining the value of ϕ on each vertex to be its rank in the poset \mathcal{P}, and then extending linearly to each polysimplex. Since the endpoints of each edge in $X_{\text {poly }}$ have different ranks, ϕ is non-constant on each polysimplex of dimension one or greater, and thus ϕ is a valid Morse function.

To prove that $V \mathcal{G}$ has type F_{∞}, we must prove that $X_{\text {poly }}$ satisfies conditions (1) through (3) of the above theorem. We begin with condition (1).

Proposition 5.8. Each sublevel complex $X_{\text {poly }}^{\leq r}$ has finitely many $V \mathcal{G}$-orbits of cells.

Proof. Note that any two vertices $[f],[g] \in \mathcal{P}$ of the same rank are in the same $V \mathcal{G}$-orbit, since $f^{-1} g \in V \mathcal{G}$ and $f^{-1} g$ maps $[f]$ to $[g]$. Therefore, each sublevel complex has only finitely many orbits of vertices. More generally, observe that $f^{-1} g$ maps the cell $\operatorname{psim}\left(f, S_{1}, \ldots, S_{n}\right)$ to the cell $\operatorname{psim}\left(g, S_{1}, \ldots, S_{n}\right)$, and therefore each sublevel complex has only finitely many orbits of cells.

This verifies condition (1), and condition (2) is the content of Proposition 3.4 Therefore, all that remains is to show condition (3) on the connectivity of the descending links. Specifically, we must show that for each $k \in \mathbb{N}$, there exists an $n \in \mathbb{N}$ so that the descending link of each vertex in $X_{\text {poly }}$ of rank n or greater is k-connected. The proof of this condition is given in the next section.

6. Descending Links

In this section, we complete the proof that $V \mathcal{G}$ has type F_{∞} by analyzing the descending links of the polysimplicial complex $X_{\text {poly }}$. Our approach is based on the following definition and theorem, which are due to the first author and Bradley Forrest [1], and have not previously appeared in published form. The approach is similar in spirit to the techniques used by Brown in [4] to prove that V has type F_{∞}.

Definition 6.1 (Belk, Forrest). Let X be a simplicial complex, and let $k \geq 1$.
(1) A simplex Δ in X is called a \boldsymbol{k}-ground for X if every vertex of X is adjacent to all but at most k vertices of Δ.
(2) We say that X is (n, k)-grounded if there exists an n-simplex in X that is a k-ground for X.

Note that any sub-simplex of a k-ground for X is again a k-ground for X. Thus an (n, k)-grounded complex is also (n^{\prime}, k)-grounded for all $n^{\prime}<n$.

For the following theorem, recall that a flag complex is a simplicial complex X with the property that every finite set of vertices that are pairwise joined by edges spans a simplex in X.

Theorem 6.2 (Belk, Forrest). For $m, k \geq 1$, every finite ($m k, k$)-grounded flag complex is $(m-1)$-connected.

Proof. We proceed by induction on m. For $m=1$, the statement is that every finite (k, k)-grounded flag complex is connected, which is clear from the definition.

Now suppose that every finite $(m k, k)$-grounded flag complex is $(m-1)$-connected, and let X be a finite $((m+1) k, k)$-grounded flag complex. Then we can filter X as a chain of full subcomplexes

$$
\Delta=X_{0} \subset X_{1} \subset \cdots \subset X_{p}=X
$$

where Δ is an $(m+1) k$-simplex that is a k-ground for X, and each X_{i} is obtained from X_{i-1} by adding a single vertex v_{i}.

Let L_{i} denote the link of v_{i} in X_{i}, and observe that each X_{i} is homeomorphic to the union $X_{i-1} \cup_{L_{i}} C L_{i}$, where $C L_{i}$ denotes the cone on L_{i}. Since Δ is a k-ground for X, we know that L_{i} includes at least $m k+1$ vertices of Δ. In particular, the intersection $L_{i} \cap \Delta$ contains an $m k$-simplex, which must be a k-ground for L_{i}. By our induction hypothesis, it follows that each L_{i} is $(m-1)$-connected. Since $X_{0}=\Delta$ is contractible, this proves that X_{i} is m-connected for every i, and in particular X is m-connected.

Now consider the complex $X_{\text {poly }}$. We wish to show that the connectivity of the descending links in $X_{\text {poly }}$ goes to infinity. That is, we wish to show that for each $k \in \mathbb{N}$, there exists an $n \in \mathbb{N}$ so that for any vertex v in $X_{\text {poly }}$ of rank n or greater, the descending link $\mathrm{lk} \downarrow(v)$ is k-connected.

If $v \in \mathcal{P}$, a vertex $w \in \mathcal{P}$ is called a contraction of v if v is either a splitting or a double splitting of w. Note that the contractions of v are in one-to-one correspondence with the vertices of $1 \mathrm{k} \downarrow(v)$ in $X_{\text {poly }}$. We will use the following notation for contractions:

- If $[f]$ is a vertex of $\operatorname{rank} n$ and $i, j \in\{1, \ldots, n\}$ are distinct, let

$$
\left[C_{i j} f\right]=\left[x_{1}^{-1} p_{\alpha} f\right]
$$

where $\alpha \in S_{n}$ is any permutation for which $\alpha(i)=1$ and $\alpha(j)=2$.

- If $[f]$ is a vertex of rank n and $i, j, k \in\{1, \ldots, n\}$ are distinct, let

$$
\left[C_{i j k} f\right]=\left[x_{1}^{-1} x_{1}^{-1} p_{\alpha} f\right]
$$

where $\alpha \in S_{n}$ is any permutation for which $\alpha(i)=1, \alpha(j)=2$, and $\alpha(k)=3$.
That is, $\left[C_{i j} f\right]$ is the contraction of $[f]$ obtained by joining intervals i and j, while $\left[C_{i j k} f\right]$ is the contraction obtained by joining intervals i and j, and then joining the result with k. Note that these contractions do not depend on the chosen permutation α, although they do depend on the chosen representative f of the vertex $[f]$.

Proposition 6.3. Let $[f]$ be a vertex. Then every contraction of $[f]$ has the form

$$
\left[C_{i j} u_{i} u_{j} f\right], \quad\left[C_{i j} \sigma_{i} u_{i} u_{j} f\right], \quad \text { or } \quad\left[C_{i j k} u_{i} u_{j} u_{k} f\right]
$$

for some distinct $i, j, k \in\{1, \ldots, n\}$, where each $u_{s} \in\left\{\mathbb{1}, b_{s}, c_{s}, d_{s}\right\}$.
Proof. This is similar to the proofs of Propositions 4.1 and 4.3.
If $[f]$ is a vertex and v is a contraction of $[f]$, we define the support of v (with respect to f) as follows:

$$
\operatorname{supp}(v)= \begin{cases}\{i, j\} & \text { if } v=\left[C_{i j} u_{i} u_{j} f\right] \text { or } v=\left[C_{i j} \sigma_{i} u_{i} u_{j} f\right] \\ \{i, j, k\} & \text { if } v=\left[C_{i j k} u_{i} u_{j} u_{k} f\right]\end{cases}
$$

That is, the support of v consists of those intervals which are joined together during the contraction.

Lemma 6.4. Let $[f]$ be a vertex, and let v_{1}, \ldots, v_{m} be contractions of $[f]$. If the supports of v_{1}, \ldots, v_{m} are disjoint, then v_{1}, \ldots, v_{m} and $[f]$ all lie in an m-cube in $X_{\text {poly }}$.
Proof. Let r be the rank of f. Left-multiplying f by elements of the set

$$
\left\{b_{i}, c_{i}, d_{i} \mid 1 \leq i \leq r\right\}
$$

if necessary, we may assume that each v_{ℓ} has the form

$$
\left[C_{i j} f\right], \quad\left[C_{i j} \sigma_{i} f\right], \quad \text { or } \quad\left[C_{i j k} f\right]
$$

for some distinct $i, j, k \in\{1, \ldots, r\}$. Left-multiplying f by p_{α} for some permutation $\alpha \in S_{r}$, we may assume that each v_{ℓ} has the form

$$
\left[C_{i, i+1} f\right], \quad\left[C_{i, i+1} \sigma_{i} f\right], \quad \text { or } \quad\left[C_{i, i+1, i+2} f\right]
$$

for some $i \in\{1, \ldots, r\}$. Then we can divide the sequence $(1,2, \ldots, r)$ into subsequences s_{1}, \ldots, s_{n}, of the form $(i),(i, i+1)$, or $(i, i+1, i+2)$, where each subsequence of length 2 or 3 corresponds to the support of some v_{ℓ}, and each subsequence of length 1 consists of an element of $\{1, \ldots, r\}$ that does not lie in the support of any v_{ℓ}. Define sets S_{1}, \ldots, S_{n} as follows:

$$
S_{j}= \begin{cases}\{\mathbb{1}\} & \text { if } s_{j}=(i) \text { for some } i \\ \{\mathbb{1}, x\} & \text { if } s_{j}=(i, i+1) \text { for some } i \text { and } v_{\ell}=\left[C_{i, i+1} f\right] \text { for some } \ell \\ \left\{\mathbb{1}, \sigma_{1} x\right\} & \text { if } s_{j}=(i, i+1) \text { for some } i \text { and } v_{\ell}=\left[C_{i, i+1} \sigma_{i} f\right] \text { for some } \ell \\ \left\{\mathbb{1}, x_{1} x\right\} & \text { if } s_{j}=(i, i+1, i+2) \text { for some } i\end{cases}
$$

Then $\operatorname{psim}\left([f], S_{1}, \ldots, S_{n}\right)$ is an m-cube in $X_{\text {poly }}$ that contains $[f]$ as well as all of the vertices v_{1}, \ldots, v_{m}.

Lemma 6.5. Let $[f]$ be a vertex in \mathcal{P}, let v and w be contractions of $[f]$ whose corresponding vertices in $\operatorname{lk} \downarrow([f])$ are joined by an edge. Then either one of the sets $\operatorname{supp}_{f}(v)$ and $\operatorname{supp}_{f}(w)$ is strictly contained in the other, or the two sets are disjoint.

Proof. Since the vertices corresponding to v and w share an edge in $\operatorname{lk} \downarrow([f])$, the vertices v, w, and $[f]$ must all lie on a common 2 -cell in $X_{\text {poly }}^{\leq \operatorname{rank}(f)}$, which must be either a triangle or a square. If it is a square then $\operatorname{supp}_{f}(v)$ and $\operatorname{supp}_{f}(w)$ must be disjoint. If it is a triangle then, assuming $\operatorname{rank}(v) \leq \operatorname{rank}(w)$, we have $v=[g]$, $w=\left[x_{i} g\right]$ and $[f]=\left[x_{i} x_{i} g\right]$ for some g and i, and it follows that $\operatorname{supp}_{f}(w)$ is strictly contained in $\operatorname{supp}_{f}(v)$.
Lemma 6.6. Let $f: C(1) \rightarrow C(n)$ be a homeomorphism in $\mathfrak{V G}$. Then the descending link $\mathrm{lk} \downarrow([f])$ is a flag complex.
Proof. Let v_{1}, \ldots, v_{r} be contractions of $[f]$, and suppose that the corresponding vertices of $\operatorname{lk} \downarrow([f])$ are all connected by edges in the 1 -skeleton. Let $\left\{v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right\}$ be the subset of $\left\{v_{1}, \ldots, v_{r}\right\}$ consisting of vertices with maximal support. Then the supports of $v_{1}^{\prime}, \ldots, v_{m}^{\prime}$ with respect to f must be disjoint, so by Lemma 6.4 $v_{1}^{\prime}, \ldots, v_{m}^{\prime}$ and $[f]$ all lie in an m-cube in $X_{\text {poly }}$. This cube can be written as

$$
\operatorname{psim}\left(g,\left\{\mathbb{1}, u_{1}\right\}, \ldots,\left\{\mathbb{1}, u_{m}\right\},\{\mathbb{1}\}, \ldots,\{\mathbb{1}\}\right)
$$

where

$$
v_{i}^{\prime}=\left[\left(u_{1} \oplus \cdots \oplus \mathbb{1} \oplus \cdots \oplus u_{m} \oplus \mathbb{1} \oplus \cdots \oplus \mathbb{1}\right) g\right]
$$

for each i.
Now, if v_{k} is not maximal, then v_{k} will not be a vertex of this cube. However, for each v_{i}^{\prime} there exists at most one v_{k} so that $v_{i}^{\prime}<v_{k}<[f]$ is an elementary simplex, since no two such v_{k} 's have disjoint supports. In this case, there exists a $u_{i}^{\prime} \in\left\{x, \sigma_{1} x\right\}$ so that

$$
v_{k}=\left[\left(u_{1} \oplus \cdots \oplus u_{i}^{\prime} \oplus \cdots \oplus u_{m} \oplus \mathbb{1} \oplus \cdots \oplus \mathbb{1}\right) g\right]
$$

Let $S_{i}=\left\{\mathbb{1}, u_{i}^{\prime}, u_{i}\right\}$ in this case, and let $S_{i}=\left\{1, u_{i}\right\}$ otherwise. Then the polysimplex

$$
\operatorname{psim}\left(g, S_{1}, \ldots, S_{m},\{\mathbb{1}\}, \ldots,\{\mathbb{1}\}\right),
$$

contains all of the vertices v_{1}, \ldots, v_{r} as well as $[f]$.
We are now ready to analyze the connectivity of the descending links in $X_{\text {poly }}$.

Proposition 6.7. Let $k \in \mathbb{N}$, and let v be a vertex of $X_{\text {poly }}$ of rank at least $6 k+2$. Then $\operatorname{lk} \downarrow(v)$ is $(k-1)$-connected.

Proof. By Lemma 6.6, the descending link $\operatorname{lk} \downarrow(v)$ is a flag complex. We claim that $\mathrm{lk} \downarrow(v)$ is $(3 k, 3)$-grounded. Let f be a representative for v, and let $w_{1}, \ldots, w_{3 k+1}$ be the vertices $\left[C_{12} f\right],\left[C_{34} f\right], \ldots,\left[C_{6 k+1,6 k+2} f\right]$. Since the supports of the w_{i} 's are disjoint, by Lemma 6.4 the corresponding vertices of $\mathrm{lk} \downarrow(v)$ form a $3 k$-simplex Δ. Furthermore, if w is any contraction of v, then the support of w is a set with at most three elements, which can intersect the supports of at most three different w_{i}. Then the vertex of $1 \mathrm{k} \downarrow(v)$ corresponding to w is connected to at least $(3 k+1)-3$ vertices of Δ, which proves that $\mathrm{lk} \downarrow(v)$ is $(3 k, 3)$-grounded. By Theorem 6.2 we conclude that $\operatorname{lk} \downarrow(v)$ is $(k-1)$-connected.

This concludes the proof of the Main Theorem.

Acknowledgments

The authors would like to thank Collin Bleak, Kai-Uwe Bux, Elisabeth Fink, Marco Marschler and Stefan Witzel for helpful conversations. We would also like to thank the anonymous referees for several remarks which improved the exposition of this paper.

We thank the organizers of the 2013 LMS-EPSRC Durham Symposium on Geometric and Cohomological Group Theory, as well as the University of Durham, the Université Paris Sud 11, the Universität Bielefeld and the Universidade de Lisboa for their hospitality while this research was being carried out. The first author would like to thank Bard College for the support he received during his junior sabbatical, and the second author gratefully acknowledges the Fondation Mathématique Jacques Hadamard (ANR-10-CAMP-0151-02 - FMJH - Investissement d'Avenir) and the Fundação para a Ciência e a Tecnologia (FCT - PEstOE/MAT/UI0143/2014) for support received during the development of this work.

References

[1] J. Belk and B. Forrest. Rearrangement groups of fractals. Preprint (2015). arxiv:1510.03133
[2] J. Belk and F. Matucci, Conjugacy and dynamics in Thompson's groups. Geom. Dedicata 169 (2014), 239-261.
[3] M. Bestvina and N. Brady, Morse theory and finiteness properties of groups. Invent. Math. 129 (1997), no. 3, 445-470.
[4] K. Brown, Finiteness properties of groups. J. Pure Appl. Algebra 44 (1987), no. 1-3, 45-75.
[5] K. Brown, The geometry of finitely presented infinite simple groups. Algorithms and classification in combinatorial group theory. Springer New York, 1992. 121-136.
[6] F. Bruhat and J. Tits, Groupes réductifs sur un corps local: I. Données radicelles valuées, Inst. Hautes Études Sci. Publ. Math. No. 41 (1972), 5-251.
[7] K. Brown and R. Geoghegan, An infinite-dimensional torsion-free $F P_{\infty}$ group. Invent. Math. 77 (1984), no 2, 367-381.
[8] K. Bux, M. Fluch, M. Marschler, S. Witzel, and M. Zaremsky, The braided Thompson groups are of type F_{∞}, to appear in Journal für die reine und angewandte Mathematik (Crelles Journal).
[9] J. Cannon, W. Floyd, and W. Parry. Introductory notes on Richard Thompson's groups. Enseign. Math. 42 (1996), no. 3-4, 215-256.
[10] S. Cleary, Groups of piecewise-linear homeomorphisms with irrational slopes. Rocky Mountain J. Math. 25 (1995), no. 3, 935-955.
[11] S. Cleary, Regular subdivision in $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$. Illinois J. Math. 44 (2000), no. 3, 453-464.
[12] D. Farley, Finiteness and CAT(0) properties of diagram groups. Topology 42, no. 5 (2003), 1065-1082.
[13] D. Farley, Actions of picture groups on CAT(0) cubical complexes. Geom. Dedicata 110 (2005), 221-242.
[14] D. Farley, Homological and finiteness properties of picture groups. Trans. Amer. Math. Soc. 357 (2005), no. 9, 3567-3584.
[15] D. Farley and B. Hughes, Finiteness properties of some groups of local similarities. Proceedings of the Edinburgh Mathematical Society (Series 2) 58.02 (2015): 379-402
[16] M. Fluch, M. Marschler, S. Witzel, and M. Zaremsky, The Brin-Thompson groups $s V$ are of type F_{∞}. Pacific J. Math. 266 (2013), no. 2, 283-295.
[17] R. Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics, 243. Springer, New York, 2008. xiv+473 pp
[18] R. Geoghegan and L. Bartholdi, "Self-similar groups and Thompson's group V." Presentation by R. Geoghegan at the Workshop on the Extended Family of R. Thompson's Groups. University of St. Andrews. 26 May 2014.
[19] V. Guba and M. Sapir, Diagram groups, Mem. Amer. Math. Soc. 130 (1997), no. 620, viii+117 pp.
[20] D. Kochloukova, C. Martínez-Pérez, and B. Nucinkis, Cohomological finiteness properties of the Brin-Thompson-Higman groups $2 V$ and $3 V$. Proc. Edinb. Math. Soc. 56 (2013), no. 3, 777-804.
[21] C. Martínez-Pérez, F. Matucci, and B. Nucinkis, Cohomological finiteness conditions and centralisers in generalisations of Thompson's group V, to appear in Forum Mathematicum.
[22] H. Matui, Topological full groups of one-sided shifts of finite type. Journal für die reine und angewandte Mathematik (Crelles Journal) 705 (2015): 35-84.
[23] V. Nekrashevych, Cuntz-Pimsner algebras of group actions. J. Operator Theory 52 (2004), no. 2, 223-249.
[24] P. de La Harpe, Topics in geometric group theory. University of Chicago Press, 2000.
[25] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. in Math. 28 (1978), no. 2, 101-128.
[26] C. Röver, Constructing finitely presented simple groups that contain Grigorchuk groups. J. Algebra 220 (1999), 284-313.
[27] C. Röver, Abstract commensurators of groups acting on rooted trees. Geom. Dedicata 94 (2002), 45-61.
[28] M. Stein, Groups of piecewise linear homeomorphisms. Trans. Amer. Math. Soc. 332 (1992), no. $2,477-514$.

Mathematics Program, Bard College, Annandale-on-Hudson, NY 12504, USA.
E-mail address: belk@bard.edu
$U R L$: http://math.bard.edu/belk
Centro de Álgebra da Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649-003 Lisbon, Portugal.

E-mail address: francesco.matucci@campus.ul.pt

[^0]: 2010 Mathematics Subject Classification. 20F65, 20J05, 20 E 08.
 Key words and phrases. Thompson's groups, Grigorchuk's group, finiteness properties, polysimplicial complex.

