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Abstract Intersection growth concerns the asymptotic behavior of the index of the intersection of all

subgroups of a group that have index at most n. In this note we show that the intersection growth

of some groups may not be a nicely behaved function by showing the following seeming contradictory

results: (a) for any group G the intersection growth function iG(n) is super linear infinitely often; and

(b) for any non-decreasing unbounded function f there exists a group G such that iG below f infinitely

often.
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1. Introduction

Let G be a class of subgroups of a group Γ. We define the G-intersection growth function

of Γ by letting iGΓ(n) be the index of the intersection of all G-subgroups of Γ with index

at most n. In symbols,

iGΓ(n) := [Γ : ΛGΓ(n)], ΛGΓ(n) :=
⋂

[Γ:∆]≤n,∆∈G

∆.

Here, G will always be either the class of all subgroups, the class C of normal subgroups

or the class maxC of maximal normal subgroups of Γ, i.e. those subgroups that are

maximal among normal subgroups. The corresponding intersection growth functions will

then be written iΓ(n), iCΓ (n) and imaxC
Γ (n).

Intersection growth has been first defined by Biringer, Bou-Rabee and the authors

in [?] where it has been studied for free groups and some arithmetic groups. It has

been observed that it measures the Hausdorff dimension of Γ in profinite metric and

a connection has been drawn between intersection growth and the residual finiteness

growth, which will be mentioned at the end of this introduction.

The aim of this note is to build examples of groups whose intersection growth behaves

slowly at certain integers and much faster at others. We will assume all groups in this

note to be finitely generated. For a group Γ, let R(Γ) denote the intersection of all finite
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index subgroups of Γ. Obviously, iGΓ(n) = iGΓ/R(Γ)(n), so we can assume that R(Γ) = {1},
i.e. we will assume Γ to be finitely generated and residually finite.

Observation 1.1. For any infinite residually finite group Γ one has that iΓ(n) ≥ n

for infinitely many positive integers n.

The main result of this note states that, in some sense, the opposite is also true.

Theorem 1.2. For any non-decreasing unbounded function f : N→ N there exists a

finitely generated infinite residually finite group Γ such that iΓ(n) < f(n) for infinitely

many positive integers n.

Remark 1.3. We observe that Observation ?? and Theorem ?? are still true if we

replace iΓ(n) with either iCΓ (n) or imaxC
Γ (n). It is immediate to deduce it for Theorem ??,

because it is always true that imaxC
Γ (n) ≤ iCΓ (n) ≤ iΓ(n), for all positive integers n. On

the other hand, the proof for Observation ?? is an easy adaptation of the one we give

below and we omit it to keep this note short.

Observation ?? and Theorem ?? show that intersection growth functions may behave in

a bad way. More precisely, these functions cannot be approximated via regular functions

(polynomial, exponential, etc.) as they have different behavior at different integers.

The main idea is to construct a group with a very limited number of finite quotients

and this is achieved by taking a suitable direct product of a family of simple groups.

Recall that for a residually finite finitely generated group Γ = 〈X〉, one can define the

residual finiteness growth function FΓ,X(n) as the minimal natural number N such that

any element of word length ≤ n with respect to X can be detected in a quotient Q of

cardinality ≤ N (see Bou-Rabee [?] for an introduction). All the constructions in this

paper can immediately be translated to get similar information about residual finiteness

growth. See Bou-Rabee and Seward [?] for a similar result about building examples

with arbitrarily large residual finiteness growth functions. We also mention the work of

Kharlampovich, Myasnikov and Sapir [?] who build finitely presented solvable examples

with arbitrarily large residual finiteness growth functions.

Finally, we recall that for a group Γ, one defines rΓ(n) to be the number of inequivalent

finite irreducible n-dimensional representations of G (assuming this number is finite). One

defines RΓ(n) =
∑n

k=1 rΓ(k) to be the representation growth function of Γ. Craven [?]

showed analogues of Observation ?? and Theorem ?? for RΓ(n). Unlike Observation ??,

Craven’s upper bound Theorem G requires a more careful and involved construction.

2. Proofs of the results

Proof of Observation ??. Since Γ is infinite and residually finite for every n there

exists a finite index subgroup HN < Γ of index [Γ : HN ] = N > n. This clearly implies

that ΛΓ(N) ≤ HN , i.e., iΓ(N) ≥ N . �



On groups with slow intersection growth 3

Observation 2.1. Let {ni} be a strictly increasing sequence of positive integers, such

that n1 ≥ 5. If G :=
∏∞

i=1 Alt(ni), then

iG(nk − 1) =
∏
i<k

|Alt(ni)|.

Proof. The group G is profinite and endowed with the product topology. Notice that

for profinite groups is natural to define intersection growth with respect to finite index

closed subgroups. In this case by Nikolov and Segal [?] every subgroup of finite index is

closed, but we do need to use this fact. We observe the following:

1. if H ≤ G has index ≤ nk − 1, then H ∩Alt(nk) has index ≤ nk − 1 inside Alt(nk),

2. Alt(nk) has no nontrivial subgroups of index ≤ nk−1, but it has subgroup of index

nk.

Therefore, if H ≤ G is a closed subgroup of index ≤ nk − 1, then H ∩Alt(ni) = Alt(ni),

for any i ≥ k. This implies that

H ≥
⊕
i≥k

Alt(ni) =
∏
i≥k

Alt(ni)

and therefore ΛG(nk − 1) ≥
∏

i≥k Alt(ni). It is very easy to see the opposite inclusion

(since the group
∏

i≥k Alt(ni) can be realized as the intersection of point stabilizers of

the actions of G via Alt(ni) on ni points for i ≤ k), which concludes the proof. �

This observation shows that if the sequence {nk} grows very quickly then, in some

sense, the function iG is very small at certain values.

Remark 2.2. The group G constructed in Observation ?? is not finitely generated,

but it is finitely generated as a profinite group.

The idea is to construct a finitely generated group whose profinite completion is the

same as the group G constructed in Observation ??. Since G is finitely generated as a

profinite group it is very easy to find finitely generated dense subgroup Γ ⊆ G. Such an

embedding will give a surjective map π : Γ̂→ G, however this map is often not injective

because Γ might have finite index subgroups which which are not visible in G [?, ?] and

can not be used to obtain information about iΓ. If the map π is an isomorphism it is

very easy to see that iΓ = iG (see [?]).

For some time it was not known if it is possible to find Γ such that the map π is an

isomorphism. This question was settled in Theorem 1.2 in [?], which we restate here in

the weaker form we need.

Theorem 2.3 (Kassabov-Nikolov, [?]). For any strictly increasing sequence {nk}, the

Cartesian product
∏∞

k=1 Alt(nk) is a profinite completion of a finitely generated residually

finite group.

We are now ready to prove Theorem ??.



On groups with slow intersection growth 4

Proof of Theorem ??. We choose n1 = 5 and, inductively, we define nk in the

following way: given nk, let nk+1 be an integer large enough such that f(nk+1 − 1) ≥∏
i≤k |Alt(ni)| and nk+1 > nk.

The chosen sequence allows us to construct the group G of Observation ??. By The-

orem ?? we have that G = Γ̂, for a finitely generated residually finite group Γ. As

was observed above iΓ = iG and so iΓ(nk − 1) =
∏

i<k |Alt(ni)|. By construction

iΓ(nk − 1) < f(nk − 1) for any k > 1 and we are done. �
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