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ABSTRACT

We solve the twisted conjugacy problem on Thompson’s group F . We

also exhibit orbit undecidable subgroups of Aut(F ), and give a proof that

Aut(F ) and Aut+(F ) are orbit decidable provided a certain conjecture

on Thompson’s group T is true. By using general criteria introduced by

Bogopolski, Martino and Ventura in [5], we construct a family of free ex-

tensions of F where the conjugacy problem is unsolvable. As a byproduct

of our techniques, we give a new proof of a result of Bleak-Fel’shtyn-

Gonçalves in [4] showing that F has property R∞, and which can be

extended to show that Thompson’s group T also has property R∞.
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1. Introduction

Since Max Dehn formulated the three main problems in group theory in 1911,

they have been a central subject of study in the theory of infinite groups. There

now exists a large body of works devoted to the study of these problems. In

this paper we focus on the conjugacy problem and a variant known as the

twisted conjugacy problem. The conjugacy problem is known to be solvable for

Thompson’s groups F, T and V by works of Guba and Sapir [13], Belk and the

second author [2] and Higman [14]. Our interest arose in the study of extensions

of the group F where we find an unsolvability result. Even though Thompson

himself used the groups F, T, V in the construction of finitely presented groups

with unsolvable word problem, to the best of our knowledge, the result that

we obtain is a first in a direct generalization of the original Thompson groups.

Moreover, we also look at property R∞ which has been under study recently

and which is known to be true for the group F and one of its extensions.

We now give a more detailed description of the results. Let F be a group. We

say that a subgroup A 6 Aut(F ) has solvable orbit decidability problem (ODP)

if it is decidable to determine, given y, z ∈ F , whether or not there is ϕ ∈ A
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25955. The second author gratefully acknowledges the Fondation Mathématique
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and its staff for the support received during the development of this work. The
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and g ∈ F such that

ϕ(z) = g−1yg.

On the other hand, if ϕ ∈ Aut(F ), we say that F has solvable ϕ-twisted con-

jugacy problem (TCPϕ) if it is decidable to determine, given y, z ∈ F , whether

or not y is ϕ-twisted conjugated to z, i.e. whether there exists g ∈ F such that

(1.1) z = g−1yϕ(g).

More generally, we say that the group F has solvable twisted conjugacy problem

(TCP) if (TCPϕ) is solvable for any given ϕ ∈ Aut(F ).

In the recent paper [5], Bogopolski, Martino and Ventura develop a criterion

to study the conjugacy problem for some extensions of groups, and found a

connection of this problem with the two problems mentioned above.

Let F,G,H be finitely presented groups and consider a short exact sequence

(1.2) 1 −→ F
α−→ G

β−→ H −→ 1.

In this situation, α(F )�G and so the conjugation map ϕg, for g ∈ G, restricts

to an automorphism of F , ϕg : F → F , x 7→ g−1xg, (which does not necessarily

belong to Inn(F )). We define the action subgroup of the sequence (1.2) to be

the group of automorphisms

AG = {ϕg | g ∈ G} 6 Aut(F ).

Theorem 1.1 (Bogopolski-Martino-Ventura, [5]): Let

1 −→ F
α−→ G

β−→ H −→ 1.

be an algorithmic short exact sequence of groups such that

(1) F has solvable twisted conjugacy problem,

(2) H has solvable conjugacy problem, and

(3) for every 1 6= h ∈ H, the subgroup 〈h〉 has finite index in its centralizer

CH(h), and we can compute a set of coset representatives of 〈h〉 in

CH(h).

Then, the conjugacy problem for G is solvable if and only if the action subgroup

AG = {ϕg | g ∈ G} 6 Aut(F ) is orbit decidable.

Here, a short exact sequence is algorithmic if all the involved groups are

finitely presented and given to us with an explicit finite presentation, and all

the morphisms are given by the explicit images of the generators.
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Condition (3) is of more technical nature. It is clearly satisfied in free groups

(where the centralizer of a non-trivial element h is just the cyclic subgroup

generated by its maximal root ĥ), and it is also true in torsion-free hyperbolic

groups, see [5].

The goal of the present paper is to study the conjugacy problem in some

extensions of Thompson’s group F via Theorem 1.1 (see [5, 19] for references

to similar applications of this same theorem into other families of groups).

We will assume the reader is familiar with Thompson’s groups F (also de-

noted by PL2(I), where I = [0, 1] is the unit interval) and T (also denoted

by PL2(S1), where S1 is the unit circle) and in any case, the comprehensive

survey by Cannon, Floyd and Parry [10] is an excellent source of information

for Thompson’s groups.

We will employ techniques on conjugacy in the Bieri-Thompson-Stein-Strebel

groups used by Kassabov and the second author in [15] and a rephrasing by Belk

and the second author in [2, 18] of a conjugacy invariant of Brin and Squier [8].

The idea is to assume that the twisted conjugacy equation has a solution and

use this to determine necessary conditions that a twisted conjugator should

satisfy. This allows one to build some candidate conjugators which must then

be tested.

With these techniques, we obtain the first result in the paper:

Theorem 1.2: Thompson’s group F has solvable twisted conjugacy problem.

Putting together Theorems 1.1 and 1.2, this opens us to the possibility of find-

ing extensions of F with solvable/unsolvable conjugacy problem, by detecting

subgroups of Aut(F ) which are orbit decidable/orbit undecidable:

Theorem 1.3: Consider Thompson’s group F = PL2(I), a torsion-free hyper-

bolic group H, and let

1 −→ F
α−→ G

β−→ H −→ 1.

be an algorithmic short exact sequence. The group G has solvable conjugacy

problem if and only if the action subgroup AG 6 Aut(F ) is orbit decidable.

Using the previous result one can create extensions of F with unsolvable

conjugacy problem.
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Theorem 1.4: There are extensions of Thompson’s group F by finitely gener-

ated free groups, with unsolvable conjugacy problem.

It is also possible to build non-trivial extensions of F with solvable conjugacy

problem, provided that an open conjecture about F is true. We can do so when

the action group is orbit decidable and this is where the difficulty lies. We study

this in Section 4.

A group G has the property R∞ if it has infinitely many distinct ϕ-twisted

conjugacy classes, for any ϕ ∈ Aut(G). Thompson’s group F was shown to have

property R∞ by Bleak, Fel’shtyn and Gonçalves in [4]. We give an alternative

proof, which can be extended to Thompson’s group T .

Theorem 1.5: Thompson’s group T has property R∞.

The paper is organized as follows. In Section 2 we introduce the groups we

will be working with, we restate the twisted conjugacy problem for F and prove

Theorems 1.2 and 1.3. In Section 3 we construct orbit undecidable subgroups

of Aut(F ) and exhibit free extensions of F with unsolvable conjugacy problem.

In Section 4 we consider orbit decidability and construct some interesting ex-

tensions of F , which happen to have solvable conjugacy problem assuming an

open conjecture on F is true. In Section 5 we show that the groups F and T

have property R∞ using ideas from Section 2. Finally, in Section 6 we analyze

the extent to which the techniques of this paper generalize to other families of

Thompson-like groups.

Acknowledgments. The authors would like to thank Matt Brin, Collin Bleak,

Martin Kassabov, Jennifer Taback and Nathan Barker for helpful conversations

about this work. The authors would also like to thank an anonymous referee

for suggestions which improved the exposition of this work.

2. The twisted conjugacy problem for F

In this section we prove Theorem 1.2. The techniques developed for this purpose

will be later used in Section 5 to obtain a couple of byproducts.

2.1. Thompson’s group and its automorphisms. We will look at Thomp-

son’s group F from different perspectives. The standard one is to look at F as
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the group PL2(I) of orientation preserving piecewise-linear homeomorphisms of

the unit interval I = [0, 1] with a discrete (and hence finite) set of breakpoints

at dyadic rational points, and such that all slopes are powers of 2 (the interval

I can be replaced to an arbitrary [p, q] with p, q being dyadic rationals and

the resulting group is clearly isomorphic). We will also need to regard F as a

subgroup of a bigger group: consider the group PL2(R) of all orientation pre-

serving piecewise-linear homeomorphisms of R with a discrete set of breakpoints

at dyadic rational points and such that all slopes are powers of 2; and consider

the subgroup of those elements f which are eventually integral translations, i.e.

for which there exist m−,m+ ∈ Z and L,R ∈ R such that f(x) = x+m− for all

x 6 L, and f(x) = x+m+ for all x > R. It is straightforward to see that this

subgroup of PL2(R) is isomorphic to PL2(I); see Proposition 3.1.1 in Belk and

Brown [1] for an explicit isomorphism (it is interesting to note that, through

this isomorphism, 2m− is the slope at the right of 0, and 2m+ the slope at the

left of 1). Both copies of Thompson’s group will be denoted F , and it will be

clear from the context which one are we talking about at any moment.

Thompson’s group admits a finite presentation. The two generators are usu-

ally written x0 and x1, which represent the following maps on the real line:

x0(t) = t+ 1 x1(t) =


t if t < 0

2t if 0 ≤ t ≤ 1

t+ 1 if t > 1.

With these generators, F admits a finite presentation with just two relations,

which have lengths 10 and 14. See [10] for details. Moreover, as we will need this

later, we observe that when we regard F as the group PL2([0, 1]), the generator

x0 has this form:

θ(t) :=


2t t ∈

[
0, 14
]

t+ 1
4 t ∈

[
1
4 ,

1
2

]
t
2 + 1

2 t ∈
[
1
2 , 1
]
.

We distinguish x0 and θ to make it clear that the first one is seen as an element

of PL2(R) while the second is regarded as a map in PL2([0, 1]). The support

of an element f ∈ PL2(R) is the collection of points where f differs from the

identity map, namely supp(f) = {t ∈ R | f(t) 6= t}.

Definition 2.1: We define the following subgroups of PL2(R):
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(1) EP2 = {f ∈ PL2(R) | ∃L,R ∈ R such that f(t − 1) = f(t) − 1 ∀t 6
L, and f(t+ 1) = f(t) + 1 ∀t > R} i.e., all functions in PL2(R) which

are “eventually periodic” and orientation preserving.

(2) F = {f ∈ EP2 | ∃L,R ∈ R, ∃m−,m+ ∈ Z such that f(t) = t +

m− ∀t 6 L, and f(t) = t+m+ ∀t > R}. As noted above, F ' PL2(I)

is the standard copy of Thompson’s group inside PL2(R).

(3) Let G be any subset of EP2. For every −∞ 6 p < q 6 +∞, define

G(p, q) to be the set of elements in G with support inside the interval

(p, q) i.e. G(p, q) = {g ∈ G | g(t) = t,∀t 6∈ (p, q)} (so, G(−∞,+∞) =

G). Also, define G> = {g ∈ G | g(t) > t, ∀t ∈ R} and, similarly,

G<. When combining both notations we shall understand the inequality

restricted to the support, i.e. G<(p, q) = {g ∈ G | g(t) = t, ∀t 6∈
(p, q), and g(t) < t ∀t ∈ (p, q)}. Note that, if G is a subgroup, then

g ∈ G>(p, q) if and only if g−1 ∈ G<(p, q).

At a certain point in the arguments we will also need to consider orientation

reversing maps. Admitting both orientations in the definition above, one can

define the group PL±2 (R) and the corresponding subgroup of eventually periodic

functions ẼP2 = {f ∈ PL±2 (R) | ∃L,R ∈ R,∃ ε ∈ {1,−1} such that f(t − 1) =

f(t)− ε ∀t 6 L, and f(t+1) = f(t)+ ε ∀t > R}. Note that EP2 is a subgroup

of ẼP2 of index two, and ẼP2 = EP2 ∪ R · EP2, where R ∈ ẼP2 \ EP2 is the

reversing map, R(t) = −t for all t ∈ R.

Convention 2.1: When talking about elements f ∈ PL2(R), we say that a

property P holds for t positive sufficiently large (respectively, for t negative
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sufficiently large) to mean that there exists a number R > 0 such that P holds

for every t > R (respectively, there exists a number L < 0 such that P holds

for every t 6 L). For example, f ∈ F if and only if it is an integral translation

for t positive sufficiently large, and for t negative sufficiently large.

Remark 2.1: Observe that, for g ∈ F 6 PL2(R), the integer m− above (satis-

fying that g(t) = t+m− for t negative sufficiently large) can also be obtained as

the limit m− = limt→−∞ g(t)− t. Similarly, g(t) = t+m+ for t positive suffi-

ciently large, where m+ = limt→+∞ g(t)− t. These two real numbers are called,

respectively, the initial slope and the final slope of g because, when regarded as

an element of PL2(I), the slopes of g on the right of the point 0 and on the left

of the point 1 are, precisely, 2m− and 2m+ , respectively.

2.2. Automorphisms and transitivity on dyadics. To deal with the ϕ-

twisted conjugacy problem for F , we first need to understand what the automor-

phisms of Thompson’s group F look like. They have all been classified by Brin

in his Theorem 1 in [6] (see also Theorem 1.2 in [9] for a more explicit version).

The key idea to understand Aut(F ) is the fact that conjugation by elements

from ẼP2 preserves F , and these conjugations give precisely all automorphisms

of F :

Theorem 2.2 (Brin, [6]): For Thompson’s group F , the map

ẼP2 −→ Aut(F )

τ 7→ γτ : F → F

g 7→ τ−1gτ,

is well defined and it is a group isomorphism, so Aut(F ) ' ẼP2. Furthermore,

given ϕ ∈ Aut(F ) by the images of the standard generators, one can algorith-

mically compute the (unique) τ ∈ ẼP2 such that ϕ(g) = τ−1gτ for all g ∈ F .

Definition 2.2: We denote by Aut+(F ) the group of automorphisms of F given

by conjugation by orientation preserving τ ’s (see Theorem 2.2); it is an index

two subgroup EP2 ' Aut+(F ) <2 Aut(F ) ' ẼP2.

Remark 2.2 (Explicit rewriting of elements of Aut(F )): Theorem 2.2, includ-

ing its algorithmic contents, is crucial for the arguments of the present paper.

Brin’s original theorem establishes the isomorphism and we can algorithmically
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determine τ in the following way. Burillo and Cleary [9] obtain a finite presen-

tation for Aut(F ) with nine generators ϕ1 . . . , ϕ9 all expressed in terms of the

standard presentation of F , and as conjugations by suitable τ1, . . . , τ9 ∈ ẼP2,

i.e. ϕi = γτi for i = 1, . . . , 9. Suppose ϕ ∈ Aut(F ) is given by the images

of x0 and x1. We can enumerate all formal words w on letters ϕ1, . . . , ϕ9

and for each one compute the images of x0 and x1 by w(ϕ1, . . . , ϕ9) until they

match with ϕ(x0) and ϕ(x1) (here we need to use the word problem for F );

this match will happen sooner or later because ϕ1, . . . , ϕ9 do generate Aut(F ).

Once we have this word, it is clear that τ = w(τ1, . . . , τ9) ∈ ẼP2 satisfies

γτ = γw(τ1,...,τ9) = w(γτ1 , . . . , γτ9) = w(ϕ1, . . . , ϕ9) = ϕ.

The following results explains how to build PL2-maps acting in a prescribed

way on some given rational numbers. The first part gives an arithmetic condi-

tion for the existence of such a map. The second part expresses the flexibility of

these groups: one can always “cut” the graphical representation of an element

at a given dyadic rational, and freely “glue” the pieces to obtain new elements.

This result will often be needed throughout the present paper.

Proposition 2.3 (Kassabov-Matucci, [15]): Let η, ζ be dyadic rationals, let

α, β ∈ Q ∩ (η, ζ) written in the form α = 2tm
n and β = 2kp

q with t, k ∈ Z and

m,n, p, q odd integers such that (m,n) = (p, q) = 1, and let η < α1 < · · · <
αr < ζ and η < β1 < · · · < βr < ζ be two finite sequences of rational numbers.

(1) The following are equivalent:

(a) there exists g ∈ PL2([η, ζ]) such that g(α) = β,

(b) there exists g ∈ PL2(R) such that g(α) = β,

(c) there exists g ∈ EP2 such that g(α) = β,

(d) there exists g ∈ F such that g(α) = β,

(e) q = n and p ≡ 2Rm (mod n) for some R ∈ Z.

Moreover, there is an algorithm which constructs such elements g if

condition (e) is satisfied.

(2) There exists g ∈ F with g(αi) = βi if and only if for every i = 1, . . . , r

there exists gi ∈ F such that gi(αi) = βi. Moreover, if such a g exists

it can be constructed from the gi’s.

The following is a well known standard result (see for example [15] for a

proof).
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Lemma 2.4: Let p ∈ Q and g ∈ PL2([p, p+1]). Let u, v ∈ (p, p+1) be such that

u 6∈ Fix(g). Then there exists at most a unique integer m such that gm(u) = v,

and one can algorithmically decide it (and compute such an m if it exists).

2.3. Restatement of the TCP . Our goal in this section is to solve the

twisted conjugacy problem in F : given ϕ ∈ Aut(F ) and y, z ∈ F (all in terms

of the standard presentation of F , i.e. ϕ(x0), ϕ(x1), y, z are given to us as

words on x0, x1), we have to decide whether there exists g ∈ F such that

z = g−1yϕ(g).

Applying Theorem 2.2, we can compute τ ∈ ẼP2 such that ϕ(g) = τ−1gτ for

all g ∈ F , and the previous equation becomes z = g−1y(τ−1gτ), that is

zτ−1 = g−1(yτ−1)g.

Relabeling y := yτ−1 ∈ ẼP2 and z := zτ−1 ∈ ẼP2 to get

(2.1) z = g−1yg,

the problem reduces to the standard conjugacy problem in ẼP2, but with the

conjugator g forced to be chosen from F 6 ẼP2.

Definition 2.3: Given two elements y, z ∈ ẼP2, we write y ∼F z if they are

conjugated by a conjugator in F , i.e. if there exists g ∈ F such that z = g−1yg.

Notice that if one of y and z is in EP2 and the other is not, then equation (2.1)

has no solution. Thus, we can split its study into two cases: the orientation

preserving case, i.e. when y, z ∈ EP2 (studied in Sections 2.4, 2.5, 2.6 and 2.7)

and then the orientation reversing one, i.e. when y, z ∈ R · EP2 (considered in

Section 2.8). Finally, in Section 2.9 we put all pieces together.

2.4. Orientation preserving case of the TCP: periodicity boxes and

building conjugators. We now deal with the equation z = g−1yg for y, z ∈
EP2 and g ∈ F . The argument will make use of techniques and statements

in [15] and refer often to that paper.

Subsection 4.1 in [15] shows that, if z = g−1yg with y, z, g ∈ PL2(I), then

there exists ε > 0 depending only on y and z such that g is linear inside [0, ε]2;

the box [0, ε]2 is called an initial linearity box. The goal of this section is to

show an analog of this result inside suitable boxes (−∞, L]2 and [R,∞)2 where

y, z ∈ EP2 are periodic.
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The following is a first necessary condition for two maps to be conjugate to

each other.

Lemma 2.5: Let y, z ∈ EP2 be such that y ∼F z. Then there exist two numbers

L,R ∈ R such that y(t) = z(t) for all t ∈ (−∞, L] ∪ [R,∞).

Proof. Let g ∈ F be such that g−1yg = z. For t negative sufficiently large, we

have g(t) = t+m−, and so

z(t) = g−1yg(t) = g−1y(t+m−) = g−1(y(t) +m−) = y(t) +m− −m− = y(t).

Similarly for t positive sufficiently large.

We move on to prove the existence of periodicity boxes.

Lemma 2.6 (Initial and final periodicity boxes): For every pair of elements

y, z ∈ EP>2 (−∞, p) (with −∞ < p 6 +∞), there exists a computable constant

L ∈ R (depending only on y and z) such that every conjugator g ∈ F between

y and z must act as a translation inside the initial periodicity box (−∞, L]2.

Similarly, for every pair of elements y, z ∈ EP>2 (p,+∞) (with −∞ 6 p < +∞)

and a final periodicity box [R,+∞)2.

The exact same statement is true replacing EP>2 to EP<2 .

Proof. If y and z are not equal for t positive and negative sufficiently large

then, by Lemma 2.5, there is no possible conjugator g ∈ F and there is nothing

to prove. So assume they are and consider a negative sufficiently large L ∈ R
such that y(t) = z(t) and y(t − 1) = y(t) − 1 (and so, z(t − 1) = z(t) − 1), for

every t 6 L (clearly, such an L is computable). We claim that every possible

g ∈ F satisfying g−1yg = z must be a translation for t 6 L. By the symmetry

of y and z in the definition of L and up to writing the conjugacy relation as

(g−1)−1zg−1 = y (which changes the conjugator from g to g−1), we can assume

that g has non-positive translation at −∞ (i.e. g(t) = t + m− for negative

sufficiently large t, and with m− 6 0).

Assume, by contradiction, that g is not a translation map in (−∞, L]. Then,

there is λ < L such that

g(t) =

t+m− t 6 λ

α(t− λ) + λ+m− λ 6 t < µ
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for some suitable real numbers α 6= 1, λ < µ < L. Since z is increasing and

strictly above the diagonal id(t) = t, we can choose r < λ < L such that

λ < z(r) < µ < L. By our choice of r, we have y(r) = z(r), y(t− 1) = y(t)− 1

and z(t− 1) = z(t)− 1 for all t 6 r. Moreover, since gz(t) = yg(t) for all t ∈ R,

we have

α(z(r)− λ) + λ+m− = gz(r) = yg(r) = y(r+m−) = y(r) +m− = z(r) +m−.

Rearranging the terms, we have

α(z(r)− λ) = z(r)− λ

and, since z(r) − λ > 0, we get α = 1, a contradiction. Hence, g(t) = t + m−

for every t 6 L as claimed.

The symmetric argument gives a constant R establishing the final periodicity

box [R,+∞)2.

If y, z ∈ EP<2 , then we apply the previous argument to y−1, z−1 and derive

the same conclusion.

Remark 2.3: Note that, in the previous lemma, the constants L and R depend

on y and z but not on the conjugator g. This will be crucial later.

We observe that the results of Subsection 4.2 in [15] and their proofs follow

word-by-word in our generalized setting, and hence we do not reprove them.

We restate Lemma 4.6 in [15] to give an example of how results appear in this

context.

Lemma 2.7: Let z ∈ EP<2 . Let CF (z) = CPL2(R)(z) ∩ F be the set of elements

in F commuting with z. Then the map ϕz : CF (z)→ Z defined by

ϕz(g) = lim
t→−∞

g(t)− t

is an injective group homomorphism. A similar statement is true for EP>2 .

Subsection 4.2 in [15] shows how to build a candidate conjugator g between

any two elements of F after we have chosen the initial slope of g.

A unique candidate conjugator g between y and z with a given initial slope

q, if it exists, is the unique function that one needs to test as a conjugator of

y and z with initial slope q: if g fails to satisfy g−1yg = z, then there is no

conjugator of y and z with initial slope q. The proof of Corollary 4.12 in [15]

can be lifted verbatim and so we only restate it in our new case.
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Theorem 2.8 (Explicit conjugator): Let y, z ∈ EP<2 . Suppose there exist

L < R such that y and z coincide and are periodic on (−∞, L] ∪ [R,+∞), so

that (−∞, L]2 is the initial periodicity box. Let ` ∈ Z<0.

(1) Let g0 ∈ F be a map which is affine inside (−∞, L)2 and such that

limt→−∞ g0(t)−t = q. Then the unique conjugator ĝ ∈ PL2(R) between

y and z, which is affine inside (−∞, L)2 and such that limt→−∞ ĝ(t)−t =

` is defined pointwise by

ĝ(t) = lim
r→+∞

y−rg0z
r(t).

Moreover, the map ĝ is recursively constructible and y and z are always

conjugate in PL2(R) via ĝ.

(2) There exists an algorithm to decide whether or not there is g ∈ F such

that limt→−∞ g(t)− t = ` and g−1yg = z.

The above result has been stated, for simplicity, for two functions y, z ∈ EP<2 .

However, the same result can be stated for y, z ∈ PL<2 ([p1, p2]) for any p1, p2 ∈
Q, or for y, z ∈ EP<2 (p,+∞).

Remark 2.4: The results of this subsection do not involve dyadic rationals and

slopes that are powers of 2 and are, in fact, true for other classes of groups

without restrictions on the breakpoints and the slopes (for example PL+(R), the

Bieri-Thompson-Stein-Strebel groups in R and the corresponding subgroups with

eventually periodic tails). See [15] for more details.

2.5. Orientation preserving case of the TCP: fixed points. Through-

out this paper, for a subset S ⊆ R, we denote the standard boundary of S in

the Euclidean topology by ∂S. The goal of this subsection is to reduce to the

case where the sets ∂Fix(y) and ∂Fix(z) do coincide. Up to suitable special

cases, this will allow us to reduce to looking for potential conjugators g ∈ F

such that ∂Fix(y) = ∂Fix(z) ⊆ Fix(g), thus restricting ourselves to studying

conjugacy among the corresponding intervals of y and z between any two con-

secutive points p and q of ∂Fix(y) = ∂Fix(z). On each such interval y (and z) is

either the identity, or has no fixed points apart from p and q and so it belongs

to either EP<2 (p, q) or EP>2 (p, q).

Note that the sets ∂Fix(y) and ∂Fix(z) are discrete subsets of Q, and their

intersections with any finite interval [L,R] are easily computable by just solv-

ing finitely many systems of linear equations. An apparent technical difficulty
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is that, since y, z ∈ EP2, the full sets ∂Fix(y) and ∂Fix(z) may be infinite;

however, due to the periodicity, they are controlled by finite sets.

Proposition 2.9: There is an algorithm which, given y, z ∈ EP2 being equal

for t negative sufficiently large and for t positive sufficiently large, decides

whether or not there exists some g ∈ F such that ∂Fix(y) = g(∂Fix(z)) and, in

the affirmative case, it constructs such a g.

Proof. For the given y, z we can easily compute constants L < R such that,

for all t ∈ (−∞, L], y(t) = z(t) and y(t − 1) = y(t) − 1, and such that, for all

t ∈ [R,+∞), y(t) = z(t) and y(t + 1) = y(t) + 1. Moving L down and/or R

up if necessary, we can also assume that if ∂Fix(y) 6= ∅ then it has at least one

point in [L,R) (and similarly for z).

Now compute the finite sets of rational numbers ∂Fix(z) ∩ [L,R), ∂Fix(y) ∩
[L,R), ∂Fix(z) ∩ [L− 1, L) = ∂Fix(y) ∩ [L− 1, L), and ∂Fix(z) ∩ [R,R + 1) =

∂Fix(y) ∩ [R,R + 1); let p, q,m, n > 0 be their cardinals, respectively. By the

periodicity of y and z outside [L,R], these constitute full information about

∂Fix(y) and ∂Fix(z). Up to switching y with z, we may assume that p 6 q.

Clearly, m = 0 if and only if ∂Fix(y) and ∂Fix(z) have a minimum element (as

opposed to having infinitely many points approaching −∞). Similarly, n = 0 if

and only if ∂Fix(y) and ∂Fix(z) have a maximum element.

If either ∂Fix(y) or ∂Fix(z) is empty then there is nothing to prove. Assume

∂Fix(y) 6= ∅ 6= ∂Fix(z), i.e. 1 6 p 6 q. We denote by a0 (respectively, b0) the

smallest element in ∂Fix(z) ∩ [L,R) (respectively ∂Fix(y) ∩ [L,R)) and we use

it to enumerate in an order preserving way all the elements of the discrete set

∂Fix(z) (respectively, ∂Fix(y)) as ai (respectively, bi); the index i will run over a

finite, infinite or bi-infinite subset of Z depending on whether or not m (and/or

n) is zero. With this definition, ∂Fix(z) ∩ [L,R) = {a0 < a1 < · · · < ap−1} and

∂Fix(y) ∩ [L,R) = {b0 < b1 < · · · < bq−1}.
Note that any g ∈ F satisfying ∂Fix(y) = g(∂Fix(z)) must map all the ai’s

bijectively to all the bi’s. In particular, if m = 0 then a0 must be mapped to b0,

and if n = 0 then ap−1 must be mapped to bq−1 (and so a0 to bq−p). Hence, in

the special case that either m = 0 or n = 0, the following claim completes the

proof.
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Claim 1: For every bi ∈ ∂Fix(y), we can algorithmically decide whether or not

there exists some g ∈ F such that ∂Fix(y) = g(∂Fix(z)) and g(a0) = bi and, in

the affirmative case, the algorithm constructs one explicitly.

The remaining case to study is when m 6= 0 6= n, so that a0 potentially could

be sent to any of the bi’s by the map g. Let ` = lcm(m,n) and let [L− `/m,L)

be the smallest interval to the left of L to contain ` points of ∂Fix(z). Similarly,

let [R,R + `/n) be the corresponding interval to the right of R. Consider the

following two finite sets:

A := ∂Fix(z) ∩
[
L− 2`

m , R+ 2`
n

)
,

B := ∂Fix(y) ∩
[
L− 2`

m , R+ 2`
n

)
,

and let s0 be the rightmost point of ∂Fix(z) ∩
[
L− 2`

m , L−
`
m

)
, and let t0 be

the leftmost point of ∂Fix(z) ∩
[
R+ `

n , R+ 2`
n

)
. We compute A, B, s0 and t0

explicitly.

Claim 2: Suppose there exists a map g ∈ F such that ∂Fix(y) = g(∂Fix(z)) and

g(s0) ∈
[
R+ k`

n , R+ (k+1)`
n

)
for k > 2; then, there exists a g′ ∈ F such that

∂Fix(y) = g′(∂Fix(z)) and g′(s0) ∈
[
R+ (k−1)`

n , R+ k`
n

)
. Similarly, if there

exists g ∈ F such that ∂Fix(y) = g(∂Fix(z)) and g(t0) ∈
[
L− (k+1)`

n , L− k`
n

)
for some k > 2, then there exists a g′ ∈ F such that ∂Fix(y) = g′(∂Fix(z)) and

g′(t0) ∈
[
L− k`

n , L−
(k−1)`
n

)
.

With the help of Claim 2 we can complete the proof in the following way.

Suppose there exists g ∈ F such that ∂Fix(y) = g(∂Fix(z)). Since p 6 q it

cannot simultaneously happen that g(s0) < s0 and t0 < g(t0). Hence either

s0 6 g(s0) or g(t0) 6 t0 and, in either case, a repeated application of Claim 2

implies the existence of g′ ∈ F such that ∂Fix(y) = g′(∂Fix(z)) and g′(A)∩B 6=
∅. This gives finitely many possibilities for g′(a0) and so, applying Claim 1

finitely many times we can decide whether or not there exists a g ∈ F satisfying

∂Fix(y) = g(∂Fix(z)).

Hence, it only remains to prove the above two claims.
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Proof of Claim 1. We will distinguish four cases.

Case 1: m = 0 and n = 0. In this case, ∂Fix(z) = {a0 < a1 < · · · < ap−1}
and ∂Fix(y) = {b0 < b1 < · · · < bq−1} and, clearly, p = q and g(a0) = b0

are necessary conditions for such a g to exist. If both conditions hold, then

Proposition 2.3 makes the decision for us.

Case 2: m > 1 and n = 0. This case is entirely similar to the next one.

Case 3: m = 0 and n > 1. In this case, ∂Fix(z) and ∂Fix(y) both have first

elements a0 and b0 and infinitely many points approaching +∞. As in case 1,

g(a0) = b0 is a necessary condition for such a g to exist.

We have ∂Fix(z) ∩ [R,R + 1) = {ap < ap+1 < · · · < ap+(n−1)} and that the

elements in ∂Fix(z) ∩ [R + 1,+∞) are integral translations of these: for every

j > 0, write j = λn+µ with λ, µ > 0 integers and µ = 0, . . . , n−1, and we have

ap+j = λ+ap+µ. Similarly ∂Fix(y)∩ [R,R+ 1) = {bq < bq+1 < · · · < bq+(n−1)}
and for every j > q, we have bq+j = λ+ bq+µ. Moreover, from ap = bq on, the

two sequences coincide, i.e., for every j > 0,

λ+ ap+µ = ap+j = bq+j = λ+ bq+µ.

Now if some g ∈ F satisfies g(∂Fix(z)) = ∂Fix(y), it must apply the points

in an order preserving way, starting from the smallest ones, that is, g(ak) = bk

for any integer k. In particular, for k > q > p, we have

g(λ1 + ap+µ1) = g(ap+(k−p)) = g(ak) = bk = bq+(k−q) = λ2 + bq+µ2 ,

where k−p = λ1n+µ1 and k−q = λ2n+µ2. Since g is of the form g(t) = t+m+

with m+ ∈ Z for t positive sufficiently large then, for large enough k, the above

equation tells us that

λ1 + ap+µ1 +m+ = g(λ1 + ap+µ1) = λ2 + bq+µ2 .

Therefore, ap+µ1
− bq+µ2

= bq+µ1
− bq+µ2

must be an integer and so, µ1 = µ2,

which means that k− p and k− q are congruent modulo n, i.e. q− p is multiple

of n.

Assume then this necessary condition, q − p = λn with λ ∈ Z, and apply

Proposition 2.3 (2) to the sequences a0 < · · · < ap+λn−1 and b0 < · · · < bq−1

(both with q points). If there is no g ∈ F sending the first list to the second

then there is no g such that ∂Fix(y) = g(∂Fix(z)) and we are done. Otherwise,
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we get a g matching these first q points, g(a0) = b0, . . . , g(ap+λn−1) = bq−1,

and, after a final small modification, we will see that it automatically matches

the rest.

Choose two dyadic numbers ap+λn−1 < α < β < ap+λn, choose h ∈ F

such that h(α) = g(α) and h(β) = β − λ (such an h exists and is effectively

computable by Proposition 2.3 (2)), and let us consider the following map:

g̃(t) =


g(t) t 6 α

h(t) α 6 t 6 β

t− λ β 6 t.

By construction, g̃ is continuous, piecewise linear with dyadic breakpoints, and

all slopes are powers of 2; furthermore g ∈ F and g̃ is an integral translation

for t > β so, g̃ ∈ F . On the other hand,

∂Fix(y) ∩ [L, bq−1] = g(∂Fix(z) ∩ [L, ap+λn−1]) = g̃(∂Fix(z) ∩ [L, ap+λn−1]),

and

∂Fix(y) ∩ [bq,+∞) = {bq, bq+1, . . .} = {ap+λn − λ, ap+λn+1 − λ, . . .} =

= g̃({ap+λn, ap+λn+1, . . .}) = g̃(∂Fix(z) ∩ [ap+λn,+∞)).

Hence, ∂Fix(y) = g̃(∂Fix(z)) and we are done.

Case 4: m > 1 and n > 1. The argument in this case is similar to that of

Case 3 but repeated twice, up and down (and with no restriction for bi because

we have both infinitely many fixed points bigger and smaller than bi).

Following the notation above, the m fixed points from ∂Fix(z)∩ [L− 1, L) =

∂Fix(y) ∩ [L − 1, L) are labeled and ordered as a−m < · · · < a−1 and b−m <

· · · < b−1 (hence, a−j = b−j for j = 1, . . . ,m). The elements from ∂Fix(z) ∩
(−∞, L − 1) and ∂Fix(y) ∩ (−∞, L − 1) are their integral translations to the

left.

Now if some g ∈ F satisfies g(∂Fix(z)) = ∂Fix(y) and g(a0) = bi, it must

send the points aj to the bj in an order preserving way starting from g(a0) = bi,

both up and down. Hence, two arguments exactly like in the previous case give

us two necessary congruences among p, q and i, modulo n (close to +∞) and

modulo m (close to −∞). If one of them fails, then there is no such g and we

are done. If both are satisfied, then apply Proposition 2.3 (2) to a long enough

tuple of aj ’s and bj ’s: a negative answer tells us there is no such g ∈ F , and a
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positive answer provides a g ∈ F which, after two local modifications like in the

previous case (one close to +∞ and the other close to −∞), will finally give us

a g′ ∈ F such that g′(∂Fix(z)) = ∂Fix(y), and g′(a0) = bi.

This completes the proof of Claim 1.

Proof of Claim 2. We will prove the first part of the claim; the symmetric ar-

gument for the second part is left to the reader.

Assume the existence of g ∈ F such that g(∂Fix(z)) = ∂Fix(y) and g(s0) ∈[
R+ k`

n , R+ (k+1)`
n

)
for k > 2. To push g(s0) down, let us define the reduction

map g− by

g−(t) =

g(t− `
m ) t < s0

g(t)− `
n t ≥ s0.

To understand the map g−, note that its graphical representation can be ob-

tained from that of g by performing the following operation: remove the graph

within [s0 − `/m, s0], translate the graph of g defined on [s0,+∞) by the vec-

tor (0,−`/m) and translate the graph of g defined on (−∞, s0 − `/m] by the

vector (`/m, 0). Hence, g− is the same as g avoiding the piece over the interval

[s0 − `/m, s0].

The two parts of g− to the left and to the right of s0 are both continuous,

increasing, piecewise linear, with dyadic breakpoints, with slopes being powers

of two, and are eventually translations (near −∞ and +∞, respectively). To

check whether g− is in F it only remains to analyze what happens around the

point s0.

First of all, g− is continuous at s0: observe that s0 − `
m ∈ ∂Fix(z) is exactly

` points to the left of s0 in the discrete set ∂Fix(z); since g(∂Fix(z)) = ∂Fix(y)

and g is an increasing function, g(s0 − `
m ) must be exactly ` points to the left

of g(s0) in the discrete set ∂Fix(y) that is, g(s0 − `
m ) = g(s0)− `

n .

Unfortunately, the slopes of g− to the left and to the right of s0 (i.e. the slopes

of g to the left of s0− `/m and to the right of s0) may be different; and s0 may

not be a dyadic rational number. If these two facts happen simultaneously then

g− will not an element of F because of having a breakpoint at a non-dyadic

point, namely s0. This technical difficulty will be fixed later by modifying the

map g− in a suitably small neighborhood of s0.
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Before doing this, let us check that g− fulfils our requirement. Since g(s0 −
`
m ) = g(s0)− `

n , the hypothesis g(∂Fix(z)) = ∂Fix(y) implies that

g−(∂Fix(z) ∩ (−∞, s0]) = g

(
∂Fix(z) ∩

(
−∞, s0 −

`

m

])
=

= ∂Fix(y) ∩
(
−∞, g(s0)− `

n

]
,

and g−(s0) = g(s0 − `
m ) = g(s0)− `

n , and

g−(∂Fix(z)∩[s0,+∞)) = g(∂Fix(z)∩[s0,+∞))− `
n

= ∂Fix(y)∩
[
g(s0)− `

n
,+∞

)
.

Hence, g−(∂Fix(z)) = ∂Fix(y) and g−(s0) = g(s0)− `
n ∈

[
R+ (k−1)`

n , R+ k`
n

)
,

as we wanted.

To complete the proof of Claim 2 we must be able to fix the above technical

problem, by modifying g− in such a way that the resulting map belongs to F ,

but not changing the image of any point in ∂Fix(z); this will be achieved by

changing g− only in a small enough neighborhood of s0 not containing any other

point of ∂Fix(z) (and, of course, not changing the image of s0 itself).

Let α1 be a dyadic point found strictly between α2 := s0 and the point of A

immediately to the left of s0; and let α3 be a dyadic point found strictly between

α2 := s0 and the point of A immediately to the right of s0. Now consider the

points

β1 := g−(α1) = g

(
α1 −

`

m

)
,

β2 := g−(α2) = g

(
α2 −

`

m

)
= g(α2)− `

n
,

β3 := g−(α3) = g(α3)− `

n
.

Since α1 < α2 < α3 and β1 < β2 < β3 are rational points such that, for

every i = 1, 2, 3, βi is the image of αi by some element in F , then we can

apply Proposition 2.3 (2) and construct a function h ∈ F such that βi = h(αi).

Finally, define

g′(t) =

h(t) t ∈ [α1, α3]

g−(t) t 6∈ [α1, α3].

Clearly, g′ ∈ F , g′(s0) = g−(s0) and g′(∂Fix(z)) = g−(∂Fix(z)) = ∂Fix(y).

This completes the proof of Claim 2.
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This finishes the proof of Proposition 2.9.

Lemma 2.10: The decidability of the following two problems is equivalent:

(TCP) For any two y, z ∈ EP2 we can determine whether or not there is g ∈ F
such that g−1yg = z.

(RTCP) For any two y, z ∈ EP2 such that ∂Fix(y) = ∂Fix(z) we can determine,

whether or not there is g ∈ F such that g−1yg = z.

Proof. Obviously, if (TCP) is decidable, then (RTCP) is decidable. Assume

now that (RTCP) is decidable. By the discussion at the beginning of this

subsection, if y and z are conjugate via g ∈ F , then ∂Fix(y) = g(∂Fix(z)). By

Theorem 2.9 we can decide whether or not there is a map g ∈ F such that

∂Fix(y) = g(∂Fix(z)). If there is no such map, then y and z are not conjugate.

If there is such a g ∈ F (and in this case Theorem 2.9 constructs it) then

∂(Fix(gzg−1)) = g(∂Fix(z)) = ∂Fix(y) and we can apply (RTCP) to the two

maps y and gzg−1 to detect whether or not they are conjugate. We note that

this is the same decision problem as the one we are interested in.

By Lemma 2.10 we can restrict our focus to studying (RTCP).

2.6. Orientation preserving case of the TCP: Reducing the problem

to squares. We can make ∂Fix(y) = ∂Fix(z) as done in Proposition 2.9. If

∂Fix(y) = ∂Fix(z) = ∅ we defer the discussion to Subsection 2.7. On the other

hand, if ∂Fix(y) = ∂Fix(z) 6= ∅ and g ∈ F is a conjugator between y and z,

the only thing we can say is that g acts on ∂Fix(y) in an order preserving way.

There are two possibilities:

(1) Fix(g) 6= ∅.
(2) Fix(g) = ∅. We can assume that g ∈ F>.

Case (2) can indeed happen as is shown by the following example: take y = z

to be a non-trivial periodic function of period 1 with fixed points. Then the

map g(t) = t+ 1 ∈ F> is a conjugator for y and z having no fixed points.

We need to find if there is a conjugator g between y and z such that g ∈ F>.

We can assume y 6= id 6= z, otherwise our analysis becomes trivial. We can write

the supports supp(y) = supp(z) as the union of the family {Ij} of (possibly

unbounded) intervals on which y and z have no fixed points ordered so that Ij

is to the left of Ij+1, for every j. If this family were finite, since we are assuming

∂Fix(y) = ∂Fix(z) 6= ∅, then it means that ∂Fix(y) is finite and so g must fix
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the smallest element in ∂Fix(y) since g is order preserving, hence Fix(g) 6= ∅
and this would not be the case that we are studying now. Thus we must study

the case of the following proposition.

Proposition 2.11: Let y, z ∈ EP2 be such that Fix(y) = Fix(z) and that

∂Fix(y) has infinitely many points. Then there are only finitely many candidate

conjugators g ∈ F>.

Proof. We give out only some relevant details of how to prove this proposi-

tion. This entails generalizing of many results of this paper and of Kassabov-

Matucci [15] and so we only explain how to carry out these generalizations. The

main point here is noticing that we can develop a Stair Algorithm and bounding

initial slopes of g ∈ F , even if at −∞ the functions y, z have no initial slope.

By hypothesis, {Ij} has infinitely many intervals and so g “shifts” them, that

is g(Ij) = Ij+k, for some fixed k. Let tj be the left endpoint of Ij . We make a

series of observations:

(1) We can build candidate conjugators (Theorem 2.8) on each Ij , given a

fixed initial slope at tj ,

(2) The initial slope of z on Ij coincides with the initial slope of y in the

image interval g(Ij),

(3) There is an “initial” box for g in Ij ,

(4) We can bound the “initial” slopes of g on Ij ,

(5) We can bound the initial slope of g at −∞.

(1) and (2) are a straightforward calculation. (3) is a verbatim rewriting of

the proof of Lemma 4.2 in [15].

(4) A standard trick from [15] is observing that

z = g−1yg = g−1y−ryyrg

and so the slope of yrg at tj is (y′(ti+k))rg′(ti) and yrg is a conjugator for y

and z on Ij . On each Ij there are only finitely many slopes for g′(t+i ) to be

tested and on each one, we apply Theorem 2.8 to build candidate conjugators

that we can test.

(5) Recall that a candidate conjugator g pushes all the intervals in supp(y) in

the same direction by the “same amount of intervals in supp(y)”. In particular,

the initial slope of g determines the number k such that g(Ij) = Ij+k for every

j.
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We use ideas similar to Claim 2 in Proposition 2.9. Let us call JL the left

open interval on which y = z and they are periodic. A similar definition can

be made for JR. Let JC = R \ (JL ∪ JR) the remaining central piece. Assume

that there is a conjugator g between y and z which sends and interval Ij inside

JL to an interval Ij+k+1 with the requirement that Ij+k is entirely contained

into JR. Using ideas similar to Claim 2 in Proposition 2.9 one can create a new

conjugator g such that g(Ij) = Ij+k.

Therefore, similarly to Claim 2 in Proposition 2.9, this allows us to reduce

the study to only finitely many candidate conjugators where g(JC)∩ JC 6= ∅ or

where the rightmost interval Ij inside JL goes to the leftmost interval Is of JR

(or viceversa). This argument reduces the number of initial slopes of g to be

tested.

To conclude we observe that there are only finitely many slopes for g at

−∞ and finitely many “initial” slopes for g on the finitely many intervals Ij

contained in JC and then we can apply Theorem 2.8 on each of these intervals

building finitely many candidate conjugators g ∈ F> which we can then test

one by one.

The previous result allows one to restrict to the case of looking for conjugators

g with fixed points.

Lemma 2.12: Let y, z ∈ EP2 be such that Fix(y) = Fix(z) 6= ∅ and let g be a

conjugator between y and z such that Fix(g) 6= ∅. Then Fix(z) ⊆ Fix(g).

Proof. Let a ∈ Fix(g) and let b be the the smallest point of ∂Fix(z) such that

a < b. Since g fixes Fix(z) set wise and is order-preserving, then g(b) must also

be the smallest point of ∂Fix(z) such g(b) > a, therefore g(b) = b and so g must

fix all of Fix(z) pointwise.

We need to show that (RTCP) of Lemma 2.10 is decidable. Lemma 2.12 tells

us that we can restrict ourselves to solve the problem inside the closed intervals

of Fix(y) = Fix(z).

As in [15] we observe that if p ∈ ∂Fix(y) is a non-dyadic rational point and

g is a conjugator between y and z, then g′(p−) = g′(p+) or, in other words, the

slope of g at one side of p is completely determined by the slope on its other

side. This implies that the important points of ∂Fix(y) are the dyadic rational

ones (if they exist) as they are the ones where g has freedom to have different

slopes on the two sides and therefore the conjugator that we are attempting
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to build can be constructed by by gluing two conjugators on the two sides of

a dyadic rational point of ∂Fix(y). In the case that ∂Fix(y) had no dyadic

rational points, then we can compute a conjugator at a point p ∈ ∂Fix(y) and

this uniquely determines the conjugator on the entire real line. Otherwise, there

are dyadic rational points in ∂Fix(y) and we argue as following.

Let L < R are two integers chosen so that y and z coincide and are periodic

inside (−∞, L] ∪ [R,+∞). The case when ∂Fix(y) ∩ [L,R] contains no dyadic

rational point is dealt with as above. Similarly, if there is only one dyadic point

inside ∂Fix(y)∩[L,R], then we have two instances of the previous case on the two

sides of the dyadic point. Otherwise, we choose p1, p2 with the property of being

dyadic and consecutive inside ∂Fix(y) and such that [p1, p2] ⊆ [L,R]. With

these provisions, we can use the solution of the standard conjugacy problem

inside PL2([p1, p2]) using the techniques from [15]. If there is no conjugator

on any of those intervals, then y and z cannot be conjugate. Otherwise, we

can glue the conjugators that we find on each such interval. We then need to

understand what happens outside [L,R].

Let p be the rightmost dyadic point of ∂Fix(y)∩ [L,R]. If y, z ∈ EP>2 (p,+∞)

(or y, z ∈ EP<2 (p,+∞)), then we deal with this case in Subsection 2.7. Other-

wise, let q be the leftmost point of ∂Fix(y) ∩ (R,+∞). If y(t) = z(t) = t on

[p, q], then we define g(t) = t on [p,+∞) and this defines a conjugator for y

and z on [p,+∞) which we can glue to the previous intervals. Otherwise, we

apply the standard conjugacy problem on the interval [p, q] with final slope 1

at q− since the conjugator g has to be the identity translation on [R,+∞). If

the standard conjugacy problem on [p, q] has no solution, then y and z cannot

be conjugate. Otherwise, if h is the conjugator on [p, q] we define

g(t) :=

h(t) t ∈ [p, q]

t [q,+∞)

which is a well-defined map of F , since g′(q−) = g′(q+) = 1, regardless of

whether or not q is dyadic. The map g defines a conjugator for y and z on

[p,+∞) which we can glue to the previous intervals. A similar argument can

be applied to the left of L.

2.7. Orientation preserving case of the TCP: Mather invariants.

The procedure outlined in [15] to solve the conjugacy problem in Bieri-Thompson-

Stein-Strebel groups requires various steps which we have studied already: (i)
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making Fix(y) and Fix(z) coincide (seen in Subsection 2.5) and (ii) showing

that, for a possible initial slope of a conjugator in F (see Remark 2.1), there

exists at most one candidate and we can compute it through an algorithm (seen

in Subsection 2.4). The next natural step is to bound the number of integers

limt→−∞ g(t)− t representing possible initial slopes for which we need to build

a candidate conjugator.

In order to do this, we will employ ideas to characterize conjugacy from [18],

by taking very large powers of y and z and building a conjugacy invariant. In

[18] a conjugacy class in F has been described by a double coset Ay∞B where

y∞ is an element of Thompson’s group T obtained by taking suitable high

powers of y and A and B are two finite cyclic groups (of rotations of the circle).

In the case of the twisted conjugacy problem that we are studying, the Mather

invariant will be essentially defined by a product Ay∞B where A ∼= B ∼= Z.

Mather invariant construction. In what follows, we will assume that y, z ∈
EP>2 , to simplify the notation. We can define Mather invariants in the two

neighborhoods of infinity (that is on EP2(−∞, p) and EP2(q,+∞) for some

suitable numbers p, q), while solving the conjugacy problem between any two

consecutive dyadic points of ∂Fix(y) = ∂Fix(z).

Let y, z ∈ EP>2 and assume that, on the intervals (−∞, L]∪[R,+∞), the maps

y and z coincide and are periodic, for some integers L 6 R. Let N ∈ N be large

enough so that yN ((y−1(L), L)) ⊆ (R,+∞) and zN ((y−1(L), L)) ⊆ (R,+∞).

We look for an orientation preserving homeomorphism H ∈ PL2(R) such that

(1) H(yk(L)) = k, for any integer k, and

(2) H(y(t)) = λ(H(t)) = H(t) + 1, where λ(t) = t+ 1.

To construct H, choose any PL2-homeomorphism H0 : [y−1(L), L] → [−1, 0]

with finitely many breakpoints. Then we extend it to a map H ∈ PL2(R) by

defining

H(t) := H0(y−k(t)) + k if t ∈ [yk−1(L), yk(L)] for some integer k.

We make a series of remarks.

• By construction, it is easy to see that H(y(t)) = λ(H(t)) for any real

number t.

• If we define y := HyH−1, z := HzH−1, we observe that, by construc-

tion, they both coincide with λ(t) = t + 1 on the intervals (−∞, 1] ∪
[N,+∞). It is also clear that y = λ.
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• We notice that λ = HλH−1 ∈ EP2. To show this, let t be positive suffi-

ciently large so that y is periodic of period 1 and that all the calculations

below make sense and define t̃ = H−10 (t− k − 1):

λ(t+ 1) = Hλyk+2H−10 λ−k−2(t+ 1) = Hλyk+2(t̃) = H(yk+2(t̃) + 1) =

λk
′
H0y

−k′(yk+2(t̃+ 1)) = λk
′−1H0y

−k′+1(yk+1(t̃+ 1)) + 1 = λ(t) + 1,

where k′ are the jumps that y must make to bring yk+2(t̃ + 1) back

to the domain of H0. A similar argument can be shown for t negative

sufficiently large.

We define

C0 := (−∞, 0)/Z C1 := (N,∞)/Z

and let p0 : (−∞, 0) → C0 and p1 : (N,∞) → C1 be the natural projections.

Then we define the map y∞ : C0 → C1 by

y∞([t]) := [yN (t)].

Similarly we can define the map z∞. The maps y∞ and z∞ are well-defined

and they do not depend on the specific N chosen (the proof is analogous to the

one in Section 3 of [18]). They are called the Mather invariants of y and z.

This induces the equation gzN = yNg which, following [18], passes to quo-

tients and becomes

(2.2) vk1z
∞ = y∞v`0

since all the maps y, z, g are in EP2 and where v1 := p1λp
−1
1 is an element of

Thompson’s group TC1
defined on the circle C1 and induced by λ on C1 by

passing to quotients via the map p1, v0 := p0λp
−1
0 and where `, k are the initial

and final slopes of g.

The following result shows that the integer solutions of equation (2.2) corre-

spond to conjugators between y and z. The proof is an extension of the proof

of Theorem 4.1 in [18].

Lemma 2.13: Let y, z ∈ EP>2 . Then y and z are conjugate through an element

g ∈ F if and only if there is a pair of integers k, ` that satisfy equation (2.2).

Proof. Clearly, if g ∈ F conjugates y to z, then equation (2.2) is satisfied by

the calculations above. Conversely, assume that we have a pair (k, `) such that

(2.2) is satisfied. We use Theorem 2.8 to find a map g ∈ PL2(R) which is

affine around −∞, such that limx→−∞ g(x) − x = ` and that yg = gz. By



26 BURILLO, MATUCCI AND VENTURA Isr. J. Math.

conjugating via H we see that yg = gz. If x is positive sufficiently large then

y(x) = z(x) = x+ 1 so

g(x) + 1 = yg(x) = gz(x) = g(x+ 1).

Arguing similarly at∞ we deduce that g ∈ EP2 and so the equation yNg = gzN

passes to quotients and becoming gindz
∞ = y∞v`0. By using our assumption

we see that gindz
∞ = y∞v`0 = vk1z

∞ and by cancellation we obtain gind = vk1 .

By taking the unique lift of gind and vk1 defined on [N,N + 1) and passing

through the point (N, g(N)), we see that g and λ
k

coincide on [N,N + 1] and

therefore they coincide on [N,+∞) since they are both in EP2. Thus, g ∈ F
since g(x) = λ(x) around +∞.

We relabel t0 := z∞v−10 (z∞)−1, t1 := v1 and and t := y∞(z∞)−1 and we

rewrite equation (2.2) as

(2.3) tk1t
`
0 = t

where t0, t1, t ∈ TC1
. To solve equation (2.3) we will need Lemma 8.4 from [15]

which we restate for the reader’s convenience.

Lemma 2.14 (Kassabov-Matucci, [15]): Let p ∈ Q and let PL2([p, p+1]) be the

group of piecewise-linear homeomorphisms of the interval [p, p+ 1] with finitely

many breakpoints which occur at dyadic rational points and such that all their

slopes are powers of 2. If t0, t1, t ∈ PL2([p, p+ 1]), there is an algorithm which

outputs one of the following two mutually exclusive cases in finite time:

(1) Equation (2.3) has at most one solution and we compute a pair (k, `)

such that, if equation (2.3) is solvable, then (k, `) must be its unique

solution.

(2) Equation (2.3) has infinitely many solutions which are given by the

sequence of pairs (kj , `j) where kj = a1j + b1 and `j = a2j + b2 for any

j ∈ Z and for some integers a1, a2, b1, b2 which we can compute.

Lemma 2.14 gives a solution for equation (2.3) in the case that t0, t1, t live

in a copy of Thompson’s group PL2([p, p + 1]) of functions over an interval.

However, equation (2.3) needs to be solved in a copy of Thompson’s group T of

functions over a circle, so we will need to adapt Lemma 2.14 to our needs.
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Lemma 2.15: Let T be Thompson’s group PL2(S1) and let t0, t1, t ∈ T . Then

there is an algorithm which outputs one of the following two mutually exclusive

cases in finite time:

(1) Equation (2.3) has at most finitely many solutions and we compute a

finite set S such that, if (k, `) is a solution of equation (2.3), then ` ∈ S.

(2) Equation (2.3) has infinitely many solutions and we compute a sequence

of solutions (kj , `j) where kj = a1j+ b1 and `j = a2j+ b2 for any j ∈ Z
and for some integers a1, a2, b1, b2.

Proof. For a map h ∈ T , we denote by Per(h) the set of all periodic points of

h. Obviously, Fix(h) ⊆ Per(h). By a result of Ghys and Sergiescu [11] every

element of T has at least one periodic point. For i = 0, 1, we find a qi ∈ Per(ti)

be a point of period di. If d = lcm(d0, d1), then both td0, t
d
1 have fixed points

and therefore Per(tdi ) = Fix(tdi ).

Using the division algorithm we write k = k′d + r and ` = `′d + s with

0 6 r, s < d so that equation (2.3) becomes

(2.4) (td1)k
′
(td0)`

′
= t−r1 tt−s0 .

By considering all possibilities for 0 6 r, s < d, equation (2.4) can be regarded

as a family of d2 equations in T . Equation (2.3) is solvable if and only if at

least one of the d2 equations (2.4) is solvable.

Up to renaming td0 with t0, td1 with t1 and t−r1 tt−s0 with t, we observe that

each of the equations (2.4) has the same form of equation (2.3), therefore we

have reduced ourselves to study equation (2.3) with the extra assumption that

both t0 and t1 have fixed points. We compute the full fixed point sets of t0 and

t1. We now break the proof into two cases.

Case 1: There is a point p ∈ ∂Fix(t1) such that p 6∈ Fix(t0). Rewriting equation

(2.3) and applying it to p, we get

(2.5) t−`0 (p) = t−1(p).

Since p 6∈ Fix(t0) and t0 is orientation preserving, then there exists at most one

number ` satisfying equation (2.5) by Lemma 2.4.

Case 2: There is a point p ∈ ∂Fix(t1)∩Fix(t0). If p 6∈ Fix(t), by particularizing

at p we see that equation (2.3) is not solvable for any pair (k, `). Otherwise,

p ∈ Fix(t) and we can cut the unit circle open at p ∈ Q/Z and regard t0, t1, t
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as elements of PL2([p, p+ 1]). We can now finish the proof by applying Lemma

2.14.

Remark 2.5: The proof of Lemma 2.15 shows how to locate the pairs (k, `).

We need to find all periodic orbits and their periods and this can be effectively

achieved by computing the Brin-Salazar revealing pairs of the tree pair diagrams

of T , using the Brin-Salazar technology to compute neutral leaves and thus de-

ducing the size of periodic orbits (see, for example, Section 4 in [3]).

Remark 2.6: To sum up this subsection, Lemma 2.13 shows that y and z are

conjugate via an element of F if and only if equation (2.2) is solvable for some

integers k, `. Lemma 2.15 shows how to narrow down the number of pairs (k, `)

that we need to test. There are two possible cases:

(i) In the first case of Lemma 2.15 we are given a finite set S of initial

slopes to test. We can use Theorem 2.8(ii) for each of the finitely many

initial slopes in the set S. There is a conjugator if and only if one of

the applications of Theorem 2.8(ii) returns a positive answer. If there

is a conjugator, it can be built using Theorem 2.8(i).

(ii) In the second case of Lemma 2.15 there are infinitely many possible

pairs (k, `) (and we can construct explicitly an infinite family) and all

of them correspond to a conjugator between y and z. We can apply

Theorem 2.8(i) on a specific pair (k, `) of our choice to find an explicit

conjugator between y and z

Hence, in every case we can find at least one conjugator, if it exists.

Remark 2.7: We observe that the construction of the Mather invariant can be

carried out even when y and z are elements of EP>2 (p,+∞) or of EP>2 (−∞, p)
for any rational number p. All the results of the current subsection can still be

recovered. For this reason, in the following we will refer to the Mather invariant

regardless of the ambient set where it will be built.

2.8. Orientation reversing case of the TCP. We now study the orien-

tation reversing case of TCP, that is, we want to solve the equation

(2.6) z = g−1yg,



Vol. VOL, YEAR CONJUGACY IN EXTENSIONS OF F 29

where y, z ∈ R · EP2 \ {id} and g ∈ F . The general idea that we will follow is

to square the equation and attempt to solve

z2 = g−1y2g

so that y2, z2 ∈ EP2 and we can appeal to the results of the previous subsections.

Since y, z are strictly decreasing and approach ∓∞ when t → ±∞ then

both y and z have exactly one fixed point each. Moreover, all possible g’s

fulfilling equation (2.6) must also satisfy g(Fix(z)) = Fix(gzg−1) = Fix(y).

By Proposition 2.3(ii), one can algorithmically decide whether or not there is

g ∈ F mapping the point Fix(z) to the point Fix(y). If there is no such g, then

equation (2.6) has no solution and we are done. Otherwise, compute such a g ∈
F and, after replacing z by gzg−1, we can assume that Fix(y) = Fix(z) = {p},
for some p ∈ Q.

We start with a special case and then move on to consider all orientation

reversing maps.

Proposition 2.16: Let y, z ∈ R · EP2 be such that y2 = z2 = id and y(p) =

z(p) = p, for some p ∈ Q. Then y and z are conjugate by an element of F if

and only if there exists u ∈ Z such that y−1z(t) = t+u for t positive sufficiently

large.

Proof. The forward direction follows from a straightforward check of the behav-

ior of y and z at neighborhoods of ±∞. For the converse, define the following

map

g(t) :=

t if t ∈ (−∞, p]
y−1z(t) if t ∈ [p,+∞).

If t 6 p, then

g(t) = t = y−2z2(t) = y−1(y−1z)z(t) = y−1gz(t)

since y2 = z2 = id and z(t) > p. On the other hand, if t > p, then

g(t) = y−1z(t) = y−1gz(t)

since z(t) 6 p. So y and z are conjugate to each other by the element g ∈ EP2.

The final step is to observe that g is, in fact, in F because g(t) = t, for t negative

sufficiently large, and g(t) = t + u by construction, for t positive sufficiently

large.
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We quickly extend an argument from [15] to reduce the number of candidate

conjugators to test. The trick is to reduce the number of initial slopes that we

need to test.

Lemma 2.17: Let y, z ∈ R · EP<2 (p,+∞) and g ∈ F (p,+∞) and consider the

equation

(2.7) z = x−1yx.

Then x = g is a solution of (2.7) if and only if there exists an integer n such

that x = y2ng ∈ EP2(p,+∞) is the unique solution of equation (2.7) such that

(y2ng)′(p+) ∈ [(y2)′(p+), 1].

Proof. This follows immediately by noticing that equation (2.7) is equivalent

to

z = (y2nx)−1y(y2nx).

To show uniqueness, we observe that in Subsection 2.3 we noticed that a solution

of equation (2.7) is also a solution of the squared equation

(2.8) z2 = g−1y2g.

Uniqueness follows from Theorem 2.8 applied to the squared equation (2.8).

Theorem 2.18: Let y, z ∈ R · EP2 be such that y(p) = z(p) = p, for some

p ∈ Q. We can decide whether or not y and z are conjugate by an element of

F . If there exists a conjugator, we can construct one.

Proof. If y2 = z2 = id, then we are done by Proposition 2.16. Moreover, if y

and z are conjugate via an element of F , it is immediate that y−1z(t) = t+ u,

for some integer u and for any t positive sufficiently large (as observed in the

proof of Proposition 2.16). Thus we can assume that y−1z is a translation, for

t positive sufficiently large.

Assume now y2 6= id 6= z2. We can appeal to Proposition 2.9 and assume

that Fix(y2) = Fix(z2), up to suitable conjugation. Moreover, if there is a

g ∈ F such that z = g−1yg, then g must fix Fix(y) = Fix(z) = {p} and so

{p} ⊆ Fix(y2) = Fix(z2) ⊆ Fix(g).

Let L < R be two suitable integers so that y2 and z2 coincide and are periodic

on the set (−∞, L] ∪ [R,+∞). If either L or R does not exist, then y and z
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cannot be conjugate. We can apply the techniques from [15] on any two consec-

utive dyadic rational points p1, p2 of ∂Fix(y2)∩ [L,R] where y2|[p1,p2] 6= id|[p1,p2]
and z2|[p1,p2] 6= id|[p1,p2] and find (if they exist) all the finitely conjugators be-

tween y2|[p1,p2] and z2|[p1,p2] with initial slopes within (y2)′(p+) and (y−2)′(p+).

Similarly we can do on [a,+∞) where a is the rightmost dyadic rational point

of ∂Fix(y2) ∩ [L,R] by applying Lemma 2.17 in the case that y2 and z2 have

no fixed points on [R,+∞) (to reduce the number of initial slopes on which we

can apply Theorem 2.8) or using the argument at the end of Subsection 2.6 in

case y2 and z2 have fixed points on [R,+∞).

Thus in all cases, up to using the same trick of Lemma 2.17 to reduce the

slopes to test, we apply Theorem 2.8 (or its bounded version from [15]) to

build finitely many functions between any two consecutive dyadic rational points

p1, p2 of ∂Fix(y2) (respectively, on an interval of the type [p1,+∞)) and such

that y2 6= id on [p1, p2] (respectively, on an interval of the type [p1,+∞)).

We now test all these functions as conjugators between y and z in the respec-

tive intervals. If there is an interval such that none of these functions conjugates

y and z, then y and z cannot be conjugate via an element of F . Otherwise, on

each such interval Us we fix a conjugator gs between y and z.

Now we will carefully glue all these conjugators with the function that we

have built in Proposition 2.16 as follows. Assume that (p,+∞) \ Fix(y2) is

a disjoint union of ordered intervals Ii = (ai, bi) so that ai < aj , if i < j.

Similarly, assume that (−∞, p) \Fix(y2) is a disjoint union of ordered intervals

Ji = (di, ci) such that ci > cj , if i < j.

g(t) :=


t if t = p or t ∈ Fix(y2) ∩ (−∞, p)
y−1z(t) if t ∈ Fix(y2) ∩ (p,+∞)

gs(t) if t ∈ Us

Since y acts on R in an order reversing way, it is immediate to verify that

y(ai) = ci = z(ai), y(ci) = ai = y(ci), y(bi) = di = z(bi) and y(di) = bi = z(di)

and therefore the map g is in F . It is straightforward to observe that this map is

continuous and in F and that it is a conjugator, by construction. For example,

since z([ci+1, di]) = [bi, ai+1] and y2 = z2 = id on [ci+1, di] then it is clear that

g(t) = t = y−2z2(t) = y−1(y−1z)z(t) = y−1gz(t)

for any t ∈ [ci+1, di].
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2.9. Solution of the TCP. We are now ready to prove Theorem 1.2.

Theorem 1.2. Thompson’s group F has solvable twisted conjugacy problem.

Proof. Given y, z ∈ F and ϕ ∈ Aut(F ), we need to establish whether or not

there is a g ∈ F such that

(2.9) z = g−1yϕ(g).

In Subsection 2.3 we have shown that equation (2.9) is equivalent to the equation

(2.10) z = g−1yg,

for y, z ∈ ẼP2 and g ∈ F . We describe a procedure to wrap up all work of the

previous subsections:

(1) If one of y and z belongs to EP2 and the other in R·EP2, then equation

(2.10) has no solution for g ∈ F , since conjugation does not change the

orientation of a function.

(2) If both y, z ∈ EP2, then we apply the results of Subsections 2.4 through

2.7 to solve equation (2.10).

(3) If y, z ∈ R ·EP2, then we apply Theorem 2.18 to solve equation (2.10).

This ends the proof of Theorem 1.2.

3. Extensions of F with unsolvable conjugacy problem

In this section we recall the necessary tools of [5] needed to construct exten-

sions of Thompson’s group F with unsolvable conjugacy problem (proving The-

orem 1.4).

As explained in the introduction, Bogopolski, Martino and Ventura give a

criterion to study the conjugacy problem in extensions of groups (see Theo-

rem 1.1). Applying it to the case we are interested in, let F be Thompson’s

group, let H be any torsion-free hyperbolic group (for example, a finitely gen-

erated free group), and consider an algorithmic short exact sequence

(3.1) 1 −→ F
α−→ G

β−→ H −→ 1.

We can then consider the action subgroup of the sequence, AG = {ϕg | g ∈
G} 6 Aut(F ), and Theorem 1.3 tells us that G has solvable conjugacy problem

if and only if AG 6 Aut(F ) is orbit decidable. In the present section we will
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find orbit undecidable subgroups of Aut(F ) and so, extensions of Thompson’s

group F with unsolvable conjugacy problem.

A good source of orbit undecidable subgroups in Aut(F ) comes from the

presence of F2 × F2 via Theorem 7.4 from [5]:

Theorem 3.1 (Bogopolski-Martino-Ventura, [5]): Let F be a finitely generated

group such that F2 × F2 embeds in Aut(F ) in such a way that the image B

intersects trivially with Stab∗(v) for some v ∈ F , where

Stab∗(v) = {θ ∈ Aut(F ) | θ(v) is conjugate to v in F}.

Then Aut(F ) contains an orbit undecidable subgroup.

Let us first find a copy of F2 × F2 inside Aut(F ) and then deal with the

technical condition about avoiding the stabilizer.

We can define two maps ϕ−∞, ϕ∞ : EP2 → T = PL2(S1) in the following

way: given f ∈ EP2 we find a negative sufficiently large integer L so that f is

periodic in (−∞, L]; then we pass f |(L−1, L] to the quotient modulo Z to obtain

an element from T defined to be the image of f by ϕ−∞. The map ϕ+∞ is

defined similarly but looking at a neighborhood of +∞.

The maps ϕ−∞ and ϕ+∞ are clearly well-defined homomorphisms from EP2

to T . Note also that, for f1, f2 ∈ EP2 and k ∈ Z, if f1 and f2 + k agree for

t negative (resp. positive) sufficiently large, then ϕ−∞(f1) = ϕ−∞(f2) (resp.

ϕ+∞(f1) = ϕ+∞(f2)).

We begin by showing that both ϕ−∞ and ϕ+∞ are surjective.

Lemma 3.2: For every a ∈ T and every dyadic rational p, there exist preimages

of a by ϕ−∞ and ϕ+∞, respectively inside EP2(−∞, p) 6 EP2 and EP2(p,+∞) 6

EP2.

Proof. We show the result for the case EP2(p,+∞) (the other case is completely

analogous). Let a ∈ T and choose ã ∈ EP2 to be any standard periodic lift of

a conveniently translated up so that p < ã(p + 1). By Proposition 2.3, we can

construct g ∈ F such that g(p) = p and g(p+ 1) = ã(p+ 1). Finally, consider

â(t) =


t t 6 p

g(t) p 6 t 6 p+ 1

ã(t) p+ 1 6 t,
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which is clearly an element of EP2(p,+∞) such that ϕ+∞(â) = ϕ+∞(ã) =

a.

The following Corollary is the key observation of the current subsection.

Corollary 3.3: The automorphism group of Thompson’s group F = PL2(I)

contains a copy of the direct product of two free groups, F2 × F2 6 EP2 6

Aut+(F ).

Proof. It is well known that Thompson’s group T = PL2(S1) contains a copy

of F2, the free group on two generators, say generated by a, b ∈ T . Apply

Lemma 3.2 to obtain preimages of a and b by ϕ−∞, say â−, b̂− ∈ EP2(−∞, 0),

and preimages of a and b by ϕ+∞, say â+, b̂+ ∈ EP2(0,+∞). Since ϕ−∞ and

ϕ+∞ are homomorphisms, we have again 〈â−, b̂−〉 ∼= F2
∼= 〈â+, b̂+〉. And, on

the other hand, by disjointness of supports, they commute to each other and so

F2 × F2
∼= 〈â−, b̂−, â+, b̂+〉 6 EP2

∼= Aut+(F ).

We are finally ready to prove Theorem 1.4.

Theorem 1.4. There are extensions of Thompson’s group F by finitely gener-

ated free groups, with unsolvable conjugacy problem.

Proof. We need to redo the proof of Corollary 3.3 in an algorithmic fashion

while choosing our copy of F2 × F2 inside Aut+(F ) carefully enough so that it

satisfies the technical condition in Theorem 3.1.

Let Θ be the map obtained by repeating periodically the map θ defined in

Subsection 2.1 inside each square [k, k+1]2, for any integer k. Let α(t) := Θ2(t)

(mod 1) ∈ T and β(t) := Θ2(t)+ 1
2 (mod 1) ∈ T . By using the ping-pong lemma

it is straightforward to verify that α and β generate a copy of F2 inside T . Now

take a = α2, b = β2, c = αβα−1 and d = βαβ−1, which generate a copy of the

free group of rank four, F4 ' 〈a, b, c, d〉 6 T .

Using Lemma 3.2, we can find preimages of a, b ∈ T by ϕ−∞, denoted by

â, b̂ ∈ EP2(−∞, 0) 6 EP2, and preimages of c, d ∈ T by ϕ+∞, denoted by

ĉ, d̂ ∈ EP2(0, +∞) 6 EP2. Since 〈a, b〉 ∼= F2
∼= 〈c, d〉 and ϕ−∞ and ϕ+∞

are both group homomorphisms, we get 〈â, b̂〉 ∼= F2
∼= 〈ĉ, d̂〉. Moreover, the

disjointness of supports gives us that F2 × F2
∼= 〈â, b̂, ĉ, d̂〉 6 EP2; this is the

copy B of F2×F2 inside EP2 (though as positive automorphisms of F via Brin’s

Theorem) ready to apply Theorem 3.1. Additionally, note that, by construction,
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ϕ−∞(â) = a, ϕ−∞(̂b) = b, ϕ+∞(ĉ) = c and ϕ+∞(d̂) = d but, at the same time,

ϕ+∞(â) = ϕ+∞(̂b) = ϕ−∞(ĉ) = ϕ−∞(d̂) = 1T .

Let now v ∈ F be the map v(t) = t + 1, for all t ∈ R. We will show that

B∩Stab∗(v) = {id}. Let τ ∈ B∩Stab∗(v). On one hand, τ ∈ B and so τ(0) = 0

and τ = w1(â, b̂)w2(ĉ, d̂) for some unique reduced words w1(â, b̂) ∈ 〈â, b̂〉 and

w2(ĉ, d̂) ∈ 〈ĉ, d̂〉. On the other hand, τ ∈ Stab∗(v) and so τ−1vτ = g−1vg

for some g ∈ F , which implies that τg−1 commutes with v in EP2. By the

definition of v, the map τg−1 is periodic of period 1 on the entire real line, thus

ϕ−∞(τg−1) = ϕ+∞(τg−1) in T . On the other hand, since g ∈ F , there exist

integers m− and m+ such that, for negative sufficiently large t, τg−1(t) = τ(t−
m−) = τ(t) −m−, and for positive sufficiently large t, τg−1(t) = τ(t −m+) =

τ(t)−m+. Modding out these two equations by Z around ±∞, we get

ϕ−∞(τg−1) = ϕ−∞(τ) = ϕ−∞(w1(â, b̂)w2(ĉ, d̂)) =

= ϕ−∞(w1(â, b̂))ϕ−∞(w2(ĉ, d̂)) = w1(a, b);

similarly, ϕ+∞(τg−1) = w2(c, d). Hence,

w1(a, b) = ϕ−∞(τg−1) = ϕ+∞(τg−1) = w2(c, d),

an equation holding in 〈a, b, c, d〉 6 T . Since this is a free group on {a, b, c, d},
we deduce that w1(a, b) and w2(c, d) are the trivial words and therefore τ = id.

Having shown that B ∩ Stab∗(v) = {id}, an application of Theorem 3.1 gives

us orbit undecidable subgroups of Aut+(F ), and Theorem 1.3 concludes the

proof.

Remark 3.1: The element v chosen in the previous proof is actually x0, the first

generator of the standard finite presentation defined in Subsection 2.1.

4. The orbit decidability problem for F

In this section we study the orbit decidability problem for Aut(F ) and Aut+(F ).

We study two different cases and use techniques which are “dual” to those of

Section 2. As a consequence, provided that one knows the solvability of a

certain decision problem, we can build nontrivial extensions of F with solvable

conjugacy problem.

By using Theorem 2.2 and following computations similar to those in Subsec-

tion 2.3, the orbit decidability problem for Aut(F ) can be restated as follows:

given y, z ∈ F decide whether or not there exists a g ∈ EP2 such that either
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(i) g−1yg = z, or

(ii) g−1(RyR)g = z.

Notice that the first equation corresponds to orbit decidability for Aut+(F ).

Up to renaming RyR by y, both (i) and (ii) can be regarded as an instance of

(i).

4.1. Orbit decidability problem: fixed points. It is immediate to adapt

Lemma 2.5 to this setting, noticing that if y ∼EP2 z then y and z coincide

around ±∞.

Remark 4.1: Since y, z ∈ F have only finitely many intervals of fixed points,

we can use the results of Subsection 2.5 and assume that Fix(y) = Fix(z), up

to conjugating by a g ∈ F . It can be shown that if there is no g ∈ F such that

Fix(y) = g(Fix(z)), then there is no h ∈ EP2 such that Fix(y) = h(Fix(z)).

Lemma 4.1: Let y, z ∈ F such that Fix(y) = Fix(z) 6= ∅. It is decidable to

determine whether or not there is a g ∈ EP2 such that g−1yg = z.

Proof. If g ∈ EP2 conjugates y to z, then it must fix Fix(z) point wise. For

any two consecutive points p1, p2 of ∂Fix(z) we can use the techniques in [15]

to decide whether or not there is a hp1,p2 ∈ PL2([p1, p2]) conjugating y|[p1,p2] to

z|[p1,p2].
Let R = max Fix(z). If R = +∞, then there exists a rational number p such

that y = z = id on [p,+∞) and so we can choose g ∈ EP2(R,+∞) to be g = id

to conjugate y to z. Assume now that R < +∞.

By using the same idea seen in Subsection 2.9 and rewriting the equation

z = g−1yg = (yng)−1y(yng) we restrict to looking for candidate conjugators

with slopes at R+ inside [y′(R+), 1]. For any power 2α within [y′(R+), 1], we

apply Theorem 2.8(ii) to build the unique conjugator g ∈ PL2(R,+∞) such that

g′(R+) = 2α. We find a finite number of conjugators g1, . . . , gs ∈ PL2(R,+∞).

Notice: by Theorem 2.8(ii) every gi conjugates y to z, but it may not be true

that gi ∈ EP2(R,+∞).

There exists a positive sufficiently large number M such that, for any t >M ,

we have y(t) = t + k = z(t) and that for any i = 1, . . . , s and any t > M , we

have:

gi(t) + k = ygi(t) = giz(t) = gi(t+ k),
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so that every gi is periodic of period k on [M,+∞). To finish the proof, we

only need to check if any of the gi’s is in EP2(R,+∞). To do so, we check if

gi(t+1) = gi(t)+1 on the interval [M,M+k]. If any of them is indeed periodic

of period 1, then we have found a valid conjugator, otherwise y and z are not

conjugate.

4.2. Orbit decidability problem: Mather invariants. We assume that

y, z ∈ F> and that there exist two integers L < R such that y(t) = z(t) = t+ a

for t 6 L and y(t) = z(t) = t+ b for t > R, for suitable integers a, b > 1. Up to

conjugation by a suitable g ∈ F , we can assume that L = 0 and R = 1. Define

the two circles

C0 := (−∞, 0)/aZ C1 := (1,∞)/bZ

and let p0 : (−∞, 0)→ C0 and p1 : (1,∞)→ C1 be the natural projections. As

was done before, let N be a positive integer large enough so that yN (−a, 0) ⊆
(1,+∞) and define the map y∞ : C0 → C1 by

y∞([t]) := [yN (t)].

Similarly we define z∞ and call them the Mather invariants for y and z. Arguing

as in Subsection 2.7 we see that, if g−1yg = z for g ∈ EP2, then

(4.1) v1z
∞ = y∞v0

where vi is an element of Thompson’s group TCi
induced by g on Ci, for i = 0, 1,

and such that vi(t+ 1) = vi(t) + 1.

Recall that a group G has solvable k-simultaneous conjugacy problem (k-

CP) if, for any two k-tuples (y1, . . . , yk), (z1, . . . , zk) of elements of G, it is

decidable to say whether or not there is a g ∈ G so that g−1yig = zi, for all

i = 1, . . . , k. Kassabov and the second author [15] show that Thompson’s group

F has solvable k-CP.

Conjecture 4.2: Thompson’s group T has solvable k-CP.

Partial results have been obtained towards this conjecture by Bleak, Kassabov

and the second author in Chapter 7 of the second author’s thesis [17]; it is work

in progress to complete that investigation.

Lemma 4.3: Let y, z ∈ F>. If the 2-simultaneous conjugacy problem is solvable

in Thompson’s group T , then it is decidable to determine whether or not there

is a g ∈ EP2 such that g−1yg = z.
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Proof. A straightforward extension of Theorem 4.1 in [18] yields that y ∼EP2
z

if and only if there exists vi ∈ TCi
such that vi(t + 1) = vi(t) + 1, for i = 0, 1

and they satisfy equation (4.1). Since v0 needs to be equal to y−∞v1z
∞, our

problem is reduced to deciding whether or not there is v1 ∈ TC1
solving these

equations:

(4.2)
v1(t+ 1) = v1(t) + 1, ∀t ∈ C1

y−∞v1z
∞(t+ 1) = y−∞v1z

∞(t) + 1, ∀t ∈ C0.

Recalling that C0 is a circle of length a and C1 is a circle of length b, we define

si : Ci → Ci to be the rotation by 1 in Ci, for i = 0, 1. The problem now

becomes this: we need to decide whether or not there exists a map v1 ∈ TC1

such that

(4.3)
v1s1 = s1v1

y−∞v1z
∞s0 = s0y

−∞v1z
∞.

If we relabel y∞s0y
−∞ := y∗ and z∞s0z

−∞ := z∗, equations (4.3) become

(4.4)
v−11 s1v1 = s1

v−11 y∗v1 = z∗.

Equations (4.4) are an instance of 2-CP which is solvable by assumption.

4.3. Non-trivial extensions of F with solvable conjugacy problem.

Theorem 4.4: If Conjecture 4.2 is true for k = 2, then Aut(F ) and Aut+(F )

are orbit decidable (as subgroups of Aut(F )). In particular, assuming that such

conjecture is true, every group G in an algorithmic short exact sequence

1 −→ F
α−→ G

β−→ H −→ 1,

where F = PL2(I), H is a torsion-free hyperbolic group, and the action sub-

group AG is either Aut(F ) or Aut+(F ), has solvable conjugacy problem.

Proof. An application of Remark 4.1 and Lemmas 4.1 and 4.3 implies the solv-

ability of orbit decidability for the groups Aut(F ) and Aut+(F ). We verify the

requirements of Theorem 1.1. By Theorem 1.2, condition (1) is satisfied. It is

well known (see, for example, Proposition 4.11(b) [5]) that if H is a free group

or a torsion-free hyperbolic group, conditions (2) and (3) from Theorem 1.1 are

satisfied. By Theorem 4.4 we know that the action subgroup is orbit decidable,

then Theorem 1.1 implies that G has solvable conjugacy problem.



Vol. VOL, YEAR CONJUGACY IN EXTENSIONS OF F 39

5. Property R∞ in Thompson groups F and T

In this section we show that Thompson groups F and T both have property

R∞. We recall the definition of property R∞, for the reader’s convenience.

Definition 5.1: A group G has property R∞ if for any ϕ ∈ Aut(G), there exists a

sequence {zi}i∈N of pairwise distinct elements which are pairwise not ϕ-twisted

conjugate. See also Section 1.

We know that an automorphism ϕ of F is obtained by conjugation in F by an

element τ ∈ ẼP2. Moreover, we have seen in Subsection 2.3 that two elements

y, z ∈ F are ϕ-twisted conjugate if and only if the two elements yτ and zτ (now

elements of ẼP2) are conjugate by an element of F . Therefore, to prove that

F has property R∞ it is enough to show that, given τ ∈ ẼP2, there exists a

family of elements zi ∈ F , for all i = 1, 2, . . . , n, . . . such that they are pairwise

not ϕ-twisted conjugate, i.e., ziτ and zjτ are not conjugate by an element of F .

Assume first that τ ∈ EP2. If two elements are conjugate by an element of

F then their fixed point sets match each other. So to prove that ziτ and zjτ

are not conjugate, it would be enough to construct the zi ∈ F in such a way

that ziτ has, say, a fixed point set with i connected components so that the

fixed point sets for all the ziτ would be different and the elements cannot be

conjugate.

We observe that the fixed point set of ziτ contains exactly the points t ∈ R
such that zi(t) = τ−1(t). Thus, it is enough to construct a map zi ∈ F such

that it has exactly i disjoint intervals where zi(t) = τ−1(t), thus producing i

connected components for Fix(ziτ). A reader familiar with F should be able to

construct easily such family zi.

The proof above does not work if τ is orientation reversing. But it can

be modified to solve this case too. Assume now that τ = σR with σ ∈ EP2.

Construct the elements zi ∈ F similarly to the orientation preserving case using

σ, but in such a way that the fixed point set for ziσ is symmetric with respect

to the origin. More precisely, we can ensure that Fix(ziσ) has 2i+ 1 connected

components given by {0}, i connected components inside R+ and the opposite

of these components in R−. Moreover, we can ensure that ziσ > 0 if and only

if t > 0. Observe that by this symmetry, the map RziσR has the exact same

fixed points as ziσ and so Fix((ziσR)2) = Fix((ziσ)2).
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Using this family zi, we see that if ziτ and zjτ were conjugate via an element

of F , then (ziσR)2 and (zjσR)2 would also be, and these have a different num-

ber of connected components in their fixed-point sets, by construction, yielding

a contradiction.

The argument above shows that we can recover property R∞ for F , giving a

new proof of the following result.

Theorem 5.1 (Bleak-Fel’shtyn-Gonçalves, [4]): Thompson’s group F has prop-

erty R∞.

Remark 5.1: We observe that Gonçalves and Kochloukova [12] generalized The-

orem 5.1 to show that the Brin-Guzman generalized Thompson groups Fn,0 and

their finite direct products have property R∞. Moreover, we also note that re-

cently Koban and Wong [16] have shown that the group F o Z2 has property

R∞.

Since we have a characterization for Aut(T ) also in terms of conjugation by

piecewise-linear maps, the method described above to prove property R∞ for

F can be used for T as well.

Theorem 1.5. Thompson’s group T has property R∞.

Proof. By Theorem 1 in [6], the group Aut(T ) can be realized by inner auto-

morphisms and by conjugations by R, the map which reverses the orientation.

The process will consist on constructing maps with different fixed-point sets.

Consider a piecewise-linear map on [0, 1] whose only fixed points are 0, 1
2 and 1,

and also such that the graph is symmetric respect to the point [ 12 ,
1
2 ]. Identify

the endpoints to obtain a map on S1 and hence an element of T . Call this map

h1 and consider its lift h̃1 ∈ PL2(R). From the way we have constructed h1,

we see that h̃1 is symmetric respect [ 12 ,
1
2 ] inside the square [0, 1]2, and so h̃1 is

invariant under R, i.e., Rh̃1R = h̃1 inside PL2(R). Therefore Rh1R = h1 in T .

Now define inductively the map hi by subdividing the interval [0, 1] in its two

halves and in each half define a scaled-down version of h̃i−1, by a factor of 2.

Observe that if i 6= j, then hi and hj have different number of fixed points. For

a fixed ε ∈ {0, 1}, if hiRε and hjRε were conjugate in T , then (hiRε)2 and

(hjRε)2 are also conjugate in T . We notice that (hiR)2 = h2i and that h2i and

h2j have different number of fixed points, so they cannot be conjugate.
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6. Generalizations and some questions

In this section we make a series of observations about the extent to which the

material of this paper generalizes and describe some natural related questions.

6.1. Extensions of the Bieri-Thompson-Stein-Strebel groups PLS,G(I).

It seems likely that the theory developed in this paper can be generalized to a

certain extent to apply to Bieri-Thompson-Stein-Strebel groups PLS,G(I), with

the computational requirements described in [15].

We recall that PLS,G(I) is the group of piecewise-linear homeomorphisms

of the unit interval I with finitely many breakpoints occurring inside S 6 R,

an additive subgroup of R containing 1, and such that the breakpoints lie in

G 6 U(S), where U(S) = {g ∈ R∗ | gS = S and g > 0}.
Since our results rely on straightforward generalizations of those in [15] and

[18], to generalize our algorithms to the groups PLS,G(I) we need to observe a

number of things:

(1) We define the analogues PLS,G(R), ẼPS,G,EPS,G and observe that the

existence of periodicity boxes, the construction of conjugators and mov-

ing fixed points (Subsections 2.4, 2.4 and 2.5) generalize immediately

via the results in [15] (which are proved in PLS,G(I)).

(2) To reduce the number of possible “initial slopes” we need to generalize

Subsection 2.7. We can do this since the material in [18] can be gen-

eralized to PLS,G(I). The second observation that is needed to reduce

slopes is the one used in the proof of Theorem 1.2, where we multiply

a candidate conjugator g by a power of y2. This shows that we need

to build candidate conjugators only for slopes in [(y2)′(p+), 1] and, by

Lemma 5.4 in [15], we can show that the sets of slopes is discrete in R+,

thereby giving us only finitely many slopes inside [(y2)′(p+), 1]. Hence,

this part generalizes too.

(3) Brin’s Theorem 2.2 has a non-trivial generalization in a result of Brin

and Guzman [7] which describes certain classes of automorphisms of the

groups PLZ[ 1n ],〈n〉(I). There exist elements in the automorphism group

Aut(PLZ[ 1n ],〈n〉(I)) which are represented by conjugation via elements

that are not in ẼPn (and that are called “exotic”). Therefore, we can

only generalize results of the current paper by restricting the action

subgroup being used. Instead of studying the full automorphism group
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Aut(PLS,G(I)), we can restrict to study conjugations by element of

ẼPS,G so that we can adapt our results in a straightforward manner.

Remark 6.1: It should be noted that the tools of this paper are not generally

sufficient to solve either the twisted conjugacy problem or the orbit decidability

problem in any group PLS,G(I) generalizing Thompson’s group F (for example,

in generalized Thompson’s groups F (n)). This is because the full automorphism

group may contain conjugations via not piecewise-linear maps.

It is however possible to give suitable reformulations of Theorems 1.2, 4.4

and 1.4 in the setting of actions whose acting group is realized by conjugations

by an element of ẼPS,G. The restatement of Theorem 4.4 will need to assume

that the 2-simultaneous conjugacy problem is solvable for the groups TS,G and

this is also work-in-progress as mentioned in Section 4.

Since the techniques used to study the twisted conjugacy problem for F arise

from those used in [15] to study the simultaneous conjugacy problem for F , it

is natural to ask the following question:

Question 6.1: Is the k-simultaneous twisted conjugacy problem solvable for

F? More precisely, is it decidable to determine whether or not, given ϕ ∈
Aut(F ) and y1, . . . , yk, z1, . . . , zk ∈ F , there exists a g ∈ F such that zi =

g−1yiϕ(g)?

6.2. Extensions of Thompson’s group T . As observed at the beginning of

the proof of Theorem 1.5, if ϕ ∈ Aut(T ), then there exists an ε ∈ {0, 1} such

that ϕ(λ) = Rετ−1ατRε, for all α ∈ T . Arguing as in Subsection 2.3, equation

(1) can be rewritten as

(6.1) g−1(yRε)g = zRε

for y, z, g ∈ T and ε ∈ {0, 1}. To attack equation (6.1), we can start by squaring

it and initially reduce ourselves to solve the equation

(6.2) g−1(yRε)2g = (zRε)2.

The advantage of working with equation (6.2) is that (yRε)2, (zRε)2 ∈ T .

The conjugacy problem in T is solvable by the work of Belk and the second

author in [2] and thus we can list all the conjugators in T between (yRε)2

and (zRε)2. However, there might be infinitely many of them and there is no
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obvious way to detect which of them will also be conjugators between yRε and

zRε.
We cannot use the techniques of the current paper, since there is no unique-

ness given by an the “initial slope” of elements of T (although something similar

may be feasible, as in Chapter 7 of [17]). We are thus led to ask:

Question 6.2: Is the twisted conjugacy problem solvable in Thompson’s group

T?

To conclude, we mention that the orbit decidability problem for T is solvable

for Aut(T ) and Aut+(T ).

Lemma 6.3: Let T be Thompson’s group PL2(S1). Then Aut(T ) and Aut+(T )

are orbit decidable.

Proof. We need to decide whether or not, given y, z ∈ T , there exists an element

g ∈ T such that at least one of the two equalities

(6.3) z = g−1yg or z = g−1(RyR)g

holds. This amounts to studying two distinct conjugacy problems for elements

of T , each of which is solvable by the work [2].
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[9] José Burillo and Sean Cleary. The automorphism group of Thompson’s group F : sub-

groups and metric properties. Rev. Mat. Iberoam., 29(3):809–828, 2013.

[10] J.W. Cannon, W.J. Floyd, and W.R. Parry. Introductory notes on Richard Thompson’s

groups. Enseign. Math. (2), 42(3-4):215–256, 1996.

[11] Étienne Ghys and Vlad Sergiescu. Sur un groupe remarquable de difféomorphismes du
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