
Dev-for-Operations and Multi-sided Platform
for Next Generation Platform as a Service

Bela Berde1, Steven Van Rossem2, Aurora Ramos3, Matteo Orrù4, Anas Shatnawi4
1Nokia Bell-Labs France, 2Ghent University-imec, 3ATOS Spain, 4University of Milano-Bicocca

Abstract— This paper presents two new challenges for the
Telco ecosystem transformation in the era of cloud-native
microservice-based architectures. (1) Development-for-
Operations (Dev-for-Operations) impacts not only the overall
workflow for deploying a Platform as a Service (PaaS) in an open
foundry environment, but also the Telco business as well as
operational models to achieve an economy of scope and an
economy of scale. (2) For that purpose, we construct an
integrative platform business model in the form of a Multi-Sided
Platform (MSP) for building Telco PaaSes. The proposed MSP
based architecture enables a multi-organizational ecosystem with
increased automation possibilities for Telco-grade service
creation and operation. The paper describes how the Dev-for-
Operations and MSP lift constraints and offers an effective way
for next-generation PaaS building, while mutually reinforcing
each other in the Next Generation Platform as a Service
(NGPaaS) framework.

Keywords— microservice; DevOps; MSP; platform; Dev-for-
Operations;

I. INTRODUCTION

The transformation of Telco infrastructures into cloud-
native and microservice-based architectures calls to redesign
compute, storage, and network components beyond the current
virtualization technologies [1]. Microservices extend cloud-
native concepts. Being cloud-native, microservices are
interchangeable, replaceable, and composable in a more than
one supplier environment. Accordingly, microservice-based
Telco applications are no longer seen as stand-alone software but
as aggregates from third-party microservices, which are not
simple add-ons to the core application. Building and deploying
Telco applications in an infrastructural agnostic way has
therefore the following main features:

1. composability: with the so-called “telco-grade” quality,
Telco applications are enabled to combine all sort of third-
party microservice-architected software components for
creating new, versatile, and powerful cloud objects, with no
silos between connectivity, storage, and computing units.

2. PaaS: when deployed, such an application is called an
application Platform-as-a-Service (PaaS), ideal to remove
all the repetitive tasks encountered on top of the
Infrastructure-as-a-Service (IaaS) layer, as IaaS resources
automatically scale. An individual PaaS instance may cover
multiple IaaS segments, where each individual part of the
PaaS - running on a given IaaS segment - is
reprogrammable (Figure 1).

3. reusability: combining a rich menu of telco-grade
applications as PaaS instances raises the question of multi-
vendor microservice and, more generally, component
reusability for cloud-computing-assisted large-scale

distributed production. Reusable components free the
development, deployment, and operation of PaaSes from
reimplementing the same microservice systems over and
over again.

4. automation: while pipelines vary from organization to
organization, as extra value-added services, PaaS instances
require a complete set of automation technologies for
component integration, building, deployment, and technical
operations.

5. platform: automated building and operation of PaaS
instances call for an industry platform, which changes the
relation between microservice developers, service
providers, and end-users of those services.

The next-generation Telco PaaS, including features 1.-5., is,
by definition, cloud-native, componentized, and are operated in
a multi-organizational environment in an automated way.

Moreover, combining microservices, coming from various
sources and firms, requires a building and deployment strategy,
i.e., a PaaS software foundry approach. The approach demands
a methodology to simplify and accelerate the PaaS production,
especially, within an increasingly complex and dynamic
software and hardware production context [2].

The methodology implies a new definition of what is a
reusable software component as fundamental building block as
well as the concept of ecosystem, tooling chains, and business
model transformation:

1. Reusable Functional block (RFB): the microservice
concept needs to be transformed into Reusable Functional
Blocks (RFB). Simply stated, an RFB is defined as a
microservice augmented with the declarative statement of
some functional, performance, and execution environment
metadata for describing the link between functionality and
infrastructure [4]. The declarative statement is called
blueprint. It contributes to automating the building,
operation and orchestration strategy of the RFB with some
metadata such as the description of the desired deployment
target. Further, the RFB can be seen as a broader reusable
component concept, by which not only microservices but
also bunches of microservices and even services are
concerned: it is not only a generic unit of composition but
also a recursive element. This raises the issue of the
visibility on RFB internal components, for example.

2. Development-for-Operations (Dev-for-Operations): tools
and techniques applied in a whole ecosystem for handling
RFBs.

3. Multi-sided Platform (MSP): platformization implies a new
ecosystem for organizing collaboration and control on

software, hardware, and services. It also demands the
redesign of the business models in the form of a multi-sided
platform (MSP) [3]. Without taking ownership of the
services whose exchanges it facilitates in inter-
organizational interactions, an MSP is both an industry
platform and an intermediary. The utilization differential of
the MSP appears in both a potential economy of scope and
in the opportunity for economy of scale.

Figure 1: PaaS instances for a set of Fog, Edge, and Core IaaS instances.

II. CURRENT PAAS MODEL

Current PaaS solutions, as an independent service model for
the provision of a complete platform, i.e. hardware and
software as service bunches, propose to develop software
applications and to integrate them with infrastructure for
deployment. The platform provides the platform users with all
functionalities which are needed during the lifecycle of an
application, from development and testing to deployment and
operations. PaaS solutions propose extra value-added services
such as support, monitoring, lifecycle management, quality
assurance, and certification. Most PaaS solutions have the
drawback of applications being tightly locked to the PaaS
provider development and runtime environment, namely an
integrated development and deployment environment that
normally supports the use of multiple but selected
programming languages and offers crafted tools for
implementing, testing, and operating. Therefore, the
application relies on the offered tools by the PaaS provider,
who can also propose a marketplace with catalog, rating,
usage tracker, recommendation, pricing, and billing for
platform usage. Activities on current PaaS solutions are not
planned to be multi-organizational.

III. TELCO PAAS AND DEV-FOR-OPERATIONS

 A next-generation Telco PaaS instance, on the other hand,
can be considered as an RFB by extension, allowing on-
demand PaaS setup in each PaaS segment (Figure 1).
Individual PaaS instances are further reprogrammable and
customizable to meet the requirement of services to be
deployed. Using many different RFBs, PaaS instances are
tailored to the needs of a wide range of use cases with telco-
grade 5G characteristics.

To develop and to operate PaaS instances using traditional
DevOps processes is not enough for an industry platform.
While DevOps tools and techniques became customary as
applied to an entire organization in the IT industry, multi-

organizational software development and operation is a
broader concept than DevOps. In siloed organizational
environments, DevOps allows essentially changing the roles
into communities of practice. DevOps ties streamlined release
pipelines for automated connecting of different software
development activities performed by several teams.

However, multi-organizational communities of practice
tend to complexify. In order to exert control over the multi-
organizational software/hardware production system at any
stage, Dev-for-Operations practices allow inter alia, multi-
organizational shared mutual understanding, shared work
goals, shortened feedback cycles, and a collaborative
environment as opposed to a competitive one. Dev-for-
Operations is enforced by specific tools for continuous
monitoring of the RFB lifecycle in a whole ecosystem within
the industry platform.

The Dev-for-Operations challenge is to surmount the
limitations imposed by and combine the advantages of the
integrated development environment individualized for
software/hardware vendors, the service building environment
of service providers, and the production environment of the
platform provider, while enhancing the extent by which two
implementations or two components from different
manufacturers can co-exist and work together (Figure 2). The
Dev-for-Operations enabled industry platform naturally leads
to a new business model and to the MSP adoption.

Figure 2: Difference between DevOps and Dev-for-Operations [5].

IV. TELCO PAAS AND MSP

The RFB-based system is essentially a system that offers
components that can easily be used by, or integrated into other
RFBs. At the same time, the system itself will often consist of
components that originate from elsewhere. Flexibility in
interoperability, composability, and extensibility of
components is therefore a key feature. A new RFB and service
production and operation model is needed that, from a
business engagement perspective, fundamentally transforms
the interaction with component providers and end-users. This
makes the industry platform provider role central.

To successfully build for flexibility, the platform provider
offers tools and processes to redesign the industry platform as
a multi-sided marketplace [6]. The common tools and
processes provided by the MSP include individualized
workspaces for participants, building, testing, and delivery

tools and repositories for RFBs, and operation monitoring and
analytics functionalities, where participants, RFBs, and
processes have a corresponding OSS/BSS counterpart (Figure
3).

Figure 3: Current PaaS stack versus NGPaaS stack.

The MSP allows a multi-directional flow of value between
different participants:
- from component point of view: the software provider

(SWP) side and the hardware provider (HWP) side. The
SWP side includes Telco manufacturers, software houses,
and Free and Open-Source Software (FOSS) developers.
The hardware provider (HWP) side is formed by
participants, such as, inter alia, open source hardware
acceleration providers, hardware manufacturers, public
cloud providers, custom hardware acceleration providers,
and Artificial Intelligence-as-a-Service (AIaaS) providers
running hardware.

- from service point of view: the services composed and
deployed through PaaS instances, i.e., RFBs, by the
vertical service provider (VSP) side to meet the end-user
(EU) needs.

The MSP is, therefore, located between a VSP participant
and the end-users of that VSP as well as between the platform
provider and its own end-user base. The different end-users
form the EU side. This is why the MSP is different from the
one stop shop Network Function Virtualization (NFV) and the
current PaaS solutions marketplaces. The end-users are kept
independent from the NFV or PaaS solution marketplaces.

Given the double practicality, namely (1) building
component RFBs using software and hardware components,
and (2) operating services RFBs to end-users, the MSP has a
bi-core architecture base, formed by (1) SWP and HWP and
(2) VSP and EU (Error: Reference source not found4).

As coordinator for Dev-for-Operations, the MSP manages
different sides, accessibility to RFB categories, individualized
workspaces for the different RFB production processes as well
as dedicated workspaces for RFB operation. For that reason, it
manages Dev-for-Operations pipelines, and further exerts its
control, in general, on business interactions.

All the RFBs are built within the MSP. Building is
essentially an RFB composition task and is performed by
using an individualized workspace formed by business,
design, and operation views (Figure 3). The RFB composition
includes free and open-source software (FOSS) RFBs or RFBs
located in repositories internally available (Figure 3).
In this build phase, the RFB production includes RFB testing
stages, RFB composition, if any, tested RFB image creation,
and, finally, deployment test with specification of the tested

execution environment that mimics the final deployment
environment, but is completely dedicated to the RFB editor
participant. The RFB then put by the RFB editor in an RFB
production repository with some accessibility policies for RFB
re-use by other participants (Figure 3). Finally, in the ship
phase, the RFB image is transferred from the production
repository of the RFB editor to a ship repository that can be
shared by all the participants of the MSP.

Figure 4: Bi-core architecture of the service provider MSP sides (periphery
not shown).

As an example, a service RFB is composed in the
workspace of a VSP participant, that allows experimenting for
service building, shipping, and running (Figure 3). Once the
service is tested and validated, i.e., available in a ship
repository, it can be deployed through a PaaS. This is
performed, for instance, by a second VSP participant, who
transfers the service RFB to the service deployment repository
that is common to the platform. The run phase corresponds to
deploying and running service RFBs in the appropriate target
environment. The PaaS, onboarding the service RFB, can
therefore be seen as an enabler for service RFB run operations,
with related configuration and binding to IaaS.

V. SERVICE RFB DEPLOYMENT IN THE NEXT-
GENERATION PAAS

The different contributions and interactions between the
MSP participants, enabled by Dev-for-Operations related
functionalities, were previously exemplified in the overall
multi-organizational development and operation process.
These interactions are explained further using the high-level
architectural blocks of the NGPaaS framework (Figure 5).
NGPaaS is architected as a cloud-native implementation based
upon MSP principles. As shown on Figure 1, different subsets
of the IaaS are allocated to several specialized PaaS instances,
which is further enhanced with the following functional
layers:
 Business Layer: The MSP participants register first in this

layer. All access, execution rights, license management is
regulated and configured accordingly in the layers below for
each participant, e.g., by providing specific login credentials
coupled to custom monitoring capabilities. At affiliation
time, a participant defines its initial role. The role can be
transformed on demand into another role affecting the
business relationships within the MSP. In this way, in the
SWP side, for example, a participant can develop and test its
own software components and deploy them later as a VSP
participant. Furthermore, BSS functionalities for IaaS, PaaS,
and RFB usage and Dev-for-Operations processes are
grouped in this layer.

 Operation Layer: The operational aspects of deploying
PaaS as service components are handled here. This includes
automated orchestration of (i) PaaS components to the

allocated IaaS and (ii) service components to a supporting
PaaS. The layer also contains OSS functionalities for the
Dev-for-Operations, PaaS, and IaaS layers.

 Dev-for-Operations Layer: This is part of the RFB build,
ship, and run environment as explained earlier. This layer
implements the different interfaces needed for Telco-grade
development cycles, such as customizable monitoring and
multi-organizational integrations.

Using these functional layers, we further explain how the
interactions between the MSP participants take place in this
architecture (Figure 6).

A. Dev-for-Operations Interactions

Softwarized PaaS or service components are provided by
the SWP side and onboarded through the Dev-for-Operations
Layer. An iterative development cycle is enabled using
following principles (and illustrated in Figure 6):
1. The SWP participant creates a local Design environment, a

workspace, to build its components.
2. A local instance of the Operation Layer is deployed by the

SWP participant, where the software component can be
tested using similar orchestration and control mechanisms
as used in production. This is a customized version,
allowing the SWP to deploy a selected PaaS instance on its
own managed infrastructure layer.

3. Once validated locally, the SWP participant transfers the
software component through the Dev-for-Operations layer
for deployment. Northbound, the Dev-for-Operations layer
can request the Operation Layer to deploy the new
component.

4. This triggers a Continuous Integration/Continuous
Development (CI/CD) process, where the component is
validated through several integration tests on appropriate

(and isolated), for instance, HWP participant provided
resources before deployment. Southbound, monitored data
can be gathered to assess the correct functionality of the
component.

5. Once validated by the Dev-for-Operations layer, the SWP
participant's component can be onboarded by the platform
in a way it is available for production usage in the future,
e.g., by including the component in the appropriate
marketplace catalog.

Above procedure describes how the SWP participant can
validate its components with the HWP participants and
platform provider before they are accepted by the MSP. Once
the platform onboards the new or updated software component,
it can be deployed in a production PaaS environment or offered
to a VSP via the MSP service catalog. In this way, the MSP
environment plentily plays its intermediary role and behaves as
an interface to support the needed interaction chains.

VI. MONITORING IN DEV-FOR-OPERATIONS

In the Dev-for-Operations model the dev side cannot
interfere directly with the ops environment for services
running on top of a PaaS. The SWP/HWP/VSP are even
unaware where their services are orchestrated to. Monitoring
is, however, a crucial step already in any DevOps cycle so the
dev side can get the necessary inputs from monitored data
during operation, relevant to analyze and debug RFBs.

In addition, different MSP sides have different monitoring
demands: VSPs want to provide a monitoring service to their
EU, who wants to be monitored on its own, companies might
need to provide an evidence to their prospects of how reliable
their services are, and SWPs want to monitor a newly
deployed version of their software. All can co-exist in the
same PaaS. These are just few examples of complexity in a

v

MSP participant registration (acces control, license management) Control , License Management)
Business Layer

- CI/CD
-Vendor Specific Monitoring (eg. dashboard, performance profiling)

MSP Operational EnvironmentMSP participants

Core IaaSEdge IaaSFog IaaS

IaaS Layer

Dev-for-Ops Layer

PaaS LayerPaaS 1 PaaS 2 PaaS 3

IaaS Providers
(HWP)

Vertical
Service
Providers
(VSP)

SW Vendors
(SWP)

Service
End-Users
(EU)

Vendor
Infrastructure

Custom
Operation Layer

Local Staging
Environment

Operation Layer
- Catalog of available PaaS components and services
- Automated orchestration of PaaS components and services
- OSS control tasks

- Register available
infrastructure

- Deploy PaaS and
service components

- Monitor and control
IaaS and PaaS

Request orchestration / onboarding of new component

Request monitored data

Iterative Development

Figure 5: High-level architectural blocks which support the MSP and Dev-for-Operations based interactions between involved MSP participants.

heterogeneous PaaS environment. These scenarios call for
reliable, flexible and highly customizable monitoring
functionalities which also needs to be scalable.

Therefore, the Dev-for-Operations layer allows RFB
producers for customizable configuration of limited access
into the operational environment of PaaS instances, where the
services are deployed.

Figure 6: Dev-for-Operations monitoring and dashboard, specific for different vendors and providers.

In this way, the SWP/HWP/VSP can access monitoring data,
isolated from the monitoring data related to other RFBs. In
order to share the monitored data from the operational
environment of the platform to the development side - and
especially get the metrics in real-time related to the
operational health status - a Dev-for-Operations-related
interface is foreseen by means of a Dashboard for each SWP/
HWP/VSP (Figure 6). Therefore, different monitoring
purposes might co-exist in the platform for an RFB that
further represent the complexity of the heterogeneous cloud
environment [8].

The capability to gather monitored data is the basis for
profiling RFB performance. The use-cases for monitoring in
Dev-for-Operations is extended with data analytics in order to
characterize the expected performance of an RFB under a
certain workload and varying IaaS resources. The Dev-for-
Operations layer could then assist the SWP participant to
provide recommendations for resource allocation. The
modeled performance of an RFB will assist greatly in RFB
resource estimation and capacity planning, including a better
prediction of the scaled in/out service performance [7].

VII. CONCLUSIONS

Following the deep infrastructure transformation, the key
difference between cloud-native and microservice- or RFB-
based architectures increases the need for fully automated
PaaS building. Automation becomes the driver for innovative
cross-organization business models, which will impact the
entire ecosystem and business logic. Comparing the one stop
shop NFV marketplace model and the MSP model shows that
NFV marketplaces are only intermediary.

The Telco-grade PaaS foundry implemented in NGPaaS
with MSP and Dev-for-Operations practices can create
communities within the ecosystem that unlock radically new
service production and automation opportunities.

ACKNOWLEDGMENT

The work is done in the NGPaaS, Next Generation
Platform as a Service project, founded by the European
Commission, H2020-ICT-2016-2, ICT-8-2016.

REFERENCES

[1] J. Garrison and K. Nova, “Cloud Native Infrastructure-Patterns for
Scalable Infrastructure and Applications in a Dynamic Environment.”,
O’Reilly Media, Inc., 2017.

[2] P. Veitch, A. Broadbent, S. Van Rossem, B. Sayadi, L.
Natarianni, B. Al Jammal, L. Roullet, A. Mimidis, E. Ollora, J. Soler,
S. Pinniterre, M. Paolino, I. Labrador, A. Ramos, X. Du, M. Flouris,
L. Mariani, O. Riganelli, M. Mobilio, A. Shatnawi, M. Orrù, M.
Zembra, “Re-Factored Operational Support Systems for the Next
Generation Platform as a Service”. In the 5G Cloud Native Design
Workshop, co-located with the IEEE 5G World Forum (5G-WF), 2018
(accepted).

[3] A. Hagiu and J. Wright, “Multi-sided platforms,” International
Journal of Industrial Organization, 2015.

[4] Superfluidity Project, “Deliverable D3.1: Final system
architecture, programming interfaces and security framework spec..’,
December 2016.

[5] M. K. Weldon, ‘The Future X Network: A Bell Labs Perspective’,
Chapter 13, March 2016

[6] D. P. McIntyre and A. Srinivasan, “Networks, platforms, and
strategy: Emerging views and next steps,” Strategic Management
Journal, vol. 38, no. 1, pp. 141–160, 2017.

[7] Morton, Al. RFC 8172. "Considerations for benchmarking virtual
network functions and their infrastructure.", July 2017.

[8] A. Shatnawi, M. Orrù, M. Mobilio, O. Riganelli, L. Mariani,
“CloudHealth: A Model-Driven Approach to Watch the Health of

Cloud Services”. In the International Workshop on Software Health
(SoHeal 2018), co-located with ICSE, Gothenburg, Sweden, May 27,
2018.

	I. Introduction
	II. Current PaaS Model
	III. Telco PaaS and Dev-for-Operations
	IV. Telco PaaS and MSP
	V. Service RFB Deployment in the Next-Generation PaaS
	A. Dev-for-Operations Interactions

	VI. Monitoring in Dev-for-Operations
	VII. Conclusions
	Acknowledgment
	References

