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The factorization and resummation approach of Nagar and Shah [Phys. Rev. D 94 (2016), 104017],
designed to improve the strong-field behavior of the post-Newtonian (PN) residual waveform am-
plitudes f`m’s entering the effective-one-body, circularized, gravitational waveform for spinning co-
alescing binaries, is here improved and generalized to all multipoles up to ` = 6. For a test-particle
orbiting a Kerr black hole, each multipolar amplitude is truncated at relative 6 post Newtonian
(PN) order, both for the orbital (nonspinning) and spin factors. By taking a certain Padé approx-
imant (typically the P 4

2 one) of the orbital factor in conjuction with the inverse Taylor (iResum)
representation of the spin factor, it is possible to push the analytical/numerical agreement of the
energy fluxe at the level of 5% at the last-stable-orbit for a quasi-maximally spinning black hole
with dimensionless spin parameter +0.99. When the procedure is generalized to comparable-mass
binaries, each orbital factor is kept at relative 3+3PN order, i.e. the 3PN comparable-mass terms are
hybridized with higher PN test-particle terms up to 6PN relative order. The same Padé resumma-
tion is used for continuity. By contrast, the spin factor is only kept at the highest comparable-mass
PN-order currently available. We illustrate that the consistency between different truncations in
the spin content of the waveform amplitudes is stronger in the resummed case than when using the
standard Taylor-expanded form of Pan et al. [Phys. Rev. D 83 (2011) 064003]. We finally introduce a
method to consistently hybridize comparable-mass and test-particle information also in the presence
of spin (including the spin of the particle), discussing it explicitly for the ` = m = 2 spin-orbit and
spin-square terms. The improved, factorized and resummed, multipolar waveform amplitudes pre-
sented here are expected to set a new standard for effective-one-body-based gravitational waveform
models.

PACS numbers: 04.30.Db, 04.25.Nx, 95.30.Sf, 97.60.Lf

I. INTRODUCTION

The parameter estimation of gravitational wave
events [1–6] relies on analytical waveforms models, pos-
sibly calibrated (or informed) by Numerical Relativity
simulations [7–14]. The effective-one-body (EOB) model
is currently the only analytical model available that can
be consistently used for analyzing both black hole bi-
naries and neutron star binaries [15–20]. One of the
central building blocks of the model is the factorized
and resummed (circularized) multipolar post-Newtonian
(PN) waveform introduced in [21] for nonspinning bina-
ries. This approach was then straightforwardly general-
ized in [22] to spinning binaries. Already Ref. [22] pointed
out that, in the test-particle limit, the amplitude of such
resummed waveform gets inaccurate in the strong-field,
fast velocity regime, when the spin of the central black
hole is & 0.7. In the same study, an alternative factoriza-
tion to improve the test-mass waveform behavior also for
larger values of the spin was discussed. More pragmati-
cally, Ref. [23] finally suggested to improve the analyti-
cal multipolar waveform amplitude (and fluxes) of [22]
by fitting a few parameters, describing effective high-
PN orders, to the highly-accurate fluxes obtained solv-

ing numerically the Teukolsky equation [24]. Although
this approach is certainly useful to reliably improve the
radiation reaction force that drives the transition from
quasi-circular inspiral to plunge [25–27] for a large mass-
ratio binary, the question remains whether the domain
of validity of purely analytical results can be enlarged in
some way. This question makes special sense nowadays,
since PN calculations of the fluxes are available at high
order [28, 29] and one would like to use then at best.
In addition, following for example the seminal attitude
of Refs. [21, 30], one has to keep in mind that the test-
particle limit should always be seen as a useful theoretical
laboratory to implement new methods and test new ideas
that could be transferred, after suitable modifications, to
the case of comparable-mass binaries.

Reference [31] gave a fresh cut to this problem by ex-
ploring a new way of treating the residual, PN-expanded,
amplitude corrections to the waveforms (i.e., the out-
come of the factorization of Refs. [21, 22]) that con-
sists of: (i) factorizing it in a purely orbital and a
purely spin-dependent part; (ii) separately resumming
each factor in various ways, notably using the inverse
Taylor (“iResum”) approximant for the spin-dependent
factor. Using the test-particle limit to probe the ap-
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proach, Ref. [31] showed that such factorization–and–
resummation paradigm yields a rather good agreement
between the ` = 2 numerical and analytical waveform
amplitudes up to (and often beyond) the last stable or-
bit (LSO). The contextual preliminary analysis of the
comparable-mass case of [31] also suggests that such im-
proved waveform amplitudes are more robust than the
standard ones and may eventually need less important
NR-calibration via the next-to-quasi-circular correction
factor [30].

The purpose of this paper is to deepen and refine the
investigation of Ref. [31] as well as to generalize it to
higher multipoles up to ` = 6. The paper is organized as
follows. In Sec. II we review and improve the test-particle
results of [31] and generalize the procedure up to ` = 6
modes. Section III brings together all the PN-expanded
results currently available for the spin-dependent wave-
form amplitudes [32–34], notably written in multipolar
form, while Sec. IV explicitly shows the spin-dependent
part of the factorized residual amplitudes, both in the
standard form of [21, 22], and with the factorization
of the orbital terms. The approach to the resumma-
tion is undertaken in Sec. V, in particular by discussing
the hybridization (notably of the orbital terms) with the
test-particle information. After the conclusions, Sec. VI
the paper is completed by an Appendix that lists all
the currently known, PN-expanded, ν-dependent, energy
fluxes up to next-to-next-to-leading order in the spin or-
bit interaction (which include also next-to-leading-order
for the spin-spin-terms and leading-order for spin-cube
terms). We use units with c = G = 1.

II. TEST-PARTICLE LIMIT: IMPROVING THE
RESIDUAL MULTIPOLAR AMPLITUDES

The purpose of this Section is to review and improve
the test-particle results of Ref. [31] for the ` = 2 multipole
and then generalize them to all multipoles up to ` = 6.
Let us recall our notation for the multipolar waveform
for a circularized, nonprecessing, binary with total mass
M and (dimensionful) spins S1 and S2. To start with,
following Ref. [21] (see e.g. Eq. (75)-(78) there), each
waveform multipole is written as

h`m(x) = h
(N,ε)
`m ĥ

(ε)
`m, (1)

where x = (GMΩ/c3)2/3 = O(c−2) is the PN-ordering
frequency parameter (Ω is the orbital frequency) [we re-

call that n-PN order means O(c−2n)]; h
(N,ε)
`m is the New-

tonian (leading-order) contribution to the given (`,m)
multipole, where ε = 0, 1 is the parity of ` + m (see

Eq. (78) of [21] and Eq. (A12) in Appendix), while ĥ
(ε)
`m

is the PN correction. Such PN correction is then written
in factorized form [21] as

ĥ`m(x) = Ŝ
(ε)
eff ĥ

tail
`m f`m(x, S1, S2). (2)

Here, the first factor, Ŝ
(ε)
eff , is the parity-dependent effec-

tive source term [21], define as the EOB effective en-
ergy along circular orbits, for ε = 0, or the Newton-
normalized orbital angular momentum, for ε = 1; the

second factor, ĥtail
`m ≡ T`me

iδ`m is a complex factor that
accounts for the effect of the tails and other phase-related
effects [21, 35, 36]; the third factor, f`m is the residual
amplitude correction. This latter factor can be further
resummed in various ways, that notably depend, when
ν 6= 0 and S1,2 6= 0, on the parity of m. For example, the
original proposal of [21], implemented when the objects
are nonspinning, was to first compute from the f`m the
(Taylor-expanded) functions

ρ`m ≡ Tn
[
(f`m)1/`

]
, (3)

where Tn[. . . ] indicates the Taylor expansion up to xn

and then define the resummed f`m by replacing their
Taylor expansions with (ρ`m)`. When spins are present,
the ρ`m functions are naturally written as the sum of an
orbital (spin-independent) and a spin-dependent contri-
bution as

ρ`m = ρorb
`m + ρS

`m. (4)

Reference [31] proposed then to improve the strong-field
behavior of the ρ`m’s functions by (i) writing them as the
product of a purely orbital and purely spin-dependent
factors as

ρ`m = ρorb
`m ρ̂

S
`m, (5)

where ρ̂S
`m ≡ Tn[1 +ρS

`m/ρ
orb
`m ], and then resumming each

separate factor in a certain way that we detail below 1

Although there is no first-principle reason for treating the
orbital and spin contributions as separate multiplicative
factors, such representation proved useful for interpret-
ing the global behavior of the ρ`m’s as well as for im-
proving it near (or even below) the LSO. For instance, it
was argued that a sort of compensation between the spin
and orbital factors should occurr in order to guarantee
a good agreement between the numerical and analytical
functions close to the LSO, especially for large and pos-
itive values of the black hole spin. To accomplish such
effect, it is necessary to resum each factor (or at least
the spin-dependent one), that is given by a truncated
Taylor series, in a specific way. In particular, it was sug-
gested [31] that a simple and efficient method to tem-
perate the divergent behavior of ρ̂S

`m towards the LSO
is to take its inverse Taylor series (or inverse resummed
representation, “iResum”) defined as

ρ̄S
`m =

(
Tn

[(
ρ̂S
`m(x)

)−1
])−1

. (6)

1 To simplify the notation, note that we are using here the same
symbol ρ`m, for both the orbital-additive and orbital-factorized
amplitudes. By contrast, Ref. [31] was addressing with ρ̃`m the
orbital-factorized amplitudes.
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FIG. 1. Comparison between the factorized and resummed analytical ρ`m’s (colored online) and the corresponding numerical
(exact) functions (black online) up to ` = 6 for values of the BH dimensionless spin âa = (−0.99,−0.5, 0,+0.5,+0.99) (red,
orange, green, cyan, blue and purple respectively). The filled circles mark the LSO location. This plot is obtained using relative
6PN information for all modes except ρ32 that employs 5PN relative accuracy for ρorb32 . The Padé approximants used on ρorb`m
are listed in second column of Table I. The same table also lists the numerical/analytical relative difference at the LSO. The
agreement remains good (except for few exceptions, see text for details) also for â = +0.99.

Reference [31] illustrated that, due to the large amount
of PN information available, it is possible to achieve sat-
isfactory numerical/analytical agreement using different
truncated PN series as a starting point, though lower-

PN orders (e.g. 6PN) are preferable with respect to
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FIG. 2. Test-particle limit: comparison between analytical
and exact (numerical) fluxes for dimensionless black-hole spin
â = +0.99. The functions ρorb33 , ρorb44 and ρorb55 are either re-
summed using (4,2) Padé approximants (orange, dot-dashed
line) or kept in PN-expanded form up to (relative) 6PN order.
This second choice improves the agreement with the numeri-
cal curve. The dotted line represents the analytical flux where
the total 6PN-accurate ρ`m’s are kept in the standard, non-
factorized, Taylor-expanded form.

high-PN orders (e.g. 10PN or 20PN)2. The analysis [31]
also showed that, once that the factorization and resum-
mation paradigm is assumed, one is free to choose at
what PN order to work, provided the resummed ampli-
tude shows a good agreement with the numerical curves.
For consistency with previous, EOB-related, works [37],
in [31] it was chosen to keep the orbital part at 5PN
order, and in Taylor-expanded form, together with the
spin-dependent factor truncated at 3.5PN. This choice
was made so to be consistent with the spin-dependent
information used in the comparable-mass case. For the
` = m = 2 multipole, this yielded rather acceptable ana-
lytical/numerical agreement (' 1%) up to the LSO for all
spin values between −0.99 and +0.99 (see Fig. 4 of [31]).

Here we relax the constraint of being consistent with
previous EOB-related works and present, instead, a new
recipe to further improve ` = m = 2 results of Ref. [31]
and extend them to higher multipolar modes. To do so,
we: (i) generally increase the PN order, possibly requir-
ing it to be the same for both the spin and orbital factors;
(ii) resum the orbital factor using some Padé approxi-
mant, to be chosen according to the PN order and the
multipole; (iii) resum the spin factor taking its inverse
Taylor approximant (iResum) as proposed in [31], see
Eq. (6) above. We find that, modulo a few exceptions

2 It has to be stressed that the impact of high-PN information, i.e.
larger than 10 PN, has not been assessed throughly yet, except
for preliminary investigations reported in Ref. [31]. We are not
going to do this in the current work, but we postpone it to future
studies.

to be detailed below, a good compromise is reached by
working at relative 6PN order for each mode3 and taking
a Pade (4, 2) approximant for the orbital factor4. There
are exceptions to this choice (see 2nd column of Table I).
For example, the (2,1) mode is better represented using
a P 5

1 approximant, the (3,1) using a P 3
2 (i.e. keeping

ρorb
32 at 5PN accuracy), while for (4, 2), (5, 1) and (6, 1)

the orbital factor in Taylor-expanded form is preferable.
These choices are made so that the analytical ρ`m’s re-
main as close as possible to the numerical one up to the
LSO (and possibly beyond). This is illustrated in Fig. 1,
which displays all ρ`m’s functions up ` = 6. The fig-
ure collects five values of the dimensionless black-hole
spin, â = (−0.99,−0.5, 0,+0.5,+0.99). The analytical
functions are depicted as colored curves, while the nu-
merical data are black. Both curves extend up to the
light-ring, while the filled circle mark the LSO location.
The â = +0.99 curves extend up to the highest-frequency
(purple, lowest curve) while the â = −0.99 is at the top of
each panel and is depicted red. The information encoded
in the figure is complemented by Table I, that lists, for
each multipole, the Padé approximant adopted together
with the numerical/analytical fractional difference com-
puted at the LSO. The figure also highlights that the nu-
merical/analytical agreement looks improvable (for large
values of â) for some subdominant modes, especially ρ31

and ρ62, where the analytical functions are systemati-
cally above the numerical ones towards the boundary of
the x-domain considered. The reason behind this behav-
ior is that both P 3

2 (ρorb
32 ) and P 4

2 (ρorb
62 ) develop a spu-

rious pole on the real x-axis, at x ≈ 0.86 for the for-
mer and at x ≈ 0.82 for the latter. In this respect, we
stress that our choices about the PN truncation order and
the consequent resummation strategies should be seen as
a compromise between simplicity (i.e. using relatively
low-order PN-information) and achievable accuracy (i.e.
good global agreement with the numerical functions).
For example, one finds that the numerical/analytical dis-
agreement for ρ31 at the LSO for â = +0.99 can be re-
duced to just −0.17% by: (i) taking ρorb

31 at only 4PN
order and resumming it with a P 3

1 approximant, while
(ii) ρ̂S

31 is taken up to 8PN order and then resummed as
usual with its inverse Taylor series. Similarly, one also
easily finds that the global behavior of the (3, 3), (4, 4)
and (5, 5) modes can be improved by just keeping the
orbital factor in Taylor-expanded form instead of replac-
ing it with its (4, 2) Padé approximant. To figure out
the relevance of any of these improvements, it is conve-

3 This means that the functions ĥ
(ε)
`m in Eq. (1) are taken at 6PN,

i.e. as 6th-order polynomials in x. This implies that the global
PN-accuracy we retain is actually higher than 6PN , because of

the presence of the Newtonian prefactors h
(N,ε)
`m .

4 A priori one would like to use diagonal Padé approximants, since
they are known to be the most reliable ones. However, we found
that spurious poles are always present in this case. This fact
prevents us from making this choice to preserve the simplicity of
the approach.
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TABLE I. Fractional differences between the resummed and the numerical ρ`’s at the LSO. From left to right the columns
report: the multipolar order; the Padé approximant chosen for the orbital factor; the PN order chosen for the spin-dependent
factors; the fractional difference (ρnum − ρanlyt)/ρnum at xLSO.

(`,m) P ij (ρorb`m ) iR(PN) ∆(x)ρ(x)/ρ|x=xLSO for −0.99 ≤ â ≤ +0.99

−0.99 −0.5 0 +0.5 +0.7 +0.99

(2, 2) P 4
2 6 −1× 10−4 −3× 10−4 −6× 10−4 −0.002 −0.004 0.026

(2, 1) P 5
1 6 −0.006 −0.004 2× 10−5 0.010 0.019 0.159

(3, 3) P 4
2 6 −4× 10−5 −1× 10−4 −4× 10−4 −0.002 −0.005 −0.058

(3,3) P 6
0 6 −2× 10−5 −6× 10−5 −2× 10−4 −0.001 −0.002 −0.023

(3, 2) P 4
2 6 −0.004 −0.003 −5× 10−5 0.006 0.012 −0.026

(3, 1) P 3
2 6 −3× 10−5 −6× 10−5 −1× 10−4 −3× 10−4 −8× 10−5 0.248

(3,1) P 3
1 8 −2× 10−5 −4× 10−5 −1× 10−4 −8× 10−4 −0.002 −0.0017

(4, 4) P 4
2 6 −2× 10−5 −8× 10−5 −3× 10−4 −0.002 −0.005 −0.088

(4,4) P 6
0 6 −4× 10−6 −3× 10−5 −2× 10−4 −0.001 −0.002 −0.046

(4, 3) P 4
2 6 −0.003 −0.002 −1× 10−4 0.004 0.008 0.004

(4, 2) P 6
0 6 −1× 10−5 −2× 10−5 −5× 10−5 6× 10−4 0.003 0.015

(4, 1) P 4
2 6 −0.003 −0.002 8× 10−6 0.005 0.008 −0.013

(5,5) P 4
2 6 −2× 10−5 −7× 10−5 −3× 10−4 −0.002 −0.037 −0.101

(5,5) P 6
0 6 2× 10−6 −2× 10−5 −1× 10−4 −0.001 −0.034 −0.054

(5, 4) P 4
2 6 −0.003 −0.002 −2× 10−4 0.003 0.005 −0.013

(5, 3) P 4
2 6 −2× 10−5 −6× 10−5 −2× 10−4 −6× 10−4 −7× 10−4 −0.043

(5, 2) P 4
2 6 −0.002 −0.002 8× 10−6 0.004 0.009 0.077

(5, 1) P 6
0 6 1× 10−5 1× 10−5 3× 10−5 1× 10−4 5× 10−4 0.101

(6, 6) P 4
2 5 −4× 10−5 −1× 10−4 −3× 10−4 −5× 10−5 0.002 0.064

(6, 5) P 4
2 6 −0.002 −0.001 −2× 10−4 0.002 0.003 −0.029

(6, 4) P 4
2 6 −2× 10−5 −6× 10−5 −2× 10−4 −8× 10−4 −0.001 −0.035

(6, 3) P 4
2 6 −0.002 −0.001 −1× 10−5 0.003 0.007 0.053

(6, 2) P 4
2 6 −4× 10−6 −2× 10−5 −5× 10−5 2× 10−5 0.001 0.213

(6,2) P 6
2 8 −6× 10−7 −8× 10−7 −7× 10−7 8× 10−5 9× 10−4 0.015

(6, 1) P 6
0 6 −0.002 −0.001 7× 10−6 0.003 0.003 0.028

nient to inspect the total energy flux reconstructed using
the resummed ρ`m’s. At a practical level, some analyt-
ical/numerical differences that look large on the ρ`m’s
are subdominant within the flux and can be practically
ignored. Figure 2 compares Newton-normalized energy
fluxes, with all multipoles summed together up to ` = 6
included, as follows: (i) the exact (numerical) flux; (ii)
the analytical flux that is obtained from the ρ`m’s shown
in Fig. 1, where the choices for the Padé of the orbital
part are listed as non-bold face in Table I (dot-dashed,
orange line); (iii) the analytical flux obtained by taking
the ρorb

33 , ρorb
44 and ρorb

55 as plain 6PN-accurate Taylor ex-
pansions; (iv) the analytical flux where the 6PN-accurate
ρ`m are neither further factorized nor resummed, follow-
ing the original paradigm of Refs. [21, 22]. The verti-
cal line marks the LSO location. The figure illustrates
how changing the treatment of the orbital part of the
subdominant modes mentioned above allows one to re-
duce the fractional difference around the LSO from 10%

to approximately 5%. It is also to be noticed the good
qualitative behavior of the flux also below the LSO, close
to the light ring where the flux diverges. By contrast,
the flux obtained using the standard, nonresummed, ρ`m
amplitudes in the form of [21, 22], though pushed to
higher PN order as discussed above, is reliable only up to
x ≈ 0.2. We also mention that, even though the choice
of P 3

1 (ρorb
31 )ρ̄S

31 with ρ̂S
31 at 8PN order can strongly reduce

the numerical/analytical differences displayed in Fig. 1,
in practice this does not have any notable consequence
on the total flux. The same statement also holds for the
(6, 2) mode: the near-LSO behavior of the analytical ρ62

can be improved by working at 8PN, both in the spin and
orbital factors (with a P 6

2 approximant for this latter),
without however producing any important impact on the
total flux computation.

Let us finally mention in passing that another way to
improve the strong-field behavior of the ρ`m’s (and thus
of the flux) is by including some effective high-PN or-



6

der parameter that can be informed (i.e., calibrated or
even fitted) to the numerical data. This approach might
be necessary, for example, when dealing with precision
calculations that require an accurate representation of
the radiation reaction in the near-LSO regime, e.g., es-
timate of the final recoil velocity when the central black
hole is quasi-extremal with the spin aligned with the or-
bital angular momentum [27]. As an exploratory inves-
tigation dealing with just ρ22, we found that it is suffi-
cient to introduce a 6.5PN (effective) parameter at the
denominator of ρ̄S

22 and tune it to reduce by more than
an order of magnitude the fractional difference between
the analytical and numerical functions up to the LSO.
More precisely, we have that ρ̄S

22 has the structural form
1/(1+âx3/2+......+âc13/2x

13/2), where âc13/2x
13/2 is for-

mally the first spin-orbit term beyond what we are using
in this work. One easily checks that the value c13/2 = 5.1
is sufficient to obtain a fractional disagreement of the or-
der 0.15% at the LSO for â = +0.99. This illustrative
example suggests that there is a simple, though effec-
tive, way to incorporate the information encoded in the
numerical data within the analytical description of the
waveform amplitudes. More work will be needed to put
this approach in a more systematic form. In particular
one may hope that a suitable modification of this method,
probably with a few more parameters, could be used to
obtain an accurate, semi-analytic, representation of the
circularized fluxes also up to the light-ring.

III. COMPARABLE MASSES:
POST-NEWTONIAN EXPANDED RESULTS

A. Waveform amplitudes: spin-orbit and
quadratic-in-spin terms

We start by summarizing here new results for the
PN-expanded, nonprecessing, multipolar waveform am-
plitudes up to: (i) next-to-next-to-leading-order (NNLO)
for the spin-orbit terms; (ii) next-to-leading-order (NLO)
for the spin-spin terms and (iii) for the leading-order
(LO) spin-cube terms. These waveform amplitudes were
computed by A. Bohé and S. Marsat [38] as part of
a project that aims at obtaining the complete wave-
form at this PN order (we recall that the correspond-
ing calculation of the PN-expanded energy flux is com-
plete [33, 34, 39, 40]), and kindly shared with us before
publication. Here we only list the PN-expanded multipo-
lar waveform amplitudes with their complete, currently
known, spin dependence. For completeness, we also in-
clude the known, ν-dependent, orbital terms [41]. To
start with, let us set the notations and define our choice of
spin variables. We denote with ν = m1m2/M

2 the sym-
metric mass ratio, with M = m1 +m2 and we adopt the
convention that m1 ≥ m2. From the conserved norm, di-
mensionful, spin vectors (S1,S2), PN results are usually
expressed in terms of the spin combinations S ≡ S1 + S2

and Σ ≡M (S2/m2 − S1/m1). For spin-aligned binaries,

where ` indicates the unit vector normal to the orbital
plane (i.e., the direction of the orbital angular momen-
tum), one deals with the projections of the spin-vectors
along `, i.e., S` = S · ` and Σ` = Σ · `. Then, it is com-
mon practice to work with dimensionless spin variables
χ1,2 ≡ S1,2/(m1,2)2 and in the PN-expansions the spin
vectors always appear divided by the square of the total
mass, so that one has

Ŝ` ≡
S`
M2

= X2
1χ1 +X2

2χ2, (7)

Σ̂` ≡
Σ`
M2

= X2χ2 −X1χ1, (8)

where we introduced the usual convenient notation Xi ≡
mi/M , which yields X1 + X2 = 1, X1X2 = ν and,
since X1 ≥ X2, we have X1 =

(
1 +
√

1− 4ν
)
/2. From

the dimensionless spin variables, the waveform spin-
dependence is sometimes also written via their symmet-
ric and antisymmetric combinations (see e.g. [13, 22, 37,
42]), χS ≡ (χ1 + χ2) /2 and χA ≡ (χ1 − χ2) /2.

Here, we express the waveform spin dependence using
the Kerr parameters of the two black holes divided by
the total mass of the system, namely via the variables

ãi ≡
ai
M

=
Si

Mmi
= Xiχi i = 1, 2. (9)

This choice is convenient for two reasons: (i) the an-
alytical expression get more compact as several factors√

1− 4ν are absorbed in the definitions, and one can
more clearly distinguish the sequence of terms that are
“even”, in the sense that are symmetric under exchange
of body 1 with body 2 and are proportional to the “to-
tal Kerr dimensionless spin” â0 ≡ ã1 + ã2 from those
that are “odd”, i.e. change sign under the exchange of
body 1 with body 2 and are proportional to the factor√

1− 4ν(ã1−ã2); (ii) in addition, one can infer the (spin-
ning) test-particle limit from the general ν-dependent,
expressions just by inspecting them visually. In fact, in
this limit, m2 � m1, ã12 → 0 and ã1 becomes the dimen-
sionaless spin of the massive black hole of mass m1 ≈M ,
ã1 → S1/(m1)2. Similarly, the spinning particle limit
around Kerr is simply obtained by putting ν = 0, since
ã2 just reduces to the usual spin-variable used in PN
or numerical calculations [43–46], σ ≡ S2/(m1m2). To
keep the expressions compact, we also define the follow-
ing combinations of the ãi of Eq. (9)

â0 ≡ X1χ1 +X2χ2 = ã1 + ã2, (10)

ã12 ≡ ã1 − ã2, (11)

X12 ≡ X1 −X2 =
√

1− 4ν. (12)

Equations (7)-(8) above then simply read

Ŝ` =
1

2
(â0 + ã12X12) , (13)

Σ̂` = −ã12. (14)
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We report below the complete modulus of ĥ`m up to
NNLO in the spin-orbit coupling and up to NLO in the
spin-spin coupling. Note however that for the m = odd
multipoles we defactorized the factor X12 (that is usu-

ally seen as part of the Newtonian prefactor h
(N,ε)
`m , see

Eq. (1)) to avoid the appearence of a fictitious singularity
when ν = 1/4 in the spin-dependent terms proportional
to ã12 (see also [42]). To have a consistent notation, when

m = odd we focus on the quantities

h̃
(ε)
`m = X12ĥ

(ε)
`m. (15)

In conclusion, the modulus of the Newton-normalized
PN-expanded, multipolar, waveform we use as starting
point reads:

|ĥ(0)
22 | = 1 +

(
−107

42
+

55

42
ν

)
x−

[
−2π + â0 +

1

3
ã12X12

]
x3/2 +

[
â2

0 −
2173

1512
− 1069

216
ν +

2047

1512
ν2

]
x2

+

[
−π
(

107

21
− 34

21
ν

)
− â0

(
163

126
+

46

63
ν

)
− ã12X12

(
157

126
+

22

21
ν

)]
x5/2

+

{
27027409

646800
− 113

63

(
ã2

1 +
271

113
ã1ã2 + ã2

2

)
− 2π

(
â0 +

1

3
ã12X12

)
+

2

3
π2 +

121

63
â0ã12X12 −

856

105
eulerlog2(x)

+

[
−278185

33264
+

20

21

(
ã2

1 +
24

5
ã1ã2 + ã2

2

)
+

41

96
π2

]
ν − 20261

2772
ν2 +

114635

99792
ν3

}
x3

+

[
â0

(
1061

168
+

4043

168
ν +

499

168
ν2

)
+ ã12X12

(
241

216
+

5135

1512
ν − 79

72
ν2

)]
x7/2, (16)

|h̃(1)
21 | = X12 −

3

2
ã12x

1/2 +X12

(
−17

28
+

5

7
ν

)
x+

[
ã12

(
18

7
+

33

14
ν

)
+X12

(
−43

14
â0 + π

)]
x3/2

+

[
ã12

(
â0 −

3

2
π

)
+X12

(
− 43

126
+ 2â2

0 − 2ã1ã2 −
509

126
ν +

79

168
ν2

)]
x2

+

[
ã12

(
−131

72
+

5483

504
ν +

179

126
ν2

)
+ â0X12

(
−331

504
+

193

63
ν

)]
x5/2, (17)

|h̃(0)
33 | = X12 +X12(−4 + 2ν)x+

[
ã12

(
−1

4
+

5

2
ν

)
+X12

(
−7

4
â0 + 3π

)]
x3/2

+X12

(
3

2
â2

0 +
123

110
− 1838

165
ν +

887

330
ν2

)
x2

+

[
ã12

(
−119

60
+

27

20
ν +

241

30
ν2

)
+ â0X12

(
139

60
− 83

60
ν

)]
x5/2, (18)

|ĥ(1)
32 | = 1 +

1

1− 3ν

{
(â0 − ã12X12)x1/2 +

(
−193

90
+

145

18
ν − 73

18
ν2

)
x

+
1

6

[
â0(−39 + 73ν) + ã12X12(23 + 13ν) + 12π(1− 3ν)

]
x3/2

}
, (19)

|h̃(0)
31 | = X12 −

2

3
X12(4 + ν)x+

[
ã12

(
−9

4
+

13

2
ν

)
+X12

(
1

4
â0 + π

)]
x3/2

+

[
−4(ã2

1 + ã2
2) +X12

(
607

198
− 136

99
ν − 247

198
ν2 +

3

2
â2

0

)]
x2

+

[
ã12

(
73

12
− 641

36
ν − 5

2
ν2

)
+X12â0

(
−79

36
+

443

36
ν

)]
x5/2, (20)
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|ĥ(0)
44 | = 1 +

1

1− 3ν

{
1

330
(−1779 + 6365ν − 2625ν2)x

+
1

15

[
â0(−38 + 114ν) + 60π(1− 3ν)− 2ã12X12(1− 21ν)

]
x3/2

+

(
1068671

200200
− 1088119

28600
ν +

146879

2340
ν2 − 226097

17160
ν3

)
x2

}
, (21)

|h̃(1)
43 | = X12 +

1

−1 + 2ν

{
5

4

[
ã12(1− 2ν)− â0X12

]
x1/2 +X12

(
39

11
− 1267

132
ν +

131

33
ν2

)
x

}
, (22)

|ĥ(0)
42 | = 1 +

1

1− 3ν

{
1

330
(−1311 + 4025ν − 285ν2)x

− 1

15

[
2â0(1− 3ν) + ã12X12(38− 78ν)− 30π(1− 3ν)

]
x3/2

+

(
1038039

200200
− 606751

28600
ν +

400453

25740
ν2 +

25783

17160
ν3

)
x2

}
, (23)

|h̃(1)
41 | = X12 +

1

−1 + 2ν

{
5

4

[
ã12(1− 2ν)− â0X12

]
x1/2 +X12

(
101

33
− 337

44
ν +

83

33
ν2

)
x

}
. (24)

B. Cubic-order spin effects

We are also going to incorporate leading-order spin-
cube effects in the waveform aplitudes. To do so, we start
from the corresponding energy fluxes, that were recently
obtained in Ref. [33]. The analytically fully known spin-
dependence of the energy flux has the following structure

FS =
32

5
ν2x5

[
x3/2fLO

SO + x2fLO
SS + x5/2fNLO

SO

+x3fNLO
SS + x7/2

(
fNNLO

SO + fLO
SSS

)]
. (25)

All terms, except the cubic ones, can be obtained by mul-
tiplying each multipolar amplitude of the previous sec-
tion by its corresponding “Newtonian” term , taking the
square and finally summing them together. The spin-
cube information we shall need in the next section is
included in the fLO

SSS term above, though one has to re-
member that fLO

SSS is actually given by two independent
multipolar contributions, one coming from the cubic-in-
spin mass quadrupole and another from the cubic-in-spin
current quadrupole. The full term is given in Eq. (6.19)
of [33], but, for the purpose of this paper, S. Marsat
kindly separated for us the two partial multipolar contri-

butions, that read

f sss
22 = −2

3

(
â3

0 + 3â2
0ã12X12

)
x7/2, (26)

f sss
21 = −

[
1

12
â0ã

2
12

+

(
5

24
ã2

1 +
1

4
ã1ã2 +

5

24
ã2

2

)
ã12X12

]
x7/2. (27)

It is easy to verify that by taking the sum fSSS
22 +fSSS

21 one
obtains Eq. (6.19) of [33] once specified to the black-hole
case, i.e. with κ+ = 2 = λ+, κ− = 0 = λ− and using
Eqs. (7)-(8) above.

C. PN-expanded energy and angular momentum
along circular orbits

To implement the factorization of the waveform am-
plitudes (and fluxes) in order to extract the f`m and
ρ`m residual amplitude corrections, one needs the PN-

expanded effective source Ŝ
(ε)
eff , namely the effective en-

ergy and angular momentum of the system along circular
orbits. In addition, also the total, real, energy is needed,
since it enters the tail factor. Defined as µ ≡ m1m2/M
the reduced-mass of the system, the µ-normalized PN-
expanded energy along circular orbits reads

Êtot(x) ≡ Etot

µ
= Êorb(x) + ÊSO(x) + ÊSS(x), (28)
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and is written as the sum of an orbital term, a spin-orbit
term (SO) and a quadratic-in-spin term (SS). The 3PN-
accurate orbital term reads

Êorb(x) = 1− 1

2
νx

{
1−

(
3

4
+

ν

12

)
x

+

(
−27

8
+

19

8
ν − ν2

24

)
x2

+

[
−675

64
+

(
34445

576
− 205

96
π2

)
ν − 155

96
ν2 − 35

5184
ν3

]
x3

}
,

(29)

while the spin-orbit term is

ÊSO(x) = −1

6
(7â0 + ã12X12)νx5/2

+
1

4

[
−(11â0 + 5ã12X12)ν +

1

9
(61â0 + ã12X12)ν2

]
x7/2

+
1

16

[
− (135â0 + 81ã12X12)ν

+ (367â0 + 55ã12X12)ν2 +
1

3
(−29â0 + ã12X12)ν3

]
x9/2,

(30)

and finally the quadratic-in-spin contribution

ÊSS(x) =
1

2
â2

0νx
3

+
1

36

{[
10(â2

0 + ã1ã2) + 55(ã2
1 − ã2

2)X12

]
ν

− 35

(
ã2

1 −
2

7
ã1ã2 + ã2

2

)
ν2

}
x4. (31)

The Newton-normalized angular momentum incorporat-
ing up to NLO spin-orbit terms reads

ĵtot(x) = 1 +
1

2

(
3 +

ν

3

)
x− 5

12
(7â0 + ã12X12)x3/2

+

[
1

8

(
27− 19ν +

ν2

3

)
+ â2

0

]
x2

+
1

16

[
−(77â0 + 35ã12X12) +

1

9
(427â0 + 7ã12X12)ν

]
x5/2.

(32)

Finally, the PN-expanded effective energy along circular
orbits is obtained by PN-expanding the usual relation be-
tween the real and effective, µ-normalized, energy along
circular orbits [47],

Êeff =
Eeff

µ
= Tn

[
1 +

1

2ν
(Ê2

tot − 1)

]
. (33)

IV. FACTORIZED WAVEFORM AMPLITUDES

A. Factorizing the source and tail factor: the
residual amplitudes

Now that all the necessary analytical elements are in-
troduced, we can finally compute the residual amplitude
corrections when ν 6= 0 by factorizing tail and source
from Eqs. (16)-(24), (26) and (27). Focusing first on the
even-m case, the PN-expanded ρ`m’s functions are ob-
tained as

ρ`m(x; ν, ã1, ã2) = Tn

( |ĥ`m(x)|
|ĥtail
`m |Ŝ

(ε)
eff

)1/`
 , (34)

where Ŝ
(ε)
eff (x) is either Êeff when ` + m is even, or ĵtot

when `+m is odd, while |ĥtail| is the modulus of the tail
factor introduced in Eq. (1) whose explicit expression is
given in Eq. (38) below. The Taylor expansion Tn[. . . ]

is truncated at the same n-PN order of the |h(ε)
`m|. The

functions ρ`m have the form 1 + c`m1 x + . . . and, like in
the test-particle case, are given as the sum of orbital and
spin terms as

ρ`m(x; ν, ã1, ã2) = ρorb
`m (x; ν) + ρS

`m(x; ν, ã1, ã2) . (35)

For the odd-m case, the same factorization yields the
function

δmf`m = X12f
orb
`m + f̃S

`m, (36)

that is obtained as the following Taylor expansion

δmf`m = Tn

[
|h̃`m|
|ĥtail
`m |Ŝ

(ε)
eff

]
, (37)

where, for consistency with notation used in Ref. [31], we
also used δm ≡ X12. Finally, to perform this calculation,
we also need the Taylor expansion of the modulus of the
tail factor, that is given by [37]

|ĥtail
`m (x)|2 =

4πEtotmx3/2
∏`
s=1

(
s2 + 2Etotmx3/2

)2
(`!)2 (1− e−4πmEtot)

.

(38)
When factorizing out that tail and effective source factors
from the waveform amplitudes of Eqs. (16)-(24), as well
as from the spin-cube flux terms, Eqs. (26) and (27), one
finally finds the following spin-dependent terms:
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ρS
22 = −

(
â0

2
+

1

6
ã12X12

)
x3/2 +

â2
0

2
x2 −

[
â0

(
52

63
+

19

504
ν

)
+

(
50

63
+

209

504
ν

)
ã12X12

]
x5/2 (39)

+

[(
−11

21
+

103

504
ν

)
â2

0 +

(
−19

63
+

10

9
ν

)
ã1ã2 +

221

252
â0ã12X12

]
x3

+

[
â0

(
32873

21168
+

477563

42336
ν +

147421

84672
ν2

)
− ã12X12

(
23687

63504
− 171791

127008
ν +

50803

254016
ν2

)
+

(
7

12
â3

0 −
1

4
â2

0ã12X12

)]
x7/2,

ρS
32 =

1

3(1− 3ν)
(â0 − ã12X12)x1/2

+
1

162(1− 3ν)2

[(
−1433

10
+ 553ν − 797

2
ν2

)
â0 −

(
−1793

10
+ 427ν +

607

2
ν2

)
ã12X12

]
x3/2, (40)

ρS
42 =

1

30

(
1

−1 + 3ν

)
[â0(1− 3ν) + ã12X12(19− 39ν)]x3/2, (41)

ρS
44 =

1

30

(
1

−1 + 3ν

)
[â0(19− 57ν)− ã12X12(−1 + 21ν)]x3/2, (42)

and similarly

f̃S
21 = −3

2
ã12x

1/2 +

[
ã12

(
110

21
+

79

84
ν

)
− 13

84
â0X12

]
x3/2 +

[
−27

8
(ã2

1 − ã2
2) +

3

8
X12

(
ã2

1 +
10

3
ã1ã2 + ã2

2

)]
x2

+

[
ã12

(
−3331

1008
− 13

504
ν +

613

1008
ν2

)
+ â0X12

(
−443

252
+

1735

1008
ν

)
+

3

4
â2

0ã12

]
x5/2, (43)

f̃S
31 =

[
ã12

(
−9

4
+

13

2
ν

)
+

1

4
â0X12

]
x3/2 +

[
−4(ã2

1 − ã2
2) +

3

2
â2

0X12

]
x2

+

[
ã12

(
41

8
− 137

9
ν − 5

2
ν2

)
+ â0X12

(
−65

72
+

443

36
ν

)]
x5/2, (44)

f̃S
33 =

[
ã12

(
−1

4
+

5

2
ν

)
− 7

4
â0X12

]
x3/2 +

3

2
â2

0X12x
2

+

[
ã12

(
−233

120
+

29

15
ν +

241

30
ν2

)
+ â0X12

(
313

120
− 83

60
ν

)]
x5/2, (45)

f̃S
41 = f̃S43 =

5

4

(
1

−1 + 2ν

)
[ã12(1− 2ν)− â0X12]x1/2. (46)

After applying the proper change of variables, one eas-
ily checks that the NLO contributions we computed here
do coincide with Eqs. (85)-(95) of Ref. [37]. Similarly,
the NNLO spin-orbit contribution to ρ22, that was also
computed in Ref. [31] is checked with the same term com-
puted in Ref. [13].

B. Factorization of the orbital part

Likewise the test-particle case above, we now apply the
prescription of Ref. [31] of factorizing the orbital parts of

ρS
`m and f̃S

`m. After this operation, the factorized residual
amplitudes are written as

ρ`m = ρorb
`m ρ̂

S
`m m = even (47)

δmf`m =
(
ρorb
`m

)`
f̂S
`m m = odd (48)
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where, as in Ref. [31], the m = odd spin factors are writ-
ten as the sum of two separate terms

f̂S
21 = X12f̂

S(0)

21 − 3

2
ã12x

1/2f̂
S(1)

21 , (49)

f̂S
33 = X12f̂

S(0)

33 +

(
−1

4
+

5

2
ν

)
ã12x

3/2f̂
S(1)

33 , (50)

f̂S
31 = X12f̂

S(0)

31 +

(
−9

4
+

13

2
ν

)
ã12x

3/2f̂
S(1)

31 , (51)

f̂S
43 = X12f̂

S(0)

43 − 5

4
ã12x

1/2f̂
S(1)

43 , (52)

f̂S
43 = X12f̂

S(0)

41 − 5

4
ã12x

1/2f̂
S(1)

41 . (53)

As shown in Ref. [31], we recall that the need of sepa-

rating the f̂`m’s function into two separate terms, one
proportional to X12 and another to ã12 times x is nec-

essary to identify the two functions f̂
S(0)

`m and f̂
S(1)

`m that
can be separately resummed using their inverse Taylor

representation. The f̂
S(0),(1)

`m functions read

f̂
S(0)

21 = 1− 13

84
â0x

3/2 +
3

8

(
â2

0 +
4

3
ã1ã2

)
x2

+ â0

(
−14705

7056
+

12743

7056
ν

)
x5/2, (54)

f̂
S(1)

21 = 1−
(

349

252
+

74

63
ν

)
x+

9

4
â0x

3/2

−
(

3379

21168
− 4609

10584
ν +

39

392
ν2 +

â2
0

2

)
x2, (55)

f̂
S(0)

31 = 1 +
1

4
â0x

3/2 +
3

2
â2

0x
2 + â0

(
−13

36
+

449

36
ν

)
x5/2,

(56)

f̂
S(1)

31 = 1− 16

26ν − 9
â0x

1/2

+
1

26ν − 9

(
1− 95

9
ν +

22

3
ν2

)
x, (57)

f̂
S(0)

33 = 1− 7

4
â0x

3/2 +
3

2
â2

0x
2

+ â0

(
−211

60
+

127

60
ν

)
x5/2, (58)

f̂
S(1)

33 = 1 +
1

15

(
−169 + 671ν + 182ν2

10ν − 1

)
x, (59)

f̂
S(0)

41 = f
S(0)

43 = 1− 5

4

(
1

−1 + 2ν

)
â0x

1/2, (60)

f̂
S(1)

41 = f
S(1)

43 = 1. (61)

Equations (49), (54) correspond to Eqs. (9)-(10) of [31],
while Eq. (55) presents an additional term, â2

0/2, that
is the leading-order spin-cube that was omitted in [31].

Finally the m = even spin factors read

ρ̂S
22 = 1−

(
â0

2
+

1

6
ã12X12

)
x3/2 +

â2
0

2
x2

+

[(
−337

252
+

73

252
ν

)
â0 −

(
27

28
+

11

36
ν

)
ã12X12

]
x5/2

+

[
221

252
â0ã12X12 −

(
1

84
+

31

252
ν

)
â2

0

+

(
−19

63
+

10

9
ν

)
ã1ã2

]
x3

+

[(
−2083

2646
+

123541

10584
ν +

4717

2646
ν2

)
â0

+

(
−13367

7938
+

22403

15876
ν +

25

324
ν2

)
ã12X12

+
7

12
â3

0 −
1

4
â2

0ã12X12

]
x7/2, (62)

ρ̂S
32 = 1 +

(
1

3(1− 3ν)

)
(â0 − ã12X12)x1/2

+
1

27(1− 3ν)2

[
â0

(
−259

20
+ 55ν − 223

4
ν2

)
− ã12X12

(
−379

20
+ 34ν +

245

4
ν2

)]
x3/2, (63)

ρ̂S
42 = 1 + ρS

42, (64)

ρ̂S
44 = 1 + ρS

44. (65)

Note that our Eq. (62) above corrects an error in the
published ã1ã2 NLO term of Eq. (8) of Ref. [31].

V. RESUMMATION

We now proceed by resumming the orbital and spin
factors according to the prescriptions of Ref. [31], ba-
sically extending to higher modes the treatment of the
` = 2 modes discussed there. However, we want to
have at least the orbital multipolar factors, ρorb

`m , con-
sistent with the test-particle ones discussed above, in or-
der to take advantage of the high-order PN-information
available and of the robustness of its analytical repre-
sentation in Padé resummed form. To do so, we fol-
low the, now standard, practice, originally suggested in
Ref. [21], of hybridizing the low-PN-order ν-dependent
information available with the high-PN-order test-mass
(ν = 0) one. At the time of Ref. [21], the test-particle or-
bital fluxes were analytically known up to 5.5PN order,
which implied that the, nonresummed, ρ`m’s functions
were available as polynomials of different order, that is
ρorb

22 = 1 + x+ ....+ x5, ρorb
21 = 1 + x+ ....+ x4 etc., con-

sistent with the global 5.5PN accuracy of the total flux.
This prompted, at the time, the construction of what was
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FIG. 3. Nonresummed (black) and resummed (colored) waveform amplitudes ρ22 (top panels) and f21 (bottom panels) for
a few configurations. The orbital factor is taken at 3+3 PN relative accuracy and resummed with the Padé approximants of
Table I. The consistency between NNLO and NLO truncations of the spin terms factor is dramatically improved when the
factorization and resummation procedure is applied.

called the 3+2 PN approximation, where the 3PN results
were hybridized with two more test-particle PN orders.
As we saw above, the availability of PN results of high
order [48] allows us to keep more PN terms in each ρorb

`m ’s,
notably up to 6PN relative accuracy for each (`,m) as a
good compromise between simplicity and accuracy. Since
we are working with relative PN truncations, we give here
the 3+3 PN approximation for the ρ`m(x; ν) a different
meaning with respect to [21]. More precisely, working
at 3+3PN order here means that each ρorb

`m (x; ν) carries
the complete test-mass information up to x6, but when-
ever possible, the lower PN terms are augmented by the
corresponding ν-dependent information compatible with
the ν-dependent 3PN accuracy. For example, ρorb

22 (x; ν)
formally reads

ρorb
22 (x; ν) = 1 + c1(ν)x+ c2(ν)x2 + c3(ν; log(x))x3

+ c04(log(x))x4 + c05(log(x))x5

+ c06(log(x), log2(x))x6, (66)

where (c04, c
0
5, c

0
6) are test-particle, ν-independent, coef-

ficients with the corresponding dependence on log(x).
The function ρorb

21 (x; ν) shares the same analytical struc-
ture, though the ν-dependence of c3 is currently uknown,
since it is a (global) 4PN effect. For higher modes, the
ν dependence is progressively reduced, up to only c1(ν)
for the ` = 8 modes [21]. Choosing the above defined
3+3 PN approximation also means that we adopt the
same Padé resummation, multipole by multipole, de-
tailed in Table I. In this way we implement, by con-
struction, the consistency with the ν = 0 limit. This

choice opens the question of what would be the mag-
nitude of the systematic error done by neglecting such,
yet-uncalculated, ν-dependent terms. Reference [21] an-
alyzed the ν-dependence of a few multipoles and con-
cluded that, working with Taylor-expanded ρorb

`m , the ν-
dependence is mild and that the effect of the missing
terms is small enough to be considered of no importance.
We shall repeat and update that reasoning to our cur-
rent choices in the next section, though we anticipate
the same conclusion of [21] remains essentially true here
for all examined modes.

We turn now to discussing the resummation of the

spinning factors, ρ̂S
`m and f̂S

`m. We do so by applying the
resummation recipe of Ref. [31], that is: (i) for even-m,
we simply resum ρ̂S

`m taking its inverse Taylor represen-
tation, ρ̄S

`m(x; ν), as in Eq. (6); (ii) for odd-m, we need

to resum separately the two factors f̂
S(0)

`m and f̂
S(1)

`m . The
analytical representation of the two factors we choose de-

pend on the multipole. More precisely: the factor f̂
S(0)

21

is always resummed taking its inverse Taylor represen-

tation. The same choice is also adopted to resum f̂
S(1)

`m

for ` = 2, but for ` ≥ 3, m = odd case, the f̂
S(1)

`m are
kept in Taylor-expanded form because of the presence of
spurious poles when taking the inverse. The quality of
the resummation is assessed in Figs. 3 and 4 for a few il-
lustrative binary configurations. Since one does not have
at hand the analogous of the test-mass numerical data
for circularized, comparable-mass, binaries to compare
with, our aim here is only limited to prove the internal
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FIG. 4. Nonresummed (black) and resummed (colored) residual waveform amplitudes for ` = 3 multipoles. The orbital factors
are taken at 3+3 PN relative accuracy except for the (3, 1) mode, that is taken at 3+2 PN level. Likewise the ` = 2 case of
Fig. 3, the consistency between NLO and NNLO truncations of the spin terms is is improved by the resummation.

consistency of the resummed analytical expressions once
taken at different PN orders. To do so, by keeping the
orbital part unchanged, we contrast the functions ob-
tained using the full NNLO information with the ones
truncated at NLO accuracy. The same figures also dis-
play the standard representation of the ρ`m’s, where no
additional factorization or resummation is adopted [22].
The plot illustrates how the spread between the NLO
and NNLO truncations in PN-expanded form is system-
atically much larger than the corresponding one obtained
with the factorized and resummed functions. Interest-
ingly, this conclusion remains true for any configura-
tion analyzed. This makes us conclude that factorizing
and resumming as discussed here is helpful also in the
comparable-mass case, although a precise quantification
of the improvement brought by this procedure should be
assessed through a comprehensive comparison between
an EOB model built from iResum waveforms and NR
data, in a way analogous, though more detailed, to what
briefly analyzed in [31]. However, to better grasp the
meaning of this result, it is useful to remind the reader

that the merger of a binary black-hole coalescence (de-
fined as the peak of the ` = m = 2 waveform ampli-
tude) will occur at x ≈ 0.3, with x = (ω22/2)2/3 and
ω22 the quadrupolar GW frequency5. As Figs. 3 and 4
illustrate, the improvement in the consistency between
PN truncations brought by the resummation is evident
precisely in a neighborhood of 0.3. Just to pick some ran-
dom examples, this is the case for (1,+0.99,+0.99) and
(8,+0.50, 0), configurations where the frequency param-
eter at merger is x ≈ 0.38 and x ≈ 0.32 respectively [50].

5 Let us recall that in the test-particle limit this frequency approx-
imately corresponds to the crossing of the Schwarzschild light
ring [30, 49]
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A. Mild dependence of ρorb`m to uncalculated
ν-dependent orbital terms

As mentioned above, the idea of hybridizing test-mass
orbital information with the ν 6= 0 one in the waveform
amplitudes dates back to Ref. [21]. The rationale behind
that choice was to show that the dependence on ν of the
coefficients in the ρorb

`m is mild when 0 ≤ ν ≤ 1/4, so
that one does not introduce a large systematical error in
neglecting it. To get to this conclusion, one was compar-
ing the fractional variation of the coefficients when ν is
varied between 0 and 1/4 (see Sec. IVA in [21]). Here
we follow the same approach and compute the fractional
variation in ν for all multipoles up to ` = 6. The 3PN-
accurate ν-dependent terms in ρorb

31 and ρorb
33 that were

obtained only in Ref. [36] are also included. The log(x)
terms are evaluated, for simplidicty at xSchw

LSO = 1/6. The
numbers listed in Table II suggest that, up to ` = 3, the
next missing ν-dependent term might be, on average, of
the order of 20% larger (or smaller) then the test-mass
(ν = 0) one (note however the larger variations of the
2PN coefficient in ρorb

31 and ρorb
32 . One can then investi-

gate the impact on ρorb
`m of missing ν-dependent correc-

tions by varying the ν = 0 term by ±30%. Clearly, the
operation has to be done on the Pmn (ρorb

`m ) function. To
be concrete on one case, let us analyze the effect on ρorb

21 ,
whose known ν-dependence stops at 2PN. Schematically,
the Taylor-expanded function reads

ρorb
21 = 1 + (c1PN

0 + c1PN
ν )x+ (c2PN

0 + c2PN
ν )x2

+
[
c3PN
0 (1 + α)

]
x3 + c4PN

0 x4 + c5PN
0 x5 + c6PN

0 x6, (67)

and then one takes its P 5
1 Padé approximant. Here, cnPN

0

indicate the ν = 0 coefficients, while cnPN
ν the corre-

sponding ν-dependent terms. The effect of the missing
ν-dependent information is parametrized through α. One
finds that, even putting α = ±0.20 with ν = 1/4, the
fractional variation in P 5

1

(
ρorb

21

)
is of the order of 0.04%

at the Schwarzschild LSO xSchw
LSO = 1/6, of the order of

0.9% at x = 1/3 and of the order of 6% at x = 1/2.
This value is close to the LSO location of a Kerr black
hole with â = +0.99 and we use here just for illustra-
tive purposes, since a comparable mass binary, with a
nonnegligible value of ν, is not expected to reach such
a high frequency at merger. Since the waveform ampli-
tude is just (ρ21)2, the fractional differences above get a
factor two in front, which suggests that, within the cur-
rent framework, one is expecting the 3PN correction to
ρorb

21 to yield an amplitude correction around merger of
just a few percents. Once the calculation of the wave-
form will be completed at 4PN accuracy [51–55], it will
be interesting to concretely probe the reasonable assump-
tions we are adopting here. In addition, inspection of the
behavior of higher modes, like ρorb

44 , shows that a varia-
tion of the order 20% with respect to the ν = 0 values
has an unnaturally large effect on the global behavior of
the function in the strong-field regime (0.3 . x . 0.5),
with variations of order 8% at x = 1/3 and ∼ 30% at

x = 1/2. Though we cannot make strong statements,
we are prone to think that the uncalculated ν-dependent
terms will provide, on average, a correction of the order
of 10% to the current orbital terms, consistently with the
ν-variation of the 3PN coefficients in ρorb

22 and ρorb
33 , as in

Table II.

TABLE II. Analysis of the fractional variation 4cρ
orb
`m
n (ν) =

c
ρorb`m
n (ν)/c

ρorb`m
n (0)− 1 of the coefficients c

ρorb`m
n (ν).

(`,m) 4cρ
orb
`m

1 (1/4) 4cρ
orb
`m

2 (1/4) 4cρ
orb
`m

1 (1/4, log(1/6))

(2, 2) -0.159884 0.185947 -0.100421

(2, 1) -0.649718 0.224005 ...

(3, 1) 0.0769231 -18.7351 -0.28487

(3, 2) -0.155488 -0.633264 ...

(3, 3) -0.142857 0.260344 -0.0970255

(4, 1) -0.0905316 ... ...

(4, 2) -0.0181065 1.05237 ...

(4, 3) -0.141892 ... ...

(4, 4) -0.230328 0.46265 ...

(5, 1) 0.219436 ... ...

(5, 2) -0.117576 ... ...

(5, 3) -0.0746667 ... ...

(5, 4) -0.176295 ... ...

(5, 5) -0.201232 ... ...

(6, 1) -0.0910973 ... ...

(6, 2) -0.0168919 ... ...

(6, 3) -0.118343 ... ...

(6, 4) -0.119186 ... ...

(6, 5) -0.165766 ... ...

(6, 6) -0.238208 ... ...

B. Hybridizing test-mass results: the spin
information

Now that we have justified our approach of hybridizing
ν = 0 and ν 6= 0 information in the ρorb

`m functions, one
wonders whether an analogous procedure exits for the
ρS
`m (and in turn for the factorized ρ̂S

`m). This would al-
low to have EOB waveforms fully consistent and complete
all over the parameter space of nonprecessing BBHs 6.
Such hybridization is rather straightforward to do by tak-
ing advantage of the structure of the ρS

`m and fS
`m func-

tions and understanding how the spinning test-particle
limit builds up. This is especially evident using the ãi
variables, that make the limit look apparent. To explain

6 Note this is not the case for current EOB waveform models,
where the high-order test-mass analytical information is not in-
corporated [12–14]
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FIG. 5. Modification of the results of Fig. 3 when (nonspinning) test-particle terms up to 6PN are hybridized with the NNLO
ν-dependent waveform (see Eqs. (71)-(73) and text). When ν = 0, one is using here the same spin-orbit and spin-square
analytical information used in Fig. (1). The frequency parameter approximately corresponding to the BBH merger is x ≈ 0.38
for (1,+0.99,+0.99) and x ≈ 0.32 for (8,+0.50, 0). In this latter case, the effect of the additional test-particle terms is important
towards merger.

the approach, let us first focus on the spin-orbit terms
entering the ρ`m functions. One sees that, at a given n-
PN order of the orbital part, the corresponding spin-orbit
term reads like(

â0(c0 + c1ν + · · ·+ cn−1ν
n−1)

+ ã12X12(d0 + d1ν + · · ·+ dn−1ν
n−1)

)
x(2n+1)/2, (68)

as it is clear from Eq. (39) that corresponds to 3PN or-
bital dynamics. Note that within our writing, the LO
spin-orbit coefficients are ν-independent, the NLO are
linear in ν, while the NNLO are quadratic in ν. A simi-
lar, though slightly more complicated, structure is found
for the quadratic-in-spin terms, that, e.g. for ρS

22, are
given as the sum of terms proportional to â2

0, ã1ã2 and
â0ã12X12. As for the SO case above, at LO there is no ν
dependence, while it is similarly linear-in-ν at NLO. The
ν independent terms in Eq. (39) are those that, combined
together when ν → 0, generate the (spinning) test parti-
cle results, see e.g. Refs. [28, 43]. Understood this, one
can implement the inverse process, namely incorporate
the ρS

`m’s (and fS
`m) obtained from the perturbative calcu-

lations of the fluxes of a spinning particle around a Kerr
black hole by imposing the structure given by Eq. (68).
This means, in particular, replacing the dimensionelss
Kerr spin as â→ ã1 and the particle spin as σ → ã2. In
other words, on the ν-dependent side, the next-to-next-
to-next-to-leading-order (NNNLO) spin-orbit term will
have the form

c
SONNNLO

ν
22 =

(
cNNNLO
0 â0 +X12ã12d

NNNLO
0

)
x9/2, (69)

where
(
cNNNLO
0 , dNNNLO

0

)
are the unknown ν-

independent, coefficients. On the ν = 0 side, the
corresponding spin-orbit terms reads

c
SO4.5PN

0
22 =

(
c4.5PN
â â+ c4.5PN

σ σ
)
x9/2. (70)

By equationg the ν = 0 limit of Eq. (70) to this equation,
one finds

c
SONNNLO

ν
22 =

(
c4.5PN
â + c4.5PN

σ

2
â0

+X12ã12
c4.5PN
â − c4.5PN

σ

2

)
x9/2, (71)

where c4.5PN
â is analytically known [28] and reads

c4.5PN
â = −8494939

467775
+

2536

315
eulerlog2(x), (72)

while the spinning-particle term, c4.5PN
σ , is currently un-

known. The same procedure can be applied to incor-
porate spinning-particle spin-orbit terms at higher-PN
order and can be extended to the other multipoles, with
the obvious difference that for m-odd multipoles the hy-
bridization procedure applies to the fS

`m functions. The
hybridization of the spinning-particle, spin-square terms
into ρS

22 is done in a similar way. A similar calculation
for the NNLO ( relative 4PN-accuracy) spin-square term
yields

c
SSNNLO
ν

22 =

[
1

2
(câ2 + cσ2) â2

0 + (câσ − câ2 − cσ2) ã1ã2

+
1

2
(câ2 − cσ2) â0ã12X12

]
x4, (73)
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where (cσ2 , câσ, cσ2) are the coefficients entering the spin-
square spinning-particle term at 4PN, that will have the
structure

cSS0
22 =

(
câ2 â

2 + câσâσ + cσ2σ2
)
x4, (74)

where only câ2 is currently analytically known and
reads [28]

câ2 =
18353

21168
. (75)

This approach gives us a consistent way of hybridizing
the test-mass result above with the low-PN ν-dependent
information. Even if the spinning-particle terms are not
currently published starting from 4PN order, it could be
instructive to investigate the robustness of the results of
Fig. 3 under the incorporation of the nonspinning test-
particle terms. To do so, we replicate the procedure done
above to incorporate the 4PN and 4.5PN test-particle
terms for the spin-square 5PN and 6PN terms as well as
for the 5.5PN spin-orbit term, that will have the same
relation given in Eqs. (69)-(73) with the test-particle co-
efficients. After this is done, we factorize and resum
the hybrid ρ22 as before. Such, test-particle-improved,
ρ̄S

22 is consistent with the ν = 0 function discussed in
Sec. II except for the obvious absence of the spin-cube
terms coming beyond the NLO as well as of the terms
involving higher powers of the spins up to the sixth-
power, that enters at LO in the 6PN term. The effect
of the additional ν = 0 terms is illustrated in Fig. 5 for
(1,+0.99,+0.99) and (8,+0.50, 0), where the hybridized
function is contrasted with the NNLO one of Fig. 3. The
figure shows that the effect is quantitatively important
for the case (8,+0.50, 0), notably towards the merger
freuquency x ≈ 0.32. We postpone to future work a
deeper study of the effect of the ν = 0 terms all over
the parameter space and of their importance in compar-
isons with NR waveform data. Such study will be per-
formed by including also some of the higher-order spin-
orbit terms for a circularized spinning particle that are
currently not available in the literature and that are be-
ing calculated [56].

VI. CONCLUSIONS

In this paper we have improved and generalized the fac-
torization and resummation procedure of waveform am-
plitudes introduced in Ref. [31]. The key conceptual step
of the approach relies on factorizing the orbital and the
spin-dependence into two separate factors that can then
be resummed separately in various ways. Our results can
be summarized as follows:

(i) Concerning a circularized, (nonspinning) particle
orbiting a Kerr black hole, we have shown that the
(relative) 6PN-accurate ρ`m functions can be fac-
torized and resummed in a form that yields a more
than satisfactory agreement (of the order of a few

%) with the corresponding numerical (exact) func-
tion up to the last-stable-orbit. This is notably true
for the case of a quasi-extremal black hole with di-
mensionless spin parameter â = +0.99. One of the
novelties with respect to previous work [31] is that
the 6PN-accurate orbital function ρorg

22 is resummed
with a Padé approximant (typically P 4

2 ). The same
recipe proved to work essentially the same way for
all subdominant modes up to ` = 6, modulo a few
exceptions where working at either higher or lower
PN-information proved a better choice I). More
concretely, the factorization-resummation proce-
dure allows us to obtain an analytic flux, summed
over all multipoles up to ` = 6, that is consis-
tent at the 5% fractional level up to the LSO, for
the most demanding case of â = +0.99. This re-
sult is accomplished relying only on purely ana-
lytical information, without any additional fit to
the numerical fluxes. We recall that this route
was followed instead in Ref. [23] , where several
higher-PN terms, unknown at the time, were cal-
ibrated to the same Teukolsky data we are using
here. The fits were able to improve the standard
ρ`m-nonresummed flux so to have a fractional dif-
ference at the LSO of the order (or below) 1%. We
have briefly illustrated (for the ` = m = 2 mode
only, see end of Sec. II) that an analogous route
can be followed also in our framework and that it
is easy to reach analytical/numerical fractional dif-
ferences in ρ22 of the order of 0.1% at the LSO for
â = +0.99 by just choosing one effective parame-
ter entering at 6.5PN order in the resummed spin
factor ρ̄S

22. Alternatively, we want to remind that
we have explored only a few of the many possibile
choices. Focusing on the (2, 2) mode only for def-
initess, the logic driving our approach is: first (i),
to simplify things we choose to keep the same PN-
order for both the orbital and PN factors; then (ii),
as a similarly simple choice to reduce the growth
of the spin factor in the strong-field regime (see
discussion in Ref. [31]), we resummed it with its
inverse-Taylor approximant; (iii) finally, we found
that a good match with the exact numerical data
was found by taking the P 4

2 Padé approximant of
the orbital factor. Once the factorization paradigm
is accepted, any of the points (i)-(iii) above could
be, in principle, changed. For example, for (3, 1)
we found that the numerical/analytical agreement
gets improved by keeping the spin factor at 8PN ac-
curacy and the orbital factor just at 4PN accuracy
resummed with a (3, 1) Padé approximant. Simi-
larly, for some multipoles like (3, 3) and (4, 4) things
are such that the straight, Taylor-expanded, form
of the orbital factor yields a better agreement with
the numerical results. These facts suggest that it
might be possible that there are some special com-
binations of Padé approximant for the orbital part
and PN-truncation of the spin factor that could fur-
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ther reduce the analytical/numerical disagreement
in the near-LSO regime. Seen the large amount of
PN-knowledge that is available (up to 20PN [29]),
this would require a specific, dedicated study de-
pending on the spin regime where one would like
to use the resummed flux. For example, the re-
summed analytical fluxes we present here could be
use to improve the radiation reaction force used to
drive the quasi-circular transition from inspiral to
plunge in the test-particle limit [26]. Several studies
showed the limits of the standard, nonresummed,
analytical approach at 5PN [26] and proposed to
improve it with effective fits [23]. The approach we
present here offers an alternative, though slightly
less accurate, to the effective fits of [23]. Whether
such difference is relevent or not will depend on
the specific configuration and/or the problem un-
der consideration. For example, it will be interest-
ing to investigate to which extent the perturbative
calculation of the recoil velocity of Ref. [26] can be
improved by the use of the new radiation reaction
presented here, in particular when the central Kerr
black hole is quasi-extremal with spin aligned with
the orbital angular momentum.

(ii) . We have extended the factorization and resum-
mation procedure to all the existing ν-dependent
spin terms. This means that we go up to NNLO
in the spin-orbit coupling, up to NLO in the
spin-spin coupling and up to LO in the spin-cube
coupling. This is done consistently for all mul-
tipoles currently known above the LO contribu-
tions (` = 4). In doing so, we propose to use
the orbital part of the waveform in hybridized
form, where currently known, ν-dependent orbital
terms are hybridized with the test-mass term, as
proposed long ago in [21]. The novelty here is
that, to maintain the consistency with the choices
done in the test-particle limit, each ρ`m is kept
up to relative 6PN order (but a few exceptions),
with the Padé-approximant that was chosen in the
test-particle limit, however maintaining the full ν-
dependence that is currently available in the low-
order terms. By contrast, as a first choice, the spin-
dependent factor is not hybridized with high-order
test-particle results, but it is inverse resummed at
the currently available ν-dependent PN order. We
have explored the robustness of this choice on an in-
dicative sample of binary configurations, contrast-
ing the resummed amplitude with the plain, Taylor-
expanded, ρ`m. Since we do not have circular-
ized comparable-mass BH data to compare with,
the only effect that we could investigate for is the
consistency between NNLO and NLO truncations
of the waveform, as an indication of the analyti-
cal robustness of the resummed expressions. Our
Figs. 3 (for ` = 2) and 4 (for ` = 3) show that,
for the same binary, differences that are large for
the Taylor-expanded ρ`m or δmf`m are either very

much reduced, or practically negligible, in the re-
summed representation of the same functions. This
effect is very striking on δmf21, where not only one
can see this effect, but the function is also qualita-
tively close to the numerical one (see for example
Fig. 5 of Ref. [31].

These findings suggest that the resummed wave-
form amplitudes should be incorporated within the
EOB approach as a new, state-of-the-art, analytical
waveform paradigm. This was pointed out already
in Ref. [31], but here we reinforce that statement
after a deeper and more detailed analysis. In par-
ticular, we expect that next-to-quasi-circular cor-
rections [30] to the waveforms will generically have
a smaller impact than in current EOB models [14],
because they will hopefully have to bring just small
corrections to the already good strong-field behav-
ior of the analytical waveform. This was briefly
pointed out already in Ref. [14], but we are plan-
ning to investigate this extensively in future work.

(iii) Following Ref. [31], we wrote all spin-
dependent expressions using as spin variables the
Kerr parameters of the individual black holes di-
vided by the total mass of the system, ãi ≡
ai/M = Si/(miM). The use of this quantities to
parametrize a spin-dependent function was already
suggested in Ref. [11] in the context of informing
a next-to-next-to-next-to-leading order spin-orbit
effective parameter using NR simulations; simi-
larly, the same spin variables allow for a simple
recasting of the NLO correction to the centrifu-
gal radius, that has rather complicated coefficients
when written using the dimensionless spin variables
χi = Si/m

2
i , see Eq. (58)-(65) of [11]. When using

ãi, Eq. (58) of [11] reduces to the following very
compact form

δa2 =
M

r3

{
5

4
ã12â0X12 −

(
5

4
+
ν

2

)
â2

0

+

(
1

2
+ 2ν

)
ã1ã2

}
. (76)

The use of the ãi’s in our context, on top of pro-
viding similar simplifications in writing the formu-
las, is extremely convenient since these variables are
natuarally connected to the (spinning) test-particle
limit, that can be obtained straightforwardly by
just putting ν = 0 in the equations. On top of this,
since our analytical writing of the fluxes makes ab-
solutely transparent which terms combine to gen-
erate the (spinning) test-particle limit, it is tech-
nically clear how to hybridize the ν = 0 informa-
tion with ν 6= 0 one also in the presence of spin,
in order to have a waveform model that is fully
consistent with the test-mass results discussed at
point (i) above. This analysis suggests then that,
since the structure of the expansion of the functions
ρS

22 (or ρ̂S
22) is clear, one can have access to the
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leading-order, ν-independent terms, by using per-
turbative, spinning, test-particle analytical calcu-
lations [28, 43] and then promoting the BH dimen-
sionless spin â = S1/m

2
1 to ã1 and the spin of the

particle σ = S2/(m1m2) to ã2, though keeping the
additional constraint that a special structure with
X12ã12 exists in the ν-dependent case. This con-
straint implies that the ν-independent terms enter-
ing ρ`m(x; ν) are obtained as linear combinations of
the spinning and nonspinning test-particle pertur-
bative results. Unfortunately, since the current ac-
curacy of the fluxes of a spinning-particle obtained
using perturbative calculations is still at 2.5 PN
order [43], currently we can only rely on nonspin-
ning test-particle perturbative to explore the effect
of the hybridization. As a preliminary analysis, fo-
cusing only on the (2, 2) mode, we hybridized the
(nonspinning) particle (ν = 0) spin-orbit and spin-
spin analytical information on a Kerr black hole up
to 6PN with the ν-dependent analytical pieces up
to NNLO in the spin-orbit coupling (i.e., 3.5PN).
The modifications we found for large values of x are
quantitatively more important when the mass-ratio
is large than for the equal-mass case, see Fig. (5).
However, since the spinning-particle information is
not incorporated, since cσ = cσ2 = câσ = 0 for all
higher PN orders considered, this result should be
taken only as illustrative of the effect and of the
general strategy that might be used to take into
account spinning ν = 0 information. Deeper an-
alytical explorations are necessary to understand
whether the test-mass information should be in-
corporated in this form in current EOB waveform
models and whether it is of any help/relevance for
LIGO/Virgo sources. In this respect it will be ex-
tremely useful to have perturbative analytical cal-
culation of the energy fluxes emitted by a spinning
particle on circular orbits around a Schwarzschild
(or even a Kerr) black hole, a work that is currently
in progress [56]. In the former case, for instance
restricted to the simpler case of working at linear
order in the particle’s spin, we could already com-
plement the current ν = 0 spin-orbit knowledge,

and possibly improve, in a more consistent way,
the analysis sketched in Fig. 5. In addition, the
fluxes of a spinning particle on Kerr would give us
access to some leading-order ã1ã2 terms. Though
stating whether such test-particle information will
have any important impact on LIGO/Virgo tar-
geted waveform models requires deeper investiga-
tions, it will certainly allow us to improve their self-
consistency all over the binary parameter space.
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Appendix A: Multipolar fluxes

In this Appendix we explicitly report, for complete-
ness, the PN-expanded, complete, Newton-normalized
multipoles of the energy flux up to NNLO in the spin-
orbit coupling, NLO in the spin-spin coupling and LO in
the spin-cube couplings. Though these expressions are
obtained as the square of the Newton-normalized wave-
form multipoles of Eqs. (16)-(24), it is convenient to have
them written down explicitly. Each multipolar contribu-
tion to the flux is written as the product of the Newtonian
prefactor FN`m and the PN correction F̂`m as

F`m ≡ F (N,ε)
`m F̂

(ε)
`m , (A1)

where the PN correction factors explicitly read
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F̂
(0)
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(
−103

18
+

283

6
ν − 874

9
ν2

)
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F̂
(1)
32 = 1 +

1

1− 3ν

{
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+ ã12X12

(
538

45
− 313

9
ν − 44

9
ν2

)]
x3/2

}
, (A5)

F̂
(0)
33 = 1− 4ν + (−8 + 36ν − 16ν2)x+

[
6π(1− 4ν) + â0
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+ ã12X12

(
5

2
− 5ν

)]
x1/2

+

(
78

11
− 3139

66
ν +

932

11
ν2 − 1048

33
ν3

)
x

}
, (A9)
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The Newtonian prefactor can be written in closed form as

F
(N,ε)
`m =

1

8π
x3m2(−)`+ε

∣∣∣Rh(N,ε)
`m

∣∣∣2 , (A11)

where the Newtonian waveform multipole h
(N,ε)
`m is explicitly given as [21]

Rh(N,ε)
`m = Mν n

(ε)
`mc`+ε(ν)x(`+ε)/2Y`−ε,−m(π/2, φ) , (A12)

with

c`+ε(ν) = X`+ε−1
2 + (−)`+εX`+ε−1

1 (A13)

and

n
(0)
`m = (im)`

8π

(2`+ 1)!!

√
(`+ 1)(`+ 2)

`(`− 1)
, (A14)

n
(1)
`m = −(im)`

16πi

(2`+ 1)!!

√
(2`+ 1)(`+ 2)(`2 −m2)

(2`− 1)(`+ 1)`(`− 1)
. (A15)
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The explicit evaluation of Eq. (A11) for the multipoles of interest here gives

F̂Newt
22 =

32

5
ν2x5 , (A16)

F̂Newt
21 =
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