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Abstract

A methodological scheme to diversify the portfolio of generating technologies,
through a Levelized Cost of Electricity (LCOE) analysis is explored in this re-
search, in order to minimize the cost and risk involved in the production of
electricity. We investigate the cost effect of the time-varying pricing schedule
when the intermittent renewable energy source is integrated into a dispatch-
able resource-based power system, under a stochastic systemic framework. The
unpredictability of fossil fuel prices and the uncertainty in the environmental
policies constitute the financial risk in the purely thermal technology portfolio.
The fossil fuel is modeled using mean-reverting Levy models, which captures the
complicated behavior in the observed dynamics of market prices; this ensured a
more accurate computation of LCOE. The Conditional Value at Risk Deviation
(CVaRD) measure is used to capture the tail risk in the systemic LCOE portfo-
lio for the assessment of the worst-case scenario. We observe that the inclusion
of solar and wind components, which represent the riskless asset of the portfolio,
shows a combined effect of extra cost and risk reduction in the systemic frontier
produced through the mean-CVaRD optimization approach. This research is
useful for a policymaker in measuring the overall competitiveness of an energy
system.

The second part of this research, which is based on agent interaction, shows
the effect of competition and cooperation among interacting agents along a gen-
eralized Verhulst-Lotka-Volterra model. We investigate analytically and numer-
ically how interaction among agents affect satisfying demand, that is, reaching
the market capacity, and the effect on the systemic stability. Agents in this
analysis are the energy investors/firms. Systemic stability is observed when
agents grew in size to the market capacity. Agents which collaborated better
also tend to perform better in the market.
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Introduction

Investment decisions and investment assessment in electricity production are
usually supported by a Levelized Cost Of Electricity (LCOE) analysis, where
the LCOE is obtained as the deterministic solution of an algebraic equation, in
which fuel prices and CO2 costs are included as dynamic deterministic variables
(expected values of future prices and costs) [23, 32]. LCOE is calculated as
the break-even price that investors would receive on average per kilowatt-hour
(kWh) generated in order to cover all costs and receive an adequate return on
their initial investment. In corporate finance, an investment is profitable if the
present value of revenues is greater than the present value of the costs of the
project, which is the LCOE.

LCOE is an economic measure that estimates the cost of lifetime-generated
energy; it is used as a benchmarking tool to assess the cost-effectiveness of
different energy generation technologies per unit of electricity (MWh) [37]. It
allows investors to compare generating costs of alternative technologies. Gen-
eration costs of conventional plants with intermittent renewable sources such
as wind and solar PV (photovoltaics) can be compared, despite their different
cost of investment and maintenance. LCOE plays a crucial role in a free market
context because through it, market risks can be incorporated into the value
of the cost of capital used to discount cash flows [28]. For a multi-technology
project, LCOE determines the minimum selling price of electricity produced by
its generation technology mix which is necessary to cover all the operation cost,
principal and interest repayment obligation on debt incurred on the investment
cost and to provide equity investors the adequate return for the assumed risk
[24].

This research is based on the methodological scheme to diversify the portfolio
of generating technologies. This includes, the purely thermal technology mix
portfolio (i.e. coal and gas technology mix), which satisfy the baseload demand
of electricity, and the integrated intermittent non-dispatchable energy sources
(solar and wind energy). The choice of solar and wind energy is based on the
fact that “wind resource tends to complement solar resource” [18], since “wind
blows during stormy conditions when the sun does not shine and the sun often
shines on calm days with little wind, combining wind and solar can go a long
way toward meeting demand, especially when a steady base can be called on
to fill in the gaps” [19]. The unpredictability of fossil fuel prices as well as
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the uncertainty in the environmental policies constitute the financial risk in
a purely thermal technology portfolio. The integration of renewable energy
sources into the power system has the same diversification effect as a riskless
asset in a portfolio, where the purely thermal plant represents the risky asset
in the portfolio. This helps to minimize the electricity price risk induced by the
high volatility of fuel and CO2 market prices.

Motivated by the works of Mari & Lucheroni [27] and Reichelstein & Sa-
hoo [41], we investigate, from a single investor perspective, the effect of a
time-varying pricing schedule in the LCOE computation of intermittent en-
ergy sources integrated in a purely thermal resource based power system in a
stochastic systemic framework. This is done by considering the extra costs and
gains imposed on the power system which is not reflected in the classical LCOE
definition. The extra costs considered in our LCOE analysis are stated below:

Firstly, the systemic constraints, which are due to the intermittency of the
renewable energy that are integrated into the power system. Systemic con-
straints affect the computation of the LCOE through energy and capacity re-
duction. When an intermittent energy source is generated and injected into the
grid, energy generated from the purely thermal technology must be reduced of
the same quantity in order to have a demand-supply balance, since energy stor-
age is quite expensive. This energy reduction must be considered in the LCOE
computation. In addition to this, the inclusion of the solar and wind power
capacity component in a generation portfolio may not be completely equivalent
to the power capacity of the dispatchable energy, since wind might not blow
during peak hours which is often late afternoons in summer, when the demand
for air-conditioning places utility systems under greatest stress. Also, the Sun
might not shine on cloudy days which mostly occur during winter. Therefore, in
order to have a balance on the expected power capacity demanded, some backup
dispatchable power capacity needs to be maintained. Inputing cost variation
due to systemic constraints into the computation of the LCOE is called the
‘systemic LCOE theory’ [27].

Secondly, the time-varying pricing schedule, which is due to time of day
fluctuations and seasonal cycles of the renewable energy sources integrated into
the power system. Classical LCOE calculations are prone to neglect substan-
tial aspect of the economics of renewable energy sources [20]. This can be
appended through a multiplicative correction factor called the co-variation co-
efficient introduced by Reichelstein and Sahoo [41]. The co-variation coefficient
captures any interaction and/or relationship between the time-varying patterns
of electricity generation and pricing due to time of day fluctuations and seasonal
cycles. It can be noted that by construction, co-variation coefficient is equal
to one for a base-load energy system such as fossil fuel power plants because
electricity generation is assumed to be constant throughout the lifecycle of the
power plant. Also, the co-variation coefficient is equal to one for an intermittent
energy source under a time-invariant pricing schedule.
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Financial risk analysis is introduced into LCOE computation by the stochas-
tic LCOE approach, which accounts for the variability of LCOE due to risky
factors. The main sources of financial risk in this analysis are the dynamics of
coal market prices, the dynamics of gas market prices and the dynamics of CO2

prices. Although, the Geometric Brownian Motion (GBM) is sometimes used
to model fossil fuel prices dynamics, it should be noted that such a stochastic
process may not capture completely the observed dynamics of market prices.
Some evidence exist for more complicated behaviors showing mean reversion
around some long run value, jumps and stochastic volatility [13]. Therefore the
dynamics used for the analysis of fossil fuel price is a mean-reverting Levy model
as suggested in [24]; this accurately describes the time evolution of the coal and
gas prices. The dynamics of coal prices is chosen to follow a mean-reverting
stochastic differential equation, while the dynamics of gas prices is chosen to
follow a mean-reverting jump-diffusion equation due to the high volatility of gas
prices, which includes spikes. The continuous model dynamics chosen for CO2

prices is a GBM.
In general, LCOE distributions are not gaussian, having asymmetric long

thick tails [14], therefore the Markowitz mean-variance analysis used in the
systemic LCOE risk analysis is considered only as the starting point. The
analysis can be extended with a more suitable dispersion measure called CVaR
deviation (CVaRD), which plays the same role as the standard deviation in a
Markowitz approach. The results of these analyses will be compared.

The second part of this research work is based on a complex system perspec-
tive. A complex system is composed of many interacting parts called agents,
which display collective behavior that does not follow trivially from the behav-
ior of the individual parts [2, 5, 33]. Over the years, it has been discovered
that non-linear mathematical models replicate the dynamics of real systems
better than the linear ones [15, 49]. An example of such non-linear models is
the Lotka-Volterra model [22, 53]. The Lotka-Volterra model has been used in
various ways to model complex systems [6, 7, 8, 30].

A more specific analysis based on our previous research [48] on the effect
of competition and cooperation among interacting agents along a generalized
Verhulst-Lotka Volterra model in the presence of a market capacity, will be
done. In this case, the interacting agents are the energy firms/investors, that
minimize cost and the risk involved in the production of electricity in order to
maximize their profits while keeping the environment clean. The agent’s inter-
action is analyzed based on the size of agent with common resources to share,
that is, the consumers of electricity. Agents tend to increase in size when they
acquire more of the market share and reduce when any market portion is lost.
A network effect was introduced through an undirected but weighted graph in
order to enable a mixed-type of interactions, that is, having a system in which
competitive and cooperative scenarios are considered to occur simultaneously
among various interacting agents in the presence of a realistic constraint called
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the market capacity. Such competition, cooperation, and mixed type of interac-
tions are analyzed below for a triad of interacting agents through the evaluation
of the eigenvalues of the relevant Jacobian matrix computed at corresponding
fixed points in order to investigate the system stability. This triad system has
been chosen as the most simple, yet complex enough as representative of basic
networks.

The main contributions in this thesis are outlined as follows:

1. An extension of the Stochastic Systemic LCOE Theory is proposed by
introducing time-varying pricing schedules into LCOE analysis of inter-
mittent renewable energy sources integrated into a dispatchable resource
based power system.

2. A modeling of fossil-fuel prices with stochastic processes that capture
more complicated behaviors characterizing the dynamics of market prices
of energy commodities is advanced. This enables a more accurate LCOE
analysis.

3. LCOE risk analysis using the deviation measure called CVaRD to capture
tail risk is presented. This is an extension to the Markowitz mean-variance
analysis done in [27] as a starting point of systemic LCOE risk analysis.

4. Agent interaction is investigated along the generalized Verhulst-Lotka
Volterra model. We considered how interactions among agents affect sat-
isfying demands (i.e. market capacity) and the effect on the systemic
stability. Agents in this analysis are the energy investors/firms.

The thesis is organized as follows. In the first chapter, the stochastic LCOE
theory is reviewed. In computing the LCOE of coal and gas technologies, the
dynamics of fossil fuel prices is modeled using mean-reverting stochastic differ-
ential equations. LCOE analysis based on these dynamic models is compared to
previous analyses in the literature. The extra cost of integrating intermittent
renewable energy sources into a dispatchable resource-based power system is
analyzed in the second chapter. The analysis is done by considering the sys-
temic constraints involved in the integration of renewables and the synergies
that exist in the time-varying patterns of electricity generation and pricing of
renewables when computing the LCOE of the portfolio of generation technolo-
gies. LCOE risk analysis is performed in the third chapter starting from the
Markowitz mean-variance analysis approach, and then extended to the CVaR
deviation in order to capture the tail risk. The second part of the thesis which
includes the fourth and the fifth chapter, is based on the published paper [48]
on the effect of competition and cooperation among interacting agents in the
presence of a market capacity.
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Chapter 1

LCOE Theory

1.1 Introduction

In this chapter, the economic and financial analysis of fundamental terms in
LCOE analysis is presented. Background studies on the computation of the
classical LCOE is reviewed. An extension to the stochastic form which accounts
for the variability of LCOE due to risky factors is also reviewed from past
literatures. LCOE analysis of coal and gas through geometric Brownian motion
and mean-reverting stochastic differential equation is shown. The fossil fuel
models were compared with historical data of fuel prices in the US in order to
validate the model appropriate for our analysis.

1.2 Fundamental terms in LCOE Analysis

The overview of the basic concepts and elements of the economic and financial
analysis of the LCOE from [46] is presented below:

1.2.1 Cash Flows

Cash flow is the net amount of cash and cash-equivalents moving into and out of
a project or business, as the case may be. Cash flow can be defined in terms of
three different activities performed by a company, which are operation, invest-
ment and financing. Cash flows from operating activities of a company includes
all revenue obtained minus operation and maintenance cost, interest paid and
the income tax. Cash flow from Investment includes the capital expenditures
while financing activities cash flow includes the repayment of principal debt and
dividends.
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1.2.2 Inflation Rates

The revenue and cost of a company can be measured in terms of current or
constant dollar rates. Current money unit cash flow is the actual cash flow
observed in the market place, that is, the actual cash required in the year the
cost is incurred. This changes over time due to inflation or deflation of the
economy. Constant money unit cash flow represent the amount of money that
would have been required if the cost is paid in the base year. Therefore, the
relationship between the two cash rate is:

Cn =
Cm

(1 + i)m−n
(1.2.1)

Where Cn represents the constant rate cash flow in the base year n, Cm is the
current rate cash flow in year m and i is the inflation rate which is assumed to
be constant during the m− n years.

1.2.3 Time Points and Periods

Time points considered critical in an LCOE analysis includes the base year,
dollar year and the investment year. The base year (zero year) is the year in
which all cash flows are converted, the dollar year is the year to which base
year results are converted and reported while the investment year is the year
the actual investment occurs. The important time periods for LCOE analysis
includes the investment lifetime, which is the estimation of a particular invest-
ment useful life; Analysis period, this is the period for which the evaluation is
conducted; Depreciation Period, this is the period of time over which an invest-
ment is amortized (usually for tax purposes); Finance period, this is the period
for which an investment financing is structured and Levelization Period, which
is the period of time used when calculating a levelized cash flow stream.

1.2.4 Discounted Rates

Discounted rates are often used to account for the risk inherent in an investment.
It acts as a measure of time value of return (i.e. the price put on the time
that an investor waits for a return on an investment) and it is central to the
calculation of present value. Nominal discount rate are discount rates with
inflationary effects while real discount rates excludes inflation. Discount rate
can be converted from real to nominal and vice versa with the following formula:

(1 + dn) = (1 + dr)(1 + i) (1.2.2)

Where dn is the nominal discount rate, dr is the real discount rate and i is the
inflation rate. From Equation 1.2.2, we can deduce that the nominal discount
rate dn is explicitly given by :

dn = [(1 + dr)(1 + i)]− 1 (1.2.3)
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while the real discount rate dr is given by:

dr =
(1 + dn)

(1 + i)
− 1 (1.2.4)

1.2.5 Cost of Capital

This involves determining the cost of the various capital components which
majorly include debt, preferred stock and equity, then applying these costs to
the capitalization ratio of the firm to arrive at a Weighted Average Cost of
Capital (WACC). It is the rate of return needed to induce investors to invest
in a project of similar risk and duration. The price of a good or service to
a consumer in a competitive market or regulated market will include a return
approximately equal to the cost of capital of the industry. Higher returns attract
increased investment, whereas lower returns discourage investment and leads to
inadequate supplies and sources of investment capital. The general formulation
of WACC is calculated by:

WACC = Re
Ce

Ce + Ps +D
+Rp

Ps
Ce + Ps +D

+ (1− T )Rd
D

Ce + Ps +D
, (1.2.5)

where Re is the rate of return on common equity, Ce is the common stock and
corporate retained earnings, Ps is the preferred stock, D is debt issues, Rp is
the rate of return on the preferred stock, T is the corporate tax and Rd is the
interest paid on the debt. Accessing the LCOE through the WACC method
allows one to include the level of risk perceived by investors (both equity and
bondholders) through the debt fraction of the investment in the discounting
rate [27].

1.2.6 Present Value

It is the measure of today’s value of revenue or cost to be incurred in the future.
Present value analysis is used to calculate the worth of transaction today with
respect to the future changing money valuation.

PV = PV IFn × Cn, (1.2.6)

where PV is the present value, PV IFn = 1
(1+d)n

is the present value interest
factor, Cn is the cash flow n years in the future and d is the annual discount rate.
When future cash flow are fixed in size and regularly over a specific number of
periods, the situation is known as an annuity. The present value formula for an
annuity is given by:

PV = C × (1 + d)N − 1

(d(1 + d)N)
, (1.2.7)

where C is the cash flow in each of N future years.
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1.2.7 Taxes

The most complete analysis of an investment in a technology or a project re-
quires the analysis of each year of the life of the investment, taking into account
relevant costs, including taxes. Cash flow is the basis for analyzing alternative
investment in energy production, therefore, after-tax cash flow is the most ap-
propriate to be used for analysis since it accounts for federal and state income
taxes.

1.2.8 Depreciation

This is a means of recovering, through an income tax deduction, the cost of
property used in a trade or business or of property held for the production of
income. The capital sum to be recovered by depreciation is the depreciation
base, which when adjusted annually by the amount depreciable, becomes the
adjusted base. The Modified Accelerated Cost Recovery System (MACRS) is
the name given to the federal tax rules for recovering cost through depreciation
in the US.

1.3 Background Study

The method of LCOE has been widely used for the estimation of power gener-
ation costs (among others see [3, 4, 24, 28, 37, 38, 45, 47]). A methodological
approach based on the LCOE was proposed in a risk analysis of portfolios of
power generating technologies in [28]. This was done in a stochastic framework,
in which, fossil fuel prices and carbon credit prices were assumed to evolve in
time according to well defined Brownian processes. Nuclear power was con-
sidered as a hedging asset to reduce CO2 emission in the atmosphere, thereby
minimizing the volatility of electricity prices. Starting from market data, and
using Monte Carlo techniques to stimulate generating cost values, portfolio op-
timization of the power generating technologies was performed by using the
mean-variance approach. However, the stochastic processes used in this paper
may not completely capture the observed dynamics of market prices of energy
commodities. Also, the mean-variance analysis is not useful when considering
the worst case assessment of a portfolio.

The research on stochastic LCOE for optimizing multi-asset risky energy
portfolios was reviewed and extended in [24] by using two different stochastic
models, a Lognormal model and an extended Levy model, which properly repli-
cates the dynamics of the real market prices of coal and gas in the US for 20
years respectively. In addition, risk analysis was carried out using the mean-
variance approach and the mean-CVaR analysis, which is useful for cases with
asymmetric distributions. The two risk analysis had different results in terms
of optimal portfolios. It can be noted that the WACC, which includes the risk
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perception of investors in nuclear business, was kept constant during the anal-
yses. The research can be extended through the inclusion of different WACC
scenarios, in order to study the tradeoff between different but concurrent en-
vironmental risks (i.e., in this case, CO2 price volatility and nuclear business
risk). Renewable energy sources may also be chosen as a preferable option of a
riskless asset to hedge the risky energy portfolio.

Due to the intermittency of renewable energy sources, electricity demand
can only be met at all times of the day and season if energy production through
renewable energy sources is backed up with a dispatchable energy source, which
provides a steady source of energy for the production of electricity. Earlier
literatures has argued that LCOE analysis may be inappropriate when applied
to intermittent power sources [20]. This argument was addressed in [41], where
the authors demonstrated that LCOE analysis remains appropriate for accessing
the cost competitiveness of an renewable energy sources, provided that the
figure obtained from the traditional average LCOE computation is adjusted by
a multiplicative correction factor called the co-variation coefficient. The co-
variation coefficient captures any interaction and/or relationship between the
time-varying patterns of electricity generation and pricing, due to time of day
fluctuations and seasonal cycles. It can be noted that, by construction, the co-
variation coefficient is equal to one for a base-load energy system, such as fossil
fuel power plants. However, the authors did not consider systemic constraints
related to intermittency, even though the authors admitted that the effects of
such constraints will become increasingly prominent as renewable energy sources
provide a more substantial share of the overall supplied electricity.

A systemic deterministic LCOE was introduced in [27] by taking into con-
sideration the cost generated from constraints imposed on system through the
integration of an intermittent energy sources in a given power system operated
on dispatchable energy sources. The stochastic version takes into consideration
the volatility of fossil fuel and CO2 emission prices. The inclusion of intermit-
tent energy source act as a riskless asset in a given power system. It was used
to investigate the diversification effect and the CO2 emission reduction due to
the electricity generation portfolio selection. Markowitz mean-variance analysis
was used to analyze the financial risk of the electricity prices. Nevertheless, the
LCOE analysis of the intermittent renewable energy integrated into the power
system can be extended, by considering not only the systemic constraints, but
also the synergies that exist between the time-varying patterns of electricity
generation and pricing, due to time of day fluctuations and seasonal cycles.

1.4 Deterministic LCOE Model

Classically, the LCOE is defined as the non-negative price Pα
LC (which is as-

sumed constant in time, and expressed in real monetary units) of the electricity
produced by a specific generation technology α, which makes the present value
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of the expected revenues from electricity sales equal to the present value of all
expected costs met during the plant life-cycle (which includes investment costs,
operating costs, fuel costs and carbon charges when due). The LCOE repre-
sents generating cost at the plants level (i.e. busbar costs) and does not include
transmission costs, distribution cost and all possible network infrastructure ad-
justments costs [32].

A project of an electricity generating plant with a project timeline p(t) given
by:

p(t) = {t ∈ Z : −n ≤ t ≤ N}

has a construction period t = [−n, 0], with t = 0, as the end of construction
time, evaluation time and operation starting time. N is the end of operation
time. After equating the present values of expected revenues and costs, the
LCOE for a specific technology α evaluated at time t = 0 is implicitly defined
as:

N∑
t=0

Pα
LCQ

α
t (1 + i)t−t0

(1 + rw)t
=

N∑
t=0

Cα
t + Tαt

(1 + rw)t
+ Iα0 . (1.4.1)

From the l.h.s of Equation (1.4.1), Qα denotes the amount of electricity pro-
duced during period t, it is assumed to be constant in time. Also for a period
of one year,

Qα = Wα × 8760× CFα, (1.4.2)

where Wα denotes the nameplate capacity of the plant, and CFα denotes the
capacity factor of the plant for 8760 hours. In Equation (1.4.1), i is the expected
yearly inflation rate, t0 refers to the base year used to compute nominal prices
from real prices and rw is the WACC discount rate, which is kept constant for
the whole life of the project. From the r.h.s of Equation (1.4.1), Cα

t denotes
the nominal operating expenses incurred throughout the operational life of the
generating plant, which includes the expected real escalation rate of the fixed
and variable operational & maintenance (O & M) costs, the time-varying fossil
fuel and CO2 emission prices. The yearly nominal tax liabilities denoted by Tαt
and given by

Tαt = Tc(R
α
t − Cα

t −Dα
t ), (1.4.3)

is calculated by subtracting costs Cα
t and asset depreciation Dα

t from the rev-
enues Rα

t which stems from the sales of the generated electricity, with Tc being
the tax rate. The revenue Rα

t are computed by the equation given below:

Rα
t = Pα

LC ×Qα(1 + i)t−t0 . (1.4.4)

The second term on the r.h.s of Equation (1.4.1), Iα0 , denotes the pre-operations
nominal investment expenses. It is computed as a lump sum, starting at t = −n
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and ending at t = 0. Within the WACC approach, Iα0 given by

Iα0 =
0∑

t=−n

Aαt (1 + rw)−t , (1.4.5)

= Aα−n (1 + rw)n + · · ·+ Aα−1 (1 + rw) + Aα0 ,

where the nominal amount Aαt at year t, computed in terms of the overnight
cost Oα

t , allocated to year t, can be expressed as

Aαt = (1 + i)t−t0Oα
t , t = −n, . . . ,−1, 0. (1.4.6)

The solution of the LCOE for a specific technology α (i.e. Pα
LC) can be obtained

simply by following the steps outlined below:

(a.) Substituting Tαt , which is in Equation (1.4.3) into Equation (1.4.1), we
obtain

N∑
t=0

Pα
LCQ

α
t (1 + i)t−t0

(1 + rw)t
=

N∑
t=0

Cα
t + Tc(R

α
t − Cα

t −Dα
t )

(1 + rw)t
+ Iα0 ,

=
N∑
t=0

Cα
t (1− Tc) + Tc(R

α
t )− Tc(Dα

t ))

(1 + rw)t
+ Iα0 ,

N∑
t=0

Pα
LCQ

α
t (1 + i)t−t0 − Tc(Rα

t )

(1 + rw)t
=

N∑
t=0

Cα
t (1− Tc)− Tc(Dα

t )

(1 + rw)t
+ Iα0 . (1.4.7)

(b.) Substituting Equation (1.4.4) into Equation (1.4.7) gives,

N∑
t=0

PαLCQ
α
t (1 + i)t−t0 − Tc(PαLC ×Qαt (1 + i)t−t0)

(1 + rw)
t =

N∑
t=0

Cαt (1− Tc)− Tc(Dα
t )

(1 + rw)
t + Iα0 ,

N∑
t=0

PαLCQ
α
t (1 + i)t−t0(1− Tc)

(1 + rw)
t =

N∑
t=0

Cαt (1− Tc)− Tc(Dα
t )

(1 + rw)
t + Iα0 ,

(c.) Simplify by substituting F0,t = 1
(1+rw)t

into the equations above,

PαLC(1− Tc)
N∑
t=0

Qαt (1 + i)t−t0F0,t =

N∑
t=0

(Cαt (1− Tc)− Tc(Dα
t ))F0,t + Iα0 ,

PαLC(1− Tc) = (1− Tc)
∑N
t=0 C

α
t F0,t∑N

t=0Q
α
t (1 + i)t−t0F0,t

+
Iα0 − Tc

∑N
t=0D

α
t F0,t∑N

t=0Q
α
t (1 + i)t−t0F0,t

.

Therefore, Pα
LC is explicitly written as:

Pα
LC =

∑N
t=0C

α
t F0,t∑N

t=0Q
α
t (1 + i)t−t0F0,t

+
Iα0 − Tc

∑N
t=0D

α
t F0,t

(1− Tc)
∑N

t=0Q
α
t (1 + i)t−t0F0,t

. (1.4.8)
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(d.) Equation (1.4.8) can be further simplified by defining

Q̂α =
N∑
t=0

Qα
t (1 + i)t−t0F0,t, (1.4.9)

and by defining unitary costs as follows

Ĉα =

∑N
t=0C

α
t F0,t

Q̂α
, Îα0 =

Iα0

Q̂α
, D̂α =

∑N
t=0D

α
t F0,t

Q̂α
. (1.4.10)

Therefore, the LCOE for a specific technology α can be simply rewritten as

Pα
LC = Ĉα +

Îα0 − TcD̂α

1− Tc
. (1.4.11)

For the derivation of the LCOE of a multi-technology project or a portfolio of
technologies, the total quantity of electricity production must be equal to the
sum of production from each technology. That is,

Q̂Σ =
∑
α

Q̂α, (1.4.12)

if the expected amount of electricity produced during each period is constant
then, QΣ =

∑
αQ

α. The total LCOE for a portfolio of technology is derived
from the assumption that the total expected revenues generated by the gener-
ation portfolio must be equal to the total expected cost. This implies that

Q̂ΣPΣ
LC =

∑
α

Q̂αĈα +
∑
α

Q̂α

(
Îα0 − TcD̂α

1− Tc

)
,

=
∑
α

Q̂α

(
Ĉα +

Îα0 − TcD̂α

1− Tc

)
,

=
∑
α

Q̂αPα
LC.

Consequently,

PΣ
LC =

∑
α

Q̂α

Q̂Σ
Pα

LC =
∑
α

wαPα
LC, (1.4.13)

where

wα =
Q̂α

Q̂Σ
(1.4.14)

is the weight of technology α in the portfolio, which satisfies the condition∑
αw

α = 1. Equation (1.4.13) implies that the total LCOE over portfolio of
technologies (i.e. PΣ

LC) is a linear combination of individual technologies LCOE
weighted by the fraction of electricity generated by each technology.
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1.5 Stochastic LCOE Model

The LCOE analysis developed in the previous section does not account for
the stochasticity of LCOE. The portfolios of generating technologies in this re-
search work include purely thermal technology mix portfolios (i.e., coal and gas
technology mix), which satisfies the baseload demand of electricity, and inte-
grated intermittent non-dispatchable energy sources (solar and wind energy).
The unpredictability of fossil fuel prices as well as the uncertainty in the en-
vironmental policies, constitutes financial risk in a purely thermal technology
portfolio. Thereby, making the purely thermal plant represent the risky asset in
the portfolio, while the integration of renewable energy sources into the power
system has the same diversification effect as a riskless asset in a portfolio. This
helps to minimize the electricity price risk induced by the high volatility of
fossil fuel and CO2 market prices. Therefore the main sources of financial risk
in this analysis are the dynamics of coal market prices, the dynamics of gas
market prices, and the dynamics of CO2 prices. Although, the geometric Brow-
nian motion is sometimes used to model fossil fuel price dynamics, it should be
noted that such a stochastic process may not capture completely the observed
dynamics of market prices. Some evidence exists for more complicated behav-
iors showing mean reversion around some long run value, jumps and stochastic
volatility [13]. The dynamics used for fossil fuel prices is a mean-reverting Levy
model, as suggested in [24], which accurately describes the time evolution of
the coal and gas prices. The dynamics of coal prices Pc is chosen to follow a
mean-reverting stochastic differential equation, while the dynamics of gas price
Pg is chosen to follow a mean-reverting jump-diffusion stochastic differential
equation, due to the high volatility of gas prices which includes spikes, see for
instance [16, 55]. The two equations are written as follows:

dP̂co = (µco − θcoP̂co)dt+ σcodBco, (1.5.1)

dP̂ga = (µga − θgaP̂ga)dt+ σgadBga + J(σJ)dN(λ), (1.5.2)

where P̂co and P̂ga are, respectively, the natural logarithm of coal and gas mar-
ket prices; µco,θco and µga, θga are, respectively, the mean-reversion parameters
of the logarithm of the coal and gas prices; σco and σga are, respectively, the
volatilities of coal and gas prices; Bco and Bga are independent standard Brow-
nian motions; J is the jump amplitude distributed as a normal random variable
with zero mean and standard deviation σJ ; N is a Poisson process with con-
stant jump intensity λ. The dynamical parameters are chosen according to the
estimates reported in [25], obtained by discretizing the stochastic differential
equations on a monthly time grid to give discrete time series that stimulate the
fuel dynamics of coal and gas real price monthly time series from Jan. 1990 to
Aug. 2013 in the US market.

The continuous model dynamics chosen for the CO2 emission prices Pem is
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coal gas

µco = 0.0000 µga= 0.0373

θco = 0.0000 θga= 0.0292

σco= 0.0139 σga =0.0737

σJ = 0.1258

λ = 0.2542

Table 1.1: Parameters of coal and gas stochastic price processes.

a simple geometric Brownian motion given by:

dPem

Pem

= πdt+ σemdBem, (1.5.3)

where π is the natural logarithm of one plus the expected inflation rate, π =
ln(1 + i); σem is the CO2 emission price volatility, and Bem is a standard Brow-
nian motion that is assumed to be independent of Bco and Bga.

Therefore, the classical LCOE Pα
LC becomes a stochastic variable Pα

LC(ω)
due to a set of risky sources stochastic paths ω present in the cost term Cα

t .
This implies that from Equation (1.4.11), the stochastic LCOE for a specific
technology α can be defined by the following equation:

Pα
LC(ω) = Ĉα(ω) +

Îα0 − TcD̂α

(1− Tc)
,

Pα
LC(ω) = Ĉα,var(ω) + Ĉα,fix +

Îα0 − TcD̂α

(1− Tc)
, (1.5.4)

where Ĉα,var is denoted as the unitary variable cost which depends on the
stochastic factors and Ĉα,fix is the unitary fixed cost of technology α, such
that

Ĉα = Ĉα,var + Ĉα,fix.

1.6 Empirical Analysis

Technical data used in the empirical analysis are extracted from the “Annual
Energy Outlook 2016” [10] as reported in the “Updated Capital Cost Estimates
For Utility Scale Electricity Generating Plants” [11] provided by the United
States Energy Information Administration. All technical data and costs in-
cluded in the analysis are denominated in US dollars with 2016 as the base
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year. Table (1.3) shows some important rates used in the empirical analysis.
A nominal WACC of 7.9% is adopted, in agreement with the recent literature
[27].

Units Coal Gas

Techology symbol co ga

Nominal capacity MW 650 702

Capacity factor 85% 87%

Heat rate Btu/kWh 8800 6600

Overnight cost $/kW 3636 978

Fixed O&M rate $/kW/year 42.1 11.00

Variable O&M rate mills/kWh 4.6 3.50

Fuel costs $/mmBtu 2.42 3.91

CO2 intensity Kg-C/mmBtu 25.8 14.5

Fuel real escalation rate 0.3% 2.0%

Construction period years 4 4

Operation start 2022 2022

Plant life years 30 30

Depreciation scheme MACRS,20 MACRS,15

Table 1.2: Technical data for LCOE Analysis.
All dollar amounts are in year 2016 dollars. Overnight costs are assumed to be uniformly dis-
tributed on the construction period. Depreciation is developed according to MACRS (Mod-
ified Accelerated Cost Recovery System) scheme described in Appendix A. O&M denotes
operation and maintenance. Mills stands for 1/1000 of a dollar, while mmBtu denotes one
million BTUs.

Inflation rate (i) = 2.2% Tax rate (Tc) = 40%

WACC = 7.9% CO2 emission volatility (σem) = 0.20

Table 1.3: Important rates for LCOE analysis.

LCOE values for purely thermal technology project were computed using
data from Table 1.2. They were computed through a Monte Carlo simulation
techniques in Matlab. Different LCOE values of coal and gas were generated
using a geometric Brownian motion as the dynamic model that described the
prices of fossil fuels as done in previous literature. These values were compared
with the LCOE values of coal and gas generated if the dynamics of the coal
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LCOE coal LCOE gas

Mean 102.62 64.16

Standard Deviation 5.90 20.28

Skewness 1.07 2.64

Kurtosis 5.21 16.72

Table 1.4: Descriptive statistics of coal and gas LCOE when fossil fuel is mod-
eled using Geometric Brownian Motion.

LCOE coal LCOE gas

Mean 102.53 63.84

Standard Deviation 3.73 6.72

Skewness 0.59 0.73

Kurtosis 3.64 4.9

Table 1.5: Descriptive statistics of coal and gas LCOE when fossil fuel is mod-
eled using Mean-Reverting SDE model.

prices Pco was chosen to follow a mean-reverting stochastic differential equation
and the dynamics of gas price Pga was chosen to follow a mean-reverting jump-
diffusion stochastic differential equation due to the high volatility of gas prices,
which include spikes. The LCOE values generated with the different dynamic
models is shown in Figure (1.1) and Figure (1.2). It is observed that the LCOE
of gas in Figure (1.1) contains too many spikes. This implies that the underlying
fossil fuel is extremely volatile and this seems to be unrealistic when compared
with the historical data in Fig (1.3), which contains the logarithmic monthly
changes of fossil fuel market prices in the United States from January 1990
to August 2013 [25]. Even though there exist spikes in the underlying fossil
fuel for the gas power plant, a mean-reverting property also exist in the figure
that contains the historical data due to the possibility of storage. Therefore
Figure (1.2) seem to be more appropriate LCOE values with dynamic models
that replicate fossil fuel prices shown in the historical data. Furthermore, com-
paring the descriptive statistics of the LCOE values shown in Table (1.4) and
Table (1.5), even though the means of the LCOE of coal and gas are similar,
the standard deviations are markedly different (5.90 against 3.73 for coal and
20.28 against 6.72 for gas respectively). The high value of volatility in the rise
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Figure 1.1: LCOE values of coal and gas when fossil fuel is modeled using
Geometric Brownian Motion.
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Figure 1.2: LCOE values of coal and gas when fossil fuel is modeled using
Mean-Reverting Stochastic processes.
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Figure 1.3: logarithmic monthly changes of fossil fuel market prices in the U.S.
from January 1990 to August 2013 (gas left, coal right)

of geometric Brownian motion does not correspond to what is observed in the
historical data of the underlying fossil fuel as shown in Fig (1.3). This may
eventually affect the portfolio selection of the generation technology mix which
minimizes the cost and the risk involved in electricity generation through indi-
vidual generation technology. In addition to this, the skewness of 0.59 and 0.73
in Table (1.5) show that the LCOE distribution is positively skewed but closer
to normal distribution than the values in Table (1.4) whose skewness is 1.07
and 2.64 for coal and gas LCOE respectively. Lastly, the kurtosis in Table (1.5)
signal fat tails since its values are above 3.0, which is the kurtosis for a normal
distribution. On the other hand, the values in Table (1.4) contains too many
outliers especially for gas LCOE with kurtosis of 16.72. These observations
justify the reasons for choosing mean-reverting Levy models for the modeling
of the fossil fuel of coal and gas technology in our LCOE analysis.

1.7 Conclusion

LCOE theory was introduced. Background studies were reviewed and the
deterministic LCOE model formulation was shown analytically. A stochas-
tic form of the LCOE model due to the uncertainty in the fossil fuel prices
and CO2 emission prices was also reviewed. Modeling of coal and gas prices
was done through mean-reverting stochastic differential equation and mean-
reverting jump-diffusion stochastic differential equation, respectively, as an im-
provement on previous fossil fuel modeling with the geometric Brownian motion.
The empirical analysis showed that, despite the similarity of LCOE mean, the
LCOE volatilities of coal and gas when fossil fuel is modeled with geometric
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Brownian motion tended to be too high when compared to historical data.
Mean-reverting modeling of fossil fuel prices replicated better the historical
data, which makes it more realistic to be used for our analysis.
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Chapter 2

Systemic LCOE Theory

2.1 Introduction

In this chapter, two main issues are addressed: Firstly, Systemic LCOE with
time-invariant pricing, that is, cost variation due to systemic constraints is in-
troduced into the computation of LCOE in a system whose pricing does not
depend explicitly on time; Secondly, a time-varying pricing schedule due to
time of day fluctuations and seasonal cycles of the renewable energy sources
integrated into the power system is introduced into the Systemic LCOE the-
ory, that is, in addition to the cost variation due to systemic constraints, a
multiplicative correction factor which captures any interaction and/or relation-
ship between the time-varying patterns of electricity generation and pricing,
is appended to the LCOE computation. These are analyzed under stochastic
framework.

2.2 Systemic LCOE Theory with Time-Invariant

Pricing

A portfolio of energy generation technologies is said to be technically feasible
if the the power capacity and energy demanded at each hour of the year is
balanced. That is, if the portfolio of energy generation technology matches
the yearly load duration curve. The purely thermal technology portfolio, which
satisfies the baseload demand of electricity, is assumed to be technically feasible
in this research work. This technically feasible set consists of single fuel portfolio
such as coal only generation portfolio or gas only generation portfolio and mixed
portfolio including both dispatchable technologies, coal and gas. The power
system of all these individual portfolio matches the yearly load duration curve
but they differ in terms of their cost of energy generation and financial risks.
This shall be discussed in details later.

Due to the intermittency of solar and wind energy, two major issues need
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to be considered when evaluating their inclusion as renewable energy sources
into a feasible portfolio: Firstly, when solar and wind energy is generated and
injected into the grid, energy generated from purely thermal technologies must
be reduced of the same quantity in order to have a balanced demand/supply
due to the high cost of energy storage. Secondly, the inclusion of the solar and
wind power capacity component in a generation portfolio may not be completely
equivalent to the power capacity of the dispatchable energy, since wind might
not blow during peak hours which is often late afternoons in summer, when
the demand for air-conditioning places utility systems under greatest stress.
Also, Sun might not shine on cloudy days which mostly occurs during winter.
Therefore, in order to have a balance on the expected power capacity demanded,
some backup dispatchable power capacity needs to be maintained. The capacity
value quantifies how much of dispatchable power generation capacity the solar
and wind power sources can replace in a given portfolio. Capacity value of
zero is adopted by most conservative operators of intermittent sources such
as wind plants [50]. The inclusion of solar and wind power into the feasible
generation portfolio increases the portfolio cost due to high construction cost
of wind turbine onshore or offshore and solar PV (even though the cost has
considerably fallen due to advancement in technology). On the other hand,
such an inclusion reduces the total cost of the feasible portfolios because of the
energy and capacity reduction.

2.2.1 Cost Effect of Energy and Capacity Reduction

Suppose the index α denotes the dispatchable technologies which contains coal
and gas, i.e., α = co, ga. After the inclusion of the non-dispatchable technology,
the energy generation reduction imposed on the technically feasible portfolio α
in one year is given by

Qα,red = γαQβ, (2.2.1)

where γco + γga = 1, such that 0 ≤ γα ≤ 1; the parameter Qβ denotes the
yearly power production from non-dispatchable technology, where β = wi, so.
This can be simplified as Qβ = Qwi,so = Qwi + Qso, where Qwi represents the
yearly wind power production and Qso is the yearly solar power production. The
maximum energy reducible is equivalent to the amount of energy generated
by non-dispatchable technology integrated into the power system, since 0 ≤
Qα,red ≤ Qβ.

The yearly capacity reduction is deduced from the yearly avoided energy
generation due to the substitution of dispatchable capacity with solar and wind
capacity. This will be denoted by

Qα,av = Wα,av × 8760× CFα, (2.2.2)

where Wα,av is the nameplate capacity reduction of the dispatchable technology
α, i.e., avoided (av); CFα denotes the capacity factor of the technology α for
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8760 hours (i.e., one calendar year).

2.2.2 Integration of One Renewable Power Source

The total present value of the augmented feasible portfolio with the inclusion of
the solar and wind component is evaluated based on the systemic constraints.
This is given by:

Q̂ΣPΣ
LC =

(∑
α

Q̂f,αPα
LC + Q̂wiPwi

LC + Q̂soP so
LC

)

−
(
Q̂wi + Q̂so

)∑
α

γαĈα,var −
∑
α

Q̂α,av

(
Ĉα,fix +

Îα0 − TcD̂α

1− Tc

)
.

(2.2.3)

In Equation (2.2.3), Q̂Σ = Q̂f,co +Q̂f,ga denotes the technically feasible portfolio
which consist of the dispatchable technologies;

∑
α Q̂

f,αPα
LC is the total cost of

the feasible portfolio; Pwi
LC and P so

LC are the LCOE of ‘bare’ wind and solar
technologies respectively such that,

Pwi
LC = Ĉwi +

Îwi
0 − TcD̂wi

1− Tc
, P so

LC = Ĉso +
Îso

0 − TcD̂so

1− Tc
, (2.2.4)

that is, without consideration of the systemic interactions due to the inclusion
of the solar and wind technology into a technically feasible portfolio.

In order to evaluate the consistent LCOE for solar (P so∗
LC ) and wind (Pwi∗

LC )
power that properly accounts for the extra cost imposed on the power system,
we shall evaluate further the total cost of the augmented portfolio which can
be expressed as:

Q̂ΣPΣ
LC =

∑
α

(
Q̂f,α − γαQ̂β

)
Pα

LC + Q̂βP β∗
LC. (2.2.5)

In the absence of solar power, that is Qso = 0, we have Qβ = Qwi. By equating
Equations (2.2.3) and (2.2.5), the LCOE of wind power is evaluated as:

Pwi∗
LC = Pwi

LC +
∑
α

γαPα
LC −

∑
α

γαĈα,var −
∑
α

Qα,av

Qwi

(
Ĉα,fix +

Îα0 − TcD̂α

1− Tc

)
.

(2.2.6)
This is expressed as a sum of the ‘bare’ wind LCOE and the cost of the in-
teraction of the wind component with the technically feasible portfolio and it
is equivalent to the results from previous literature [27]. The wind LCOE can
be expressed in terms of fixed cost only, by substituting the value of Pα

LC into
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the second term of Equation (2.2.6) with Ĉα = Ĉα,var + Ĉα,fix. The equation
obtained is:

Pwi∗
LC = Pwi

LC +
∑
α

(
γα − Qα,av

Qwi

)(
Ĉα,fix +

Îα0 − TcD̂α

1− Tc

)
. (2.2.7)

Equation (2.2.7) implies that the extra cost on the wind LCOE depends on the
mix technologies used to reduce both the electricity generation and the power
capacity from the feasible portfolio. Similarly, in the absence of wind power,
that is Qwi = 0, we have Qβ = Qso. Therefore evaluating from Equations (2.2.3)
and (2.2.5), the LCOE of solar power is given as:

P so∗
LC = P so

LC +
∑
α

(
γα − Qα,av

Qso

)(
Ĉα,fix +

Îα0 − TcD̂α

1− Tc

)
, (2.2.8)

which is the addition of the ‘bare’ solar LCOE to the cost of interaction of the
solar component with the technically feasible portfolio. It must be noted that
the ratio

Q̂α,av

Q̂wi
=
Qα,av

Qwi

in Equation (2.2.6) because the yearly electricity production by each technology
is assumed constant over time under this section.

Capacity values of solar and wind power can be included in their LCOE
analysis in Equations (2.2.7) and (2.2.8) by solving the fraction

Qα,av

Qβ
(2.2.9)

in terms of the capacity value and substituting the solution into the equations.
Firstly, suppose wf,ga and wf,co denotes the composition of a technically feasible
generation portfolio, such that wf,ga + wf,co = 1. Let

wβ =
Qβ

QΣ
, (2.2.10)

denote portfolio of wind or solar penetration (β = so, wi). It can be assumed
that the electricity reduction from fossil fuel generation is proportional to the
share of single fuel electricity generated by the technically feasible portfolio, so
that

γα = wf,α, (2.2.11)

and the capacity reduction of technology α is proportional to the share of power
capacity of technology α in the technically feasible portfolio such that,

Wα,av = cvW
α, (2.2.12)
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where cv is defined as the capacity value of the power system. Under the
assumptions above,

Qα,av

Qβ
=

Wα,av × 8760× CFα

wβ ×QΣ
,

=
cvW

α × 8760× CFα

wβ ×QΣ
,

=
cvQ

α

wβ ×QΣ
,

=
cvw

f,α

wβ
. (2.2.13)

Substituting Equations (2.2.13) into Equations (2.2.7) and (2.2.8) enables us to
analyze the solar and wind LCOE using their capacity values. The wind LCOE
in the absence of solar power becomes:

Pwi∗
LC = Pwi

LC +
∑
α

wf,α
(

1− cv
wwi

)(
Ĉα,fix +

Îα0 − TcD̂α

1− Tc

)
. (2.2.14)

Similarly, the solar LCOE in the absence of wind power becomes:

P so∗
LC = P so

LC +
∑
α

wf,α
(

1− cv
wso

)(
Ĉα,fix +

Îα0 − TcD̂α

1− Tc

)
. (2.2.15)

2.2.3 Integration of Two Renewable Power Sources

In this section, an evaluation of the solar LCOE in the presence of wind power
will be shown. The vice-versa follows a similar argument. The evaluation of
the solar LCOE when integrated into the systemic portfolio, which contains
the technically feasible portfolio plus a wind component, is done by rewriting
Equations (2.2.5) as:

Q̂ΣPΣ
LC =

∑
α

(
Q̂f,α − γα(Q̂wi + Q̂so)

)
Pα

LC + Q̂soP so∗
LC + Q̂wiPwi∗

LC . (2.2.16)

From Equation (2.2.3) and (2.2.16), we can deduce that the solar LCOE in the
presence of wind power is given by:

P so∗
LC = P so

LC +
∑
α

γαPα
LC −

∑
α

γαĈα,var −
∑
α

Qα,av

Qso

(
Ĉα,fix +

Îα0 − TcD̂α

(1− Tc)

)

− Qwi

Qso

(
Pwi∗

LC − Pwi
LC −

∑
α

γαPα
LC +

∑
α

γαĈα,var

)
(2.2.17)
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The last term of Equation (2.2.17) can be simplified from Equation (2.2.6). This
is substituted into Equation (2.2.17) to obtain:

P so∗
LC = P so

LC +
∑
α

γαPα
LC −

∑
α

γαĈα,var −
∑
α

Qα,av

Qso

(
Ĉα,fix +

Îα0 − TcD̂α

1− Tc

)

− Qwi

Qso

[
−
∑
α

Qα,av

Qwi

(
Ĉα,fix +

Îα0 − TcD̂α

1− Tc

)]
. (2.2.18)

Therefore, the solar LCOE, which is expressed as a sum of ‘bare’ solar LCOE
plus the cost of the interaction of the solar component with the technically
feasible portfolio in the presence of wind power is given by:

P so∗
LC = P so

LC +
∑
α

γαPα
LC −

∑
α

γαĈα,var. (2.2.19)

The solar LCOE can be expressed in terms of fixed cost only, by substituting the
value of Pα

LC into the second term of Equation (2.2.19) with Ĉα = Ĉα,var + Ĉα,fix

and γα = wf,α. The equation obtained is:

P so∗
LC = P so

LC +
∑
α

wf,α

(
Ĉα,fix +

Îα0 − TcD̂α

1− Tc

)
. (2.2.20)

Equation (2.2.20) implies that the extra cost addition to the ‘bare’ solar LCOE
depends on the mix technologies used to reduce the electricity generation only
but in this case does not include power capacity reduction. The LCOE of wind
can be similarly evaluated after solar inclusion into a dispatchable resource
based power system.

Furthermore, the systemic LCOE of a generation portfolio that includes
intermittent sources can be defined from Equation (2.2.16). This is given by:

P sys
LC =

∑
α

(
Qf,α − γα(Qwi +Qso)

QΣ

)
Pα

LC +
Qso

QΣ
P so∗

LC +
Qwi

QΣ
Pwi∗

LC . (2.2.21)

This implies that the systemic portfolio LCOE can be expressed as a linear
combination of single technology LCOEs

P sys
LC = wcoP co

LC + wgaP ga
LC + wwiPwi∗

LC + wsoP so∗
LC , (2.2.22)
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with portfolio weights defined as follows:

wco =

Qf,co − γco

(
Qwi +Qso

)
QΣ

,

wga =

Qf,ga − γga

(
Qwi +Qso

)
Q̂Σ

,

wwi =
Qwi

QΣ
,

wso =
Qso

QΣ
.

The portfolio weight sums to one, since it was stated earlier that the portfolio
weights of the dispatchable technology given by γco + γga = 1. Therefore,

wco + wga + wwi + wso = 1. (2.2.23)

It must be noted that the systemic LCOE equation expressed in Equation
(2.2.21) reduces to the corresponding technically feasible portfolio if there is
no integration of the intermittent energy into the power grid. That is, when
Qwi = Qso = 0 in Equation (2.2.21), systemic LCOE equation will be equal to
the technically feasible portfolio which contains the purely thermal mix tech-
nology.

In the stochastic framework, as stated earlier, the unpredictability of fossil
fuel prices and the uncertainty in the environmental policies constitute financial
risk in a purely thermal technology portfolio, thereby making the purely thermal
plant represent the risky asset in the portfolio, while integration of renewable en-
ergy into the power system has the same diversification effect as a riskless asset
in a portfolio. Therefore, the LCOE Pα

LC becomes a time-independent stochas-
tic variable Pα

LC(ω) due to a set of risky sources stochastic paths ω present in
the cost term. Following the same line of argument, the stochastic form of the
systemic LCOE of a generation portfolio with the integration of solar and wind
power can be expressed as follows,

P sys
LC (ω) =

∑
α

(
Qf,α − γα

(
Qwi +Qso

)
QΣ

)
Pα

LC(ω)+
Qso

QΣ
P so∗

LC +
Qwi

QΣ
Pwi∗

LC . (2.2.24)

This also implies that the stochastic systemic portfolio can be expressed as a
linear combination of single technology LCOEs

P sys
LC (ω) = wcoP co

LC(ω) + wgaP ga
LC(ω) + wwiPwi∗

LC + wsoP so∗
LC . (2.2.25)

The portfolio weights is the same as the deterministic case since it is a constant,
with all the weights summing up to one as in Equation (2.2.23).
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Units Coal Gas Wind Solar PV

Techology symbol co ga wi so

Nominal capacity MW 650 702 100 20

Capacity factor 85% 87% 42% 33%

Heat rate Btu/kWh 8800 6600 0 0

Overnight cost $/kW 3636 978 1877 2671

Fixed O&M rate $/kW/year 42.1 11.00 39.7 23.4

Variable O&M rate mills/kWh 4.6 3.50 0 0

Fuel Costs $/mmBtu 2.42 3.91 0 0

CO2 intensity Kg-C/mmBtu 25.8 14.5 0 0

Fuel real escalation rate 0.3% 2.0% 0% 0%

Construction period years 4 4 3 3

Operation start 2022 2022 2022 2022

Plant life years 30 30 30 30

Depreciation scheme MACRS,20 MACRS,15 MACRS,20 MACRS,20

Table 2.1: Extended Technical data for LCOE Analysis.
All dollar amounts are in year 2016 dollars. Overnight costs are assumed to be uniformly dis-
tributed on the construction period. Depreciation is developed according to MACRS (Mod-
ified Accelerated Cost Recovery System) scheme described in Appendix A. O&M denotes
operation and maintenance. Mills stands for 1/1000 of a dollar, while mmBtu denotes one
million BTUs.

2.2.4 Empirical Analysis

Table (2.1) is the extension of Table (1.2). The Table (1.2) is updated with
technical data of solar and wind power extracted from the “Annual Energy
Outlook 2016” [10] as reported in “Updated Capital Cost Estimates For Utility
Scale Electricity Generating Plants” [11] provided by the United State Energy
Information Administration. All technical data and cost included in the anal-
ysis are denominated in US dollars with 2016 as the base year. The following
assumptions were made in accordance to the Annual Energy Outlook 2016 [10];
expected inflation rate = 2.2% per annum and tax rate Tc = 40%. A nominal
WACC rate of 7.9% is adopted, this is in agreement with most studies proposed
in recent literatures [27]. LCOE values for single-technology project is first com-
puted using data from Table (2.1). The result is shown in Table (2.2). It must
be noted that the LCOE values of solar and wind shown in Table (2.2) is the
‘bare’ wind and solar technology without considering the cost of integration.

The values of LCOE of solar (P so∗
LC ) and wind (Pwi∗

LC ) can be analyzed using
their capacity values in a single asset integration. This can be done under three
scenarios. Firstly, when there is full energy and capacity reduction from the
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LCOE coal LCOE gas LCOE solar LCOE wind

102.53 63.84 99.70 56.79

Table 2.2: LCOE values.

Capacity value Coal reduction Gas reduction Mixed reduction

cv co1.0 ga1.0 co0.25 ga0.75 co0.5 ga0.5 co0.75 ga0.25

0% 154.38 113.55 123.76 133.97 144.17

5% 145.27 111.24 119.75 128.25 136.76

10% 136.16 108.93 115.74 122.55 129.35

15% 127.04 106.63 111.73 116.83 121.93

20% 117.93 104.32 107.72 111.12 114.52

Table 2.3: Value of solar LCOE (P so∗
LC ) at different scenarios of energy and

capacity reduction with a 30% solar penetration.

gas component of the feasible portfolio, this scenario is termed ‘gas reduction’
(ga1.0). That is, γga = 1. This implies that γco = 0, since γco + γga = 1.
Also, the power capacity avoided of the coal energy W av,co = 0, therefore,
W av,ga = cvW

ga. The term cv denotes the capacity value of the renewable source
integrated into the power grid. Secondly, when there is full energy and capacity
reduction from the coal component of the feasible portfolio, this scenario is
termed ‘coal reduction’ (co1.0). That is, γco = 1. This implies that γga = 0.
Also, the power capacity avoided from the gas energy W av,ga = 0, therefore,
W av,co = cvW

co. The third scenario is when there is a mixed reduction of energy
and capacity from the coal and gas component, this scenario is termed ‘mixed
reduction’. In the literature [27], under the mixed reduction scenario, the case
γga = 0.5 and γco = 0.5 was considered. In this case, the power capacity avoided
from the coal component is W av,co = cvW

co and for the gas component, it is
W av,ga = cvW

ga. The scenario is extended in this thesis to other proportions of
the mixture of energy and capacity reduction (see Table (2.3) and Table (2.4)).
For each integration scenario, five capacity values are chosen as done in the
literature. These cases are 0%, 5%, 10%, 15%, 20%. Solar and wind penetration
shares of 30% and 40% are assumed in agreement with the US planned targets
as reported in ‘Renewable Electricity Futures Study’ published by the National
Renewable Energy Laboratory [34]. It can be observed from Table (2.3) and
Table (2.4) that the higher the capacity value, that is, the higher the percentage
of reliability of solar or wind power to meet demand, the lower the value of solar
and wind LCOE. Consequently, the LCOE for all the scenarios considered were
at their lowest when capacity value was 20%. Furthermore, the proportion of
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Capacity value Coal reduction Gas reduction Mixed reduction

cv co1.0 ga1.0 co0.25 ga0.75 co0.5 ga0.5 co0.75 ga0.25

0% 111.48 70.65 80.86 91.06 101.27

5% 102.37 68.34 76.85 85.35 93.86

10% 93.25 66.03 72.84 79.64 86.45

15% 84.14 63.72 68.83 73.93 79.04

20% 75.02 61.42 64.82 68.22 71.62

Table 2.4: Value of wind LCOE (Pwi∗
LC ) at different scenarios of energy and

capacity reduction with a 30% wind penetration.

the coal and gas components also affects the values of LCOE. The higher the
energy and capacity reduction from the gas components, the lower the LCOE.
In particular, the lowest LCOE for solar and wind occurred when the full energy
and capacity reduction was only from the gas component (i.e., ga1.0). Therefore,
from Table (2.3) and Table (2.4), the lowest values of both solar and wind
LCOE is 104.32 and 61.42 respectively. These LCOE values occurred at the
capacity value of 20% when the full energy and power reduction was from the
gas component. Subtracting the ‘bare’ solar and wind LCOE values generated
in Table (2.2) from the LCOE in Table (2.3) and Table (2.4) will result in the
value of the extra cost of inclusion of the solar and wind power in the power grid.
Considering the case of 40% solar and wind penetration in Table (2.5) and Table
(2.6), the LCOE values of solar and wind increases slightly when compared to
the values obtained in Table (2.3) and Table (2.4). It only remain constant
when the capacity value is 0%. This implies that the higher the solar and wind
penetration into the power grid, the higher their LCOE. This is generally due
to the high cost of electricity generation from renewables.

Capacity value Coal reduction Gas reduction Mixed reduction

cv co1.0 ga1.0 co0.25 ga0.75 co0.5 ga0.5 co0.75 ga0.25

0% 154.38 113.55 123.76 133.97 144.17

5% 147.55 111.88 120.75 129.68 138.61

10% 140.71 110.08 117.74 125.40 133.06

15% 133.87 108.36 114.73 121.12 127.50

20% 127.04 106.63 111.72 116.83 121.93

Table 2.5: Value of solar LCOE (P so∗
LC ) at different scenarios of energy and

capacity reduction with a 40% solar penetration.

The LCOE analysis of solar (wind) based on the integration of two renewable
energy source is done based on Equation (2.2.20). The extra cost of inclusion
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Capacity value Coal reduction Gas reduction Mixed reduction

cv co1.0 ga1.0 co0.25 ga0.75 co0.5 ga0.5 co0.75 ga0.25

0% 111.48 70.65 80.86 91.06 101.27

5% 104.64 68.91 77.85 86.78 95.71

10% 97.81 67.19 74.84 82.49 90.16

15% 90.97 65.45 71.83 78.21 84.60

20% 84.14 63.72 68.82 73.93 79.04

Table 2.6: Value of wind LCOE (Pwi∗
LC ) at different scenarios of energy and

capacity reduction with a 40% wind penetration.

of the solar (wind) power is only due to the energy reduction of the technically
feasible portfolio. The result obtained for solar (wind) LCOE in the presence of
wind (solar) power in a dispatchable resource-based power system is exactly the
same given by the values in Table (2.3) and Table (2.4) when capacity values
are 0%.

2.3 Systemic LCOE Theory with Time-Varying

Pricing

In the previous section, the LCOE of a portfolio of mix technologies which
includes dispatchable and non-dispatchable energy source was computed by
considering the extra costs due to systemic constraints when intermittent energy
sources are integrated into the power grid. This accounts for any effect due to
the intermittency of solar and wind power on the power system. Nevertheless,
the computation of the LCOE in the systemic LCOE framework was done based
on the assumption that production and pricing of electricity did not depend
explicitly on time. Solar and wind power are well known to exhibit considerable
variation in their ability to generate power. These variations typically include
both time of day fluctuations and seasonal cycles. If the investor faces a price
schedule that varies by time of day and possibly by season, the systemic LCOE
in the previous section will generally fail to capture all synergies that arise if the
solar or wind power generates power above its overall average predominantly at
times when electricity prices are relatively high or low. In the next section, the
construction of a multiplicative correction factor called co-variation coefficient
will be shown by revising the work of Reichelstein and Sahoo [41]. This will be
used to append the systemic LCOE computation done earlier in this chapter.
By construction, the base-load energy system, that is, the coal and gas power,
have a co-variation coefficient of one. This is because they provide a continuous
supply of electricity throughout the year without fluctuation with time of day
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or seasonal cycle. Also, the co-variation coefficient will also be equal to one for
an intermittent power source under a time-invariant pricing schedule.

2.3.1 Derivation of Co-variation Coefficient

The production capacity of solar and wind power is basically subject to signif-
icant intra-day and seasonal variations. On a given day i of a particular year,
the actual capacity factor of the intermittent energy source can be defined by
a function CFi(t), such that:

CFi(t) = CFi × εi(t) 0 ≤ t ≤ 24, (2.3.1)

where CFi is the average capacity factor and εi(t) > 0 represent the multiplica-
tive deviation from the average capacity factor at time t. Accordingly,∫ 24

0

εi(t)dt = 24. (2.3.2)

Furthermore, the market value of the electricity produced in day i based on the
intra-day variation can be introduced as follows. Suppose pi(t) denote the price
of electricity at a particular hour of the day, such that:

pi(t) = pi × µi(t), (2.3.3)

where pi is the average daily price of electricity and µi(t) is a multiplicative
deviation from the average daily price of electricity at time t, such that:∫ 24

0

µi(t)dt = 24. (2.3.4)

The co-variation coefficient Γi between CFi(t) and pi(t) on a given day i is
the measure of synergies or complementaries, in the intertemporal pattern of
electricity generation and prices. It is given by:

Γi =
1

24

∫ 24

0

εi(t)µi(t)dt. (2.3.5)

In constructing the co-variation coefficient, it is assumed that electricity prices
are non-negative. It will be equal to zero only in extreme cases when electricity is
produced at times when the price is zero. The aggregate co-variation coefficient
is defined as the average of the daily coefficient in a year:

Γ =
1

365

365∑
i=1

Γi. (2.3.6)

The mean value of the p(·) is also given:

p =
1

365

365∑
i=1

pi.

An important proposition from [41] is stated below :
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Proposition 1. The intermittent power generation facility is cost competitive
if and only if

Γ · p ≥ P β
LC , (2.3.7)

where β = so,wi and p is the mean value of price distribution p(·).

Proof. See Appendix of [41]

The term ‘cost competitiveness’ implies that for a renewable power gener-
ating facility with an annual price distribution, p(·), with mean value p, has a
present value of all after-tax cash flows received or paid over the lifetime of the
facility as non-negative. The proposition above shows that LCOE computation
without putting into consideration the complementaries and synergies due to
time-varying and pricing schedules needs to be appended by the co-variation
coefficient. In addition to this, an inference from this proposition is that life-
cycle cost of electricity generation improves if the intermittent energy source
generates most of its output during the peak price periods. This is common
with solar power which generates electricity at its peak during hot days when
the price is very high due to the use of air conditioner.

Introducing the covariance of εi(·) and µi(·) is necessary in order to under-
stand the relationship between the output of electricity and the pricing for a
particular day i. The covariance is given by:

cov (εi(·), µi(.)) =
1

24

∫ 24

0

(εi(t)− 1)(µi(t)− 1)dt,

=
1

24

(∫ 24

0

εi(t)µi(t)dt−
∫ 24

0

εi(t)dt−
∫ 24

0

µi(t)dt+

∫ 24

0

dt

)
,

= Γi − 1.

The third step in the equation above is obtained by using Equations (2.3.2),
(2.3.4) and (2.3.5). Therefore,

Γi = 1 + cov (εi(·), µi(·)) . (2.3.8)

It must be noted from Equations (2.3.8) that an intermittent power source
exhibit value synergies with the intertemporal price distribution on any given
day i if and only if there is a positive covariance between εi(·) and µi(·). That
is, the LCOE of electricity generation improves if the intermittent energy source
generates the most of its outputs during peak price period. When CFi(t) = CFi
or pi(t) = pi on all days, there is neither synergies or complementaries. This
accounts for why the co-variation coefficient is equal to one when prices or energy
generation is constant. Therefore, co-variation coefficient for the dispatchable
technology is equal to one since CFi(t) = CFi even if variation in price exists.
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Statistics Γso Γwi

Yearly average 1.19 0.87

Yearly minimum 1.17 0.35

Yearly maximum 1.22 1.39

Summer average 1.30 0.80

Winter average 1.08 0.95

Table 2.7: Average year solar and wind co-variation coefficient.

Capacity value Coal reduction Gas reduction Mixed reduction

cv co1.0 ga1.0 co0.25 ga0.75 co0.5 ga0.5 co0.75 ga0.25

0% 129.75 95.42 104.00 112.58 121.16

5% 123.99 93.97 101.47 108.98 116.48

10% 118.24 92.51 98.95 105.38 111.81

15% 112.50 91.05 96.42 101.78 107.14

20% 106.75 89.60 93.89 98.18 102.47

Table 2.8: Value of solar LCOE (P so∗∗
LC ) adjusted with solar co-variation coef-

ficient Γso at different scenarios of energy and capacity reduction with a 30%
solar penetration.

2.3.2 Systemic LCOE with Co-variation Coefficient

The time varying generation and pricing schedule can be introduced into the
systemic LCOE theory by appending the LCOEs of single technology by their
respective co-variation coefficient. Following the argument outline in previous
section and Prop. 2.3.1, the appended stochastic systemic LCOE portfolio (i.e
PAsys

LC (ω)) can be expressed as:

PAsys
LC (ω) = wcoP

co
LC

Γco

(ω) + wgaP
ga
LC

Γga

(ω) + wwiP
wi∗
LC

Γwi

+ wsoP
so∗
LC

Γso

. (2.3.9)

By definition, the co-variation coefficient for dispatchable technologies, Γco =
Γga = 1, since CFi(t) = CFi, which implies that εi(t), which represent the
multiplicative deviation from the average capacity factor at time t, is always
equal to one since energy production is constant throughout the life cycle of the
conventional power plant. Therefore, the appended stochastic systemic LCOE
portfolio used for our analysis is given by:

PAsys
LC (ω) = wcoP co

LC(ω) + wgaP ga
LC(ω) + wwiP

wi∗
LC

Γwi

+ wsoP
so∗
LC

Γso

. (2.3.10)
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Capacity value Coal reduction Gas reduction Mixed reduction

cv co1.0 ga1.0 co0.25 ga0.75 co0.5 ga0.5 co0.75 ga0.25

0% 128.14 81.20 92.94 104.67 116.40

5% 120.28 79.21 89.48 99.74 110.02

10% 112.42 77.22 86.03 94.82 103.63

15% 104.57 75.23 82.57 89.90 97.24

20% 96.71 73.25 79.11 84.98 90.85

Table 2.9: Value of wind LCOE (Pwi∗∗
LC ) adjusted with wind co-variation coef-

ficient Γwi at different scenarios of energy and capacity reduction with a 30%
wind penetration.

where Γwi is the wind co-variation coefficient which captures the synergies be-
tween wind power generation and the pricing schedule. The Γso is the solar
co-variation co-efficient which captures the synergies between solar power gen-
eration and pricing schedule. Equation (2.3.10) can simply be expressed as:

PAsys
LC (ω) = wcoP co

LC(ω) + wgaP ga
LC(ω) + wwiPwi∗∗

LC + wsoP so∗∗
LC , (2.3.11)

where Pwi∗∗
LC =

Pwi∗
LC

Γwi
is the appended wind LCOE whose computation takes into

consideration all systemic constraints involved in the inclusion into the power
grid and the synergies that exist between wind power generation and the time
of day pricing schedule. Similarly, P so∗∗

LC =
P so∗
LC

Γso
is the appended solar LCOE

whose computation takes into consideration all systemic constraints involved
in the inclusion into the power grid and the synergies that exist between solar
power generation and the time of day pricing schedule.

For our analysis, the values for Γwi and Γso are extracted from the work of
Stefan Reichelstein and Anshuman Sahoo in [41] (see Table (2.7)). The data
from which the solar co-variation coefficient Γso was obtained is from northern
California. The solar power generation data are based on simulations for the
San Franscisco Bay Area from the PVWatts program developed by the National
Renewable Energy Laboratory [35]. The wind power generation data are based
on simulation recorded in the NREL Wind integration Dataset [36].

From Table (2.7), the average yearly value of the co-variation coefficient of
solar power Γso = 1.19, according to Equation (2.3.8) there exist a positive
correlation between energy generation and pricing in solar energy. This is true
since the Sun generates energy at its peak in the hot afternoon when electricity
price is also at the peak due to high demand of electricity. This occurs more
often during summer which accounts for the highest values of Γso = 1.30. Due to
some cloudy days in winter, radiation from the Sun is reduced thereby reducing
the solar energy generation. This accounts for the value of Γso = 1.08 which is
its minimum. On the other hand, the average yearly value of the co-variation

34



coefficient of the wind power is Γwi = 0.87. This indicates a negative correlation
between energy generation and pricing schedule. Wind power generation is at
its maximum mostly in the night when electricity prices are off peak. This
implies that most of the energy produced may be wasted, since electricity can
not easily be stored in large quantity. The highest values of Γwi = 0.95 occurs
during winter. This is because winter period tends to be windy during both
during the day and at night.

The values of the appended solar LCOE P so∗∗
LC in Table (2.8) is obtained

by applying the solar co-variation coefficient Γso which acts as a multiplicative
correction factor which adjust the solar LCOE in Table (2.3). The adjusted solar
LCOE (P so∗∗

LC ) values obtained are 16% lower than the values of solar LCOE
in Table (2.3). This implies that solar LCOE is more cost competitive than
previously computed in previous literature when time-varying generation and
pricing schedule are taken into consideration in the computation of intermittent
energy source. On the contrary, the appended wind LCOE Pwi∗∗

LC values obtained
in Table (2.9) are 15% higher than those obtained in Table (2.4). This implies
that wind LCOE is less cost competitive than previously computed when time-
varying generation and pricing schedule are taken into consideration in the
computation. This is due to the fact that wind energy production is usually at
its peak when electricity prices are off peak. It must be noted that this LCOE
computation is markedly different from the analysis done in [41] because the
analysis in this research work also involves extra costs from systemic constraints
which was not considered in [41].

2.4 Conclusion

The LCOE for intermittent renewable energy sources integrated into a dis-
patchable resource based power grid were computed with extra cost due to the
systemic constraints that account for the cost of energy and capacity reduction
of the technically feasible portfolio. In addition to this, a multiplicative correc-
tion factor that account for the synergies between energy generation and time
of day pricing schedule was used to append the LCOE values, thereby obtaining
more realistic LCOE values for solar and wind power in a stochastic systemic
LCOE portfolio. The LCOE obtained for the two intermittent renewable en-
ergy sources were higher in value than the ‘bare’ solar and wind LCOE due
to the systemic constraints considered. Furthermore, the solar LCOE obtained
are more cost competitive than the solar LCOE obtained under the stochastic
systemic framework [27], while the opposite is true for wind LCOE.
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Chapter 3

LCOE Risk Analysis

3.1 Introduction

Portfolio optimization was introduced in the stochastic LCOE problem in [28].
A Markowitz portfolio analysis [29] was used to show how to manage stochas-
tic LCOE risk by computing the variance (σLC,w) for a sequence of admissible
returns (µLC,w) and obtaining the generation mix that minimizes the portfo-
lio variance thereby proposing an optimal choice of the portfolio weights with
minimum dispersion about the µLC,w. In general, LCOE distributions are not
Gaussian, having asymmetric long thick tails [14], therefore Markowitz mean-
variance analysis used in the systemic LCOE risk analysis [27] are considered
only as the starting point and can be extended with more suitable dispersion
measures such as the CVaR deviation (CVaRD), which plays the same role as
the standard deviation in a Markowitz approach. In addition to this, both the-
ory and practice indicate that variance is not a good risk measure [1], because
a risk reduction through the mean-variance approach does not only lead to low
deviations from the expected return on the downside, but also on the upside
[54]. Therefore an alternative is the Value at Risk (VaR), which is the max-
imum loss expected over a portfolio over a given time horizon at a specified
confidence interval [31]. However, VaR is not subadditive and risk at the tail is
non-measurable in VaR. The Conditional Value at Risk (CVaR) was introduced
by Uryasev and Rockerfellar [42, 43] as an alternative to VaR. It is also known
as Mean Excess Loss, Expected Shortfall (ES) or tail VaR. CVaR is defined as
the conditional expectation of the loss above VaR for the time horizon and the
confidence level. The CVaR is the risk measure underlying the definition of the
CVaRD which will be used for LCOE risk analysis.

In this chapter, we perform a LCOE risk analysis. In particular we consider
two different risk measure; the variance and the CVaR deviation and analyze
the characteristics of the obtained portfolios under these two risk measures.
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3.2 Minimum Variance Portfolio Analyses

3.2.1 Technical Feasible Portfolios

Using the variance as a risk measure an optimal portfolio analysis is performed
for the technically feasible set of generating technology which consist of single
fuel portfolio such as coal only or gas only generation portfolio and mixed port-
folio including both dispatchable technologies, coal and gas. The covariance
measures the degree of dependency between the two, coal-only and gas-only
stochastic LCOEs, with the mutual dependence controlled by the carbon emis-
sion volatility σem. Scenario analysis was performed by considering four level of
the volatility of CO2 emission prices, namely σem = 0.0, 0.10, 0.15, 0.20. These
respectively represent scenarios when the volatility of CO2 emission prices is
zero, low, medium and high.
It is well known in finance that the global minimum variance portfolio leads
to a a well diversified portfolio (mix of the coal and gas technology) when the
components in the portfolio are non correlated to each other. We recall that
the stochastic LCOE for a given technically feasible portfolio can be expressed
as follows:

P f
LC(ω) = wf,coP co

LC(ω) + wf,gaP ga
LC(ω). (3.2.1)

The mean and the variance P f
LC can be respectively expressed by

µfLC = wf,coµco
LC + wf,gaµga

LC (3.2.2)

and

(σfLC)2 = (wf,co)2(σco
LC)2 + (wf,ga)2(σga

LC)2 + 2ρwf,cowf,gaσco
LCσ

ga
LC, (3.2.3)

where ρ is the correlation coefficient which measure the degree of interdepen-
dence between the coal and gas LCOEs. In order to find the optimal composi-
tion of coal and gas using the variance as a risk measure we solve the following
optimization problem:



min
w

(σf
LC)2 = (wf,co)2(σco

LC)2 + (wf,ga)2(σga
LC)2 + 2ρwf,cowf,gaσco

LCσ
ga
LC

s.t.

wf,co + wf,ga = 1

wf,co, wf,ga ∈ [0, 1]

(3.2.4)

where the first constraint (wf,co +wf,ga) is the budged constraint and the second
one 0 ≤ wf,co, wf,co ≤ 1 is the non short selling constraint.
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If we do not consider the non short selling constraint in problem (3.2.4) a closed
form solution exist, given by:

wf,co
mvp =

(σga
LC)2−ρσcoσga

(σga
LC)2+(σco

LC)2−2ρσcoσga

wf,ga
mvp =

(σco
LC)2−ρσcoσga

(σga
LC)2+(σco

LC)2−2ρσcoσga .
(3.2.5)

In order to solve problem (3.2.4) we first calculate the the solution given by
(3.2.5). If the optimal weights obtained using the closed form solution do not
satisfy the non short selling constraint we use the quadprog optimization func-
tion of MATLAB to solve problem (3.2.4).
It can be recalled that the mean and volatility of coal LCOE are, respectively,
102.53 and 3.73, while the mean and volatility of gas LCOE are, respectively,
63.84 and 6.72. In the following table the results obtained solving (3.2.4) con-
sidering 4 different scenarios for σem are reported.

σem = 0.00 σem = 0.10 σem = 0.15 σem = 0.20

wf,co
mvp 76% 53% 31% 6%

wf,ga
mvp 24% 47% 69% 94%

µLC,mvp 93.44 84.14 75.85 65.79

σLC,mvp 3.3 5.6 7.1 8.4

Table 3.1: Minimum variance portfolios.

These results are obtained using the solution given in (3.2.5). Considering that
the obtained optimal weights are always positive, which satisfy the non short-
selling constraint we do not run the quadprog MATLAB routine. It can be
observed that as the volatility of C02 emission price increase from 0% to 20%,
the optimal portfolio weight of coal generation reduces from 76% to as low as
6% and the average LCOE of the optimal portfolios reduce from 93.44 to 65.79.
This implies that as the weight of the gas technology increases, the generating
cost reduces but the riskier it is for the environment because of the uncertainty
in policies that controls environmental pollution. The result presented in Table
(3.1) is markedly different from those in [27], even though the same mean-
variance optimization has been used. The difference is due to the fact that the
fossil fuel dynamics were modeled using mean-reverting stochastic differential
equations in place of the geometric Brownian motion used in [27]. A lower
LCOE volatility recorded in our analysis has significant effect on the optimal
weights of the coal and gas portfolio when compared to the result in [27].
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3.2.2 Inclusion of Solar and Wind Assets

We recall that the inclusion of solar and wind component into the technically
feasible portfolio is based on the assumption that the electricity reduction from
fossil fuel generation is proportional to the share of single fuel electricity gener-
ated by the technically feasible portfolio, and that the capacity reduction of a
technology α is proportional to the share of power capacity of technology α in
the technically feasible portfolio. If the target solar and wind penetration are
denoted by w̄so and w̄wi respectively, the power system LCOE can be expressed
as

P sys
LC = w̄wiPwi∗

LC + w̄soP so∗
LC + (1− w̄wi − w̄so)

∑
α

wf,αPα
LC(ω), (3.2.6)

where P sys
LC is the systemic LCOE portfolio. It can be recalled from Equation

(2.2.14) that the wind LCOE with one intermittent renewable energy source
included into the power system is

Pwi∗
LC = Pwi

LC +
∑
α

wf,αAα, (3.2.7)

where

Aα =
(

1− cv
wwi

)(
Ĉα,fix +

Îα0 − TcD̂α

1− Tc

)
.

Also, it can be recalled from Equation (2.2.20) that the solar LCOE when two
power sources are included in the power system is

P so∗
LC = P so

LC +
∑
α

wf,αBα, (3.2.8)

where

Bα = Ĉα,fix +
Îα0 − TcD̂α

1− Tc
.

Therefore substituting Equations (3.2.7) and (3.2.8) into Equation (3.2.6), we
obtain:

P sys
LC = w̄wiPwi

LC + w̄soP so
LC +

∑
α

wf,α
[
(1− w̄wi − w̄so)Pα

LC(ω) + w̄wiAα + w̄soBα

]
.

The mean and the variance of the systemic LCOE portfolio P sys
LC can be explicitly

written as

µsys
LC = w̄wiµwi

LC + w̄soµso
LC + wf,co

[
(1− w̄wi − w̄so)µco

LC + w̄wiAco + w̄soBco

]
+ wf,ga

[
(1− w̄wi − w̄so)µga

LC + w̄wiAga + w̄soBga

]
,
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and

(σsys
LC)2 =

(
1− w̄wi − w̄so

)2
[
(wf,co)2(σco

LC)2 + (wf,ga)2(σga
LC)2 + 2ρwf,cowf,gaσco

LCσ
ga
LC

]
=

(
1− w̄wi − w̄so

)2
(σfLC)2,

respectively. The composition of the minimum variance systemic portfolio is
given by

wwi
mvp = w̄wi, (3.2.9)

wso
mvp = w̄so,

wco
mvp =

(
1− w̄wi − w̄so

)
wf,co

mvp,

wga
mvp =

(
1− w̄wi − w̄so

)
wf,ga

mvp,

where wf,co
mvp and wf,co

mvp are the minimum variance portfolios considering only
the budget constraint, given in (3.2.5). We recall that we have a closed form
solution because minimizing the variance with only budget constraint has closed
form solution, given in (3.2.5), which satisfy the non short-selling constraint.

The results of the optimal minimum variance systemic portfolios under the
four CO2 price volatility scenarios at different capacity values (cv = 0%, 10%, 20%)
are reported in Table 3.2. We assume a solar and wind penetration of 25% each,
that is, w̄so = 25%, w̄wi = 25%. This is done in order to have a total of 50%
penetration of renewable energy in the power system, which is chosen in accor-
dance to the 2030 renewable commitment by some part of US and Germany
[9].
The optimal weights in Table 3.2 are obtained using the closed form solution
given in (3.2.10) which satisfies the non short-selling constraints. It is observed
that the standard deviation (σLC,mvp) recorded in Table (3.2) are lower than
those of the technically feasible portfolio in Table (3.1), when compared respec-
tively under the four CO2 price volatility scenarios. This shows the reduction
of risk through the inclusion of solar and wind components into the power sys-
tem. The LCOE values of the systemic portfolio at different capacity values are
higher than those of the technically feasible portfolio due to additional costs
from systemic constraints when solar and wind power are integrated into the
grid. As CO2 price volatility increases, the LCOE values at different capacity
decreases. The minimum cost of the systemic portfolio is 77.23, when the CO2

price volatility σem = 0.20, and the capacity value is 20%. The portfolio con-
sist of 25% solar, 25% wind, 47% gas and 3% coal. Even though our analysis
was done with 50% integration of renewable energy into power system, yet the
LCOE values obtained in our analysis are lower than those values obtained in
[27]. This is because of the higher percentage of gas component obtained in the
optimal systemic portfolio due to a more appropriate modeling of the fossil fuel
prices.
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σem = 0.00 σem = 0.10 σem = 0.15 σem = 0.20

w̄wi 25% 25% 25% 25%

w̄so 25% 25% 25% 25%

wco
mvp 38% 26% 15% 3%

wga
mvp 12% 24% 35% 47%

µcv=0
LC,mvp 108.41 98.80 89.50 80.54

µcv=0
LC,mvp 103.90 95.27 86.93 78.88

µcv=0
LC,mvp 99.39 91.73 84.36 77.23

σLC,mvp 1.6 2.8 3.6 4.3

Table 3.2: Minimum variance systemic portfolios at different capacity values
(cv = 0%, 10%, 20%).
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Figure 3.1: Technically feasible (disp) frontier and systemic portfolio frontiers
(cv = 0%, 10%, 20%), when carbon price volatility is σem = 0.0 (Upper panel)
and σem = 0.10 (lower panel). The vertical axis reports the negative Portfo-
lio mean (−µLC,sys and −µLC,f) while the horizontal axis reports the portfolio
standard deviation ( σLC,sys and σLC,f).

The technically feasible portfolio frontier and the systemic portfolio frontiers
for different volatility scenarios are presented in Fig. (3.1) and (3.2).
The negative of −µLC,sys and −µLC,f were used for the risk analysis, because
the higher the LCOE (which is non-negative) the higher the risk of not covering
the costs of generating electricity, since the objective is to minimize the cost
and risk of electricity generation in a diversified portfolio. The displacement of
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Figure 3.2: Technically feasible (disp) frontier and systemic portfolio frontiers
(cv = 0%, 10%, 20%), when carbon price volatility is σem = 0.15 (Upper panel)
and σem = 0.20 (lower panel). The vertical axis reports the negative Portfo-
lio mean (−µLC,sys and −µLC,f) while the horizontal axis reports the portfolio
standard deviation ( σLC,sys and σLC,f).

the systemic frontiers towards the southwest of the technically feasible frontier
shows the combined effect of an increase in cost and risk reduction, when solar
and wind components are integrated into the technically feasible portfolio. The
displacement towards the south indicates an increase in cost while displacement
towards the west indicates risk reduction.

When the time-varying generation and pricing schedule is considered in our
systemic portfolio the appended systemic portfolio is

PAsys
LC = w̄wiPwi∗∗

LC + w̄soP so∗∗
LC + (1− w̄wi − w̄so)

∑
α

wf,αPα
LC(ω), (3.2.10)

where Pwi∗∗
LC =

Pwi∗
LC

Γwi
is the appended wind LCOE, whose computation takes

into consideration all the systemic constraints involved in the inclusion into the
power grid and the synergies that exist between wind power generation and
the time of day pricing schedule. Similarly, P so∗∗

LC =
P so∗
LC

Γso
is the appended solar

LCOE whose computation takes into consideration all the systemic constraints
involved in the inclusion into the power grid and the synergies that exist between
solar power generation and the time of day pricing schedule.

The mean and the variance of PAsys
LC can be explicitly written as

µAsys
LC = w̄wiµ

wi
LC

Γwi

+ w̄soµ
so
LC

Γso

+ wf,co

[
(1− w̄wi − w̄so)µcoLC + w̄wiA

co

Γwi

+ w̄soB
co

Γso

]
+ wf,ga

[
(1− w̄wi − w̄so)µgaLC + w̄wiA

ga

Γwi

+ w̄soB
ga

Γso

]
,
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Figure 3.3: Conditional Value at Risk Deviation measure (CVaRD) described
graphically [26].

and

(σAsys
LC )2 =

(
1− w̄wi − w̄so

)2
(σfLC)2.

Since the solar and wind penetration in the systemic portfolio is predetermined
in our analysis, the co-variation coefficient of solar and wind has no effect on
neither the optimal portfolio weights nor the standard deviation. Nevertheless,
the LCOE tends to be significantly lower as the solar penetration increases more
than wind penetration in the appended systemic portfolio when compared to
similar scenario under the systemic portfolio. This is due to the cost competi-
tiveness of solar energy when time-varying generation and pricing of electricity
is considered in the LCOE analysis. The value of LCOE for the appended sys-
temic portfolio and the systemic portfolio will remain similar as long as the
solar and wind penetration are of the same weight in the portfolio.

3.3 Conditional Value at Risk Deviation

Suppose there exist a vector of random variables y with joint probability density
p(y), a vector of choice variables w which denotes the portfolio weights, a loss
function f(w) = f(w, y), which denotes the portfolio losses, a threshold h for
the losses f , and a probability α. The Value at Risk (VaR) for a given portfolio
of components w at confidence level x is given by

VaRw
x (f(w)) = min

h

{∫
f(w,y)≤h

p(y)dy ≥ x

}
(3.3.1)

Equation (3.3.1) shows that VaRw
x is actually an x-quantile, and can be inter-

preted as the minimum threshold h above which losses are not larger than VaRw
x

in x percent cases of all possible cases. Nevertheless, VaR is not suitable for the
optimization of the stochastic LCOE portfolio since the underlying distribution
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Volatility scenario Disp. Sys. (cv = 0) Sys. (cv = 10%) Sys. (cv = 20%)

σem = 0.00

VaR95% 90.62 101.57 98.14 94.72

CVaR95% 93.15 102.84 99.41 96.00

CVaRD95% 10.1 5.1 5.1 5.1

σem = 0.10

VaR95% 93.84 103.18 99.75 96.32

CVaR95% 97.57 105.04 101.62 98.19

CVaRD95% 14.4 7.2 7.2 7.2

σem = 0.15

VaR95% 97.62 105.06 101.64 98.21

CVaR95% 103.90 108.20 104.78 101.36

CVaRD95% 20.8 10.4 10.4 10.4

σem = 0.20

VaR95% 100.72 106.62 103.20 99.77

CVaR95% 111.21 111.86 108.44 105.01

CVaRD95% 28.2 14.1 14.1 14.1

Table 3.3: LCOE risk analysis of technically feasible and systemic portfolios at
the 95% confidence level under different volatility scenarios.

of LCOE are not Gaussian [39]. Also, since VaR is not subadditive, portfolio
diversification does not lead to risk reduction in VaR. An alternative to VaR is
the Conditional Value at Risk (CVaR). It is a risk measure which is sensitive to
tail and asymmetry. CVaR for a portfolio of risks parameterized by w is defined
as:

CVaRw
x (f(w)) =

1

1− x

∫
f(w,y)≥VaRw

x

f(w, y)p(y)dy. (3.3.2)

Equation (3.3.2) shows that CVaRw
x is the expectation over the residue 1−x

cases, i.e. the most adverse ones, this implies that CVaRw
x ≥ VaRw

x . The CVaR
is a risk measure underlying the definition of CVaR Deviation (CVaRD) which
is a more appropriate measure to be used for comparison with the standard
deviation. Generally speaking, risk measures evaluate outcomes in an absolute
way, whereas deviation measures evaluate distribution widths. The technical
difference between risk measures and deviation measures is similar to the differ-
ence between mean and the variance. Therefore the relationship between risk
measure R and its partner deviation measure D is given by

D(f(w)) = R

(
f(w)− E(f(w))

)
. (3.3.3)

According to Equation (3.3.3), the portfolio CVaRD at the confidence level x
is defined [44] as

CVaRDw
x (f(w)) = CVaRw

x (f(w))− E(f(w)). (3.3.4)
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The result of LCOE risk analysis of technically feasible and systemic port-
folios at 95% confidence level under different volatility scenarios are presented
in Table (3.3). The VaRw

95% implies that with 95% probability, the levelized
cost of electricity in a portfolio of generation technologies can not exceed the
values presented on the table at different carbon volatility scenarios. While the
values of CVaRw

95% is the average of the 5% extreme values of LCOEs at the tail
end of the LCOE distribution. This accounts for unexpected cost of electricity
generation that could arise throughout the lifetime of the energy generation
technologies. The deviation measure CVaRDw

95%, which is comparable to the
standard deviation is used to produce technically feasible and systemic port-
folio frontiers in Figure (3.4) and Figure (3.5). It is observed that the graphs
produced with CVaRDw

95% are very similar to those produced with the standard
deviation σLC,sys but the former takes into consideration tail risk while the later
does not. This explains the reason values of CVaRDw

95% are higher than the
values of σLC,sys for the technically feasible and systemic portfolio under their
corresponding carbon price volatility scenarios.
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Figure 3.4: Technically feasible (disp) frontier and systemic portfolio frontiers
(cv = 0%, 10%, 20%), when carbon price volatility is σem = 0.0 (Upper panel)
and σem = 0.10 (lower panel). The vertical axis reports the negative Portfo-
lio mean (−µLC,sys and −µLC,f) while the horizontal axis reports the portfolio
CVaRD; The CVaRD is computed at 95% confidence level.

3.4 Portfolio analysis using CVaRD

As mentioned above the variance is not a good risk measure of risk, therefore we
perform the same analysis as before when the conditional value at risk deviation
(CVaRDw

95%) is used as risk measure. The optimal weights for coal and gas are
calculated solving the following:
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Figure 3.5: Technically feasible (disp) frontier and systemic portfolio frontiers
(cv = 0%, 10%, 20%), when carbon price volatility is σem = 0.15 (Upper panel)
and σem = 0.20 (lower panel). The vertical axis reports the negative Portfo-
lio mean (−µLC,sys and −µLC,f) while the horizontal axis reports the portfolio
CVaRD; The CVaRD is computed at 95% confidence level.



min
w

CV aRDw
95%

s.t.

wf,co + wf,ga = 1

wf,co, wf,ga ∈ [0, 1]

(3.4.1)

We have solved this problem for different levels of σem, as in the previous anal-
ysis, Section 3.2. The results obtained for the global CV aRD are reported in
Table 3.4.

σem = 0.00 σem = 0.10 σem = 0.15 σem = 0.20

wf,co
cvard 76% 51% 18% 0%

wf,ga
cvard 24% 49% 82% 100%

µLC,cvard 93.44 83.36 70.68 63.70

CVaRDLC,95% 10.1 14.4 20.8 28.2

Table 3.4: Optimal portfolio analysis for technically feasible set using CVaRD,
computed at 95% confidence interval.

Comparing these results with the ones obtained using the variance as risk
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σem = 0.0 σem = 0.10 σem = 0.15 σem = 0.20

w̄wi 25% 25% 25% 25%

w̄so 25% 25% 25% 25%

wco
cvard 38% 26% 9% 0%

wga
cvard 12% 24% 41% 50%

µcv=0
LC,cvard 108.14 98.62 85.41 58.54

µcv=0.1
LC,cvard 103.65 95.11 83.26 57.84

µcv=0.2
LC,cvard 99.17 91.60 81.11 57.15

CVaRDLC,95% 5.1 7.2 10.4 14.1

Table 3.5: Optimal systemic portfolio analysis using CVaRD computed at 95%
confidence interval.

measure (see Section 3.2), we observe that, though the coal and gas weights
seems to be similar at scenarios with zero or low carbon price volatility, as
the volatility increases the optimal weights of coal and gas technology becomes
clearly different. In particular, when carbon price volatility becomes high, (i.e.,
at 20% volatility), a gas only technology is observed under the mean-CVaRD
approach.

Furthermore, the result of the portfolio optimization for the systemic port-
folio using the mean-CVaRD approach is presented in Table (3.5). The analysis
also follows the same argument presented earlier, with CVaRD as a deviation
measure instead of the standard deviation. Comparing the results in Table
(3.4) and Table (3.5), a lower value of CVaRD is observed in Table (3.5) due to
the presence of solar and wind energy generating technologies in the systemic
portfolio. This is similar to the effect of risk-reduction by solar and wind energy
in the systemic portfolio under the mean-variance optimization. LCOE values
in the mean-CVaRD approach tends to be lower than those obtained under
the mean-variance approach when carbon price volatility is high (i.e. at 20%
volatility). This may be due to the fact that the risk measure used to compute
CVaRD is tail risk measurable. This properly captures the risk analysis in-
volved in the gas component whose distribution is asymmetric and has long tail
due to dynamics of gas prices, which includes spikes. On the other hand, the
standard deviation is non-measurable at the tail. Finally, the little difference in
LCOE values with the same weight proportion when carbon price volatility is
0.0% and 0.10% in Table (3.2) and Table (3.5) is due to approximation errors.
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3.5 Conclusion

LCOE risk analysis was performed in this chapter. Starting from the minimum
variance porfolio analyses for the technically feasible set of generating technolo-
gies. It was observed that the calculated LCOE were lower than those in the
literature due to the higher percentage of gas component in the optimal port-
folios of the technically feasible technology as a result of modelling fossil fuel
prices of coal and gas with more appropriate dynamic model. The LCOE of
the systemic portfolio were higher due to the extra cost incurred from systemic
constraints involved in the integration of solar and wind energy into the power
system. In addition to this, a lower volatility, which signifies risk reduction
was observed under the systemic portfolios due to the presence of renewables
in the portfolio of generation technology. The combined effect of risk reduction
and increase in LCOE value at different capacity values can be observed in the
systemic frontiers when compared to the technically feasible portfolio frontiers.
When the time-varying generation and pricing of electricity is included in LCOE
analysis, the cost competitiveness of solar energy has a significant effect on only
the LCOE of the systemic portfolio as solar penetration increases. The CVaR
deviation was used for LCOE risk analysis in order to capture the tail risk in
the LCOE distribution. Portfolio optimization analysis was done using mean-
CVaRD approach and the result obtained were compared with those obtained
using the mean-variance approach. This mean-CVaRD approach is useful in
the worst case assessment of the portfolio of generating technologies.
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Chapter 4

Modeling Agent Interaction

4.1 Introduction

The second part of this research work is from the complex system perspective.
A complex system is a system composed of many interacting parts called agents,
which display collective behavior that do not follow trivially from the behavior
of the individual parts [33]. Over the years, it has been discovered that non-
linear mathematical models replicate the dynamics of real systems better than
the linear ones [15, 49]. An example of such former models is the Lotka-Volterra
model [22, 53].

A more specific analysis based on our previous research [48] on the effect
of competition and cooperation among interacting agents along a generalized
Verhulst-Lotka Volterra model is presented in this part of the thesis. In this
case, interacting agents are the energy firms/investors whose aim is to minimize
cost of production and the risk involved in the production of electricity in or-
der to maximize their profit while keeping the environment clean. The agent
interaction is analyzed based on agent’s size with common resources to share,
that is, the consumers of electricity. Agents tend to increase in size when they
acquire more of the market share and reduce when any market portion is lost.
A network effect was introduced through an undirected but weighted graph in
order to enable a mixed-type of interactions, i.e., having a system in which
competitive and cooperative scenarios are considered to occur simultaneously
among various interacting agents in the presence of a realistic constraint called
the market capacity. Such competition, cooperation, and mixed type of inter-
actions are analyzed below for triad interacting agents, through the evaluation
of the eigenvalues of the relevant Jacobian matrix computed at corresponding
fixed points, in order to investigate the system stability. This triad system has
been chosen as the most simple, yet complex enough as representative of ba-
sic networks. The effect of the agent interaction as it affects satisfying market
demand, and systemic stability will be illustrated through numerical results.
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4.2 The Generalized Verhulst-Lotka-Volterra Model

A generalized Verhulst-Lotka-Volterra Model introduced in [6] is given by:

ṡi = αisi(βi − si)−
∑
i 6=j

γ(si, sj)sisj, i = 1, . . . , n, (4.2.1)

where si is the size of agent i such that 0 ≤ si ≤ 1; ṡi is its time derivative; αi
is agent’s growth rate if no interaction is present, βi is the agent’s maximum
capacity and γ(si, sj) is the interaction function. The first term is a Verhulst-like
term [51, 52] and the others stem from the Lotka-Volterra model [22, 53].

The interaction function γ(si, sj) is defined by

γ(si, sj) = K exp

[
−
(
si − sj
σ

)2
]

; (4.2.2)

it is a continuously differentiable function that allows a proper theoretical anal-
ysis of the system dynamics, leading to conclusions which will appear to be
likely model independent. The positive parameter σ controls or scales the in-
tensity of agent size similarity and the parameter K determines the scenarios
of agent’s interaction.

The model is used in [6] to analyze a system of n agents in competition for
some common resources with competition becoming more aggressive between
agents with similar size. This is because as |si−sj| → 0, the interaction function
γ(si, sj)→ K for a constant parameter σ, its maximum value. The competition
weakens when agents have distinctly different sizes, thereby suggesting a peer-
to-peer competition modelling.

For the peer-to-peer interaction system, presented in [6, 7], a strength pa-
rameter K was introduced: K > 0 was considered to show the presence of com-
petition in the market, while K < 0 implied cooperation. Under the cooperative
scenario, the interaction function is defined in the interval −K < γ(si, sj) < 0.
In order to avoid complexity and instability of the system, the value of K was
chosen carefully through fixed point analysis of agents with equal sizes [7], whose
eigenvalues are

λ1,...,n =
K − 1

1 + (n− 1)K
, (4.2.3)

so that, the K range interval − 1
n−1

< K < 0 ensures the stability of the system.

4.3 Model Formulation

The market capacity β is defined as the amount of product/service sales that
could be reached within a certain period of time by any agent in the “market”
[21]. In this research work, the market capacity is said to be the overall de-
mand for energy by consumers, which is to be satisfied by agents in the energy
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market for the system to be stable. The mathematical relationship between the
individual agent’s maximum capacity βi, and β is given by:

βi = β −
∑
i 6=j

sj, (4.3.1)

so that the initial Verhulst-Lokta-Volterra model becomes:

αisi(βi − si) = αisi

(
β −

∑
i=1

si

)
. (4.3.2)

In addition, interaction among agents is introduced and modeled by a matrix
K with elements kij = kji, which are zero on the diagonal, and can be +1 or -1
off the diagonal. Thus, the interaction function becomes:

γ(si, sj) = kij exp

[
−
(
si − sj
σ

)2
]

(4.3.3)

with 0 < γ(si, sj) < |kij|.
This matrix K is the adjacency matrix of a network represented by a weighted

and undirected graph. The weights 0,−1 and +1 indicate no interaction, co-
operation and competition respectively. Furthermore, we assume that there is
no loop, that is, an agent cannot compete or cooperate with herself. For some
special matrices K, we obtain the model in [6, 7]. For instance, when

K≡



0 1 . . 1

1 0 . 1

. . .

. . .

1 1 . . 0



we obtain the full competitive scenario as in [6]. For

K≡



0 −1 . . −1

−1 0 . −1

. . .

. . .

−1 −1 . . 0


,
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this is the full cooperative scenario [7]. In addition the network matrix

K≡



0 k12 . . k1n

k21 0 . k2n

. . .

. . .

kn1 kn2 . . 0


ensures a mixed-type of interaction amongst the agents in the model, when
kij(= kji) takes the value +1 or -1. That is, when competition and cooperation
occur simultaneously amongst interacting agents in the system. For example,
for n = 3, in our model, we can have two agents collaborating in order to
compete effectively with the third agent. This can be compared with the case
of two small companies collaborating to compete against a big company which
had previously monopolized the market.

Thus suppose that there exist n agents sharing some common resources.
Let us assume that agents increase in size if they acquire some portion of the
resources or have their size reduced if any market portion is lost. Our mathe-
matical model is defined by an n-dimensional differential equation:

ṡi = αisi

(
β −

n∑
i=1

si

)
−
∑
i 6=j

kij exp

[
−
(
si − sj
σ

)2
]
sisj, i = 1, . . . , n

(4.3.4)
where si is the agent size such that 0 < si ≤ 1; ṡ is its time derivative; αi is the
growth rate of agent i if no interaction is present; β is the market capacity and
kij is the element of the network matrix K which determines the interaction
between agent i and j. The interaction function γ(si, sj) is composed of dy-
namic parameters that result from the difference between agents in relation; the
parameter σ is a positive parameter that regulates the difference in the agent’s
size. Note that while K indicates what interaction is present, σ determines the
“range” of interaction of the agents. Indeed, in contrast to the “large” inter-
action between equal size agents, the intensity of interactions between “agents
with bigger market share” and “those with small market share” occurs to be
weak, since as | si − sj |→ ∞, the interaction function γ(si, sj) → 0; on the
contrary, indeed, as | si − sj |→ 0, γ(si, sj) → ±1 depending on kij, which
signifies a strong interaction between agents with similar sizes.

For the sake of simplicity, without much losing generality, it can be assumed
that the agents have the same dynamic properties αi = 1, while the market
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capacity can be β = 1. Therefore, equation (4.3.4) becomes:

ṡi = si

(
1−

n∑
i=1

si

)
−
∑
i 6=j

kij exp

[
−
(
si − sj
σ

)2
]
sisj, i = 1, . . . , n

(4.3.5)
where, as stated earlier, kij, i, j = 1, . . . , n are elements of the interaction matrix
K.

4.4 Fixed Point and Stability Analysis

In this section, the fixed point analysis of the model is done in order to inves-
tigate the stability of the system for all scenarios. A triad system of agent (i.e.
n = 3) was chosen as a simple yet complex representative of a basic network,
in order to illustrate some of the properties of the model analytically.

Suppose A1, A2 and A3 are triad interacting agents with market sizes s1, s2

and s3 respectively, from equations (3.3) the system of triads becomes:

ṡ1 = s1(1−
3∑
i=1

si)− k12 exp
−
(
s1−s2
σ

)2
s1s2 − k13 exp

−
(
s1−s3
σ

)2
s1s3, (4.4.1)

ṡ2 = s2(1−
3∑
i=1

si)− k12 exp
−
(
s2−s1
σ

)2
s2s1 − k23 exp

−
(
s2−s3
σ

)2
s2s3, (4.4.2)

ṡ3 = s3(1−
3∑
i=1

si)− k13 exp
−
(
s3−s1
σ

)2
s3s1 − k23 exp

−
(
s3−s2
σ

)2
s3s2. (4.4.3)

The possible K-matrices for describing the different scenarios of interaction
amongst the agents A1, A2 and A3 are:

K1 =


0 1 1

1 0 1

1 1 0

 , K2 =


0 1 1

1 0 −1

1 −1 0

 ,

K3 =


0 −1 −1

−1 0 1

−1 1 0

 , K4 =


0 −1 −1

−1 0 −1

−1 −1 0


where K1 represents the matrix for a full competitive system with three in-
teracting agents; K2 is a matrix for mixed-type of interaction system, where
one agent compete with two other agents in cooperation. In this case, agent
A1 competes with agent A2 and agent A3 which are in cooperation. K3 is a
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matrix for mixed-type of interaction system, where one agent cooperates with
two other agents in competition, in this case, agent A1 cooperates with agent
A2 and agent A3 which are in competition with each other. K4 represents the
matrix for a full cooperative system amongst the three interacting agents. It
can be observed that other cases of the mixed-type of interaction are isomorphic
to the ones here presented.

The fixed point analysis of the system entails the evaluation of the eigen-
values of the relevant Jacobian matrix computed at each corresponding fixed
point, thus used to determine the stability of the system. When the real part
of all the eigenvalues is negative, the system is said to be stable. If at least one
eigenvalue has a positive real part, the system is unstable.

4.4.1 Fixed Point

A fixed point is a point in the phase space where all the time derivatives are
zero, i.e., ṡi = 0 for i = 1 . . . , n. The following fixed points were detected
analytically1 from equations (4.4.1)- (4.4.3):

(I) All agents with zero size, i.e., si = 0 for i = 1, 2, 3.

(II) Two agents with size equal to zero: necessarily, the third agent monopo-
lizes the market. i.e., si = 1 and sj = 0 for every i 6= j.

(III) Two agents are of equal size in the market while the third is of size zero.

(IV) All agents own an equal share of the market, i.e, si = b for i = 1, 2, 3,
0 < b ≤ 1.

Moreover it can be easily shown that the elements of the Jacobian matrix 2

of the triads are:

[J ](i,k) =
∂ṡi
∂sk

=


1− 2si −

∑
i 6=j sj

(
1 + γ(si, sj)

[
1− 2

σ2 si(si − sj)
])
, for k = i;

−si − siγ(si, sk)
[
1− 2

σ2 sk(si − sk)
]
, for k 6= i,

from which the stability conditions are to be found at each fixed point.

4.4.2 Stability Analysis

Type (I) Fixed Point

The type (I) fixed point analysis is the case in which all agents have size zero,
i.e., si = 0 for i = 1, 2, 3. The evaluated Jacobian matrix at the type (I) fixed

1Details of fixed point analysis shown in Appendix B.
2Derivation of the Jacobian matrix is shown in Appendix B.
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Full Competition Full Cooperation Mixed Interactions

Type K1 K4 K2 K3

I (0,0,0) (0,0,0) (0,0,0) (0,0,0)

(1,0,0) (1,0,0) (1,0,0) (1,0,0)

II (0,1,0) (0,1,0) (0,1,0) (0,1,0)

(0,0,1) (0,0,1) (0,0,1) (0,0,1)

(0,1/3,1/3) (0,1,1) (0,1,1) (0,1/3,1/3)

III (1/3,0,1/3) (1,0,1) (1/3,0,1/3) (0,1,0)

(1/3,1/3,0) (1,1,0) (1/3,1/3,0) (1,1,0)

IV (1/5,1/5,1/5) (1,1,1) - -

Table 4.1: Coordinates of fixed points.

point, is given by:

J =


1 0 0

0 1 0

0 0 1


whose eigenvalues are all equal to 1 (i.e., λ1 = λ2 = λ3 = 1). Trivially, it is
an unstable fixed point. At this fixed point, competition or cooperation is not
applicable since all agents are at level zero. In other words, these results do not
depend on the network matrix K.

Type (II) Fixed Point

The type (II) fixed point analysis corresponds to having two agents with size
equal to zero; necessarily, the third agent monopolizes the market. The Jacobian
matrices for the fixed points (β,0,0),(0,β,0) and (0,0,β) are:

J(β,0,0) =


1− 2β −β − βφ12 −β − βφ13

0 1− β − βφ21 0

0 0 1− β − βφ31

 ,
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J(0,β,0) =


1− β − βφ12 0 0

−β − βφ21 1− 2β −β − βφ23

0 0 1− β − βφ32

 ,

J(0,0,β) =


1− β − βφ13 0 0

0 1− β − βφ23 0

−β − βφ31 −β − βφ32 1− 2β

 ,
where φij = kij exp(−(β/σ)2) for i, j = 1, 2, 3 and i 6= j.

1. For J(β,0,0), the corresponding eigenvalues are λ1 = 1− 2β, λ2 = 1− β −
βφ21, λ3 = 1− β− βφ31. When k21 = −1 and k31 = −1, the fixed point is
unstable since exp(−σ−2) is always positive for σ > 0. When k21 = 1 and
k31 = −1 or k21 = −1 and k31 = 1 , the fixed point still remains unstable.
Stability of the fixed point (β,0,0) occurs only when Γ21 = 1 and Γ31 = 1.

2. For J(0,β,0), the corresponding eigenvalues are λ1 = 1 − β − βφ12, λ2 =
1−2β, λ3 = 1−β−βφ32. Since β = 1 in our model, λ1 = −φ12, λ2 = −1,
λ3 = −φ32. When k12 = 1 and k32 = 1, the system is stable, otherwise
the fixed point is unstable.

3. For J(0,0,β), the corresponding eigenvalues are λ1 = 1 − β − βφ13, λ2 =
1−β−βφ23, λ3 = 1−2β. Since β = 1 in our model, λ1 = −φ13, λ2 = −φ23,
and λ3 = −1. When k13 = 1 and k23 = 1, the system is stable, otherwise
the fixed point is unstable.

In the fully competitive scenario, all kij = 1 for i 6= j, thereby resulting to
an all negative eigenvalues of all the Jacobian matrices. Indeed, this implies
stability of the system at this fixed point. This is applicable in real systems: if
an agent monopolizes the competitive market, the agent will ensure that such
a domination is not lost, whence keeping the market stable.

On the contrary, in the fully cooperative scenario, λ2 and λ3 are positive,
since all kij = −1, i 6= j, thereby making the system unstable. This is also realis-
tic, since in cooperation, the ultimate goal is the maximization of all agents gain
in the market. Therefore, it can be emphasized that monopoly and cooperation
are not compatible terms. This accounts for systemic instability.

Under the mixed interaction scenario, systemic stability is only obtained at
the fixed point (1,0,0) for the interaction matrix K2.

In conclusion, the type (II) fixed point is stable in a full competitive scenario
because of the possibility of monopoly, but is unstable under full cooperation.
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Type (III) Fixed Point

The type (III) fixed points analysis is the case in which two agents are of equal
size in the market while the third agent is of size zero. Therefore we have the
fixed points as (0, a, a),(a, 0, a) and (a, a, 0) where a = 1

3
and a = 1 are the two

possible cases obtained analytically.
The Jacobian Matrix J(a,0,a) is given by:

J(a,0,a) =


1− 3a− ak13 −a− aθ12 −a− ak13

0 1− 2a− a(θ21 + θ23) 0

−a− ak31 −a− aθ32 1− 3a− k31

 ,
where θij = kij exp−

(
a
σ

)2
. It can be noted that when a = 1, θij = φij.

1. When a = 1
3
, the Jacobian matrix becomes

J( 1
3
,0, 1

3
) =


−1

3
k13 −1

3
− 1

3
θ12 −1

3
− 1

3
k13

0 −1
3
− 1

3
(θ21 + θ23) 0

−1
3
− 1

3
k31 −1

3
− 1

3
θ32 −1

3
k31

 ,
where θij = kij exp−

(
1

3σ

)2
. The corresponding eigenvalues3 for J( 1

3
,0, 1

3
) is

λ1 = 1
3
, λ2 = 1

3
− 1

3
(k21 exp− ( 1

3σ
)2 + k23 exp− ( 1

3σ
)2) and λ3 = 1

3
, which

indicates that the system is unstable. This fixed point is possible under
full competition and mixed interaction but not in the full cooperative
scenario. The stability analysis of the Jacobian Matrix J(0, 1

3
, 1
3

) J( 1
3
, 1
3
,0) is

similar to J( 1
3
,0, 1

3
). The full result is shown on Table 4.2.

2. When a = 1, the Jacobian matrix becomes

J(1,0,1) =


−2− k13 −1− φ12 −1− k13

0 −1− (φ21 + φ23) 0

−1− k31 −1− θ32 −2− k31

 ,
where φij = kij exp−

(
1
σ

)2
. The corresponding eigenvalues4 for J(1,0,1) is

λ1 = −1 − φ12 − φ23, λ2 = −1 and λ3 = −3 − 2k13. The stability for
the system depends mainly on the value of λ1, since λ2 and λ3 is always
negative. When k12 = k23 = 1, the system is stable. Suppose k12 = −1
and k23 = 1 or vice versa, the system still remains stable. Since the values
of λ1 = −1. The fixed point is only possible under the full cooperative

3Details of analysis is shown in Appendix B.
4Details of analysis is shown in Appendix B.
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Full Competition Full Cooperation Mixed Interactions

Type K1 K4 K2 K3

I Unstable Unstable Unstable Unstable

Stable Unstable Stable Unstable

II Stable Unstable Unstable Unstable

Stable Unstable Unstable Unstable

Unstable Stable Stable Unstable

III Unstable Stable Unstable Stable

Unstable Stable Unstable Stable

IV Unstable Stable - -

Table 4.2: Summary of Stability Analysis for Interaction Matrices.

and the mixed interaction scenarios, therefore, even though one of the
agent is of size zero, the systemic stability is always observed at this fixed
point. The stability analysis of J(1,1,0) and J(0,1,1) is similar to the analysis
shown above.

Type (IV) Fixed Point

The type (IV) fixed point analysis is the case in which all agents are eventually
owning the same share of the market, i.e., si = b for i = 1, 2, 3, 0 < b ≤ 1. This
is only applicable under the full competition and full cooperation interactions.
When evaluating the Jacobian matrix at this fixed point, the constant b has
to be calculated first by substituting si = b and ṡi = 0 into Equations (4.4.1)-
(4.4.3). From (4.4.1), it can be deduced that:

0 = b(1− 3b)− (k12 + k13)b2 (4.4.4)

= 1− b(3 + (k12 + k13). (4.4.5)

Therefore,

b =
1

(3 + (k12 + k13))
. (4.4.6)

Similarly from (4.4.2) and (4.4.3) respectively, the following is obtained:

b =
1

(3 + (k12 + k23))
. (4.4.7)
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b =
1

(3 + (k13 + k23))
. (4.4.8)

Therefore, from equations (4.4.6)-(4.4.8), it can be deduced that in a fully
competitive system (i.e. k12 = k13 = k23 = 1), the agent size is b = 1

5
. This

implies that the aggregate size of the three agents does not reach the market
maximum possible capacity, which may be the negative result of the competition
amongst peers.

Thus, for a full competition of agents with the same size, the Jacobian matrix
with b = 1

5
is:

J =
1

5


−1 −2 −2

−2 −1 −2

−2 −2 −1

 ,
the eigenvalues are obtained from the characteristic polynomial

(−1− λ)3 − 12(−1− λ)− 16 = 0

The solution to the above cubic equation is λ1 = λ2 = 1 and λ3 = −5. This
shows that the system is unstable at this fixed point. When all the agents have
an equal size in a competitive market, the system will be unstable; because the
major goal of each agent is to individually dominate the market. According to
the model, agents with “similar” sizes are strongly interacting; this leads to a
“survival of the fittest” scenario in such a competitive system, - thereby making
the system unstable.

In contrast, for a cooperative system (i.e. k12 = k13 = k23 = −1), we have
b = 1, that is, collaboration makes all agents reach the market full capacity
with agent sizes as a function of time possibly intersecting one another.

The corresponding Jacobian matrix for the cooperative system with b = 1
is:

J =


−1 0 0

0 −1 0

0 0 −1

 ;

the eigenvalues are obtained from the equation:

(−1− λ)3 = 0

which implies that the system is stable, since λ1,2,3 = −1. When all the agents
with quasi equal market share cooperate, with the collective goal of maximizing
their profit (size) in the market, the system will definitely be stable; their goal
will be achieved since the strongest possible interaction exists amongst agents
with similar sizes.

It can be noted that when b = 1
3
, (i.e. k12 = k13 = k23 = 0), there exists no

interaction amongst the triads agents of equal sizes and this leads to the case
whereby the agents “share the market” equally.
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4.5 Conclusion

A summary of the fixed point analysis of our model with the network matrix
K1, K2, K3 and K4 was presented in Table 4.2. On this table, it was shown
that systemic stability is observed under full competitive scenario only when
one agent monopolizes the market, but under the fully cooperative scenario,
stability occurs when at least two of the agents own an equal share of the mar-
ket. By observation, the system tends to be unstable when the agent sizes does
not add up to the market capacity or when the interaction matrix is not com-
patible with the fixed points. For instance, the system is unstable under full
cooperation when there is monopoly. In practical terms, the agents, which in
this case are the energy firms, interacts together in a competitive, cooperative
or mixed-type of interaction. The system becomes unstable when demands are
not met in the market (i.e. when the agent sizes are not up to the market capac-
ity). Intersection of agent sizes is assumed during collaboration. Simulation of
interactions among the agents will be shown and analyzed in the next chapter.
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Chapter 5

Simulation on Agent Interaction

5.1 Introduction

In this chapter, we present results from numerical simulations emphasizing the
initial conditions and the convergence of triad agent sets for all interesting and
possible scenarios, for each network matrix type K = {K1,K2,K3,K4}.

For the sake of clarity, in Fig 5.1, the four possible scenarios are illustrated
through undirected graphs with three vertices representing agents A1, A2 and
A3 and three edges which signify the type of interaction amongst the agents.
An edge with solid line signifies a competitive interaction while an edge with
dashed lines signifies a cooperative interaction. Therefore, it can be deduced
that in Fig 5.1, graph G1 represents the full competitive scenario, G2 represents
the first case of the mixed-interactive scenario in which agent A1 competes with
A2 and A3, themselves in cooperation. Graph G3 represents the second case of
the mixed-interactive scenario in which agent A1 cooperates with A2 and A3,
themselves in competition and G4 represents the full cooperative scenario.

We have tested different sets of initial conditions; see a few exemplary cases
in Table (5.1). We have verified the coherence of results. These results led to
presenting only cases in which the initial conditions of agent sizes are rather
different or quite similar, assuming a constant parameter that controls the size
similarity, σ = 1. The dynamic change in agent’s size and relative behavior have
been observed for each scenario. Finally, note that agent’s sizes initial conditions
were chosen within a small interval in order to allow some “meaningful” inter-
action amongst the agents; since within our model, indeed, as | si − sj |→ ∞,
the interaction function γ(si, sj)→ 0.

5.2 Fully Competitive Scenario

The fully competitive scenario with different initial conditions for the agent’s
size is observed in Fig 5.2 with a consideration on dynamical change in the
agent size; the market eventually ends in a monopoly. For all the permutations
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Figure 5.1: Graphical illustration of the four scenarios.
An edge with solid line signifies a competitive interaction while an edge with
dashed line signifies a cooperative interaction. Pictures respectively refers to:

(a) G1, (b) G2, (c) G3 and (d) G4

of the initial conditions, the agent that starts with the highest initial size, i.e
s0 = 0.4, commenced interaction with significantly higher market share (firm’s
resources and capabilities) than the other agents, this creates a competitive
advantage over the other agents in the market. According to Porter M. E. in
[40], competitive advantage is when the firm is able to deliver the same benefits
as competitors but at a lower cost (cost advantage) or deliver benefits that
exceed those of competing products (differentiation advantage). The interaction
results in the “Leader takes all” phenomenon which is caused by the existence
of the Matthew effect also known as the “rich get richer” effect [30, 56]. This
implies that the energy producing firms with competitive advantage over other
firms eventually monopolize the market while satisfying demands of consumers
at minimum cost, while the other two agents fade out of the market. This is
possible because the two agents with smaller sizes compete too weakly with the
agent that eventually dominates the market.

Competitive advantage is not permanent and therefore can be lost in the
market. This may be due to lack of innovation, advancement in technology,
etc. This leads to reduction in firm share in a competitive market or total exit
from the market. When agents sizes are now similar as shown in Fig. 5.2, the
competition becomes very “fierce” and all agents are struggling for their survival
in the market. After some time span, it is observed that the agents eventually
have an equal share of the market; their total market share is however lower than
the market capacity. Thus, strong competition among peers is shown to lead to
a reduction in the aggregate output due to the selfish interest of the individual
agents. Indeed, observe that the final state is

∑
si = 0.6. Convergence is

generally slower in the competitive scenario when compared with the other
scenarios due to the nature and effect of competition amongst the interacting
agents.
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Figure 5.2: Fully Competitive Scenario (G1) with different (lhs) and similar
(rhs) agent’s initial sizes.

5.3 Fully Cooperative Scenario

The fully cooperative scenario (G4) is analyzed for different initial sizes of the
triads and illustrated in Fig 5.3. It has been discovered [12] that “Collaboration
is a key driver of overall performance of companies around the world. Its impact
is twice as significant as a company’s aggressiveness in pursuing new market
opportunities (strategic orientation) and five times as significant as the external
market environment (market turbulence)”. It has significant impact on the
firm’s overall performance which determines the final market share of the firm.
The collaboration amongst the agents enables all agents to grow in size up to
this market capacity, thereby increasing the total market size, - which is the
essence of cooperation (

∑
si > 1.0). This implies that energy producing firms

can collaborate together to meet demand in the market, despite their different
initial sizes. Collaboration in this case involves intersection of the agent sizes.

The simulation leads to the same effect, even if the initial conditions are
permuted amongst the triads and when the agents have similar initial sizes as
shown in Fig 5.3. Also, agents tend to ”quickly agree”, thereby converging
within a short time lapse.

5.4 The Single Pair Cooperation

The mixed interaction scenario (G2), when agent A1 competes with agents A2

and A3 themselves in cooperation is shown in Fig 5.4 - Fig 5.5 for different
permuted initial conditions of agent’s sizes. It can be observed that in all sim-
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Figure 5.3: Fully Cooperative Scenario (G4) with different (lhs) and similar
(rhs) agent’s sizes.
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Figure 5.4: Mixed Interaction Scenario (G2), A1 competes with A2 and A3 in
pair cooperation, for different initial sizes.
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Figure 5.5: Mixed Interaction Scenario (G2): A1 competes with A2 and A3 in
a pair cooperation, for different (lhs) or similar (rhs) initial sizes.

ulations, the sizes of agents A2 and A3 in cooperation grow dynamically with
time up to the market capacity but agent A1 decreases in size until it fades
out of the market. The most interesting simulation is seen in Fig 5.5, with
different initial conditions s0 = {0.4, 0.2, 0.1} where agent A1 initially possesses
the biggest share of the market with s1 = 0.4, competes with the two other
agents A2 and A3 that alternate a smaller size 0.1 and 0.2. Note that the sum
of the two initial shares of the cooperating agents is lower than the share of
the competing agents. Interestingly, after some time, the collaboration between
agents A2 and A3 knocks out agent A1 from the market. This affirms the words
of Jaclyn Kostner, Ph.D., best-selling author, and expert on high-performance
virtual collaboration which says, “As a general rule, global companies that col-
laborate better, perform better. Those that collaborate less, do not perform as
well. It’s just that simple”[12]. However, this is not possible if the intensity
of interactions is very low amongst the agents; that is, when A1 is “extremely
bigger” in size when compared to agents A2 and A3.

When all the agents have similar initial conditions, the pattern is similar
with agents A2 and A3 totally taking over the market by growing up to the
market capacity as seen in Fig 5.5.

5.5 The Double Pair Cooperation

Finally, the second possible case of mixed interaction scenario (G3) is shown
in Fig 5.6 - Fig 5.7; agent A1 cooperates with agents A2 and A3 themselves in
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Figure 5.6: Mixed Interaction Scenario (G3), A1 cooperates with A2 and A3 in
competition for different initial sizes.
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Figure 5.7: Mixed Interaction Scenario(G3), A1 cooperates with A2 and A3 in
competition for different (lhs) or similar (rhs) initial sizes.
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competition, for different permuted initial conditions of agent’s sizes.
When agent A1 cooperates strongly with the agent with a higher initial con-

dition and cooperates weakly with the other one. Such strategic decision by
small firms to collaborate with larger firms accelerate growth and create sta-
bility which in turn gives them a competitive advantage over other competing
firms in market. Also, as written in [17], start-up firms are likely to be more
informed, innovative and more creative than long standing larger firm. There-
fore, partnership with such start-up firms is also beneficial to the growth of the
larger firm as observed in Fig 5.6 - Fig 5.7. The effect of cooperation makes
agent A1 (irrespective of its initial condition) and any one of the two agents that
cooperates strongly with agent A1 grows up to the market capacity, while the
effect of weak cooperation and competition between agents A2 and A3 makes
the agent with the lower initial condition vanishing from the market.

Surprisingly, when the three agents have the same initial size, the simulation
turns out interesting also, as seen in Fig 5.7, - unlike the first case of mixed
interaction. When agent A1 cooperates strongly with agents A2 and A3 which
are in strong competition with each other, the effect of this strong and opposite
interaction in the system results in a final state in which no agent is attaining
the market capacity, but each agent nevertheless grows above its initial size; all
three agents remained active in the market. Nevertheless, agent A1 possesses
the “lion share” of the market by taking advantage of the competition between
the other agents to collaborate differently with them.

5.6 Conclusion

A summary of the simulations of the triad interaction agents is presented in
Table (5.1). The characteristic values pertain to agent’s size initial conditions,
final size and the time of convergence. It can be observed that convergence is
slower during competition, due to the conflicting interests of interacting agents;
in contrast, during cooperation, agents tend to “agree”, thereby converging
within a shorter time lapse. For the mixed interaction cases, when agent A1

competes with agents A2 and A3 in cooperation, a scenario with two collabo-
rating agents in conflict with one, the time of convergence is seen to be faster
than when agent A1 cooperates with agents A2 and A3 in competition: this can
be understood due to the collaborative effect of mixed interactions being higher
in the first case than in the second case.
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Scenario Initial Sizes si(0) Growth (+) / Decay (-)

Full Competition G1

0.1 0.2 0.4 - - +

0.1 0.4 0.2 - + -

1

2

3

0.4 0.1 0.2 + - -

0.4 0.2 0.1 + - -

0.2 0.4 0.1 - + -

0.2 0.1 0.4 - - +

0.15 0.15 0.15 + + +

0.3 0.3 0.3 - - -

Mixed Interaction G2

0.1 0.2 0.4 - + +

0.1 0.4 0.2 - + +

1

2

3

0.4 0.1 0.2 - + +

0.4 0.2 0.1 - + +

0.2 0.4 0.1 - + +

0.2 0.1 0.4 - + +

0.15 0.15 0.15 - + +

0.3 0.3 0.3 - + +

Mixed Interaction G3

0.1 0.2 0.4 + - +

0.1 0.4 0.2 + + -

1

2

3

0.4 0.1 0.2 + - +

0.4 0.2 0.1 + + -

0.2 0.4 0.1 + + -

0.2 0.1 0.4 + - +

0.15 0.15 0.15 + + +

0.3 0.3 0.3 + - -

Full Cooperation G4

0.1 0.2 0.4 + + +

0.1 0.4 0.2 + + +

1

2

3

0.4 0.1 0.2 + + +

0.4 0.2 0.1 + + +

0.2 0.4 0.1 + + +

0.2 0.4 0.1 + + +

0.15 0.15 0.15 + + +

0.3 0.3 0.3 + + +

Table 5.1: Summary of the effect of initial size conditions for the various sce-
narios as obtained from simulations, i.e. changing the relative initial sizes of
the agents.
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Appendix A

Technical Terms in LCOE
Computation

1. Capacity Factor: The net capacity factor is the unitless ratio of an
actual electrical energy output over a given period of time to the maximum
possible electrical energy output over the same amount of time. It is
generally measured as a percentage.

2. Capacity Value: This refers to the contribution of a power plant to
reliably meet demand. The capacity value (or capacity credit) is measured
either in kilowatt (kW), megawatt(MW), or gigawatt (GW) or the fraction
of its nameplate capacity (%). For instance, the plant with a nameplate
capacity of 150 MW could have a capacity value of 75 MW or 50%.

3. Heat Rate: Heat rate is generally defined as the amount of fuel required
to generate one unit of electricity in a power plant.

4. Nameplate Capacity: This is generally referred to as the maximum
output (i.e., generation) of a power plant. Nameplate capacity is typically
measured in a kilowatt (kW), megawatt(MW), or gigawatt (GW) rating.
It may also be referred to as nominal capacity or installed capacity. This
may be further distinguished as the net capacity of the plant after plant
parasitic loads have been considered, which are subtracted from gross
capacity.

Asset depreciation Dα
n used in the LCOE model through out the thesis is tech-

nology dependent and it is computed using the MACRS system (Modified Ac-
celerated Cost Recovery System) displayed in Table (A).

69



MACRS,15 MACRS,20

Year 1 5.00% 3.750%

Year 2 9.50% 7.219%

Year 3 8.55% 6.677%

Year 4 7.70% 6.177%

Year 5 6.93% 5.713%

Year 6 6.23% 5.285%

Year 7 5.90% 4.888%

Year 8 5.90% 4.522%

Year 9 5.91% 4.462%

Year 10 5.90% 4.461%

Year 11 5.91% 4.462%

Year 12 5.90% 4.461%

Year 13 5.91% 4.462%

Year 14 5.90% 4.461%

Year 15 5.91% 4.462%

Year 16 2.95% 4.461%

Year 17 4.462%

Year 18 4.461%

Year 19 4.462%

Year 20 4.461%

Year 21 2.231%

Table A.1: Depreciation Schedule.
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Appendix B

Details on Fixed Point and
Stability Analyses

B.1 Mathematical Model

Our mathematical model is defined by an n-dimensional differential equation:

ṡi = si

(
1−

n∑
i=1

si

)
−
∑
i 6=j

kij exp

[
−
(
si − sj
σ

)2
]
sisj, i = 1, . . . , n.

For simplicity, when n = 3, the above differential equations becomes:

ṡ1 = s1(1− s1 − s2 − s3)− γ(s1, s2)s1s2 − γ(s1, s3)s1s3, (B.1.1)

ṡ2 = s2(1− s1 − s2 − s3)− γ(s2, s1)s2s1 − γ(s2, s3)s2s3, (B.1.2)

ṡ3 = s3(1− s1 − s2 − s3)− γ(s3, s1)s3s1 − γ(s3, s2)s3s2, (B.1.3)

where

γ(si, sj) = kij exp

[
−
(
si − sj
σ

)2
]
. (B.1.4)

B.2 Fixed Point Analysis

A fixed point is a point in the phase space where all the time derivatives are
zero, i.e., ṡi = 0 for i = 1, . . . , n.

(I) Trivially, the point (0,0,0) is a fixed point. That is, when s1 = 0, s2 = 0
and s3 = 0, then ṡi = 0 for i = 1, . . . , 3 is satisfied.

(II) Trivially, the points (1,0,0), (0,1,0) and (0,0,1) are fixed points.

(III) Computation for the type (III) fixed point from Equations (B.1.1)-B.1.3)
at ṡi = 0 is shown below:
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(a.) When s1 = 0, s2 6= 0 and s3 6= 0, Equations (B.1.1)- (B.1.3) becomes:

0 = s2(1− s2 − s3)− γ(s2, s3)s2s3, (B.2.1)

0 = s3(1− s2 − s3)− γ(s3, s2)s3s2. (B.2.2)

They can be further simplified as

s2(1− s2 − s3) = γ(s2, s3)s2s3,

s3(1− s2 − s3) = γ(s3, s2)s3s2,

this implies that

s2(1− s2 − s3) = s3(1− s2 − s3),

since γ(s2, s3) = γ(s3, s2). Hence s2 = s3. Substituting our result
into Equation (B.2.1), we obtain

0 = s2(1− 2s2)− γ(s2, s3)s2
2,

0 = (1− 2s2 − γ(s2, s3)s2),

s2 =
1

2 + γ(s2, s3)
.

Since s2 = s3, from Equation (B.1.4) we can deduce that the inter-
action function γ(s2, s3) = k23 = k32. Hence,

s2 =
1

2 + k23

. (B.2.3)

Therefore, the fixed point is
(

0, 1
2+k23

, 1
2+k32

)
.

When k23 = k32 = +1, the fixed point is
(
0, 1

3
, 1

3

)
; when k23 = k32 =

−1 the fixed point is (0, 1, 1).

(b.) When s1 6= 0, s2 = 0 and s3 6= 0, Equations (B.1.1)- (B.1.3) becomes:

0 = s1(1− s1 − s3)− γ(s1, s3)s1s3,

0 = s3(1− s1 − s3)− γ(s3, s1)s3s1.

The computation follows a similar approach to that shown in (a.)

above. Therefore, the fixed point is
(

1
2+k13

, 0, 1
2+k31

)
.

When k13 = k31 = +1, the fixed point is
(

1
3
, 0, 1

3

)
; when k23 = k32 =

−1 the fixed point is (1, 0, 1).
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(c.) When s1 6= 0, s2 6= 0 and s3 = 0, Equations (B.1.1)- (B.1.3) becomes:

0 = s1(1− s1 − s2)− γ(s1, s2)s1s2,

0 = s3(1− s1 − s2)− γ(s2, s1)s2s1.

The computation follows similar a approach as shown in (a.) above.

Therefore, the fixed point is
(

1
2+k12

, 1
2+k21

, 0
)

.

When k13 = k31 = +1, the fixed point is
(

1
3
, 1

3
, 0
)
; when k23 = k32 =

−1 the fixed point is (1, 1, 0).

(IV) Computation of the type (IV) fixed point from Equations (B.1.1)- (B.1.3)
at ṡi = 0 is shown below:
When s1 6= 0, s2 6= 0 and s3 6= 0, for simplicity, we assume s1 = s2 = s3 =
b, where 0 < b ≤ 1. Equations (B.1.1)- (B.1.3) becomes:

0 = b(1− 3b)− γ(s1, s2)b2 − γ(s1, s3)b2,

0 = b(1− 3b)− γ(s2, s1)b2 − γ(s2, s3)b2,

0 = b(1− 3b)− γ(s3, s1)b2 − γ(s3, s2)b2.

Since, s1 = s2, from Equation (B.1.4) we can deduce that the interaction
function γ(s1, s2) = k12 = k21, also, since s1 = s3, the interaction function
γ(s1, s3) = k13 = k31 and since s2 = s3, the interaction function γ(s2, s3) =
k23 = k32. Therefore, from the argument above, we have

0 = b(1− 3b)− k12b
2 − k13b

2,

0 = b(1− 3b)− k12b
2 − k23b

2,

0 = b(1− 3b)− k13b
2 − k23b

2.

This implies that

(1− 3b) = k12b+ k13b,

(1− 3b) = k12b+ k23b,

(1− 3b) = k13b+ k23b.

Hence, k12b+ k13b = k12b+ k23b = k13b+ k23b, which implies that, for this
fixed point, k12 = k13 = k23.

The value of b is given by

b =
1

3 + k12 + k13

=
1

3 + k12 + k23

=
1

3 + k13 + k23

.

Therefore, when k12 = k13 = k23 = +1, the fixed point is
(

1
5
, 1

5
, 1

5

)
; when

k12 = k13 = k23 = −1, the fixed point is (1, 1, 1).

The summary of the fixed point analysis presented in Table (B.1) below:
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Full Competition Full Cooperation Mixed Interactions

Type K1 K4 K2 K3

I (0,0,0) (0,0,0) (0,0,0) (0,0,0)

(1,0,0) (1,0,0) (1,0,0) (1,0,0)

II (0,1,0) (0,1,0) (0,1,0) (0,1,0)

(0,0,1) (0,0,1) (0,0,1) (0,0,1)

(0,1/3,1/3) (0,1,1) (0,1,1) (0,1/3,1/3)

III (1/3,0,1/3) (1,0,1) (1/3,0,1/3) (0,1,0)

(1/3,1/3,0) (1,1,0) (1/3,1/3,0) (1,1,0)

IV (1/5,1/5,1/5) (1,1,1) - -

Table B.1: Coordinates of fixed points.

B.3 Jacobian Matrix

The Jacobian matrix [J](i,k) = ∂ṡi
∂sk

, for i, k = 1, . . . , 3. That is,

J =


∂ṡ1
∂s1

∂ṡ1
∂s2

∂ṡ1
∂s3

∂ṡ2
∂s1

∂ṡ2
∂s2

∂ṡ2
∂s3

∂ṡ3
∂s1

∂ṡ3
∂s2

∂ṡ3
∂s3


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The solutions of the elements of the Jacobian matrix are presented below:

∂ṡ1
∂s1

= 1− 2s1 − s2 − s3 − γ(s1, s2)s2 −
2(s1 − s2)

σ2
γ(s1, s2)s1s2 − γ(s1, s3)s3 −

2(s1 − s3)

σ2
γ(s1, s3)s1s3,

= 1− 2s1 − s2
(

1 + γ(s1, s2) +
2

σ2
γ(s1, s2)s1(s1 − s2)

)
− s3

(
1 + γ(s1, s3) +

2

σ2
γ(s1, s3)s1(s1 − s3)

)
;

∂ṡ1
∂s2

= −s1 − s1γ(s1, s2) +
2(s1 − s2)

σ2
γ(s1, s2)s1s2;

∂ṡ1
∂s3

= −s1 − s1γ(s1, s3) +
2(s1 − s3)

σ2
γ(s1, s3)s1s3;

∂ṡ2
∂s1

= −s2 − s2γ(s1, s2) +
2(s2 − s1)

σ2
γ(s1, s2)s1s2;

∂ṡ2
∂s2

= 1− 2s2 − s1
(

1 + γ(s1, s2) +
2(s2 − s1)

σ2
γ(s1, s2)s2

)
− s3

(
1 + γ(s2, s3) +

2(s2 − s3)

σ2
γ(s2, s3)s2

)
;

∂ṡ2
∂s3

= −s2 − s2γ(s2, s3) +
2(s2 − s3)

σ2
γ(s2, s3)s2s3;

∂ṡ3
∂s1

= −s3 − s3γ(s1, s3) +
2(s3 − s1)

σ2
γ(s1, s3)s1s3;

∂ṡ3
∂s2

= −s3 − s3γ(s2, s3) +
2(s3 − s2)

σ2
γ(s2, s3)s2s3;

∂ṡ3
∂s3

= 1− 2s3 − s1
(

1 + γ(s1, s3) +
2(s3 − s1)

σ2
γ(s1, s3)s3

)
− s2

(
1 + γ(s2, s3) +

2(s3 − s2)

σ2
γ(s2, s3)s3

)
.

Where the interaction function γ(si, sj) is given as:

γ(si, sj) = kij exp

[
−
(
si − sj
σ

)2
]
.

Therefore the Jacobian matrix [J ](i,k) = ∂ṡi
∂sk

, with i, k = 1, . . . 3, can be
generalized as:

[J ](i,k) =
∂ṡi
∂sk

=


1− 2si −

∑
i 6=j sj

(
1 + γ(si, sj)

[
1− 2

σ2 si(si − sj)
])
, for k = i;

−si − siγ(si, sk)
[
1− 2

σ2 sk(si − sk)
]
, for k 6= i.

B.4 Type III Fixed Point Analysis

The details of the stability analysis for the type III fixed point is shown below:

1. When a = 1
3
, the Jacobian matrix J(a,0,a) is given by

J( 1
3
,0, 1

3
) =


−1

3
k13 −1

3
− 1

3
θ12 −1

3
− 1

3
k13

0 −1
3
− 1

3
(θ21 + θ23) 0

−1
3
− 1

3
k31 −1

3
− 1

3
θ32 −1

3
k31

 ,
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where θij = kij exp−
(

1
3σ

)2
.

The characteristic equation is obtained by

|J( 1
3
,0, 1

3
) − λI| = 0

This implies that

0 =

(
−1

3
k13 − λ

)[(
−1

3
− 1

3
(θ21 + θ23)− λ

)(
−1

3
k31 − λ

)]
−

(
−1

3
− 1

3
k13

)[(
−1

3
− 1

3
(θ21 + θ23)− λ

)(
−1

3
− 1

3
k31

)]
.

Furthermore,

0 =

(
−1

3
− 1

3
(θ21 + θ23)− λ

)[(
−1

3
k13 − λ

)(
−1

3
k31 − λ

)
−
(
−1

3
− 1

3
k13

)(
−1

3
− 1

3
k31

)]
.

Therefore,

0 =

(
−1

3
− 1

3
(θ21 + θ23)− λ

)
=⇒ λ = −1

3
− 1

3
(θ21 + θ23)

λ = −1

3
− 1

3

(
k21 exp−( 1

3σ
)2 +k23 exp−( 1

3σ
)2
)

;

or

0 =

[(
−1

3
k13 − λ

)(
−1

3
k31 − λ

)
−
(
−1

3
− 1

3
k13

)(
−1

3
− 1

3
k31

)]
.

This implies:(
−1

3
k13 − λ

)(
−1

3
k31 − λ

)
=

(
−1

3
− 1

3
k13

)(
−1

3
− 1

3
k31

)
,

λ2 +
2

3
λk13 +

1

9
k2

13 =
1

9
+

2

9
λk13 +

1

9
k2

13,

where k13 = k31 is applied to obtain the second equation. Therefore by
comparing coefficients, the value of λ = 1

3
twice.

The eigenvalues of the Jacobian matrix J( 1
3
,0, 1

3
) is therefore equals to 1

3
, 1

3

and −1
3
− 1

3

(
k21 exp−( 1

3σ
)2 +k23 exp−( 1

3σ
)2
)

. This shows the fixed point is

Unstable since at least one of the eigenvalues is positive.
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2. When a = 1, the Jacobian matrix becomes

J(1,0,1) =


−2− k13 −1− φ12 −1− k13

0 −1− (φ21 + φ23) 0

−1− k31 −1− θ32 −2− k31

 ,
where φij = kij exp−

(
1
σ

)2
.

The characteristic equation is obtained by

|J(1,0,1) − λI| = 0

This implies that

0 = (−2− k13 − λ)

[
(−1− (φ21 + φ23)− λ) (−2− k31 − λ)

]
− (−1− k13)

[
(−1− (φ21 + φ23)− λ) (−1− k31)

]
.

It can be deduce from above that

0 = (−1− (φ21 + φ23)− λ) ,

=⇒ λ = −1− (φ21 + φ23).

or

0 = (−2− k13 − λ) (−2− k31 − λ)− (−1− k13) (−1− k31) .

Putting k13 = k31 into the above equation, we have

(−2− k13 − λ)2 = (−1− k13)2 ,

λ2 + 2(2 + k13)λ = (−1− k13)2 − (−2− k13)2,

λ2 + 2(2 + k13)λ+ (3 + 2k13) = 0.

Solving for λ, we have

λ =
−2(2 + k13)±

√
(4 + 2k13)2 − 4(3 + 2k13)

2

=
−2(2 + k13)±

√
(2 + 2k13)2

2

Therefore the value of λ can be computed firstly as

λ =
−2(2 + k13) + (2 + 2k13)

2
(B.4.1)

=
−4− 2k13 + 2 + 2k13

2
= −1
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and secondly as

λ =
−2(2 + k13)− (2 + 2k13)

2

=
−4− 2k13 − 2− 2k13

2
= −3− 2k13

The eigenvalues of the Jacobian matrix J(1,0,1) is therefore equals to −1,
−3− 2k13 and −1− (φ21 + φ23).
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