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Statistics only explains the variance within the data…

It does not explain emotions,

and it never will…
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Chapter 1

Introduction

1.1 Background and state of the art

1.1.1 Mass Spectrometry Imaging (MSI)

The mass spectrometer

Mass spectrometry  is  an analytical  technique which involves

the  use  of  an  advanced  instrumentation,  the  mass

spectrometer,  in  order  to  obtain  information  regarding  the

molecular  composition  of  a  specifc  sample,  such  as  the

presence and abundance of a great variety of molecules and

the structure of molecules of interest [1].

In  order  to  do  so,  the  mass  spectrometer  generates  mass

spectra,  via  the  ionization  of  the  molecules  present  in  the

sample  and  the  determination  of  their  mass-to-charge  ratio

(m/z) by the exploitation of electromagnetic felds [1].

The  instrument  is  composed  of  different  compartments:  a

sample  inlet  system,  an  ion  source,  a  mass  analyzer  and  a

detector. Each one of them is an independent unit: therefore, a

variety of mass spectrometers can be assembled, depending

on the application.
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The  ion  source is  the  chamber in  which  gas-phase  ions  are

generated from the sample.  There are  different  types of  ion

sources and each one of them uses a different technique to

generate ions. The most important influencing aspects of the

ionization  are  the  internal  energy  transferred  during  the

process  and  the  physico-chemical  properties  of  the analyte.

Some ionization techniques are very energetic and cause the

fragmentation of the analyte; other techniques are softer and

only  produce  ions  of  molecular  species.  Among  the  most

employed  ion  sources  are  ElectroSpray  Ionization (ESI)  [2],

Matrix-Assisted  Laser  Desorption/Ionization (MALDI)  [3],

Secondary Ion Mass Spectrometry (SIMS)  [4] and  Desorption

ElectroSpray Ionization (DESI) [5].

The  mass  analyzer is  the  compartment  of  the  mass

spectrometer  that  separates  gas-phase  ions  (obtained  from

the  sample  in  the  ion  source)  according  to  their  mass-to-

charge ratio (m/z). Each analyzer is characterized by different

parameters:  the  mass  range  of  measurement,  the  speed  of

analysis,  the  transmission  rate  (ratio  of  the  number  of  ions

reaching the detector to the number of ions entering the mass

analyzer), the mass accuracy and the resolving power (ability of

the analyzer of separating two ions with a small difference in

their m/z ratios, generating two distinct peaks in the spectrum).

9



Among the most employed mass analyzers are the quadrupole

[6],  the 2D and 3D  ion trap [7],  the  Orbitrap [8],  the  FT-ICR

(Fourier Transform - Ion Cyclotron Resonance)  [9] and the TOF

(Time Of Flight) analyzer [10].

Finally, after being generated in the source and traveling across

the  analyzer,  the  ions  hit  the  detector,  which  allows  the

generation of  an electric current,  directly proportional to the

amount of ions hitting the detector plate. The current is then

amplifed and converted to digital by the digitizer, which yields

the  mass  spectrum,  recording  the  presence  and  relative

abundance of ions [1].

The MALDI-TOF instrumentation

One  of  the  most  commonly  used  mass  spectrometers,

especially for imaging approaches, is the Matrix-Assisted Laser

Desorption/Ionization  -  Time  Of  Flight  (MALDI-TOF)  mass

spectrometer.  This  is  because  it  provides  a  good  balance

between the ease of the sample preparation and the versatility

of the instrumentation in performing the analysis. The MALDI

source,  in fact,  is  able to ionize a wide variety of  molecules

(proteins,  peptides,  lipids,  oligonucleotides,  polymers  and

inorganic  compounds),  and  this  makes  it  suitable  for  the

analysis of different compounds, from chemicals to biological

10



molecules.  The  TOF  analyzer  guarantees  high  speed  of

analysis,  high  versatility  in  terms  of  mass  range  and  high

transmission effciency.

In order to achieve the ionization through MALDI, the analytes

must be frstly dissolved in a solution containing a particular

chemical  compound,  the  matrix,  which,  when  the  solvent

evaporates,  co-crystallizes  with  the  analyte  molecules,

extracting them from the sample, resulting in a solid deposit on

the  target.  The  desorption  process  takes  place  in  the

spectrometer source under high vacuum. A laser (emitting light

at a certain wavelength) hits the sample with an intense pulse,

causing the detachment of some portions of this solid deposit:

this process is triggered by the fact that the matrix molecules

absorb energy from the laser and transfer this energy to the

analyte molecules, which are now in the gas phase, ionized.

The  TOF  (Time  Of  Flight)  mass  analyzer  separates  ions

according to their velocity, namely the time that ions take to

cover  the  length  of  the  flight  tube,  which  is  free  from

electromagnetic felds, under high vacuum. Ions generated by

the source are previously accelerated by a potential difference

applied between an electrode and the extraction grid. Every ion

has got the same electric  potential  energy,  which is  entirely

11



converted into kinetic energy: therefore the velocity of an ion is

inversely proportional to its mass-to-charge ratio (m/z).

The mass spectrum

The analyte molecules present in the sample are ionized in the

source  and  separated  according  to  their  m/z in  the  mass

analyzer.  The  detector  records  the  impact  of  the  ions  and

translates this into an electric signal, which is then converted

into digital by the digitize. The fnal output is a m/z x intensity

graph,  a  mass  spectrum  (Figure  1),  which  displays  the

presence and the relative abundance of molecules present in

the sample.

12

Figure  1: Example of a mass spectrum. The x-axis represents the mass-to-
charge ratio (m/z) of the molecules present in the sample, while the y-axis
represents the relative abundance of those molecules.



The MALDI-MSI approach

The MALDI-TOF mass spectrometric approach allows to obtain

a molecular profle, representative of the sample, which can be

employed for biomarker research aimed at diagnosis, patient

classifcation  or  disease  understanding.  This  approach,  also

referred  to  as  Mass  Spectrometry  Profling  (MSP),  is  mostly

suitable for the analysis of fluids (such as blood or urine) or

tissue  homogenates,  where  a  representative  aliquot  of  the

sample is analyzed by mass spectrometry.

However, molecular alterations occurring in small areas of the

tissue or changes in the localization of the molecules within the

tissue  section  are  lost  after  homogenization,  and  smoothed

away in retrieving the average molecular profle of the sample.

Mass Spectrometry Imaging (MSI) aims at overcoming these

limitations.

Mass Spectrometry Imaging entails the acquisition of one mass

spectrum for each pixel of a digitalized tissue section  [11]. In

this way, local changes are fully preserved in place and not lost

due  to  homogenization,  and  more  representative  molecular

profles can be extracted from regions of interest. After the MSI

analysis,  the spatial  localization of  the molecules of  interest

can be evaluated on-tissue by generating molecular  images,

13



which can be overlapped with histological cyto-morphological

information obtained from stained tissue sections [11,12].

1.1.2 The MSI data
The data obtained after a MSI analysis is structured as a “data

cube”, a tensor in which the two spatial dimensions (x and y

axes) of the digitalized tissue section are combined with a third

dimension consisting of the  mass-to-charge ratio (m/z) of the

molecules present within the tissue section [13].

For each m/z it is possible to display the spatial distribution /

localization of the molecule(s) of interest on tissue by coloring

the pixels according to the relative intensity of that m/z value in

the corresponding spectra. A subset of the original data cube

can be extracted, with spectra from specifc Regions of Interest

(ROIs).
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1.1.3 Spectral preprocessing
Before submitting the MSI data to the statistical analysis, the

spectral dataset must undergo a series of preprocessing steps,

aimed at flattening the inter-sample and intra-sample pixel-by-

pixel fluctuations in intensities due to sample preparation and

mass spectrometric instrumentation  [14]. In this way, the MS

data  is  adequately  prepared  for  statistical  analysis,  with  a

consequent enhancement of the biological information present

within the data [15-18].

For  instance,  when  on-tissue  digestion  is  performed  by

spraying trypsin onto the sample,  the enzyme activity  varies

throughout the tissue section, therefore releasing peptides in

different amount and affecting the corresponding intensity in

the spectrum [19]. In addition, matrix crystallization does not

occur in the same manner at each pixel: this affects the analyte

extraction process, which reflects onto the relative intensity of

the corresponding m/z values in the mass spectrum. Finally, in

the mass spectrometer, slight variations due to the electronic

nature of the instrumentation can occur: ions can be generated

in  a  different  way  depending  on  the  crystallization  of  the

matrix, the energy of the laser, the transmission effciency of

the analyzer, and the signal conversion by the digitizer [16,17].

15



Smoothing

Smoothing aims at discarding the fluctuations in the spectrum

due mainly to the electronic nature of the mass spectrometer

and impurities present within the sample  [16].  The shape of

the  peaks  results  in  being  poorly  defned  and  therefore  the

peak picking process can hardly discriminate the signal from

the  noise.  The  smoothing  process  enhances  and  eases  the

peak detection phase, since false positive peaks corresponding

to electrical noise are discarded (Figures 2 and 3).

The  smoothing  can  be  performed  by  employing  several

algorithms: 

• The Savitzky-Golay flter fts adaacent data points with a

low-degree polynomial and takes the central point of the

ftted  polynomial  curve  as  output;  since  it  does  not

distort the essential features in the spectrum, this flter

tends to fully preserve the intensity and the position of

the peak.

• The  Moving  Average method  defnes  a  window  which

slides along the spectrum and replaces each data point

with  the  average  of  the  data  points  contained  in  the

previous window.

16



• The Gaussian smoothing employs the Gaussian function

to  perform  smoothing,  the  strength  of  which  is

determined by the σ parameter.

17

Figure  2: Example of a raw mass spectrum. The electrical noise present in
the spectrum hinders the peak detection,  by  yielding false positive peaks
coming from the noise.



Baseline subtraction

The  baseline  of  a  spectrum  is  the  line  connecting  the  data

points  with lowest intensities,  on which the entire  spectrum

lays  [16].  A  high  baseline  is  essentially  related  to  electrical

noise and associated with chemical impurities in the sample.

This  hinders  the  estimation  of  the  true  intensity  of  a  peak,

compromising  the  fair  comparison  among  spectra.  The

baseline  subtraction  process  estimates  and  subtracts  the

baseline from the spectrum, by bringing the spectrum onto the

x-axis,  allowing  for  a  more  reliable  estimation  of  the  peak

intensities  and  for  more  fair  comparisons  among  peaks  of

different spectra (Figures 4 and 5).

18

Figure  3: Example of a mass spectrum, after the application of a 21-point
Savitzky-Golay smoothing flter. Peaks can now be more easily defned.



Several algorithms can be employed for this task: 

• The TopHat operator was designed for the extraction of

small features from an image, based on the assumption

that  features  of  interest  should  stand  out  in  a  noisy

environment.  This  algorithm  computes  dilation and

erosion operations, in order to defne the background of

the spectrum, and fnally it subtracts the result from the

original spectrum.

• The  Convex  Hull method  defnes  the  baseline  as  a

simple  convex  curve  (a  hull)  connecting  the  two

extremities of the spectrum. It is not a robust method,

since  it  does  not  take  into  account  local  baseline

variations,  which  can  lead  to  the  loss  of  informative

portions of the mass spectrum.

• The  Median flter estimates the points  of  the baseline

curve by employing a moving median, in which a data

point is the median of the previous window.

• The  Iterative  Convolution algorithm  estimates  the

background of a spectrum by erasing the peaks from the

spectrum by the use of a Gaussian flter, the amplitude

of which can be defned as σ. The point-wise minimum

of the background curve is taken as an estimation of the

19



baseline,  which  is  then  subtracted  from  the  original

spectrum.

20

Figure 4: Example of baseline estimation on a raw mass spectrum.

Figure 5: Example of a mass spectrum after undergoing baseline subtraction
with the TopHat algorithm.



Normalization

The  normalization  of  a  mass  spectrum  consists  in  the

multiplication of the absolute intensities in the mass spectrum

by a scaling factor, which results in an intensity axis broadening

or  narrowing  [16,18].  The  intensity  scale  strongly  depends

upon the analog-digital conversion performed by the digitizer

and  the  vendor  of  the  instrument:  for  this  reason,  it  is

measured  in  “arbitrary  units”.  The  aim  of  normalization,

therefore, is to bring all the intensity values down to a common

scale, in order to allow for more fair and vendor-free spectral

comparisons.

• The Total Ion Count (TIC) method divides the spectrum

intensities by the sum of all the intensity values for that

spectrum  (i.e.  the  total  ion  current),  by  generating

spectra  with  the  same  area  under  the  curve.  The

assumption  behind  the  TIC  normalization  is  that  the

spectra have a similar area and comparable number of

peaks.  Therefore,  it  is the most suitable normalization

method for the maaority of the MSI datasets.

Artifacts  can be generated when the assumptions are

not  satisfed,  for  example  in  the  presence  of  a  very

intense ion in the spectrum (such as insulin for pancreas
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datasets):  in  this  case,  the  TIC  for  that  spectrum

corresponds almost entirely to the intensity of that peak,

resulting in a consequent  suppression of  all  the other

signals. In order to overcome this limitation, either a TIC

with  the  exclusion  of  that  peak  or  another  algorithm

(such as the median) can be used for normalization [18].

• The  Root  Mean  Square (RMS)  method  divides  the

spectrum intensities by the square root of  the sum of

the  intensity  values  for  that  spectrum  squared.  This

method  is  mostly  appropriate  for  use  with  datasets

containing  spectra  that  are  expected  to  have  small

variations  in  the peak intensities.  As  for  the TIC,  this

method  can  generate  artifacts  in  the  presence  of

prominent peaks [18].

• The Median method divides the spectrum intensities by

the median intensity of that spectrum. This method has

been found to be the most robust against the presence

of  very  intense  peaks  within  the  mass  spectrum,

therefore  more  robust  against  peculiar  conditions.

However,  the  results  obtained  after  median

normalization  depend  on  the  type  of  noise  in  the

spectra:  if  spectra  do  not  contain  a  fully  symmetrical
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noise  profle,  this  method  will  generate  signifcant

artifacts [18].

Peak picking

The peak picking extracts the information regarding the peaks

present within the mass spectrum, along with the intensity of

those  peaks  [16,20] (Figure  6).  Different  algorithms  are

employed for  peak picking [21]:  some of  them estimate the

spectrum noise and select only the peaks that extrude from the

noise  at  a  certain  signal-to-noise  ratio (S/N),  other  methods

(such as the Orthogonal Matching Pursuit) estimate how much

a  peak  resembles  a  Gaussian  curve  with  a  certain  width

[22,23].

23

Figure 6: Example of a peak picking process performed on a mass spectrum.
Only the information regarding the peak m/z and intensity is retained for the
statistical analysis.



Finally, after peak maxima have been aligned to each other in

order to account for fluctuations in the peak values among the

spectra of the dataset related with the peak picking process,

the data  is  ready to  be submitted to  the  statistical  analysis

[22].

1.1.4 Machine learning and Mass Spectrometry 
Imaging
Machine learning is the branch of computer science aimed at

the employment of algorithms that learn features from known

data  and  make  predictions  onto  new  unknown  data  based

upon its features [24-27]. Machine learning applications entail

both  unsupervised  and  supervised  approaches,  according  to

the data being unlabeled and labeled respectively, in order to

discover and highlight hidden patterns within the data (through

clustering) or to assign an unknown observation to a category

(through classifcation and regression) [24-27].

Machine  learning  is  applied  in  a  great  variety  of  felds

nowadays  and  can  be  applied  also  to  MSI  data  for  clinical

purposes [13].
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Unsupervised learning

Unsupervised learning takes unlabeled data as input, i.e. data

in which the outcome is not known. By the exploitation of the

intrinsic  information  present  within  the  data,  clustering

operations  are  performed  in  order  to  highlight  hidden

structures  and/or  patterns  within  the  data,  by  estimating

similarities among data observations, according to the pairwise

distance among each other  [28]. However,  these approaches

can be used also in a partially supervised manner,  in such a

way that the outcome of each observation is preserved during

the unsupervised analysis but not taken into account by the

algorithm,  which  performs  its  operations  in  blind,  or  by

providing a defned number of clusters to obtain.

Hierarchical  clustering  analysis  (HCA) is  an  agglomerative

method  that  estimates  the  pairwise  distance  among  data

observations and generates a dendrogram (Figure 7), in which

the observations are grouped together and placed under the

same nodes (i.e. the aoint point between clusters) according to

the  similarity  among  each  other  [29,30].  Being  an

agglomerative method, the algorithm starts by evaluating the

individual data observations and grouping them in a bottom-up

fashion, to generate clusters which, in turn, group with other

clusters based upon their degree of similarity. Additionally, the

25



dendrogram can be cut at a certain height, in order to generate

a  defned  number  of  sub-clusters,  which  can  resemble  a

particular situation under investigation.

In mass spectrometry imaging, data observations correspond

to spectra, and spectra correspond to pixels: therefore, pixels

corresponding to spectra under the same node can be colored

in the same way, in such a way that a segmentation image is

generated [31,32]. This unsupervised MS segmentation image,

by resembling the dendrogram and allowing the visualization of

spectral similarity on tissue, can highlight areas of interest on a

molecular  basis (Figure  8).  Given that the analysis has been

26

Figure 7: Example of a dendrogram.



carried out in an unsupervised manner,  the areas of interest

highlighted  by  the  HCA  on-tissue  visualization  are  depicted

without the a priori knowledge regarding the presence of such

areas in the tissue section. Therefore, this process allows the

MS  imaging  approach  to  aid  the  diagnostic  procedure  by

bringing areas of tissue to the attention of the pathologist and

by highlighting the molecular  changes even if  not correlated

with cyto-morphological features [31,32].

27



K-means clustering aims at partitioning the data observations

into  k clusters,  in  which  each  observation  belongs  to  the

cluster with the closest mean [33-35]: the algorithm fnds the

best centroids by iteratively assigning data points to clusters

28

Figure  8:  Example  of  an  on-tissue  hierarchical  clustering  [47].  Pixels
corresponding to spectra under the same nodes are colored in the same way,
generating  a  MS  segmentation  image  which  depicts  tissue  sub-areas
according to the spectral similarity.



based upon the current centroids (points at the center of the

cluster) and adausting the new centroids (Figure 9).

The euclidean distance is used as metric and the variance is

used as a measure of scatter: these two parameters may not

be suitable for some type of  data.  The number of clusters  k

must  be  provided  a  priori for  initializing  the  clustering

operation:  this  implies  that  a  number  of  expected  clusters

must  be  known  and  an  inappropriately  defned  k may  yield

poor  results.  Since  the  clustering  process  relies  on  iterative

optimization  (heuristic  algorithms),  a  convergence  to  a  local

minimum may produce non-defnitive results, that may lead to

misleading  conclusions  on  the  data;  to  overcome  this

limitation, however, it is possible to run it multiple times with

different starting conditions.
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As  for  the  Hierarchical  Clustering  Analysis,  in  Mass

Spectrometry  Imaging  it  is  possible  to  generate  a

segmentation  image  that  resembles  the  clustering.  Pixels

corresponding to spectra within the same cluster are colored in

30

Figure  9:  Graphical  representation explaining the concept of  the  k-means
clustering.  The data  observations of  the  initial  dataset  are  placed in  the
feature space according to their  value (a).  Two symmetrical centroids are
identifed  from  the  dataset  (b),  around  which  to  group  the  closest
observations (c). New more representative centroids are identifed after the
frst  clustering step (d)  and observations are grouped again around them
according to their distance to the centroids (e). New centroids are therefore
identifed, providing an adjustment to the previously identifed centroids (f).
The process iterates until  it  reaches convergence,  i.e.  the newly  identifed
centroids  are  the  same  as  the  previous  ones.  [Picture  taken  from  the
Stanford University website]

http://stanford.edu/~cpiech/cs221/img/kmeansViz.png


the same way, identifying a defned (k) number of sub-regions

on tissue, based upon spectral similarity (Figure 10).

31

Figure 10: Example of an on-tissue k-means clustering, with a value of k set
respectively to 2, 3, 4 and 5. Pixels corresponding to spectra grouped around
the  same  centroid  are  colored  in  the  same  way,  generating  a  MS
segmentation  image  which  depicts  the  expected  (k)  tissue  sub-areas
according to the spectral similarity.



Principal  Component  Analysis  (PCA) aims  at  reducing  the

dimensionality  of  the  data  while  preserving  the  information

present  within  the  data  [36-38].  Given  that  MS  datasets

contain  a  number  of  features  that  ranges  from hundreds to

thousands of  peaks,  PCA provides an overview of  the entire

spectral dataset, by generating new variables (called Principal

Components,  PC) from the linear combination of the spectral

features. The PCs are generated orthogonally to one another, in

such a  way that  no redundancy among the new variables is

present and from the frst to the last PC a decreasing amount of

variance is retained from the original dataset. In this way, by

looking  at  the  frst  Principal  Components,  an  overview  of

almost the entire information present within the data can be

obtained. The output of a PCA consists of a Score Chart (Figure

11) and a Loadings Plot  (Figure  12).  The former places data

observations in a 2D or 3D graph according to the score of the

PCs, allowing to evaluate the degree of similarity among the

spectra  by  visualizing  their  distribution/clustering  in  the

Principal  Component  space.  The  latter,  by  resembling  the

distribution  of  the  former,  allows  to  evaluate  the  most

influencing  feature  which  contribute  more  in  driving  the

distribution/clustering of data observations in the Score Chart.
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Despite being unsupervised,  the PCA can be used also as a

partially supervised method: in fact, it is possible to color the

data points in the chart according to the outcome, in order to

evaluate  if  the  data  has  intrinsic  properties  to  discriminate

between different conditions/classes.

In this way, by the combination of the two plots, not only it is

possible to determine if the data is capable of discriminating

among different classes,  but also putative signals of interest

can be highlighted for further investigation [13].
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Figure 11: Example of a PCA score chart, in which each point corresponds to
a spectrum in the MSI dataset. In this example, PCA is used as a partially
supervised data mining approach: two classes are loaded and displayed in
two different colors. The capability of the data to discriminate between the
two classes can be assessed.



In Mass Spectrometry Imaging,  the results of  a  PCA can be

translated into a MS segmentation image, which resembles the

distribution  of  the  data  points  according  to  the  Principal

Components. The pixels, in fact, are colored according to the

score  of  the  Principal  Component  computed  onto  the
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Figure 12: Example of a PCA loadings plot, in which each point corresponds
to a spectral feature (m/z). The most influencing peaks can be addressed as
the most isolated points in the plot.



corresponding spectrum (Figure  13).  Therefore,  sub-areas of

interest  can  be  visualized  on-tissue  based  upon  spectral

similarity only, since Principal Components with similar score

denote similar spectra.
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Figure  13:  Example  of  an  on-tissue  PCA,  in  which  each  pixel  is  colored
according  to  the  score  of  the  Principal  Component  associated  with  the
corresponding spectrum. In this fgure, the results of the PCA analysis are
displayed on-tissue: the scores of the PC 1, 2, 3 and 4 are plotted.



Supervised learning

Supervised methods aims at  learning  from labeled data,  i.e.

data in which the outcome is known, in order to exploit known

features  to  make  predictions  on  new  unknown  data

[39,40] (Figure  14). This resembles, mostly, the classifcation

problem, in which algorithms, referred to as classifers, learn

from features provided by labeled data in order to predict the

outcome of unknown observations based upon their features

(which  correspond  to  m/z peaks  in  the  mass  spectrometry

imaging dataset)  [39,40]. When a large number of features is

present, a feature selection step may be required in order to

make classifers faster and more reliable [41-43].

Regression is another widely employed supervised statistical

approach, in which the response variable is not discrete, but

continuous  [39,  40].  In  a  similar  way  of  what  happens  for

classifcation,  in  regression,  models  predict  the  value  of  an

outcome variable based upon features that have been learned

in the training phase. 

Feature  selection Feature  selection  (also  referred  to  as

variable  selection  or  attribute  selection)  is  the  process  of

retaining only the most informative features, by discarding the

least  relevant  ones,  which  are  either  invariant  or  provide
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redundant  information  within  the  dataset  [41-43].  When

classifer algorithms are trained with the employment of all the

features of the training dataset, the risk that arises is the non-

translatability  of  the  trained  classifcation  system  on  other

datasets: in fact, the algorithm, not only results in being more

complex  in  its  construction,  but,  by  relying  upon  all  the

features  of  the  training  set  for  computing  classifcation,

becomes  highly  specifc  for  the  training  data  and  results

incapable  of  performing  classifcation  on  other  unknown

datasets. In this case, the classifer suffers from overftting, by

excessively  ftting  the  training  data.  Feature  selection,

therefore, aims at reducing the complexity of trained classifers

and  their  tendency  of  suffering  from  overftting,  and  at

speeding  up  the  computations  by  alleviating  the  overhead

provided by possible confounding factors within the features.

Therefore, the issues related with the “curse of dimensionality”

(related  to  the  presence  of  a  high  amount  of  features,  i.e.

dimensions,  which  leads  to  the  requirement  of  many

observations in the training dataset to account for the possible

presence  of  the  highest  amount  of  combinations  of  feature

values possible) are overcome and the results provided by the

selected  subset  of  informative  features  are  subaected  to  a

translatable  interpretation  by  researchers.  There  are  three
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types of feature selection methods [42]: flter methods are fast

and employ  the use  of  a  proxy measure  to  select  the  most

influencing features,  however by not taking into account  the

possible  relationship  between  features;  wrapper  methods

employ  predictive  models  to  evaluate  the  impact  of  the

features onto the classifcation which is directly correlated with

the  variable  importance  and  takes  into  account  possible

relationships  between  features;  embedded  methods perform

feature selection while constructing the predictive model.

Classification problem In the classifcation problem paradigm,

the frst phase, the training phase, allows classifers to build

the mathematical formula by taking labeled data as input, to

discriminate  with  different  techniques  among  the  provided

categories.  For  example,  Support  Vector  Machines ft  a

hyperplane,  with  the  aid  also  of  kernel  functions,  aiming  at

maximizing  the  sum  of  the  absolute  distances  between  the

separating hyperplane itself and the closest points belonging

to  each  class  (i.e.  the  so-called  margin)  [44].  K-Nearest

Neighbors establish the category an observation belongs to by

calculating  the  distance  between  the  observations  and

evaluating  the  most  frequent  category  among  the  k closest

observations  [45].  Random  Forests build  a  multitude  of

decision trees,  in each of which thresholds of feature values
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determine whether  the observation  belongs  to  a  class or  to

another: each tree predicts the outcome of an observation and

the result is the mode class of all predictions [46].

In  the  validation  phase,  the  hyper-parameters  of  the  model

(such as the trade-off parameter C in a SVM) undergo tuning, in

order  to  estimate  the  best  combination  for  maximizing  the

classifcation capability of the model itself.

Finally,  in  the  test  phase,  the  classifer  performances  are

evaluated by the predictions made onto partitions of the same

training  set  (cross-validation)  or  onto  an  external  labeled

dataset  (external  validation).  In  (k-fold)  cross-validation,  the

training set is subdivided into k subsets, of approximately the

same size: at each iteration, the learning process is repeated

by employing one subset for testing and the other subsets for

training;  after  k  iterations,  the  results  are  average  to  get  a

single  estimation  of  the  behavior  of  the  classifer.  In  the

external validation,  an independent validation set is  given to

the  classifer,  to  assess  its  capability  of  correctly  classifying

unknown data.  The discrepancy between the predicted class

and the actual class gives the performance parameters of the

model,  such  as  sensitivity  (True  Positive  Rate,  TPR,  i.e.  the

proportion  of  positive  subaects  that  are  really  positive),
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specifcity  (True  Negative  Rate,  TNR,  i.e.  the  proportion  of

negative subaects that are really negative), Positive Predictive

Value (PPV, i.e. the proportion of positive test results that are

associated  with  really  positive  subaects)  and  Negative

Predictive  Value  (NPV,  i.e.  the  proportion  of  negative  test

results that are associated with really negative subaects). This

phase  denotes  the  generalization  capability  of  the  inferred

model, i.e. the capability of the model in being applied to a new

dataset.

At the end of the process, the classifer can be employed for

making predictions on new data, which can be also weighed

according  to  the  performance  parameters  evaluated  in  the

previous phases.
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Figure 14: Graphical representation of the classifcation problem concept. A
classifer algorithm defnes a mathematical formula that links the values of
the features of  the data points to their  outcome, in  order  to exploit  such
features  for  future  predictions  on  unlabeled  data.
The fgure represents an example Support Vector Machine classifer: features
are  centered  and  scaled  (subtracted  by  the  mean  and  divided  by  the
standard deviation) and data observations are placed in the feature space
according to the values of the features (represented onto the x and y axes).
The color represents the belonging class of the data observations (green for
benign and red for malignant patients), while the black curve the separating
hyperplane of the Support Vector Machine classifer. Gamma represents a
hyper-parameter of the SVM, i.e. the influence of a single training example
[Picture taken from the Stanford University website]

http://openclassroom.stanford.edu/MainFolder/courses/MachineLearning/exercises/ex8materials/ex8b_10.png


In Mass Spectrometry Imaging, an on-tissue classifcation can

be  obtained  by  generating  a  MS  segmentation  image

resembling the classifcation by coloring pixels according to the

predicted class (Figure 15) (Chapters 3 and 4).
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Figure  15:  Example  of  an  on-tissue  classifcation,  in  which  each  pixel  is
colored according to the predicted class of the corresponding spectrum. In
this example, red pixels correspond to malignant spectra, while green pixels
to benign spectra (Chapter 4).



1.2 Scope of the thesis
The work  performed  during  this  three-year  PhD  proaect  has

been focused on the development of an easy-to-use software

tool  for  the statistical  analysis of  clinical  Mass Spectrometry

Imaging  (MSI)  data,  in  particular  for  patient  classifcation,

aimed at aiding the diagnostic procedure in the daily clinical

practice.

Chapter  2:  evaluation  of  the  state-of-the  art  application  of

MALDI-MSI  in  the  clinical  environment,  with  particular

attention  towards  spectral  preprocessing,  machine  learning

algorithms  (both  unsupervised  and  supervised  learning)  and

software implementation.

Chapter  3:  a  frst  application  of  state-of-the-art  machine

learning classifcation algorithm (SVM), coupled with a wrapper

feature selection method (RFE), for the classifcation of thyroid

cytological smears via MALDI-MSI; frst proposal of the pixel-

by-pixel classifcation concept.

Chapter  4: development of a full software program (wrapped

under a simple and intuitive graphical user interface) for the

generation  and  application  of  an  ensemble  classifcation

system,  which  combines  different  classifers  (with  different
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weights)  for  the  pixel-by-pixel  classifcation  of  biopsies  via

MALDI-MSI.

Chapter  5: development of an application, with a simple and

intuitive graphical user interface, for the generation of G-code

method fles for the iMatrixSpray device, for the preparation of

samples for the MALDI-MSI analysis.
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ABSTRACT

Introduction:  Despite  the  unquestionable  advantages  of

Matrix-Assisted  Laser  Desorption/Ionization  Mass

Spectrometry Imaging in visualizing the spatial distribution and

the relative abundance of biomolecules directly  on-tissue, the

yielded  data  is  complex  and  high  dimensional.  Therefore,

analysis and interpretation of this huge amount of information

is  mathematically,  statistically  and  computationally

challenging.

Areas covered: This article reviews some of the challenges in

data elaboration with particular emphasis on machine learning

techniques employed in clinical applications, and can be useful

in general as an entry point for those who want to study the

computational  aspects.  Several  characteristics  of  data

processing  are  described,  enlightening  advantages  and

disadvantages.  Different  approaches  for  data  elaboration

focused  on  clinical  applications  are  also  provided.  Practical

tutorial  based  upon  Orange  Canvas  and  Weka  software  is

included, helping familiarization with the data processing.

Expert  commentary:  Recently,  MALDI-MSI  has  gained

considerable  attention  and  has  been  employed  for  research

and  diagnostic  purposes,  with  successful  results.  Data
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dimensionality  constitutes  an  important  issue  and  statistical

methods for  information-preserving data reduction represent

one of the most challenging aspects. The most common data

reduction methods are characterized by collecting independent

observations into a single table. However, the incorporation of

relational  information  can  improve  the  discriminatory

capability of the data.
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1. Introduction

Matrix-Assisted  Laser  Desorption/Ionization  –  Mass

Spectrometry Imaging (MALDI-MSI) is a powerful  technology

that  allows  the  evaluation  of  the  spatial  distribution  and

relative  abundance  of  biomolecules  directly  on-tissue [1,2],

without the need of any labeling or extraction processes that

could  compromise  the  molecular  structure  and  mask  the

presence of altered expression of the analytes of interest, i.e.

when these alterations are present in a small area of the tissue.

Moreover,  the  fact  that  MALDI  is  capable  of  ionizing  a

widespread  range  of  molecules  makes  it  suitable  for

explorative  research,  since  it  does  not  require  any  prior

knowledge regarding the chemical nature of the molecules to

be  investigated.  For  these  reasons,  MALDI-MSI  has  been

widely employed in several felds with successful results, from

oncology and immunology to forensics and pharmacology [3-

8]. Despite all the unquestionable advantages of MALDI-MSI,

the  yielded  data  results  in  being  complex  and  high

dimensional, in terms of amount of information and features to

be  extracted,  even  from  a  single  tissue  slice.  Therefore,

computational analysis of MSI data and mining procedures are

challenging to be met [9,10]. The dimensionality of the data is
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strictly  dependent  on  the  spatial  resolution  and  the  mass

resolution: the former is related to the capability of detecting

small features in the examined tissue section, but requires a

higher number of mass spectra to be acquired by lowering the

distance  between  two  consecutive  pixels;  a  high  mass

resolution,  on  the  other  hand,  allows  for  a  better  peak

resolution,  thus  for  a  better  identifcation  of  putative

biomarkers  by  providing  more  accurate  mass  values,  but

increasing the sample rate (namely, the number of data points

per spectrum) leads to higher fle sizes,  more challenging in

terms  of  storage  and  computational  purposes  [11,12].

Moreover, another promising strategy could be the integration

of proteomic data with other different sources of information

(such as genetics and genomics, metabolomics, and histology),

or even the use of relationships built on proteomic profles to

predict  the  disease  membership  group  of  some  patients,  in

particular  classifcation  problems,  as  it  has  been  proved  by

applying an effcient inferential strategy for genomics [13-15].

One of the aims of this article is to provide the reader with a

brief  overview  onto  the  way  in  which  the  MSI  data  can  be

processed  and  elaborated,  with  particular  attention  to

biological  translatability.  Many pieces of  software have been

employed for  the purposes described throughout the article,
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and they comprise both software that requires programming

and  software  that  is  ready  to  be  used.  Among  the  former,

Matlab (http://uk.mathworks.com/products/matlab) [16] and R

(https://www.r-proaect.org/) [17] are the most commonly used,

since  custom  scripts,  along  with  the  presence  of  lots  of

additional  packages,  can  provide  the  ability  to  achieve

potentially every aim. This, in turn, guarantees the possibility to

tweak  the  analysis  by  editing  every  parameter,  combining

different  approaches,  and  so  on.  The  fact  that  the  software

requires  the  knowledge  of  the  programming  language,

however,  makes its usage harder,  and steps of quality check

have  to  be  performed  to  assess  the  reliability  of  the  script.

Commercial  software,  such  as  ClinProTools

(https://www.bruker.com/service/support-upgrades/software-

downloads/mass-spectrometry.html) [18] or SCiLS Lab [19], on

the  other  hand,  can  provide  a  very  clean  and  intuitive  user

interface and perform analyses of  high quality,  but  they can

often  only  process  data  produced  by  instruments  of  that

particular brand and they lack customizability. The presence of

a  variety  of  software  for  statistical  analysis  can  extend  the

power of a MALDI-MSI analysis, by yielding more robust and

reliable results. In order to be able to employ other software,

spectral fles and/or peak list matrix fles must be exported in a
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more  common  fle  format,  to  be  imported  into  pieces  of

software of more general use. Mass spectra can be exported

more commonly as imzML fles [20], while peak list matrices

can  be  exported  as  comma  separated  values  fles.  Orange

Canvas and Weka open-source software will be considered in

this article. Orange Canvas [21,22] aims to be simple to use,

highly customizable, and versatile at the same time: a graphical

user  interface makes it  easy  to  perform statistical  analyses,

while preserving the capability to tweak the analysis by setting

many parameters  and  allowing  the  scripting  through Python

programming  (http://orange.biolab.si/toolbox/)  [23].  Weka

[24,25] is another example of free and open-source software

aimed  at  performing  statistical  analysis  on  data  matrices,

focused on machine learning applications. Like Orange Canvas,

it  can  be  expanded  with  custom  scripts  written  in  Java,

allowing  for  a  more  customizable  usage.  Throughout  this

article, in the “Tutorial” sub-sections (3.1.2, 3.2.2, and 3.3.2),

an  example  workflow  is  presented,  in  order  to  provide  the

reader with a starting point for a statistical analysis of MALDI-

MSI  data  with  the  aforementioned  software.  Among  other

pieces  of  software  that  can  be  used  to  perform  statistical

analysis of high quality, Rapid Miner [26] can be cataloged as a

software  with  a  clean  and  intuitive  user  interface  allowing
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extensive tweaking of algorithm parameters and analysis at the

same time. It has in fact been employed in several applications

using mass spectrometric data [27,28]. In this article, we will

account for three main points. (1) At frst, the structure of the

data obtained from a MALDI-MSI analysis is explained, in order

to  make  the  reader  aware  of  the  needs  and  problematics

related to the data and its processing, which is then presented

more  in  detail.  (2)  Once  the  data  has  been  processed  to

guarantee reproducibility and avoid artifacts, the data mining

and elaboration phase is described by highlighting three of the

most  common  processes  for  solving  clinical  problems:

clustering,  feature  selection,  and  classifcation.  (3)  For  each

process, the basic statistical concepts are provided, along with

examples of applications in the clinical practice and a tutorial

to achieve the proposed aims via Orange Canvas and Weka.

2. MALDI-MSI data

2.1. Data preprocessing

Raw  data  collected  after  a  MALDI-MSI  analysis  is  de  facto

made  of  individual  and  independent  spectra,  which  are

generally  unaligned and noisy,  due to several  factors related
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with  the  electronic  nature  of  the  instrument,  sample

heterogeneity, and sample preparation. In fact, the instrument

does  not  perform  the  same  way  through  time,  and  sample

preparation and type can affect the quality of the obtained data

[29]. This leads to fluctuations in the measured masses and in

the  in  situ extraction  of  the  analytes  that  could  generate

artifacts,  hindering  the  discovery  process.  Spectral

preprocessing  is  aimed  at  reducing  both  technical  and

analytical variability or artifacts, thus allowing fair comparisons

among  spectra  acquired  within  the  same  analysis  and  in

distinct  analyses,  in  order  to  provide  a  more  reliable

elaboration of the data [30,31].

2.1.1 Smoothing

As  previously  mentioned,  raw  spectra  present  a  quite

consistent amount of noise, consisting of electrical background

signal of the instrument itself and chemical noise coming from

impurities in the sample. The shape of the peaks is therefore

altered and  peak picking algorithms struggle to defne peaks

out  of  the  noise  in  the  feature  extraction  phase  [31].  The

smoothing process discards the fluctuations in the spectrum

profle related to the noise, allowing for a more reliable  peak

picking after yielding more defned peaks. This is a critical step,
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since aggressive smoothing can lead to information loss due to

the  possible  removal  of  low-intensity  signals  or  unresolved

peaks.  The  most  employed  smoothing  algorithm  is  the

Savitzky-Golay  flter,  which  is  able  to  fully  preserve  the

intensity  and  the  width  of  peaks.  The  flter  fts  subsets  of

consecutive data points with a low-degree polynomial function

using the linear least squares method in order to straighten the

noisy line of the spectrum [32].

2.1.2 Baseline subtraction

The baseline of a spectrum is the line connecting points with

lowest  intensities  on  which  the  entire  spectrum  lays.  The

baseline is again made of electrical and chemical background,

which  in  turn  hinders  the  feature  extraction  process  (peak

picking) by  altering  the  peak  intensities.  The  baseline

subtraction process brings the spectrum onto the x-axis, for a

more  reproducible  peak  picking [31].  The  TopHat algorithm

uses the morphological operations of erosion and dilatation to

remove the baseline of a spectrum. The  iterative  convolution

algorithm,  on  the  other  hand,  iteratively  fts  a  polynomial

function in such a way that, for each iteration, the values of all

the data points that are above the polynomial are replaced with

the value of the polynomial itself; the algorithm stops when the
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change between two consecutive iterations is smaller than a

chosen  threshold  or  when  the  set  number  of  iterations  is

reached [33].

2.1.3 Normalization

Normalization is  the process that  multiplies  all  the intensity

values in the mass spectrum by a scaling factor (1/f), resulting

in a broadening or narrowing of the intensity axis. This ensures

reproducible  comparisons  among  spectra  by  adausting  the

intensity axis to a common scale. It is a crucial step, since it

can introduce artifacts that mislead the interpretation of  the

results [34].

f =(∑
i=1

n

|y i|
p
)

1
p

Before performing normalization, a transformation of the data

might be necessary in order to flatten the differences in the

variance  of  all  the  peak  intensities  and  to  make  the  data

homoscedastic  (i.e.  with  equal  variances  among  different

classes/groups)  and  normally  distributed.  Square  root  and

logarithm  of  the  peak  intensities  have  been  proposed  for

achieving  this  aim  [35].  The  most  employed  normalization

algorithm is the total ion count (TIC) method (a p-norm with p =
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1) (the p-norm of a vector is defned as the 1/p root of the sum

of  all  the elements of  the vector at  the power of  p):  all  the

intensities of each spectrum in the dataset are divided by the

spectrum total  current (i.e.  the sum of all  the intensities),  in

such a way that each spectrum has the same integrated area

under  the  curve  (equal  to  1).  This  method  is  more  suitable

when comparing spectra with similar number of signals but can

introduce artifacts if  there is a compound that is much more

present than the others (such as insulin in pancreas), since the

TIC normalization  would  result  in  the suppression of  all  the

other signals in this case. To overcome these limitations, the

normalization  can  be  performed  either  excluding  the  most

intense peak(s) from the TIC or using only the most intense

peak(s) as TIC [34].  The  root mean square algorithm divides

the spectrum by the square root of the sum of  the intensity

values squared. It is again based upon the assumption that the

intensities  of  all  peaks  across  the  dataset  are  quite  similar,

thus it can suffer from artifacts generated by the presence of

intense  signals  [34].  The  median normalization  divides each

spectrum  by  the  median  of  the  intensity  values  in  the

spectrum. This method has been found to be more robust to

different  spectral  pre-processing  methods  and  to  different
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peak intensities,  and to  suppress  the artifacts  generated  by

high-intensity peaks [34].

2.1.4 Peak picking and alignment

Once the preprocessing has ensured that the data has been

purifed  from  analytical  variability  coming  from  the  sample

content and the instrument's nature, the peak picking extracts

the features that characterize the spectrum, namely, the list of

the mass-to-charge (m/z) values of the signals along with their

intensities  or  areas  under  the  curve.  This  feature  extraction

process  leads  to  a  consequent  reduction  of  the  data  that

makes algorithms computationally  faster  and more effcient.

The maaority of the algorithms employed for this task make use

of  a  function  to  estimate  the  noise  (e.g.  the  median  of  the

absolute deviation of points in a window) in order to choose

only the local maxima with a signal-to-noise ratio over a certain

threshold  that  come  out  from  the  noise  [36].  However,  this

approach  is  prone  to  generate  false  positives,  due  to  the

diffculty  in  discriminating  the signals  from the  noise  and to

some differences in the baseline across the spectrum [36]. In

order to overcome possible artifacts coming from picking false

positive peaks which belong to the noise, new methods (such
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as  the  Orthogonal  Matching  Pursuit  (OMP))  have  been

developed in order to evaluate the shape of a peak (through a

mathematical  function)  rather  than  its  intensity.  The  OMP

algorithm models the peaks as shape functions (e.g. Gaussian

curves), with a high level of robustness to variations in the peak

shape and symmetry [9]. In order to prevent slightly analytical

variations in the m/z values from being seen as distinct peaks,

all peak values must be aligned (to a reference list or to each

other),  to  ensure  more  consistent  and  coherent  results  by

selecting the exact  same peak across the dataset.  The best

way to achieve this is to align the peaks to a reference list of

peaks,  that  can  be  constituted,  e.g.,  by  the  peaklist  of  the

average spectrum of the dataset [37].

2.2. The data cube

An MSI dataset is structured as a “data cube” (Figure 1), which

is the result of the acquisition of one mass spectrum for each

pixel of a digitalized tissue image. Therefore, for each spatial

coordinate,  the  presence  and  the  relative  amount  of

biomolecules are recorded by the mass spectrum itself. On the

other  hand,  when  considering  a  m/z value  of  interest,  the

spatial distribution of the corresponding compound (with that

specifc m/z) can be displayed by coloring each pixel according
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to the intensity (i.e. relative abundance) of that m/z value in the

related  spectrum.  Putative  regions  of  interest  can  be

highlighted by a specifc localization of the selected analyte(s)

on-tissue.
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Figure  1:  MALDI-MSI  data  cube.  The  x  and  y  axes  represent  the  spatial
coordinates of the 2D digitalized tissue image (a human cerebellum tissue
section is shown as an example); the z-axis represents the mass-to-charge
(m/z) values in the acquired spectra. For each m/z value in the spectrum, a
2D molecular  image  is  computed by  coloring  the  pixels  according  to  the
relative abundance (intensity of that m/z value) of the selected compound
across the tissue section.



3. Data elaboration

After preprocessing, which has discarded most of the technical

and analytical variability within the data, the spectral dataset

(in the form of  the data cube) is submitted to the statistical

analysis.  In  this  section,  machine   learning approaches  are

proposed to solve clinical problems, arising from the needs in

the daily clinical practice, and examples of clinical applications

are reported, to make the reader aware of the potentiality of

the MALDI-MSI technology in the clinic.  Machine  learning is

the  branch  of  computer  science  comprising  a  series  of

algorithms  aimed  at  learning  features  from  data  [38]  and

subsequently returning the results of the inquiry performed by

exploiting patterns or regularities [39] in the data [40-42]. This

approach  is  widely  employed  in  several  felds  requiring

predictions from provided data, e.g. fnance, computer vision,

marketing,  recommender  systems,  sentiment  analysis,  and

search engines [43].  In  biotechnology,  machine learning has

been  recently  implemented  in  numerous  applications,

including  genetics  and  genomics  [14,44]  and  proteomics

[27,45],  primarily  aiming  at  fnding  patterns  in  the  data  for

regression,  classifcation,  and  clustering  purposes.  Machine

learning entails  both  supervised  and  unsupervised  learning,
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according  to  the input  data being  labeled or  unlabeled.  The

former  can  be  addressed  as  the  classifcation  problem,  in

which a classifer is trained on labeled data in order to make

predictions on unlabeled data. The latter can highlight patterns

and  hidden  information  present  within  the  data  through

(mainly)  clustering  operations.  In  the following sections,  the

three most common processes for solving clinical problems are

described  in  detail:  clustering,  feature  selection,  and

classifcation.  For  each,  the  basic  statistical  concepts  are

provided, in order to make the user aware of  the operations

that can be performed onto the data. Then, some examples of

applications in the clinical practice are listed, to highlight the

power  of  MALDI-MSI in  aiding  the  clinical  routine.  Finally,  a

tutorial to achieve the proposed aims via Orange Canvas and

Weka is explained.

3.1. Clustering: concepts and tools

Clustering analysis is a powerful data mining tool which does

not  require  any  previous  knowledge  about  the  data  and  it

exploits  its  intrinsic  properties,  possibly  revealing  some

patterns  or  substructures  within  the  data  [46].  The  most

commonly  employed  clustering  algorithm  is  the  hierarchical

clustering  (HC),  which  groups  observations  according  to  the
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similarity among each other and builds a dendrogram (Figure

2)  displaying how the grouping  has  been performed (similar

observations are placed under the same node). In MSI, a HC

analysis produces, along with the dendrogram, a segmentation

map (Figure 3), according to which each pixel is colored based

upon which node the corresponding spectrum is under,  thus

coloring pixels referred to spectra under the same node with

the same color.
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Figure  2:  The  fgure  displays  an  example  dendrogram,  in  which  average
profles of samples are clustered together based upon similarity only. The
software (Orange Canvas in this instance) calculates the distance between
samples and places similar profles under the same node. A defned number
of clusters can be set according to the distance threshold, and the software
highlights the different clusters with colors. When individual spectra are used
instead of  the  average  proteomic  profle,  pixels  corresponding  to  spectra
under the same node are colored in the same way, resembling the color of
the clusters in the dendrogram. The so-called segmentation map is therefore
generated (Figure 3). However, Orange Canvas does not include an utility to
generate segmentation maps, since it works on data matrices obtained after
spectral elaboration through other software and does not work with spectral
fles  directly,  which  retain  the  spatial  coordinates  needed  to  generate
segmentation maps.
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Figure 3: The fgure displays an example segmentation map, obtained with
SCiLS  Lab  2014,  onto  a  section  of  rat  kidney,  by  coloring  pixels
corresponding to spectra under the same nodes with the same color. This
approach  has  been  able  to  correctly  identify  tissue  sub-areas,  perfectly
overlapping  with  histo-morphological  structures,  without  any  prior
knowledge.



3.1.1. Clinical applications

3.1.1.1.  Spatially  aware  segmentation  of  neuroendocrine

tumor tissue sections. In the maaority of instances, however,

the  cluster  analysis  does  not  take  into  account  the  spatial

relationship  between spectra,  addressing  at  only  the signals

along  with  their  intensities.  Therefore,  each  spectrum  is

considered  as  a  completely  independent  observation.  A

spatially aware segmentation algorithm, coupled with an edge-

preserving image denoising, has been developed and applied

to invasive neuroendocrine tumor samples [47]. This approach

addresses the problem of noisy segmentation images strictly

related  to  noise  present  in  the  spectra,  which  leads  to

segmentation images with nondefned edges. A classical image

denoising  (median  or  convolution  flter)  would  smooth  the

edges causing loss of small features in the tissue slice, which is

not ideal when there are complex structures or small groups of

cells to be detected. The algorithm makes use of a modifed

(Grasmair)  total-variation-minimizing   Chambolle  algorithm,

which  minimizes  the  sum  of  absolute  differences  between

neighbor spectra and adausts the level of denoising to the local

noise  level  [47].  In  this  way,  the  amount  of  information

preserved  is  maximized,  without  discarding  small  features

through  image  smoothing  and  better  highlighting  areas  of
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interest. The edges are therefore more defned and this allows

for a better delimitation of  areas of  clinical  interest,  such as

tumor margins or small groups of cells: in the frst instance, a

clear depicting of the tumor area could be achieved, in order to

surgically  remove the tumor with  a  high  degree  of  certainty

without  leaving  cells  in  place  that  can  possibly  cause

recurrence; in the latter case, a high-resolution MSI analysis

could identify a very specifc subpopulation of cells in order to

extract information for a defnition of a molecular signature for

that type of cells.

3.1.1.2. Discovery of sub-areas of gastric cancer and human

cerebellum. MALDI-MSI  can  highlight  tissue  sub-areas  that

are  not  always  correlated  with  histological  evidence  (e.g.

gastric cancer [48]) and could be used by the pathologist to

better defne the specimens. Moreover, tissue sub-structures

(e.g. human cerebellum [49]) can be depicted more in detail,

thanks to the possibility to overlap molecular images obtained

from  a  MSI  analysis  with  the  same  (or  consecutive)  tissue

section after a histological  staining [50].  In fact,  it  has been

proved that HC analysis is able to highlight a possible tumor

area within a tissue section,  as confrmed by the pathologist

after  the  re-evaluation  of  the  sample  after  staining  [48].

Therefore,  despite  the  fact  that  clustering  is  defned  as  an
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unsupervised approach,  this  procedure can be addressed as

partially  supervised,  since  the  correct  expansion  of  the

dendrogram (number of clusters) is imposed by a histological

observation. One of the biggest advantages of this approach is

the potentiality to discover a tissue area of clinical interest (a

tumor mass in this instance) without any previous knowledge

about  its  presence,  its  position,  or  its  molecular  signature.

Moreover,  the  fact  that  MALDI  has  the  ability  to  ionize  and

detect a wide range of  biomolecules further strengthens the

power of this analysis.

3.1.1.3. Sarcoma intratumor heterogeneity. It is known that

tumor cells undergo branching evolution within the same mass,

due  to  genomic  instability  and  stimuli  from the  surrounding

microenvironment.   Therefore,   an  individual tumor is  never

composed by a single type of cell, but rather by a multitude of

sub-populations.  This  has  a  deep  impact  onto  the  clinical

outcome of a treatment, since a drug can be effective on some

sub-populations of cells but not on others, making the patient

highly prone to recurrence or metastasis [51,52]. MALDI-MSI is

able to detect specifc protein signatures of the different sub-

populations  of  cells  that  might  not  lead  to  morphological

alterations. When a HC analysis is performed on the data, the

dendrogram  can  be  further  explored  and  expanded,  beyond
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depicting  the  tumor area  itself,  in  order  to  reveal  sub-areas

within  the  same  tumor  region,  that  are  histologically

homogeneous [52]. Therefore, intratumor heterogeneity can be

investigated, to the point where molecular signatures for each

sub-population can be generated, potentially even from tumor

stem  cells.  As  already  mentioned,  a  MALDI-MSI  dataset  is

highly complex, with each spectrum having a high number of

features, which can make algorithms slower when computing

the  HC,  since  the  calculation  of  the  distance   is   more

complicated  when  more  features  are employed. It has been

proposed  to  perform  the  HC  analysis  after  a  step  of  data

reduction,  which  operates  a  combination  of  features  while

preserving  the  information  within  the  data  [52].  Principal

Component  Analysis (PCA) generates new variables  (principal

components - PCs)  from  the  linear combination of features

[53] and it is the most employed data reduction algorithm in

MALDI-MSI data analysis. HC analysis performed after PCA has

been able to highlight the presence of four different types of

sarcoma,  correlated  with  their  clinical  outcome:  high-grade

myxofbrosarcoma,  low-grade  myxofbrosarcoma,  high-grade

myxoid  liposarcoma,  and  low-grade  myxoid   liposarcomas.

High-grade   myxofbrosarcoma   and  high-grade  myxoid

liposarcoma result in having a strong overlap in PCs 1 and 2,
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which retain  the  highest  amount  of  information  in  the  data;

their  separation  happens  in  the  PC  3,  indicating  the  high

degree of similarity between the two forms and the ability of

MALDI-MSI  in  detecting  small  features  able  to  discriminate

between tumor species [52].

3.1.1.4.  Myxofibrosarcoma  tumor  subpopulations. The  a

priori  identifcation of tumor subpopulations is a tedious task,

since, as previously mentioned, it requires the prior knowledge

about  the  number  of  groups  to  expect. Additionally, the

overlap with histology rarely produces any results, because of

the  lack  of  morphological  features  that  characterize  the

subclones  in  the  tumor  [54].  Aiming  at  solving  this  issue,  a

multivariate  statistical  approach has been proposed [55,56],

exploiting  the  multivariate  nature  of  MSI  data  (many  peaks

associated with many compounds detected at the same time).

Since  each  algorithm  operates  in  its  own  way  and  can  give

slightly different results, the combination of a few of them has

rather  been  implemented.  The  included  algorithms  are  the

following: PCA, Maximum Autocorrelation Factorization, Fuzzy

C-Means,  Probabilistic  Latent  Semantic  Analysis,  and  Non-

Negative Matrix Factorization. Since almost all of them require

a  value  of  k (number  of  populations  to  be  expected),  the

algorithm has been iteratively run by ranging k from 2 to 10. All
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of  these  approaches  imply  the  generation  of  new  variables

(called  components)  which,  in  turn,  ensures  data  reduction.

Consensus  components  were  selected  as  the  highest

correlating components in these analyses in terms of score. In

the end, each pixel is associated with the component that has

the  highest  score  at  that  location:  in  this  manner,  a

segmentation  map  can  be  generated,  highlighting  areas

corresponding to  different  tumor sub-populations  [56].  After

the identifcation of myxofbrosarcoma tumor sub-populations,

without any previous knowledge about the clinical features of

the  tumor  and  histological  match,  a  further  study  was

conducted to determine the possible association between the

presence  of  certain  tumor  subpopulations  and  the  clinical

outcome of the patient [56].

3.1.1.5.  Classification  via  clustering  of  gastric  cancer. HC

can  be  useful  when  determining  the  classifcation  of  an

unknown  sample.  The  dendrogram  can  be  expanded  to  the

point where one cluster of spectra is generated for each class

to show at which class the unknown sample belongs to. On the

other hand, in order to do this, a large cohort of patients must

be enrolled in the study and computational resources must be

available  to  perform  this  operation  [48].  Due  to  these

drawbacks and to the fact that determining the correct number
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of  classes/clusters  is  not  automatable  (since  it  depends  on

tissue   histology),   classifcation   through   HC   is   hardly

performed. After determining the classifcation potentiality of

the  collected  data,  a  classifcation  model  is  rather  built  to

achieve this purpose [48].

3.1.2. Tutorial

3.1.2.1.  Orange  Canvas. Orange  Canvas  can  perform

clustering  analysis  (Figure  S1)  with  HC  and  k-means

algorithms. Their parameters can be tuned via the “Example

Distance” operator, through which the distance function is set

(e.g. Euclidean, correlation distance, and Manhattan), and via

the clustering operator, through which the linkage function can

be set.

3.1.2.2. Weka.  Clustering can be performed in Weka, in the

dedicated “Cluster” tab (Figure S2). The clustering method can

be  selected  among  a  variety  of  available  algorithms,  from

DBSCAN  to  HC  to  k-Means  algorithms.  Moreover,  additional

parameters (such as distance function, link type, and number

of  clusters)  can  be  edited  for  each  algorithm,  in  order  to

properly tweak the clustering analysis (Figure S3).
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3.2 Feature selection: concepts and tools

As mentioned  previously,  MALDI-MSI  data,  in  the  form of  a

data  cube,  is  high  dimensional  and  complex.  Performing

statistical  elaboration  directly  onto  this  data  can  make

algorithms less effective in terms of computational time and

effciency. The frst step toward a reduction of the data is the

peak picking, the feature extraction process through which only

the  information  regarding  the  signals  along  with  their

intensities  is  preserved.  A  further  step  in  the  data

dimensionality  reduction  consists  in  the  feature  selection,

namely  the  selection  of  only  the  features  that  are  actually

informative for the purpose to be achieved [57]. In the maaority

of the instances, in fact, the number of features (p) (namely,

the  peaks  in  the  MSI  dataset)  exceeds  the  number  of

observations (n) (samples, namely, the patients), resulting in a

situation that is highly prone to overftting. In MSI, for example,

individual  spectra  (corresponding  to  pixels  in  the  digitalized

image)  from  patients  can  be  used  instead  of  the  average

profle,  in  order  to  increase  the  number  of  observations.

However,  this  can  lead  to  further  complications  due  to

imbalances in the number of spectra per patient and to the lack

of information that noisy and low-quality individual spectra can

provide.  The  feature  selection  process  does  not  alter  the
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original variables and discards all the non-informative features,

which are redundant or invariant throughout the entire dataset:

retaining  these  features  would  only  lead  to  longer

computational  times,  more  noise  in  the  data  and  overftting

issues  when  training  classifers  [58].  Feature  selection

algorithms  can  be  employed  to  prepare  the  data  for  either

supervised  (classifcation)  or  unsupervised  (e.g.  clustering)

statistical  analysis  and  they  are  differently  implemented

according  to  the  analysis  that  follows.  Mostly,  especially  in

clinical  applications,  the  data  is  adequately  prepared  for

solving  classifcation  problems,  since  the  main  aim  is  to

distinguish between benign and malignant samples in order  to

make  predictions  on  unknown  samples  (i.e. diagnosis). Thus,

feature  selection  algorithms  imply  the  use  of  classifers  to

retain a small subset of features to characterize the biomarker

discovery  process.  Filter  methods  are  more  robust  toward

overftting, but do not consider interactions between variables,

since  they  do  not  make  use  of  a  classifer  to  evaluate  the

potentiality  of  the  selected  features.  Wrapper  methods

evaluate the classifcation capability of the selected subset of

features by addressing the performances of a classifer trained

with those features, taking into account possible interactions

between  variables  but  being  more  prone  to  overftting.
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Embedded  methods  include  the  feature  selection  process

within the construction of the classifer, therefore being more

computationally effcient than wrapper approaches [58].

3.2.1. Clinical applications

In this section,  a few examples of the application of feature

selection for clinical purposes are proposed. Despite not being

directly related with MALDI-MSI, these approaches have been

applied  onto  mass  spectrometric  data,  providing  high

translatability to MALDI-MSI data in the selection of putative

biomarkers of diagnostic or prognostic importance.

3.2.1.1.  Ovarian cancer. Ovarian cancer is  the second most

common cancer of the female genital tract [59]. The presence

of ovarian cancer is detected at a late clinical  stage in more

than 80% of patients, with a life expectancy of 5 years in the

35% of the cases [60]. The maaority of the patients are cured

by surgery alone, and the treatment is strictly dependent on

the tumor subtype [59]. Classifcation algorithms to correctly

predict the presence of ovarian cancer, in its early stages, are

therefore needed, in order to increase the life expectancy of

the affected patients. The feature selection is aimed at making

classifcation  algorithms  faster  and  more  effcient,  and  to

provide  a  list  of  putative  biomarkers  to  be  used  in  routine
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diagnostic  tests.  One  example  of  feature  selection

methodology is the employment of the t-test or F-test (analysis

of variance), in order to identify the features (the peaks) that

statistically vary (in intensity) between the classes of samples,

discarding  the  invariant  features [61].  This  requires  that  the

observations  (spectra  in  the  dataset)  are  completely

independent (this is not true if multiple individual spectra from

the  same  patient  are  in  the  dataset)  and  that  features  are

normally distributed and homoscedastic, without the presence

of  signifcant  outliers;  moreover,  post-hoc  tests are  needed

when  more  than  two  classes  are  present,  since  multiple

comparisons  increase  the  chance  of  Type  I  error.  When

normality  and  homoscedasticity  are  not  satisfed,  a

transformation of the data can be performed in order to meet

the proper requirements [35] or non-parametric tests can be

used  instead  [62].  The  approach  has  been  applied  in  the

selection of a subset of peaks from mass spectra to be used in

the classifcation (via Support Vector Machine (SVM), Random

Forests  (RF),  and  k-Nearest  Neighbor  (k-NN)  classifers)  of

ovarian cancer bioptic samples [61].

3.2.1.2. Leukemia blood sera. A Bayesian inductive method

has  been  proposed  in  the  selection  of  relevant  peaks  from

mass spectra acquired from blood sera of patients affected by
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leukemia [63]. Despite being model-independent, this method

is  capable  of  detecting  relationships  between  spectral

features,  via  the  employment  of  the  concept  of  mutual

information when determining the impact of the feature on the

classifcation.   The   Bayesian   network/mutual   information

approach leads to a selection of a small subset of features that

decreases the risk of overftting and provides a reduced list of

mass  values  to  be  investigated  as  potential  biomarkers.

Moreover,  the  feature  subset  has  been  used  for  the

construction of a model that accurately makes predictions on

new data, adding clinical relevance to the results [63].

3.2.2. Tutorial

3.2.2.1. Orange Canvas.  Feature selection can be performed

in Orange Canvas only through Python scripting. The software,

in fact, does not implement a graphical widget for the feature

selection  process,  but  includes  a  Python  module  (called

“selection”) that can be loaded when scripting. Although this

requires programming skills,  the process is well  explained in

the  software  documentation  [64].  The  only  way  to  select

features  in  Orange  Canvas,  however,  is  through the  VizRank

widget [65], which fnds the best data proaections to separate

data points of different classes. In order to achieve this, the
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best proaections are established by evaluating the classifcation

performances of a trained k-NN model. The software allows for

a selection of a maximum number of features to be employed

in the evaluation, so that a feature selection is performed on

the data before generating the proaections (Figure S4).

3.2.2.2.  Weka.  Weka  software  has  a  dedicated  section

(“Select attributes”) where to perform feature selection. It is in

fact possible to select the method to be used when selecting

features (e.g. chi-squared evaluation and evaluation of subsets

through flter or wrapper algorithms) and it is possible to set

the parameters for the feature selection process (Figure S5 and

Figure  S6).  Moreover,  the  feature  selection  method  can  be

selected (e.g. forward, backward, bidirectional, and stepwise)

with additional parameters for each.

3.3. Classification: concepts and tools

The classifcation problem is one of the maaor instances under

the supervised learning, and it is aimed at assigning unknown

samples  to  a  specifc  class  according  to  the  information

provided  by  their  features  [66].  In  order  to  achieve  this,  a

classifer  must  be  trained  onto  labeled  samples  (training

dataset, consisting of several observations of known class), to

compute  the  mathematical  functions  that  explain  the
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relationship between the features (explanatory variables) and

the  class  (response  variable).  In  order  to  assess  the

classifcation  capability  of  the  trained  classifer,  a  cross-

validation can be performed onto the training dataset itself, by

iteratively splitting it into two subsets to be used, in turn, as

training and validation subsets. Furthermore, it is possible to

test  the  classifer  performances  onto  an  external  validation

dataset, by evaluating the discrepancy between the predicted

class  and  the  actual  class.  The  classifcation  problem  is

present  in  several  applications,  such  as  computer  vision,

speech recognition, and biometric identifcation, with different

algorithms employed for the purpose  of  classifying  unknown

samples.  In  biology,  the classifcation problem represents the

ability  of  the  analytical  approach  to  reliably  discriminate

between samples under different conditions (e.g. benign and

pathological, stage of the disease, treatment conditions, etc.)

[67-71]. In most of the instances, the diagnosis is performed

via  the  evaluation  of  a  histologically  stained  bioptic  tissue

section  retrieved  from  the  patient  by  pathologists  and  it  is

strongly dependent from their training and experience in order

to detect smaller features across the tissue section. Moreover,

subtle  molecular  changes  directly  correlated  with

morphological  modifcations  cannot  be  appreciated  by  the
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human eye. Therefore, this results in many samples being fled

as  undetermined  reports  [72]  or  being  addressed  as

pathological  only  in  the  late  stages  [67].  MALDI-MSI

technology,  by looking at  the sample at  the molecular  level,

can detect small molecular changes already in the early stages

of  the  disease,  even  when  the  tissue  looks  morphologically

healthy  [73].  An  example  algorithm  that  is  widely  used  as

classifer in many applications is the SVM [74]. Models using

SVMs  are  computed  by  ftting  a  single  (or  a  set  of)

hyperplane(s),  in  a  high-dimensional  space,  which  maximize

the  minimal  distance  between  data  points  belonging  to

different classes. SVMs can go beyond linear classifcation, as

they can be used as non-linear classifers, thanks to the kernel

function which  allows  the  switch  to  a  transformed  feature

space for better ftting the separating hyperplane(s) [74]. The

algorithm  has  been  implemented  in  many  biological

applications,  directly  exploiting  MALDI-MSI  data,  with

successful results. RF algorithms are ensemble decision tree

methods characterized by being robust  to overftting and by

providing  high  prediction  accuracy,  guaranteeing  high

performances even with a large input dataset [75].
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3.3.1. Clinical applications

3.3.1.1. Breast cancer.  Breast cancer constitutes one of the

main causes of mortality among women. The presence of the

human epidermal  growth factor receptor 2 (HER2) has been

found  to  be  strictly  correlated  with  the  response  to  the

treatment with trastuzumab (herceptin)  and with the clinical

outcome of the patient. Therefore, the reliable assessment of

the presence of HER2 is of high clinical importance [68]. A SVM

classifer  has  been able  to  correctly  detect  the  presence  of

HER2 onto human breast cancer samples, with high values of

accuracy, sensitivity, and specifcity [68]. RF algorithms, on the

other hand,  have been successfully  applied onto MALDI-MSI

data  for  the  classifcation  of  breast  tumor cells  in  xenograft

mouse models [69]. Proteomic profles (average spectra from

histologically  selected  regions  of  interest)  of  different

subregions  (necrotic  tissue,  tumor  mass,  gelatine,  tumor

interface, and no tissue) of the tumor have been generated and

passed to the classifer for training. Since the algorithm entails

an ensemble method, the process results in being more robust

and reliable, since the classifcation outcome is the result of a

vote among the classifers built within the ensemble [69].
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3.3.1.2. Metastasis identification.  Metastases are defned as

tumor cells detaching from the original tumor mass, invading

the surrounding environment and populating an organ that is

different  from  the  organ  of  origin.  However,  in  many  cases,

metastases cannot be associated to any primary tumor mass

(cancer of unknown primary (CUP)) making the treatment more

diffcult,  due to this lack of information [70].  The analysis of

known tumor masses can provide the molecular signature of

each type of tumor, allowing to train a classifer that is able to

assign unknown metastases to the primary tumor mass. This

approach has led to a confdent determination of the type of

primary tumor related to the metastases, in such a way that a

more defned treatment  for  each patient can be established

[70].  The  RF  and  SVM  classifers  have  been  trained  onto

features coming from the proteomic profles of  the different

types  of  primary  tumor,  in  order  to  predict  the  class  of

metastasis coming from unknown primary tumor masses (CUP)

[70].

3.3.1.3. Disease progression: liver cirrhosis and metastatic

melanoma. MALDI imaging can be useful in determining the

stage of the disease [67,71], in order to operate the diagnosis

at  the  very  early  stages  or  to  modify  the  treatment  in

accordance with the clinical outcome of the disease. MALDI-
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MSI has  been employed  in  predicting  if  a  condition  of  liver

cirrhosis is evolving toward cancer (hepatocellular carcinoma

(HCC)) [67]. The malignancy of a cirrhosis is often determined

when the disease is at its late stages and in some instances the

cirrhotic tissue that remains after the surgical removal of the

tumor can cause recurrences.  This is a clear example of the

potentiality of MALDI-MSI in predicting the intrinsic nature of a

liver  cirrhosis  and  preventing  the  evolution  of  the  patient

toward a poor prognosis.  Representative  spectra of  cirrhosis

without HCC, cirrhosis with HCC, and HCC have been collected

from the analysis of specimens, and a SVM classifer has been

trained to correctly  predict  the clinical  evolution of unknown

specimens.  Finally,  the  presence  of  Ubi(1-74)  (a  truncated

form of ubiquitin) has been found to be strictly correlated with

the clinical outcome of the patients, providing a suitable target

for  immunohistochemical  tests  to  be  used  in  the  clinical

routine  [67].  Protein  signature  of  tumor  recurrence  has  also

been generated by MALDI-MSI in order to predict the stage of

metastatic  melanoma,  through  the  analysis  of  lymph  nodes

[71].  Proteins  (histone  H4,  cytochrome  c,  thymosin,  and

ubiquitin)  correlated  with  the  patient  outcome  have  been

identifed [71] in order to provide a putative biological meaning

and, again, to translate the fndings to a diagnostic test to be
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employed  in  the  routine  clinical  practice.  The  stage  of

melanoma is usually determined by histological evaluation of

the  tumor  features  according  to  the  general  established

guidelines,  but  the  correlation  with  the  prognosis  is  often

compromised  by  the  multitude  of  features  to  evaluate  [71].

MALDI-MSI  provides  a  molecular  insight  on  the  disease,  by

addressing the problem in a multivariate way onto molecular

bases.  Proteins differently expressed between healthy lymph

nodes  and  metastatic  melanoma  lymph  nodes  have  been

selected through a Signifcance Analysis of Microarrays (SAM)

test, yielding a set of signals constituting a molecular signature

of prognosis. An ensemble of four models (Genetic Algorithm,

SVM,  Supervised  Neural  Network,  and  Quick  Classifer)  has

been trained onto the  selected  features,   and  tested  for

robustness   and  performance  assessment,  obtaining  high

accuracy in classifying bioptic samples [71].

3.3.1.4.  Tumor  margins. Tumor  recurrence  is  the  most

dangerous consequence after the treatment of a tumor, since it

is often more aggressive and chemo-resistant, compromising

the treatment of the patient: the main cause of recurrence is

left-over  tumor cells,  which are  indistinguishable under light

microscopy after histological staining, and are therefore left in

place to repopulate the tumor mass [76,77]. MALDI-MSI can
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highlight the presence of tumor cells at the molecular level, by

directly  guiding  the  surgery  or  by  acting  as  advisor  to  the

physician [76].  In this context,  MALDI-MSI has been able to

successfully detect left-over sarcoma [76] and clear cell renal

cell carcinoma [77] cells after surgical treatment. The selection

of  features  (peaks  in  the  mass  spectra),  which  act  as  a

signature of malignancy, has been performed by using the SAM

and permutation t-test for paired data and by picking only the

features  with  a  false  discovery  rate  less  than  0.01.  The

discriminatory  capability  of  the  selected  features  has  been

assessed  by  training  a  classifer  (SVM)  and  evaluating  its

performances. This further proves the value of MALDI-MSI in

going beyond the morphological evaluation after staining and in

providing clinical translatability when identifying discriminatory

compounds  to  be  employed  in  a  routine  test  (such  as

immunohistochemistry) [76,77].

3.3.2. Tutorial

3.3.2.1. Orange Canvas.  Orange Canvas provides a variety of

tools for classifcation problem solving (Figure S7). The input

data can be split  into training and test set by setting a flter

condition (e.g. a threshold in a feature value or a sample name)

and multiple classifers can be trained and tested at the same
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time, both via a k-fold cross-validation onto the training data

and  via  its  application  onto  an  external  test  set.  The

classifcation  performances  can  be  evaluated  through  many

parameters (such as sensitivity, specifcity, accuracy, predictive

values, Receiver Operating Characteristic analysis, and so on),

providing a detailed report onto the classifer's behavior.

3.3.2.2.  Weka. Weka  can  be  used  to  solve  classifcation

problems  through  its  implementation  of  a  classifcation

system,  available  in  the  “Classify”  tab  (Figure  S8).  Weka

includes a great variety of classifers, such as Bayes classifers,

SVMs, linear regression, PLS, logistic regression, and RFs. In

addition, it is possible to tune the classifer parameters in order

to maximize its  classifcation capability:  for  example,  for  the

SVM, it is possible to set cost, kernel function, degree of the

polynomial, epsilon, gamma, seed (for pseudo-randomization),

weights, and nu (Figure S8). Finally, Weka allows the selection

of the performance assessment method: test onto the entire

dataset (using the training dataset as a test set), test onto an

external validation set, k-fold cross-validation onto the entire

dataset, and train/test split. It then returns the detailed report

for  the  classifcation  performances,  in  terms  of  sensitivity,

specifcity, and accuracy, along with the confusion matrix and

other  data.  Classifcation  can  be  performed  after  a  feature
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selection  process,  by  manually  preserving  only  the  features

that  are  listed  as  signifcant  in  the  feature  selection  output

within Weka (Figure S5).

4. Expert commentary

Data  dimensionality  still  represents  a  big  issue  in  terms  of

computational effciency and storage of the acquired data, and

statistical  methods  of  information-preserving  data  reduction

constitute  a  key  point  in  the  data  mining  and  elaboration

phase. The main aim is to provide a reliable and informative

output  in  reasonable  time,  without  discarding any important

features  from  the  data.  Traditional  inference  tasks,  such  as

clustering, feature selection, or classifcation, attempt to fnd

patterns  in  a  dataset  characterized  by  a  collection  of

independent instances of a single table. Numerous algorithms

have  been  designed  to  work  on  such  a  standard  approach,

where  instances  can  be  easily  represented  as  fxed-length

vectors of attribute values. Unfortunately, many studies still do

not  consider  that  real  problems  are  best  described  by

structured data where instances of multiple types are related

to each other in complex ways. For this reason, datasets to be

analyzed may be described by relational  databases or  semi-
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structured representations such as XML. In this case, features

of  one  entity  are  often  correlated  with  features  of  related

entities.  It  may  happen that,  aust  as  some features  are  not

helpful  for  mining  datasets,  some  relations  might  provide

information  for  clustering  or  classifcation  algorithms.  For

instance, when it comes to analyzing differentially expressed

MS  peaks  in  a  case-control  classifcation  problem,

comparisons  are  generally  performed  between

protein/peptide   profles   of   different   groups   or  between

statistics summarizing the peak properties of a group. In such a

situation,  the incorporation of relational  information can give

powerful  (case-control)  discriminatory  capability.  This  has

been proved useful in many felds [28][78-80] and represents a

promising approach also in relation of both Multidimensional

Protein  Identifcation  Technology  data  structure  and  MS

improvement, in instruments and methods,  such  as  targeted

proteomics  or  data-independent analysis.

5. Five-year view

MALDI-MSI is an analytical technique that is characterized by

being  versatile  and  highly  translatable  to  the  daily  clinical

practice.  The  high  sensitivity  of  the technique,  coupled with
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high specifcity and high spatial resolution, makes it a valuable

resource in aiding diagnoses, by providing a molecular insight

of the specimen. The possibility to integrate data derived from

a  MALDI-MSI  analysis  with  the  most  common  clinical

techniques  (such  as  immunohistochemistry  and  histology)

increases  interoperability  and  the  reliability  of  MSI  data  in

being  used  in  the  daily  clinical  routine.  However,  the

potentiality  of  the  employment  of  this  technology  in  solving

clinical  problems  and  further  supporting  the  daily  clinical

routine  diagnosis  is  strongly  dependent  on  the data  storage

and elaboration. At the present time, two different aspects are

critical  in  its  application,  beyond  technological  and

methodological  optimization:  hardware  and  software.  Faster

and  new  design  CPU and  storage  devices  to  speed  up  data

elaboration and to keep the huge number of mass spectra will

be  really  welcome.  On  the  other  side,  new  and  better

performing  algorithms  are  needed  in  order  to  reduce  the

amount  of  time  to  be  dedicated  to  the  data  elaboration

processes,  to  decrease  the  manual  intervention  of  the

personnel,  and  to  make  robust,  automatic  and  easy-to-use

(also by not experts) software.
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Key issues

• Matrix-Assisted   Laser   Desorption/Ionization  -  Mass

Spectrometry Imaging (MALDI-MSI) is able to provide a

molecular  insight  of  the  samples,  detecting  the

presence of a great variety of analytes directly on-tissue

and showing their spatial distribution across the tissue

section.

• A  typical  MALDI-MSI  dataset  is  composed  of  mass

spectra corresponding to pixels of the digitalized tissue

slice and it is structured as a data cube, in which every

mass-to-charge  ratio (m/z)  value  is  associated  with  a

molecular image showing the localization of that specifc

analyte on-tissue. The dimensionality of the data strictly

depends  on  the  mass  resolution  and  on  the  spatial

distribution  (i.e.  number  of  pixels)  of  the  spectral

acquisition.

• The preprocessing phase ensures that all the spectra of

the dataset are brought to the same scale, allowing fair

comparisons  between  spectra/pixels  within  the  same

tissue  section  and  among  different  analyses,  by

discarding  all  the  fluctuations  associated  with

instrument performances and sample heterogeneity.
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• Machine  learning comprises  a  series  of  algorithms

aimed at learning features from data and subsequently

returning  the  results  by  exploiting  patterns  or

regularities  within  the  data.  This  approach  is  widely

employed in several felds, for clustering (unsupervised)

and  classifcation  (supervised)  purposes.  While  the

former  do  not  require  any  prior  knowledge  about  the

label of the data and return hidden patterns within the

data, the latter exploit the known input data in order to

make predictions onto new unlabeled data.

• Clustering analysis is a powerful data mining tool, that

exploits  the  intrinsic  properties  of  the  data  to  reveal

some  patterns  or  substructures  within  it.  One  of  the

biggest  advantages  of  this  unsupervised  approach  is

that it does not require any previous knowledge about

the data, but it can highlight sub-groups of observations

(i.e. mass spectra) that can become of clinical interest.

In  mass  spectrometry  imaging,  clustering  analysis  is

associated  with  segmentation  maps,  coloring  pixels

referred to spectra under the same node with the same

color  and  thus  depicting  sub-areas  of  possible  high

clinical importance.
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• Feature  selection  discards  all  the  non-informative

features, that are redundant or invariant throughout the

entire  dataset,  fully  preserving  the  original  variables

without any mathematical operations on the values: by

doing  this,  shorter  computational  times  are  achieved,

along with a lower tendency to overftting when training

classifers.  Feature  selection  algorithms  that  are

employed  for  solving  classifcation  problems  (e.g.

diagnosis)  make  use  of  classifers  to  retain  a  small

subset  of  features  to  characterize  the  biomarker

discovery process: the list of preserved features, in fact,

may constitute a molecular signature of malignancy, to

be exploited by clinical diagnostic tests.

• The classifcation problem, one of the maaor instances

under the supervised learning, represents the ability of

the  analytical  approach  to  discriminate  between

samples  under  different  conditions  (e.g.  benign  and

pathological, stage of the disease, treatment conditions,

etc...).  Several  classifers  (such  as  Support  Vector

Machine  -  SVM and Random Forests  -  RF)  have been

trained  on  MALDI-MSI  data  for  the  accurate

classifcation  of  unknown  samples  coming  from  the

clinical routine, in order to exploit the potentiality of the
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technology to look at the molecular level to reliably aid

the diagnostic process.

• MALDI-MSI  has  proven  its  capability  in  assisting  the

daily clinical routine by providing a molecular view of the

specimens,  revealing  subtle  molecular  changes  that

may  not  be  directly  correlated  with  morphological

modifcations  that  can  be  evaluated  by  pathologists,

especially in the early stages of the disease. Therefore,

this  will  result  in  less  samples  being  fled  as

undetermined  reports  or  being  addressed  as

pathological only in the late stages.
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Figure  S1:  The  fgure  displays  a  typical  workflow  for  cluster  analysis  in
Orange  Canvas.  After  the  data  matrix  has  been  imported,  the  software
allows to select the data columns to be considered as attributes, class and
meta-attributes, in order to include or exclude data columns in the analysis.
The distance between data rows (observations) is computed in the "Example
Distance" widget, before running the hierarchical clustering process.
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Figure S2: The fgure displays a typical workflow for clustering in Weka. The
clustering  algorithm  can  be  chosen  in  the  "Clusterer"  entry,  while  the
parameters can be tuned by clicking onto the entry itself (the fgure shows
the window with the algorithm parameters).

Figure S3: The fgure displays a dendrogram returned by Weka after running
the hierarchical clustering analysis.
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Figure  S4:  The  fgure  displays  the  VizRank  widget.  A  maximum  or  exact
number of features to be used when evaluating the data projections can be
set,  and  the  feature  selection  is  performed  by  iteratively  training  and
evaluating the performances of a k-Nearest Neighbor model, the parameters
of which can be tuned in the "Settings" tab.
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Figure  S5:  The  fgure  displays  a  typical  workflow  for  feature  selection  in
Weka.  The  feature  selection  algorithm  can  be  chosen  in  the  “Attribute
evaluator” entry,  while the parameters can be tuned by clicking onto the
entry  itself  (the  fgure  shows the window with  the  algorithm parameters).
Moreover,  the selection method can be set  in  the “Search Method” entry,
along with some parameters (Figure S6). The best subset of features can be
selected by testing the trained model onto the entire training dataset or via k-
fold cross-validation.
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Figure S6: The fgure displays the window that lists the parameters of the
feature selection method, part of a typical workflow for feature selection in
Weka.
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Figure  S7:  Typical  workflow for  classifcation  analysis  in  Orange Canvas.
After the data matrix has been imported, the software allows to select the
data columns to be considered as attributes, class and meta-attributes, in
order to include or exclude data columns in the analysis. The training/test
split is performed by the “Select Data” operator, which conditionally flters
the dataset, preserving only a subset of observations. The “Test Learners”
operator takes this data (and possibly some other data as an external test
set) and trains a classifcation model with it (Naive Bayes, Random Forest, k-
NN and SVM in this instance), returning the classifer performances through
the "ROC Analysis" and "Confusion Matrix" widgets.
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Figure  S8:  Typical  workflow  for  classifcation  analysis  in  Weka.  The
classifcation algorithm can be chosen in  the “Classifer” entry,  while the
parameters can be tuned by clicking onto the entry itself (the fgure shows
the window with the algorithm parameters, a Support Vector Machine in this
instance). The classifer performances can be evaluated through the degree
of concordance between the predicted class and the actual class, by testing
the classifer onto the training dataset itself, by testing it onto an external test
set, by performing a k-fold cross-validation or by performing a train/test split
onto the dataset.
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ABSTRACT

Biomarkers  able  to  characterize  and  predict  multifactorial

diseases are still one of the most important targets for all the

“omics” investigations.  In  this  context,  Matrix-Assisted Laser

Desorption/Ionization -  Mass Spectrometry  Imaging  (MALDI-

MSI) has gained considerable attention in recent years, but it

also led to a huge amount of complex data to be elaborated

and interpreted. For this reason, computational and  machine

learning procedures  for  biomarker  discovery  are  important

tools to consider, both to reduce data dimension and to provide

predictive  markers  for  specifc  diseases.  For  instance,  the

availability of protein and genetic markers to support thyroid

lesion diagnoses would impact deeply on society due to the

high  presence  of  undetermined  reports  (THY3)  that  are

generally treated as malignant patients. In this paper we show

how an accurate classifcation of thyroid bioptic specimens can

be  obtained  through  the  application  of  a  state-of-the-art

machine learning approach (i.e.,  Support Vector Machines) on

MALDI-MSI  data,  together  with  a  particular  wrapper  feature

selection  algorithm (i.e.,  recursive  feature  elimination).  The

model is able to provide an accurate discriminatory capability

using only 20 out of 144 features, resulting in an increase of
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the  model  performances,  reliability,  and  computational

effciency. Finally, tissue areas rather than average proteomic

profles  are  classifed,  highlighting  potential  discriminating

areas of clinical interest. 
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1. Introduction

Thyroid  lesion  diagnosis  constitutes  an  important  issue  in

terms  of  life  quality  of  the  affected  patients.  Currently,  this

pathology is diagnosed through cytomorphological evaluation

of  smears  obtained  after  an  ultrasound-guided  fne  needle

aspiration  biopsy  (FNAB).  A  category  of  malignancy  is  then

assigned to  specimens according  to  the  SIAPEC-IAP (Italian

Society of Anatomic Pathology and Cytology) classifcation [1].

In particular,  a  category  (ranging from THY1 to THY5 in  the

European system) is associated with the following lesions and

groups  of  patients:  inadequate  withdrawal  (THY1),  benign

lesions  (THY2),  lesions  with  unknown  malignancy  potential

(THY3), and malignant lesions (THY4 and THY5). The general

guidelines suggest that patients diagnosed as being of THY4 or

THY5, along with the ones diagnosed as being of THY3, must

undergo  a  total  thyroidectomy  and  a  consequent  lifelong

hormone replacing therapy, resulting in possible complications

during  or  after  surgery  and  in  possible  compliance  issues

during the patient's life. Surprisingly, 70% of the THY3 cases

result benign after a deep histological evaluation after surgery

[1],  highlighting  the  diagnostic  problem  related  to  the

undetermined reports (THY3).
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The lack of protein and genetic biomarkers to reliably support

thyroid  lesion  diagnoses  led  us  to  exploit  the  discriminative

power  of  a  machine  learning technique  (i.e.,  Support  Vector

Machine,  SVM)  applied  to  Matrix-Assisted  Laser

Desorption/Ionization-Mass  Spectrometry  Imaging  (MALDI-

MSI)  data.  MALDI-MSI  data  has  already  proven  itself  to  be

capable of highlighting differences in the proteomic profle of

different types of thyroid lesions [2,3], further supporting our

work.  MALDI-MSI  is  an  analytical  technique  that  allows  the

study of  the spatial  distribution and relative abundance of  a

wide range of molecules directly on-tissue, without the need of

any labeling or extraction processes that can possibly hinder

both the molecular  structure and the extraction yield  of  the

analytes of interest [4]. For this reason MALDI-MSI has gained

considerable  attention  in  recent  years  and  has  been  widely

employed  in  several  felds  with  successful  results,  from

oncology and immunology to forensics and from pharmacology

to the study of plants [5]. Although the advantages of MALDI-

MSI  are  unquestionable  for  the  explorative  research,  it  also

leads to fle sizes of several gigabytes and more recently even

terabytes of complex and high dimensional data from a single

examined tissue slice. Computational analysis of MSI data and

mining procedures are therefore challenging to be met [6].
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Specifcally,  in  this  paper,  we  show  how  a  Support  Vector

Machine based  classifcation  [7]  can  provide  accurate

discrimination  of  thyroid  bioptic  specimens  using  mass

spectrometry imaging data, thus aiming at taking MALDI-MSI

to  the  daily  clinical  practice  to  aid  the  clinical  routine  for

diagnostic processes. Taking advantage of the general purpose

applicability  of  the  SVM  model  (broadly  applied  in  both

proteomics  and  more  general  biomolecular  classifcation

problems;  see,  e.g.,  [8]  and  [9],  resp.)  we  provide  accurate

classifcation  of  THY3  patients  to  a  benign  or  a  malignant

category. Moreover, to reduce the dimensionality of available

data,  we applied a  feature selection algorithm (i.e.,  recursive

feature  elimination;  see,  e.g.,  [10])  to  a  derived  dataset

obtained through the generation of an average (representative)

spectrum per patient.

The paper is laid out as follows. In Sections 2.1 and 2.2 we

briefly describe the samples and the data acquisition process.

In Section 2.4 we detail the preprocessing phase. In Section 3

we  report  the  model  construction  and  the  “standard”

classifcation process while in Section 4 we introduce the pixel-

by-pixel  classifcation,  important  to  highlight  potential

discriminating areas of clinical interest. We show the results in

122



Section 6 and conclude, fnally, in Section 7 by discussing our

fndings.

2. Materials and Methods

2.1. Patients

The study was conducted on leftover bioptic material collected

at the Department of Pathology, University of Milano-Bicocca,

Monza Brianza, Italy. A cohort of 43 subaects with the following

characteristics (Table 1) was enrolled:

• 14 subaects diagnosed as being of THY2, 8 THY4, and 10

THY5 (for a total of 32 patients),

• 11 subaects diagnosed as being of THY3.

Patient
number

Cytological
diagnosis

Histological diagnosis

Patient 1 THY 2 Ben

Patient 2 THY 3 PTC

Patient 3 THY 4 PTC

Patient 4 THY 5 Ben

Patient 5 THY 2 PTC

Patient 6 THY 5 Ben
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Patient
number

Cytological
diagnosis

Histological diagnosis

Patient 7 THY 2 Ben

Patient 8 THY 5 PTC

Patient 9 THY 3 PTC

Patient 10 THY 4 PTC

Patient 11 THY 2 Ben

Patient 12 THY 4 PTC

Patient 13 THY 3 Ben

Patient 14 THY 3 PTC

Patient 15 THY 4 PTC

Patient 16 THY 2 Ben

Patient 17 THY 2 Ben

Patient 18 THY 3 PTC

Patient 19 THY 2 Ben

Patient 20 THY 3 Ben

Patient 21 THY 4 PTC

Patient 22 THY 3 Ben

Patient 23 THY 5 PTC

Patient 24 THY 2 Ben

Patient 25 THY 4 PTC

Patient 26 THY 4 PTC

Patient 27 THY 2 Ben

Patient 28 THY 2 Ben

Patient 29 THY 2 Ben
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Patient
number

Cytological
diagnosis

Histological diagnosis

Patient 30 THY 5 PTC

Patient 31 THY 5 PTC

Patient 32 THY 2 Ben

Patient 33 THY 5 PTC

Patient 34 THY 3 Ben

Patient 35 THY 2 Ben

Patient 36 THY 3 Ben

Patient 37 THY 3 Ben

Patient 38 THY 5 PTC

Patient 39 THY 5 PTC

Patient 40 THY 5 PTC

Patient 41 THY 3 Ben

Patient 42 THY 4 PTC

Patient 43 THY 2 Ben

Table 1: Table listing all the patients enrolled in the study, along with the
cytological  and  histological  diagnosis.
Ben: Benign lesions; PTC: Papillary Thyroid Carcinoma.

2.2. Acquisition of Mass Spectra

The  cytological  smears  have  been  scanned  through  a

ScanScope CS digital scanner (Aperio, Park Center Drive, Vista,

CA, USA), to obtain a digitalized image of the specimen. After

sample  preparation,  mass  spectra  were  acquired  using  the
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ultrafleXtreme  MALDI-TOF/TOF  mass  spectrometer  (Bruker

Daltonics GmbH, Bremen, Germany) in linear positive mode. All

acquired spectra range from m/z 3000 to 25000, with a raster

(namely, the spatial resolution) of 100 micrometers.

2.3. MALDI-MSI Data

Generally, a mass spectrometry imaging dataset consists of a

“data  cube”  (Figure  1)  resulting  from the  acquisition  of  one

mass spectrum for each pixel of the digitalized tissue image. By

considering  a  particular  mass-to-charge (m/z)  value,  we can

then  represent  the  spatial  distribution  of  the  corresponding

compound  (with  that  specifc  m/z)  by  coloring  each  pixel

according  to  its  intensity  values  (i.e.,  relative  abundance)  at

different  spatial  coordinates.  In  other  words,  for  each  m/z

value in the spectrum, a molecular image showing the spatial

distribution of the corresponding analyte is generated, possibly

highlighting  regions  where  the  selected  molecule  localizes.

Finally,  spectra  from  specifc  regions  of  the  sample  can  be

exported and passed to the software for elaboration.
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Figure  1:  MALDI-MSI  data cube.  The intensity  value of  a  specifc  analyte
compound  is  localized  as  follows:  x  and  y  axes  represent  the  spatial
coordinates of the 2D digitalized tissue image (a mouse brain is shown in
this example);  the z-axis represents the mass-to-charge (m/z) ratio in the
acquired spectra. For each m/z value in the spectrum, a 2D molecular image
is  computed  by  coloring  the  pixels  according  to  the  relative  abundance
(intensity  of  that  m/z  value)  of  the  selected  compound across  the  tissue
section.



2.4. Data Preprocessing

Raw data provided by MALDI instruments can be viewed also

as  a  simple  collection  of  independent  spectra  which  are

generally unaligned and noisy. Data preprocessing is a crucial

step for allowing fair comparisons and reducing both technical

and analytical variability or artifacts. To provide more reliable

elaboration, we frst applied the following steps.

(i)  Baseline  Subtraction  and  Smoothing. The  baseline  of  a

spectrum  is  a  segment  connecting  points  with  the  lowest

intensities on which the entire spectrum lies. The baseline is

essentially  made  of  noise  (electrical  noise  and  chemical

background generated by impurities),  which,  in turn,  hinders

the feature extraction process (peak picking). In this work the

baseline  subtraction  process  has  been  computed  using  the

TopHat algorithm, while the denoising was performed using the

Savitzky-Golay smoothing,  in order to bring the spectra onto

the x-axis and to present more defned peaks (thus allowing

more reproducible peak picking selections [11]).

(ii) Normalization. Normalization is the process that consists in

the  multiplication  of  all  the  intensity  values  in  the  mass

spectrum by a scaling factor, which results in an intensity axis

broadening or narrowing. Here we applied the so-called  total
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ion count (TIC) method: all the intensities of each spectrum in

the dataset are divided by the spectrum total current (i.e., the

sum of all  the intensities),  providing each spectrum with the

same integrated area under the curve [12].

(iii) Peak Picking. The peak picking was made using the Median

Absolute Deviation (MAD) as a noise estimation method, with a

signal-to-noise (S/N)  ratio  threshold  of  3.  The  peak  picking

results in the selection of the highest m/z-intensity coordinates

of  the  peaks  in  the  spectra  (i.e.,  features  for  the  following

selection phase) [13]. This leads to a massive reduction of the

data dimensionality that will  lead to a more computationally

effcient analysis.

(iv) Peak Alignment and Filtering. All peaks have been aligned

(with  a  tolerance  of  2000  ppm)  in  order  to  prevent  slightly

analytical  variations  in  the  m/z values  from  being  seen  as

distinct  peaks.  This  ensures  more  consistent  and  coherent

results, since possible artifacts in the identifcation of putative

biomarkers are prevented from being generated. In addition, in

order to remove false positive peaks coming from the noise, a

fltering has been applied, resulting in keeping only the signals

that are present in at least the 25% of all the spectra in the

dataset.
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The peak alignment and fltering have been performed on the

entire  dataset,  as  part  of  the  preprocessing  of  the  entire

spectral  data.  Although  this  can  potentially  introduce  some

bias, especially in low-intensity peaks, closer to the noise and

possibly not well resolved, this effect is compensated by the

fltering,  which was performed, for this reason, on the entire

dataset.  The  signal-to-noise (S/N)  ratio  method  (which  we

used)  for  peak  picking is  known  to  generate  false  positive

peaks [6], and this is why the fltering is performed. Other peak

picking  methods,  such  as  the  orthogonal  matching  pursuit

(OMP), which evaluates the shape of the peak rather than its

intensity,  are  known to be more robust  and reliable  [6],  but

there  are  no  R  functions  at  the  moment  to  perform  peak

picking with this algorithm. This could be an input for future

work,  to make peak picking more robust to peak shape and

symmetry and to decrease the number of false positive peaks.

2.5 Peak-List Matrix and Data for Classification

The  preprocessing  step  provided  us  with  a  peak-list  matrix.

This matrix with other elaborated data has been used to build

and evaluate the inference model. We summarize the data we

used as follows.
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Dataset 1: Peak-List Matrix. As referred to above, this data is

directly provided by the preprocessing step, yielding a number

of aligned peaks of 144.

Average Profle Data. The obtained profles were then used for

the  average  profle  classifcation as  described  in  the  next

sections. In particular, for this task, the following two datasets

were created.

Dataset 2: Training Set. It contains peak-list data from THY2,

THY4, and THY5 patients.

Dataset 3: Validation (Test) Set. It contains peak-list data from

THY3 patients.

3. Average Profile Classification

To  obtain  a  classifer  we  applied  sequentially  the  following

steps.

(i) Recursive Feature Elimination. In this phase, we executed a

wrapper  feature  selection  process  using  the  training  set

(dataset 2) as defned previously. To avoid overftting and allow

for the classifer to work properly,  we applied a repeated (2

times)  10-fold  cross-validation  process  with  the  recursive

feature elimination (RFE) algorithm. In particular, to evaluate
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the  performances  of  the  selected  subsets  of  features,  we

iteratively  applied  a  partial  least  squares  (PLS)  model  (for

implementation issue see R “caret” package [14]). In this way,

we  obtained  a  subset  of  20  features,  which,  in  turn,  was

submitted for further elaboration as described in the following

step.

Feature selection decreases the risk of overftting, especially

with this reduced number of  patients.  When using individual

spectra/pixels per patient, the risk of overftting is reduced, but

the algorithm can become slower and less effcient in terms of

performances and classifcation capability (see the comparison

of  computational  times  in  Table  2  and  of  classifcation

performances  in  Tables  3  and  5;  the  process  has  been

executed on a machine equipped with 16 GB of RAM, an Intel

i7-4702mq CPU, and a 7200 rpm hard disk, on Ubuntu Linux):

in fact, the mathematical formula that defnes the model will

be  much  more  complicated.  On  the  contrary,  we  want  the

algorithm to be fast  and effcient,  especially  if  an  ensemble

classifer  is  to  be  implemented  in  the  future:  when  more

algorithms are employed at the same time to vote for the class

of  the  unknown  sample,  it  is  important  that  since  the  time

taken by the process exponentially increases with the number

of  algorithms  running,  the  classifcation  is  performed  in
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reasonable time. This would also increase the translatability of

the approach to the daily clinical routine. Finally, by retaining

more  peaks,  the  model  can  become  more  susceptible  to

variations in the peak intensity due to analytical variability and

fluctuations in the instrument sensitivity and performances.

Feature selection No feature selection
RFE 75.656 //

SVM tuning and
test

32.392 117.524

Table 2: Table displaying the difference in computational time taken by the
classifcation process when employing the feature selection and when not.
The  tuning  parameter  grid  is  the  same  in  both  cases.
Times  are  displayed  in  seconds  and  calculated  by  the  R  function
system.time().

Accuracy Sensitivity Specificity PPV NPV ROC

EV 0.273 0.000 1.000 0.000 0.273 0.500

2x 10-
fold
CV

0.567 0.000 1.000 0.000 0.567 0.500

Table 3: Validation performances of the SVM classifer without performing
feature selection. In our case, the performances indicate the ability of the
algorithm to correctly detect the benignity when the case is fled as THY3.
EV: external validation; CV: cross-validation; PPV: Positive Predicted Value;
NPV: Negative Predictive Value.
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Accuracy Sensitivity Specificity PPV NPV ROC

EV 0.818 0.750 1.000 1.000 0.600 0.875

2x 10-
fold
CV

0.713 0.625 0.775 0.740 0.767 0.778

Table 5: Validation performances of the SVM classifer after performing the
RFE feature selection. In our case, the performances indicate the ability of
the algorithm to correctly detect the benignity when the case is fled as THY3.
EV: external validation; CV: cross-validation; PPV: Positive Predicted Value;
NPV: Negative Predictive Value.

(ii) SVM Classifcation. A  Support Vector Machine (SVM) model

was trained using dataset 2 with the features provided by the

recursive feature elimination. Moreover, the SVM was tuned to

maximize the model capability, thus obtaining a classifcation

with  high  performances.  A  10-fold  cross-validation  was

performed  2  times  onto  the  training  data  to  assess  the

reliability  of  the SVM. The trained classifer was then tested

onto  validation  dataset  3  (THY3  patients),  returning  the

classifcation  performances  based  upon  the  degree  of

concordance between the predicted class and the actual class,

in  terms  of  sensitivity,  specifcity,  positive  predictive  value

(PPV),  negative  predicted  value  (NPV),  and  ROC  AUC  (area

under the curve).
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4. Pixel-by-Pixel Classification

After  testing  the  SVM  classifer  onto  the  average  proteomic

profles, we applied the trained model to predict the class of all

the individual spectra in the MALDI-MSI dataset, which is one

mass spectrum for each pixel: this results in a pixel-by-pixel

classifcation, namely, the classifcation of tissue areas rather

than the entire proteomic profle of a patient. Since for each

spectrum the physical coordinates of the digitalized image are

also retained, then it is also possible to color the corresponding

pixels  over  the  image.  In  other  words,  for  each  patient,  a

molecular image with pixels colored according to the class is

shown, highlighting differently classifed tissue areas.

In the classifcation of new (unknown) MSI data, the algorithm

preprocesses  the  spectra  in  the  same  way  as  the  training

dataset and aligns the peaks from the new data to the ones

used for  building the model.  The peak fltering is  performed

onto the unknown MSI data before running the pixel-by-pixel

classifcation, not in the average profle classifcation, in order

to discard the presence of false positive peaks picked by the

MAD algorithm, when individual spectra/pixels per patient are

used.
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5. Implementation

All  the  conceptual  procedures  described  in  this  paper  have

been  coded  using  the  R  environment  (https://www.r-

proaect.org/). The spectra were formatted as imzML fles [15],

imported into R using the “MALDIquantForeign” package [13]

and processed using the “MALDIquant” package [13].

6. Results

Our primary interest was to build an accurate model able to

discriminate malignant from benign thyroid bioptic specimens.

Our  approach  was  empirical:  we  frst  designed  a  specifc

knowledge discovery  process  (Section  3)  able  to  provide  an

accurate model for case versus control classifcation (i.e., THY2

versus  THY4  and  THY5).  Then  we  evaluated  the  model

performances onto a validation set (THY3) as described in the

previous paragraphs.

Table 5 reports the performances obtained after a repeated (2

times) 10-fold cross-validation process (using dataset 2) onto

the validation set containing only patients diagnosed as being

of  THY3 (dataset  3).  The  performances are  based  upon the

degree of  concordance between the predicted class and the
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actual  class,  in  terms  of  sensitivity,  specifcity,  positive

predictive  value  (PPV),  negative  predicted  value  (NPV),  and

ROC (Receiver  Operating  Characteristic)  AUC (area under the

curve).

Specifcally, Table 6 displays the difference between the class

that was predicted by the model and the actual class provided

by the histological analysis.

Sample Predicted class True class
Patient 2 Ben Ben

Patient 9 PTC PTC

Patient 13 Ben Ben

Patient 14 PTC PTC

Patient 18 PTC PTC

Patient 20 PTC Ben

Patient 22 Ben Ben

Patient 34 Ben Ben

Patient 36 Ben Ben

Patient 37 Ben Ben

Patient 41 PTC Ben

Table 6: Discrepancy between the predicted class and the actual diagnosis.

A  visualization  of  the  obtained  accuracy  can  also  be  given

through the pie chart in Figure 2.
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The  performances  are  further  elucidated  by  the  ROC  curve,

whose AUC (area under the curve) of 0.875 indicates a good

capability of the model in assigning specimens to the correct

class (Figure 3).
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Figure 2: Graphical evaluation of the patient classifcation operated by the
model. The green area is proportional to the amount of correctly classifed
patients,  while  the  blue  area  corresponds  to  the  amount  of
misclassifcations.



Table  4  lists  the  parameters  applied  to  the  Support  Vector

Machines after  the tuning  (i.e.,  parameter  optimization).  The

computational time of the automatic tuning process is clearly

dependent  on  the  range  of  values  to  be  evaluated  and  the

optimization method applied for the evaluation. In this case,

we optimized the model parameters over a fxed set of default

values  (see,  e.g.,  [14])  simply  by  taking  the  best  resulting

performance.
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Figure  3:  Receiver  Operating  Characteristic  (ROC)  curve  computed  by
determining  the  number  of  true  positive  (sensitivity)  and  true  negative
(specifcity) observations when employing the selected features.



Feature
selection

Kernel Cost Epsilon Gamma

RFE Radial 10 0.1 0.11

No RFE Radial 10 0.1 1.11

Table 4: Tuning parameters of the support vector machines, with and without
performing the feature selection. The best parameters are chosen according
to the classifcation performance of the model.

As described above, MALDI-MSI data is represented by spectra

corresponding to pixels of the digitalized tissue image. Instead

of  performing  the  classifcation  onto  the  average  proteomic

profle  only,  this  operation  can  be  performed  onto  the

individual spectra coming from the single patient as well.  In

this way, a spectra-by-spectra (corresponding to pixel-by-pixel)

classifcation of the patient specimen can be obtained. Since

spectra  retain  their  spatial  coordinates  during  the  statistical

analysis, it is also possible to color each pixel according to the

inferred class (i.e., green for benign and red for malignant). This

process resulted in the green and red area picture (Figure 4),

providing  a  tissue  area  based  classifcation  rather  than  a

standard profle classifcation of the entire proteomic profle.
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7. Conclusion and Discussion

The work presented here shows the capability of MALDI-MSI to

accurately  classify  unknown  specimens  obtained  from  the

clinical  routine.  In this context,  machine learning  techniques

(e.g., SVM) may be considered as a valuable approach able to
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Figure 4: Pixel-by-pixel classifcation. An entire thyroid cytological smear is
displayed. A mass spectrum was acquired for each pixel and the pixel-by-
pixel  classifcation  has  been applied.  Green  pixels  correspond to  spectra
classifed  as  benign  (HP:  hyperplastic),  while  red  pixels  correspond  to
malignant (PTC: papillary thyroid carcinoma) spectra.



exploit the full potentiality of the MALDI-MSI data, without the

need of porting these fndings to other clinical tests. This, in

turn,  allows  MALDI-MSI  to  properly  aid  the  diagnosis  of

specimens in the daily clinical practice. Importantly, given that

MALDI-MSI  looks  at  the  sample  at  the  molecular  level,  the

possibility  of  performing  a  pixel-by-pixel  classifcation

constitutes a key point in the diagnostic process. In fact, areas

highlighted by the inference model can represent regions that

are undergoing molecular  alterations that  are  not  correlated

with morphological  changes or  very tiny groups of  cells that

escaped the cytomorphological evaluation. Our results clearly

suggest broader investigations either on different datasets or

on different classifcation systems (i.e., ensemble classifers).

Moreover,  the  next  studies  will  evaluate  the  possibility  of

MALDI-MSI to provide the information needed for identifying

the correct subgroup of the pathology, to assess the disease

progression, and to possibly detect the presence of the disease

in the very early stages, providing concrete help in diagnoses.

Finally,  when more data is available, we will  also exploit  the

possibility of classifying tissue specimens providing inference

models directly trained on specifc localized areas.
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ABSTRACT

Motivation: In the clinical routine, the diagnosis of diseases is

performed via the cyto- or histo- morphological evaluation of

bioptic  specimens.  Additionally,  molecular  diagnosis  can  be

provided,  when  available,  by  immunohistochemistry,  which,

however,  accounts  for  the  presence  of  a  limited  set  of

biomarkers.  Matrix-Assisted  Laser  Desorption/Ionization

(MALDI)  -  Mass  Spectrometry  Imaging  (MSI)  is  a  powerful

technology  which  allows  the  evaluation  of  the  chemical

composition of a tissue  in situ, allowing for the detection of a

large number of different molecules at the same time across

the  entire  tissue  section.  The  data  consists  of  a  data  cube,

composed of a m/z - intensity mass spectrum for each pixel of

the digitalized tissue image. The aim of the study was to build a

software  pipeline for  the  exploitation  of  mass  spectrometric

data for clinical purposes, i.e the disease diagnosis of bioptic

specimens at the molecular level.

Results: The software performs import and preprocessing of

spectra,  feature  extraction,  backwards  feature  selection

(Recursive Feature Elimination - RFE), training and tuning of a

series  of  classifers,  and  fnally  classifcation  of  individual

spectra,  yielding  a  segmentation  MS  image  (pixel-by-pixel
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classifcation). The software has been tested onto clinical MSI

data  coming from the analysis  of  leftover  bioptic  specimens

collected from the hospital. Spectra from Regions Of Interest

(ROIs)  drawn by the pathologist  are  imported,  preprocessed

and  averaged  to  generate  representative  spectra.  After  the

feature  extraction  phase  (i.e.  peak  picking  and  peak

alignment),  a  set  of  classifers performs the RFE in order  to

select  the  best  discriminatory  features.  Afterwards,  each

classifer  is  trained  onto  the  reduced  training  set  and  fne-

tuned  in  order  to  maximize  the  classifcation  performances.

Finally, each classifer predicts the outcome for each spectrum

of  a  patient's  data  cube,  and  all  the  votes  are  combined

together, according to the Bayesian framework, for determining

the fnal outcome (pixel-by-pixel classifcation).

Availability: The  software  described  in  this  paper  is  freely

available  as  R  script  fles  (.R)  and  hosted  at  GitHub  (at

https://github.com/gmanuel89) under the GPLv3 license.
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1 Introduction

1.1 The clinical issue

In  the  daily  clinical  practice,  the  diagnosis  of  diseases,  in

particular  of  cancer,  is  performed  by  pathologists  via  the

morphological evaluation of bioptic material through cytology

and  histology  [9,13,17].  Further  investigation  can  be

performed,  when  possible,  by  immunohistochemistry,  which

provides the possibility of a molecular diagnosis, through the

detection of specifc molecules with the aid of antibodies [14].

However, the implementation of multiple molecular biomarkers

for the diagnostic process is still rather limited. Moreover, the

lack of either consensus or guidelines regarding morphological

boundaries and the lack of reliable biomarkers for molecular

diagnosis leave cases unresolved [12].

Advanced technologies, such as genomics [1] and proteomics

[11],  constitute  a  remarkable  assistance  in  the  diagnostic

procedure,  providing molecular  markers for a more obaective

and  reliable  diagnosis.  Mass  spectrometry,  and  in  particular

Mass Spectrometry Imaging (MSI), provides molecular insights

that have been proven constituting a reliable assistant in the

diagnostic process and of possible translatability to the daily

clinical routine [5].
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1.2 The MALDI-MSI technology

Matrix-Assisted  Laser  Desorption/Ionization  (MALDI)  -  Mass

Spectrometry  Imaging  (MSI)  is  the  application  of  mass

spectrometry which allows the pixel-by-pixel determination of

the  molecular  composition  of  a  tissue  section  and  the

evaluation of the localization of a wide spectrum of analytes,

directly on tissue [2,8]. One of the biggest advantages of using

mass  spectrometry  imaging  is  that  local  changes  are  not

smoothed away or lost due to tissue homogenization but rather

fully  preserved  in  place.  Therefore,  more  representative

information  can  be  extracted  from  tissue  sub-areas,  since

small  molecular  changes  are  not  lost  when  generating  the

average spectrum from that selected Region Of Interest (ROI)

[2,8].  Additionally,  the  results  yielded  by  MSI  can  be

overlapped  with  histo-morphological  features  provided  by

staining  the  same  tissue  section  used  for  the  mass

spectrometric analysis. This co-registration not only allows to

extract spectra from specifc ROIs defned by the pathologist

for the defnition of molecular signatures, but also provides a

morphological  and  biological  explanation  to  the  results

obtained from the MSI analysis.

151



The data collected from a MALDI-MSI analysis  consists of  a

data cube, in which a mass spectrum (recording the presence

and abundance of molecules through a m/z x intensity graph) is

associated with each pixel of the digitalized tissue image.

1.3 Machine learning and MSI

The  data  obtained  from  MALDI-MSI  has  been  found  to  be

suitable  for  many  applications  in  a  great  variety  of  felds,

especially for clinical purposes [5]. Therefore, the application

of state-of-the art machine learning algorithms onto MSI data

seems  a  promising  strategy  for  the  exploitation  of  mass

spectrometric  information  for  the  classifcation  of  clinical

specimens.

However,  the  huge  amount  of  data  provided  recent  mass

spectrometers and the intrinsic combinatorial nature of many

computational  problems  require  a  careful  and  targeted

application  of  both  technological  and  methodological

approaches.  In  this  context,  machine  learning  can  provide

useful  methods  to  deal  with  such  big  and  complex  data.

Moreover,  distributed  computational  environments  can  be

employed  to  shorten  the  time  of  computation  and  thus

constitute a very effcient method to analyze such data.
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2 System and Methods

2.1 Pixel-by-pixel classification

The aim of this work is to provide the user with a complete

MALDI-MSI  data  analysis  workflow,  through  an  easy-to-use

software  series,  that  performs  spectral  import  and

preprocessing,  feature  selection,  model  training/tuning  and

fnally  pixel-by-pixel  classifcation of  MS datasets.  The pixel-

by-pixel  classifcation  is  performed  by  an  ensemble

classifcation model,  which can be trained and tuned before

being applied to the MSI data.

The classifcation is performed on all  the spectra of the MSI

dataset (corresponding to pixels of the digitalized tissue image)

collected from the analysis  of  an entire  tissue section:  each

classifer  of  the  ensemble  returns  the  output  of  the

classifcation,  the fnal  output  being the result  of  a  weighed

vote  among  the  classifers.  As  already  introduced,  average

molecular  profles  are  often  not  representative  of  the entire

tissue section,  since spectra coming from small  and specifc

areas of tissue do not heavily contribute to the overall average

spectrum  and  subtle  molecular  changes  occurring  in  small

areas  of  the  biopsy  are  smoothed  away  by  the  averaging

process. A pixel-by-pixel classifcation classifes tissue areas,
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by fully detecting molecular changes  in situ, possibly bringing

sub-areas  of  tissue  to  the  attention  of  the  pathologist.  The

generation  of  a  segmentation  image,  by  coloring  pixels

according  to  the  predicted  class  of  the  corresponding

spectrum,  allows  to  identify  putative  areas  of  interest  on  a

molecular  basis,  in  a  more  reliable  way,  by  employing  the

ensemble classifcation system.

2.2 Data size and parallel computation

The  spectra  collected  from  the  mass  spectrometer

(ultrafleXtreme  MALDI-TOF/TOF,  Bruker  Daltonics,  Bremen,

Germany), in reflectron positive mode, in a mass range of m/z

700-4000, with a spatial resolution of 100 m (microns), areμ

composed of around 60000 data points (m/z – intensity values)

each. When imported into R, each spectrum is cached into the

memory, allocating around 1 MB of space.

Given  the  amount  of  MS  data,  the  computations  cannot  be

performed with common local  resources in reasonable time.

For  this  study,  a  virtual  machine  hosted at  the University  of

Milano-Bicocca was used, equipped with a 8-core CPU and 128

GB of RAM, in order to speed up the calculations by exploiting

parallel computation.
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3 Algorithm

The  software  employs  the  Bayesian  framework  in  order  to

provide weights to the classifer votes, by determining the most

probable outcome for each spectrum.

The Bayesian probability of a certain hypothesis given the data

(P(h|d)) is proportional to the product of the prior probability

(P(h)) and the likelihood probability (P(d|h)):

P(h|d)  P(∝ d|h) x P(h)

During  the  training  phase,  the  classifcation  performances

(such  as  sensitivity,  specifcity,  positive  predicted  value  and

negative predicted value) of each classifer are assessed during

cross-validation  and/or  external  validation  (if  an  external

dataset is provided) phase and computed for each class (i.e.

levels of the response variable).

The  prior probability  is  equal  to  the  proportion  of  the

observations in the training set with a selected outcome.

The likelihood is the probability of a certain hypothesis (i.e. the

model predicting the real class) given the data (i.e. the class

predicted by the model). Therefore, the likelihood probability is

an indicator of the reliability of the classifer, by measuring the
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probability that the model will predict the correct class when

applied to new unknown data.

The model classifcation performances are used as Bayesian

probabilities,  by  consequently  providing  a  weight  to  the

classifer’s vote. The Bayesian probabilities are calculated for

each  class,  according  to  the  conditional  independence

assumption.  The  sensitivity  (or  true  positive  rate  –  TPR,  or

recall) corresponds to the probability that the class predicted

by  the  model  is  the  actual  class  (P(d =  1  |  h =  1)  or

P(d = 0 | h = 0)), while the false negative rate (FNR, equal to 1 -

sensitivity)  corresponds to the probability  that  the predicted

class does not correspond to the actual class (P(d = 1 | h = 0)

or P (d = 0 | h = 1)).

The  fnal  outcome  is  the  class  associated  with  the  highest

probability.
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4 Implementation

4.1 Workflow

Import and preprocessing

All  the spectra (in the data cube form) (formatted as imzML

fles [19] in the case of imaging data) are imported into R [16]

using  the  “MALDIquantForeign”  package  [6].  In  order  to

discard  the  analytical  variability  associated  with  the  sample

preparation and the electronic  nature of  the instrument,  the

spectra are subaected to preprocessing, comprising smoothing

(algorithms:  Moving Average or  Savitzky-Golay flter), baseline

subtraction  (algorithms:  TopHat,  SNIP,  Convex Hull,  Median),

normalisation (algorithms:  TIC,  RMS,  Median)  and alignment,

by employing functions from the “MALDIquant” package [6].

The  feature  extraction  phase,  namely  the  peak  picking

(algorithms:  MAD or  Super  Smoother)  followed  by  the  peak

alignment, yields a n x  p data matrix (peaklist matrix, number

of  observations:  n,  number of  features:  p)  which,  along with

some  additional  clinical  and  demographical  information,  is

submitted to the statistical analysis [5].

For this study, the spectra coming from homogeneous regions

of each sample are averaged, by generating a representative
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average spectrum, which is used for feature extraction for the

following phase.

Feature selection

Since overftting issues can arise when training classifers when

p >> n, a feature selection step is performed in order to discard

the redundant and invariant features and to keep only the most

informative  ones  that  have  an  actual  impact  on  the

classifcation.  The  Recursive  Feature  Elimination (RFE)  (a

backwards  feature  selection  method)  iteratively  selects  a

subset  of  features  and  evaluates  their  impact  onto  the

classifcation  by  ftting  a  model  and  giving  weights  to  the

features according to their  relevance in the performances of

the  classifcation  model  itself.  Finally,  the  most  important

features  are  preserved  and  carried  through  the  statistical

analysis:  the  feature  selection  algorithm  can  automatically

select  the  optimal  number  of  features  according  to  the

maximization of the model performances.

Each classifer of the ensemble (Partial Least Squares, Support

Vector  Machines  with  Radial  Basis  Kernel  Function,  Support

Vector  Machines  with  Polynomial  Kernel  Function,  Support

Vector  Machines  with  Linear  Kernel  Function,  Naïve  Bayes

Classifer,  k-Nearest  Neighbor,  Random Forest)  independently
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selects the best discriminatory features onto the same training

set  via  the employment of  the RFE algorithm: only  the best

performing  features  are  preserved  for  the  following  tuning

phase,  in  which  the  model  is  fne-tuned  over  a  set  of

parameters  (through  a  3-time  10-fold  cross-validation),  in

order  to  further  maximize  the  classifcation  capability.  Each

classifer  is  then cross-validated (3 times with  a  k of  10)  in

order to assess its performances and robustness, through the

discrepancy between the predicted class and the actual class,

by  generating  a  confusion  matrix  and  returning  the

performance  parameters  (such  as  sensitivity,  specifcity,

positive predictive value and negative predictive value). All the

statistical computations are performed by the employment of

functions in the “caret” package [4].

Pixel-by-pixel classification

After  every  classifer  has  selected  the  best  discriminatory

features via the RFE and has been fne-tuned, all the classifers

are combined into an ensemble,  in  order  to  provide a  more

robust and reliable classifcation of specimens based onto MSI

data.  Each model  individually  predicts  the  outcome class  of

each spectrum of the data cube, and the fnal outcome is the

result  of  a  vote  among  the  classifers  of  the  ensemble:  the
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corresponding pixel is colored in red or in green according to

the predicted class (red for malignant, green for benign).

4.2 Results

The  software  has  been  tested  onto  data  coming  from  the

MALDI-MSI analysis of bioptic specimens, provided as leftover

material by the San Gerardo Hospital in Monza Brianza (Italy),

in order to evaluate the potentiality of the mass spectrometric

technology to provide reliable diagnosis at the molecular level,

by  confrming  the  molecular  fndings  with  the  histological

evaluation performed by the pathologist.

Dataset 1: Thyroid Tissue MicroArray (TMA)

Clinical  relevance The  diagnosis  of  thyroid  malignancies  is

performed  onto  Fine  Needle  Aspiration  Biopsies  (FNABs),

obtained  from  the  cytological  smear  of  bioptic  material

withdrawn  from  the  patient’s  nodule,  with  the  aid  of

ultrasound. The cyto-morphological evaluation of the smeared

material  determines  the  diagnosis  of  the  patient.  However,

about  70%  of  the  samples  is  fled  as  indeterminate  for

malignancy  (THY3)  and  the  patients  undergo  total

thyroidectomy  and  lifelong  hormone  replacing  therapy,  as  if

they were affected by the malignancy [12]. Moreover, the inter-

observer  differences  strongly  affect  the  diagnostic  process.
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MALDI-MSI can assist  the pathologists  in  the defnition of  a

more  obaective  molecular  signature  of  malignancy  and

benignity,  in  order  to  make  the  diagnostic  procedure  more

reproducible  and  reliable.  In  particular,  Tissue  MicroArrays

(TMAs), by allowing the analysis of a high number of patients

(between  80  and  100)  at  the  same  time,  provide  the

throughput  for  strengthening  the  statistical  analysis  and,

therefore,  a  better  capability  of  detecting  biomarkers  to  be

employed for diagnosis.

Pixel-by-pixel  classifcation by MALDI-MSI The software has

been  tested  onto  MSI  data  coming  from  the  analysis  of  a

formalin-fxed  paraffn-embedded  (FFPE)  thyroid  Tissue

MicroArray  (TMA).  A  TMA  section  is  composed  of  multiple

tissue cores, each chosen and taken from bioptic FFPE tissue

by the pathologist.

The  training  set  for  the  ensemble  classifcation  model

comprised spectra coming from homogeneous TMA cores (6

benign  and  6  malignant,  affected  by  Papillary  Thyroid

Carcinoma  -  PTC).  Around  500  mass  spectra  have  been

acquired  from  each  core.  Each  spectrum  underwent

preprocessing, in order to enhance the biological information

by  discarding  the  analytical  spectral  variability:  baseline
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subtraction  with  the  Statistics-sensitive  Non-linear  Iterative

Peak-clipping (SNIP) algorithm [18] (with 200 iterations) and

normalization  with  the  Total  Ion  Count (TIC)  method.  A

representative  average  spectrum  was  generated  for  each

tissue  core,  and  peak  picking  was  performed  with  the

Friedman’s  Super  Smoother algorithm  [3]  using  a  signal-to-

noise ratio (S/N) threshold of 3 followed by peak deisotoping

[15]. The feature selection (RFE) was performed by setting a

number of features to retain of 30 and the accuracy as metric

for selection of the best subset.

The  ensemble  pixel-by-pixel  classifcation  was  then  tested

onto an entire TMA core, showing the presence of both benign

and malignant  tissue within  the  core (Figure  1).  Histological

evaluation  performed  by  the  pathologist  has  confrmed  the

molecular classifcation, proving the reliability of the molecular

data for biological classifcation.
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TPR TNR PPV NPV Accuracy
Pixel

validation
1.000 0.651 0.705 1.000 0.810

Table 1. Validation performances of the ensemble classifer after performing
the pixel-by-pixel classifcation. In our case, the performances indicate the
ability of the algorithm to correctly detect the benignity, since it is clinically
relevant  to  detect  the  benignity  in  the  diagnostic  phase.
benignity in the diagnostic phase.

TPR: True Positive Rate (Sensitivity);  TNR: True Negative Rate (Specifcity);
PPV: Positive Predicted Value; NPV: Negative Predictive Value.
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Figure  1.  Comparison between the segmentation  image computed by the
software and the histology of the same tissue section. Red pixels correspond
to spectra classifed as  malignant by the ensemble  classifcation system,
while  green  pixels  belong  to  benign  areas.  On  the  histologically  stained
tissue section (Hematoxylin & Eosin staining) the area corresponding to the
tumor is annotated in yellow by the pathologist.



Dataset 2: Medullary Thyroid Carcinoma (MTC)

Clinical  relevance Medullary  Thyroid  Carcinoma  (MTC)  is  a

thyroid  carcinoma originating  from the  parafollicular  C  cells,

producing  calcitonin.  The  maaority  of  the  cases  (75%)  is

constituted  by  the  sporadic  form,  the  remaining  percentage

being represented by inherited MTC [10]. The diagnosis of MTC

occurs  after  the  cyto-morphological  evaluation  of  a  bioptic

specimen:  unfortunately,  half  of  the  malignancies  are  not

diagnosed in the preoperative cytology phase [7]. The elevated

levels of calcitonin produced by C cells in MTC cases can be

used to aid the diagnostic procedure, even if no consensus has

been reached onto the thresholds of the calcitonin levels to be

employed to determine the MTC status [7]. Proteomics, and in

particular  MALDI-MSI,  can  reveal  molecular  alterations

underlining the origin and development of MTC, to be used as

diagnostic biomarkers.

Pixel-by-pixel  classifcation by MALDI-MSI The software has

been  tested  onto  MSI  data  coming  from  the  analysis  of

formalin-fxed  paraffn-embedded  (FFPE)  thyroid  tissue

sections.

The pathologist annotated the Regions Of Interest (ROIs) on

tissue, identifying the nodule and the healthy part of the tissue

164



sections.  Each  region  of  interest  was  composed  by  around

3000 mass spectra. Each spectrum underwent preprocessing,

in order to enhance the biological information by discarding the

analytical  spectral  variability:  baseline  subtraction  with  the

Statistics-sensitive  Non-linear  Iterative  Peak-clipping (SNIP)

algorithm [18] (with 200 iterations) and normalization with the

Total  Ion  Count (TIC)  method.  A  representative  average

spectrum was generated for each region of interest, and peak

picking  was performed with  the Friedman’s  Super  Smoother

algorithm  [3]  algorithm  using  a  signal-to-noise  ratio (S/N)

threshold  of  3  followed  by  peak  deisotoping  [15].  Due  to

limitations  in  sample  availability  (5  tissue  sections),  two

regions of interest, corresponding to one benign area and the

tumor,  were  selected  by  the  pathologist  for  each  sample,

yielding a total of two representative spectra for each patient.

Therefore,  the training set was composed of 5 benign and 5

malignant  proteomic  profles,  which  were  used  to  train  and

tune the classifers. The feature selection (RFE) was performed

by  setting  a  number  of  features  to  retain  of  30  and  the

accuracy as metric for selection of the best subset.

The classifer ensemble was then tested onto another sample,

for  the  identifcation  of  the  tumor  area  (Medullary  Thyroid

Carcinoma – MTC) within the tissue section (Figure 2).
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TPR TNR PPV NPV Accuracy
Pixel

validation
0.746 0.999 0.997 0.947 0.954

Table 2. Validation performances of the ensemble classifer after performing
the pixel-by-pixel classifcation. In our case, the performances indicate the
ability of the algorithm to correctly detect the malignancy, since it is clinically
relevant  to  detect  the  malignancy  in  the  diagnostic  phase.
TPR: True Positive Rate (Sensitivity);  TNR: True Negative Rate (Specifcity);
PPV: Positive Predicted Value; NPV: Negative Predictive Value.
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Figure  2.  Comparison  between  the  segmentation  image  computed  by  the
software and the histology of the same tissue section. Red pixels correspond
to  spectra  classifed  as  malignant  by  the  ensemble  classifcation  system,
while green pixels belong to benign areas. On the histologically stained tissue
section (Hematoxylin & Eosin staining) the area corresponding to the tumor is
annotated in yellow by the pathologist.



5 Discussion and concluding remarks

In  the  daily  clinical  practice,  the  diagnosis  of  specimens  is

mostly  performed  by  tissue  staining  followed  by  the  cyto-

morphological  evaluation  of  cells,  assigning  a  class  to  the

sample  according  to  features  that  the  pathologists  have

established  for  diagnosis.  The  procedure  also  raises  the

question regarding the probability of inter-observer variability,

which  can  lead  to  slightly  different  diagnosis  performed  in

different centers by different pathologists.

Molecular  diagnosis  can  be  performed  as  well,  for  example

with immunohistochemistry, by the employment of antibodies

which bind to specifc molecules that are differently expressed

among  different  tissue  classes.  However,  the  procedure  to

release the specifc antibody to the market for the routine use

in  the  clinical  practice  can  be  rather  long  as  it  has  to  pass

through  a  series  of  steps,  and  the  employment  of  multiple

antibodies for a single analysis is rather diffcult and limited.

Matrix-Assisted  Laser  Desorption/Ionization  (MALDI)  -  Mass

Spectrometry Imaging (MSI) is a multivariate technique, which

allows  for  the  detection  of  a  great  variety  of  molecules  on

tissue:  for  each  pixel  of  a  digitalized  tissue  image,  a  mass
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spectrum  is  generated,  recording  the  abundance  of  many

different molecules simultaneously.

When  different  tissue  sections  from  patients  affected  by  a

disease and control patients are analyzed, the pathologist can

draw Regions  of  Interest  (ROIs)  from which  to  export  mass

spectra representative of that condition. The spectra undergo

preprocessing  before  feature  extraction,  after  which  feature

selection can be performed in order to discard the invariant

and non-informative  features  from the dataset,  which  has  a

high  number  of  features  given  the  number  of  molecules

detected by mass spectrometry. Therefore, classifers trained

onto mass spectrometric datasets can exploit the potentiality

of  the  technique  to  make  accurate  predictions  by  using

multiple features detected by the advanced instrumentations.

Despite  the  huge  advantage  of  using  machine  learning  in

performing  more  obaective  diagnoses  based  upon  molecular

data, the training phase still relies upon the cyto-morphological

and/or histopathological evaluation of expert pathologists for

the correct assignment of the specimens to the corresponding

disease.  However,  the  high  sensitivity  and  specifcity  of  the

mass spectrometric technology,  coupled with a large patient

cohort,  provided  also  by  the  employment  of  formalin-fxed
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paraffn-embedded  (FFPE)  tissue  specimens,  allows  to

compensate  the  inter-observer  variability  in  performing

diagnoses  by detecting subtle  changes that  characterize  the

disease  and to  train  classifers  that  can  discriminate  among

different  diseases  based  upon  mass  spectrometric  features.

Additionally,  the  employment  of  different  classifers  at  the

same time, voting for patient classifcation, further strengthens

the machine learning approach for the classifcation of clinical

specimens.

The data collected from a MALDI-MSI analysis, in the form of a

data cube, consists of thousands of spectra, which take around

1 MB of memory each when cached for processing. Common

local  resources  are  not  enough  to  perform  the  proposed

statistical analysis on the mass spectrometric dataset, which

has  to  be  handled  by  virtual  machines,  with  higher

computational  power:  the  exploitation  of  parallel  computing

that relies  on multiple cores provides a way of  reducing the

time  of  computation,  therefore  returning  the  output  in

reasonable time.

The  software  proposed  in  this  work  offers  a  complete

workflow, from the import and preprocessing of spectra, to the

training  and  tuning  of  classifers,  to  the  pixel-by-pixel
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classifcation  of  bioptic  specimens.  By  exploiting  the  mass

spectrometric data directly, the classifcation is performed at

the molecular level, by accounting for the presence of several

molecules simultaneously and by reducing the inter-observer

variability  in  the  cyto-morphological  evaluation  of  stained

specimens. By relying on parallel and distributed processing,

the computation time can be shortened in such a way that the

results are obtained in a relatively short time, given the amount

of data that a mass spectrometry imaging analysis produces.

The  application  of  state-of-the-art  machine  learning

approaches  on  MALDI-MSI  data  seems  to  be  a  promising

strategy for the molecular classifcation of bioptic specimens in

the clinical practice.

The software has proven itself of being capable of predicting

the  presence  of  malignancy  within  a  tissue  section,  by

extracting the molecular signatures from a limited training set.

When more patients are enrolled in the study, the classifcation

system will become more robust and reliable, by reducing even

further the risk of overftting that arises from the employment

of  a  small  training  set.  Additionally,  new  methods  for

combining classifers are under development, in order to tweak

the weighing system in order to account more for a biologically
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relevant condition, e.g. when no false positives are allowed but

some false negatives are. Finally, new methods for increasing

the  speed  of  computations  are  investigated,  such  as  the

exploitation of  cloud computing clusters,  in order to provide

assistance to  the pathologists  by  returning the classifcation

output  in  reasonable  time,  even  when  dealing  with  such

amount of complex data.
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Figure  S1:  MS  PEAKLIST  EXPORT:  generates  and  exports  the  statistical
peaklist matrix from spectral fles. The graphical user interface is generated
through the Tcl/Tk package.

Figure S2: ENSEMBLE MS TUNER: trains and tunes a series of classifers onto
the  peaklist  matrix  features.  The  graphical  user  interface  is  generated
through the Tcl/Tk package.
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Figure S3: MS PIXEL TYPER: performs the pixel-by-pixel classifcation of MS
images  by  generating  a  MS  segmentation  image  (green/red  pixels)
resembling  the  spectral  classifcation.  The  graphical  user  interface  is
generated through the Tcl/Tk package.
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ABSTRACT

Matrix-Assisted  Laser  Desorption/Ionization  (MALDI)  –  Mass

Spectrometry  Imaging  (MSI)  is  an  advanced  technology

capable  of  detecting  small  molecular  changes  occurring  in

tissue sections while preserving the spatial localization of such

modifcations.  In  order  to  provide  this  powerful  data,  to  be

employed for diverse clinical purposes, the sample preparation

procedure  is  very  delicate  and  implies  the  deposition  of  an

organic  compound,  called  the  matrix,  in  order  to  allow  for

analyte  extraction  and  detection  by  the  mass  spectrometric

instrumentation.  The  deposition  of  the  matrix  must  occur

throughout the tissue in extremely fne layers, to achieve both

the  extraction  of  the  molecules  and  the  preservation  of  the

localization of such molecules by generating small droplets of

matrix  solution  which  become  small  crystals  on-tissue.

The iMatrixSpray, being a robotic device composed of an arm

moving onto a surface, aims at achieving a balance between

the  generation  of  fne  layers  of  small  matrix  crystals  and

analyte extraction. However, it does not come with a software

with  an  easy-to-use  graphical  user  interface  (GUI)  for  the

extensive  defnition  of  the  spraying  parameters,  in  order  to

allow the user to set each individual parameter of the spraying
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method depending on the purpose. The knowledge of the G-

code language is required in order to achieve the specifc aims

of each laboratory. The work described in this technical note

provides  the  scientifc  community  with  an  easy-to-use

software  that  allows to  automatically  generate  G-code fles,

serving as methods for the iMatrixSpray device, to be employed

by  laboratories  utilizing  the  spraying  device,  without  any

knowledge of the G-code language. Finally, the technical note

provides  the  scientifc  community  with  example  methods,

generating by using the software, to be used as starting point

by laboratories using the iMatrixSpray device.
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1. Introduction

MALDI Mass Spectrometry

Matrix-Assisted  Laser  Desorption/Ionization  (MALDI)  Mass

Spectrometry (MS) allows to determine the composition of a

sample  via  the  ionization  of  a  wide  spectrum  of  analyte

molecules, aided by the energy provided by a laser beam. Due

to the incompatibility  between the laser wavelength and the

absorbance  wavelength  of  molecules,  the  sample  must  be

dissolved  in  a  compound,  called  the  matrix,  which,  after

solvent  evaporation,  co-crystallizes  with  the  analyte

molecules, absorbs the energy from the laser and transfers it

to the analytes,  promoting ionization.  The ionization process

takes place through proton transfer, and, according to the type

of molecules to be detected, different matrix compounds can

be employed: acidic matrices provide protons to the analytes,

while basic matrices absorb protons from analytes, generating

cations  and  anions  respectively.  Since  MALDI  is  a  soft

ionization technique, no fragmentation occurs, and both intact

proteins and endogenous peptides can be detected, as well as

lipids, metabolites and drugs.
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Matrix deposition: profiling vs imaging

When employing tissue sections,  two MALDI-MS approaches

can  be  applied.  Profling  (MALDI-MSP)  aims  at  obtaining  a

representative profle from the entire tissue section,  or from

sub-regions: intra-section or intra-region molecular differences

are  smoothed  away  in  the  averaging  process  and  possibly

discarded during the statistical  analysis.  In Imaging (MALDI-

MSI), on the other hand, one mass spectrum for each pixel of

the  digitalized  tissue  image  is  acquired:  in  this  way,  local

molecular changes are fully preserved in place and taken into

account  during  the  statistical  analysis.  From  an  imaging

acquisition,  a  representative  profle  can  be  obtained  by

averaging spectra corresponding to specifc pixels of the tissue

image.  Depending on the purpose to be achieved, the matrix

deposition  is  performed  accordingly.  Profling  aims  at

maximizing analyte extraction, through tissue homogenization

or  by  the  deposition  of  large  droplets  of  matrix  solution  on

tissue.  In  this  way,  however,  local  changes  are  lost  due  to

molecules  dissolving  into  the  matrix  solution  and  diffusing

within  the  droplet.  Imaging,  on  the  other  hand,  aims  at

performing an in situ extraction, by depositing small droplets of

matrix solution on tissue, through spraying mostly, resulting in

the full preservation of molecular changes in place.
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2. Materials and Methods

The iMatrixSpray device

The iMatrixSpray device (https://imatrixspray.com/) is a robotic

system  (Delta  Robot)  which  uses  a  moving  arm  to  spray  a

solution onto a defned area. The plate onto which the samples

are placed can be equipped with a heat bed, in order to control

the temperature at which the sample is and at which the on-

tissue co-crystallization process takes place. The spray arm is

equipped with a capillary, connected to different vials through

a multi-channel  valve:  one  vial  is  reserved to  waste coming

from the rinsing of the components of the device, one vial is

reserved  to  the  rinsing  solution  itself  and  three  vials  are

dedicated to the solutions to be sprayed. Therefore, up to three

different solutions can be sprayed onto the sample within the

same run.

Method generation for the iMatrixSpray device

The iMatrixSpray device provides a simple web application to

allow the user to edit the parameters of spraying, such as the

height of the needle, the speed of movement of the arm, the

solution  to  be  used,  the  density  of  the  solution  on  tissue

(directly related with the strength of the spray), the number of
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spraying cycles and the distance between the lines of spray. In

order to further tweak the spraying method (e.g. reducing the

number of rinsing cycles, adding pauses between the sprays,

extending the drying time, changing the direction of spraying,

changing the area of spraying, etc...), a proper G-code fle must

be  generated,  including  all  the  commands  that  serve  as

instructions  for  the  device  to  move  the  arm  properly  and

spraying the correct amount of material on the area of interest.

3. Results

The  in-house  developed  iMatrixSpray  Method  G-code

Generator

In  order  to  provide  the  end  user  with  the  capability  of

generating G-code fles to be used as spraying methods for the

iMatrixSpray  device,  allowing  also  for  an  extensive  tweak of

such methods, an easy-to-use application has been developed,

written  in  Python  (v3.6),  that  guides  the  end  user  in  the

process through a simple and intuitive graphical user interface.

The  software  is  hosted  on  GitHub,  at

https://github.com/gmanuel89/iMatrixSpray,  under  the  GPLv3
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license:  software  updates  are  deployed  through  the  GitHub

platform.

Through a simple graphical user interface, the user can:

• Defne the solution to use for spraying. If more than one

solution is  specifed,  one full  method is  generated for

each solution and all the methods are bundled together

in the same G-code fle, in such a way that one solution

is sprayed after the other in the specifed order with the

associated method.

• If more than one solution is specifed, the waiting time

between two consecutive spraying methods can be set.

• The X and Y coordinates of the vertices of the spraying

area can be specifed,  in order to limit  the amount  of

solution to be used to only the area where the sample is

placed.

• The Z coordinate is automatically determined according

to the value specifed for the height of the needle. The

calculations account also for  the possible presence of

the heat bed.

• The distance between the lines of spraying defnes the

coverage of the solution on tissue.

184



• The speed of movement indicates how fast the arm is

moving during the spray.

• The  direction  of  spraying  can  be  set  to  be  either

horizontal  (along  the  X-axis)  or  vertical  (along  the  Y-

axis).

• The on-tissue density defnes the strength of the spray,

i.e. the amount of solution to be deposited for each line

of spray.

• The number of spraying cycles defnes how many times

the tissue must be entirely covered by the solution. An

additional time after each spraying cycle can be set, in

order to leave the machine still before starting to spray

again.

• The presence of a heat bed can be specifed, along with

the thickness of the heat bed itself, in order to adaust the

height  of  the  needle  (Z  coordinate)  accordingly.

Moreover, the temperature for the heat bed can be set.

• Additional tweaks can be applied to the method, such as

changing the number of valve rinsing cycles, the number

of initial wash cycles and the drying time. This can be

useful  in  order  to  shorten  the  time  of  spraying,
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especially  when  different  methods  with  the  same

solution are generated.

When all the parameters are set, the method can be saved as a

G-code fle (.gcode) to be used by the iMatrixSpray device as

method. Additionally, a CSV fle with the method parameters

can be generated along with the method fle.
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4. Concluding remarks

Recent advancements in mass spectrometry, involving mainly

the  development  of  more  powerful  and  sophisticated

instruments,  require  adequate  sample  preparation  methods,

especially  trypsin  and matrix  deposition,  to  be employed,  in

order to enhance such instrumental evolution. An inadequate
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deposition of matrix, for example, will  result in either a poor

analyte  extraction  or  a  spatial  delocalization  of  extracted

molecules.  When  it  comes  to  trypsin,  on  the  other  hand,

digestion  might  not  occur  effciently  throughout  the  tissue

section,  resulting  in  a  limited  and  unreproducible  release  of

peptides.  The  problems  encountered  during  sample

preparation  reflect  onto  the  obtained  data,  which  yields

incorrect  or  misleading  results,  even  when  data  analysis  is

performed correctly. 

The iMatrixSray device has been proposed for solving the issue

of matrix and trypsin deposition,  by depositing fne layers of

solution  on  tissue,  guaranteeing  a  fair  compromise  between

analyte  extraction  and  preservation  of  localization.  However,

the  iMatrixSpray  device  does  not  come  with  a  full-featured

application that can allow the end user to tweak the spraying

method parameters extensively, at the moment. Therefore, the

work  proposed  in  this  technical  note  provides  the  scientifc

community  with  the  possibility  to  easily  generate  G-code

methods and with example methods to be used as a starting

point by laboratories which aim at employing the iMatrixSpray

device for sample preparation for mass spectrometry imaging

analyses. 
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Chapter 6

Summary, conclusions and future
perspectives

6.1 Summary
Introduction/Rationale:  Matrix-Assisted  Laser

Desorption/Ionization  (MALDI)  -  Mass  Spectrometry  Imaging

(MSI) is  a powerful  technology which enables the molecular

composition of a specimen to be evaluated directly in situ. The

acquired data has been found to be particularly  suitable for

clinical  purposes  and  it  is  hoped  that  MALDI-MSI  can

eventually  be  used  to  provide  diagnostic  assistance  in

particularly diffcult cases. The aim of this work is to provide

the user with a complete MALDI-MSI data analysis workflow,

through  an  easy-to-use  software  interface.  The  end-user

should  have  the  capability  to  perform  the  import  and

preprocessing  of  spectra,  feature  extraction  and  selection,

model training/tuning and, fnally, pixel-by-pixel classifcation

of  MS  images,  with  the  fnal  output  being  the  molecular

classifcation of bioptic specimens.
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Methods: The software program makes use of an ensemble of

classifers,  rather  than  a  single  classifcation  algorithm,  to

classify  patients.  Each  classifer  independently  selects  the

most  discriminatory  features  by  discarding  invariant  and

redundant  features  through  the  application  of  the  Recursive

Feature  Elimination (RFE)  algorithm.  These  undergo  cross-

validation  and  tuning  over  a  set  of  parameters,  to  further

assess  and  maximize  the  performances.  Finally,  the

classifcation is performed on all the spectra collected from the

analysis of the entire biopsy, with each algorithm contributing

to  the  fnal  report  with  a  vote  (weighed  according  to  the

Bayesian  framework):  pixels  corresponding  to  spectra  are

coloured  according  to  the  predicted  class,  by  generating  a

red/green  MS  segmentation  image  that  resembles  the

classifcation.

Results:  The  software  has  been  tested  using  data  acquired

following  the  MALDI-MSI  analysis  of  formalin-fxed  paraffn-

embedded (FFPE) bioptic specimens. The molecular diagnosis

was  then  correlated  and  confrmed  following  histological

evaluation performed by a pathologist. The software was able

to successfully detect benign and malignant tissue cores within

a  thyroid  Tissue  MicroArray  (TMA).  In  order  to  extract  the

molecular signature of benignity and malignancy to be applied
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for  classifcation,  the  training  set  was  composed  of

histologically  homogeneous  tissue  cores.  The  application  of

this classifcation highlighted the presence of a heterogeneous

core (affected by Papillary Thyroid Carcinoma – PTC). From a

molecular standpoint the core was determined to contain both

benign  and  malignant  regions,  whilst  initial  histological

evaluation  indicated  the  presence  of  only  benign  cells.  This

tissue heterogeneity was then confrmed by further histological

evaluation.  The  software  has  also  been  applied  for  the

molecular  detection  of  Medullary  Thyroid  Carcinoma  (MTC).

The training set was composed of benign and malignant tissue

sub-areas, which were highlighted by the pathologist as being

homogeneous  in  terms  of  cell  composition  and  type.  When

tested on clinical MTC tissue specimens, the software was able

to successfully highlight the area corresponding to the tumour

nodule.

Conclusions/Novelty:  MALDI-MSI,  coupled  with  the

application  of  state-of-the-art  machine  learning algorithms,

can  potentially  provide  assistance  during  the  diagnostic

process  by  evaluating  the  molecular  alterations  in  tissue.

Consequently,  tumor  areas  without  evident  morphological

changes can be detected, suggesting that a diagnosis could be

obtained possibly at earlier stages.
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6.2 Conclusions

6.2.1 Machine learning approaches in 
MALDI-MSI: clinical applications
This review is the result of a wide literature search in the feld

of MALDI-MSI, with particular emphasis on the application of

machine learning approaches to  MALDI-MSI data for  clinical

purposes.

The  review  describes  the  computational  aspects  of  the

statistical analysis of MSI data. In particular, the review starts

with describing the data obtained from a MSI analysis and its

multidimensionality. The review then details the preprocessing

of the spectra in order to prepare the data before submitting it

to  the  statistical  analysis,  by  discarding  the  analytical

variability and enhancing the biological information. Finally, the

concepts of clustering, feature selection and classifcation are

explained,  and  examples  of  applications  of  MALDI-MSI  are

reported.

Additionally,  the  review  provides  a  tutorial  to  perform  the

aforementioned operations in freely available software (Orange

Canvas and Weka).
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The scope of the review was to evaluate the state-of-the-art

algorithms  that  are  used  in  the  literature  for  MALDI-MSI

applications in the clinical environment and, in particular, their

employment  for  feature  selection  and  classifcation.  By

addressing  at  the  possible  application  of  MALDI-MSI  in  the

daily clinical routine, the results of the studies proposed in the

review prove  the  capability  of  the  MALDI-MSI  technology  in

providing  molecular  information  that  can  be  exploited  by

machine  learning  algorithms  to  perform  the  aforementioned

operations  in  order  to  provide  assistance  in  the  diagnostic

process of particularly diffcult cases.

The work performed for this review allowed the evaluation of

the state of the art of the algorithms and their implementation,

in order to provide the fundamentals for the development of a

software  that  employs  such  algorithms  for  performing  the

clinical classifcation of specimens through MALDI-MSI data.

6.2.2 A Support Vector Machine Classification of 
Thyroid Bioptic Specimens Using MALDI-MSI Data
The  results  of  the  work  proposed  for  this  publication

demonstrate  the capability  of  MALDI-MSI data in  classifying

patients  by  employing  machine  learning  algorithms.  In

particular, the obtained results paved the way for the following
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work, with the aim of exploiting the mass spectrometric data

for supporting the pathologists in the daily diagnostic practice.

In this work,  a frst version of the software,  written in the R

environment, is proposed, in the form of R scripts without any

graphical user interface.

MALDI-MSI data of  thyroid cytological  smears was imported

and submitted  to  preprocessing,  in  order  to  yield  a  peaklist

matrix  for  statistical  analysis.  The  data  underwent  feature

selection,  by  the  employment  of  the  Recursive  Feature

Elimination (RFE) algorithm which ft  a  Partial  Least  Squares

(PLS)  model  to  evaluate  feature  weights  and  discarded  the

least relevant features for classifcation. Out of 144 features,

the 20 most informative ones were preserved and passed to a

Support  Vector  Machine (SVM)  (with  Radial  Basis  kernel

function)  classifcation  model  for  training.  The  model

underwent  tuning  over  a  set  of  parameters  in  order  to

maximize its classifcation performances.

The results show that the feature selection step is mandatory

in order to speed up the computational time and to increase

the classifcation capability of  the model.  The reason behind

this behavior is addressed as the “curse of dimensionality”: the

presence  of  a  high  number  of  features,  most  of  which  are
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highly correlated and/or invariant, therefore redundant, makes

algorithms less effcient and more prone to overftting, due to

their employment of many confounding features. Additionally,

the feature selection procedure yields a restricted number of

signifcant features, which can be further investigated under a

biological  point  of  view,  to  be  employed  as  biomarkers  for

classifcation.

Finally, the application of the SVM model to clinical specimens

of thyroid smears, also in the form of the proposed pixel-by-

pixel classifcation, proves the capability of mass spectrometric

data in possibly aiding the diagnostic procedure by providing a

molecular insight of the specimen with a good discriminative

power.

6.2.3 Combining multiple classifiers for the pixel-
by-pixel classification of bioptic specimens by 
MALDI-MSI
The body of work present in this paper shows the evolution and

improvement of the software that was initially proposed. The

proposed software aims at providing the end user with a full

data  elaboration  workflow,  in  order  to  exploit  mass

spectrometric data for the purpose of patient classifcation.
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The software is split in three modules: the frst allows to import

and  preprocess  MALDI-MSI  data  according  to  different

parameters,  the  second  allows  to  perform  feature  selection

and model training/tuning, while the third applies the trained

model to the spectral classifcation of specimens. All the three

software modules come with a simple and intuitive Graphical

User Interface (GUI) to allow its use on a daily basis by end

users.

The software makes use of a combination of several classifers

(Support  Vector  Machines  with  Radial  Basis  kernel  function,

Support  Vector  Machines  with  Polynomial  kernel  function,

Support  Vector  Machines  with  Linear  kernel  function,  Partial

Least  Squares,  Random  Forest,  Naive  Bayes  Classifer,  k-

Nearest Neighbor) to perform classifcation. In particular, each

classifer selects the best discriminatory features on the same

training  set,  by  employing  the  Recursive  Feature  Elimination

(RFE) algorithm, and undergoes tuning over a set of parameter

to  maximize  the  performances.  When  applied  to  new  mass

spectrometric  data,  each  classifer  predicts  the  outcome  of

each  spectrum  of  the  MALDI-MSI  dataset,  performing  a

spectrum-by-spectrum (i.e. pixel-by-pixel) classifcation of the

specimen. At the end, for each spectrum, the fnal outcome is

determined  as  a  weighed  vote  among  classifers,  with  the
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weight established as the reliability of the model in classifying

new spectra (posterior probability according to the  Bayesian

framework).

The results obtained when applying the full software stack to

data  coming  from  the  MALDI-MSI  analysis  of  clinical

specimens  show  that  the  software  has  the  capability  of

highlighting the presence of sub-areas of tissue corresponding

to tumor, therefore potentially providing aid in the diagnostic

procedure. By exploiting the mass spectrometric data directly,

the  diagnosis  is  performed  at  the  molecular  level,  possibly

highlighting changes that are  not  necessarily  correlated with

morphological alterations.

6.2.4 Generating iMatrixSpray methods for MALDI-
MSI analyses
The  work  proposed  in  this  technical  note  will  provide  the

scientifc community with the possibility to easily generate G-

code  methods  for  the  iMatrixSpray  device,  which,  at  the

moment, does not come with a full-featured application that

can  allow  the  end  user  to  tweak  the  spraying  method

parameters  extensively.  Additionally,  the  technical  note  will

include method details for different applications: from spraying

different matrices (e.g.  sinapinic acid and CHCA) to spraying
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trypsin, for the analysis of different kinds of molecules, such as

proteins, peptides, lipids and metabolites. All the methods will

be  generated  through  the  software  by  the  laboratory  and

provided  to  the  scientifc  community,  in  order  to  have  a

reference  starting  point  for  the  MALDI-MSI  analysis  of  such

molecules.
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6.3 Future perspectives
The analysis of huge amount of data provided by new advanced

mass spectrometric instrumentations (higher spatial and mass

resolution)  and  the  computational  hardness  of  many  data

analysis  and  data  mining  procedures  require  more  complex

and effcient tools to exploit useful information and to provide

adequate solutions.

6.3.1 Graph Theory
Graph theory allows to model several types of systems, both

natural  and  human-made,  ranging  from  biology  to  sociology

science.  In  this  context,  a  graph  provides  a  system

representation in terms of relationships among elements. More

formally,  such  elements  are  represented  by  vertices  and

relations between vertices are represented by edges.

Graphs  will  be  mainly  used  to  provide  alternative

representations  for  the  standard  data  cube  and  to  model

relationships between the spectral profles. In particular, some

sub-graph structures, typically applied to detect communities

in social network analysis and patterns in biological networks,

will be considered to indicate various types and confgurations

of “dense” groups (sub-graphs) such as cliques, which are sub-
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graphs where all  the pairs of  elements are connected by an

edge. The MSI problem can be given as a graph, where vertices

represent  specifc profles at  specifc  coordinates  and edges

represent correlations between profles.

Since ideal tissue partitions should contain spectra with high

degree of  similarity,  related to  clusters  of  cells  of  the same

molecular  nature,  potential  segments  of  MS  images  can  be

provided  by  exploiting  the  relational  information  associated

with  the  spectra  from  the  corresponding  sub-area.  For

example,  by  assuming  that  a  correlation  between  spectral

profles  of  contiguous  areas  within  a  damaged  tissue  exists

(again,  for  high  degree  of  spectral  similarity),  correlation

analysis  should be exploited to provide graphs where nodes

represent profles at specifc physical  coordinates and edges

identify  signifcant  higher  correlations among the considered

profles.

This  study  will  employ  genetic  algorithms  applied  to

optimization problems. Genetic algorithms are inspired to the

biological  concept  of  natural  selection,  involving  mutation,

cross-over  and  selection  events.  They  start  by  generating  a

population  of  chromosomes,  encoded  by  0  and  1  in  most

cases,  representing  a  possible  solution  to  the  optimization
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problem.  Each  iteration,  also  called  generation,  returns  a

possible solution to the problem, evaluated by a function called

ftness.  At  each  generation,  the  chromosomes  undergo

mutation (change between 0 and 1) and cross-over (exchange

of blocks of 0-1), occurring with a certain probability. The more

ft  individuals  are  selected  and  carried  on  towards  the  next

generation. The algorithm terminates either when a maximum

number of generations is obtained or when a certain threshold

(e.g. minimum) of the ftness function has been reached. For

example,  genetic  algorithms  applied  to  feature  selection

encode features to retain with 1 and features to discard with 0;

after mutation and cross-over events, the solution represented

by the best result  of  the ftness function (e.g.  discriminatory

power  of  the  features  measured  in  terms  of  classifcation

accuracy) is preserved at each iteration; at the end, the best

solution, i.e. the best subset of features, is returned.

The process will start by applying a simple case, i.e. designing

particular genetic operators for the considered problem. In this

case,  selection,  mutation and crossover will  be adapted and

interpreted properly to provide consistent hypotheses for the

“clique vs. independent set” partitioning. The resulting genetic

algorithms  will  serve  both  to  provide  frst  tentative

approximations for the MSI segmentation problem and, more

201



in  general,  to  design  similar  approaches  for  partition-based

computational problems.

6.3.2 Distributed Machine Learning
The  huge  amount  of  data  obtainable  by  advanced  mass

spectrometers and the intrinsic  computational  complexity  of

the  respective  algorithmic  procedures  make  most  of  the

standard  approaches  of  predictive  inference  virtually

impracticable.  One  task  that  should  really  be  taken  into

account for implementation is an effective distribution of the

computational  costs  over  different  virtual  processors,  e.g.

using clouds or multi-core systems. In particular, the research,

in  this  case,  will  be  focused  on  how  to  obtain  an  effcient

computational  load  distribution,  by  providing  both  parallel

concept learning and a proper delivering of the training data on

different  nodes  of  the  cluster,  following  the  MapReduce

paradigm.

The employment of one single classifer can be limiting for the

reliable  classifcation  of  specimens,  even  when  algorithms

particularly  suitable  for  feature-rich  data  (such  as  Support

Vector  Machines)  are  chosen.  Multiple  classifers  can  be

applied simultaneously and combined (with a weight related to

their reliability) for the prediction of the outcome of a patient,
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as  described  in  Chapter  4).  The  computations  can  be

distributed over a cluster, simply by mapping both the training

and  the  test  phases  of  the  individual  learning  models  into

different  nodes,  and  fnally  combining  (i.e.  reducing)  the

different  responses  (similarly  to  the  standard  “ensemble

learning”) to get the defnite target concept.
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I would like to thank the reviewers for reading the thesis and

providing criticism and suggestions, which have been positively

taken  and  translated  into  changes  to  the  thesis  text

accordingly.

 

REVIEWER 1

1)  Figures  often  lack  measurement  units  and  it's  diffcult  to

grasp some details due to their small size.

I truly apologize for the quality of the pictures, which had to ft

to  the  page  format  imposed  by  the  thesis  guidelines.  I  can

provide full-resolution images upon request.

The apparent lack of measurement units on the spectra is due

to  the  fact  that  mass-to-charge  ratio  (m/z)  and  arbitrary

intensity (a.i.) are both axis labels and measurement units.

2) The description of the SVM techniques, occurring in several

parts of the thesis, is described in terms of the maximization of

distances between the closest observations. Now, the position of

observations is fxed (at least in the original space), and what is

maximized is  the so-called margin of  the separating  surface.
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The  latter,  in  turn,  is  defned  as  the  sum  of  the  distances

between the closest points for each class and the surface itself.

I agree with the reviewer that the defnition of Support Vector

Machines can be misleading and therefore sounds incorrect.

The  defnition  has  been  corrected  in  the  introduction

accordingly (p. 37).

3) There is some confusion in the defnition of validation and

test phases that need to be clarifedd the frst term (validation)

commonly  refers  to  the  tuning  of  hyper-parameters  of  the

inferred  model  (the  so-called  model  selection  involving  for

instance  the  trade-off  parameter  $C$  in  a  SVM),  while  the

second  one  (test)  is  used  to  denote  the  phase  in  which  the

generalization  ability  of  an  inferred  model  is  assessed  (e.g.,

using hold-out or cross-validation techniques).

The  description  of  such  phases  has  been  extended  and

modifed accordingly, and it should be more clear (p. 3)).

4)  There  is  also  confusion  w.r.t.  the  meaning  of  "cross-

validation", which does not correspond to dividing the available

data  into  two  different  sets  devoted  to  training  and  testing,

respectively.  The latter  procedure is  commonly referred to as

"hold-out".  Cross-validation  refers  to  a  different  validation
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technique dividing data into $k$ subsets having approximately

the same size, and subsequently executing the learning process

$k$ times, each time using a different subset for testing and the

remaining  ones  for  training.  The  text  should  be  modifed

accordingly.

I agree with the reviewer on the fact that using the word “two”

and not even mentioning  k can be misleading:  the defnition

has been corrected accordingly (p. 3)).

5)  The  formula  in  the  middle  of  p.  58  need  a  suitable

introduction.

I  strongly  agree  with  the  reviewer’s  suggestion,  however,

according to the guidelines for writing the thesis, publications

have to be reported as they are on the journal. 

6) The proposed normalization techniques (p. 58) do not make

the  data  normally  distributed;  rather,  they  change  a  generic

normal distribution into a standard normal one. Moreover, the

1-norm involves the sum of the *absolute values* of intensities.

I  strongly  agree  with  the  reviewer’s  suggestion,  however,

according to the guidelines for writing the thesis, publications

have to be reported as they are on the journal. Therefore, the
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suggested modifcations have been taken into account in the

modifcation of the text in the introduction section (p. 1)).

7)  A  formal  defnition  is  needed  for  some  of  the  introduced

terms  (e.g.,  tensor,  overftting,  curse  of  dimensionality,  ROC,

PPV, homoscedastic, p-norm, node, linkage, ...).

I thank the reviewer for suggesting such modifcations, which

allow for  a better  and wider comprehension of  the methods

and the aims described in the thesis.

8) Clustering is introduced in p. 64 as a procedure which doesn't

require any knowledge about data, although several of the used

clustering algorithms do actually need some initial information

(e.g.,  the  number  of  clusters).  The  corresponding  description

should mention this fact.

I  strongly  agree  with  the  reviewer’s  suggestion,  however,

according to the guidelines for writing the thesis, publications

have to be reported as they are on the journal. Therefore, the

suggested modifcations have been taken into account in the

modifcation of the text in the introduction section (p. 1)).

9) The agglomerative nature of hierarchical clustering should be

addressed, as well as the procedure translating a dendrogram
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into  a  set  of  clusters.  In  this  respect,  some  content  of  the

caption of fg. 66 could be moved into main text. Moreover, there

is some ambiguity in the joint use of "distance" and "similarity".

The text has been modifed accordingly, to provide a more clear

and  detailed  explanation  of  agglomerative  hierarchical

clustering (p. 1)).

10) In some points it is stated that feature selection discards all

noise, it is advisable to slightly modify these statements writing

that this happens in principle.

I  strongly  agree  with  the  reviewer  on  the  fact  that  feature

selection  is  supposed  to  discard  the  non-informative  noisy

variables  from  the  data,  but  this  happens  only  in  principle,

since,  as  stated  throughout  the  thesis,  it  is  a  critical  and

delicate procedure. However, the occurrence mentioned by the

reviewer  happens  to  belong  to  a  publication,  therefore  the

original text is reported in the thesis (p. 77).

11)  The  criticism  about  the  dependency  of  diagnoses  on

training and experience of pathologists could in principle move

also the labeling process of the datasets used as input to ML

procedures. Some comments about the robustness of the latter

V



(maybe in a footnote) are needed in order to give meaning to the

criticism itself.

I thank the reviewer for pointing out such a delicate aspect of

machine  learning  in  the  training  phase.  The  issue,  being

relevant  to  the  work  presented  in  the  thesis,  has  been

addressed in the Discussion, instead of a footnote (p. )67).

12)  The  possibility  to  build  training  and  test  sets  in  Orange

Canvas  according  to  the  value  of  features  (p.  87)  should  be

motivatedd  usually  examples  are  placed randomly in  the  two

sets in order to ensure a fair subdivision.

I  strongly  agree  with  the  reviewer’s  suggestion,  however,

according to the guidelines for writing the thesis, publications

have to be reported as they are on the journal. 

13) The supervised branch of ML is most of the time identifed

with the realm of classifcation problems, while regression is not

generally mentioned.

I strongly agree with the reviewer on the fact that regression is

not mentioned in the thesis as a supervised approach. 

The text has been modifed accordingly. However, being out of

the scope of the thesis, the regression concept is addressed

only briefly and partially (p. 37).
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14)  The  proposed  tutorial  often  lists  parameters  of  learning

algorithms without giving any explanation for them.

I  strongly  agree  with  the  reviewer’s  suggestion,  however,

according to the guidelines for writing the thesis, publications

have to be reported as they are on the journal. 

15) In the fve-year review of p. 91, the desiderata on hardware

advancements should also mention GPUs.

I  strongly  agree  with  the  reviewer’s  suggestion,  however,

according to the guidelines for writing the thesis, publications

have to be reported as they are on the journal. 

16) The choice of  using only  THY3 patients  in  the validation

procedure (p. 128) should be motivated.

I  strongly  agree  with  the  reviewer’s  suggestion,  however,

according to the guidelines for writing the thesis, publications

have to be reported as they are on the journal.

The  use  of  only  THY3  patients  for  the  validation  phase  is

motivated by the fact that, in the clinical routine, diagnoses of

the THY3 indeterminate reports is performed according to the

cyto-morphological features learned from clear-cut diagnoses

onto THY1-4-): in the paper, we wanted to resemble the same

situation  by training  classifers  onto clear-cut  diagnoses and
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evaluating  their  classifcation  capability  onto  indeterminate

THY3 diagnoses.

17) It's diffcult to give meaning to the sentence "the time taken

by  the  process  exponentially  increases  with  the  number  of

algorithms running" (p. 129)d in the assumption that the times

required by each of the considered algorithms is comparable,

doubling the number of algorithms likely doubles the execution

time, thus leading to a linear increase. Thus the sentence should

either be modifed or motivated in a convincing form.

I  strongly  agree  with  the  reviewer’s  suggestion,  however,

according to the guidelines for writing the thesis, publications

have to be reported as they are on the journal. 

18) Some comments of the results of experiments described in

p.  130-131 are  needed,  highlighting  that  introducing  feature

selection  turned  a  random  classifer  (ROC=0.5)  into  a

meaningful one.

I  strongly  agree  with  the  reviewer’s  suggestion,  however,

according to the guidelines for writing the thesis, publications

have to be reported as they are on the journal. 
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19) The use of "=" in the formula in p. 152 is wrong, because

$P(d|h)P(h)$ equals the joint probability $P(h,d)$ and not the

conditional  one $P(h|d)$.  To get  to  a correct  formulation the

"equal" symbol should be replaced by a "proportional to" one.

The  suggested  modifcation  has  been  added  to  the  text  (p.

)66).

20) The defnition of clique (p. 192-193) is wrongd a clique is

not a subgraph whose elements are connected by an edge. The

text should be modifed addressing to the key property that all

pairs of elements in the subgraph be connected by an edge.

I thank the reviewer for the correction and modifed the text

accordingly.

21) Minor correctionsd

• remove comma after  "Mass  Spectrometry  Imaging"  (p.

29);

• in  p.  31  the  references  [36-38]  occur  three  times,

consider a better organization of the text;

• the description of  "Random Forests"  in  p.  37 refers  to

building  a  decision  tree  instead  than  a  committee  of

decision trees;
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• the implicit link in the caption of fg. 9 should become an

explicit  reference;  moreover,  the  caption  should  be

extended in order to describe the differences between the

six graphs in the fgure, as well as to introduce notation

(e.g. used colors and shapes);

• the caption of fg. 14 does not describe the fgure itselfd

nothing  is  said  about  the  meaning  of  bullets,  of  their

color,  of  the  shown  curve,  of  the  role  of  the  symbol

$\gamma$; moreover "graphic" should be corrected into

"graphical";

• remove comma after "can be obtained" (p. 39);

• reference [47] in page 47 should be reformatted;

• apparently there is some extra space between lines 14

and 15 in page 51;

• the citation of references is not consistent throughout the

thesis;

• the sentence "the ability to achieve potentially every aim"

should be reasonably softened;

• modify "statistic concepts" into "statistical concepts" (p.

55, but there are other occurrences in the text);

• the beginning of p. 63 should mention that preprocessing

aims  at  discarding  the  analytical  variability  *due  to

noise*;
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• change "the classifcation problem" into "a classifcation

or  a  regression  problem","For  each,"  into  "For  each

process,", "explained" into "provided", and "it exploits its

intrinsic  ...  within  the  data"  into  "which  exploits  their

intrinsic ... within them" (p. 64);

• the SCiLS Lab 2014 software mentioned in Fig. 3 (p. 67)

is not cited; the same applies to R (p. 127);

• "addressing  at  only"  should  be changed into  "address

only  to",  and  "information  preserved"  into  "preserved

information" (p. 68);

• "K-Means algorithms" should be changed into "K-Means"

(p. 74);

• "dependent  from"  should  be  changed  into  "dependent

on" (p. 81);

• the sentence "and clear cell renal cell carcinoma cells" is

unclear (p. 87); in the same page "classifcation problem

solving" should be changed into "classifcation";

• change "any important features" either to "any important

feature" or to "important features" (p. 89);

• Sect. 5 is missing in the section listing of p. 120;

• Table 1 in p. 122 is not referenced in the text;

• The symbol "//" in Table 2 is not explained (p. 130);

• Table 4 (p. 137) occurs after Table 5 (p. 131);
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• There is an unmatched closed bracket at the beginning of

p. 154;

• the  symbol  ">>>"  in  p.  155  has  unknown  meaningd

probably it should be replaced by ">>";

• change "each one of them chosen" into "each chosen" (p.

158);

• change "relative  short"  into  "relatively  short"  and "are

enrolled" with "will be enrolled" (p. 166);

• change  "initially  proposed  previously"  into  "initially

proposed" (p. 188).

All  the  minor  revisions  have  been  addressed  and  the

modifcation were made in the text accordingly. Some of the

suggested modifcations, however, were proposed on already

published articles: therefore, despite strongly agreeing with the

reviewer’s criticism, the original  text  was preserved in those

instances. 
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REVIEWER 2

1) The machine learning section should be a bit extended, for

example  by  giving  some  basic  defnitionsd  overftting  is  not

explained or discussed, and for example, genetic algorithms are

not described.

In  response  also  to  the  frst  reviewer,  the  machine  learning

section  has  been  a  little  bit  extended,  with  more  extensive

explanation  of  the  concepts  to  aid  the  reader  in  a  better

comprehension of the thesis. Since genetic algorithms have not

been implemented in the thesis and therefore can be a little

out of the scope in the introduction, they have been described

in the future prospectives section (p. )9)).

1)  Consider  also changing "Scope of  the thesis"  with  "Thesis

goals" or “Thesis contribution”.

The title “Scope of the thesis” was part of the guidelines for

writing  the  DIMET PhD thesis,  therefore  it  cannot  be  edited

accordingly.

3)  This  chapter  (Chapter  5)  should  be  developed  a  bit  (for

example including an abstract and providing a more effective

description of the contribution).
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I thank the reviewer for suggesting such an improvement to the

chapter. An abstract has been added, along with some more

detailed motivation for the work and the contribution that has

been derived from it. However, being a little bit far away from

data  analysis  and  closer  to  pure  software  development,  but

more related to the sample preparation, it can be misleading

when compared with the rest of the thesis.
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