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Abstract

The aim of this thesis is to study two main categories of algorithms for object detection
and their use in particular applications. The first category that is investigated concerns
Keypoint-based approaches. Several comparative experiments are performed within
the standard testing pipeline of the MPEG CDVS Test Model, and an extended
pipeline which make use of color information is proposed. The second category of
object detectors that is investigated is based on Convolutional Neural Networks. Two
applications of Convolutional Neural Networks for object recognition are in particular
addressed. The first concerns logo recognition. Two classification pipelines are designed
and tested on a real-world dataset of images collected from Flickr. The first architecture
makes use of a pre-trained network as feature extractor and it achieves comparable
results keypoint based approaches. The second architecture makes use of a tiny end-to-
end trained Neural Network that outperformed state-of-the-art keypoint based methods.
The other application addressed is Painting Categorization. It consists in associating
the author, assigning a painting to the school or art movement it belongs to, and
categorizing the genre of the painting, e.g. landscape, portrait, illustration etc. To
tackle this problem, a novel multibranch and multitask Neural Network structure is
proposed which benefits from the joint use of keypoint-based approaches and neural
features. In both applications the use of data augmentation techniques to enlarge the
training set is also investigated. In particular for paintings, a neural style transfer
algorithm is exploited for generating synthetic paintings to be used in training.
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Chapter 1

Introduction

“I can see the cup on the table,” interrupted Diogenes, “but I can’t see
the cupness”.“That’s because you have the eyes to see the cup,” said
Plato, “but”, tapping his head with his forefinger, “you don’t have the
intellect with which to comprehend cupness.”

Teachings of Diogenes

It has been estimated that humans can distinguish on the order of 30,000 visual
categories [117]. They also have a remarkable aptitude to remember pictures [63]. E.g.
Grady et al. [52], in their experiments, discovered that people can remember more
than 2000 pictures with at least 90% of accuracy in recognition tests over several days.
Excellent memory for pictures consistently exceeds our capacity to remember words.
In the brain itself, neurons dedicated to visual processing are hundreds of millions
and engage about 30% of the cortex, compared with 8% for touch and 3% for hearing.
This underlines the importance of the vision system in human brain and the nature of
complexity of visual signals coming from a real-world experience.

Human brain has to deal with a huge amount of environment and light conditions
such as changes in light color and intensity, drastic differences in viewpoints, partial
occlusions among others. Nonetheless it has the ability to codify equivariant represen-
tations of objects and scenes. The role of a feature extractor is somehow similar to
the role of the inferior temporal cortex in primates, i.e. to codify the appearance of a
visual concept such that the description is equivariant/invariant to different conditions
and at the same time is highly discriminative with respect to precise tasks.

In computer vision, one form of feature extraction is concerned with the detection
and description of important image regions. Approaches adopting this paradigm are
generally referred to as Keypoint-based. They fall into a broader category of approaches
named Handcrafted as opposite to those based on Learned features. Recently, the
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Introduction

reintroduction of Neural Networks into many computer vision tasks broadly integrated
handcrafted approaches. Neural networks learn feature extraction as part of an end-
to-end pipeline. Hence, learned features are tailored on data and the Network is
able to produce complex features hierarchies that are highly discriminative. While
these approaches have shown great success in tasks such as scene recognition, object
detection and classification, other tasks such as structure-from-motion still depend
on purely engineered features to detect and describe keypoints. Moreover the success
of Neural Networks in the last years has been made possible by the exponential
increase of computational power and the extensive use of GPUs to compute parallel
matricial operations. However GPUs are still very expensive. Furthermore the power
consumption and miniaturization haven’t yet reached the right maturity to allow
the plain use of Neural Networks on embedded devices. Mobile phones and wide-
spread mobile devices do not have the capability to handle heavy burden computations
needed by Neural Networks. Thus, for a large variety of applications, Keypoint-based
approaches represent one of the most affordable and reliable tools for object and scene
recognition.

Newest mobile phones make use of object recognition techniques to perform visual
search for an enhanced user experience. As an example the new Pixel 2 XL from
Google and the new Huawei models employ visual search as a standard component
of the operative system, providing new ways to search for multimedia contents. As a
matter of fact, such applications rely on strong feature extractors and good and general
purpose object detectors. The employment of these technologies opens a variety of
applications on different domains. In the retail market a user can take a picture of
an object on a store shelf and get information about that product. A set of feature
detectors and extractors is evaluated on this type of task in Section 3.3. Performances
are accessed in real-world acquisition conditions with different categories of objects,
from buildings to common objects to CDs, DVDs and supermarket customer goods.
A similar application but in a different domain is introduced in Section 6 where a
painting categorization system is presented. The use of such system can be used as a
useful tool in museums or on consumer mobile applications.

Tracking a particular brand trough social networks can be a unique source of
information to estimate a general trend, to track changes in market segments or to
discover user sentiment and preferences. Such tasks need strong object detectors to
find brands. Section 5 presents a logo recognition model that can be used for this type
of applications. Real-world pictures from Flickr are used for training and testing.

2



1.1 Thesis overview

Augmented Reality applications rely on good feature extractors to recognize scenes
and potentially to track objects. Traditionally Keypoint-based approached are employed,
being reliable and computationally efficient for the use on embedded and mobile devices.
In such applications usually actions are triggered by some real-world events or after
the detection of a particular object. Thus Augmented Reality, in most cases, involves
Visual Search. The idea is to allow the software to interact with real objects in a
marker less environment. Algorithms developed in Section 6 for Painting Recognition
can be used for cultural and didactic programs where informations about a specific
painting is shown and the user explores interactive environments. Similar applications
can be built by exploiting algorithms introduced in Section 3.3 for object recognition
or those in Section 5 for logo recognition.

1.1 Thesis overview
In this thesis an in-depth study of detectors and descriptors for object recognition is
presented. Chapter 2 introduces local image transformations. A reflectance model
is presented and then the most common transformations are introduced within this
framework. Chapter 3 is a review of the state-of-the-art Interest Point Detectors and
Descriptors. It includes an experimental Section that shows a comparison of these
algorithms. In the same chapter the standard CDVS Test Model Framework is presented.
The results of different Pairwise Matching Experiments are shown on different datasets.
Keypoint-based methods reported high performances in term of True Positive Rate
vs False Positive Rate and are proven to be robust for real-world applications. Then,
in order to test descriptors on a new use case, a dataset named Supermarket Milan
has been introduced. State-of-the-art descriptors are blind to color and does not have
the capability to discriminate Color Significant Products introduced in Section 3.3.4.
To extend their domain of applicalibility they have been enriched to handle color
information and tested on the new dataset. Chapter 4 introduces Convolutional Neural
Networks applied to object recognition. A list of well-known architectures is presented
together with some related arguments: data preprocessing, data augmentation and
regularization. In Chapter 5 and 6 Convolutional Neural Networks are applied to
object recognition. In particular, two applications are investigated: Logo Recognition
and Painting Categorization. Chapter 5 concerns Logo Recognition introduces a
two stage processing pipeline to allow the use of Convolutional Neural Networks on
high resolution images. Two types of networks and their application to the Flickr32
challenging dataset are investigated. A quantitative comparison between keypoint-
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based approaches and Neural Networks is shown where Neural Networks outperform
keypoint-based approaches especially when dealing with low-quality, blurred or noisy
images. Chapter 6 regards the use of Convolutional Networks for the task of Painting
Categorization to predict author, style and genre of paintings. A new Deep CNN
structure is proposed. The joint use of handcrafted and neural features is investigated
in order to improve classification accuracy. Different experiments are made on a
challenging dataset with more than 1500 painters. Finally, Chapter 7 ends the thesis
summarizing the results obtained, reporting the conclusions and giving the directions
for future works.
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Chapter 2

Common Local Image
Transformations

Features extractors have been engineered to produce descriptions with invariance
properties to certain types of image transformations. The type of invariance depends
on the application, and consequently, strongly on the image acquisition conditions.
As an example, for a quality control application in a factory, it is usually possible to
control environment variables during the time of the image acquisition e.g. to set a fixed
light intensity in the scene. It may be also possible to fasten the camera somewhere
at a precise distance in front of the object to be acquired. In this case it is easier to
calculate some physical properties of the object, like size. The detector/descriptor
hasn’t to be invariant to illumination conditions and has not be invariant to scale
transformations.
There are other real cases in which these properties are expected to hold. For example
a mosaicing application. Outdoor pictures may have different illumination conditions
and the same objects depicted could likely be at slightly different scales.
This section presents an overview of the typical local image transformations that can
occur in real cases. Most of the detectors and descriptors presented in the next chapters
can handle these types of transformations.

2.1 Light change
In the following sections the Lambertian reflectance model and the Von Kries illumi-
nation model are introduced. Then five lighting transformations are presented. The
notation used follows closely the one adopted by van de Sande et al. in [135].
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2.1.1 Reflectance model

In this section the Lambertian reflectance model is introduced. It represents an ideal
reflecting surface where the luminance is uniform in all orientations, i.e. it is isotropic,
and obeys to the Lambert’s cosine law.
Under this assumptions, image pixels can be modeled as follows:

f(x) =
∫

ω
e(λ)ρk(λ)s(x, λ)dλ +

∫
ω

A(λ)ρk(λ)dλ (2.1)

where e(λ) represent the color of the light source, ρk(λ) is the camera sensitivity
function with k ∈ {R, G, B}, s(x, λ) is the surface reflectance and A(λ) represents the
diffuse light. Furthermore ω is the visible spectrum and x represents the vector of
spatial coordinates.
By deriving the reflection model, we can see that the equation term A(λ), which
represents the diffuse light, is cancelled out, because it is independent of the surface
reflectance term. The final derivative equation is:

fx,σ(x) =
∫

ω
e(λ)ρk(λ)sx,σ(x, λ)dλ (2.2)

Removal of the A(λ) term is an important result because we have achieved a first type
of invariance: descriptors based on derivatives will yield invariance to diffuse light.

2.1.2 Von Kries Model

In this section the Von Kries Model, also called Diagonal Model is introduced. Conceived
by Von Kries in the 1970 [142], this is a simple but significant model used to describe
illumination changes under the assumption of narrow band filters.
Image acquired under an unknown light source fu is transformed with a diagonal
matrix Du,c to f c, that is the same image transformed, as if it was taken under the
reference light, also named the canonical illuminant. This is the mapping function:

f c = Du,cfu (2.3)

The equivalent matricial form of the equation is the following:


Rc

Gc

Bc

 =


a 0 0
0 b 0
0 0 c




Ru

Gu

Bu

 (2.4)
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2.1 Light change

adding the diffuse light term, the resulting diagonal model became:


Rc

Gc

Bc

 =


a 0 0
0 b 0
0 0 c




Ru

Gu

Bu

 +


O1

O2

O3

 (2.5)

The surface reflectance s(x, λc) of the equation (2.1) is equal for both the canonical
and the unknown illuminant, so this term can be cancelled out. After this, the equation
(2.5) becomes: 

ec(λR)
ec(λG)
ec(λB)

 =


a 0 0
0 b 0
0 0 c




eu(λR)
eu(λG)
eu(λB)

 +


A(λR)
A(λG)
A(λB)

 (2.6)

The next section shows five lighting transformations based on these two models
presented above.

2.1.3 Five lighting transformations

Light intensity change image values are changed by a constant factor in all the
three channels (a = b = c):


Rc

Gc

Bc

 =


a 0 0
0 a 0
0 0 a




Ru

Gu

Bu

 (2.7)

Note that light intensity changes also include shadows and shading. When a detector
or descriptor is invariant to light intensity changes, it is scale-invariant with respect to
light intensity.

Light intensity shift image values change by an equal offset in all channels (a =
b = c = 1, O1 = O2 = O3):


Rc

Gc

Bc

 =


Ru

Gu

Bu

 +


O1

O1

O1

 (2.8)

Light intensity shifts are models of real phenomenon like object highlights under a
white light source, interreflections, scattering of a white light source, and infrared
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Common Local Image Transformations

((a)) Original image. ((b)) Image with light intensity change (scale
factor: a = 2).

Fig. 2.1 Example of light intensity change transformation. Images from ALOI [48]
dataset.

sensitivity of the camera sensor. When a detector or a descriptor is invariant to a light
intensity shift, it is shift-invariant with respect to light intensity.

((a)) Original image. ((b)) Image with light intensity shift
(shift factor: O1 = 50).

Fig. 2.2 Example of light intensity shift. Original image from ALOI [48] dataset.

Light intensity change and shift Image values change by combining the two kinds
of change above: 

Rc

Gc

Bc

 =


a 0 0
0 a 0
0 0 a




Ru

Gu

Bu

 +


O1

O1

O1

 (2.9)
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2.1 Light change

A detector/descriptor invariant to these changes is called scale-invariant and shift-
invariant with respect to light intensity.

Light color change Image values change in all channels independently (a ̸= b ̸= c):


Rc

Gc

Bc

 =


a 0 0
0 b 0
0 0 c




Ru

Gu

Bu

 (2.10)

This kind of changes can model a change in the illuminant color.

((a)) Original image. ((b)) Image with color change.

Fig. 2.3 Example of light color change. Right image appears warmer. That is because
of a yellow illuminant. Images from ALOI [48] dataset.

Light color change and shift Image values change in all channels independently
(a ̸= b ̸= c) with arbitrary offsets (O1 ̸= O2 ̸= O3). This is the expression of the full
diagonal model of the equation (2.5) :


Rc

Gc

Bc

 =


a 0 0
0 b 0
0 0 c




Ru

Gu

Bu

 +


O1

O2

O3

 (2.11)

Five types of common changes have been identified based on the diagonal-offset model
of illumination change.
The type of light transformations discussed in this chapter are mentioned as light scale
and shift invariance properties for detectors/descriptors.
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Common Local Image Transformations

2.2 Affine transformations
Affine transformations are a widely-used geometric transformation model because of
their simple form, involving few parameters, being a good approximation of more
complex tranformations when dealing with local image patches.
Affine transformations preserve collinearity, i.e., all points lying on a line initially still
lie on a line after transformation, and ratios of distances, e.g., the midpoint of a line
segment remains the midpoint after transformation.
In general, affine transformations are compositions of rotations, translations, dilations,
and shears. Furthermore, affine transformation can be expressed in the form of a matrix
multiplication or linear transformation followed by a vector addiction i.e. translation.
Equation 2.12 represents an affine transformation in matrix form.x

y

 =
a00 a01

a10 a11

 x′

y′

 +
b0

b1

 (2.12)

Further, it’s possible to join the multiplication matrix and the translation vector into
a single matrix by converting them into the homogeneous coordinate system, the
resulting matrix is squared and invertible:


x

y

1

 =


a00 a01 b0

a10 a11 b1

0 0 1



x′

y′

1

 (2.13)

Here is shown the composition of the affine transformation matrix:

a00 a01 b0

a10 a11 b1

0 0 1

 =


α β (1 − α) · c(x) − β · c(y)

−β α β · c(x) + (1 − α) · c(y)
0 0 1

 (2.14)

where α = scale · cos(θ) and β = scale · cos(θ). θ is the rotation angle, scale is the
isotropic scale factor, and c(x), c(y) represent the x-coordinate and y-coordinate of the
rotation center respectively.
Given these parameters it is possible to obtain any type of simple or composed affine
transformation.

Camera point of view change: In a common real-world application it is likely
to deal with 3D geometric transformations caused by the change of camera point of
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2.2 Affine transformations

view. In Fig. 2.4 two matching areas of the same graffiti lies on two different images
taken at different point of view. This is not an in-plane transformation but it is a 3D
out-of-plane transformation. However it can be approximately handled by an affine
transformation. Photos are from Mikolajczyk dataset [96] thus the transformation
between the two images is well known. Here is the homography matrix of the two
images, where homography means an affine transformation referred to a projective
plane. 

0.625 0.057 222
0.222 1.165 −25.606
0.000 0.000 1.000

 (2.15)

Via the QR-decomposition process it is possible to decompose the homography matrix
H into two matrices Q and R where Q is an orthogonal matrix QT Q = I and R is an
upper triangular matrix:

Q =


−0.9422 0.3350 −0.0008
−0.3350 −0.9422 0.0001
−0.0007 0.0003 1.0000



R =


−0.6638 −0.4448 −200.6023

0 −1.0785 98.5094
0 0 0.8178


(2.16)

Now geometric properties of the transformation are decomposed. Here is shown where
they are located:

Q =


cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 R =


sx sh tx

0 sy ty

0 0 1

 (2.17)

Q matrix contains all the rotation informations and the R matrix contains scale,
translation and shear. tx and ty represent the shift factors, sx and sy the scale and sh

the shear (i.e. ratio between unit of measurement of the scales of the two axes).

Perspective lines: Black lines in Fig. 2.5 highlight the typical accidental perspective
effect. All the horizontal lines are no more parallel like in the frontal image but they
converge in a perspective vanishing point.
Since affine transformations include only geometric changes in which parallels lines
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Common Local Image Transformations

((a)) Frontal image. ((b)) Change of camera viewpoint.

Fig. 2.4 Example of the same scene from different viewpoints. These 3D geometric
transformations can be approximated by an affine transformation (2D). Images from
[95].

remain parallels, this kind of transformations can’t be handled. For this reason,
algorithms considering affine transformations can only provide approximated solutions.

2.3 Blur, Noise and JPEG compression
Blur, noise and JPEG compression have a similar effect on images from a signal-
processing point-of-view. They cause information loss and partially modify fine image
details.
Therefore a good descriptor should build a good representation of the image coarse
structure with less relevance on the finest details. In Figure 2.6 the upper-right image
is compressed with the JPEG algorithm. The most clear artifact can be found in
particular on patches with high frequencies and it is related to the appearance of pixels
blocks. The lower-left image presents a blurring transformation. The only noticeable
effect is the loss of finest details, i.e. high frequencies, this is accentuated particularly
on the trees.
The lower-right image is the one with Gaussian noise added. The visual effect is
the opposite of the previous transformations. Random noise is added to the image
substituting useful information, this transformation induces an information loss.
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2.3 Blur, Noise and JPEG compression

Fig. 2.5 Black lines showing perspective vanishing point. Original image from [95].
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Common Local Image Transformations

((a)) Original image. ((b)) High JPEG compression.

((c)) Image blurred with a Gaussian filter (win-
dow size=7x7 sigma=5).

((d)) Image corrupted with Gaussian noise
(level=0.01) on the three RGB channels in-
dependently.

Fig. 2.6 Examples showing effects of Blur, Noise and JPEG compression. Original and
JPEG images from Mikolajczyk [95].
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Chapter 3

Keypoint-based Approaches

In this chapter a qualitative and quantitative analysis of methods to perform Instance
Recognition is presented. The analysis focuses on keypoint-based detectors and de-
scriptors for local interest regions. First, an overview of the common local image
transformations is made. Local detectors and descriptors should be robust with respect
to this types of transformations. Then different algorithms in the state-of-the-art are
described and finally extensive quantitative test are made on a set of standard datasets.

3.1 Interest Point Detectors
The term Point of Interest has been introduced by Moravec [97] for a subclass of
detectors using autocorrelation methods but, over time, this term became the term to
describe entire class of local detectors algorithms.
There are mainly two class of detectors. Blob detectors and Corner detectors. The
difference between them is the kind of image patch they detect:

• Blob detectors: algorithms that search and extract blob regions. Keypoints
(blobs) are the centers of elliptic areas, with a particular variation of graylevel,
compared to the region around them.

• Corner detectors: these kind of algorithms search and extract image patches
of objects’ corners.

3.1.1 Desirable properties of corner detectors

D. Parks and J.P. Gravel in [103] describe a list of properties that a corner detector
must have. This list is extensible to a generic Interest Point Detector:
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1. All true corners should be detected.

2. No false corners should be detected.

3. Corner points should be well localized.

4. Detector should have a high repeatability rate, i.e. good stability.

5. Detector should be robust with respect to noise.

6. Detector should be computationally efficient.

There is no objective definition for what a true corner is and what a false corner is. It
depends most on the application the detector is used for. Howevere, a good corner is
somehow different from an edge. This has to do with the fourth property: a corner is
generically an image patch where the intensity variation is at least bi-directional while
the variation of an edge could be one-directional. For that reason a corner usually have
better stability than any edge.
Localization refers to how accurately the position of a corner is found, good localiza-
tion it is not critical for all applications but obviously a descriptor produces better
descriptions with better localization of the detector.
A corner detector must be robust even against noise because it is unavoidable in many
applications. Computational efficiency is a surplus for all applications but it is a must
for real-time applications. That is why for this kind of applications is often preferred
the use of a less accurate but faster detector.

3.1.2 Harris detector

This corner detector was developed by Chris Harris and Mike Stephens in 1988 [56].
The 1988 version of the algorithm over time it is been improved and nowadays many
detectors are based on the underlying ideas of the original Harris detector. Harris
and Stephens made this detector by addressing the limitations of the older Moravec
detector [97]. Despite an increase of computational time compared to Moravec, it has
a significantly higher repeatability rate.
Harris is part of a subclass of corner detectors called Autocorrelation methods. It
has been conceived to find interest points that generate large variations when moved
around the image.
Figure (3.1) shows the underlying idea. The right image shows a bad interest point
inside the red bounding-box. A pixel comparison with the others patches inside the
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3.1 Interest Point Detectors

gray windows shows a very low difference.
The up-right image shows a good corner point. The down-right image shows that a
little change of position originate large variations. The most intuitive way to find

((a)) Bad interest point. ((b)) Good interest point.

Fig. 3.1 Harris autocorrelation method. Bad interest point vs. good interest point.
Images source www.aishack.in [Sinha].

image patches that produce the highest variations is move a window in every direction
and compare the obtained window with the original one doing the sum of the squared
differences between each pixel. This is the method used by the Moravec operator.
The idea underlying the Harris detector is an approximation of the Moravec operator
which is made by using the image gradient.
Equation 3.1 is a mathematical formulation of the difference between the original and

the moved window. Localizing corners can be formulated as a search for maxima of
this function.

V (u, v) =
∑
x,y

w(x, y) [I(x + u, y + v) − I(x, y)]2 (3.1)

(u, v) are the window’s displacements in the x and y directions respectively. w(x, y)
is the window at position (x,y). It acts like a mask, ensuring that only the desired
window is used. I is the intensity of the image at position (x, y).
Equation 3.1 is then approximated using the first term of the Taylor expansion 3.2:

V (u, v) ≈
∑
x,y

[I(x, y) + uIx + vIy − I(x, y)]2 (3.2)

The next step is the square expansion in Equation 3.3:

V (u, v) ≈
∑
x,y

u2I2
x + 2uvIxIy + v2I2

y (3.3)
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Fig. 3.2 Example of Moravec Window Calculation. Image from [103].

The final intuition is that this equation can be written as a matrix equation (Equation
3.4):

V (u, v) ≈
[
u v

] ∑  I2
x IxIy

IxIy I2
y

 u

v

 (3.4)

the obtained matrix is called M (with the w(x, y) term added).

M =
∑

w(x, y)
 I2

x IxIy

IxIy I2
y

 =
A C

C B

 (3.5)

Equation 3.6 represents a compact view of Equation 3.8:

V (u, v) ≈
[
u v

]
M

u

v

 (3.6)

Note that matrix M contains all the differential operators describing the geometry
of the image surface at a given point (x, y). Harris and Stephens [56] proposed a
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Cornerness Measure based on the eigenvalues of this matrix:

C(x, y) = det(M) − k(trace(M))2

det(M) = λ1λ2 = AB − C2

trace(M) = λ1 + λ2 = A + B

k = constant

(3.7)

Possible values of k are k = 0.2, k = 0.1 or k = 0.05.
Image (3.3) shows a typical distribution of the two eigenvalues of the M matrix. α

and β correspond to λ1 and λ2 with notation used in this thesis.
The edge regions are noticeable near the two axes. The flat region near the origin,

Fig. 3.3 Auto-correlation principal curvature space. Heavy lines give corner/edge/flat
classification, fine lines are equi-response contours. Figure from [56].

and the corner region far from the axes.
If both eigenvalues are small, the local autocorrelation function is flat and the windowed
image region is of approximately constant intensity. If one eigenvalue is high and the
other low we are talking about an edge. If both eigenvalues are high, this indicate the
presence of a corner.
Changing the values of k brings to a transformation of the function. For smaller values
of k the corner region increases while for bigger values it decreases. C(x, y) is a function
which value increases if the curvature of the region are near the center of the corner
region.
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3.1.3 Scale and affine invariant harris detector

In 2004 Krystian Mikolajczyk and Cordelia Schmid proposed a novel method to per-
form keypoint detection [92] [94] that can deal with significant affine transformations
including large scale changes.
Their first work was based on a modified version of the Harris detector, a second version
of the algorithm was instead based on the Hessian cornerness measure. In Section 3.4
it will be presented an evaluation of performances of the Mikolajczyk Affine Detector
with these three cornerness measures: Harris, Hessian and DoG.

Scale Invariance To achieve scale invariance property they made modifications to
the second moment matrix used for detection:

µ(x, σI , σD) =
µ11 µ12

µ21 µ22

 = σ2
Dg(σI)

 L2
x(x, σD) LxLy(x, σD)

LxLy(x, σD) L2
y(x, σD)

 (3.8)

The second moment matrix now depends on σI and σD which represent the integration
and differentiation scales respectively. Lx and Ly are the derivatives in the x and y

directions respectively. The local derivatives are computed with Gaussian kernels of
the size determined by the local scale σD (differentiation scale). The derivatives are
then averaged in the neighborhood of the point by smoothing with a Gaussian windows
of size σI (integration scale).
The Harris cornerness measure is also modified to fulfill the changes on the second
moment matrix:

C = det(µ(x, σI , σD) − ktrace2(µ(x, σI , σD)) (3.9)

Local maxima of the C function determine the location of interest points.
Given an interest point in scale-space it is possible to perform automatic scale selection.
The underlying idea is to select for each keypoint the characteristic scale of a local
structure, i.e. the scale where the filter attains a maximum.
After various experiments, Mikolajczyk and Schmid noticed that Harris measure doesn’t
fit well this task, so they adopted Laplacian-of-Gaussians for the scale selection because
of its ability to individuate blob-like structure.
The final algorithm consists of three steps: a point detection over all the scales and
an iterative selection of the scale and the location of each point. The first step is
performed with the Harris filter for a set of pre-selected scale measures. The second
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3.1 Interest Point Detectors

step is made by an iterative algorithm that simultaneously detect the maximum over
scales and refine the keypoint location as follows:

1. Find the local extremum over scale of the LoG for the given point.

2. Detect the spatial location of a maximum of the Harris measure nearest to the
point at the found scale.

3. Go to step 1 if the scale or the point location changes are over a given threshold.

Affine Invariance To achieve affine invariance the main idea, first explored by
Lindeberg [81], is to use the second moment matrix as an estimator for the anisotropic
shape of a local image structure.
Without loss of generality it is right to suppose a local anisotropic structure as an
affine transformed isotropic structure. Therefore the output of the Harris detector fits
well with this approach. A new measure is introduced:

Q = λmin(µ)
λmax(µ) (3.10)

where λmin and λmax are the second moment matrix eigenvalues. Q represents the
ratio between the eigenvalues which is high for anisotropic image patches and low for
isotropic patches.
After the first step in which keypoints are detected in the multiscale space with Harris
filter, every point location and shape is refined by an iterative algorithm. The procedure
used is similar as for the Automatic Scale Detection, but with a difference. At every
iteration step, it is computed an affine transformation on the neighborhood of the
keypoint. Therefore the convergence criterion is based on the eigenvalues ratio.

3.1.4 SIFT Detector

Published by David Lowe in 1999 [82], SIFT is the acronym for Scale Invariant Feature
Transform. Unlike the others detectors presented in this chapter, SIFT algorithm, is
patented in the US by the University of British Columbia, in particular the step of the
pipeline that involves Difference of Gaussian for keypoints detection.
It is composed by three stages:

1. Scale-space extrema detection The first stage of computation searches over all
scales and image locations. It is implemented efficiently by using a difference-of-
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Gaussian function to identify potential interest points that are invariant to scale
and orientation.

2. Keypoint localization At each candidate location, a detailed model is fit to
determine location and scale. Keypoints are selected based on measures of their
stability.

3. Orientation assignment One or more orientations are assigned to each keypoint
location based on local image gradient directions. All future operations such as
the keypoint description are performed on image data that has been transformed
relative to the assigned orientation, scale, and location for each feature, thereby
providing invariance to these transformations.

Lowe based most of his ideas on the studies of Tony Lindeberg. In 1994 Lindeberg [80]
and Koenderink [75] showed that the most efficient way to implement a scale-space
kernel is the use of the Gaussian function. Moreover Lindeberg showed in [80] that a
Laplacian of Gaussian filter can be approximated by a Difference Of Gaussian filter,
computationally less expensive.
For these reasons Lowe decided to use the Difference Of Gaussian filter for the first
stage of his SIFT algorithm.
The scale space of an image is defined as a function, L(x, y, σ), that is produced from
the convolution of a viariable-scale Gaussian, G(x, y, σ), with an input image, I(x, y):

L(x, y, σ) = G(x, y, σ)I(x, y) (3.11)

where is the convolution operation and:

G(x, y, σ) = 1
2πσ2 e− (x2+y2)

2σ2 (3.12)

The difference-of-Gaussian scale-space D(x, y, σ) can be computed from the difference
of two nearby scales separated by a constant multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ))I(x, y)
= L(x, y, kσ) − L(x, y, σ)

(3.13)

Figure 3.4 shows the approach used to costruct the scale-space. The original image
is incrementally convolved with Gaussian kernels to produce images separated by a
constant factor k in scale space, shown stacked in the left colum. Adjacent image scales
are subtracted to produce the difference-of-Gaussian images shown in the right. Once
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a complete octave has been processed, the Gaussian image on top is subsampled by a 2
factor and smoothed incrementally like the previous octave. The accuracy of sampling
remains the same, while computational costs are reduced.
In order to detect the local maxima and minima of D(x, y, σ) , each sample point is

Fig. 3.4 Stack of images convolved with Gaussians on the left. Images obtained by
DoG on the right. Image from [83].

compared to its eight neighbors in the current image and nine neighbors in the scale
above and below.
Then it is performed an accurate keypoint localization by finding the extremum (i.e.
setting derivative to zero) using the Taylor expansion to approximate the image
function.
The next step is the elimination of edge responses which, as seen in the previous
paragraph, have in general low repeatability and low distinctiveness. This is done by
calculating the response of the Hessian filter. If the ratio between the eigenvalues is
high we are in the presence of an edge. This keypoints are discarded.
The last step of the SIFT detection pipeline is the assignment of an orientation to each
keypoint using a set of precomputed pixel differences. All computation are performed
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in a scale-invariant way:

θ(x, y) = tan−1((L(x, y + 1) − L(x, y − 1))/(L(x + 1, y) − L(x − 1, y))) (3.14)

where L(x, y) is an image sample at a given scale.

3.1.5 SURF detector

In this section is presented the Fast-Hessian detector, developed by Herbert Bay, Tinne
Tuytelaars and Luc Van Gool [15] as part of the Speeded Up Robust Features (SURF)
algorithm.
The main idea of the Fast-Hessian detector is the use of differences of squared boxes
to approximate the second order Gaussian derivatives. This process is highly speeded
up by the use of Integral Images [141] developed by Viola and Jones which permit
to compute the definite integral of a given image patch using only four floating-point
operations independently of the patches’ size.
This consideration brings another important contribution to the speed of this detector.
While a traditional scale-space is usually build as an image pyramid in witch images are
repeatedly smoothed with a Gaussian and subsequently sub-sampled, the Fast-Hessian
doesn’t need to compute such scale-space. It just needs the up-scaling of the filter size.
Here is the typical Hessian filter formula. Given a point x = (x, y) of an image I, the
Hessian matrix H in x at scale σ is defined as follows:

H(x, σ) =
Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

 (3.15)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative with the
image I in point x, and similarly for Lxy and Lyy.
Another choice made by the SURF authors to speed up the detection is the use of the
Hessian cornerness measure for selecting both scale and location of a maximum. This
is done despite a loss in accuracy, see Section 3.1.3.
Figure 3.5 shows Gaussian second order partial derivatives and the related squared
approximations used by SURF.

3.1.6 FAST inspired detectors

FAST is the acronym of Features from Accelerated Segment Test. It has been proposed
by Edward Rosten and Tom Drummond in [118]. The idea is to compare the intensity
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Fig. 3.5 Left to right: The (discretized and cropped) Gaussian second order partial
derivatives in y-direction and xy-direction, and the approximations thereof using box
filters. The grey regions are equal to zero. Images from [15].

of a single pixel with respect to a circular neighborhood to localize corners.
In the case of FAST, not the whole area of the circle is evaluated, but only the pixels on
the discretized circle describing the segment. Using a test mask of diameter 3.4 pixels,
16 pixels have to be compared to the value of nucleus. To prevent this extensive test,
the corner criterion has been relaxed. The criteria for a pixel to be a corner according
to the accelerated segment test (AST) is as follows: there must be at least S connected
pixels on the circle which are brighter or darker than a threshold determined by the
center pixel value. The values of the other 16S pixels are disregarded. Therefore, the
value S defines the maximum angle of the detected corner. Keeping S as large as
possible, while still suppressing edges (where S = 8), increases the repeatability of the
corner detector.
Figure 3.6 shows an example of corner detection with a segment of 16 pixels. With a
threshold of S = 8 the nucleus point p is considered a corner.

It is clear that the critical choice to attain FAST speed-up is about the order of
comparisons of neighbor pixels. FAST’s authors, used a machine learning approach to
calculate the most efficient comparison order, therefore this approach needs a training
phase.
In 2010 Mair et al. developed a more efficient AGAST detector [88]. This detector
is based on the same underlying ideas of the FAST detector but it uses a more
detailed configuration space in order to provide a more efficient solution. Moreover
the AGAST algorithm uses a training algorithm to compute the decision tree for the
pixels comparisons similar to the backward induction method.
It then automatically adapts to the area which is currently processed changing the used
decision tree dynamically. The idea is to build, e.g., two trees and to specialize one for
homogeneous and one for structured regions. At the end of each decision path, where
the corner criterion is met or cannot be fulfilled anymore, a jump to the appropriate
specialized tree is performed based on the pixel configuration of this leaf. This switch
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Fig. 3.6 Figure shows a 16 pixel corner detection. Images taken from [118].

between the specialized decision trees comes with no additional costs, because the
evaluation of the leaf node is done offline when generating the specialized tree. In this
way the AST is adapted to each image section dynamically and its performance is
increased, for an arbitrary scene. Any learning becomes needless.
In 2011 Leutenegger et al. developed a new detector/descriptor called BRISK: Binary
Robust Invariant Scalable Keypoints [79] . The BRISK detector is essentially a
multiscale AGAST.

3.1.7 Kaze

Kaze is a detector developed in 2012 by Alcantarilla et al. [9]. Its strength relies on
the scale space upon which it is built. While all the others detectors are based on
a linear scale-space, Kaze uses a non-linear one. Linear scale-spaces are built with
incremental blurring by a Gaussian function or an approximation of it, e.g. Difference
of Gaussians or Fast Hessian. For detailed explanation see Section 3.1.4 or Section 3.1.3.
This is done because linear functions for construction of scale-space are simpler and
thus computationally cheaper than non-linear one. The drawback of using Gaussian
blurring is that every detail is smoothed indiscriminately.
The idea of Alcantarilla et al. in [9] is the use a computational efficient approximation
of Perona and Malik Diffusion Equation [109] for the scale-space building. Using this
function for the scale-space construction, the blurring can be locally adapted to the
structure of the image. Edges are preserved or even sharpened, while blobs are blurred,
eliminating gaussian noise, jpeg artifacts etc.
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The main idea is to describe the evolution of the luminance of an image as the divergence
of a flow function that controls the diffusion process. Equation 3.16 describes the
nonlinear diffusion:

∂L

∂t
= div(c(x, y, t) · ∇L) (3.16)

where div is the divergence operator and ∇ represents the gradient. c is a function of
the x,y parameters representing the spatial coordinates and t, is the time of diffusion,
that in our case it is to be interpreted like the scale parameter. Thus, c is a function
that tends to produce a simpler representation of the original image for large values of
t.
Perona and Malik in 1990 [109] proposed a c function dependent on the gradient
magnitude ∇L:

c(x, y, t) = g(|∇L(x, y, t)|) (3.17)

in particular they made two formulations of the g function:

g1 = exp(−|∇Lσ|2

k2 ) (3.18)

g2 = 1
1 + |∇Lσ |2

k2

(3.19)

Later, it was proposed By Weickert [146] another function of diffusion:

g3 =


1 |∇Lσ|2 = 0
1 − exp(− 3.315

( |∇Lσ |
k

)8 ) |∇Lσ|2 > 0
(3.20)

In all these equations k is the contrast factor that controls the level of diffusion. The
three function are slightly different, they have different characteristics even though
they do the same thing. The function g1 promotes high-contrast edges, g2 promotes
wide regions over smaller ones and g3 perform strong smoothing on both sides of an
edge and weak smoothing across it.
The processing pipeline is built in this way. First the parameter k estimated for every
image before the execution of the real processing. Then it is built the scale-space
accordingly with the diffusion equations at various values of t. Maxima in scale space
are detected with a scale-normalized Hessian operator:

LHessian = σ2(LxxLyy − L2
xy) (3.21)
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Fig. 3.7 Example of non-linear scale space construction (lower images function g3) vs.
linear scale space (higher ones). Images from [9].

with Lxx, Lyy, Lxy the second order derivatives. The search of extrema is performed
at a coarse level, then sub-pixel refinement is done in the same way SIFT do. The
dominant orientation of the keypoint is found with a method similar to the one used
by the SURF detector. In the Descriptors chapter, Kaze it is not mentioned because
its descriptor is almost equal to SURF.

3.2 Keypoint-based Local Descriptors
Desirable properties of descriptors are:

• Distinctiveness: a good descriptor must produce maximally distinctive descrip-
tions. Image patches with different visual characteristics must correspond to
distant descriptors.

• Invariance: a descriptor must achieve invariance to some kind of transformations,
see Section 2, depending on the specific field of application.

• Computational complexity: computationally cheap and fast detectors are preferred.
Especially for some kind of applications: robotics, real-time tracking, embedded
devices etc.

In the following sections, an overview of the state-of-the-art well known descriptors is
presented.
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3.2.1 SIFT

The SIFT descriptor developed by Lowe [83] is based upon a model of biological vision
of complex neurons in primary visual cortex. These complex neurons respond to a
gradient at a particular orientation and spatial frequency, but the location of the
gradient on the retina is allowed to shift over a small receptive field rather than being
precisely localized.
In the same way, SIFT descriptor samples magnitude gradients on a grid superimposed
over the keypoint center. To achieve invariance to rotation and scale, this grid is
rotated relative to the keypoint orientation found by the detector and the sampling
distance adjusted with respect to the characteristic scale of the keypoint.
A gaussian function of σ equal to an half of the grid diameter lying upon the grid is
used for weighting the contribution of each gradient. This is done to give less emphasis
to gradients that are far from the center of the keypoint, as they are most affected by
misregistration erros.
The grid is also split into 4x4 cells, than the weighted contribution of each gradient
lying inside a cell is merged into a single histogram. This histogram collects gradient
magnitudes over 8 discretized directions. Thus the typical SIFT descriptor dimension
is 128 because of the concatenation of 4x4 8-bins histograms. Figure 3.8 shows the
sampling grid and the 4x4 cell division.

Fig. 3.8 SIFT descriptor sampling structure. Image from [83]. On the left is depicted
the sampling pattern grid. The blue circle represents the gaussian smooth, even though,
of course, the weights decrease smoothly. On the right is shown the 4x4 division and
the 8-bins histograms.
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3.2.2 SURF

The SURF descriptor [15] is based on similar principles underlying the SIFT descriptor,
but with some changes to improve description speed. Like in SIFT the squared sampling
region is rotated with respect to the keypoint angle, scaled and splitted up into smaller
4x4 regions to mantain spatial information.
Unlike SIFT, the SURF descriptor does not sample gradients magnitudes. It makes
use of the Haar wavelet filter and sample every response in vertical and horizontal
direction. For every region, it is summed up every response in the two directions and
even the sum of absolute value. Therefore, if we call dx the horizontal response and
dy the vertical response the final descriptor is made by concatenation of 4x4 vectors
v = (∑

dx,
∑

dy,
∑ |dx|, ∑ |dy|). Thus the descriptor length is 64.

Figure 3.9 shows the filter response for three different kinds of regions demonstrating
high distinctiveness.

Authors made available an extended version of this descriptor which descriptors

Fig. 3.9 SURF descriptor structure: histograms of Haar wavelet horizontal and vertical
responses. In addiction, histograms made of sums of absolute values. Results obtained
from three different regions. Figure from [15].

produced are 128-dimensional. This version is obtained by computing the sums of dx

and |dx| separately for dy < 0 and dy ≥ 0 and the same with dy and |dy|. They have
made even an up-right version suited for applications where the camera remains more
or less vertical, this variant skip the keypoint orientation assignment stage.

3.2.3 FREAK

The FREAK descriptor, acronym for Fast Retina Keypoint, was developed in 2012 by
Alahi et al. at the EPFL of Lausanne [7]. It is built upon the same detector module as
BRISK [79], i.e. a multiscale AGAST [88] detector (see Section 3.1.6). It is a descriptor
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module inspired to mechanisms behind the human retina photoreceptors.
Inside the retina lie several photoreceptors. Every photoreceptor is wired with a few
others to a ganglion cell. The region where light influences the response of a ganglion
cell is the receptive field. Its size increases with the radial distance from the foveola,
i.e. center of the retina.
In the same way the FREAK descriptor use Gaussian kernels of different sizes with
respect to the log-polar retinal pattern. In addiction, the sampling patterns are
overlapped to add redundancy and therefore discriminative power. Figure 3.10 shows
this configuration.
FREAK, unlike the previous algorithms, produces binary descriptors, i.e. descriptors

Fig. 3.10 FREAK sampling pattern similar to the retinal ganglion cells distribution
with their corresponding receptive fields. Each circle represents a receptive field where
the image is smoothed with its corresponding Gaussian kernel. Figure from [7]

built by concatenation of bits.
Every descriptor is built by thresholding the difference between pairs of receptive fields
with their corresponding Gaussian kernel:

F =
∑

0≤a<N

2aT (Pa) (3.22)
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with F the final descriptor, N is the size of descriptor, T (Pa) is a pair of receptive
fields and:

T (Pa) =

1 if I(P r1
a ) − I(P r2

a ) > 0,

0 otherwise,
(3.23)

with I(P r1
a ) is the smoothed intensity of the first receptive field of the pair Pa.

FREAK’s authors made various experiments and discovered that the best compromise
between distinctiveness and performances brings to a descriptor of size 512. They also
made a selection based on the minimization of entropy of the most significant receptors
pairs against all possible pairs.
Alahi et al. proposed also a matching technique which mimic the saccadic search of the
human eye. On every descriptor is performed a cascade of comparisons accelerating the
matching process. Initially, only the first 16 bit are compared, then, if the difference is
under a threshold the matching process can go further and comparing the last bits.

3.2.4 Color descriptors

Descriptors exposed in previous sections make use of luminance only and thus ignore
color information. Depending on the type of objects to recognize and the application,
color can be a very discriminative clue. In Figure 3.11 is shown an example of scene
involving objects identical to each others except for their color. A grayscale descriptor

Fig. 3.11 Image representing a can of tea lemon-flavoured surrounded by cans of tea
peach-flavoured. Luminance based descriptors could not find the lemon one among
others.

will probably fail because is totally blind to color differences.
Nevertheless, for this kind of descriptors it is more difficult to achieve invariance to
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illumination conditions, because they are not, by definition, invariant to color light
changes. For an in depth review of common light transformations see Section 2.1.3).

Color descriptors can be classified in two classes depending on the approach used to
combine the shape, or luminance, and color information [134][71][122]. Some algorithms
make use of an Early Fusion approach and others adopt a Late Fusion approach. As
defined by Khan et al. in [122]: “Early fusion combines shape and color at the pixel
level, which are then processed together throughout the rest of the description pipeline.
In late fusion, shape and color are described separately from the beginning and the
exact binding between the two features is lost.”

Basically, every Early Fusion description pipeline considered consists of the following
steps:

1. Transformation of the image channels into a specific color space.

2. Computation of SIFT descriptor on each color space channel.

3. Concatenation of descriptions computed over each channel.

Specifically RGB SIFT [134] computes SIFT descriptors on the original red, green,
and blue channels of the image and then concatenates them, thus keeping the image in its
original color space. Opponent SIFT [134] instead applies the following transformation
from RGB to opponent color space O1O2O3:


O1

O2

O3

 =


R−G√

2
R+G−2B√

6
R+G+B√

3

 (3.24)

Transformed Color SIFT [134] normalizes the RGB channels independently into zero-
mean and unity-variance R′G′B′ channels:


R′

G′

B′

 =


R−µR

σR
G−µG

σG
B−µB

σB

 (3.25)

where µC is the mean and σC the standard deviation of the distribution in channel
C = {R, G, B}. HSV SIFT [134] computes SIFT descriptors over all three channels of
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the HSV color model:


H

S

V

 =


atan2(β, α)

0 if V = 0,
√

α2+β2

V
otherwise

max(R, G, B)

 (3.26)

where α = (2R − G − B)/2 and β =
√

3(G − B)/2. C-SIFT [134][6] applies the
C-invariant [49] to the O1 and O2 channels of the opponent color space to eliminate the
remaining intensity information from these channels. This can be intuitively seen as
the normalized opponent color space O1/O3 and O2/O3. The rg SIFT transforms the
image in the normalized RGB color model, where the chromaticity components r and
g describe the color information (b is omitted since it is redundant as r + g + b = 1):


r

g

b

 =


R

R+G+B
G

R+G+B
B

R+G+B

 (3.27)

The last Early Fusion color descriptor considered, i.e. oRGB SIFT [140], maps the
image into oRGB color space, which is an opponent color space that is ideal for
RGB computation [28]. The mapping consists in two steps: the first one is a linear
transformation from RGB to LC1C2:

L

C1

C2

 =


0.299 0.587 0.114
0.500 0.500 −1.000
0.866 −0.866 0.000




R

G

B

 (3.28)

The second one is the transformation from LC1C2 to oRGB, which consists in a
compression or decompression of angles depending on which quadrant the linearly
transformed point ends up in [28].

Conversely, every Late Fusion description pipeline extracts the shape information
from the gray-level image. Then, the color descriptor is computed directly from the
original image. Finally, the shape and color descriptions are merged as follows:

1. Normalization of the two parts separately (color and shape descriptions).

2. Multiplication by a fusion factor depending on the specific descriptor.

3. Concatenation (of the color and shape descriptors).

4. Normalization of the overall description.
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Fig. 3.12 Late Fusion vs Early Fusion. The Late Fusion approach computes the color
descriptors from the original image and the shape descriptors from a gray-levels image;
while the Early Fusion approach computes all the descriptors from every color channel
(shape and color information are correlated) and then merges them.

Fig. 3.12 depicts the pipelines of the Early and Late Fusion approaches.
All the Late Fusion descriptors, with the exception of the Hue SIFT algorithm [134],

require a prior training phase which determines a quantization function to map each
RGB pixel value into a probability vector defining the likelihood of an RGB pixel value
to represent a certain color. Every algorithm is characterized by a unique and specific
methodology to build the map function. Hue SIFT introduces a concatenation of the
robustified hue histogram with the SIFT descriptor. The hue histogram is made more
robust by weighing each sample of the hue by its saturation, since the certainty of the
hue is inversely proportional to the saturation. Color Names descriptor [138] is trained
from weakly labeled images returned by Google Image search. Fuzzy Sets Color Names
function [17] trains by using parametric membership functions defined on the basis
of psychophysical data obtained from a color-naming experiment. Both the methods
based on Color Names are inspired from [122]. Each keypoint is described with a
gray-scale SIFT concatenated with the Color Names descriptor computed as follows:
the image patch centered on the keypoint (whose width depends on the keypoint scale)
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is scaled to a fixed size, and for each pixel the Color Name descriptor is computed. The
descriptors are weighted by a Gaussian peaked on the center of the resized patch, and
then normalized. The Discriminative Color Descriptor [72] performs its training phase
by using a statistical method based on information theory: it learns color descriptors
which have optimal discriminative power for a specific classification problem. The
problem of learning a color descriptor is solved by finding a partition of the color space
using the Divisive Information-Theoretic Clustering (DITC) [38].

The computational complexity of color descriptors strongly depends on the fusion
approach adopted. Every Early Fusion algorithm reveals a complexity about three
times higher than that of the SIFT descriptor computed on the same gray-levels
image (except for the rg-SIFT which is about two times higher). The computational
complexity of every Late Fusion algorithm is consists of the sum of the complexities of
the following steps:

1. SIFT algorithm (computed on the gray-levels image).

2. Pyramid construction.

3. Color quantization by means of a lookup-table (with the complexity depending
on the number of keypoints and their size).

3.3 Experimental Setup and Datasets
In this Section, first it is introduced the MPEG CDVS Test Model Framework, a
standardized test envirnoment for instance object recognition. Then the type of tests
performed within the Test Model and the datasets are discussed. A new Supermarket
Milan dataset is introduced for a new use case. Finally the results of a quantitative
analysis of the detectors and descriptors presented in the previous Sections is exposed.

3.3.1 The MPEG CDVS Test Model Framework

MPEG CDVS [105] is a technology in the last phase of the ISO standardization process
that will enable the design of efficient and interoperable visual search applications and
in particular the development of technologies for visual content matching from still
images. Visual content matching includes matching of views of objects, landmarks, and
printed documents that is robust to partial occlusions as well as changes in vantage
point, camera parameters, and lighting conditions. It has the goal of defining a standard
bitstream, which encodes in compressed form the information required to perform a
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search on the server’s side. The information encoded consists of a global descriptor,
which is a digest computed from compact descriptors features extracted from the image,
a compressed descriptor and the associated coordinates.
The CDVS Test Model (TM) [105] implements the required functionality for the
extraction and comparison of compact descriptors constrained to a set of predetermined
descriptor lengths.
In particular, two procedures for descriptor comparison are implemented in TM, aiming
at reproducing two fundamental tasks for real visual search systems: pairwise matching
and retrieval. The former regards automated verification of whether two images depict
the same objects or scene; in this case, descriptors extracted from a query image are
matched against the descriptors of a reference image, in order to determine whether
they match or not. The latter regards the search and discovery of images contained
within a large collection that depict the same objects or scenes as those depicted by a
query image; this requires the database images to be processed for the creation of a
database which may be searched using the descriptors extracted from the query.
The Pairwise Matching Stage compares the query and reference image descriptors to
determine if the images depict the same object or scene. It uses first local descriptor
matching and if the score is below a threshold, it performs global descriptor matching.
If the final score is greater than a threshold, the images likely depict the same objects
(a match), otherwise the object are different (a non-match).
The Retrieval Stage searches and retrieves relevant images, belonging to a large
collection, that depict the same object or scene represented in the query image. At first,
an off-line step processes the collection to create a database of local and global visual
descriptors which can be matched against the descriptors extracted on the fly from the
query. The retrieval stage performs a search in two steps, first using global descriptor
to select a shortlist of matching images and then using the shortlist in the next step
to compare encoded local descriptor using the Hamming distance. The final ranking
score and inlier selection is computed by a geometric consistency check performed to
determine the inliers among the interest point matches for the two images. The TM
uses the histogram of logarithmic distance ratios (LDR) [131].

3.3.2 Pairwise Matching Experiment

A Pairwise Matching Experiment has been performed on different datasets in the
framework of the CDVS Test Model [5] (See also Section 3.3.1). In this experiment,
a reference image has been compared with an image describing the same object (or
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Fig. 3.13 Pairwise matching experiment evaluation Pipeline

scene) taken under different illumination conditions, with different acquisition devices,
and from different points of view. Fig. 3.13 shows the complete evaluation pipeline.

Descriptors matching was accomplished by Euclidean distance for integer descriptors
(i.e. SIFT, SURF, KAZE, A-KAZE) and by Hamming distance for binary descriptors
(i.e. FREAK). The ratio test on candidate matches was the same proposed by Lowe
[85]. Let a1 be a descriptor from image A, b1 and b2 the most and second most similar
descriptors from image B, and dist(·, ·) the distance function between two descriptors.
If:

dist(a1, b1)
dist(a1, b2)

< threshold (3.29)

then the candidate match (a1, b1) was accepted as the best match candidate, otherwise
it was rejected. The value of threshold was empirically set. All the accepted matches
were further evaluated by a geometric consistency check. This was done using the
Logarithmic Distance Ratio [131] algorithm.

The image pair scores were computed using all the geometric consistent matches.
First, an image correspondence score based on all matches was computed as follows:

w =
∑

all matches

cos
π

2

√
dist1

dist2

 (3.30)
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Dataset MP NMP Origin
1. CDs, DVDs, books, business cards (Mixed
text + graphics)

3000 29903 Stanford Mobile Visual
Search

2. Museum paintings 363 3639 Stanford MVS
3. Video frames 399 3999 Stanford MVS
4. Landmarks and buildings (Zurich, Turin) 1789 17948 ZuBud, Telecom Italia
5. Common object or scenes 2549 21307 University of Kentucky

Table 3.1 Datasets adopted in the MPEG CDVS test model

where dist1 and dist2 are the best distance and the second best distance for each match.
Then, the image correspondence score was transformed by mean of the following
equation to obtain the final Image Pair Score (IPS):

IPS = w

w + wmT hresh

(3.31)

where wmT hresh is a threshold that was empirically found for each detector/descriptor
couple. Image pairs with IPS > 0.5 were considered a match.

All images were resized to VGA resolution (i.e. minor and major axis length equal
to 480 and 640 pixels respectively). Results were reported in terms of True Positives
Rate (TPR) at a given level of False Positives Rate (FPR) (also called False Accept
Rate or FAR).

3.3.3 Datasets

For the gray-level descriptors comparison, the experiments were performed on five
datasets of different objects, whereas for the color descriptors, the experiments were
performed on the five datasets plus a recent additional dataset that we entitled
“SuperMarket Milan”.

The CDVS standard datasets are listed in Table 3.1, together with the number of
Matching Pairs (MP) and Non-Matching Pairs (NMP) provided as ground-truth.

The “Mixed-text + Graphics”, “Museum paintings”, and “Video frames” datasets
were collected by the Stanford Mobile Visual Search research group. “Mixed-text +
Graphics” consists of 2500 images of five different categories of objects: CDs, DVDs,
books, text documents and business cards. The “Video frames” dataset contains 500
images captured by a mobile phone camera shooting a TV screen. Pictures in these
three datasets have been shot with different cameras and various different lighting
conditions, rotations, scales, and viewpoints. Fig. 3.14 depicts an object from the
“Mixed-text + Graphics” dataset.
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Reference View 1 View 2 View 3

Fig. 3.14 Images of a typical object (DVD) from the “Mixed-text + Graphics” dataset.

View 1 View 2 View 3 View 4

Fig. 3.15 Images of the same building from different views from the “Turin” dataset.

The “Landmarks and Buildings” dataset includes images from two different origins:
“Zurich Buildings” dataset and “Turin” dataset. “Zurich Buildings” contains pictures
of 200 buildings in Zurich, shot by two cameras under different viewing conditions
whereas dataset “Turin” contains images of 180 landmarks/buildings in Turin, Italy.
1440 images are still images and 540 images were extracted from videos. Pictures in
this datasets exhibit different point of views of the same landmark/building, occlusions
and strong light changes. Example images taken from the “Turin” dataset are depicted
in Fig. 3.15.

The fifth dataset depicts “Common objects or Scenes” collected by University of
Kentucky. It contains 10200 images of 2550 different objects/scenes, each shot from
4 different views. Typical image transformations include rotation, different scales,
different points of view and slight changes in illumination. Fig. 3.16 shows different
shots of a typical object from this dataset.
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View 1 View 2 View 3 View 4

Fig. 3.16 Images of the same object from different views from the “Common objects
and scenes” dataset by University of Kentucky.

3.3.4 SuperMarket Milan Dataset

“SuperMarket Milan” is a recent ad-hoc dataset composed of 1,686 photos of various
supermarket products. This dataset was specifically created to test the CDVS Test
Model [5] on a new use case and to report the ability of the model to recognize
goods commonly available at supermarket premises 1. Photos were taken under
different illumination conditions in different types of physical locations (e.g. home
and supermarket shelves). Different camera devices acquired the photos, i.e.: iPhone
4, iPhone 3, Samsung Next Turbo, Samsung S Advance, Samsung Galaxy S3, Lg
Optimus L5, and LG Nexus 4. Image resolution ranges from 0.1 to 5.0 MegaPixels.
An annotation file containing the coordinates of vertices of the bounding quadrilateral
enclosing the object is associated to each image.

The dataset is composed of reference and query images. The reference images
are photos of objects taken with the iPhone 4 in the best environmental conditions,
which means, for example: no objects in the background, no portions of the object are
occluded, etc. The query images are photos of the object in its context, either on the
supermarket shelf or at home. Fig. 3.17 shows an example of an object. The left photo
represents the reference image and the others are examples of queries.

There are 1,697 query images and 430 reference images (total 2,127). About four
query images for each reference. Two different pairwise matching experiments were
conducted with the “SuperMarket Milan” dataset. In the first experiment (noted as 6a
in the rest of this paper) all the matching and non-matching pairs have been chosen
randomly. In the second experiment (6b), the matching pairs were also chosen randomly,
but the non-matching pairs were chosen randomly among the photos of so-called color
significant products. In particular, this experiment measured the discriminative power
of color descriptors. The phrase “color significant products” refers to products that

1The “SuperMarket Milan” dataset was presented at the 105th MPEG Meeting (Vienna) and
tested on the CDVS Test Model.
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Reference View 1 View 2 View 3

Fig. 3.17 Images of the same object from different points of view from “SuperMarket
Milan” dataset.

differ from each other’s by color and not by shape. Fig. 3.18 shows examples of color
significant products.

For the pairwise matching experiment 6a a total of 3350 MP and 33506 NMP are
provided; 250 MP and 2522 NMP are instead provided for the experiment 6b. For the
retrieval experiment 1686 queries are provided.

3.4 Quantitative Evaluation

3.4.1 Algorithms considered for comparison

In this section is presented a list of the gray-level and color algorithms evaluated. LoG
or Laplacian of Gaussian and SIFT, acronym for Scale-Invariant Feature Transform
[84][85] are the algorithms adopted, respectively, for keypoint detection and local visual
description in the CDVS Test Model ver. 10 [5]. The following implementations
have been considered for testing: Original Lowe’s binary code [84][85]; VLFeat [139]
and the OpenCV library implementation [27]. Different affine-invariant keypoint
detectors [93] have been investigated together with the VLFeat SIFT descriptor:
Hessian, Hessian Laplace, Multiscale Hessian, Harris-Laplace, Multiscale Harris and
Difference of Gaussians (DoG). These detectors normalize the image patch around each
detected interest point according to the estimated affine transformation. They also
differ in the strategy used to achieve scale-invariance: Laplace automatically selects
a single characteristic scale of a keypoint, whereas Multiscale may associate multiple
scales to the same keypoint.
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Fig. 3.18 Examples of color significant products from the “SuperMarket Milan” dataset.
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Name Patent Reference
SIFT detector and descritor Patent US 6711293 B [85]
SURF detector and descritor Patent US 8165401 B [16]
Harris detector Free [93]
Hessian detector Free [93]
FREAK descriptor Free [8]
KAZE detector and descriptor Free [10]
A-KAZE detector and descriptor Free [11]

Table 3.2 Gray-levels algorithms investigated

The other gray-levels algorithms that were considered are: the OpenCV SURF
(Speeded-Up Robust Features) [16] implementation; the OpenCV FREAK (Fast Retina
Keypoint) [8] implementation which uses SURF as the keypoint detector, and the
KAZE [10] and A-KAZE [11] original code.

All tests were made with the default parameters for each algorithm with the
exception of the response filter threshold. This parameter was set so each detector
produced on average about 1,000 keypoints per VGA image, therefore controlling the
number of interest points generated. Indeed the distinctiveness of the descriptors
produced was analyzed instead of their quantity; therefore their quantity was limited
to make fair comparisons. Moreover, in the CDVS processing pipeline the detected
keypoints and their descriptors must be sent over the network to a server and, since
the network is bandwidth constrained, it was reasonable to limit the maximum number
of keypoints produced as an attempt to fit their binary representation into the network
bitrate available. Table 3.2 lists the investigated gray-levels algorithms with their
licenses and links to sources or binaries.

Table 3.3 lists all the color descriptors considered for comparison. For every
color descriptor evaluated, the type of fusion approach and the dimension (in bytes)
of the color description produced is reported.To perform fair comparisons, every
color descriptor was associated with the same keypoints detector (i.e. the VLFeat
implementation of SIFT). Detection phase was performed on the gray-levels image.

3.4.2 CDVS Evaluation on SuperMarket Milan Dataset

According to the MPEG CDVS Evaluation procedure protocol [4], a full characterization
of the Test Model has been performed on the “SuperMarket Milan” dataset. The
results were evaluated using two types of experiments: retrieval and pairwise matching.
Both experiments were done on the six different datasets described in the previous
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Name Dimension Fusion Reference
RGB SIFT 384 Early [134]
Opponent SIFT 384 Early [134]
Transformed Color SIFT 384 Early [134]
HSV SIFT 384 Early [134]
C-SIFT 384 Early [134][6]
rg SIFT 256 Early [134]
oRGB SIFT 384 Early [140]
Hue SIFT 164 Late [134]
Color Names 139 Late [137][138]
Fuzzy Sets Color Names 139 Late [17]
Discriminative Color 139, 153, 178 Late [72]

Table 3.3 Evaluated color descriptors

section. Results were reported for the following operating points (upper bounds on
average descriptor lengths in each experiment): 512, 1K, 2K, 4K, 8K, 16K bytes as
query length.

The results for the retrieval and pairwise matching were evaluated using different
sets of measures. Retrieval results were measured in terms of Mean Average Precision
(MAP) and success rate for Top Match.

Pairwise matching results were measured in terms of Success Rate (i.e. TPR) at
the average FPR of 1%. In fact, the CDVS Test Model is optimized to give an average
FPR of 1% on the five standard CDVS datasets (i.e. dataset 1 to 5). The performances
relative to the new datasets (i.e. 6a and 6b) have been obtained applying the Test
Model as is. Results of the pairwise matching experiment 6a were in line with those of
the other datasets. The success rate varied between 76.60% for lower bitrate descriptors
and 92.78% for higher bitrate descriptors (i.e. 8k) and the range of FPR was from
0.62% for the highest bitrate descriptor to 1.35% for the lower bitrate descriptors (i.e.
512-2k). The plot of the success rate and FPR with respect to descriptor length for all
the datasets considered are respectively reported in Fig. 3.19.a and Fig. 3.19.b.

For the pairwise matching experiment 6b, Success Rates values were similar to
those of the experiment 6a (see Fig. 3.19.a), but FPR showed important differences.
The range was from 37.83% to 65.94%. The highest level of FPR for this experiment
was found in the highest bitrate descriptor, as can be seen in Fig. 3.19.b.

These levels showed a clear inability of the Test Model to discriminate “color
significant products” (as previously defined). In particular, high levels of Success Rate,
demonstrated the ability of the Test Model to recognize the class of object of dataset
6 (i.e. “SuperMarket Milan” dataset) but high levels of FPR also revealed that the
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a) b)

c) d)

Fig. 3.19 Plots of the TPR (a), FPR (b), MAP (c) and Top Match (d) with respect to
descriptor length for all the datasets considered.
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current Test Model was not able to differentiate between two similar objects. As a
consequence, the average FPR levels were extremely high.

On the Retrieval experiment, MAP values of datasets 6a and 6b were similar to
those of the datasets 4 and 5. While datasets 1, 2 and 3 had high levels of MAP (i.e.
from 76.56% to 95.78%), datasets 4 and 5 showed lower MAP levels (from 56.34% to
77.42%). The retrieval experiments 6a and 6b, concerning the “SuperMarket Milan”
dataset showed levels slightly lower than those of datasets 4 and 5: from 53.34% to
75.06%. The Top Match success ratios were very low with respect to those of the others
datasets. The normal range for this value was between 72.78% and 96.27% while the
range of Top Match values of the retrieval experiments 6a and 6b were from 55.52% to
75.33%. As expected, the Top Match values for the experiment on dataset 6b were
slightly lower than those on dataset 6a. The plot of MAP and Top Match with respect
to descriptor length for all the datasets considered are respectively reported in Fig.
3.19.c and Fig. 3.19.d.

The retrieval data confirmed what could be deduced from the pairwise experiment
results. Retrieval of SuperMarket Dataset objects was slightly more difficult compared
to other kinds of objects of the CDVS Test Model dataset because of the shape of the
supermarket objects themselves. Moreover the Top Match statistics showed that the
current algorithms of the Test Model were not highly discriminative for this category of
objects and in particular they were troubled by very similar “color significant products”.

Given the low performance of the CDVS Test Model on the datasets 4, 5, and 6,
in the next subsections a set of gray-level and color descriptors will be tested. The
experiment is aimed to see if there are alternative descriptors that can consistently
improve the performance on all the datasets with respect to those obtained by the
descriptor actually used in the CDVS Test Model.

3.4.3 Gray-level Descriptors

To test detectors and descriptors, two different types of experiments were conducted
and reported for each dataset. In the first experiment, all the detected keypoints
were used in the matching phase. This experiment aims to assess the upper bound
performance of the descriptors outside the CDVS Test Model framework. In the latter
experiment, a selection of the most discriminant 1,024 detected keypoints was made
on the basis of the strength of the filter response before the matching phase was
performed. This experiment follows the CDVS guidelines, and uses the Test Model
disabling the descriptor compression step, which has to be designed ad-hoc for each
different descriptor.
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True Positives Rates (TPR) were measured at two different levels of FPR: 10%
and 1% (as MPEG CDVS requires). The obvious expectation is that the measured
TPR should not be lower for any image at the higher FPR level. This expectation was
confirmed by the experiments reported in Fig. 3.20 and 3.21. Concerning gray-level
detectors and descriptors, KAZE performed equal or better than SIFT on the third,
fourth and fifth datasets. SURF obtained very good results on the first three datasets.
FREAK performed worse than SURF on all the datasets. Performance of A-KAZE are
always lower than those of KAZE.

Affine invariant detectors, as expected, worked well under viewpoint changes. Their
overall results were poorer than the SIFT and KAZE algorithms for all datasets, except
for the “Video Frames” dataset. Conversely, on the “Landmarks and Buildings” dataset,
affine invariant detectors achieved the best performances among all the algorithms.
Limiting the number of keypoints to 1024 particularly affects the performance of
some decriptors: DoG, Harris Laplace, Hessian Laplace, Multiscale Harris, Multiscale
Hessian, SURF-FREAK, and SURF. This is particularly evident on datasets 1 to 5
where the loss in TPR shows a magnitude up to 0.20 (SURF-FREAK on dataset 2).
The loss in TPR is much lower on datasets 6a and 6b, where the magnitude is lower
than 0.032.

Table 3.4 shows the average computational time required by each algorithm to
detect the keypoints and extract the features. Indeed a point of focused attention
was not only the accuracy aspect of these algorithms but also their complexity as
a measure of the computational burden on the implementation. For each detector
the filter response threshold value, the average number of keypoints detected, and
the average overall time spent for detection and description were reported. Timings
have been taken on the images belonging to the “Mixed text + graphics” dataset
(scaled at VGA resolution) with an x86 2,4 GHz single processor with 3 MB of Cache
L2 and 8 GB of RAM. As expected, A-KAZE confirms to be the algorithm showing
the lowest average computational time [11]. Quite remarkably, the SIFT (OpenCV)
implementation is the second among the lowest complexity methods, which is contrary
to the common belief, and it was not only the most accurate on average, but also the
one showing the best trade-off between performance and speed, making it the most
likely candidate for embedded system mapping.

3.4.4 Color Descriptors

Comparisons of color descriptors are shown with respect to a baseline algorithm.
The chosen baseline was the VLFeat implementation of SIFT (gray-levels). The
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Fig. 3.20 TPR levels of all the gray-scale algorithms at a FPR of 10% and 1%. No
limit on keypoints number. Top to bottom: dataset 1 (mixed text + graphics) and 2
(museum paintings), dataset 3 (video frames) and 4 (buildings and landscapes), dataset
5 (common objects and scenes) and 6a (SuperMarket Milan), dataset 6b (SuperMarket
Milan: color significant objects).
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Fig. 3.21 TPR levels of all the gray-scale algorithms at a FPR of 10% and 1%. Keypoints
number limited to 1024. Top to bottom: dataset 1 (mixed text + graphics) and 2
(museum paintings), dataset 3 (video frames) and 4 (buildings and landscapes), dataset
5 (common objects and scenes) and 6a (SuperMarket Milan), dataset 6b (SuperMarket
Milan: color significant objects).
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Algorithm Peak Number Comput.
Threshold of Points Time (s)

DoG 3.0e2 869.6 0.981
Hessian (VLFeat) 3.0e2 1061.7 1.074
Hessian Laplace (VLFeat) 3.5e2 1138.2 0.940
Harris Laplace (VLFeat) 1.0e4 1068.3 1.797
Multiscale Hessian (VLFeat) 4.0e2 1565.1 0.908
Multiscale Harris (VLFeat) 2.0e4 1150.4 1.681
SIFT (VLFeat) 0.1e-2 1374.0 0.346
SIFT (OpenCV) 0.1e-2 1374.0 0.164
SURF (OpenCV) 3.0e2 987.5 0.169
SURF-FREAK (OpenCV) 0.1e-2 1321.0 0.483
Opponent SIFT (OpenCV) 0.1e-2 1374.0 0.480
KAZE (original v.1.3) 0.1e-3 1184.6 1.204
A-KAZE (original v.1) 1.0e-3 1271.3 0.112

Table 3.4 Filter response threshold value, average number of keypoints detected, and
average overall time spent for detection and description. Timings have been taken on
the images belonging to the Mixed text + graphics dataset (scaled at VGA resolution).

different color descriptors tested correspond to Early or Late fusion of this baseline
with the corresponding color information (see Table 3.3). On most of datasets color
descriptors added a little improvement in the discriminative power over the gray-
levels descriptor or they performed even worse compared to the baseline. Results
are reported in Fig. 3.22 and 3.23, where a dashed line represents the TPR of the
baseline descriptor at a FPR of 1%. It is possible to notice that on dataset 3 (“Video
Frames”) no descriptor achieved better results than the baseline. This is due to a
lack of invariance of the color descriptors with respect to noise, blurriness, and other
kinds of image transformations heavily present in this dataset. On dataset 1 (“Mixed
text + graphics”) and 4 (“Buildings”) only a few color descriptors show better results
with respect to the baseline. This is due to the fact that in some images from these
datasets, color descriptors are misled by wrong white-balance correction, different
lighting conditions and presence of shadows. Figure 3.24 shows some examples of image
pairs having large difference in color appearance due to imaging conditions. Very good
results were obtained by some color descriptors on datasets 5, 6a and 6b. Dataset 5
(“Common objects and scenes”) was composed of very colored objects, thus, the color
information become highly discriminant. On this dataset, the algorithms achieving
the best performances were those using a Late Fusion approach, which have a lower
complexity than the Early fusion ones. On dataset 6b (“SuperMarket Milan” with
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color significant objects), as expected, the gray-levels SIFT baseline performed very
low because different objects with different color but the same shape were recognized
to be the same object. All color descriptors algorithms achieved better results for the
highest level of FPR. Limiting the number of keypoints to 1024 has almost no effect
on all datasets with the exception of dataset 1 on which however the loss in TPR is
always lower than 0.03.

Note that in all datasets the Transformed Color algorithm and the RGB algorithm
achieved the same results. That is because all the invariance properties of the Trans-
formed Color space are implicitly included in the SIFT algorithm itself as Van de Sande
et al. claimed [134]. Differently from other domains where Opponent SIFT obtained
the best results [134][21], on CDVS datasets this is not always true, especially for the
dataset 3 (“Video Frames”). We speculate that this difference in performance can be
explained by the fact that the acquired images are affected by distortions that cannot
be completely modeled by the diagonal-offset model considered in [134].
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Fig. 3.22 TPR levels of all the color algorithms at a FPR of 10% and 1%. No limit on
keypoints. Top to bottom: dataset 1 (mixed text + graphics) and 2 (museum paintings),
dataset 3 (video frames) and 4 (buildings and landscapes), dataset 5 (common objects
and scenes) and 6a (SuperMarket Milan), dataset 6b (SuperMarket Milan: color
significant objects).

53



Keypoint-based Approaches

Fig. 3.23 TPR levels of all the color algorithms at a FPR of 10% and 1%. Keypoints
number limited to 1024. Top to bottom: dataset 1 (mixed text + graphics) and 2
(museum paintings), dataset 3 (video frames) and 4 (buildings and landscapes), dataset
5 (common objects and scenes) and 6a (SuperMarket Milan), dataset 6b (SuperMarket
Milan: color significant objects).
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Fig. 3.24 Examples of images where color information can be misleading. In each image
pair the reference image is shown on the left whereas the query image is shown on the
right.
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Chapter 4

Convolutional Neural Networks for
Object Recognition

First ideas on Neural Networks are dated in the forties [89]. Since then, new models
have been enginereed, e.g. [77] but only a few laboratories with interests on bio-inspired
neurocomputing carried on reseach on Neural Networks.

In 2012 the publication of a work by Krizhevsky et al. [76] showed that it was
possible to train a deep neural network using GPUs to recognize thousand of categories
of objects on real-world images. Their method surprisingly outperformed by a large
margin all the existing approaches based on handcrafted features. Since then the
interest about Neural Network increased every year and lot of laboratories started
researching in that direction. Now numerous laboratories and research centers apply
Deep Learning in a variety of fields different from Computer Vision like for example
Computer Graphics, Automation, Stock Market Prediction, System Biology, Materials
Science and several Engineering fields. Moreover an increasing number of companies
are adopting Deep Neural Networks in their products or to support their production
line, showing that this technology is enough mature to be adopted in many real world
scenarios.

In this Chapter, first are introduced the Multilayer Perceptron and a generic
Convolutional Neural Network. The second part regards algorithms to train Neural
Networks including Gradient Descent and some of the most known variants. After
a brief section on Data Preprocessing the list of the most used layers is presented
together with some state-of-the-art network architectures. Finally two sections on Data
Augmentation and Regularization close the Chapter.
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4.1 Multilayer Perceptron
McCulloch and Pitts have been the first pioneers of neural networks in 1943 for
introducting the idea of neural networks as computing machines [89]. However it was
only in the 1958 that Rosenblatt [116] proposed the perceptron as a probabilistic model
for supervised learning. It is the simplest form of a neural network and it can be used
to classify linearly separable patterns. It consists of a single neuron with trainable
synaptic weights and bias. Rosenblatt proved that if the input patterns are linearly
separable classes, the perceptron algorithm converges and the decision surface take
the position of an hyperplane between two classes. This is known as the perception
convergence theorem.

Fig. 4.1 Signal-flow graph representation of McCulloch and Pitts Perceptron model
[89].

The perceptron shown in Figure 4.1 represents the model of a neuron described by
McCulloch and Pitts in their work [89]. It is composed of a set of weights w1, w2, ..., wm

that are multiplied by the inputs x1, x2, ..., xm plus a bias. The central node performs
a sum and finally the function ϕ is an hard limiter. Examples of hard limiter functions
are the logistic sigmoid 1/(1 + e−x) or the hyperbolic tangent tanh(x). Equation 4.1 is
the mathematical form of the perceptron model.

υ = ϕ(
m∑

i=1
wixi + b) (4.1)

Weights w1, w2, ..., wm that correspond to synapses in a biological system, can be
adapted (trained) on an iteration-by-iteration basis. A single perceptron is only able
to discriminate linearly separable patterns.

The perceptron can, however, be used as building blocks of a larger structure called
Multilayer Perceptron (MLP). A MLP network consists of a set of source nodes forming
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the input layer, one or more hidden layers of computation nodes, and an output layer
of nodes. The input signal propagates through the network layer-by-layer. From the
learning point-of-view the task of a multilayer perceptron is to approximate a function
f∗. A MLP defines a mapping y = f(x; θ) and learns the value of the parameters θ

that result in the best function approximation.
This type of neural networks are also called feedforward because information flows
trough the function being evaluated from the input trough intermediated computations
used to define f , and finally to the output y. As an example we can think of three
functions f (1), f (2) and f (3) composed to obtain fx = f (3)(f (2)(f (1)(x))) where f (1) is
called the first layer of the network, f (2) is called the second layer and so on. To learn
the value of parameters usually the backpropagation algorithm is used. It consists of
two steps: a forward pass and a backward pass. In the forward pass, the predicted
outputs corresponding to the given inputs are evaluated. In the backward pass, partial
derivatives of the cost function with respect to the different parameters are propagated
back through the network from the layer near the output to the one near the input. The
network weights can then be trained using any gradient-based optimization algorithm.
The whole process is iterated until the weights have converged.

4.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) were first presented by Kunihiko Fukushima
in [43] as a tool for visual pattern recognition. In 1998 LeCun proposed a 7-level
convolutional network called LeNet-5 [77] that is the most similar architecture to
modern CNNs. However, only in recent years CNNs have become widespread in
the scientific community, thanks to the development of high-performing architectures
working on GPU [66].
A CNN is composed by one or more convolutional layers followed by nonlinear functions
and optionally subsampling layers. In the last part, the CNN is usually followed by
one or more fully connected layers like the Multilayer Perceptrons (see Section 4.1).
The particular architecture of CNN makes them easy to train and with few parameters
with respect to fully-connected networks. The reason is because CNNs exploit the 2D
structure of an input image producing translation invariant features. A CNN takes
an input image, which usually has undergone some minor preprocessing, processes it
with a cascade of different transformation layers, to finally produce a prediction of the
image class.
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4.3 Training a Neural Network
Training a Neural Network consists essentially in minimizing a loss function. If the
loss function and all the layers up to the input are differentiable functions it is possible
to use a gradient-based method to train all the parameters in Neural Networks layers.

4.3.1 Gradient Descent

The most common optimization method used to train Neural Networks is Gradient
Descent. It is simple to implement, efficient and powerful. The idea comes from the
definition of gradient: it points to the steepest direction of the function’s suface at
the current point. Gradient Descent algorithm consists in choosing a random point θ0

inside the function domain, computing the gradient of the function at that point and
iteratively move on the opposite direction of the gradient until a termination condition
is met. The following is the formula of gradient descent update step:

θt = θt−1 − α∇ΘJ(θt−1) (4.2)

where θt−1 is the current point, J(θt−1) is the gradient evaluated at the current point
and θt is the updated position in the parameters’ space. α is an hyperparameter named
Learning Rate. Carefully tuning the Learning Rate is crucial for a good convergence

a) learning rate too low b) learning rate too high

Fig. 4.2 Gradient descent steps with two different learning rates on 2D data. Figures
from [UDC]

of Gradient Descent. Figure 4.2 shows the effect of a wrong tuned learning rate on a
2-dimensional solution landscape. If the value is too low it takes too many steps for
the algorithm to converge to the minimum. Gradient descent finally will converge to
the local optimum but it may take too many iterations and thus a long computational
time. If the learning rate is too high the Gradient descent will execute large steps
ending up in a different valley of the solution landscape or even climbing up the valley
instead of descending it which results in divergence.
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There is no guarantee that Gradient Descent converges to the global optimum. The
optimum reached by the algorithm strongly depends on parameters inizialization. A
simple way to augment the probability of finding a good minima is to try different
runs with different random initializations and keep the optimum given by the best run.
Again this doesn’t guarantee to reach the global optimum.

4.3.2 Stochastic Gradient Descent

From the point-of-view of a practical application the vanilla version of the Gradient
Descent is used only when optimizing on toys examples. When dealing with real data
usually some variants are adopted. The first is named Stochastic Gradient Descent
usually abbreviated with SGD. Instead of using the whole dataset for each update,
the optimization algorithm choses a random subset every step. This subset is called
Minibatch. The assumption is that every small data subset reflect the distribution of
the whole dataset thus Stochastic Gradient Descent becomes an approximation of the
deterministic version with a stochasticity component given by the random order of
Minibatches selection. The size of Minibatch is an hyperparameter to be chosen. The
more the minibatch is small and the more the algorithm tends to pure stochasticity,
the more is big and the more the approximation tends to the deterministic Gradient
Descent. In real cases Minibatch size is chosen to be big enough to fit system memory.
With the use of GPUs and highly parallel matricial operations the use of Minibatches
can result in a huge speed-up compared to the pure stochastic Gradient Descent.

4.3.3 Momentum and other variants

During the years a lot of different variants to the vanilla Gradient Descent have been
proposed. Here are reported some of the most used. The first variant is named Gradient
Descent with Momentum. It is widely used because it is simple to implement, it cause
a negligible computational overhead and it can really speed-up convergence in most
cases. It is easy to illustrate the contribution of Momentum to the vanilla Gradient
Descent using a metaphore. Gradient Descent can be compared to a man steadly
walking down the mountain side. Gradient Descent with Momentum can be compared
to a ball rolling down the mountain. The more the ball roll and the more it accelerate.
That is the contribution of Momentum, adding a velocity term for parameters update.
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Formally the momentum update is given by:

νt = γνt−1 + α∇ΘJ(Θt−1)
Θt = Θt−1 − νt

(4.3)

where ν represents the velocity vector and has the same dimension of the parameters
vector Θ, i.e. every parameter has its own velocity. γ ∈ (0, 1] is an hyperparameter
allowing to control how much the current optimization step is influenced by past steps.
Intuitively the use of Momentum can really speed up convergence to the minimum
when the solution landscape is characterized by shallow ravines. Moreover in some
cases it can be useful to exit from small ditches, i.e. local minima.

Nesterov Accelerated Gradient Following the metaphore of the ball rolling down
the mountain side, a problem with Momentum arises when the ball reaches the bottom
of the valley, i.e. local minimum, and it starts to roll up the opposite side of the valley
for the high speed. Nesterov Accelerated Gradient can solve this type of problem. The
underlying idea is to update the gradient step not based on the current point but on
an estimation of the gradient value at the next step. Formally:

νt = γνt−1 + α∇ΘJ(Θt − γνt−1)
Θt = Θt−1 − νt

(4.4)

The main difference is on term ∇ΘJ(Θt − γνt−1). Now the gradient is not computed
anymore on the current point but on a projection of the next Gradient Descent step.

There are other well known optimizers widely used in the Deep Learning community
that strenghten their update step by taking into account past history of parameters’
updates. Here is a non-exhaustive list: Adagrad [39] where the idea is to base the
update step on the squared roots of past steps. Adadelta [148] that tries to overcome
the problem of collecting too many past steps with the consequent decay of influence
on the current step. Adam [73] that keep track of past update steps and Momentum.
All the names of these optimizers start with prefix “Ada”, contraction of “Adaptive”
because they store information about gradient steps for each parameter being in fact
adaptive optimizers.
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4.4 Data preprocessing
Preprcessing and normalizing input data is a crucial step in every machine learning
pipeline [53], [99], [55]. Figure 4.3 shows a bidimensional feature space with data lables
distributed in two classes. Yellow and green areas represent the plane classified by a
decision tree. The simple classifier can put the division boundary between the two
classes when data is decorrelated. In the Neural Network community three types of

Fig. 4.3 Decorrelating features is critical. Classification trees with both decorrelated
and PCA-whitened features. Figure from [99]

data preprocessing are usually adopted:

• Mean subtraction. It ivolves the computation of the mean for each input
feature indipendently and the subtraction of the resulting value for all the input
data. If the input is an RGB image, each channel is normalized independently.

• Contrast Normalization. This is one of the most used form of preprocessing
because it is computational inexpensive but effective. It consists in subtracting
the mean and dividing by the standard deviation each input feature independently,
i.e. image channels. The networks for logo recognition described in Chapter 5.2
make use of this preprocessing step. In Section 5, among the experiments for the
improved logo recognition pipeline, are presented some experiments on the use of
Contrast Normalization as input processing step. Table 5.7 shows that Contrast
Normalization improves Neural Network performances by a consistent margin on
multiple experiments.

• PCA and Whitening PCA involves the mean subtraction first to obtain zero-
centered data. The second step needs the computation of a covariance matrix.
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Then the eigenvectors of the covariance matrix are used to project the data space
into a new space where features are less correlated. This helps the learning process
especially with simple classifiers, e.g. classification trees, as an example see Figure
4.3. Another related transform is called Whitening and it consists in dividing
every dimension by the eigenvalue to normalize the scale. While the geometric
interpretation of PCA is a rotation of the feature space, whitening represent
a scaling operation. This transformations are reported here for completeness
but are not used as preprocessing step in the next sections. They are not very
common in the Deep Learning community. The reason is that they can be very
expensive to compute on big datasets and they usually do not provide a significant
improvement in performances on complex models.

4.5 Common CNN Layers
In the following paragraphs the most common layer composing a CNN are presented.
Specific architectures may use their own types of layers. Some layers or modules are
introduced in Section together with their architectures.

Fig. 4.4 First two layers of a Convolutional Neural Network. The nearest to the image
is a Convolutional layer whereas the farthest is a pooling layer. Image from UFLDL
Stanford tutorial [UFL].

Convolutional layers are the main type of layer used in CNNs. They are designed
to perform a convolutional operation on the input data, which can be either the original
image or the result of hidden layers. The kernel involved in this operation is not
hand-encoded, but automatically learned through the backpropagation algorithm used
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to train the network. The input to a convolutional layer is a m × m × r image where m

is the height and width of the image and r is the number of channels. The convolutional
layer have k filters of size n × n × q where n is smaller then the dimension of the image
and q can either be the same as the number of channels r or smaller. The size of the
filters gives rise to the locally connected structure which are each convolved with the
image to produce k featue maps of size m − n + 1. Each map is then subsampled
typically with mean or max pooling over p × p contiguous regions where p is usually 2.
Figure 4.4 shows a scheme of the first two layers of a Convolutional Neural Network,
i.e. Convolution and Pooling.

Non linearities are implemented in the CNN by activation functions. The most
used activation function is ReLU (Rectified Linear Units) [76]. It keeps only the
positive part of the input without applying any kind of upper bound to the signal.
This prevent neurons saturation and promote features sparseness.

f(x) = max(0, x) (4.5)

Other non-linear activation functions commonly used are the logistic sigmoid 1/(1+e−x)
or the hyperbolic tangent tanh(x). Krizhevsky et al. showed in [76] that a deep CNN
with ReLUs activation functions converges six times faster than a deep CNN equipped
with sigmoids. Figure 4.5 shows a comparison of the three activation functions. While
Sigmoid and Tanh has lower and upper bounds, ReLUs puts only a lower bound to the
input signal.

Pooling work as average or maximum filters, and as such are used to reduce the
impact of small variations in the signal. Furthermore, they allow for a dimensionality
reduction of the input data. Their effect depends on the filter size and stride. Figure
4.4 shows a scheme of the first two layers of a Convolutional Neural Network, i.e.
Convolution and Pooling. The receptive field size, RF size in the picture, is given by
the filter size.

Dropout [126] are used to reduce overfitting, which can occur when the number of
training examples and number of CNN parameters are unbalanced, with the second one
being greater than the first one. This is done, at every training iteration, by randomly
dropping some activations with probability p. At testing time instead, all the neurons
are used, but their responses are weighted by p itself. This ensures the output at test
time to be the same as the expected output at training time.
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Fig. 4.5 Three most used non-linear activation functions. Sigmoid: 1/(1+e−x), Tangent:
tanh(x) and Relu: f(x) = max(0, x). Figure from [144].

Batch Normalization It has been introduced in 2015 by Ioffe et al. [62] to reduce
the Internal Covariate Shift and thus to speedup Deep Neural Networks training. In
Section 4.4 it has been pointed out the importance of normalizing input data. In
Deep Neural Networks, during training, the input distribution of every layer drastically
changes at every forward pass due to the evolving weights of the previous layers. This
effect is amplified the more the input signal goes trough the network layers. This
makes inpractical to train very deep networks and make the training process very
sensitive to the choice of hyperparameters. Batch-Normalization has been introduced
to overcome this problem. The input of every layer is normalized channelwise with
respect to minibatch statistics. Mean and standard deviation of the minibatch are
used as estimators of the dataset statistics. The following equation formally express
the Batch-Normalization layer:

x̂i = xi − µb√
σ2

b + ϵ

yi = γx̂i + β

(4.6)

where xi is a single activation value given as input to the Batch Normalization.
µb represents the mean of the activations computed over the current mini-batch
µb = 1

m

∑m
i=1 xi, and σ2

b is the mini-batch variance. yi represents the output of Batch
Normalization. It is the result of applying an affine transformation with parameters γ

and β to the normalized output. γ and β in Batch Normalization layers are learnt by
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the network via backpropagation.
Batch Normalization acts implicitly as a regularizer, see Section 4.9 for more details.

Loss function It is the most foundamental layer in a Neural Network. It is usually
the last layer after the network output and it measures the error between the network
output and the groundth. In the next sections are faced mostly classification problems,
thus here are reported two commonly used loss functions for classification.

The first introduced here is named Cross-Entropy Loss. Here is the formula:

Li = −log( efyi∑
j efj

) (4.7)

where Li is the loss function value for each sample and the total loss value is given by
L = 1

N

∑
i Li where N is the number of samples. fyi

is the activation of the last output
layer of the Neural Network before the loss function. The denominator normalizes the
output by summing over all the activations.

Another common used loss function for classification problems is named Hinge Loss
and it is formulated as follows:

Li =
∑
j ̸=yi

max(0, fj − fyi
+ 1) (4.8)

Hinge Loss it is alternatively named SVM loss because it is mainly used to train
Support Vector Machines. The idea is to set a margin and penalize predictions very far
from the decision boundary. It doesn’t promote a high difference between the correct
activation and all the others like Cross-entropy loss does.

4.6 State-of-the-art CNN architectures
Many CNN architectures that make use of the above building blocks have been proposed
in recent years. Although many variants have been investigated, in this Section, only
four most known architectures are presented.

All the models presented here won the Imagenet Largescale Visual Recognition
Challenge (ILSVRC) competition [121] trough the years. ILSVRC was the first object
recognition and localization competition over a large set of images, i.e. 15 milions
involving more than 22k classes. For its huge cardinality and high-quality finegrained
annotations, ILSVRC has become the standard benchmark for object recognition Deep
CNN architectures. Architectures are presented in chronological order:
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4.6.1 AlexNet (2012)

Fig. 4.6 AlexNet CNN architecture. Figure from [76]. The delineation of responsibilities
between the two GPUs is shown. One GPU runs the layer-parts at the top of the figure
while the other runs the layer-parts at the bottom. The GPUs communicate only at
certain layers. Numbers under blocks represents channels for each layer. Input is left
and output is right. Note the increasing numbers the more the layers are far from the
input.

Proposed by Krishevsky et al. [76]. It was the first Deep CNN to win the ILSVRC
competition [121] in 2012. It can really be considered one of the most revolutionary
works in both fields of computer vision and machine learning. For the first time, it had
been shown that Neural Networks could be efficiently trained on huge datasets (15M
images) with higher accuracy than handcrafted methods. It was one of the first Deep
CNNs implemented on GPUs together with the network presented by Cireşan et al.
[33]. The structure of the two networks is similar. The main difference is that [33] has
been tested on relatively small datasets with low-resolution images. Krishevsky et al.
to train on higher resolution images proposed a training system using two GPUs that
communicate only between certain layers to maximally reduce communication overhead.
In Figure 4.6, for each layer, are shown two big blocks that represent convolution
layers distributed on two GPUs. Dotted lines between blocks represent communication
between layers. Some of them are cross-GPUs.
The network is composed by 5 convolutional layers followed by ReLUs and max pooling
layers. The final part of the network is composed by 3 fully connected layers. The use
of ReLU nonlinearities between both Convolutional and Fully-connected layers was
another important ingredient for fast convergence.
The whole network has 60 milions parameters and 650k neurons, a much higher number
with respect to the training dataset cardinality, i.e. 15M. To deal with overfitting,
different techniques described in Section 4.9 were adopted. They performed data
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augmentation by rotating and flipping images and applying lighting noise. They also
made use of Dropout layers and Local Response Normalization. Figure 4.6 shows the
Alexnet structure made of stacked Covnolutions, Pooling layers and Fully-connected
(dense) layers.

4.6.2 VGG (2014)

This architecture has been proposed by Simonyan and Zisserman [124] and scored
first at ILSVR-2014 challenge for top-5 error. The main idea is to substitute large
receptive-field convolution layers like 5x5, 7x7, 11x11 with small kernels. The same
receptive field of a 5x5 kernel filter can be obtained by stacking two 3x3 kernel layers
with a nonlinear function inbetween. This simple trick allows to reduce the number of
parameters while at the same time maintaining the receptive field size. Furthermore
the introduction of more nonlinearities empowers model capacity . Authors didn’t
employ Local Response Normalization because from experimental results it brought no
improvement while slowing down training and increasing model size. They proposed
five different VGG architectures with increasing depth. The shallower architecture
presents 8 convolutional layers w.r.t 8 of the AlexNet while the deeper one have 16
convolutional layers. Network parameters vary from 133M for the 8 Conv version
to 144M for the 16 Conv version. Note that the increase in parameters by adding
covolutional layers is negligible. The difference is made by the fully-connected layers
that have 4096 neurons each, instead of 2048 of AlexNet architecture.
VGG networks are still used as feature extractors in many state-of-the-art architectures.
In Appendix A is presented a way to perform texture synthesis and artistic style
transfer using Deep Neural Networks. The system makes use of pretrained siblings
VGG networks. The style transfer architecture has been first investigated by Gatys et
al. in [47]. The use of siblings VGG networks has been then exploited by Johnson et
al. in [67] as a new type of loss function called Perceptual Loss. Perceptual Loss is
now widely used in many state-of-the-art generative models.

4.6.3 Inception (2014)

The first Inception network known as Inception v1 has been introduced in 2014 by
Szegedy et al. [129]. This version won the ILSVRC 2014 submission with the name
GoogLeNet. The name is an homage to the first convolutional network by LeCun
et al. [77]. The network is mainly composed by stacking Inception modules. Each
inception module is composed by different convolution kernels of various sizes. The

69



Convolutional Neural Networks for Object Recognition

input is processes by each kernel and the output is concatenated. Figure 4.7 shows
a naïve version of the Inception module. Another version of the Inception module
perform dimension reductions before the 3x3 and 5x5 convolutions with 1x1 filters.
Another novelty introduced in Inception v1 was the use of auxiliary classifiers to

Fig. 4.7 Inception module naïve version. Input is procesed trough filters with different
kernels and the output is concatenated. Figure from [129].

help convergence during training. A small network branched after each Inception
module and perform classification on 1000 classes. These auxiliary classifiers were then
discarded at test time. From 2014 different versions have been released almost every
year. v2 use stacked smaller 3x3 convs instead of 5x5 and 7x7 kernels. v4 and v5
includes novelties from other architectures like Residual Blocks presented in the next
paragraph.

4.6.4 Resnet (2015)

Deep Residual Network (Resnet) has been published in 2015 by He et al. [58] and won
numerous ILSVRC-2015 challenges on detection and localization tasks. The novelty
of the architecture relies on a Deep Residual Learning framework. Each residual
block is trained to fit a residual mapping function and multiple residual blocks are
stacked. A residual block can be realized by a feedforward neural network with Shortcut
connections, i.e. they are simple functions that can skip one ore more layers. In the
case of Residual Networks the shortcut connections simply perform identity mapping
and their outputs are added to the outputs of the stacked layers. The structure of a
Residual Block is shown in Figure 6.2. It is composed by two convolution layers with a
non-linear activation function, i.e. ReLU in between. Every convolution is followed by
a Batch Normalization layer [62]. The input signal flows trough the Residual Block
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and at the same time pass trough the skip connection. It is then summed up with the
output from the Residual Block itself. The network is composed by stacking several

Fig. 4.8 Residual Block as implemented in Residual Networks [58]. Figure from [res]

Residual Blocks. Some blocks perform a pooling operation in order to reduce the
spatial support of features. Only the last fully-connected that maps directly to the
output classes is retained. All the other fully-connected layers are discarded in order
to reduce the number of parameters. The Residual Learning framework Networks is
capable of handling very deep architectures. Resnet authors reported experiments
with different depths discovering that it is possible to successfully train a 1202-layers
network. However a comparable test error can be obtained with a 152 layers network
and that is the type of network used to win the ILSVRC-2105 competition.

Concurrent with Resnets, Srivastava et al. designed Highway networks [127], [128].
They are based on a similar principle but the main difference relies on the type of
skip connections adopted. While in Resnets identity shortcuts are always open and all
information passes always trough, highway networks make use of gating functions to
control the information flow. Since Residual Networks skip connections are parameter
free they are easier and faster to train.
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4.7 Network Parameters
Since AlexNet model in 2012 all the consequent models have dramatically increased
their accuracy. VGG networks have raised state-of-the art performances on Imagenet
dataset [121] by 15% but consistently increasing the number of parameters and thus the
computational complexity. Inception and Resnets have further pushed the boundary
even surpassing human level performances [57] for the task of object recognition on
Imagenet dataset. These recent architectures not only increased accuracy on different
computer vision tasks but also drastically reduced the number of parameters and
training time. Figure 4.9 shows a chart representing the top-1 accuracy on Imagenet
vs the number of Giga-operations and the number of parameters. AlexNet from [76]
shows an accuracy of almost 55% with 65M of parameters. Both VGG-16 and VGG-19
have more than 125M of parameters. Resnets and Inception networks come in different
sizes ranging from 70% to 81% in accuracy and from 10M to 95M of parameters.

Fig. 4.9 Comparison of Deep CNN architectures. Top-1 accuracy on Imagenet for
the object recognition task vs Giga-operations. The chart shows also the number of
parameters for each model. Figure from [29]

72



4.8 Data Augmentation

4.8 Data Augmentation
The use of Deep Networks in recent years has been made possible mainly by the
use of GPUs for general computations and the availability of high quantities of data.
Furthermore Deep Neural Networks models trend seems to go toward a more efficient
use of parameters and thus a reduction in models’ size. Despite that, the high capacity
of common Neural Networks make the training process prone to overfitting. Two
effective methods to overcome the overfitting problem while mantaining the network
capacity are Regularization and Data Augmentation. In this Section are explained
some techniques used to artificially augment image datasets.

The purpose of synthetic data augmentation is to provide the model with more
fake data to induce the model to a better generalization. The idea is to provide new
examples with a subset of the plausible variations that can be found in the test set.
However the type and degree of image transformation should be carefully designed in
order to avoid to hurt the learning process. Here is reported a short list of the most
common transformations:

• Affine transforms. This type of data augmentation modifies the spatial ar-
rangement of pixels. Common transformations include translation, rotation,
shear and scale. Section 5.6 and Figure 5.7 show this transformation type applied
to logo images.

• Flipping. This is a very common type of geometric transform used for generic
objects but not for example in paintings and logos datasets.

• Color jitter. It consists in a modification of contrast, brightness and saturation
of the input image independently. Usually the image is first converted to an
apposite color space like HSV and converted back to the RGB channels after the
transformation.

• Lighting noise. It is a pixelwise transform based on the eigenvalues of the RGB
pixel distribution of the dataset. It has been introduced by Krizhevsky et al.
[76]. This transformations include light intensity change and shift and also light
color change and shift as presented in Section 2.1

• Random Noise or Gaussian Blur. It is used to force the model to be able
to handle low quality images. Figure 2.6 in Section 2 shows the visual effect of
Blur and Noise on images.
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From an implementation point-of-view the best option is to apply these transformations
on the fly during training instead of generating an augmented dataset and then train
on it. The contribution to the training process is equivalent but the latter approach
produces a huge dataset to be stored. Instead, on the fly transformations, come at zero
computational cost if made on CPU while the GPU is processing the Neural Network.
Common Deep Learning frameworks allow this parallelism with few lines of code.

Data augmentation at test time: Query Expansion All the transformations
described in the above section can also be applied at test time as a form of Query
expansion with the exception of random noise and gaussian blur for obvious reasons.
When working with object detection and classification, usually we have to deal with two
kinds of variability. The intrinsic variability corresponds to the fact that two instances
of the same object class can be visually different, even when viewed under similar
conditions (e.g. different versions of a logo may differ for some details or colors). The
extrinsic variability refers to those differences in appearance that are not specific to the
object class (e.g. different viewpoints, lighting conditions, image compression artifacts).
Query expansion is a simple way to handle at test time the extrinsic variability of
datasets especially when the training set cardinality is low.
Section 5.4 introduces the use of Query expansion to handle the extrinsic variability of
logo dataset. In Table 5.5 are reported comparisons on the use of Query Expansion.

4.9 Regularization
William of Ockham (circa 1287 - 1347) was an English Franciscan friar. He was a
theologian and a scholastic philosopher. He is known for the following quote:

“Numquam ponenda est pluralitas sine necessitate.”

that can be translated as “Plurality must never be posited without necessity”. The
principle expressed by this sentence is known as Ockham’s razor. It is a problem-
solving principle stating that, among competing hypotheses, the one with the fewest
assumptions should be selected. Regularization is an application of the Ockham’s
razor in the machine learning field. The role of regularization is to discourage complex
explanations of the world in favour of slimpler ideas, even if they fit observations better.
The reason is because usually complex explanations are unlikely to generalize well to
unseen data.

Neural Networks are powerful and expressive models. Early theoretical studies
proved that even a very simple fedforward architecture with only a single hidden layer
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but a sufficiently large number of neurons can approximate every function [36], [42].
Neural Networks are universal approximators.

A recent work by Zhang et al. [149] showed that common Deep CNN models
like those reported in Section 4.6 can easily memorize datasets with thousand of
images without generalizing at all. Zhang et al. in their experiments substituted real
labels of the CIFAR-10 dataset (see Section 3.3.3) with completely random labels
discovering that modern architectures can achieve zero training error. This happens
without addictional time needed for convergence suggesting that the training process
is still easy. Obviously, while the train error is zero, the test error is still equal to
random chance confirming the fact that the model is not able to generalize. They tried
different types of randomization experiments: increasing incrementally the quantity of
random labels, random shuffling image pixels, substituting input images with gaussian
noise. All these experiments suggest one thing: common Deep CNN models have huge
effective capacity. They are large enough to shatter the training data and rich enough
to memorize the whole training set. They also mathematically prove the existence of a
theorem:

Theorem 1. There exists a two-layer neural network with ReLU activations and 2n+d

weights that can represent any function on a sample of size n in d dimensions.

the proof is given in the Appendix of [149]. This represents a much stronger claim
about Neural Networks capacity showing that, not only huge models with milions of
parameters can completely overfit, but even small Neural Networks with two layers
and a precise number of neurons can memorize any dataset.

Implicit and explicit regularization is the way to avoid overfitting and promoting
generalization. Here are listed the main forms of implicit and explicit regularization
techniques used in Deep CNNs:

• Network structure. The choice of the network architecture is the most incisive
form of implicit regularization. The use of shared weights or local connections
drastically reduce the number of parameters of the network. Convolutional layers
exposed in Section 4.5 are very effective on data with stationary properties like
images, 1d signals etc. Convolutional layers can be seen as layers of neurons
with both properties: shared weights and local connections. Intuitively deeper
architectures tend to act as regularizers over wide ones. Higher classification
accuracy of VGG network structure with respect to AlexNet, in Section 4.6, mostly
is due to the use of a deeper architecture in which 5x5 filters are substituted
with two layers of 3x3 filters interleaved by a non-linearity. The receptive field of
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the two layers is still 5x5 but the benefit is double: less parameters but higher
capacity.

• Early stopping. This is another implicit form of regularization. It consists in
monitoring train and test errors throughout the learning process and stopping it
when the test error stabilize or increases. It is widely used because it is cost free
to implement and use and it can be used jointly with all the other regularization
methods.

• l2-regularization and weight decay It is an explicit form of regularization. It
is widely known and used in the machine learning community. l2-regularization
consists in adding a term in the current loss function to penalize high values
of weights. weight decay consists in setting to zero low values of weights. It is
introduced together here because it can be used together as a way to force weight
sparseness. In general every way to induce sparceness is a form of regularization.

• Dropout It has been introduced by Srivastava et al. [126] as a regularization
technique to prevent coadaptation of neurons. It is simple to implement and
use. During training, in the forward pass, weights are set to zero with a certain
fixed probability where as, at test time, dropout is disabled. These neurons
are dead for a single forward/backward pass forcing the strength of neighbor
neurons. The noise introduced in the following layers help the network to be
more robust to differences in the input. Authors of [126] state that a network
trained with Dropout can be seen as an ensamble of multiple instantiations of
the same model. The output at test time is thus a consensus of the ensemble. A
well-known variant of Dropout made for the same purpose is Dropconnect [143].

• Batch Normalization Introduced in 2015 by Ioffe et al. [62] to reduce the
Internal Covariate Shift and to speedup Deep Neural Networks training. See
Section 4.5 for a more detailed explanation. Normalization statistics applied to
every example highly depend on the current minibatch thus input to every layer
it is no more deterministic. This stochasticity acts as regularization allowing to
reduce or removing other explicit regularizers like Dropout or l2-regularization.
Very deep models like Resnets, presented in Section 4.6, wouldn’t have been
possible without Batch Normalization layers and they do not make use of any
other form of explicit regularization during training.

• Multitask learning It is the practice of training a single model to make multiple
types of predictions. It is known that multitask learning introduce an inductive
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bias and reduce the Rademacher complexity of the model, i.e. its ability to fit
random noise [120]. For extensive experiments on the ability of Neural Networks
to fit random noise see [149]. Deep Network described in Section 6.2.3 is a
multitask neural network trained to predict from the same painting with a single
forward pass three attributes: author, style and genre. It is trained to perform
three different tasks. Table 6.5 empirically shows that the same model trained
to perform multitask predictions is less prone to overfitting and thus obtain
higher accuracy. This holds, intuitively, when tasks are somehow correlated.
When performing multitask training on uncorrelated tasks, this can even hurt
performances as shown in Table 6.5 with the task of Genre recognition. While
style and author of paintings are higly correlated, genre is not.
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Chapter 5

Logo Recognition

Logo recognition in images and videos is the key problem in a wide range of applications,
such as copyright infringement detection, contextual advertise placement, vehicle logo
for intelligent traffic-control systems [111], automated computation of brand-related
statistics on social media [44], augmented reality [54], etc.

Traditionally, logo recognition has been addressed with keypoint-based detectors
and descriptors [13, 74, 68, 90]. For example Romberg and Lienhart [114] presented a
scalable logo recognition technique based on feature bundling, where individual local
features are aggregated with features from their spatial neighborhood into Bag of
Words (BoW). Romberg et al. [115] exploited a method for encoding and indexing
the relative spatial layout of local features detected in the logo images. Based on the
analysis of the local features and the composition of basic spatial structures, such as
edges and triangles, they derived a quantized representation of the regions in the logos.
Revaud et al. [113] introduced a technique to down-weight the score of those noisy
logo detections by learning a dedicated burstiness model for the input logo. Boia et al.
[26, 25] proposed a smart method to perform both logo localization and recognition
using homographic class graphs. They also exploited inverted secondary models to
handle inverted colors instances. Recently some works investigating the use of deep
learning for logo recognition appeared [40, 61]. Eggert et al. [40] investigated the use
of pretrained Convolutional Neural Networks (CNN) and synthetically generated data
for logo recognition, trying different techniques to deal with the limited amount of
training data. Also Iandola et al. [61] investigated a similar approach, proposing and
evaluating several network architectures. Oliveira et al. [102] exploited pretrained
CNN models and used them as part of a Fast Region-Based Convolutional Networks
recognition pipeline. Given the limited amount of training data available for the logo
recognition task, all these methods work on networks pretrained on different tasks.
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5.1 Datasets

5.1.1 FlickrLogos-32 Dataset

FlickrLogos-32 dataset [115] is a publicly-available collection of photos showing 32
different logo brands. It is meant for the evaluation of logo retrieval and multi-class logo
detection/recognition systems on real-world images. All logos have an approximately
planar or cylindrical surface. For each class, the dataset offers 10 training images, 30
validation images, and 30 test images. An example image for each of the 32 classes of
the FlickrLogos-32 dataset is reported in Figure 5.1.

Fig. 5.1 Example images for each of the 32 classes of the FlickrLogos-32 dataset.

5.1.2 Logos-32plus Dataset

Logos-32plus [20] dataset is an expansion of the trainset of FlickrLogos-32. It has the
same classes of objects as its counterpart but a larger cardinality (12312 instances). It
has been collected for three main reasons: first, it is a suitable dataset size to train and
test deep learning approaches. Second, Logos-32 dataset is not very representative of a
data distribution for most real-world problems. Third, synthetic data augmentation
is not enough to model actual logo appearance variability. The Logos-32 dataset was
collected with the aim to train keypoint-based approaches. Therefore the selection of
images followed some implicit guidelines, such as: most of the images are on focus,
no blurry or noisy images, and usually images with highly saturated colors. As a
result, the variability of this dataset mainly resides on the amount of intraclass affine
transformations which can be handled very well by keypoint-based detection methods.
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Fig. 5.2 Dendrogram representing the queries composition used to download the Logos-
32plus dataset. To retrieve images of becks logos we used for instance: “logo Becks”,
“merchandising Becks”, “drink Becks”, “bottle Becks”, “beer Becks” etc.

This new dataset has been collected with the aim of taking into account a larger
set of real imaging conditions and transformations that may occur in uncontrolled
acquisitions.

Logos-32plus dataset has been built with images retrieved from both Flickr and
Google image search. In particular, to increase the variability of data distribution,
multiple queries have been performed for each logo. The dendrogram scheme in Figure
5.2 shows the tags used to compose the search queries used. To compose a single query,
one leaf (a single logo) has been concatenated with a single tag of an ancestor node.
The whole set of queries for each logo can be obtained by concatenating the logo name
(leaf) with each tag contained in all the ancestors nodes. For example, all the queries
used to search for the “Becks” logo are: “logo Becks”, “merchandising Becks”, “events
Becks”, “drink Becks”, “bottle Becks”, “can Becks”, “beer Becks”, “bier Becks” etc.

The dataset contains on average 400 examples per class, with each image including
one or multiple instances of the same class. The detailed distribution of classes is
shown in Figure 5.4 and a comparison between the FlickrLogos-32 and the Logos-32plus
datasets is presented in Table 5.1. The dataset is made available for research purposes
at http://www.ivl.disco.unimib.it/activities/logo-recognition.
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5.1.3 Duplicates Removal

To ensure a high variability of the new dataset and to avoid any overlap with the
existing one, we performed a semi-automatic check for duplicate images within the
Logos-32plus dataset itself and with the FlickrLogos-32 dataset. The process has been
carried out in two steps. First, we automatically found and discarded image duplicates
using the SSIM measure [145]: we checked for similarity every pair of images within
the Logos-32plus dataset itself and with the FlickrLogos-32 dataset using the SSIM
measure. Images with SSIM measure over 0.9 have been discarded.

As a second step, we removed near duplicates in a semi-automatic manner. We say
that two images are near duplicates if they depict the same scene with small differences
in appearance with a particular focus on the portion of the image containing the
logo. Examples of near duplicates are different overlapping crops of the same photo
or images of the same scene from a different point of view. An interesting example of
near duplicates is shown in Figure 5.3. The two images depict the same gas station
from a very similar point of view. The girls in the photo are in different poses but
the appearance of the Esso logo in the two images is basically the same. In detail, to
remove near duplicates we used the following procedure:

- we trained our CNN (structure in Table 5.6) from scratch on Logos-32plus
dataset. To accomplish this task we fed the network with crops extracted from
GT annotations and Object-proposals regions.

- We truncated the learned network leaving out the last two layers (softmax and
last fully-connected). This network surgery operation let us use our network as a
feature extractor exploiting the robust features learned by a deep neural network.
We used this truncated network to extract features from every image crop that
contains a tagged logo.

- We trained a k-NN classifier on top of the extracted features (using Logos-32plus
as training set) and used it to retrieve from Logos-32plus and FlickrLogos-32 the
nearest five results.

- Finally we manually checked for near duplicates among the five nearest results
retrieved by the classifier. All the near duplicates have been discarded from the
final dataset.
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Fig. 5.3 Example of near duplicates. The two images depict the same scene from a
similar point of view. The appearance of the Esso logo in the two images is basically
the same. We removed one of the two images from our Logos-32 plus dataset because
the other one is included in the FlickrLogos-32 test set.

Table 5.1 Comparison between FlickrLogos-32 and Logos-32plus datasets

FlicrkLogos-32 Logos-32plus
Total images 8240 7830
Images containing logo instances 2240 7830
Train + Validation annotations 1803 12302
Average annotations for class (Train + Validation) 40 400
Total annotations 3405 12302

5.2 Processing Pipeline
Here is outlined a two stage processing pipeline to perform logo recognition. The idea
has been first investigated by Girshick et al. [50] for generic objects recognition. Given
an input image, regions that are more likely to contain an object are extracted. These
regions are called object proposals. The algorithm used for the extraction of the objects
proposals is class-agnostic, therefore it extracts regions of different aspect-ratios that
can be used to recognize objects under different kinds of geometric transformation.
These proposal are then warped to a common size (see Section 5.5) and processed
for query expansion in order to increase recall. Finally a pre-trained CNN is used as
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Fig. 5.4 Graphical comparison of the distribution of the 32 logo classes between
FlickLogos-32 and our augmented Logos-32plus dataset

feature extractor and a linear SVM for logo recognition and classification. Figure 5.5
shows the main steps of the recognition pipeline.

5.3 Selective Search
Selective Search has been investigated as object proposal algorithm in the logo recog-
nition pipeline. It has been originally introduced by van de Sande et al. [136, 132].
The authors exploit a hierarchical grouping algorithm, in order to naturally generate
locations at all scales, by continuing the grouping process until the whole image be-

Fig. 5.5 Outline of the recognition pipeline: (1) Candidate objects regions are extracted
from the image. (2) Regions are warped to a common size and multiplied through
Query Expansion. (3) CNN features are computed over each region. (4) Classification
is performed using linear SVMs.
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comes a single region. First, a graph-based image segmentation algorithm [41] is used
to create initial regions. Then, instead of using a single clustering technique, a variety
of complementary grouping criteria is used to account for as many image conditions
as possible. Such criteria include color similarity, texture similarity, and measures
that encourage merging of small regions and overlapping regions. The final set of
candidate locations is then obtained by combining the locations of these complementary
partitionings.

5.3.1 Evaluation on Flickr-32 dataset

The Selective Search algorithm [132] can extract the candidate object regions upon
different color spaces. In this section is reported an evaluation of Selective Search
object proposals quality using different color spaces on the FlickrLogos-32 dataset.
Hosang et al. [60] introduced a class agnostic metric to evaluate the effectiveness of
an object proposal algorithm: the Recall versus IoU (Intersection over Union). It is
computed by varying the IoU rejection threshold, then for each threshold value, the
number of overlapping bounding-boxes is counted.
In Figure 5.6 the curves for five different color spaces are reported: HSV, Lab, rg plus
the Intensity channel, the Hue channel and the Intensity channel only.
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Fig. 5.6 Recall versus IoU threshold for different color spaces on Flickr-Logos dataset.

In Table 5.2 is reported the list of the mean number of object proposals extracted
and the Average Recall for each colorspace tested. The Average Recall was computed
for levels of IoU from 0.5 to 1.
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Table 5.2 Mean Number of Object Proposals per image and Average Recall value for
each color space

Color space #Proposals/image Average Recall
Hue 486 0.472
HSV 642 0.566
Intensity 412 0.552
Lab 292 0.545
rg + Intensity 352 0.535

Experiments in the next sections are performed with Selective Search based on the
HSV colorspace because it shows the higher recall among other colorspaces.

5.4 Query expansion
The FlickrLogos-32 dataset exhibits high levels of extrinsic variability. To cope with this,
at test time, each candidate location extracted with Selective Search, is transformed to
produce an expanded query. The candidate location is then assigned to the class with
maximum confidence over all the expanded query.

5.5 CNN features
Instead of learning an ad-hoc CNN for the logo recognition problem, it is investigated
how a pre-trained one works on this problem. It is in fact known that the features
produced by CNNs in the last layers before the class assignment work effectively on other
problems as well [123]. To this end, a Caffe [66] implementation of the CNN described
by Krizhevsky et al. [76] is employed to extract a 4096-dimensional feature vector
from each 227 × 227 RGB image. This is done by subtracting a previously computed
mean RGB image, and forward-propagating the result through five convolutional layers
and two fully connected layers. More details about the network architecture can be
found in [76, 66]. The CNN was originally trained on a large dataset (ILSVRC 2012)
with image-level annotations to classify images into 1000 different classes. Features are
obtained by extracting activation values of the last hidden layer. The extracted features
for each candidate location are then used as input to a Support Vector Machine (SVM)
[34] for classification as no-logo or as belonging to a specific logo class. A multiclass
one-vs-all linear SVM is employed with regularization hyperparameter C = 1.
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5.6 Transformation Pursuit
Since the Flickr-Logo32 dataset has been collected to evaluate SIFT-like recognition
algorithms [115] the training set contains only few examples for each logo (see Table
5.3). To handle the large extrinsic variability of the dataset and to prevent the learning
algorithm to overfit, the the training set has been significantly increased following
Transformation Pursuit [106]. For each region proposal extracted from images which
overlaps with the groundtruth annotation a set of predefined image transformations is
applied. In particular the applied tranfomations include: translation, scale, shear on
the y axis and shear on the x axis. With this set we take into account also rotation
transformation which is a combination of the two shear transform. By applying only
the two extrema values of each of the complete set of geometric transformations the
number of examples can be increased by a factor of ∼ 250. In figure 5.7 is depicted a
subset of the geometric transformations applied.

Fig. 5.7 Representative subset of geometric tranformations applied to an extracted
region proposal. The original image is in the lower-right corner.

5.7 Experimental Setup and Results
Experiments were performed on the publicly-available FlickrLogos-32 dataset [115].
This is a collection of photos showing 32 different logo brands, and is meant for the
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evaluation of logo retrieval and multi-class logo detection/recognition systems on real-
world images. All logos have an approximately planar or cylindrical surface. The whole
dataset is split into three disjoint subsets P1, P2, and P3 as reported in Table 5.3, each
containing images of all 32 classes. The system was trained on FlickrLogos-32 P1 set,

Table 5.3 FlickrLogos-32 dataset partitions

Partition Description Images Total

P1 (training set) Single logo images, clean background 10 per class 320 images

P2 (validation set) Images showing at least a single logo 30 per class 3960 imagesNon-logo images 3000

P3 (test set) Images showing at least a single logo 30 per class 3960 imagesNon-logo images 3000

and validated on P2 for hyperparameters selection with a target precision of 98% (for
better comparison with the state of the art [115, 113, 114]). Finally, it was tested on
P3 with the selected hyperparameters.
Figure 5.8 shows the performance level obtained by the proposed method in terms of
precision and recall, on validation set and test set. For the test set both performance
with and without Query Expansion are reported, showing the significant gain obtained
with this step.

Table 5.4 reports a comparison with other state of the art approaches. [115] and
[114] are based on the bundling of neighboring SIFT-based visual words into unique
signatures. [113] uses a statistical model for identifying incorrect detections output by
keypoint-based matching algorithms.
Results show how even though the underlying CNN was trained for recognition in a
different domain, it is still able to achieve near-state-of-the-art performance.

5.7.1 Robustness to Image Distortions

The robustness of the proposed method has been tested with respect to three different
kinds of image distortion: blur, noise and lossy compression. Table 5.5 outline the
strength of each transformation and Figure 5.9 shows an example of images from
Flickr-Logos32 dataset with applied image distortions. Results showed that noise is
the most affecting one, while lossy compression produce little to no performance loss.
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Fig. 5.8 Precision-Recall curve on validation set, test set, and test set with Query
Expansion. Selected points are obtained by setting target precision at 98% in validation
set.

Table 5.4 Performance comparison with other approaches

Method Precision Recall
Romberg et. al [115] 0.98 0.61
Revaud et. al [113] ≥ 0.98 0.73
Romberg et. al [114] 0.999 0.832
Proposed method 0.91 0.84
Proposed method + QE 0.97 0.63

Table 5.5 Types of distortions applied to the images of the FlickrLogos-32 dataset.

Type Amount
Gaussian Blur Filter Size 10px
Gaussian Blur Filter Size 20px
JPEG Compression Quality 20%
JPEG Compression Quality 10%
Gaussian Noise σ2 = 0.005
Gaussian Noise σ2 = 0.02
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Fig. 5.9 Types of distortions applied to the images of the FlickrLogos-32 dataset.
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Fig. 5.10 Recall versus IoU threshold for 6 different types of image distortion on the
Flickr-Logos dataset. Only the best overlapping bounding-box for each groundtruth
annotation is considered.

5.7.2 Selective Search Evaluation

Figure 5.10 shows values of the Recall versus IoU threshold for the original and distorted
images.

Image distortion has a low impact on the overall quality of the extracted Object
Proposals. Blur has the biggest impact especially for low levels of IoU but in the
worst case performance dropped by 10% only. On the other hand, jpeg compression
seems to have a very low impact on the Object Proposals quality even at high levels of
compression. Our tests confirm the results obtained by Hosang et al. in [60] which
found the Selective Search to be one of the most robust Object Proposals algorithms.

In order to test the complete recognition pipeline on the distorted images, we
augmented the training set by a factor of six. For each original image we add six
deformed images, each with a single distortion applied. The magnitude of each
distortion, shown in table 5.5, is the same for train and test. We run the recognition
pipeline on images of the Flickr-logo test set modified with a single distortion at a
time. This controlled environment makes it possible to check the impact of every single
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Fig. 5.11 Precision-Recall curves on the Flickr-logo test dataset. Different image
distortions have been applied to obtain different curves.

distortion without masking effects.

Figure 5.11 shows the results of the performed tests. Gaussian noise and blur with
high magnitude (σ2 = 0.02 and size = 20px) have the highest impact on the overall
results. The results on the complete recognition pipeline reflect those on the Selective
Search part: the same types of distortions having the highest impact on the overall
performance affect also the Recall measure of the Selective Search evaluation. This clue
leads us to consider the quality of the Object Proposals as one of the most important
aspects to care about in our recognition pipeline.

5.8 Improved pipeline
In this section is presented an improved processing pipeline for logo recognition. For
each image, different object proposals are generated. These proposal are then cropped
to a common size to match the input dimensions of the neural network and are
propagated through a CNN specifically trained for logo recognition. There is an
important difference with respect to the pipeline described in Section 5.8. Instead
of using a pre-trained CNN as feature extrator with a linear classifier on top, the
improved pipeline make use of an end-to-end trained neural network. This enhance
the system accuracy and reduces the processing time since a smaller neural network
can be employed. The proposed classification pipeline is illustrated in Figure 5.12.
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Fig. 5.12 Simplified logo classification pipeline

In order to have performance as high as possible within this pipeline, we use an
object proposal that is highly recall-oriented. For this reason, the CNN classifier should
be designed and trained to take into account that the logo regions proposed may
contain many false positives or only parts of actual logos. To address these problems we
propose here a training framework and investigate the influence on the final recognition
performance of different implementation choices.

In more detail, the training framework is reported in Figure 5.13. The training
data preparation is composed by two main parts:

- Precise ground-truth logo annotations: Given a set of training images and
associated ground-truth specifying logo position and class, logo regions are first
cropped and annotated with the ground-truth class. These regions are rectangular
crops that completely contain logos but, due to the prospective of the image or
the logo particular shape, may also contain part of the background.

- Object-proposal logo annotations: Regions that contains a logo should be
automatically localized. To accomplish this, an object proposal algorithm is
employed in the whole pipeline as shown in Figure 5.12. This algorithm is
not applied only to the test images, but it is also run on the training images
to extract regions that are more likely to contain a logo. Details about the
particular algorithm used are given in the next section. Each object proposal
in the training images is then labeled on the basis of its content: if it overlaps
with a ground-truth logo region, it is annotated with the corresponding class and
with the Intersection-over-Union (IoU) overlap ratio, otherwise it is labeld as
background.

Within this training framework are investigated both the use of the precise ground-
truth logo annotations alone or coupled with the object-proposal logo annotations. All
positive instances, i.e. labeled logos and eventually object proposals that overlap with

92



5.8 Improved pipeline

them by a significant amount (i.e. IoU≥ 0.5), are used to train a Convolutional Neural
Network whose architecture is given below. Different training choices are investigated
within this framework in Figure 5.13:

- Class balancing: The logo classes are balanced by replicating the examples of
classes with lower cardinality. Two different strategies are implemented: epoch-
balancing, where classes are balanced in each training epoch, and batch-balancing,
where classes are balanced in each training batch. The hypothesis is that this
should prevent a classification bias of the CNN.

- Data augmentation: Training examples are augmented in number by generat-
ing random shifts of logo regions. The hypothesis is that this should make the
CNN more robust to inaccurate logo localization at test time.

- Contrast normalization: Images are contrast-normalized by subtracting the
mean and dividing by the standard deviation, which are extracted from the whole
training set. The hypothesis is that this should make the CNN more robust to
changes in the lighting and imaging conditions.

- Sample weighting: Positive instances are weighted on the basis of their overlap
with ground-truth logo regions. The hypothesis is that this should make the CNN
more confident on proposals highly overlapping with the ground truth logos.

- Background class: A background class is considered together with the logo
classes. Background examples are not randomly selected, but are composed by
the candidate regions generated by the object proposal algorithm on training
images and that do not overlap with any logo. The hypothesis is that this should
make the CNN more precise in discriminating logos and background class.

The actual contribution to the performance of each training choice considered will be
discussed in Section 5.7.

After the CNN is trained, a threshold is learned on top of the CNN predictions. If
the CNN prediction with the highest confidence is below this threshold, the candidate
region is labeled as not being a logo, otherwise CNN prediction is left unchanged.

The testing framework is reported in Figure 5.14. Given a test image, Object Pro-
posals are extracted with the same algorithm used for training. Contrast-normalization
is then performed over each proposal (if enabled at training time), and feed them to the
CNN. The CNN predictions on the proposals are max-pooled and the class identified
with highest confidence (eventually including the background class) is selected. If
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Fig. 5.13 Logo recognition training framework.

the CNN confidence for a logo class is above the threshold that has been learned in
training, the corresponding logo class is assigned to the image, otherwise the image is
labeled as not containing any logo.
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Fig. 5.14 Logo recognition testing framework.

5.8.1 Network Architecture

The architecture used for the experiments in the following sections is a tiny deep neural
network. The reason to chose a tiny network is because it is fast at test time and it
can be trained on cheap GPUs in very short time. It also allows to train the network
without using any form of regularization like dropout [126], dropconnect [143], etc.
decreasing even more the time needed for training and validating the network.
The same network structure was used by Krizhevsky in [76] on the CIFAR-10 dataset,
where it was proven to be an high-performance network for the task of object recog-
nition on tiny RGB images. It has three convolutional layers interleaved by ReLU
nonlinearities and Pooling layers. All the pooling layers make the data dimensions
halve after every Pooling block. The last part of the network (farthest from the input)
consists in two Fully-connected layers with a final Softmax classifier. The whole net
structure is presented in Table 5.6.
To give an idea of the network size, the proposed network has 1.5 × 105 parameters
whereas AlexNet (used in [40]) and GoogLeNet (a similar structure is used in [61])
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Table 5.6 Convolutional Neural Network Architecture

Layers
1 Conv 32 filters of 5x5
2 Pool (max) with stride 2
3 Relu
4 Conv 32 filters of 5x5
5 Relu
6 Pool (average) with stride 2
7 Conv 64 filters of 5x5
8 Relu
9 Pool (average) with stride 2
10 Fully Connected of size 64
11 Fully Connected of size 33
12 Softmax

have respectively 6 × 107 and 1.3 × 107 parameters. Therefore the proposed network is
less likely to overfit, even when the size of the training set is not large.

5.9 Experimental Setup and Results
Experiments are performed considering the different training choices described in
Section 5.8. These include class balancing, data augmentation, image contrast nor-
malization, sample weighting, addition of a background class, and addition of positive
examples actually generated by the object proposal algorithm.
Each change to the training procedure is introduced one at a time, in order to assess
its individual contribution, and the corrisponding value is underlined in Table 5.7 for
better readability. All these configurations are trained using real data augmentation,
i.e. with the extended Logos-32plus dataset in addition to FlickrLogos-32 training and
validation sets. Results are reported in Table 5.7 in terms of both F1-measure and
Accuracy on FlickrLogos-32 test set. With reference to Figure 5.14, the threshold on
CNN predictions is automatically chosen to maximize the accuracy on FlickrLogos-32
training and validation sets. The best configuration is then compared to other state
of the art methods in Table 5.8. As further investigation the contribution given from
real data augmentation is quantified by training the same solution on the original
FlickrLogos-32 training set only. Finally, the impact of the object proposal algorithm
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Table 5.7 Experimental results showing the impact of the different training choices
described in Section 5.8 on the final classification. Results are reported in terms of
Precision, Recall, F1-measure and Accuracy.

Train.
Con-
fig.

BG
class

BBs Data
Augm.

Class
bal.

Contr.
norm.

Sample
weight

Prec. Rec. F1 Acc.

I No GT No No No No 0.370 0.370 0.370 0.096
II Yes GT No No No No 0.713 0.665 0.688 0.620
III Yes GT+OP No No No No 0.816 0.787 0.801 0.744
IV Yes GT+OP Yes No No No 0.987 0.858 0.918 0.953
V Yes GT+OP Yes Epoch No No 0.986 0.865 0.922 0.956
VI Yes GT+OP Yes Batch No No 0.980 0.833 0.901 0.945
VII Yes GT+OP Yes Epoch Yes No 0.989 0.906 0.946 0.958
VIII Yes GT+OP Yes Epoch Yes Yes 0.984 0.875 0.926 0.951
IX Yes GT+OP Yes Batch Yes No 0.984 0.887 0.933 0.955
X Yes GT+OP Yes Batch Yes Yes 0.989 0.866 0.923 0.955

Legend to Table 5.7

Train. Config. Identifier of the configuration used for training
BG class Background class (no-logo examples) included in training
BBs Bounding Boxes used as training examples

GT Precise ground-truth logo annotations
GT+OP Precise ground-truth and Object-proposal logo annotations

Data Augm. Data Augmentation (translation)
Class bal. Class balancing to account for different cardinalities

Epoch Classes are balanced in each epoch
Batch Classes are balanced in each batch as well

Contr. norm. Pre-processing of training examples with contrast normalization
Sample weight Weighting examples based on overlap between OP and GT

to the overall performance is assessed. To do this, instead of relying on the object
proposal only, all the ground truth locations are added to the test set.

From the results reported in Table 5.7 it is possible to see that with respect to a
straightforward application of deep learning to the logo recognition task (i.e. Training
Configuration I, TC -I), the different training choices considered are able to give a large
increase in performance:

- The first jump in performance is obtained by including the background (i.e.
no-logo examples) as a new class in training. Results are identified as TC -II
and show an improvement in F1-measure and accuracy of 31.8% and 52.4% with
respect to TC -I.

- A second jump is obtained by including object proposals coming from Selective
Search as additional training examples. This configuration is named TC -III
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and improves the F1-measure and accuracy by 11.3% and 12.4% with respect to
TC -II.

- A third jump in performance is obtained by augmenting the cardinality of
object proposals coming from Selective Search by perturbing them with random
translations (i.e. synthetic data augmentation). This configuration is named
TC -IV and improves the F1-measure and accuracy by 11.7% and 20.9% with
respect to TC -III.

- A further, smaller, improvement in performance is obtained by considering class
balancing to account for different cardinalities, with “Epoch” balancing giving
consistently better performance than the “Batch” counterpart (named TC -V and
TC -VI respectively). In particular, TC -V improves the F1-measure and accuracy
by 0.4% and 0.3% with respect to TC -IV.

- Contrast normalization brings a further little but consistent improvement, with
TC -VII improving the F1-measure and accuracy by 2.4% and 0.2% with respect
to TC -V.

- Sample weighting instead (adopted in TC -VIII and TC -X), which consists in
weighting training examples according to the degree of overlap between the object
proposal and ground truth regions, results in lowering the final performance of
the method.

The best configuration (i.e. TC -VII) trained on the extended training set is highlighted
in bold in Table 5.7 and compared with the state of the art in Table 5.8. Performances
of the other methods are taken from the respective papers and thus for some of them
some performance measures are missing. From the results reported it is possible to
see that the proposed solution is able to improve the F1-measure with respect to the
best method in the state of the art by 3.8%, and the accuracy by 1.7%. It is worth to
underline that the best results for the two metrics were obtained by different methods
in the state of the art, i.e. by Romberg et. al [114] and BoW SIFT [114] respectively.

As a further comparison, the results obtained by the proposed solution are reported
using only FlickrLogos-32 for training and keeping all the other training choices
unchanged. This results in a drop in F1-measure by 14.7% and by 4.8% in accuracy,
giving an idea of the benefit of real data augmentation with respect to a purely synthetic
one [40]. As a final analysis, to understand if the major source of error in our method
is the Selective Search module that is unable to have a high recall or if its the CNN
itself that mispredicts the logo class, an additional test is performed by adding the
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Fig. 5.15 Wrongly labeled logos ordered by confidence. Highest confidence prediction is
top-left. Images resolution is 32x32 pixels, i.e. the same used to feed the CNN. The first
and third rows are the wrong labeled logos, the second and the fourth rows represent
the nearest example in the training set (using the last network layer activations before
the softmax as feature vector).

actual logo ground truth region to the object proposals. This increases the F1-measure
by 0.6% and the accuracy by 0.2% indicating that the major source of error in this
method is the CNN itself. Some examples of wrongly labeled candidate logo regions are
reported in Figure 6.7. Candidates are generated by the object proposal and they have
a IoU larger than 0.5 with the corresponding ground truth. The first and the third
row depict the wrongly recognized regions labeled with their actual class, while the
second and fourth one depict the nearest example in the training set using as features
the activations of the last network layer before the softmax. Images are reported with
the same resolution used to feed the CNN, i.e. 32×32 pixels.

5.10 Timings
Table 5.9 shows the timings for the whole recognition procedure at test time. Ex-
periments are performed on the same computer (Intel i7 3.40 GHz - 16 GB RAM)
averaging the timings of 100 runs on different images.
Two different solutions are compared: the use of CPU or GPU (GeForce GTX 650) for
the classification step.
The proposals extraction step runs always on CPU. The prepocessing time include
the resize of every patch to match the CNN input size, the contrast normalization
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Table 5.8 Comparison of the best configuration in Table 5.7 with the methods in the
state of the art. Last two rows are obtained by adding the groundtruth to the object
proposal at test time. This results in a quantitative evaluation of the classification
nework bypassing errors from the object proposal algorithm.

Method Train data Precision Recall F1 Accuracy

BoW SIFT [114] FL32 0.991 0.784 0.875 0.941
BoW SIFT + SP + SynQE [114] FL32 0.994 0.826 0.902 N/A
Romberg et. al [115] FL32 0.981 0.610 0.752 N/A
Revaud et. al [113] FL32 ≥0.980 0.726 0.834÷0.841 N/A
Romberg et. al [114] FL32 0.999 0.832 0.908 N/A
Bianco et. al [19] FL32 0.909 0.845 0.876 0.884
Bianco et. al + Q.Exp. [19] FL32 0.971 0.629 0.763 0.904
Eggert et. al [40] FL32 0.996 0.786 0.879 0.846
Oliveira et al. [102] FL32 0.955 0.908 0.931 N/A
DeepLogo [61] FL32 N/A N/A N/A 0.896

Ours (TC -VII) FL32 0.976 0.676 0.799 0.910
Ours (TC -VII) FL32, L32+ 0.989 0.906 0.946 0.958

Ours (TC -VII, +GT) FL32 0.968 0.755 0.848 0.917
Ours (TC -VII, +GT) FL32, L32+ 0.989 0.917 0.952 0.960

Table 5.9 Timings of the whole recognition pipeline running on CPU and GPU. Time
decomposed on proposal, preprocessing and classification stages.

Device Proposal Preproc. Classif. Overall
CPU 1.24 s 0.93 s 0.71 s 2.91 s
GPU 1.24 s 2.12 s 0.36 s 3.74 s
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(negligible processing time) and eventually the time to copy the data from CPU to GPU
memory. In Table 5.9 it is possible to notice that the overhead caused by the CPU-GPU
memory transfer makes the overall time of the GPU solution higher than that of the
CPU solution. To this extent, in the future it might be interesting to evaluate a fully
GPU-based pipeline, for example generating and pre-processing proposals according to
[112].
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Chapter 6

Painting Categorization

Research on digital analysis of paintings is gaining increasing attention due to the
large quantities of visual artistic data [30, 91, 70], made available from art museums
digitizing their collection for cultural heritage, and the need of automatic tools to
organize and manage them. In this work, we approach the problem of categorizing a
painting by automatically predicting its artist and style given solely the digital version
of the painting itself [12]. Both these tasks are very challenging due to the large amount
both inter- and intra-class variations, e.g. the different personal styles in the same art
movement, or the same artist adhering to different schools in different periods in his/her
production. Artist classification consists in automatically associate the painting to its
painter. In this task factors such as stroke patterns, the color palette used, the scene
composition, and the subject must be taken into account. Style classification consists
in automatically categorize a painting into the school or art movement it belongs to.
Art theorists define an artistic style as the combination of iconographic, technical and
compositional features that give to a work its character [147]. Style categorization is
complicated by the fact that styles may not remain pure but could be influenced by
others.

In this Chapter a multiresolution approach to solve the tasks of artist, style and
genre categorization is proposed. Two different crop strategies are adopted to gather
clues from low-level texture details and, at the same time, exploit the coarse layout of
the painting. The first is a particular random-crop strategy that permits to manage
the tradeoff between accuracy and speed and the second is a smart extractor based
on Spatial Transformer Networks [64]. The joint use of handcrafted along with neural
features is experimented and the use of multitask classification and synthetic data
augmentation are investigated as regularizers.
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Experiments are performed on a new dataset suitable for multitask learning com-
posed by 100K paintings. The proposed method is compared with the state-of-the-art
on the challenging painting-91 dataset [70]. On both artist and style classification tasks
the proposed approach improves the mean classification accuracy by 14.3% and 10.2%
respectively, compared to the previous state-of-the-art models.

6.1 Related works
The problem of painter or style categorization has been faced using different tecniques.
Some existing approaches make use of traditional handcrafted features [30, 70] whereas
more recent works relay on the use of deep networks [108, 107, 12, 130]. Peng et
al. [108] use a multiresolution approach to exploit both small details and the overall
image structure. A more sophisticated technique is used by [12] where the use of a
deformable part model is adopted in order to combine low-level details and an holistic
representation of the whole painting. Deep CNNs have been widely used as features
extractors to solve different tasks [123, 22], Peng et al. [108] and Anwer et al. [12] relay
on pretrained deep CNNs to deal with the small quantity of images of the Painting-91
dataset. Tan et al. [130] made different experiments by training a network from scratch
or finetuning an existing network for the task of style and painter recognition. They
adopted a network structure similar to the one used by Krizhevsky et al. [76]. Hentschel
et al. [59] performed interesting experiments about the quantity of data needed to
fine-tune the network by Krizhevsky et al. [76] for the task of style classification.

6.2 Proposed Approach
The scene composition and the subject depicted are important clues to recognize a
particular author or a painting style. These elements need to be extracted from the
whole painting. At the same time finer details, such as stroke patterns or the line
styles, are also very good clues. Obviously a powerful discriminative model should
consider both the coarse level and fine details. On the basis of these considerations the
proposed approach adopts a multiresolution approach: first, a predefined number of
squared "small" crops are extracted from the high-resolution image using strategies
presented in the next sections. Then, the image is downsampled and another "large"
crop is extracted from the low-resolution image (see Sec. 6.2.1). All the crops are then
fed to the branches of a deep neural network that extracts the corresponding features.
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The outputs of the branches are collected by a join layer and fed to a deep neural
network that carries on the categorization process.

6.2.1 Input preprocessing

The first preprocessing step consists in normalizing the input image by subtracting the
mean and dividing by the standard deviation of the pixel distribution of whole training
set. This contrast normalization preprocessing is known to improve CNNs accuracy in
different domains [20] by limiting the variability of the input range. The second step
consists in a particular cropping strategy. Crops are taken at multiple resolutions to
capture both fine details and coarse structures. Since paintings exhibit high variability
in terms of aspect-ratios, the input image is resized such as the minimum side is 512
pixels and the aspect ratio is preserved. From the resulting image we extract two
squared random crops of 227 pixels side. Then the image is further downsampled such
as the minimum side is 256 pixels and another squared crop of 227 by 227 pixels is
extracted. All the crops are squared, independently from the original aspect ratio of
the input image. This is done to improve the computational efficiency allocating GPU
memory blocks only once. Images and crops sizes has been choosen as a tradeoff to
exploit fine details and to limit the computational burden accordingly to the size and
quality of the original images. The coordinates of the crops inside the input image
are randomly chosen with the only constraint that crops coming from the same scale
do not overlap. The rational behind this choice is that the salient details can be
anywhere inside the painting, and the extraction of crops at random locations permits
the implementation of a consensus strategy by simply processing the same input image
several times. The consensus strategy consists in averaging the output of the last
fully-connected layer for the multiple passes of the same image trough the network,
resulting in a feature vector that is then fed to the softmax layer to get the final
prediction.

A deterministic crop extraction using Spatial Transformer Networks [64] is also
investigated.

6.2.2 Spatial Transformer Network

Spatial Transformer Network (STN) has been introduced by Max Jadeberg et al. to
explicitly model the spatial manipulation of data within the network. It is composed
by three modules. The first is a Localization Network that takes the input feature map
U ∈ RHxW xC where H, W, C represent width, height and channels respectively. This
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Fig. 6.1 Scheme of the Deep Multibranch Multitask Neural Network.

network outputs the parameters θ of the transformation to be applied to the feature
map: θ = floc(U). The second is a Parametrized Sampling Grid module that takes as
input the parameters from the Localization Network and produces a sampling grid.
The third one is the Bilinear Sampler which is a differentiable bilinear interpolation
layer that thakes as input the feature map and the sampling grid and perform the
actual spatial warping.

The type of transformations handled by the Sampling Grid layer is limited allowing
only translation and scale in order to mantain geometric structure of paintings. With
such configuration the Spatial Transformer Network becomes a smart crop extractor as
a substitution to the random crop strategy. As Localization Network a ResNet-18 [58]
is used with the same type of Residual Blocks used for the main network and described
in Section 6.2.3.

6.2.3 Deep Network Structure

The structure of the proposed novel network is shown in Figure 6.1. It is composed
of five modules: three branches to extract the low level structures of the painting
crops, a join module to gather the output of the three branches and a classification
module to make the prediction. Each branch is trained with crops from a specific scale,
thus becoming specialized in processing texture patterns at that specific resolution.
We decided to use only two scales since, in our preliminary experiments, the use of
higher scales brought a slight improvement compared to the exponential increase of
computational burden.
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Table 6.1 Structure of the Multibranch Multitask Deep Neural Network.

Output Size Layers
branch 1 branch 2 branch 3
Conv7 Conv7 Conv7

BatchNorm BatchNorm BatchNorm
ReLU ReLU ReLU

112x112x64 MaxPool MaxPool MaxPool
56x56x256 3× ResBlock 3× ResBlock 3× ResBlock
56x56x768 Concatenation (channel dimension)

ResBlock, stride 2
28x28x512 2× ResBlock

ResBlock, stride 2
14x14x1024 5× ResBlock

ResBlock, stride 2
7x7x2048 3× ResBlock
1x1x2048 AvgPool

Num. Classes FC-1508 FC-125 FC-41

In the three branches and in the classification model the proposed deep network
makes use of Residual Blocks which have been shown to be an effective architectural
choice to build very deep networks [58] and tackle the problem of vanishing gradients by
using shortcut connections. In particular, it makes use of "bottleneck" Residual Blocks,
which allow the network architecture to be even deeper [58]. Each skip connection
has four times the number of channels with respect to the internal elements of the
block. This permits a large troughput of information among layers while mantaining a
low computational complexity and low memory use insde each block. The Residual
Block structure adopted is different from the one used by He et al. [58]: the Batch
Normalization layer [62] is moved after the sum with the skip connection because, in
preliminary experiments, the resulting configuration has shown better performances.

The Residual Block adopted is shown in Figure 6.2. In the proposed network (see Fig.
6.1) each of the three branches is composed by three Residual Blocks plus four layers
near the input which perform the first processing (Convolution + BatchNorm[62] +
ReLU[98]) and an initial downsampling (Max Pooling). The join module is a particular
Residual Block which gathers the output of the three branches. It stacks the output
features and then converts them to a smaller-dimensional feature space by compressing
information along the channel dimension. The reason behind this operation is to make
the computations feasible in the following layers by reducing the channel dimension of
the output by a factor of three.
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Fig. 6.2 The type of Residual Block used in the proposed Deep Neural Network

The classification module is composed by 13 Residual Blocks plus a Spatial Average
Pooling layer, a Fully-connected layer and a Softmax layer that outputs the classes
probabilities. While the Residual Blocks in the three branches do not include any
downsampling operator, the classification module uses convolution operators with
stride two to perform a spatial downsampling of the input. Every five blocks the input
is spatially reduced by a factor of two. At the same time the number of channels is
increased by the same amount. This leads to a gradual increasing of the receptive-fields
of the network in the deeper layers and also favors more abstract representations of
the input. In the final part of the classification module a fully-connected layer maps
the output to the right number of classes depending on the task, respectively artist,
style or genre categorization.

6.2.4 Hand-crafted feature injection

The joint use of handcrafted features along with learned neural features is investigated.
To assess the improvement that handcrafted features could bring to the existing
achitecture some preliminary experiments have been performed. A linear classifier is
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trained on top of each feature to classify for each of the three tasks. This experiment
gives a first glance on the discriminative power of the considered features for the final
classification tasks.

The second preliminary experiment performed is to use the trained linear classifier
on top of handcrafted features to classify only the misclassified examples of the
existing neural network architecture. While the first experiment gave an idea of the
discriminative power of the features for the tasks, this second experiment can assess if
a descriptor can help our current architecture for misclassified examples.

Considering the results of these preliminary experiments HOG is chosen as hand-
crafted descriptor to be added to the classification pipeline. Extracted features are fed
directly before the last fully-connected layer.

6.3 Datasets

6.3.1 Painting91

The recognition pipeline is evaluated on Painting91 dataset [70] for artist and style
classification tasks. The dataset consists of 4266 paintings of 91 painters. As train and
test split those provided by the authors are used which are in both cases of artist and
style classifcation nearly 50%. For the task of artist recognition, the whole dataset is
used whereas for the task of style recognition only 2338 groundtruth are provided.

6.3.2 Wikipaintings-IVL Dataset

Wikipaintings-IVL is a new dataset for multitask painting classification collected
by the author. Original images and annotations comes from Painter by Numbers
Kaggle competition.1 and have been downloaded mostly from wikiart.org plus some
additional other sources. Wikipaintings-IVL dataset is composed by a large subset
of the Painter-by-numbers dataset but with a different train-test split. The goal of
Painter-by-numbers competition was to predict if a pair of images are artworks made
by the same artist or not. Therefore some artists had paintings in both train and test
splits while others were only in the testset. Wikipaintings-IVL is collected to evaluate
algorithms on another task: given a new painting, predicting the author among a list
of known painters. Moreover another goal is to solve a multitask classification problem
(i.e predict painting’s author, style and genre), therefore a subset of the original dataset

1https://www.kaggle.com/c/painter-by-numbers
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Fig. 6.3 Paintings from Wikipaintings-IVL dataset. Each row contains samples from
a different style, i.e. from top to bottom: Impressionism, Baroque, Pop-art and
Symbolism

is kept such that there are at least 10 images for each class. This condition should be
consistent for each of the three tasks (author, style and genre). After this selection
the dataset contains 99816 images with respect to 103250 of the original dataset. 70%
belongs to the train set and 30% to the test set. The resulting dataset is composed by
1508 artists, 125 styles and 41 genres. Images are at different resolutions but in general
not smaller than 512px per side. Table 6.2 reports a comparison between Painting-91
and Wikipainting-IVL datasets. In particular Wikipaintings-IVL contains two orders
of magnitude more the images of Painting-91. Moreover the number of painters is
considerably larger, making Wikipaintings-IVL a very challenging dataset.

Table 6.2 Comparison between Paintings-91 and Wikipaintings-IVL datasets. The
latter contains a larger number of images and classes.

Dataset Paintings-91 Wikipaintings-IVL
Images 4266 99816
Painters 91 1508
Styles 12 125
Genre n/a 41

6.3.3 Synthetic Data Augmentation

The Wikipaintings-IVL dataset contains artworks by 1508 painters. For 30 artists
like picasso, gaugin, cezanne etc. there are more than 300 paintings whereas for some
painters there are less than 20 paintings. To cope with this long tail problem a synthetic
data augmentation technique based on Neural Style Transfer [47] is investigated. Gatys
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(a) Artist: Wilhelm Trübner

(b) Artist: Howard Arkley

Fig. 6.4 Examples of real and synthetic paintings. For each row, paintings 1, 3 and 5
are synthetic whereas the others are real paintings used as source for style transfer.
Content images are from ILSVRC validation set.

et al. in their work generate artistic images of high perceptual quality by matching
statistical properties of Deep Neural Networks activations. The system is composed
by three siblings neural networks, i.e. pretrained VGG [124]. The backpropagation
algorithm is used to shape the output image in order to match patterns of the input
content image and the input style image. The resulting image contains the coarse
structure of the input content image and at the same time the textures of the input
style image resulting in a new artwork. For an in-depth discussion about the generative
algorithm used to augment the painting dataset see Appendix A which is entirely
dedicated to the neural style transfer architecture.

Images from the validation set of the ILSVRC dataset [121] are used as content
images to produce new paintings and use as style images the real paintings from a
specific artist. Figure 6.4 shows some real and generated paintings of Wilhelm Trübner.
Best perceptual results are obtained with pictorial styles characterized by the use of
visible strokes.

6.4 Experiments

6.4.1 Training

To cope with the small amount of training data we exploited some data augmentation
techniques:
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• Color Jitter. It consists in randomly modifying contrast, brightness and saturation
of the input image independently.

• Lighting noise. It is a pixelwise transform based on the eigenvalues of the RGB
pixel distribution of the dataset. It has been introduced by Krizhevsky et al.
[76].

• Gaussian Blur. It consists in applying a blur filter with fixed σ to random images
chosen with probability 0.5.

• Geometric transforms. It includes small changes in scale and aspect-ratio of the
input image.

6.4.2 Results on Painting-91 dataset

Training procedure on Painting-91 was carried out in two phases. First the deep network
architecture is pretrained on the Wikipaintings-IVL dataset. Then it is finetuned two
times (one for each of the two tasks) on the Painting91 dataset, substituting the last
fully connected layer with a new one that matched the number of classes needed for
each task.

As explained in the subsection 6.2.1 the proposed network architecture exploits
random crops. Therefore if the same input is processed several times by the same
network, the final prediction vectors can be averaged before being fed to the last
softmax layer. In Table 6.3 the performance in terms of accuracy at different number
of passes are reported. Results are averaged over ten independent runs. The biggest
improvement is obtained by exploiting two passes with respect to the single one. The
best performance are obtained using four passes.

Table 6.3 Accuracy vs Number of Passes trough the Network. Each value represents
the average of 10 runs.

Passes 1 2 4 8
Artist 77.5 78.1 78.5 78.3
Style 83.6 84.1 84.4 84.3

In Table 6.4 are reported the performances of the proposed method with respect
to the state-of-the-art on the Paintings-91 dataset. Concerning the proposed method,
the average accuracy over ten independent runs together with the minimum and
maximum values are reported. Considering the average performance, the proposed
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Table 6.4 Comparison with the state of the art. Average classification rates on the
Paintings-91 dataset for the tasks of Artist and Style recognition.

Method Artist Style
VGG-16 FC [124] 51.7 67.2
MF [70] 53.1 62.2
CL-CNN [107] 56.4 69.2
MS-MCNN [108] 58.1 71.0
MOP [51] 59.7 68.8
Holistic [32] 61.8 70.1
Holistic + Part Based [12] 64.5 74.8
Proposed Single Branch 74.9 83.8
Proposed Multi-branch (average performance among 10 runs) 78.5 84.4

method outperforms the best method in literature by 14.0% and 9.6% on the task of
artist and style categorization respectively.

Figure 6.5 shows the confusion matrix for the style recognition task. The highest
classification errors are between the Neo-Classical, Baroque and Renaissance classes.
This seems to agree with styles’ contaminations and influences as studied by art
historians. For example Caravaggio paintings are classified as Baroque in Paintings-91
groundtruth. Actually he lived at the end of the Renaissance era, having a great
influence on future Baroque painters.

Figure 6.6 shows the confusion matrix for the task of artist recognition. The
highest error rates are between Memling and Van Eyck (27%), and Zurbaran and
Vermeer (30%). Memling and Van Eyck are contemporaneous and both belonging to
the Dutch and Flemish Renaissance, while Zurbaran and Vermeer are coeval painters,
both belonging to the Baroque movement. To be able to actually discriminate between
the last two painters, the network should be aware that Vermeer paintings are usually
about indoor every-day life scenes whereas Zurbaran mostly painted religious subjects.

6.4.3 Multitask and Spatial Transformer Network

In Table 6.5 are reported the results of different experiments performed on Wikipaintings-
IVL dataset. A joint multitask training on all tasks gives a big boost on style accuracy
and a small decrease in performance on genre. The same happens with the injection
of HOG features. We suppose that artist and style are much more correlated tasks,
thus the training can benefit more from a joint loss optimization. The use of Spatial
Transformer Networks improves the performances on all tasks showing the contribution
of the smart crop extraction strategy.
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Fig. 6.5 Confusion matrix for the task of style recognition. The highest error rates are
between Neo-Classical paintings, Baroque and Renaissance.
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Fig. 6.6 Confusion matrix for the task of artist recognition. The highest error rates are
between Zurbaran and Vermeer, Memling and Van Eyck. These painters are coeval
and belongs to the same artistic movement.

Predicted: Hopper
Real: Hockney

Predicted: Dalì
Real: Ernst

Predicted: Manet
Real: Zurbaran

Predicted: Rembrandt
Real: Rubens

Predicted: Hopper
Real: Hopper

Predicted: Dalì
Real: Dalì

Pred: Zurbaran
Real: Zurbaran

Predicted: Rembrandt
Real: Rembrandt

Predicted: Mirò
Real: Klee

Predicted: Mirò
Real: Mirò

Predicted: Delacroix
Real: Goya

Predicted: Goya
Real: Goya

Predicted: Lissitzky
Real: Kandinsky

Predicted: Lissitzky
Real: Lissitzky

Predicted: Bruegel
Real: Bosh

Predicted: Bruegel
Real: Bruegel

Fig. 6.7 Top row: highest scored errors for the task of painters classification. Bottom
row: for each of the predicted painters, we report the correctly classified example with
the highest score.
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Table 6.5 Classification accuracy for different tasks on Wikipaintings-IVL dataset.
Different models exploiting multibranch, multitask and Spatial Transformer Networks

Model Artist Style Genre Average
Multibranch 53.1 51.5 64.3 56.3
Multibranch multitask 53.3 55.4 63.0 57.2
STN multitask 56.1 57.0 64.1 59.1

6.4.4 Synthetic Data Augmentation

50 artists with very few examples in the dataset, i.e. 10 are considered for the
experiments. The number of their paintings is synthetically increased by 15x with the
method exposed in Section 6.3.3. Then two different experiments are performed. The
first consists in adding synthetic paintings to the dataset assigning the same label as the
style painting used as input for synthesis. The second experiment consists in assigning
different labels for real and synthetic (fake) paintings and thus increasing the number
of classes. The network has one more task now: discriminate fake from real paintings.
The hypothesis behind this choice is that this new task could act as a regularizer.
Table 6.6 shows the the results of both experiments. The baseline experiments is
the architecture with Spatial Transformer Network but without multitask since the
dataset is augmented only with respect to the painters. The first experiment gives a
slight improvement of 0.2% whereas the second experiment gives a more consistent
boost to the system accuracy, i.e. 2.2%. The multitask experiment is also included for
comparison which results in a stronger regularizer with respect to the proposed data
augmentation technique.

Table 6.6 Accuracy measures obtained using synthetic data either as a form of data
augmentation or regularization.

Model Artist prediction (accuracy)
NO multitask (baseline) 52.7
NO multitask + augmentation same classes 52.9
NO multitask + augmentation + new classes 54.9
Multitask 56.1

6.4.5 Handcrafted descriptors

A huge variety of features have been proposed in literature for describing the visual
content. They are often divided into hand-crafted features and learned features. Hand-
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crafted descriptors are features extracted using a manually predefined algorithm based
on the expert knowledge. Learned descriptors are features extracted using CNNs.

In this thesis several descriptors from the state of the art have been adopted, by
taking a few representative descriptors for each of the approaches mentioned above.
Several descriptors have been applied to both color and gray-scale images, where the
gray-scale image is defined as the luminance of the image and is obtained by using the
standard formula: y = 0.299R + 0.587G + 0.114B:

• 256-dimensional grey-scale histogram (Hist y) [100];

• 768-dimensional RGB marginal histograms (Hist RGB) [110];

• 144-dimensional Colour and Edge Directivity Descriptor (CEDD) features. This
descriptor uses a fuzzy version of the five digital filters proposed by the MPEG-7
Edge Histogram Descriptor (EHD), forming 6 texture areas. CEDD uses 2 fuzzy
systems that map the colours of the image in a 24-colour custom palette;

• 8-dimensional Dual Tree Complex Wavelet Transform (DT-CWT) features ob-
tained considering four scales, mean and standard deviation, and three colour
channels (DT-CWT and DT-CWT L) [24, 14];

• 512-dimensional Gist features obtained considering eight orientations and four
scales for each channel (Gist RGB) [101];

• 32-dimensional Gabor features composed of mean and standard deviation of six
orientations extracted at four frequencies for each colour channel (Gabor L and
Gabor RGB) [24, 23];

• 580-dimensional Histogram of Oriented Gradients feature vector [69]. Nine
histograms with nine bins are concatenated to achieve the final feature vector
(HoG);

• 18-dimensional Local Binary Patterns (LBP) feature vector for each channel.
We considered LBP applied to grey images and to colour images represented in
RGB [86]. We selected the LBP with a circular neighbourhood of radius 2 and
16 elements, and 18 uniform and rotation invariant patterns (LBP y and LBP
RGB);

• 10-dimensional feature vector composed of normalized chromaticity moments as
defined in [104];
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• 499-dimensional Local Color Contrast feature vector. It is obtained by concate-
nating the LBP on the gray images with a quantized measure of color contrast [35]
(LBP-LCC);

• SIFT (Bag of Words): 1024-dimensional BoVW of Scale Invariant Feature
Transform (SIFT) descriptors extracted from regions at given key points chosen
us- ing the SIFT detector (SIFT). We built a codebook of 1024 visual words by
exploiting images from external sources [65].

Figure 6.8 shows the percentage of accuracy for each handcrafted feature tested and
for each task.

As expected performances for the task of artist prediction are very bad. This is
the most difficult of the three tasks due to the large set of classes i.e. 1508. On style
and genre prediction some descriptors show an accuracy over 4%. In particular the
best features for style prediction are HOG and Gabor y, both grayscale descriptors,
whereas for genre prediction genre classification the best descriptors are GIST color
and cromaticity moments which relyes both strongly on color information.

Figure 6.9 contains a stacked bar graph. Each bar represent the cumulative
contribution for all of the three tasks. From this graph are clearly visible the features
that gives a higher overall contribution: HOG, Gabor y, Chromaticity Moments and dt
cwt. Since the best improvement is given by HOG, it has been chosen as handcrafted
descriptor to be injected in the Neural Network architecture. Table 6.7 shows a
comparison on the use of the HOG descriptor.

Table 6.7 Classification accuracy for different tasks on Wikipaintings-IVL dataset.
Performances of the STN multitask network with and without HOG features injection.

Model Artist Style Genre Average
STN multitask 56.1 57.0 64.1 59.1
STN multitask + HOG 56.5 57.2 63.6 59.1

6.5 Similarity search
Deep Neural Networks learn very complex feature hierarchies that are usually difficult
visualize. Understand the exact factors that induce a particular decision by the network
is not a trivial task. In the last years different methods have been investigated to try
to understand more in depth this process, e.g. [87]. One possibility is for example
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Fig. 6.8 Classification accuracy (percentage). Handcrafted features plus a linear
classifier to solve the three classification tasks. cl LBP gray2 nri stands for LBP-L, cl
lbp lccdescriptor np stands for LBP-LCC, cl lbp histogram stands for LBP-RGB
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Fig. 6.9 Percentage of correctly classified examples out of all misclassified from our
base neural network. Stacked bar chart for the three tasks together. HOG and Gabor
y give the highest improvement.

118



6.5 Similarity search

to search in the training set the sample that mostly activate a particular neuron. A
similar approach has been adopted to better understand decisions and errors of the
proposed architecture based on Similarity Search.

The activation vector from the last fully-connected layer is extracted and compared
using an l2 distance to the vectors extracted from all the training set images. Paintings
are ordered by distance and the nearest are shown. The proposed architecture is a
multitask network trained to predict artist, style and genre of the paintings, thus there
are three different final fully-connected layers near the output. Each layer codifies
different information about the three separate tasks. Hence it is possible to rank the
training set images by three different types of similarity: by artist, by style and by
genre.

Figure 6.10 shows an example interface of the similarity search tool. Top-left is
the input painting. Top right are shown the five classes with highest probabilities. In
the interface there are three tabs, one for each task. In Figure 6.10 only predictions
for artist are shown. The bottom part shows the most similar paintings (by artist)
retrieved from the training set.

In this particular case the network classifies the painting “Guernica” by Pablo
Picasso incorrectly attributing it to the painter Albert Gleizes. The interesting thing to
notice is that, among paintings in the first row, three of them are made by composition
of squared shapes and present similar colors to Guernica. However, the network
predicted the correct style. Gleizes was one of the leading members of cubism and was
coeval of Picasso. Probably they also met and influenced each others.
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Painting Categorization

Fig. 6.10 Screen-shot of the proposed similarity search system used as a visual debug tool
to understand network prediction errors. In this case a Picasso painting is incorrectly
attributed to Gleizes but images retrieved from the training set can help understand
system behavior.
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Chapter 7

Conclusions

In this thesis an in-depth study of detectors and descriptors for object recognition has
been presented. Two main categories of algorithms have been discussed: Keypoint-based
approaches and Convolutional Neural Networks. In the first part several state-of-the-art
Keypoint-based methods have been evaluated for the task of Visual Search. Grayscale
and color descriptors have been compared on a set of standard MPEG datasets and
on a new use case where color is a fundamental clue to discriminate objects. In the
second part Keypoint-based approaches have been compared to Convolutional Neural
Networks to tackle the problem of Logo recognition. CNNs showed better performances
especially when dealing with high intensity image distortions. Finally the problem of
Painting Categorization has been investigated. A novel Neural Network architecture
has been specifically tailored to jointly use neural features and handcrafted approaches.

In Chapter 3 a detailed analysis of thirteen gray-level interest point detectors
and descriptors available in the state of art has been performed on six heterogeneous
datasets using a pairwise matching procedure adopted by the MPEG CDVS Test Model
[5]. Lowe’s SIFT [139] was confirmed, without a-priori knowledge of the dataset, as
the best performing method on average in terms of TPR levels (average TPR: 0.91)
among gray-level descriptors. Remarkably, KAZE and SURF performed well on some
datasets. Also the affine-invariant detectors achieved good results on the “Landmarks
and Buildings” dataset but their results decreased if the number of keypoints detected
is limited.

The measured computational times showed that the algorithm with the best trade-off
between performance and speed was SIFT, in particular the OpenCV implementation.
This was the base complexity adopted by MPEG CDVS against which any color
descriptor algorithm has to be measured in terms of extra computational burden added.
The use of color information did not achieve interesting performances on all CDVS
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datasets. This was proven by the fact that the average TPR value of RGB SIFT which
was the best performing algorithm showed on average a 1% improvement with respect to
the gray-level baseline. This gain was too limited to justify the extra complexity added
by the Early Fusion methods. Color descriptors proven to bring some improvements
on datasets 5 (“Common objects and scenes”) and 6 (“SuperMarket Milan”) where
color information was certainly more relevant. On dataset 5, Late Fusion algorithms
achieved the best TPR values while on dataset 6 the best performing algorithms were
some Early Fusion approaches: RGB, Transformed Color, and Opponent. The concern
for extra complexity mainly due to look-up handling justified their usage on top of the
SIFT complexity baseline.

In Chapter 5 the problem of logo recognition has been investigated. This is usually
addressed with keypoint-based methods on high-quality images. A Convolutional
Neural Networks is used instead as a robust alternative for low-quality images. The
proposed pipeline involved selecting candidate sub-windows using Selective Search,
augmenting the training set using Transformation Pursuit, and performing Query
Expansion for increasing recall. The method proved to be effective even with CNN
features that were trained for a different task, producing results close to the state of the
art keypoint-based approaches. The robustness of the method has been investigated
with respect to three different kinds of distortion: blur, noise and lossy compression.
Results showed that noise was the most affecting one, while lossy compression produced
little to no performance loss.

In the second part of Chapter 5 an improved processing pipeline has been proposed.
The solution employs a CNN specifically trained for the task of logo classification,
even if they are not perfectly localized. A complete recognition pipeline including a
recall-oriented candidate logo region proposal has been designed.

Experiments have been carried out on the FlickrLogos-32 database and on its
enlarged version, Logos-32plus. The effect on recognition performance of synthetic
versus real data augmentation is systematically investigated together with image
pre-processing, and the benefits of different training choices such as class-balancing,
sample-weighting and explicit modeling the background class (i.e. no-logo regions). The
best proposed solution outperforms methods in the state of the art and makes use of an
explicit modeling of the background class, both precise and actual object-proposal logo
annotations during training, synthetic data augmentation, epoch-based class balancing,
and image contrast normalization as pre-processing, while sample weighting is disabled.

In Chapter 6 a novel approach to accomplish the task of painter and style recognition
has been proposed. Two different crop strategies are adopted allowing to exploit multiple
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cues at different scales. The first permits to manage the trade off between accuracy
and speed adopting a random crop strategy and the second is a deterministic extractor
based on Spatial Transformer Networks. The crops are fed to a multibranch deep neural
network which merge the information at multiple scales and different spatial locations
and performs the final prediction. A comparison with state-of-the art methods has been
carried out on Paintings-91 dataset for the tasks of Artist and Style recognition. The
proposed CNN architecture clearly outperforms previous methods by a large margin.

A new dataset named Wikipaintings-IVL dataset has been collected to perform
multitask classification. The new dataset contains about 100K images compared to
4K of Paintings-91. On this dataset different types of multibranch architectures have
been evaluated like the multitask networks and the smart crop extractor based on
Spatial Transform Networks and also an hybrid solution including multitask CNN and
handcrafted features injection. A set of experiments have been made to quantify the
discriminative power of handcrafted features on Wikipaintings-IVL dataset. The most
promising descriptor is HOG. In a further experiment HOG features has been injected
into the Neural Network architecture giving a performances improvement to the overall
pipeline.

Finally a novel data augmentation method is introduced. By exploiting neural style
transfer technique discussed in Appendix A new fake paintings are produced. Results
of two experiments showed that the proposed data augmentation technique acts as a
form of regularization.

An interesting topic for future investigations concerns the joint use of Convolutional
Neural Networks and handcrafted features [18]. In this thesis, in particular for logo
recognition, Neural Networks have been used as an heavy classification model targeted
to high accuracy. Images have been previously processed by a Selective Search algorithm
that selects the most promising candidate regions. Future works could investigate
improved types of synergy between the two categories of descriptors. Furthermore
the approaches proposed in this thesis focused on object recognition in still images.
Directions for future works could be the application to videos where constraints
on consistency between frames could be exploited to enhance the system. In this
perspective, a joint use of handcrafted features and Convolutional Neural Networks
could benefit for example from the use of optical flow algorithms.
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Appendix A

Texture Synthesis and Style
Transfer

Painting dataset introduced in Section 6.3.3 has been agumented by generating synthetic
paintings. The process of generating paintings has been carried out with a technique
based on Neural Style Transfer [46], [47]. This algorithm make use of a pretrained
network to combine texture and coarse shapes from two arbitrary images. In this
Appendix first is introduced the texture synthesis algorithm first presented in [45], then
is presented the neural style transfer technique in two variants: optimization-based
(slow), feed-forward (fast).

A.1 Texture synthesis
Goal of texture synthesis is to build a generative model able to capture the characteristic
distribution of an input texture to produce new texture perceptually similar or ideally

a) Original b) Synthetic Sample 1 c) Synthetic Sample 2

Fig. A.1 Examples of synthetic textures produced by the model presented in Section
A.1. Both synthetic textures are generated solely from texture a.
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Fig. A.2 Texture synthesis model of Gatys et al. [45]. It is composed by two siblings
deep networks, the first fed with the texture image and the second with white noise.
The white noise is shaped to match the same gram matrices statistics of the original
texture.

undistinguishable from the source texture. In 2015 Gatys et al. presented the first work
on texture synthesis using Convolutional Neural Networks [45]. The idea is simple and
effective: using a powerful pretrained Neural Network not only as feature extractor
but to induce a particular distribution of pixels in the input image. Given a source
texture image, first features are extracted from this image, then a summary statistics
is computed on the features to obtain a stationary description of the source image.
Finally, a white noise image is shaped to have the same stationary description by
performing gradient descent from the feature extractors layers to the layers near the
random input image.

Figure A.1 shows two samples of synthetic textures generated with Gatys model.
Features are extracted using a VGG network (see Section 4.6) from activations (also
called feature-maps) at different layers of the network. Correlations are computed on
the extracted features by means of Gram matrices. A Gram matrix is computed by:

Gl
ij =

∑
k

F l
ikF l

jk (A.1)

where F l ∈ RNl×Ml is a vector matrix obtained from a set of feature-maps of size
Nl by flattening the spatial dimension to a single dimension Ml. F l

jk represent the
activation of the jth filter at position k in layer l. The Gram matrix contains only
information about correlations between feature-maps discarding spatial information,
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A.1 Texture synthesis

forcing a stationary description of the input image. This description fully specifies a
texture in the model proposed by Gatys et al. [45].

Texture synthesis is carried out by the backpropagation algorithm trough a clone
of the VGG network used for feature extraction. The network is fed with a white noise
image. Gram matrices are computed from feature-maps at various levels. Finally these
gram matrices are compared with gram matrices produced by the original texture by
means of an Euclidean loss and the resulting gradients are backpropagated trough the
network to shape the white noise image. Figure A.2 shows the whole synthesis system.
Given x⃗ and ˆ⃗x as the original image and the white noise, a single loss El obtained by
comparing two gram matrices has the following form:

El = 1
4N2

l M2
l

∑
i,j

(Gl
ij − Ĝl

ij)2 (A.2)

where G and Ĝ are the two Gram matrices computed from the texture and the white
noise image respectively. The total loss is given by:

Ltexture(x⃗, ˆ⃗x) =
L∑

l=0
wlEl (A.3)

where l is the layer index. The overall loss is a weighted sum of Euclidean losses over
each Gram matrix pair. Figure A.3 shows a synthesis of the rocks texture in Figure

a) Starting point b) Iteration 100 c) Iteration 1000 c) Iteration 40000

Fig. A.3 Synthesis of the rocks texture in Figure A.1a. The starting point is set to the
picture of a face. Intermediate output at different iterations of the algorithm is shown.

A.1a where the starting point is not random noise but a picture of a face. The Figure
contains three outputs corresponding to three different iterations of the optimization
process. The final appearance of the image is heavily influenced by the initialization.
The algorithms tends to place rocks’ borders in correspondence of strong edges in the
initialization image. The optimization algorithm tends to favor areas with edges, flat
areas are the last to be rendered. Another interesting thing to notice is about the yellow
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label in the source image in Figure A.1a bottom left. In the final synthetic textures is
always rendered near the bottom border. Since spatial information is completely lost
when computing Gram matrices, this suggest that, in the VGG network architecture,
some neurons are devoted to handle information lying on image borders. Moreover
this type of neurons are specialized for each of the four borders.

A.2 Image Style Transfer
The same authors of [45], carried on the work on texture synthesis expainding it to a
new application: Image style transfer [47]. The problem of style transfer is reformulated
as a problem of texture transfer. They used the same optimization algorithm in Section
A.1 with two constraints: the resulting image must have a texture with the same
statistics as the source texture and at the same time the same coarse structure as
another image named content image.
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Fig. A.4 Network architecture used to perform style transfer. Two siblings VGG
networks are used as feature extractors for content and style. Another network is used
to shape the output image initialized as white noise.

Figure A.4 shows the system used to operate style transfer. It takes as input three
images: content, style and white noise image i.e. the output. Most part of the system
represented in Figure is the same as the one for texture synthesis presented in Figure
A.2. The two rightmost networks are the part of the system borrowed from the texture
synthesis network. Gram matrices computed from internal activation layers of both
networks are matched by means of the Euclidean distance and the resulting gradients
flow back trough one network to the white noise image. The main difference is the
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A.2 Image Style Transfer

addiction of a new sibling network fed with the content image. Inner activations of this
network are directly compared to those of the network fed with white noise. No use of
Gram matrices is adopted because in this case the goal is to retain spatial information
from the content image. Moreover activations used to synthesize content are usually
higher layers compared to those considered to synthesize texture. This is because they
represent more abstract concepts than lower layers. The goal of style transfer is to
produce a new image with low-level details (texture) of one image while retaining
coarse level structure (content) of another image. Thus the style transfer network is
equipped with two types of loss functions: a Style Loss which is the same used for
texture synthesis, i.e. Equation A.1 and a Content Loss which is presented here:

Lcontent(x⃗, ˆ⃗x, l) = 1
2

∑
i,j

(F l
ij − F̂ l

ij)2 (A.4)

where x⃗ and ˆ⃗x are the content and output images respectively, F l
ij and F̂ l

ij are
activations of the lth layer of the two siblings networks fed with content and output
images. This loss is essentially an Euclidean loss over activations of the two networks.
The overall loss function to minimize is then the sum of Equations A.1 and A.2:

Ltotal(c⃗, t⃗, x⃗) = αLcontent(c⃗, x⃗) + βLtexture(⃗t, x⃗) (A.5)

where c⃗, t⃗, x⃗ are the content, texture and output images respectively. α and β are the
weighting factors to balance content and texture strenght in the output image. The
gradient with respect to the pixel values of the output image ∂Ltotal

∂x⃗
can be used as

input to perform optimization using Stochastic Gradient Descent or related techniques.
Authors of [47] experimentally found L-BFGS [150] to be the best method for image
synthesis. Figure A.5 shows an example of style transfer where some parameters are
varied. First row shows the Content and Style or Texture image. Second row shows
a variation of the style weight parameter, i.e. β in Equation A.2 while the content
weight (parameter α) is unchanged to 5 × 101. As expected, the more style weight
is increased and the more texture details are introduced from style image perturbing
the content image. With β = 103 the original content is almost undistinguishable. In
the third row the activations used to compute the Content Loss are changed. Three
feature-maps coming from the output of different relu layers have been used: relu3_2,
relu4_2 and relu4_2. The use of relu3_2 and relu4_2 produce similar results whereas
when using relu5_2 the content is almost lost in favor of texture. This suggest that
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layer relu5_2 is too far from the input image and represents abstract shapes that are
not useful for the style transfer task.

Last row shows results of varying the weight of the Total Variation (TV) Loss [31].
TV Loss has been used as a regularizer when generating images with CNNs [87] as
well as with other descriptors [37]. It is used to suppress noise by inducing smoothing
in the output image. Equation below express TV Loss:

RV β (x) =
∑
i,j

((xi,j+1)2 + (xi+1,j − xi, j)2)
β
2 (A.6)

where xi,j is a single pixel of the input image and β is a parameter influencing loss
strength. All the images shown in this Appendix make use of TV Loss together with
the other Losses described in this Section. TV loss value is multiplied by a weight
factor and added to the overall loss value. The three images in Figure A.5 last row
show a variation of the TV loss weight factor. Note that the more is the influence of
TV loss and the more random noise is attenuated. With high weight, i.e. rightmost
image, noise is spread on image producing wide colored areas.

A.3 Feed-forward network and Perceptual loss
One downside of this style transfer approach is its computational complexity. Since it
is based on an optimization process it is quite computationally heavy and it requires
long processing time even for very small images. To give an idea it can take almost
5 minutes to process a 512x512 image with an Nvidia K40 GPU. To overcome this
problem Ulyanov et al. proposed an extension of the architecture presented in previous
sections [133]. Figure A.6 shows the new network architecture. The upper part in
Figure A.6 represents the same style transfer network introduced in the previous
Section. The main difference is that a new network is added to the whole architecture.
Gradient flow is expanded. Originating from the Content and Style losses it goes
trough the pretrained VGG Network and flow trough the input image, labeled in Figure
as “Stylized Image” and finally reach a new network that has to be trained. Now
the gradient are not only shaping the input image but trough it they are shaping the
network weights in order to produce the right image.

As a result a new network is trained to produce the stylized image given an arbitrary
content image. Note from Figure that at training time the same content image is fed to
the system in two different points: the pretrained VGG and the network to be trained.
The whole system architecture is used only in training. During the test phase the
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A.3 Feed-forward network and Perceptual loss

new network is detached and used as a standalone module to produce stylized images.
The new network can produce stylized images with a single forward pass obtaining
similar qualitative results but three order of magnitude faster. A 512x512 image can
be generated in a few milliseconds by a modern GPU. Figure A.7 shows some examples
of images produced by the feedforward network. The architecture composed by the
three siblings VGG networks is actually acting as a very complex loss module. For this
reason Johnson et al. in their work [67] called this architecture Perceptual Loss and
used it as a general purpose module to be used in generative models. They applied the
Perceptual Loss module not only to train style transfer networks but also to tackle the
task of super-resolution from single image. Since then the Perceptual Loss module is
used as a strong loss in numerous tasks involving generative models. As an example
Ledig et al. [78] jointly used a Perceptual Loss and a Generative Adversarial training
environment to generate super-resolution images. In a similar way, Ruder et al. [119]
designed a system to perform style transfer on videos by combining the perceptual loss
module together with a loss that ensures consistency among video frames.

In Chapter 6 the Perceptual loss and the whole Image Style Transfer algorithm has
been used to generate new paintings to perform data augmentation and induce a form
of regularization for the painting categorization model. Quantitative and qualitative
results are presented in Chapter 6.
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Fig. A.5 Visual results of tuning Style Transfer Network hyperparameters. The two
images on top are Content and Style source images respectively, others are the resulting
output obtained with a particular parameters setting.
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Fig. A.7 Examples of stylized images produced by the feedforward network architecture
presented in Figure A.6. Images are rendered using different trained models on various
styles.
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