
PH.D. SCHOOL
UNIVERSITY OF MILANO-BICOCCA

Department of Informatics, Systems and Communication
Ph.D. program in Computer Science - XXX Cycle

Learning quality, aesthetics, and
facial attributes for image

annotation

Ph.D. Dissertation of: Luigi Celona

Supervisor: Prof. Raimondo Schettini
Co-Supervisor: Dr. Paolo Napoletano
Tutor: Prof. Giancarlo Mauri
Ph.D. Coordinator: Prof. Stefania Bandini

Academic Year 2016-2017





Acknowledgements

I am very grateful to Prof. Raimondo Schettini, my supervisor, for believing in me
and guiding me throughout this fantastic journey.

I would like to thank Dr. Paolo Napoletano, my co-supervisor, for his friendship
with me and for his precious suggestions.

In addition, I would like to thank Dr. Simone Bianco for supporting me and
providing useful insights.

I can not forget my friends in the Imaging and Vision Laboratory (IVL), I am
happy and honored of all the years spent together. Thanks for all the time spent joking
or exchanging knowledge and skills.

Thanks to all my family. The merits of this new goal are first of all because you have
made me the person I am today, you have given me an excellent education, continue
to be a fundamental guidance, and support me every day.

Thanks to You, my love, for always being next to me.





Abstract

Every day, a large number of digital images are produced by users of social networks,
smartphone users, photography professionals, etc. This caused a problem in the
management, organization, indexing, and recovery of digital images. In order to
ease this problem, several methods have been introduced in the literature to catalog
images automatically. These methods are designed to associate images with one
or more keywords belonging to a predefined dictionary or to associate images with
visual attributes such as, for example, quality, aesthetics, sentiment, memorability,
interestingness, and complexity, etc.

This thesis investigates the use of deep convolutional neural network for automatic
estimation of image quality and image aesthetics. In the last few years, several methods
for automatic image quality assessment have been proposed. Most of them have been
designed to deal with synthetically distorted images, which by definition do not truly
model distortions afflicting real-world images. In this thesis a method for the automatic
quality assessment of authentically distorted images is investigated. It shows better
performances than state-of-the-art methods both on synthetically and authentically
distorted images datasets.

Differently from the image quality, which characterizes the perceived quality of
the image signal, aesthetics depicts perceived beauty. As first step, the problem of
aesthetic quality assessment of real-life general content images has been investigated.
The proposed solution outperformed state-of-the-art methods on the largest publicly
available dataset.

Given that one of the most popular visual contents is the face (e.g. on social
networks for photo sharing), aesthetics assessment is, therefore, further investigated on
the specific case of portrait images. To this end, in this thesis an algorithm involving
the combination of the previously investigated visual attributes (i.e. quality and
aesthetics of general content images) and the facial attributes (i.e. smiling, hair style,
makeup) description is proposed. Facial attributes description is achieved thanks to
two proposed methods. The first algorithm is a robust smile detector (it represents
an important visual feature for portrait aesthetics), the second is a multiple-task



model designed in order to simultaneously estimate soft biometrics and attributes
such as hair colors and styles, types of beards. While the first algorithm outperforms
state-of-the-art methods (also respect to highly distorted images), the multi-task model
demonstrates comparable performance. Experimental results for the portrait image
aesthetic assessment thanks to the use of the proposed algorithm show promising
performance on three standard datasets.
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Chapter 1

Introduction

1.1 Why automatic tagging?

Over the past decade the amount of images being captured and shared has grown
enormously. There are several factors behind this remarkable trend. The first is the
diffusion of high-resolution digital cameras often integrated into mobile phones. Digital
cameras enable people to capture, edit, store and share images easily in comparison
to the old film cameras. Furthermore, photo sharing platforms, such as Instagram
and Flickr, and of social networks or instant messaging applications, e.g. Facebook,
WhatsApp and Snapchat, are gaining popularity. Figure 1.1 shows the increasing
growth of shared images per day on the most popular platforms in the last decade.

Images and video sequences make up about the eighty percent of all enterprise
and public unstructured big data. Unstructured data are not easily searchable, so in
order to index, organize, and retrieve them it is necessary to assign meta-data able
to describe the resource content. Digital photo meta-data is expressed in the form of
keywords, also known as tags, or captions that can describe the visual and semantic
entities within the photos. Several softwares give the possibility to manually add
tags to photos, like Photoshop and Picasa. However, due to the growing amount of
data, manual annotation of images has become infeasible because it is time-consuming,
subjective, non-scalable, and non-uniform in terms of vocabulary. Automatic image
annotation, shortly auto-tagging, systems are introduced to overcome these limitations.
These systems are able to automatically assign a set of tags from a dictionary in order
to describe the image content without human intervention, answering to the question

1



Introduction

Fig. 1.1 Daily number of shared photos on the most popular platforms between 2005
and 2015. Chart derived from published report by KPCB on Internet Trends.

Fig. 1.2 Examples of images annotated with tag describing semantic content.

What does the image contain? Google Cloud Vision1, Clarifai2, Imagga3, and Irista4

are examples of automatic large-scale image annotation systems able to tag images
pretty carefully.

1.2 The role of visual attributes

Content-based image categorization using accurate and relevant tags provides a good
but not exhaustive description. For example, given the two images in Figure 1.2, a
state-of-the-art auto-tagging system would certainly assign the “airplane” tag. However,
this annotation solely characterizes generic semantic of images and doesn’t provide any
information about properties of the image content, that can be useful, for example, to
measure the appeal of images and decide which one to use for a photo album. In order

1https://cloud.google.com/vision
2https://www.clarifai.com
3https://imagga.com
4https://www.irista.com/

2



1.2 The role of visual attributes

(a) (b)

Fig. 1.3 Sample images annotated considering image quality. Yellow boxes contain the
result of a common automatic image tagging system: “airplane”. Instead green boxes
provide a label referring to the quality of the two images, respectively low (a) and high
(b).

to enrich image description, complementary interesting offshoots involving feedback,
personalization, and emotions might be taken into consideration. These aspects are
depicted through the analysis of visual attributes that capture appearance and properties
of the image content such as quality, aesthetics, sentiment, memorability, interestingness,
and complexity. Among them, three visual attributes mainly characterize palatability
of images, namely: quality, aesthetics, and sentiment.

Visual quality refers to the quantification of low-level perceptual degradation of a
visual stimulus. Specifically, this consists in evaluating whether the image quality is
high or low due to the presence or absence of distortions. Thus it tries to answer the
following question: Does the image look qualitatively good? Figure 1.3 shows the same
two airplanes labeled with the corresponding semantic tags as in Figure 1.2, but also
two tags describing image quality have been introduced: while the airplane in Figure
1.3a has a “low-quality” tag (lens flare artifact, underexposed), the airplane in Figure
1.3b is labeled as “high-quality” (sharp, proper light).

Visual aesthetics regards the perceived beauty of visual stimulus [65]. Aesthetic
evaluation is an extremely difficult problem because is highly subjective: its a combina-
tion of genetic predisposition, cultural assimilation, and unique individual experience.
Additionally, aesthetics is “naturally” blind: given an image to be evaluated, there
doesn’t exist a corresponding image with “perfect” aesthetics. Of course, this does not
nullify the possibility of comparing the aesthetic appeal of two images, instead, it makes
visual aesthetics assessment more challenging and interesting. The goal of algorithmic
aesthetic assessment is to predict aesthetic scores considering a series of features such
as exposure (luminance distribution), contrast, colorfulness, color saturation, rule of
thirds, depth of field, trying to answer the question Is the image aesthetically good? In
Figure 1.4 two “hamburger” images can be distinguished between “low-level” aesthetics,

3
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(a) (b)

Fig. 1.4 Sample images annotated considering image aesthetics. Yellow boxes contain
the result of a common automatic image tagging system: “hamburger”. Instead, blue
boxes provide a label referring to the perceived aesthetics quality for the two images,
respectively low (a) and high (b).

Figure 1.4a, (low contrast, bad composition), and “high-level” aesthetics, Figure 1.4b,
(high contrast, color saturation).

Visual sentiment analysis consists in the extraction of the affective content infor-
mation from visual stimuli. Algorithms for sentiment analysis extract the amount and
type of affect that is expected to be evoked in the majority of the observers by the
perceived content. Specifically, these algorithms try to capture information regarding
feelings, emotions, and moods evoked by an image or a video; and in order to do so
they exploit several features, like: color statistics, and high-level concepts (e.g. the pair
adjective-nouns). Depending on the produced output, sentiment analysis methods can
be grouped as follow: algorithms representing sentiment values as a polarity (positive or
negative); algorithms able to distinguish among several emotion categories (amusement,
anger, awe, contentment, disgust, excitement, fear, and sadness). Figure 1.5 shows two
images containing respectively the tags providing a description of the visual content
and an answer to the question Which kind of emotion does the image arouse? Both
the images contain a panda, while the one in Figure 1.5a arouses a negative feeling (it
has a prey in its mouth), the one in Figure 1.5b evokes a positive mood (it is resting
and eating bamboo).

1.3 Characterize images by evaluating quality and
aesthetics

Quality, aesthetics and sentiments are commonly treated as independent problems.
However, humans perception of image pleasantness is the result of the relations among
the aforementioned aspects. Additionally, these three attributes not only characterize

4



1.3 Characterize images by evaluating quality and aesthetics

(a) (b)

Fig. 1.5 Sample images annotated considering image sentiment. Yellow boxes contain
the most probable tag of a common auto-tagging system: “panda”. Red boxes provide
a label referring to the sentiment polarity for the two images, respectively negative (a)
and positive (b).

the “global” palatability of images, but also influence each other, for example: perceived
image quality impacts on aesthetics [3]; image aesthetics is strongly related to sentiment
(i.e. semantic gap) [13]; image quality might impact on visual sentiment. Thus, it
is possible to say that these attributes are heavily intertwined and their union can
provide a more detailed description of image content properties.

This thesis goes deep into the two problems of automatic image quality assessment
and of automatic image aesthetics assessment respectively. Algorithms based on deep
learning techniques, specifically on convolutional neural networks (CNN), outperforming
the state-of-the-art are proposed.

Differently from many image quality assessment algorithms dealing with automatic
image quality assessment of synthetically distorted images [87, 162], which cannot well
model the complex mixtures of multiple distortions afflicting real-world images, in this
thesis a method for blind image quality assessment on authentically distorted images
is proposed [14].

The second visual attribute is image aesthetics. While the aforementioned attribute
is related to the perceived quality of the signal, aesthetics depicts perceived beauty.
In this thesis the problem of image aesthetic quality assessment is investigated and
results show sentiment dependency of aesthetics (i.e. sentiment gap) [13].

Given that one of the most popular visual contents is the face (e.g. on social
networks for photo sharing), portrait images aesthetics assessment is investigated.
General content image aesthetic assessment systems are not effective for aesthetics
assessment of portrait images because they miss information relative to facial attributes,
that can encode relevant aspects to guide aesthetic estimation. For this reason, in this
thesis an algorithm involving the previous visual attributes (i.e. quality and aesthetics)

5



Introduction

and facial attributes description is proposed. Specifically, at first, a robust smile
detector algorithm is developed (it represents an important visual feature for portrait
aesthetics [117]), then a multiple-task model is designed in order to simultaneously
estimate soft biometrics and attributes such as hair colors and styles, types of beards.

1.4 Mimic human subjectivity

It should be evident that semantic content analysis is fairly objective compared to
quality, aesthetics and sentiment assessment. Image appeal depends on highly subjective
factors not easily describable by low-level features or even image content as a whole.
Such aspects could be sociocultural, demographic, or influenced by mood.

For designing and evaluating reliable models that are consistent with subjective
human evaluations, collecting a large amount of human perceived scores is necessary.

Crowdsourcing systems like Amazon Mechanical Turk (AMT)5 are extensively
considered as effective human-powered platforms making it feasible to gather a large
number of opinions from a diverse distributed populace over the web. Given a collection
of images, participants to the task are asked to provide an opinion on the perceived
visual attribute (quality, aesthetics or sentiment) of the presented images.

A “global opinion” needs to be obtained in order to define the ground-truth to be
used for the evaluation of highly subjective problems such as image quality assessment
and image aesthetic assessment. Several rules exist to obtain an objective “global
opinion” given a collection of subjective labels, such as unanimous agreement and
mean opinion score. The unanimous agreement assigns to an image the label all the
participants agreed. Obviously this is a very strong constraint and it is mainly used
when the number of both participants and labels is very limited (e.g. for sentiment
analysis five participants and two classes [166]). On the other hand, the average score
for the image I, well known as Mean Opinion Score (MOS), is usually used as measure
for the perceived image quality and the image aesthetics; it is given by

MOS(I) = 1
N

N∑
i=1

ri(I), (1.1)

where ri(I) is the i-th individual score given to image I. Therefore, the objective of
the image quality and aesthetic assessment systems is to mimic human perception of
visual attributes and consequently to obtain an high correlation with the MOS.

5http://mturk.com
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1.5 Thesis overview

1.5 Thesis overview

The first part of the thesis introduces deep learning concepts and convolutional neural
network (CNN) models that are applied into all of the proposed methods.

Chapter 3 is dedicated to the problem of automatic assessment of signal quality
in general content images. The chapter starts with an introduction to the problem of
blind image quality assessment, datasets and methods are then described.

Chapter 4 describes in detail visual aesthetic assessment on general content images
and the proposed solution to this problem. Finally a brief introduction to the problem
of image sentiment analysis is provided.

Chapter 5 addresses the specific problem of visual aesthetic assessment on portrait
images. The chapter describes the proposed solution which delves into facial attributes
estimation, that can provide useful facial features for a richer representation of the
face.

Finally, Chapter 6 ends the thesis summarizing the obtained results, reporting
conclusions and giving the directions of future works.
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Chapter 2

Convolutional Neural Networks

The last few years have seen an increasing interest of the artificial intelligence community
for deep learning techniques [81]. These computational models are representation-
learning methods with multiple levels of representation, obtained by composing multiple
non-linear processing layers that can learn hierarchical representations with increasing
levels of abstraction. The key aspect of deep learning is that, differently from con-
ventional feature, such as local binary patterns (LBP) [110], histogram of oriented
gradients (HOG) [28] and scale-invariant feature transform (SIFT) [94], these layers of
features are not designed by humans; instead they are learned directly from data.

Convolutional neural networks are deep feed-forward neural network architectures
that are easy to train and generalize much better than common neural networks. These
architectures have proved to be very effective in many tasks (e.g. image understanding
[76], speech recognition [124], robotics [85]) and they are widely adopted by the
computer vision community.

2.1 Feed-forward neural networks

Feed-forward neural networks define a mapping y = f(x; θ) and learn the parameters θ

that result in the best function approximation. For example, for a classifier, y = f(x)
maps an input x (e.g. an image) to a category y.

Feed-forward neural networks are called networks because they are typically rep-
resented by composing together many different non-linear functions. The model is
associated with an acyclic graph, also defined as architecture, describing how functions
are composed together. For example, given three functions f (1), f (2), and f (3), the
most commonly used structure of neural network is organized into multiple layers, i.e.
f(x) = f (3)(f (2)(f (1)(x))). Specifically, f (1) is called the first layer of the network, f (2)
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Fig. 2.1 A simple feed-forward neural network architecture.

is the second layer, and f (3) represents the last layer. The overall length of the chain
gives the depth of the model. Figure 2.1 shows a simple neural network consisting of
four layers: the input layer with two units or neurons, denoted x1 and x2; the first
hidden layer composed by four neurons, i.e. h1

1, h1
2, h1

3 and, h1
4; the second hidden layer

composed by three neurons, i.e. h2
1, h2

2, and, h2
3; and finally the output layer having a

single neuron, y1.
Each neuron hi in the neural network is a computational unit that takes as input

the values from the preceding layer (hj−1
i ) that feed into hj

i . As a concrete example,
inputs to the neuron labelled h1

1 in the sample neural network are x1 and x2, instead
inputs to y1 are h2

1, h2
2, and h2

3. Given its inputs, a neuron first computes a weighted
linear combination of those inputs, parametrized by a weights matrix W and biases b,
and then a non-linear activation function is applied. More precisely, let x = x1, ..., xn

denotes a set of input variables to a neuron hj, then:

hj = ϕ

(
n∑

i=1
wjixi + bj

)
, (2.1)

where the weight wji describes the interaction between hj and input neuron xi, bj is a
bias associated with neuron hj and ϕ is a non-linear activation function.

When a set of input variables x are fed into a feed-forward neural network, activations
of each neuron are computed by following Equation 2.1. Moreover since the activation of
each neuron depends only upon the values of preceding layers, activations are computed
starting from the first hidden layer (which depend only upon the input values), proceed
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2.2 Convolutional neural networks

layer-wise through the network and finally produce an output, ŷ. This process where
information propagates through the network is called forward-propagation.

In order to reduce some objective (or loss) function between network output ŷ and
ground-truth y, neural network parameters, weights W and biases b, have to be learned.
During training, forward-propagation continues onward until it produces a scalar cost
J(θ) = L(f(x; θ), y). The backward-propagation algorithm [158], also called backprop,
allows the information from the cost function to flow backward through the network in
order to compute the gradient. An optimization algorithm (e.g. stochastic gradient
descent) is then used to perform learning using the computed gradient.

2.2 Convolutional neural networks

Convolutional neural networks (CNNs) are a specialized kind of feed-forward neural
network for processing data that has a known grid-like topology, such as images, videos
and time-series. The name “convolutional neural network” indicates that the network
employs a specialized kind of linear operation called convolution. At the most basic
level, a convolutional neural network is a multi-layer, hierarchical neural network. There
are only three peculiarities that distinguish CNNs from simple feed-forward neural
networks: sparse connectivity, weight sharing, and spatial pooling or sub-sampling
layers. A modern deep convolutional neural network consists of several layers, as shown
in Fig. 2.2. Several stages of convolution, non-linearity are stacked, followed by more
convolutional and fully-connected layers. Intuitively, the low-level convolutional filters,
such as those in the first convolutional layer, can provide a low-level encoding of the
input data, mid-level filters compose the previous information to a higher level of
abstraction: moving to higher layers in the neural network the model encodes more and
more complicated structures. In the case of image data, local combinations of edges
form motifs, motifs assemble into parts and parts compose objects. In addition to
convolutional and fully-connected layers, various optional layers can be considered such
as pooling and normalization. The following sections describe in detail components
characterizing a classic CNN.

2.2.1 Convolutional layer

In traditional multi-layer networks each neuron is densely or fully connected to each
of the neurons in the subsequent layer. However, in image processing it is often
advantageous to exploit only a small local substructure within the image. For example,
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Fig. 2.2 Convolutional neural network.

pixels that are close together in the image (e.g. adjacent pixels) tend to be strongly
correlated and can represent meaningful features such as edges, while pixels that are
far apart in the image tend to be weakly correlated or uncorrelated. Many standard
feature representations used in computer vision problems are based upon local features
within the image (e.g. HOG and SIFT). In order to reflect the aforementioned property,
a CNN architecture has sparse connectivity: the local substructure within a image is
captured by constraining each neuron to depend only on a spatially local subset of the
variables of the previous layer. The set of neurons in the input layer that affect the
activation of a neuron is known as the neuron’s receptive field. Figure 2.3 contains a
graphic comparison between fully and dense connectivity.

The second feature that distinguishes CNNs from simple neural networks is the
weight sharing. Apart from limit the number of weights that contribute to an output
(sparse connectivity), edge weights in the network are shared across different neurons
in the hidden layers. This process can be view as evaluating a kernel or filter at every
position of the input. Concretely, weight sharing means that rather than learning a
separate set of parameters for every location, we learn only one set. Using the same
set of filters over an entire input forces the network to learn a general encoding or
representation of the underlying data. Constraining the weights to be equal across
different neurons has a regularizing effect on the CNN (allowing the network to
generalize better), reduces the number of free weights in the CNN (making it easy to
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x1 x2 x3 x4 x5

h1 h2 h4 h5h3

x1 x5x2 x3 x4

h1 h2 h4 h5h3

(a) (b)

Fig. 2.3 Dense vs. sparse connectivity. Output neuron, h3, and input neurons in x
affecting the neuron h3 (known as the receptive field of h3) have been highlighted. (a)
Dense connectivity, because all the input neurons affect h3. (b) Sparse connectivity, as
h is formed by convolution with a kernel of width 3, only three input neurons affect h3.

train), and also reduces the storage required for model weights. Finally, evaluating the
filter F over each window in the input I amount to perform a convolution of the input
I with the filter F. Thus in the convolutional step of the CNN, an input is filtered with
F to obtain a response or feature map.

The hyperparameters of convolutional layer are its spatial filter size, depth, stride,
and padding. Filter size corresponds to the spatial extend (width and height) of the
filters that are convolved with the input image at different spatial locations. Generally,
the filters are square-shaped and as described in Section 2.8 recent architectures tend
to use small filters in order to reduce learnable parameters. The depth of the output
controls the number of filters that connect to the same region of the input volume.
All of these filters will learn to activate for different feature of the input (e.g. filters
of the first convolutional layer may activate in presence of various oriented edges, or
blobs of color). The stride controls the filter shift and determines the dimension of the
resulting activation map: higher stride reduce receptive fields overlap and reduce spatial
dimensions. The padding parameter allows to control the spatial size of activation
maps by extending the input activation map. This is commonly done by adding zeros
at activation map outer edges.

2.2.2 Non-linear activation layer

A non-linear activation layer is usually applied after each convolutional layer of fully-
connected layer. Various non-linear functions are used to introduce non-linearity into
a CNN as shown in Figure 2.4. Traditional non-linear activation functions are sigmoid
and hyperbolic tangent. These functions tend to saturate respectively at zero and
one, and minus one and one, causing the so called vanishing gradient problem: if the
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Fig. 2.4 Various examples of non-linear activation functions.

activity in the network during training is close to zero then the gradient for the sigmoid
function may go to zero. For this reason non-saturated activation functions such as
the Rectified Linear Unit (ReLU) [108] have been introduced. ReLU is a piecewise
linear function which prunes the negative part to zero, and retains the positive part.
It allows a network to easily obtain sparse representation that is desirable because:
more biologically plausible; leads to mathematical advantages, such as information
disentangling and linear separability [48]. Due to its simplicity and its stability to enable
fast training, ReLU is the most used activation function at the moment. Variations of
ReLU, such as the LeakyReLU [97], and the Parametric Rectified Unit (PReLU) [54]
have also been explored. In contrast to ReLU, LeakyReLU assigns a non-zero slope
controlled by a constant parameter. Instead, in PReLU function the slopes of negative
part are learned from data rather than predefined. The authors claimed that PReLU
is the key factor of surpassing (4.94% top-5 error) for the first time, human-level
performance on ImageNet classification (5.1% top-5 error) [32].

2.2.3 Pooling layer

The presence of sub-sampling or pooling layers is the last aspect that distinguishes
CNNs and simple neural networks. The goal of these layers is twofold: reduce the
dimensionality of feature maps and confer a small degree of translation invariance to
the representation. This last property is useful if it is more important to assess the
presence of a feature than its spatial position. A spatial pooling function [18] replaces
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Fig. 2.5 Pooling operation in a convolutional neural network. (a) A 4 × 4 feature
map divided into 2× 2 blocks, with stride 2. (b) Max pooling response map contains
the maximum value of each block. (c) Average pooling response map consists of the
average value of each block values.

output of the net at a certain location with a summary statistic of the nearby outputs.
Specifically, the feature map is first divided into a grid of m×n blocks without overlap
and then a pooling method is evaluated over the responses of each block. This process
yields a smaller feature map with dimension m × n (one response for each block).
Figure 2.5 shows two different pooling methods (max and average) on a 4× 4 feature
map. In this case, the feature map is arranged in a 2 × 2 grid. In the case of max
pooling, the response for each block is taken to be the maximum value over the block
responses, and in the case of average pooling, the response corresponds to the average
value of the block responses.

2.2.4 Normalization layer

Normalization layer enables to control distribution across layers to significantly speed
up training and improve performances. Distribution of input layers activations (σ, µ) is
normalized such that it has zero-mean and a unit standard deviation. Local Response
Normalization (LRN) [76] was extensively used. It was inspired by lateral inhibition
in neurobiology where excited neurons (i.e., high value activations) should subdue its
neighbors (i.e., cause low value activations).

In Batch Normalization (BN), now considered standard practice in the design of
CNNs, the normalized value is further scaled and shifted, as shown in Eq. (2.2), where
the parameters (γ, β) are learned during the training phase [61]. Batch Normalization
is usually performed between the convolutional or fully-connected and the non-linear
function. It alleviates a lot of problems with properly initializing CNNs by explicitly
forcing activations through a network to take on a unit normal distribution at the very
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beginning of the training.

y = x− µ√
σ2 + ϵ

γ + β (2.2)

LRN has been usually performed after the non-linear function, while BN is mostly
performed between the convolutional layer and the non-linear function.

2.2.5 Loss functions

Loss layer, also referred to as cost function, objective function or criterion, is one of
the essential parts of any neural network. In a supervised learning context, a data
loss function measures the compatibility between a prediction (e.g. the class scores in
classification), computed for any given training input image, and the corresponding
ground-truth label. The loss can be seen as a distance metric that quantifies how far
away the predictions are from the ground-truth labels and can be computed as:

L(y, ŷ) = 1
N

N∑
i=1

Li(yi, ŷi), (2.3)

where L denotes the overall loss, Li the per-example loss, ŷ the network’s prediction,
y the ground-truth label, and N the number of training samples. Let’s abbreviate
o = f(xi; θ) to be the activations of the output layer in a CNN, also known as logits
(given that Li is the per-example loss, index i is omitted for simplicity). Several loss
functions have been proposed for each kind of task. Hinge loss, also referred as Support
Vector Machine (SVM) loss, has been commonly used for classification problems with
a single correct label (out of a fixed set) for each example. The multi-class hinge loss
can be formalized as

LHinge
i = −

K∑
j ̸=yi

max(0, oj − oyi
+ δ), (2.4)

with K corresponding to the number of classes and δ being the fixed margin. The
hinge loss prefers the score of the correct class yi to be larger than the incorrect class
scores by at least a margin δ. If this is not the case, loss is accumulated. In order to
strongly penalize wrong predictions, the squared hinge loss can be used. Cross-entropy,
shortly XEntropy, is the most popular cost function for single-label image classification
in CNNs. It is generalized to multiple classes via the softmax function and the negative

16



2.2 Convolutional neural networks

log-likelihood. Mathematically, the cross-entropy loss is defined as

LXEntropy
i = − log

(
eoyi∑K
j=1 eoj

)
= −oyi

+ log
K∑

j=1
eoj , (2.5)

where K is the number of classes. Both hinge and cross-entropy loss usually result in
comparable classification performance. However, unlike the hinge loss, which treats
the outputs as uncalibrated scores for each class, the cross-entropy loss results in
normalized class probabilities.

To deal with multi-label classification problems, the sigmoid (binary) cross-entropy,
shortly BCE, might be used. It is defined as follow:

LBCE
i =

K∑
j=1

yij log ŷj + (1− yij) log(1− ŷj), (2.6)

where the labels yij are assumed to be either 1 or 0, and ŷj are the probability
predictions ŷj = σ(oj) ∈ [0, 1] using the sigmoid function σ(.), already cited in Section
2.4.

For regression tasks in which predicted values are scalars or metrics (i.e. predict
quality score of an image), it is common to compute the loss between the predicted
score and the ground-truth in terms of L1-norm or L2-norm. The absolute value (AE)
loss is the L1-norm of the error for each training sample and is formulated by summing
the absolute value along each dimension:

LAE
i = ∥o− yi∥1 =

∑
j

|oi − (yi)j|. (2.7)

Minimizing the absolute value loss means predicting the (conditional) median of y.
The square error (SE), or euclidean, loss which is the L2-norm of the error is the most
used criterion for addressing regression tasks and is defined as follows:

LSE
i = ∥o− yi∥2

2 = (oi − (yi)j)2 (2.8)

Minimizing the squared error is equivalent to predict the (conditional) mean of y. This
means that, if the training set is strongly unbalanced on medium scores, the model
might be prone to predict values around the meadium score. L2-norm is much harder
to optimize than a more stable cross-entropy loss: while Euclidean loss requires the
network to output exactly one correct value for each input, the cross-entropy loss only
requires the score magnitudes (not the precise value of each score) to be appropriate.

17



Convolutional Neural Networks

Additionally, given that L2-norm penalizes large errors more strongly, it is not robust
to outliers and causes huge gradients. For these reasons, move from a regression to a
classification problem by quantizing the output into bins represents one good option
whether possible (as described in Section 3.1).

2.3 Model initialization

Before a neural network training can begin, its parameters needs to be initialized.
This operation is very important for a neural network to train effectively. A common
initialization method for biases is to set them to zero, however an initialization to
small positive values might mitigate the adverse effect of dead neurons when using
rectified activation functions. For the weights instead several initialization approaches
have been proposed. One of the historical initialization methods for weights is the so
called LeCun initialization [82], which proposes to sample weights from a multinomial
normal distribution with mean zero and a very small standard deviation. During
back-propagation computed gradients are proportional to their weights, i.e. a layer
with small initialized weights will produce small gradients and viceversa.

The problem with the aforementioned initialization is that the distribution of the
outputs from a randomly initialized neuron has a variance that grows with the number
of inputs. Variance of each neuron’s output can be normalized to one by using a
normalization scheme, called Xavier [47], which scales neuron’s weights by the average
of the number of its inputs and outputs.The Xavier initialization method can be
formalized as

w0 = N
(
µ = 0, σ2 = 2/(nin + nout)

)
(2.9)

where nin and nout denote respectively the number of inputs and outputs of the current
layer.

As already said in Section 2.2.4 the batch normalization layer forces activations
to take on a unit Gaussian distribution from the early training phases. Thus its
introduction makes networks more robust to bad initialization.

2.4 Optimization

Once the gradients of the loss with respect to parameters are computed with back-
propagation, they are used to perform gradient descent parameter update. Mathemati-
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cally gradient descent updates rule have the following form

θ ← θ − η · ∇θL, (2.10)

where θ are network parameters, and η denotes the learning rate, a hyperparameter
that controls the step size of a single update. Selection of a proper learning rate might
be difficult: a learning rate too small leads to slow converge, while a large learning
rate can hinder convergence and cause loss fluctuation around the minimum or even
diverge.

The commonly used variant of gradient descent is the mini-batch stochastic gradient
descent (SGD) [118]. This algorithm performs update for every mini-batch of training
example xB and its corresponding labels yB. The hyperparameter B denotes the batch
size, i.e. how many training examples consider per batch to perform a single parameter
update. Mini-batch SGD reduces the variance of the parameter updates leading to
more stable convergence. Additionally, it enables optimization and parallelized matrix
operations.

Batch size hyperparameter should not affect the convergence behaviour of mini-batch
stochastic gradient descent in significant ways: its impact is mostly of computational
nature. However, it has to be noted that the batch size directly affects the batch
normalization process since the statistics may vary significantly when choosing smaller
batch sizes.

2.4.1 Optimization methods

Several improvements to the standard mini-batch SGD update rule exist. Momentum
update [122] is the most known optimization approach that results in faster convergence
rates of stochastic gradient descent. The momentum loss can be interpreted as the
height of a hilly terrain and the optimization process can be seen as a ball rolling
downwards on a landscape. Differently from standard SGD update, the gradient
navigates along relevant directions and softens the oscillations in irrelevant directions.
It’s update rule is formalized as

v← µv− η · ∇θL
θ ← θ + v, (2.11)

where v is the velocity that accumulates the gradients over time and the hyperparameter
µ is referred as momentum. The latter parameter increases for dimensions whose
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gradients point in the same directions and reduces updates for dimensions whose
gradients change directions. Nesterov momentum [136] is a slightly different version
of the regular momentum update. It addresses the problem of regular momentum
that can miss the minima because of an high value of accumulated velocity. Nesterov
momentum allows to slow down before the hill slopes up again. This is given by the
following

v← µv− η · ∇(θ+ηv)L
θ ← θ + v, (2.12)

where all variables correspond to the ones of the regular momentum update, except
that the gradient is evaluated at θ + ηv instead of the old position θ.

The momentum improvements of SGD manipulate all parameters equally since
they employ a global learning rate. Adaptive optimization methods have been also
proposed. These approaches allow to adaptively tune the learning rate and perform
per-parameter updates. Example of adaptive optimization methods are: Adagrad [35],
Adadelta [170] and Adam [74].

2.5 Regularization

In machine learning regularization is any supplementary technique that aims at making
the model generalize better, i.e. produce better results on the test set. The huge
amount of parameters makes CNNs is prone to overfitting, furthermore non-convexity
of loss function implies the presence of many different local minima. In order to
mitigate overfitting phenomenon and reach a local minimum that explains the data
in the simplest possible way according to the Occam’s razor, several regularization
methods are introduced.

2.5.1 Network architecture design

Network architecture design is the most incisive form of implicit regularization [15].
The use of shared weights or sparse (local) connections drastically reduce the number
of parameters of the network (as considered in Section 5.4.1.2). Deeper architectures
tend to act as regularizers over wide ones. This motivates, for example, design choices
for the VGG architecture [132] and justify higher accuracy performances than AlexNet
architecture [76] on the ILSVRC2012 challenge [32]. VGG architecture is deeper than
AlexNet, additionally 5 × 5 filters are substituted with two layers of 3 × 3 filters
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interleaved by a non-linearity. The result is still a receptive field with size 5× 5 pixels
but the benefit is twofold: the use of less parameters and an higher capacity.

2.5.2 Early-stopping

Early stopping is the easiest and the most effective form of regularization. The
performance measure on the validation set is continuously monitored and the training
is stopped once the performance stops improving. In practice, one can save the best-
performing model parameters in addition to the current parameters and fall back on
the saved one once further improvements seem unlikely.

2.5.3 Dropout

The dropout technique is one of the most effective and simple regularization techniques
acting on the network itself [56, 134]. The key idea is to randomly drop neurons
from the neural network during training and thus preventing the co-adaptation of
features. At each training stage, some neurons are randomly omitted from the network
with probability p using samples from a Bernoulli distribution, such that a reduced
network is left and individual activations cannot rely on other activations to be present
simultaneously. Additionally, another way to view the dropout procedure is as a very
efficient way of performing model averaging with neural networks. As previously said,
random dropout makes possible to train a huge number of different networks sharing
the same weights. Batch normalization (described in Section 2.2.4) fulfills some of the
same goals as dropout: removal or reduction in strength of dropout does not imply a
loss of generalizability [61].

2.5.4 Weights regularization

Weights regularization is the most common form of regularization. Differently from
Dropout it does not rely on modifying the network but the loss function. Specifically it
introduces an additional term to the criterion such that the total loss is a combination
of data loss (e.g. cross-entropy) and regularization loss as in

L(w) = 1
N

N∑
i=1

Li︸ ︷︷ ︸
data loss

+ λR(w)︸ ︷︷ ︸
regularization

loss

, (2.13)
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where Li might be any loss function, R(w) is the regularization penalty and λ is a
hyperparameter that controls the regularization strength.

The intuition behind weight regularization is therefore to prefer smaller weights,
and thus the local minima which have a simpler solution. This technique is also referred
as weight decay. Given that biases do not interact with the data in a multiplicative
fashion, and therefore do not have much influence on the loss, regularization is only
applied to the weights of the network.

The regularization penalty, R(w), can be defined in several ways, say: Lasso or L1

regularization encourages sparsity by computing the L1-norm of the weights (i.e. sum
of the absolute values); the most popular Ridge or L2 regularization determines small
weights and corresponds to the L2-norm of the weights (i.e. the sum of squares) [76].

2.5.5 Data augmentation

The phrase The more you see, the more you know by Aldous Huxley in The Art of
Seeing is true for humans as well as neural networks, especially for deep neural networks.
Very large CNNs consist of hundreads of billions parameters to be learned and available
training data is sometimes not sufficient to train such deep networks. Additionally,
the examples collected are often just in a form of "good" data, or a rather small and
biased subset of the possible space. Data augmentation techniques enable to simulate
diverse label-preserving images for improving the performance of CNNs by making
them invariant to some transformations of the images. Practically data augmentation
increases the volume of the training dataset by applying several transformations to
the original input. Traditional augmentation strategies can be distinguished among:
spatial transformations, such as random cropping, rotating, and flipping input images;
color jittering by varying brightness, contrast, or saturation of input images. Further
strategies distort input images using white noise, motion blur, and compression artifacts
(applied in Section 5.4.1.2). This helps to obtain a sort of invariance also to such kind
of artifacts. Recently, generative adversarial networks (GAN) [49] have been proved to
be very effective in many data generation tasks. This enables to augment available
datasets by generating totally new samples [176].

2.6 Data preprocessing

Data preprocessing is an essential part of any automatic learning process. It focuses on
adapting the data to simplify and optimize the training of the learning model. The high
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abstraction capacity of CNNs allows them to work on the original high dimensional
space, which reduces the need for manually preparing the input. However, a suitable
preprocessing is still important to improve the quality of results. Preprocessing mainly
involves data normalization, which stabilizes training procedure by scaling input data.

In order to keep the range of distributions of feature values under control and
avoid the training procedure to oscillate or to move slowly, several forms of data
normalization, such as mean subtraction and standardization and have been proposed.
Per-pixel mean subtraction is the most used normalization technique whether the
statistics for each data dimension follow the same distribution. The idea is to subtract
the mean from each data point in order to zero-center them. Average image is obtained
by computing the mean across all training set images. Sometimes the average image
is replaced with mean pixel (i.e. the overall mean value over each color channel) in
order to apply the per-channel mean subtraction. This is useful, for example, when
CNN input data size is not prefixed. Switching from mean image to mean pixel and
vice-versa as preprocessing for data to be feed into a learned model has no particular
effects. The standardization technique normalizes the data dimensions so that they are
approximately the same scale. Standardization implies that normalized data have zero-
mean and unit standard deviation. This is done for each data point by first subtracting
mean and then by dividing standard deviation. Mean and standard deviation could be
computed independently for each data point (also known as contrast normalization),
or for the entire training set.

2.7 Transfer learning

As explained in the previous section, a CNN consists of million of weights that needs to
be learned using a supervised training algorithm on a large-scale annotated databases.
Unfortunately, there exists no large-scale dataset for each challenge and a suitable
method to face this problem is based on reusing off-the-shelf pre-trained models thanks
to transfer learning approaches [9, 116, 164]. Specifically, transfer learning techniques
first involve the training of a model for a source task on a large-scale dataset (e.g.
ImageNet), and then the use of the pre-trained model on a target task somehow related
to the source task. Transfer learning can be used in one the following ways:

• Model as feature extractor [34]: The knowledge gained in the source model can
be used to build features for the data points belonging to the target task dataset,
and such features (fixed) are then fed to new models. For example, it is possible
to feed new images through a pre-trained CNN and use activations of any desired
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Fig. 2.6 An illustration of the AlexNet architecture. Image from [76].

layer as feature vectors for these images. The features thus built can be used in
a classifier for the desired situation.

• Fine-tuning the source model [46]: In this strategy, a pre-trained CNN can be
used as an initialization (rather than random initialization) for a further learning
process. The model will be trained on the much smaller user-provided data of the
target task dataset. The advantage of such a strategy is that weights can reach
the global minima without much data and training. According to the amount
of available data it is possible to consider whether to fix a portion of the model
(usually the beginning layers) and only fine-tune the remaining layers.

2.8 Popular architectures

In computer vision domain, deep CNNs achieved impressive results in several challenges.
In 2012, the proposed AlexNet [76] dramatically increased the performance on the
1000-class ImageNet Large-Scale Visual Recognition Competition (ILSVRC2012) [32].
Since then, more complex and deeper CNN architectures, such as VGG-16 [132]
and GoogLeNet [139], have been designed in order to gradually improve recognition
accuracy on ILSVRC benchmark. These architectures represent the starting point for
new models design. AlexNet consists of five convolutional (CONV) layers and three
fully-connected FC layers (see Figure 2.6 for details). Among the novelties of this
network: ReLU non-linearity after each layer CONV or FC; the use of overlapping,
instead of adjacent, pooling kernels; introduction of LRN layer; weight decay and data
augmentation. In total, AlexNet requires 61M weights. VGG-16 goes deeper to 16
layers consisting of 13 CONV layers and 3 FC layers. In order to balance out the
cost of going deeper, all the CONV layers move from larger filters (e.g. 5 × 5) to
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(a) Costructing a 5× 5 support for 3× 3 filters. Used in VGG-16.

(b) Costructing a 5× 5 support from 1× 5 and 5× 1 filters.
Used in GoogleNet/Inception v3 and v4.

Fig. 2.7 Decomposing larger filters into smaller filters. Image from [137].

multiple smaller filter of size 3× 3 still maintaining the same receptive fields (see Fig.
2.7a). In total, VGG-16 requires 138M weights. GoogLeNet, also known as Inception
net, goes even deeper with 22 layers. It introduces the inception module, shown in
Figure 2.8, which is composed of parallel connections having different sized filters and
max-pooling, then module output is obtained by concatenating parallel connection
outputs. The use of multiple filter sizes enables to obtain a multi-scale processing. The
22 layers consist of three CONV layers, followed by 9 inceptions layers and one FC layer.
In total, GoogLeNet requires 7M weights (12 times fewer than AlexNet). Since its
introduction in 2014, other versions of GoogLeNet (Inception-v1) have been proposed:
Inception-v3 (Inception-v2 is very similar) decomposes the filters as shown in Figure
2.7b to reduce the amount of weights and to go deeper to 42 layers, and introduces
batch normalization [140]; Inception-v4 exploits insights from residual blocks [138].
ResNet architecture [55], also known as Residual Net, applies residual connections to
go even deeper (34 layers or more depending on the version). It addresses the problem
of vanishing gradient during training (the gradient might shrinks through very deep
networks and this affects the ability to update the weights in the earlier layers) by
introducing a “shortcut” module (also called residual block) which contains an identity
connection such that the weight layers (i.e. CONV layers) can be skipped as shown
in Figure 2.9a. Additionally, ResNet uses the “bottleneck” approach of using 1 × 1
filters to reduce the number of weight parameters (as in Fig. 2.9b). There are various
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Fig. 2.8 Inception module from GoogleNet architecture with example channel lengths.
ReLU nonlinearity after CONV layer omitted for compactness. Image from [137].

(a) Without bottleneck (b) With bottleneck

Fig. 2.9 Residual block from ResNet. Note the ReLU nonlinearity following the last
CONV layer in short cut is after the addition. Image from [137].

versions of ResNet with multiple depths (e.g. 18, 50, 152); ResNet-50 requires 25.5M
weights.
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Chapter 3

Blind Image Quality Assessment

In this chapter the image quality assessment problem, methods, datasets and metrics
will be described. Furthermore, the proposed solution to this problem will be detailed.

Digital pictures may have a low perceived visual quality. Capture settings, such as
lighting, exposure, aperture, sensitivity to noise, and lens limitations, if not properly
handled could cause annoying image artifacts that lead to an unsatisfactory perceived
visual quality. Being able to automatically predict the quality of digital pictures
can help to handle low quality images or to correct their quality during the capture
process [19]. An automatic image quality assessment (IQA) algorithm, given an input
image, tries to predict its perceptual quality. The perceptual quality of an image is
usually defined as the mean of the individual ratings of perceived quality assigned by
human subjects (Mean Opinion Score - MOS).

In recent years, many IQA approaches have been proposed [100, 133]. They
can be divided into three groups, depending on the additional information needed:
full-reference image quality assessment (FR-IQA) algorithms e.g. [36, 160, 112, 155,
154, 16], reduced-reference image quality assessment (RR-IQA) algorithms, and no-
reference/blind image quality assessment (NR-IQA) algorithms e.g. [105, 102, 103].
FR-IQA algorithms perform a direct comparison between the image under test and a
reference or original in a properly defined image space [25]. Having access to an original
is a requirement of the usability of such metrics. RR-IQA algorithms are designed to
predict image quality with only partial information about the reference image [25]. In
their general form, these methods extract a number of features from both the reference
and the image under test, and image quality is assessed only by the similarity of these
features. NR-IQA algorithms assume that image quality can be determined without
a direct comparison between the original and the image under test [25]. Thus, they
can be used whenever the original image is unavailable. NR-IQA algorithms can be
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further classified into two main sub-groups: to the first group belong those targeted
to estimate the presence of a specific image artifact (i.e. blur, blocking, grain, etc.)
[24, 26]; to the second group the ones that estimate the overall image quality and thus
are distortion generic [104, 125, 19, 25].

Most of the distortion-generic methods estimate the image quality by measuring
deviations from Natural Scene Statistic (NSS) models [19] that capture the statistical
“naturalness” of non-distorted images. These models are based on the two following
principles: i) good quality real-world photographic images obey certain perceptually
relevant statistical laws; ii) common image distortions alter such statistical laws. The
Natural Image Quality Evaluator (NIQE) [103] is based on the construction of a
quality aware collection of statistical features based on a space domain NSS model.
The Distortion Identification-based Image Verity and INtegrity Evaluation (DIIVINE)
index [105] is based on a two-stage framework for estimating quality based on NSS
models, involving distortion identification and distortion-specific quality assessment.
The core of the method uses a Gaussian scale mixture to model neighboring wavelet
coefficients. C-DIIVINE [174] is an extension of the DIIVINE algorithm in the complex
domain, and blindly assesses image quality based on the complex Gaussian scale
mixture model corresponding to the complex version of the steerable pyramid wavelet
transform. The BLIINDS-II [123] method, given an input image, computes a set of
features and then uses a Bayesian approach to predict quality scores. Such features
are obtained by transforming the model parameters of a generalized NSS-based model
of local Discrete Cosine Transform coefficients into a vector of features.

The Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [102] oper-
ates in the spatial domain and is also based on a NSS model. The algorithm quantifies
possible losses of naturalness in the image due to the presence of distortions.

The use of a database of images along with their subjective scores is fundamental
for both the design and the evaluation of IQA algorithms [128, 45]. Recent approaches
to the blind image quality assessment problem use these images coupled with the
corresponding human provided quality scores within machine learning frameworks to
learn directly from the data a quality measure. The Feature maps based Referenceless
Image QUality Evaluation Engine (FRIQUEE) [43, 45] combines a deep belief net and
a SVM to predict image quality. Tang et al. [142] define a simple radial basis function
on the output of a deep belief network to predict the perceived image quality. They first
pre-train the network in an unsupervised manner and then fine-tune it with labeled data.
Finally they model the quality of images exploiting a Gaussian Process regression. Hou
et al. [58] propose to represent images by NSS features and to train a discriminative
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deep model to classify the features into five grades (i.e. excellent, good, fair, poor, and
bad). Quality pooling is then applied to convert the qualitative labels into scores. In
[96] a model is proposed which uses local normalized multi-scale difference of Gaussian
(DoG) response as feature vectors. Then, a three-steps framework based on a deep
neural network is designed and employed as pooling strategy. Ye et al. [163] presented
a supervised filter learning based algorithm that uses a small set of supervised learned
filters and operates directly on raw image patches. Later they extended their work
using a shallow convolutional neural network [68]. The same CNN architecture has
been then used to simultaneously estimate image quality and identify the distortion
type [69] on a single-type distortion dataset [128].

Features extracted from CNN pre-trained for object and scene recognition tasks,
have been shown to provide image representations that are rich and highly effective for
various computer vision tasks. In this thesis their use for multiple generic distortions
NR-IQA and their capability to model the complex dependency between image content
and subjective image quality is investigated [4, 26, 144].

The hypothesis motivating this research is that the presence of image distortions
such as JPEG compression, noise, blur, etc. might be captured and modeled by these
features as well. As shown in Figure 3.1, the resulting activation map produced by
convolving filters of the CaffeNet’s first convolutional layer learned on the sharp images
of ImageNet database is different depending on the quality of image signal. In fact,
for a pristine image the result of convolution is a well defined activation map where
oblique edges are emphasized, while given a noisy image the result of convolution is
very noisy too. Furthermore, the more concepts the CNN has been trained to recognize,
the better are the extracted features. The effect of several design choices are evaluated:

i) the use of different features extracted from CNNs that are pre-trained on different
image classification tasks for an increasing variety and number of concepts to
recognize;

ii) the use of a number of different image sub-regions (opposed to the use of the
whole image) to better capture image artifacts that may be local or partially
masked by specific image content;

iii) the use of different strategies for feature and score predictions pooling.

In this thesis a novel procedure for the fine-tuning of a CNN for multiple generic
distortions NR-IQA is proposed, which consists in discriminatively fine-tuning the
CNN to classify image crops into five distortion classes (i.e. bad, poor, fair, good, and
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(a)

(b)

Fig. 3.1 Activation maps of CaffeNet’s first filter of the first convolutional layer trained
on ImageNet [64]. (a) The convolution between a pristine image of a monarch and the
filter produces an activation map where oblique edges are emphasized. (b) Instead,
the convolution between a noise version of the same monarch and the filter produces a
very noisy activation map.
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excellent) and then using it as feature extractor. Whatever is the feature extraction
strategy and the related CNN, a Support Vector Regression (SVR) machine [148, 27] is
finally exploited to learn the mapping function from the CNN features to the perceived
quality scores [87].

Experimental results on the LIVE In the Wild Image Quality Challenge Database
show that our method outperforms the state-of-the-art methods compared, including
those based on deep learning. Its generalizability is further confirmed on four other
benchmark databases of synthetically distorted images: LIVE, CSIQ, TID2008 and
TID2013.

The experiments are conducted on the LIVE In the Wild Image Quality Challenge
Database which contains widely diverse authentic image distortions on a large number
of images captured using a representative variety of modern mobile devices [44]. The
result of this study is a CNN suitably adapted to the blind quality assessment task
that accurately predicts the quality of images with a high agreement with respect to
human subjective scores. Furthermore, the applicability of the proposed method on
legacy LIVE Image Quality Assessment Database [128], CSIQ [80], TID2008 [114] and
TID2013 [113] is investigated.

3.1 Deep Learning for blind image quality assess-
ment

As previously introduced in section 2.7, when small database are available it is a
common practice to take a CNN that is pre-trained on a different large dataset (e.g.
ImageNet [32]), and then use it either as a feature extractor or as an initialization for
a further learning process (i.e. transfer learning, known also as fine-tuning [164, 9]). In
this thesis, the Caffe network architecture [64] (inspired by the AlexNet [76]) is used
as a feature extractor on top of which a Support Vector Regression (SVR) machine
[148, 27] with a linear kernel is exploited to learn a mapping function from the CNN
features to the perceived quality scores (i.e. MOS). The detailed architecture of the
CNN used is reported in Table 3.1. Given an input image, the CNN performs all the
multi-layered operations and the corresponding feature vector is obtained by removing
the final softmax nonlinearity and the last fully-connected layer. The length of the
feature vector is 4096. A graphical representation of the described approach is reported
in Figure 3.2.

The effect of several design choices for feature extraction is investigated. Such
solutions are: i) the use of different CNNs that are pre-trained on different image
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Table 3.1 Architecture of Caffe network. It consists in 8 weight layers. The ReLU
activation layers after each weight layer (except for fc8) are not shown for brevity.
FC denotes fully connected layer type, while LRN represents the Local Response
Normalization layer type.

conv1 pool1 norm1 conv2 pool2 norm2 conv3 conv4 conv5 pool5 fc6 fc7 fc8
Type Conv MaxPool LRN Conv MaxPool LRN Conv Conv Conv MaxPool FC FC FC
Kernel size 11× 11 3× 3 5× 5 3× 3 3× 3 3× 3 3× 3 3× 3
Depth 96 256 384 384 256 4096 4096
Stride 4 2 1 2 1 1 1 2
Padding 0 2 1 1 1

Fig. 3.2 Graphical representation of the main steps of the proposed approach: the input
image is fed to a CNN which performs all the multilayered operations and extracts a
feature vector. Then, an SVR maps the extracted features to the perceived quality
scores (i.e. MOS).

classification tasks; ii) the use of a number of different image sub-regions (opposed to
the use of the whole image) as well as the use of different strategies for feature and
score prediction pooling; iii) the use of a CNN that is fine-tuned for category-based
image quality assessment.

3.1.1 Image description using pre-trained CNNs

Razavian et al. [116] showed that the generic descriptors extracted from convolutional
neural networks are very powerful and their use outperforms hand crafted, state-of-
the-art systems in many visual classification tasks. Within the approach depicted in
Figure 3.2, our baseline consists in the use of off-the-shelf CNNs as feature extractors.
Features are computed by feeding the CNN with the whole image, that must be resized
to fit its predefined input size (see Figure 3.3.a).

Three different CNNs sharing the same architecture that have been pre-trained on
three different image classification tasks are evaluated:

- ImageNet-CNN, which has been trained on 1.2 million images of ImageNet
(ILSVRC 2012) for object recognition belonging to 1,000 categories;
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- Places-CNN, which has been trained on 2.5 million images of the Places Database
for scene recognition belonging to 205 categories;

- ImageNet+Places-CNN [177], which has been trained using 3.5 million images
from 1,183 categories, obtained by merging the scene categories from Places
Database and the object categories from ImageNet.

3.1.2 Feature and prediction pooling strategies

In the design choice described in Section 3.1.1, the image is resized to match the
predefined CNN input size. Since the resizing operation can mask some image artifacts,
here a different design choice is considered in which CNN features are computed on
multiple sub-regions (i.e. crops) of the input image. Crops dimensions are chosen to
be equal to the CNN input size so that no scaling operation is involved (see Figure
3.3.b). Each crop covers almost 21% of the original image (227×227 out of 500×500
pixels), thus the use of multiple crops permits to evaluate the local quality. The final
image quality is then computed by pooling the evaluation of each single crop. This
permits, for instance, to distinguish between a globally blurred image and a high-quality
depth-of-field image.

The use of a different number of randomly selected sub-regions [76], ranging from 5
to 50, is also experimented. The information coming from the multiple crops has to be
fused to predict a single quality score for the whole image. Different fusion strategies
are experimented:

- feature pooling: information fusion is performed element by element on the sub-
region feature vectors to generate a single feature vector for each image (see
Figure 3.4.a). Minimum, average, and maximum feature pooling are considered.
Lets call f

(j)
i the i−th entry of the feature vector relative to the j−th image

sub-region. In the case where Ns different sub-regions are considered and each
feature vector has size Nd, the three feature poolings considered can be expressed
as:

F min
i = min

j=1,...,Ns

f
(j)
i , i = 1, . . . , Nd (3.1)

F avg
i = 1

Ns

∑
j=1,...,Ns

f
(j)
i , i = 1, . . . , Nd (3.2)

F max
i = max

j=1,...,Ns

f
(j)
i , i = 1, . . . , Nd (3.3)
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(a)

(b)

Fig. 3.3 Graphical representation of different design choices: use of the whole image
resized to fit the CNN input size (a); and use of multiple image sub-regions taken from
the fullsize image (b).

- feature concatenation: information fusion is performed by concatenating the
sub-region feature vectors in a single longer feature vector (see Figure 3.4.b).
Formally, feature concatenation can be expressed as follows:

F =
[
f

(1)
i ⊕ · · · ⊕ f

(j)
i ⊕ · · · ⊕ f

(Ns)
i

]
(3.4)

- prediction pooling: information fusion is performed on the predicted quality
scores. The SVR predicts a quality score for each image crop, and these scores
are then fused using a minimum, average, or maximum pooling operators (see
Figure 3.4.c). Lets call q(j) the predicted quality score for the j−th image crop.
The three prediction poolings considered can be formally described as:

Qmin = min
j=1,...,Ns

q(j) (3.5)

Qavg = 1
Ns

∑
j=1,...,Ns

q(j) (3.6)

Qmax = max
j=1,...,Ns

q(j) (3.7)

3.1.3 Image description using a fine-tuned CNN

Convolutional neural networks usually require millions of training samples in order
to avoid overfitting. Since in the blind image quality assessment domain the amount
of data available is not so large, the fine-tuning of a pre-trained CNN exploiting the
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(a)

(b)

(c)

Fig. 3.4 Graphical representation of different design choices to pool information coming
from multiple image sub-regions: feature pooling (a), feature concatenation (b), and
prediction pooling (c).

available NR-IQA data is investigated. When the amount of data is small, it is likely
best to keep some of the earlier layers fixed and only fine-tune some higher-level portion
of the network. This procedure, which is also called transfer learning [164, 9], is feasible
since the first layers of CNNs learn features similar to Gabor filters and color blobs
that appear not to be specific to a particular image domain; while the following layers
of CNNs become progressively more specific to the given domain [164, 9].

Firstly a pre-trained CNN is fine-tuned to the image quality assesment task by
substituting the last fully connected layer with a new one initialized with random
values. The new layer is trained from scratch, and the weights of the other layers are
updated using the back-propagation algorithm [83] with the available data for image
quality assessment. In this thesis, image quality data are a set of images having human
average quality scores (i.e. MOS). The CNN is discriminatively fine-tuned to classify
image sub-regions into five classes according to the 5-points MOS scale [135]. The
five classes are obtained by a crisp partition of the MOS: bad (score ∈ [0, 20]), poor
(score ∈ ]20, 40]), fair (score ∈ ]40, 60]), good (score ∈ ]60, 80]), and excellent (score
∈ ]80, 100]). Once the CNN is trained, it is used for feature extraction within the
approach depicted in Figure 3.2, just like one of the pre-trained CNNs.
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Table 3.2 A comparison of image quality assessment databases.

Database
Number of
reference
images

Number of
distorted
images

Number of
distortion
types

Authenticity of
distortions

Subjective
score type

Mixture of
distortions

Published
data

LIVE IQA [128] 29 779 5 Synthetic DMOS [0,100] N/A 2003
CSIQ [80] 30 866 6 Synthetic DMOS [0,1] N/A 2010
TID2008 [114] 17 1,700 17 Synthetic MOS [0,9] N/A 2009
TID2013 [113] 25 3,000 24 Synthetic MOS [0,9] N/A 2013
LIVE Challenge [45] N/A 1,162 Numerous Authentic MOS [0,100] ✓ 2016

3.2 Image quality databases

Different standard databases are available to test the algorithms’ performance with
respect to the human subjective judgements. Most of them have been created artificially,
while few of them contains images affected by mixtures of authentic distortions, as
shown in Figure 3.5. A summary of the attributes of the considered databases is shown
in Table 3.2.

3.2.1 Synthetic distortions

Databases presented in this section contain distorted images obtained by synthetically
introducing a single type of distortion, such as JPEG compression, simulated sensor
noise, or simulated blur to pristine images. They have been widely used for the devel-
opment of older perceptual image quality assessment systems. LIVE Image Quality
Assessment Database. The LIVE Image Quality Assessment Database[128], which
was the first successful public-domain image quality database and is still the widely
used, contains a total of 779 distorted images derived starting from 29 reference images
by introducing 7-8 degradation levels of five different single distortions: JPEG and
JPEG2000 (JP2K) compression, white noise (WN), gaussian blur (GB), and Rayleigh
fast-fading channel distortion. Differential Mean Opinion Scores (DMOS) are provided
for each image in the range [0, 100], where higher DMOS indicates lower quality.

Categorical Subjective Image Quality (CSIQ) The Categorical Subjective
Image Quality (CSIQ) database [80] includes 866 distorted images derived from 30
original images distorted using six different distortions: JPEG, JP2K, WN, GB, pink
Gaussian noise, and global contrast decrements; at four to five levels each. DMOS in
the range [0, 1] are provided for each image.

TID2008 The TID2008 [114] contains 1,700 distorted images with 17 different
distortions derived from 25 reference images at 4 degradation levels. Each image is
associated with a Mean Opinion Score (MOS) in the range [0, 9]. Contrary to DMOS,
higher MOS indicates higher quality.
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Fig. 3.5 (a) Synthetic and (b) authentic distortions affecting image quality databases.

TID2013 TID2013 [113] includes the largest number of distorted images. It consists
of 3,000 distorted images derived from 25 reference images with 24 types of distortions
at 5 different levels of distortion. Each image is associated with a MOS.

3.2.2 Authentic distortions

However, as pointed out by Ghadiyaram and Bovik [44]: “images captured using typical
real-world mobile camera devices are usually afflicted by complex mixtures of multiple
distortions, which are not necessarily well-modeled by the synthetic distortions found
in existing databases”. The LIVE In the Wild Image Quality Challenge Database [45]
contains 1,162 images with resolution equal to 500 × 500 pixels affected by diverse
authentic distortions and genuine artifacts such as low-light noise and blur, motion-
induced blur, over and underexposure, compression errors, etc. Database images have
been rated by many thousands of subjects via an online crowdsourcing system designed
for subjective quality assessment. Over 350,000 opinion scores from over 8,100 unique
human observers have been gathered. The mean opinion score (MOS) of each image
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is computed by averaging the individual ratings across subjects, and used as ground
truth quality score. The MOS values are in the [1, 100] range.

3.3 Evaluation criterions

The different design choices within the proposed approach are compared with a number
of leading blind IQA algorithms. Since most of these algorithms are machine learning-
based training procedures, following [45] in all the experiments the data are splitted
into 80% training and 20% testing sets, using the training data to learn the model and
validating its performance on the test data. To mitigate any bias due to the division
of data, the random split of the dataset is repeated 10 times. For each repetition the
Pearson’s Linear Correlation Coefficient (LCC) and the Spearman’s Rank Ordered
Correlation Coefficient (SROCC) between the predicted and the ground truth quality
scores are computed, reporting the median of these correlation coefficients across the
10 splits. LCC is formulated as follow:

LCC =
∑N

i=1 (ŷi − ¯̂y)(yi − ȳ)√∑N
i=1 (ŷi − ¯̂y)2

√∑N
i=1 (yi − ȳ)2

, (3.8)

where ¯̂y = (1/N)∑N
i=1 ŷi is the average of predicted scores and ȳ = (1/N)∑N

i=1 yi is
the average of the ground-truth scores; while SROCC formula is:

SROCC = LCC(rank(ŷ), rank(x)) = cov(rank(ŷ), rank(y))
σrank(ŷ)σrank(y)

, (3.9)

where rank(ŷ) and rank(y) denote the ranked predicted scores and the ranked ground-
truth scores respectively, and σrank(ŷ) and σrank(y) are the standard deviation of the
ranked predicted scores and ranked ground-truth scores.

In all the experiments the Caffe open-source framework is used [64] for CNN training
and feature extraction, while the LIBLINEAR library [40] is employed for SVR training.

3.4 Experimental results

In this section the performance of each design choice introduced in Section II are
evaluated.
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Table 3.3 Median LCC and SROCC across 10 train-test random splits of the LIVE In
the Wild Image Quality Challenge Database considering only the central crop of the
subsampled image as input for the pre-trained CNNs considered.

LCC SROCC
Imagenet-CNN 0.6782 0.6381
Places-CNN 0.6267 0.6055
ImageNet+Places-CNN 0.7215 0.7021

3.4.1 Experiment I: Image description using pre-trained CNNs

The 4096-dimensional features are extracted from the fc7 layer of the pre-trained
ImageNet-CNN, Places-CNN and ImageNet+Places-CNN. Since these CNNs require
an input with a dimensionality equal to 227 × 227 pixels, the original 500 × 500
images are rescaled to 256× 256 keeping aspect ratio, and then the central 227× 227
sub-region from the resulting image is cropped out. All the images are pre-processed
by subtracting the mean image, that is computed by averaging all the images in the
training set on which the CNN was pre-trained. The median LCC and SROCC over
the 10 train-test splits are reported in Table 3.3. From the results it is possible to
see that ImageNet+Places-CNN outperforms both Imagenet-CNN and Places-CNN,
with Places-CNN giving the worst performance confirming our original hypothesis that
the more concept the CNN has been trained to recognize, the more effective are its
features for modeling generic image content.

3.4.2 Experiment II: feature and prediction pooling strate-
gies

In the previous experiment the resize operation could have reduced the effect of some
artifacts, e.g. noise. In order to keep unchanged the distortion level the performances
of features extracted from a variable number of randomly cropped 227×227 sub-regions
from the original image are evaluated. Given the results of the previous experiment,
the only features considered here are those extracted using the ImageNet+Places-CNN.

Three different fusion schemes for combining the information generated by the
multiple sub-regions to obtain a single score prediction for the whole image are
considered.

The first scheme is feature pooling that can be seen as an early fusion approach,
performing element-wise fusion on the feature vectors. The second scheme is feature
concatenation, performing information fusion by concatenating the multiple feature
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Table 3.4 Median LCC and SROCC across 10 train-test random splits of the LIVE In
the Wild Image Quality Challenge Database considering randomly selected crops as
input for the ImageNet+Places-CNN and three different fusion approaches: feature
pooling, feature concatenation and prediction pooling.

LCC SROCC
Feature pooling (avg-pool,@30crops) 0.7938 0.7828
Feature concatenation (@35crops) 0.7864 0.7724
Prediction pooling (avg-pool,@20crops) 0.7873 0.7685

vectors into a single feature vector. The third scheme is prediction pooling that can be
seen as a late fusion approach, where information fusion is performed on the predicted
quality scores.

In all the experiments the number of random crops is varied between 5 and 50 in
steps of 5. Figure 3.6 shows the plots for LCC and SROCC with respect to the number
of crops considered, while the numerical values for the best configurations of each fusion
scheme (across pooling operators and number of crops) are reported in Table 3.4. The
optimal number of crops has been selected by running the two-sample t−test whose
results are reported in Figure 3.10. From the plots it is possible to see that feature
pooling conveys the best results. Prediction pooling is able to give comparable results
with those of feature pooling only when a small number of crops is considered. Finally,
feature concatenation gives the worst results, giving comparable results with those
of prediction pooling only when a large number of crops is considered. Concerning
the best configurations reported in Table 3.4, the output of the two-sample t−test
shows that the results obtained by feature average-pooling are statistically better
than both those obtained by feature concatenation (p-value equal to 3.4·10−9) and
prediction average-pooling (p−value equal to 8.8·10−5). The difference between feature
concatenation and prediction average-pooling is not significative instead (p−value equal
to 0.23).

3.4.3 Experiment III: Image description using a fine-tuned
CNN

In all previous experiments pre-trained CNNs for feature extraction are used. In this
experiment instead, the ImageNet+Places-CNN is fine-tuned for the NR-IQA task.
The CNN is discriminatively fine-tuned to classify image crops into five distortion
classes (i.e. bad, poor, fair, good, and excellent) obtained by crisp partitioning the
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(a) (b)

Fig. 3.6 Median LCC (a) and SROCC (b) across 10 train-test random splits of the
LIVE In the Wild Image Quality Challenge Database, with respect to the number of
image crops given in input to the pre-trained ImageNet+Places-CNN. Three fusion
schemes are considered (feature pooling, feature concatenation and prediction pooling),
and for each of them only the best configuration over the pooling operators considered
is reported.

MOS into five disjoint sets. Since the number of images belonging to the five sets is
uneven (see Figure 3.9), during training a sample weighting approach [60] giving larger
weights to images belonging to less represented distortion classes is used [143, 178].
Weights are computed as the ratio between the frequency of the most represented class
and the frequency of the class to which the image belongs. Formally, let us call fc the
frequency of the class Cc, with c = 1, . . . , 5; then the weight wi for the image Ii can be
expressed as:

wi =
max

c=1,...,5
fc

fk

where k = {c : Ii ∈ Cc} (3.10)

On the NR-IQA task this weighting scheme gives better results compared to batch-
balancing (i.e. assuring that in each batch all the classes are evenly sampled) since it
guarantees more heterogeneous batches.

Given the results of the previous experiments, only the performance of the fine-
tuned CNN with feature pooling and prediction pooling with the average operator are
evaluated. The network is fine-tuned for 5,000 iterations using Caffe framework [64] on
a NVIDIA K80 GPU. The total training time was about 2 hours, while predicting the
MOS for a single image at test time requires about 20ms.

Figure 3.7 shows the plots for LCC and SROCC with respect to the number of
crops considered, while the numerical values for the best configurations are reported
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(a) (b)

Fig. 3.7 Median LCC (a) and SROCC (b) across 10 train-test random splits of the
LIVE In the Wild Image Quality Challenge Database, with respect to the number of
image crops given in input to the fine-tuned CNN. Two fusion schemes are considered
(feature average pooling and prediction average pooling).

Table 3.5 Median LCC and SROCC across 10 train-test random splits of the LIVE In
the Wild Image Quality Challenge Database considering randomly selected crops as
input for the fine-tuned CNN and two different fusion approaches (feature pooling and
prediction pooling).

LCC SROCC
Feature pooling (avg-pool,@20crops) 0.9026 0.8851
Prediction pooling (avg-pool,@25crops) 0.9082 0.8894

in Table 3.5. As for the previous experiment, the optimal number of crops has been
selected by running the two-sample t−test test whose results are reported in Figure
3.11. From the plots it is possible to notice that prediction pooling conveys the best
results whatever is the number of crops considered. Concerning the best configurations
reported in Table 3.5, the output of the two-sample t−test shows that the results
obtained by prediction average-pooling are statistically better than those obtained by
feature average-pooling (p-value equal to 4.7·10−4).

3.4.4 Comparison with the state-of-the-art BIQ algorithms

In Table 3.6 the results of the different instances of the proposed approach, called
DeepBIQ, are compared with those of some NR-IQA algorithms in the state of the
art. From the results it is possible to see that the use of a pre-trained CNN on the
whole image is able to give slightly better results than the best in the state of the
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Fig. 3.8 Scatter plot of the MOS predicted by DeepBIQ against the ground truth MOS
on the LIVE in the Wild Image Quality Challenge Database.

art. The use of multiple crops with average-pooled features is able to improve LCC
and SROCC with respect to the best method in the state of the art by 0.08 and
0.11 respectively. Finally the use of the fine-tuned CNN with multiple image crops
and average-pooled predictions is able to improve LCC and SROCC by 0.20 and 0.21
respectively. The scatter plot of the predicted MOS against the ground truth MOS
is reported in Figure 3.8. Error statistics may not give an intuitive idea of how well
a NR-IQA algorithm performs. On the other hand, individual human scores can be
rather noisy. Taking into account that the LIVE In the Wild Image Quality Challenge
Database gives for each image the MOS as well as the standard deviation of the
human subjective scores, to have an intuitive assessment of DeepBIQ performance the
following procedure is employed: the absolute prediction error of each image is divided
by the standard deviation of the subjective scores for that particular image. Then
a cumulative histogram is built collecting statistics at one, two, and three standard
deviations. Results indicate that 97.2% of predictions from the proposed DeepBIQ are
below σ, 99.4% below 2σ and 99.8% below 3σ. Assuming a normal error distribution,
this means that in most of the cases the image quality predictions made by DeepBIQ
are closer to the average observer than those of a generic human observer.

43



Blind Image Quality Assessment

Fig. 3.9 Sample distribution over the five quality grades considered for the LIVE In
the Wild Image Quality Challenge Database.

Table 3.6 Median LCC and median SROCC across 10 train-test random splits of the
LIVE In the Wild Image Quality Challenge Database.

LCC SROCC
DIIVINE [105] 0.56 0.51
BRISQUE [102] 0.61 0.60
BLIINDS-II [123] 0.45 0.40
S3 index [149] 0.32 0.31
NIQE [103] 0.48 0.42
C-DIIVINE [174] 0.66 0.63
FRIQUEE [43, 45] 0.71 0.68
HOSA [162] - 0.65
DeepBIQ (Exp. I: pre-trained CNN, whole image) 0.72 0.70
DeepBIQ (Exp. II: pre-trained CNN, image sub-regions, feat. avg-pool) 0.79 0.79
DeepBIQ (Exp. III: fine-tuned CNN, image sub-regions, pred. avg-pool) 0.91 0.89
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Table 3.7 Median LCC and median SROCC across 100 train-val-test random splits of
the legacy LIVE Image Quality Assessment Database.

Method LCC SROCC
DIIVINE [105] 0.93 0.92
BRISQUE [102] 0.94 0.94
BLIINDS-II [123] 0.92 0.91
NIQE [103] 0.92 0.91
C-DIIVINE [174] 0.95 0.94
FRIQUEE [43, 45] 0.95 0.93
ShearletIQM [98] 0.94 0.93
MGMSD [2] 0.97 0.97
Low Level Features [75] 0.95 0.94
Rectifier Neural Network [142] – 0.96
Multi-task CNN [69] 0.95 0.95
Shallow CNN [68] 0.95 0.96
DLIQA [58] 0.93 0.93
HOSA [162] 0.95 0.95
CNN-Prewitt [88] 0.97 0.96
CNN-SVR [87] 0.97 0.96
DeepBIQ 0.98 0.97

3.4.5 Experiment on benchmark databases of synthetically
distorted images

The proposed method is evaluated on these datasets dealing with the different human
judgements and distortion ranges by only re-training the SVR, while keeping the CNN
unchanged. The experimetal protocol used in [68, 69] is followed. This protocol consists
in running 100 iterations, where in each iteration 60% of the reference images and their
distorted versions is randomly select as the training set, 20% as the validation set,
and the remaining 20% as the test set. The experimental results in terms of average
LCC and SROCC values on LIVE are reported in Table 3.7, on CSIQ in Table 3.8, on
TID2008 in Table 3.9, and on TID2013 in Table 3.10. From these results it is possible
to see that our method, DeepBIQ, is able to obtain the best performance in terms of
both LCC and SROCC notwithstanding that differently from the all the other methods
reported, the features have been learned on a different dataset containing images with
real distortions and not on a portion of the test database itself. Therefore, the results
confirm the effectiveness of our approach for no-reference image quality assessment.
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Table 3.8 Median LCC and median SROCC across 100 train-val-test random splits of
the CSIQ.

Method LCC SROCC
DIIVINE [105] 0.90 0.88
BRISQUE [102] 0.93 0.91
BLIINDS-II [123] 0.93 0.91
Low Level Features [75] 0.94 0.94
Multi-task CNN [69] 0.93 0.94
HOSA [162] 0.95 0.93
DeepBIQ 0.97 0.96

Table 3.9 Median LCC and median SROCC across 100 train-val-test random splits of
the TID2008.

Method LCC SROCC
DIIVINE [105] 0.90 0.88
BRISQUE [102] 0.93 0.91
BLIINDS-II [123] 0.92 0.90
MGMSD [2] 0.88 0.89
Low Level Features [75] 0.89 0.88
Multi-task CNN [69] 0.90 0.91
Shallow CNN [68] 0.90 0.92
DeepBIQ 0.95 0.95

Table 3.10 Median LCC and median SROCC across 100 train-val-test random splits of
the TID2013.

Method LCC SROCC
DIIVINE [105] 0.89 0.88
BRISQUE [102] 0.92 0.89
BLIINDS-II [123] 0.91 0.88
Low Level Features [75] 0.89 0.88
HOSA [162] 0.96 0.95
DeepBIQ 0.96 0.96

46



3.4 Experimental results

Fig. 3.10 p-values of the two-sample t-test in Experiment II for the different design
choices: feature pooling (top), feature concatenation (middle), and prediction pooling
(bottom).
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Fig. 3.11 p-values of the two-sample t-test in Experiment III for the different design
choices: feature pooling (top), and prediction pooling (bottom).
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Chapter 4

General Content Image Aesthetics
Assessment and Sentiment Analysis

This chapter focuses on the aesthetics assessment and sentiment analysis problems
on general content images. In Section 4.1 image quality aesthetic assessment will be
presented and the proposed method will be detailed. Section 4.2 describes the problem
of visual sentiment analysis, then it gives an overview of the state-of-the-art methods
and finally publicly available databases will be described.

4.1 Image Aesthetics Assessment

The automatic assessment of image aesthetic is a novel challenge for the computer
vision community that has wide applications, e.g. image retrieval, photo management,
photo enhancement, image cropping, etc. [30, 72]. Because of the subjectivity of
humans’ aesthetic evaluation, in recent years, many research efforts have been made
and various approaches have been proposed [71, 95, 106, 131]. According to the way
the problem is formulated, computational approaches can be divided into two groups:
aesthetic classification and aesthetic regression. The first group of methods treats
aesthetic quality assessment as a binary classification problem, i.e. distinguish between
aesthetic and unaesthetic images. Most of these methods have focused on designing
features able to replicate the way people perceive the aesthetic quality of images.
For example, Datta et al. [29] design special visual features (colorfulness, the rule
of thirds, low depth of field indicators, etc.) and use the Support Vector Machine
(SVM) and Decision Tree (DT) to discriminate between aesthetic and unaesthetic
images. Nishiyama et al. [109] propose an approach based on color harmony and
bags of color patterns to characterize color variations in local regions. Marchesotti
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et al. [101] demonstrate that generic image descriptors, such as GIST, Bag-of-Visual-
words (BOV) encoded from Scale-Invariant Feature Transform (SIFT) information,
and Fisher Vector (FV) encoded from SIFT information, are able to capture a wealth
of statistics useful for aesthetic evaluation of photographs. Simon et al. [131] show
that aesthetic quality depends on context since they obtain more accurate predictions
by selecting features for specific image categories. Methods able to learn effective
aesthetic features directly from images have been proposed. Lu et al. [95] present the
RAting PIctorical aesthetics using Deep learning (RAPID) system, which adopts a
Convolutional Neural Network (CNN) approach to automatically learn features for
aesthetic quality categorization. Kao et al. [71] train a linear SVM using the features
extracted from a CNN pre-trained on ImageNet classification task. The second group
of approaches considers aesthetic quality assessment as a regression problem, i.e. they
predict an aesthetic rating or score of the images. Datta et al. [29] propose the use of
Linear Regression (LR) with polynomial terms of the features to predict the aesthetic
score. Bhattacharya et al. [10] propose to use a saliency map and a high-level semantic
segmentation technique for extracting aesthetic features subsequently used for training
a Support Vector Regression (SVR) machine. Wu et al. [161] design a new algorithm
called Support Vector Distribution Regression (SVDR) in order to use a distribution
of user ratings instead of a scalar for model learning. More recently, Kao et al. [71]
propose a regression model based on CNNs, which achieves the state-of-the-art results
on aesthetic quality assessment.

Thesis contribution on this topic is the use of a deep CNN to predict image aesthetic
scores. To this end a canonical CNN architecture, originally trained to classify both
objects and scenes, is fine-tuned by casting the image aesthetic prediction as a regression
problem. Additionally, it is investigated whether image aesthetics is a global or local
attribute, and the role played by bottom-up and top-down salient regions [62, 66]
to the prediction of the global image aesthetic. For the evaluation the AVA dataset
[106] is considered, because it is actually the largest dataset available and the only
one providing aesthetic ratings instead of binary classification of aesthetic quality (e.g.
“high" or “low”). Experimental results show the robustness of the solution proposed,
which outperforms the best solution in the state of the art by almost 17% in terms of
Mean Residual Sum of Squares Error (MRSSE).

4.1.1 General content aesthetics database

The Aesthetic Visual Analysis (AVA) dataset [106] is a large-scale collection of im-
ages and meta-data obtained from the on-line community of photography amateurs
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Fig. 4.1 Sample images from the Aesthetic Visual Analysis (AVA) database sorted by
their aesthetic score (decreasing from left to right).

and covering a wide variety of subjects on almost 1,000 challenges derived from
www.dbchallenge.com. Figure 4.1 shows some samples from the AVA dataset. It
contains over 255,000 images, both in RGB and grayscale with three types of annota-
tions: aesthetic ratings ranging from 1 to 10; semantic annotations consisting in 66
textual tags describing the semantics of the images; photographic style annotations
corresponding to 14 photographic techniques.

4.1.2 Proposed approach for image aesthetic assessment

In this thesis, aesthetic quality assessment is treated as a regression problem because
it is closer to the human photo rating process [31]. Given that general content image
aesthetics may depend on both the scenes and objects depicted, a pre-trained CNN as
generic as possible is chosen for fine-tuning to predict the aesthetic of an unseen image.
The network used is the Hybrid-CNN [177], originally trained by merging the scene
categories from Places dataset [177] and the object categories from ImageNet [32] for
a total of 1,183 different classes; it is a Caffe network architecture [64] (inspired by
the AlexNet architecture [76]). The output of the CNN is supposed to be single-real
value indicating the predicted aesthetic score, thus before starting the fine-tuning,
network architecture is slightly changed: the original last fully connected layer with
1,183 neurons is replaced with a single-neuron layer in order to produce, given an input
image, a predicted aesthetic score as a real number ranging between 1 and 10.

The proposed CNN, called DeepIA, is obtained by fine-tuning the Hybrid-CNN after
replacing the last fully connected with a single-neuron layer and using the Euclidean
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loss (as defined in Section 2.2.5, eq. 2.8) instead of the Softmax cross-entropy loss (see
Section 2.2.5, eq. 2.5).

CNN is fine-tuned using Stochastic Gradient Descent (SGD) by chopping and
retraining the last fully connected and by slightly updating the weights for the other
layers. Batch size of 256 is used, momentum set to 0.9, and a weight decay parameter
of 0.0005. Then, the learning rate is initialized to a value of 0.001, and dropped every
20,000 iterations. The model is fine-tuned for a total of 50,000 iterations. In all the
experiments the Caffe open-source framework [64] is used for both the CNN training
and prediction processes. During the training process, the original images are resized
to 256 × 256 pixels without preserving the aspect ratio and then a random region
of 227× 227 pixels is extracted from the resized image. This approach increases the
training set size in order to avoid overfitting. The mean-pixel value calculated across
the training set images is the subtracted from the resized images.

At test time, the original images is first resized to a fixed dimensions and then
different design choices are evaluated:

• the images are resized to 256× 256 pixels and then the 227× 227 pixels central
crop is used for image aesthetic prediction;

• the images are resized to 256× 256 pixels and then the average the prediction
of multiple 227 × 227 pixels sub-regions (i.e. crops) of the input the image is
considered. Ten crops corresponding to the four corners, the center region and
their horizontal reflections are taken into account.

• the image pixels are weighted on the basis of their saliency using both a top-down
and a bottom-up saliency models. To this end, the saliency map values have been
scaled to fit the range [0, 1]. The image is then resized to 256× 256 and both the
central and multiple 227× 227 pixels crops are extracted and processed as above.
Two different algorithms for estimating salient regions are involved: the Itti et al.
[62], which is built upon a biologically plausible computational model of focal
bottom-up attention, and the Judd et al. [66], integrating a set of low, mid and
high-level image features. In Figure 4.2, the saliency maps predicted by the two
considered algorithms are shown.

4.1.3 Evaluation criterions and experimental results

For the experiments the same experimental procedure as [70] is follow. Images whose
longest dimension is three times more than the smallest dimension have been discarded,
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Original image Itti saliency map Judd saliency map

Fig. 4.2 Saliency maps predicted using the Itti et al. [62] and the Judd et al. [66]
algorithms on an image of the Aesthetic Visual Analysis (AVA) dataset [106].

resulting in a total of 255,099 images. Among them, 250,129 images are selected for
train and 4,970 for test. The average score of user ratings is taken as the images
aesthetic quality ground truth. The Mean Residual Sum of Squares Error (MRSSE) is
considered for performance evaluation:

MRSSE = 1
N

N∑
i=1

(yi − ŷi)2, (4.1)

where ŷi is the predicted aesthetic score and yi is the ground truth of image i. The
MRSSE obtained on the AVA dataset by DeepIA approach for the different design
choices outlined above, is reported in Table 4.1. The best results are obtained using
the average prediction over 10 crops of size 227×227 extracted from the 256×256
image. The second best result is obtained by considering only the central 227×227
crop extracted from the image of size 256 × 256. The use of relatively smaller crops
(i.e. 227×227 from 314×314 images) is not able to improve the results, giving a
hint that image aesthetic is a global rather than a local attribute. The use of both
top-down and bottom-up saliency models to filter out not-salient image content does
not help to improve the accuracy of the prediction. In Table 4.2 the best solution
proposed is compared with different methods in the state-of-the-art. As a reference,
the performance that could be achieved by always predicting an average score of 5 is
also reported. From the results it is possible to see that DeepIA outperforms all the
methods considered, with a reduction of MRSSE by almost 17% with respect to the
best method in the state-of-the-art. In Figure 4.3 the five test images with the smallest
MRSSE between ground-truth and predicted aestetic scores are reported. Figure 4.4
reports the ten test images with the largest errors: in the first row we report the top five
overestimation errors, while in the second row the top five underestimation errors. The
highest errors reported in Figure 4.4 show that sometimes bad predictions reflect a lack
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Table 4.1 Performances of aesthetic quality assessment on the AVA dataset.

Method Image size #crops MRSSE
DeepIA+Itti saliency map 256 1 0.5822
DeepIA+Itti saliency map 256 10 0.5766
DeepIA+Judd saliency map 256 1 0.4900
DeepIA+Judd saliency map 256 10 0.4829
DeepIA 314 10 0.4034
DeepIA 256 1 0.3866
DeepIA 256 10 0.3727

Table 4.2 Performance comparison of aesthetic quality assessment on the AVA dataset.

Method MRSSE
Always predicting 5 as aesthetic score 0.5700
BOV-SIFT+rbfSVR ([101] adapted in [71]) 0.5513
BOV-SIFT+linSVR ([101] adapted in [71]) 0.5401
GIST+rbfSVR ([101] adapted in [71]) 0.5307
GIST+linSVR ([101] adapted in [71]) 0.5222
Aest-CNN [71] 0.4501
DeepIA 0.3727

Fig. 4.3 Top 5 test images with the lowest error between ground-truth (GT) and
predicted (PR) aesthetic score.
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Fig. 4.4 Top 10 test images with the highest error between ground-truth (GT) and
predicted (PR) aesthetic score. Test images for which the predicted aesthetic score is
overestimated (first row), and images whose predictions are underestimated (second
row).

of information consisting in the already defined aesthetic gap [31], defined as follows:
The aesthetics gap is the lack of coincidence between the information that one can
extract from low-level visual data (i.e., pixels in digital images) and the interpretation
of emotions that the visual data may arouse in a particular user in a given situation.

Finally, since human aesthetic scores are noisy, an analysis of how close is the score
predicted by DeepIA with the whole distribution of scores given by the humans to
each image is provided. To this end, for each image, the ratio between estimation error
and the standard deviation of human scores is measured. The cumulative histogram
is reported in Figure 4.5. From the plot it is possible to see that almost 99% of the
predictions have an error smaller or equal to a standard deviation value of 1.

4.2 Image Sentiment Analysis

In this section, the problem of sentiment analysis in images is introduced. State-of-the-
art methods and available databases will be described.

4.2.1 Introduction

An image is a very effective support for conveying emotions. Through images, people
can express their feelings and communicate their opinions. For this reason, recently,
understanding the emotion and sentiment from visual content has attracted growing
attention. Image sentiment analysis aims to automatically extract the affective content
information from visual stimuli. Image sentiment analysis is a very challenging problem
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Fig. 4.5 Number of samples (%) with respect to the ratio between absolute estimation
error and standard deviations (σ) of human scores.

Fig. 4.6 Common definition of the visual sentiment analysis problem.

due to its high-level of abstraction, to the subjectivity of the human recognition process
[65], to the affective gap. The affective gap is defined as follow: The affective gap is the
lack of coincidence between measurable signal properties, commonly referred as features,
and the expected affective state in which the user brought by perceiving the signal [52].
To narrow this gap, previous studies have been focused on designing features able to
capture high-level semantics related to sentiments in images. In the following section,
state-of-the-art methods for image sentiment analysis and image-textual sentiment
analysis are introduced.

4.2.2 State-of-the-art methods

Tipically, sentiment analysis can be addressed as a binary classification problem for
sentiment polarity prediction (positive/negative) (as shown in Figure 4.6) or as a
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multiple classification problem aiming to distinguish among several emotion categories
(e.g. amusement, anger, awe, contentment, disgust, excitement, fear, and sadness).

Very few works have been proposed for visual emotion categorization. You [167]
proposed a large-scale image dataset for sentiment categorization among 8 classes.
They adopted transfer learning strategies: the first consisted in the use of a pre-trained
CNN model as feature extractor on top of what they put a support vector machine
(SVM) for sentiment categorization; the second exploited the fine-tuning procedure
to adapt the same pre-traiend CNN model for sentiment categorization. Experiments
have been conducted on the proposed dataset and on other three small dataset in the
state-of-the-art.

Many approaches have been proposed for the problem of sentiment polarity es-
timation. Siersdorfer et al. [130] proposed the first algorithm on visual sentiment
analysis able to predict the sentiment polarity of images using pixel-level features (i.e.
bag-of-visual words and color distribution). Given that sentiment involves high-level
abstraction, both [17] and [169] employed visual entities or attributes as mid-level
features for image sentiment analysis. In [17], 1200 adjective-noun pairs (ANP), which
may correspond to different levels of different emotion categories, were used to col-
lect images from Flickr, then pixel-level features have been used to train 1200 ANP
detectors. Finally, the predictions of these 1200 detectors have been used as features
for a sentiment classifier. The work in [169] applied a similar mechanism using 102
scene attributes. Deep learning based methods have been proposed. You et al. [166]
faced the problem of noise training data by proposing a convolutional neural network,
proposing a progressive training strategy to fine-tune the deep network. They obtained
results on the same set of images in [17] and additionally they collected a new dataset
of images from Twitter. Recently, Campos et al. [20] fine-tuned a pre-trained CaffeNet
for visual sentiment prediction and outperformed the state-of-the-art on the Twitter
database. Wang et al. [152] proposed the deep coupled adjective and noun neural
network (DCAN), consisting in two jointly learned branches (one for adjectives and the
other for nouns), that learn middle-level sentiment features then mapped to sentiment
polarity. In [165], You et al. addressed the problem of visual sentiment analysis by
identifying image regions relevant to sentiment prediction. An attention model has
been used to learn the correspondence between local image regions and the sentimental
visual attributes and, then, a sentiment classifier is built on top of the visual features
extracted from the local regions for the final sentiment prediction. Promising results
have been shown on the Visual Sentiment Ontology dataset.
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There are several methods exploiting both visual and textual information. In [153],
Wang et al. proposed an unsupervised method for social media images by modeling the
interaction between visual and textual information that achieved good results on three
large-scale datasets. You et al. [168] proposed a cross-modality consistency regression
(CCR) scheme for joint textual-visual sentiment analysis: both visual and textual
features have been used to learn a regression model. It showed better results both
on the state-of-the-art single textual and visual sentiment analysis models and two
fusion models. In [146], a large-scale dataset (called Twitter for Sentiment Analysis)
of unlabeled tweets (text and images) has been proposed and then has been used for
sentiment polarity estimation. A tandem Long Short Term Memory Recurrent Neural
Network-Support Vector Machine (LSTM-SVM) architecture has been exploited to
classify sentiment polarity of texts. Then images of the tweets, labeled according to
the sentiment polarity of the associated text, have been used to fine-tune a pre-trained
CNN for sentiment polarity.

4.2.3 Sentiment analysis databases

Several datasets have been proposed for visual emotion analysis. They contain real-
world images gathered from image search engines or social networks.

Sentibank. Sentibank [17], also known as visual sentiment ontology (VSO), is the
widely-used database for visual sentiment analysis. It contains about one-half million
images gathered from Flickr with adjective-noun pairs (ANPs) designed following the
Plutchik’s Wheel of Emotion (a well known psychological model of human emotions)
as queries. The sentiment label of each image is determined by sentiment polarity
(positive or negative) of the corresponding ANP.

Twitter. Twitter database [166] is a collection of images extracted from tweets. It
contains a total of 1,269 images labeled by employing crowd intelligence to generate
sentiment labels. Five Amazon Mechanical Turk (AMT) workers have been recruited for
sentiment polarity annotation. Given an image its label corresponds to the unanimous
agreed label, i.e. the sentiment label all the five AMT workers gave. Labels for
unanimous vote of “at least four agree” and “at least three agree” are also available.

Image Emotion Dataset from the Wild. Image Emotion Dataset from the
Wild [167] dataset consists of images collected from image search engines (Flickr and
Instagram) using eight emotions (i.e. Amusement, Anger, Awe, Contentment, Disgust,
Excitement, Fear, and Sadness) as keywords. The dataset contains a total of about
23,000 images annotated with one of the eight emotion categories used for queries.
Ground-truth is human-annotated using AMT.

58



4.2 Image Sentiment Analysis

Twitter for Sentiment Analysis. Twitter for Sentiment Analysis (T4SA) [146]
is a recent database composed by a little less than a million tweets, corresponding to
1.5M images. Ground-truth for sentiment polarity is obtained by using machine-based
annotations and by selecting only predictions higher than a desired confidence. The
resulting dataset without near-duplicates has a total of 974,053 images.
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Chapter 5

Portrait images aesthetic
assessment

This chapter is about the specific case of image aesthetic assessment, described in the
previous chapter, for portrait images. In particular, the problem is first introduced, an
analysis of previous methods is reported and a solution involving the combination of
visual attributes (i.e. quality and aesthetics of general content images) and of facial
attributes (i.e. smiling, hair style, makeup) is developed. Facial attributes estimation
is addressed by proposing two methods: a smile detector and a multi-task model.

5.1 Face aesthetics

One of the most common visual content and powerful channel of non-verbal communi-
cation is face [8, 159]. A large percentage of images on many photo sharing platforms
contains faces, self portraits, or “selfies”. An automatic system providing a feedback
about facial images is interesting and useful. In fact, an automatic system for portrait
aesthetics assessment might sort and edit portrait images, guide into the enhancement
of their visual aspects or select a few images from an entire collection.

The prediction of the overall aesthetics of a facial image is the result of the
combination of several features encoding relevant information about the global image
aesthetics adapted to facial pictures as well as information related to facial expressions
and high-level attributes (e.g. smile, age, gender, hair style). It should be clear that
face aesthetics is somehow related but is different from facial beauty: the first reflects
the attractiveness of a portrait image, instead the second represents the attractiveness
of face itself.
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The face aesthetics prediction in images is addressed by catching relevant information
about quality and aesthetics using methods already described in previous chapters as
well as information related to facial attributes that might encode relevant information
about face to guide aesthetic assessment.

5.2 Previous works

Aesthetic assessment of portrait images is a challenging task and few approaches exist.
Males et al. [99] presented the first work on aesthetic quality assessment of head-shots.
A support vector machine for binary classification (non-appealing or appealing) have
been trained by combining low-level (e.g. contrast and hue count of the whole image)
and high-level features (e.g. sharpness and blown-out highlights only of a facial region).
Experiments have been carried out on a set of photo collected from Flickr and manually
labelled by five people as being aesthetically appealing or not. Unfortunately their
database is not publicly available.

Lienhard et al. spent a lot of effort on aesthetic assessment of portrait images
[90–92]. In [92] proposed a new database, called Human Faces Score (HFS), and
developed a method based on image segmentation. More in detail, the input image is
segmented in several regions (hair, shoulders, skin, and background) and features (blur,
color count, illumination, and saturation) are then computed in each region. Results
have been reported both for binary classification (non-appealing or appealing portrait
image) and regression (aesthetic score estimation). Recently, in [90, 91] other features,
selection strategies both for features and regions, and classifiers have been introduced.
The proposed algorithm outperformed state-of-the-art approaches on HFS database,
results have been reported also for images containing faces gathered from databases
originally developed for general content aesthetic assessment.

5.3 Portrait images datasets

In this section the publicly available databases for portrait image aesthetics are
described. Available databases consist of images containing people or groups of
people gathered from online photo databases or photo sharing websites (e.g. Flickr,
DPChallenge1). Given that these photos are collected in real scenarios they present a
wide range of subjects, facial appearance, illumination and imaging conditions.

1www.dpchallenge.com
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Fig. 5.1 6 pictures of 3 people from the Human Faces Scores (HFS) database. On each
row images are sorted from low aesthetics to high aesthetics.

Fig. 5.2 Samples from the Face Aesthetics Visual Analysis (FAVA) database sorted by
their aesthetic score (increasing from left to right).

Human Faces Scores (HFS). The Human Faces Scores (HFS) [92] database
contains 250 images of head-shots, well known as selfies. Specifically, 7 images of 20
different people, and 110 additional portrait images have been collected. Examples
of images for 3 particular people are given in Figure 5.1. Each image has been rated
by 25 human observers on a scale with values ranging between 1 and 6 (6 means the
highest quality).

Face Aesthetics Visual Analysis. The Face Aesthetics Visual Analysis (FAVA)
database is a subset of the AVA database [106] (already described in Section 4.1.1)
containing various images with faces. Each picture is associated with a value between 1
and 10 (10 means highest quality) corresponding to the average of around 210 collected
individual scores. Samples are shown in Figure 5.2.
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Fig. 5.3 Samples from the Flickr database sorted by their aesthetic score (increasing
from left to right).

Fig. 5.4 Histograms of ground-truth scores for HFS, FAVA and Flickr databases.

Flickr database. The Flickr database has been gathered on Flickr for general
aesthetic assessment [86]. It consists of 500 images associated to a ground-truth score
between 0 and 10 (10 means high quality). Photos are either portraits or group of
faces. According to [90] only the biggest detected face is considered in each picture.
Figure 5.3 shows samples from the database.

The histograms in Figure 5.4 show that HFS presents a higher variance than FAVA,
for which there is a lot of images with medium scores. This latter aspect makes the
learning step more difficult for the FAVA database, since few samples characterize
very low/high aesthetics, prediction performance is likely to be lower for FAVA than
for HFS. Since Flickr does not contain only frontal and centered faces but also group
portraits, the prediction performance may also be lower than for HFS.

5.4 Facial attributes description

A detailed face description can encode relevant aspects to guide aesthetic estimation. In
fact, it includes a wide variety of information related to person’s identity, demographic
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attributes (gender, age, and ethnicity), mood (facial expressions), and visual attributes
(e.g. hair style clothing, face shape). In the last decades, algorithms have been developed
for addressing problems such as face recognition and verification [11, 73, 141], facial
expressions recognition (e.g. smile detection [15], pain assessment [22]), landmark
estimation [175] and facial attributes estimation. These algorithms are used for
several applications including video surveillance [23], face retrieval [78, 171] and social
media [115]. Depending on the number of aspects simultaneously addressed, existing
approaches might be grouped into single attribute and multiple attributes methods. In
the following sections a smile detector robust to image distortions is proposed and a
multi-task learning approach for multiple facial attributes estimation is presented.

5.4.1 Single face attribute estimation

In this section the smile detection problem is addressed. Smiling is one of the most
significant facial attributes [117] and, among facial expressions, is one of the most
basic, common and useful in a person’s day life [39]. Smiling is an expression denoting
happiness, pleasure, satisfaction, or amusement. It is characterized by the upward
movements of the lip corners and of the cheeks. In the framework of the Facial Action
Coding System (FACS) [79], smile can be seen as the combination of the facial muscles
corresponding to the Action Unit six and twelve (AU6 and AU12).

The first works on smile detection used databases taken under constrained laboratory
environment. For example, Shinohara et al. [129] used Higher-order Local Auto-
Correlation (HLAC) features and Fisher Weight Map (FWM) for facial expression
recognition and smile detection and achieved good performance on their own database
consitsing of only four people. Bai et al. [7] extracted Pyramid Histogram of Oriented
Gradients (PHOG) features from the region of the mouth on the Cohn-Kanade AU-
Coded Facial Expression Database.

The first comprehensive work for smile detection in unconstrained scenarios was
proposed by Whitehill et al. [157]. At the same time they also made publicly available
a new dataset (GENKI) with contents from the web for smile detection in the wild.
Using this dataset, Shan [126, 127] proposed a very efficient smile detection approach
by simply comparing intensities of a few pixels in a face image [7]. Zhang et al.
[173] demonstrated the effectiveness and efficiency of Mouth Features (MF) for smile
detection.

More recently, An et al. [5] proposed a fully automated smile detection approach.
They showed that adopting three popular feature descriptors (Local Binary Patterns
(LBP) [1], Local Phase Quantization (LPQ) [111] and Histogram of Oriented Gradients
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(HOG) [33]). They achieved the best results on both the GENKI-4K database and
their own collected MIX databases. Gao et al. [42] proposed a semi-automated smile
detector, which achieved the best performance on the GENKI-4K database using
a combination of features (Raw pixel values, HOG and Self-Similarity of Gradients
(GSS)) combining multiple classifiers.

A fully automated approach for smile detection in digital images is presented. It
can be used in several applications such as photo selection and shutter control in digital
cameras, that operate under a wide range of imaging conditions, such as variations
illumination, face pose, occlusion, ethnicity, gender, age, etc. According to the proposal,
the input image is processed in order to detect faces using a face detector inspired
by Farfade et al. [41]. The faces are then aligned using an eye-based approach using
a facial landmarks detector [6] that does not require any manual labeling. Then a
Convolutional Neural Network (CNN) is exploited to predict smiling of the detected
faces. The CNN architecture has been designed to be trained even when the amount
of learning data is limited. The performance of the proposed pipeline is evaluated
on the GENKI-4K database [59], the only publicly available dataset in unconstrained
scenarios. The proposed pipeline achieves very good results in smile detection accuracy
and is more robust to various image distortions and transformations in comparison
with the state of the art.

5.4.1.1 Smile detection database

The GENKI-4K database [59] is used for performance evaluation. It is the most chal-
lenging and largest available database for the smile detection task in the unconstrained
scenario. It contains 4000 facial images of a wide range of subjects with different
ethnicity, age, facial appearance, pose, illumination and imaging conditions. All the
images are labeled by human coders, 2162 images are labeled as smile and the remaining
1828 images are labeled as non-smile. Although a few images are, probably, incorrectly
labeled no change to the groundtruth labels is done. Figure 5.5 shows some typical
images of the GENKI-4K database.

5.4.1.2 Smile detection using convolutional neural network

In this section the complete processing pipeline used to classify smiling faces from the
whole image using a CNN is outlined. The main steps of the pipeline are shown in Fig.
5.6. Given an image, the faces are first detected and then aligned by fixing the eyes
position. Then a CNN is used to understand whether it is a smiling face or not.
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Fig. 5.5 Sample typical images from GENKI-4K database. Smiling faces (top) and
non-smiling faces (bottom) are shown.

Input image Detected face Aligned face CNN

Smile?
Yes/No

…

…

…

…

Fig. 5.6 Outline of the proposed method for smile detection. Faces are detected from
the original images, then an eye-based face alignment step is performed. Finally facial
images are rescaled to a common size and classification is performed using a CNN.

Given an image, the faces are detected using a multi-view face detector inspired by
Farfade et al. [41]. The detected faces are aligned fixing the eyes position and then
rescaled to a common size. More in detail, the (x, y) coordinates of 49 facial landmarks
are obtained using the publicly available implementation of Chehra [6]. Among the
detected landmarks, only the two landmarks corresponding to the eyes corners location
are considered. These are used in the applied eye-based face alignment method, which
consists in fixing the eyes corners distance to 85 pixels using an affine transform matrix,
which is composed only of rotation and scaling. Facial images are then obtained by
cropping and scaling the transformed images to 36× 36 pixels.

Given the cropped and aligned 36×36, a central 32×32 patch is extracted and given
as input to a CNN to classify it as smile or non-smile. Different CNN configurations
are tested. They are designed to be trained even when the amount of labeled data
is limited. The CNN configurations evaluated are summarized in Table 5.1, one per
column. In the following the CNNs are referred by their names (A-C). In Table 5.2
the number of parameters for each configuration is reported. The number of weights
in configuration C net is larger than the others because of the fully-connected layer.
The difference between configuration A and configuration B is that the latter uses
two 3 × 3 convolutional layers instead of a single 5 × 5 layer. In this way, two non-
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Table 5.1 CNN configurations investigated for smile detection (shown in columns).
The convolutional layer parameters are denoted as “conv⟨receptive field size⟩-
⟨number of channels⟩”. The ReLU activation function is not shown for brevity.

CNN Configuration
A B C

4 weight layers 5 weight layers 5 weight layers
input (32 x 32 RGB image)

conv3-32 conv3-32 conv3-32
maxpool

LRN

conv5-32 conv3-32
conv3-32 conv5-32

avgpool
LRN

conv5-64 conv5-64 conv3-64
avgpool

FC-1024
FC-2

soft-max

Table 5.2 Number of parameters of the different CNN configurations considered (see
Table 5.1).

Network A B C
# of parameters 79,712 72,544 1,093,472

linearities instead of a single one are incorporate, which make the decision function
more discriminative and the CNN deeper. Furthermore, the use of two smaller filters,
also decreases the number of parameters from 79,712 (configuration A) to 72,544
(configuration B). In fact, assuming both input and output of the two configurations
have C channels, 52C2 = 25C2 parameters for a single 5× 5 convolutional layer are
required; instead, 2(32C2) = 18C2 parameters for two-layer 3× 3 convolutional stack.
Thus, the use of two smaller filters can be considered as a regularization approach
(with injected non-linearity). Unlike configuration A, configuration C contains one
more fully-connected layer with 1024 neurons before the FC-2. In this way, the global
properties of previous convolutional layer before the other fully-connected layer are
captured.

CNNs are trained from scratch using Stochastic Gradient Descent (SGD) with a
batch size of 256, momentum set to 0.9, and a weight decay parameter of 0.002. The
learning rate is initialized to a value of 0.001, and drop it by a factor of 10 every 6000

68



5.4 Facial attributes description

iterations. The model is trained for a total of 30000 iterations. Data augmentation
is applied by generating image translations and horizontal reflections: five random
32× 32 patches as well as their horizontal reflections from 36× 36 facial images. This
increases the size of the training set by a factor of 10. The Caffe [64] library is used for
CNNs training.

5.4.1.3 Performances evaluation and results

In the experiments, 4-fold cross-validation is performed on the GENKI-4K dataset,
meaning that the dataset is randomly partitioned into four subsets. For each round
of cross-validation a subset is used for testing and the other three subsets as training.
Results are reported in terms of average accuracy over the four rounds of cross-
validation.

The prediction made by the CNNs’s softmax is computed cropping the central
32× 32 patch from the 36× 36 facial image. In addition to this single patch prediction,
the prediction oversampling the facial image is computed: in this case the prediction
is made by considering five 32× 32 patches (the four corner patches and the center
patch) as well as their horizontal reflections, and averaging the predictions made by
the CNNs’s soft-max layer on the ten patches.

The performances obtained combining the predictions of the three proposed CNN
configurations and the influence of the face alignment step on the overall accuracy are
investigated.

The average accuracy of the different instantiations of the proposed pipeline are
reported in Table 5.3. From the results it is possible to notice that using a single
CNN the best results are obtained with CNN-A and using face alignment. It can be
seen that performance can be slightly improved by oversampling the input image and
combining the predictions of different CNNs.

At the time the experiments have been performed, the best performance on GENKI-
4K database was obtained by Gao et al. [42], who exploiting a semi-automatic
procedure (i.e. manual face alignment) report an average accuracy of 94.61%. For sake
of comparison their method is therefore reimplemented within the proposed processing
pipeline. The comparison with other fully automatic smile detection methods in the
state of the art [127, 5, 173, 42] is reported in Table 5.4. It is possible to see that the
proposed method is able to outperform the best method in the state of the art, i.e. the
reimplementation of Gao et al. [42] in the presented pipeline, by 2.15%. Concerning
the proposed method, some examples of misclassified images are reported in Figure 5.7
and 5.8. Figure 5.7 depicts same faces labeled as non-smile in the database that the
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Table 5.3 Smile detection accuracy results using the proposed CNN configurations.

Accuracy (%)

CNN config. (see Table 5.1) Without face
alignment

With face
alignment

A 92.60 93.13
B 92.18 92.80
C 92.70 92.75
A (oversampled) 90.45 93.35
A+B+C (oversampled) 92.53 93.77

Fig. 5.7 Face labeled as non-smile in the GENKI-4K database that the CNN-A classifies
as smile. Images are reported in order of decreasing confidence p(smile).

CNN-A classifies as smile. Instead, Figure 5.8 reports some examples of faces labeled as
smile in the database that are classified as non-smile by the proposed approach. From
these images it is possible to see that some classification errors are due to incorrect
labels in the dataset. Apart from these misclassifications, the greatest source of error is
due to very bad facial landmarks localization, as shown in Figure 5.9. In the following
section, the robustness of the CNN to bad face alignment and image distortions is
therefore investigated.

Imprecise face alignment can be caused both by inaccurate face detection and bad
facial landmarks localization. As seen in Table 5.3, the removal of the face alignment
step causes a drop in performance for all the CNN configurations investigated. The

Fig. 5.8 Face labeled as smile in the GENKI-4K database that the CNN-A classifies as
non-smile. Images are reported in order of increasing confidence p(smile).
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Table 5.4 Comparison with state-of-the-art methods on the GENKI-4K database.

Method Features Classifier Accuracy (%)
An et al. [5] HOG ELM 88.50
Zhang [173] Mouth Features AdaBoost 89.21
Shan [127] Pixel difference AdaBoost 89.70
Gao et al. [42] Raw pixels+HOG+Self-Similarity of Gradients (GSS) Linear SVM 91.20
Proposed CNN CNN 93.35

Fig. 5.9 Some misclassified examples caused by bad alignment. The first row shows
the faces before alignment with the detected facial landmarks overlaid; the second row
shows the faces after alignment.

same is true also for the best algorithm in the state of the art, i.e. Gao et al. [42],
whose average accuracy without face alignment drops to 87.78%. To investigate this
issue, given the aligned cropped faces of the GENKI-4k database, a new dataset is
created by applying some geometric transformations on the 36 × 36 facial images.
These are: rotation of the face around its center with different angles (−30◦, −20◦, ...,
30◦); scaling with different scale factors (0.80, 0.90, ..., 1.20); translation with various
pixel offsets (-8, -6, ..., 8). For all the transformations, zero-padding is used for pixels
falling outside the 36× 36 image window. Table 5.5 summarizes the settings for all of
the chosen transformations.

A set of three experiments are conducted considering a single geometric transforma-
tion at a time. The transformed images are classified using the (transformation-free)
trained CNN-A. The results of the performed experiments are reported in Figure 5.10.
In the same plots, the results obtained by the proposed implementation of the method
by Gao et al. [42] are also reported. From the plots it is possible to notice that
CNN-A shows a very high level of robustness against scaling. The performance remains
almost unaltered except when the object of interest is small. Regarding translation
and rotation the CNN shows a lower level of robustness, with performance significantly
decreasing respectively for offsets larger than 5-10 pixels and for rotation angle larger
than 10-20 degrees. The comparison between results by the proposed method and
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Table 5.5 Types and ranges of the geometric transformations applied to the original
images to simulate a bad alignment.

Type Amount
Rotation Angle −30◦,−20◦, . . . , 30◦

Scaling Factor 0.80, 0.90, . . . , 1.20
Translation Offset −8,−6, . . . , 8

Table 5.6 Types and ranges of the distortions applied to original images.

Type Amount
JPEG compr. Quality 99%, . . . , 0%

Gaussian noise Zero-mean
σ2 = 0.01, 0.02, . . . , 0.06

Gaussian blur Filter size 3× 3, 9× 9, . . . , 25× 25
σ2 = Filter size×0.25

Motion blur Pixel length 5, 10, . . . , 30
Angle 45◦

those by Gao et al. [42] shows a similar trend for the robustness to scale changes, while
the presented method results more robust to rotations and translations.

Images available to consumers usually undergo several stages, namely acquisition,
compression, transmission and reception, and they may suffer multiple distortions [63].
In this set of experiments the robustness of the proposed CNN with respect to four of
the most common image artifacts in real-world digital photos is tested. The considered
artifacts are: JPEG compression at different quality indexes (99%, . . . , 0%); Gaussian
noise with zero-mean and different variances (σ2 = 0.01, 0.02, . . . , 0.06); Gaussian blur
varying the filter size (3× 3, 9× 9, . . . , 25× 25) and the variance (corresponding to the
filter size multiplied by 0.25); Motion blur with fixed angle (45◦) and different pixel
lengths (5, 10, . . . , 30). The settings for all kinds of image artifacts are summarized in
Table 5.6.

Two different experiments are considered: in the first one a single artifact at
a time is considered; in the second one images are corrupted by multiple artifacts
together. For both the experiments, artifacts are applied on the detected faces after the
alignment step. Faces are classified at the increase of the strength of the artifacts using
the (distortion-free) trained CNN-A. The results of the single-artifact experiment are
reported in Figure 5.11. In the same plots the results obtained by the reimplementation
of the method by Gao et al. [42] are also reported. From the plots it is possible to
notice that CNN-A shows a very high level of robustness against JPEG compression
and Gaussian noise. In both cases the performance remain almost unaltered even for
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Fig. 5.10 Classification rates varying the rotation angle (a), the scaling factor (b), and
the translation offset (c).
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large distortion levels. Concerning Gaussian and Motion blur the CNN shows a lower
level of robustness, with performance decreasing for filter size and pixel length larger
than 10. In comparison with the method by Gao et al. [42] it is possible to see a very
similar behavior against JPEG compression and a higher robustness to Gaussian noise
and Motion blur. For what concerns Gaussian blur an inversion in performance can be
noticed in fact the method by Gao et al. [42] has higher robustness for large filter sizes.

For what concerns the multiple-artifacts experiment, the robustness of the proposed
pipeline at six different distortion levels obtained by combining blur, noise, and JPEG
compression is tested. An experiment considering a single distortion level at a time
for each face is conducted. Specifically, artifacts are applied in the same order they
generate in typical imaging pipelines [12]: Motion blur varying pixel lengths (5, 10, 15,
20, 25, 30) and fixed angle 45◦, Gaussian noise with zero-mean and different variances
(σ2 = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06), and JPEG compression at different quality
indexes (95%, 75%, 60%, 40%, 20% and 0%). In total six different distortion levels are
considered. These can be divided into three distortion groups: low distortion (levels 1
and 2), medium distortion (levels 3 and 4), and high distortion (levels 5 and 6). Some
samples of face crops after the application of the multiple artifacts at the six distortion
levels considered are reported in Figure 5.12. Figure 5.13 shows the results of the
performed experiment both on the presented pipeline and the reimplementation of
the method by Gao et al. [42]. From the plots it is possible to see that the proposed
method has a higher robustness with respect to image artifact for all distortion levels
except for the highest one, where the difference between presented method and that by
Gao et al.[42] is less than 1%. For intermediate distortion levels the accuracy of the
presented method is higher than that achieved by Gao et al. [42], with an improvement
higher than 9% for distortion levels from 1 to 5 (with a peak 13.6% improvement for
distortion level 3). In this section the effect on the classification accuracy of adding
images corrupted by artifacts in the CNN training set is evaluated. Artifact-affected
images belonging to one of the three aforementioned distortion groups at a time are
added, and classification robustness across all the six distortion levels considered is
measured. As for the previous experiments, the CNN-A architecture is used. Two
different training setups are considered: in the first one the already trained CNN-A is
fine-tuned [116], while in the second one the CNN is trained from scratch. For both
the setups, the distortion-free training set is increased by introducing images affected
by artifacts belonging to one of the aforementioned distortion groups at time.

The CNN-A is fine-tuned by chopping and retraining from scratch the FC-2 layer.
The same parameters used for training (batch size equal to 256 and momentum 0.9)
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Fig. 5.11 Classification rates varying (a) the JPEG quality index, (b) the variance of
zero-mean Gaussian noise, (c) the filter size of Gaussian blur, (d) the pixel length of
Motion blur.
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Fig. 5.12 Some samples of face crops after the application of a combination of the three
artifacts (Motion blur, Gaussian noise and JPEG compression) at the six distortion
levels considered.

except the starting learning rate set to 1e-4, the weight decay parameter set to 2e-4
and the total number of iterations set to 15000 are used for fine-tuning.

Results are reported in Figure 5.14. From the plots is highlighted that:

- adding images with artifacts does not affect the performance on distortion free
images and on images with low distortion levels, showing the robustness of the
CNN to such training data.

- Adding distorted images in the training set is able to increase robustness with
respect to low distortion levels up to 2.7% for both fine-tuned and trained CNNs.

- Robustness increases up to 7.3% and 8.3% for medium level distortion levels for
fine-tuned and trained CNN respectively.

5.4.2 Multiple face attributes estimation

With respect to single-task learning based methods, where each task is addressed
separately, ignoring any correlations between tasks, MTL based methods enable to
learn shared representations [21].
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Fig. 5.13 Classification rates applying a combination of three artifacts (Motion blur,
Gaussian noise and JPEG compression) with various distortion levels on the original
images.
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FT using low distortion samples
Train using low distortion samples
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Fig. 5.14 Classification rates of the CNN-A including images with low (green and yellow
solid lines), medium (dashed lines), and high distortion levels (dotted lines) in the
training set.
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A multi-task learning framework based on a convolutional neural network (MTL-
CNN) is proposed. It can simultaneously predict soft biometrics (age and gender) and
attributes such as hair colors and styles, types of beards, eyes colors etc. The algorithm
has shown promising results on several publicly available datasets. As previously
mentioned, high-level attributes (smile, presence of make-up, age) convey relevant
information about facial image aesthetics.

5.4.2.1 Face attributes databases

Given that there are no public databases containing ground-truth for all the considered
facial attributes, for the evaluation of the proposed end-to-end multi-task convolutional
neural network three of the widely used publicly available face databases for face
attribute estimation are used.

The Adience benchmark. The Adience benchmark [38] is a database designed
for age and gender classification. Images were collected from Flickr uploads mainly
from smart-phone devices. Faces from the Adience are highly unconstrained, reflecting
many of the real-world challenges, such as occlusions, extreme variations in head pose,
lighting conditions quality. The database contains about 26K images of 2284 subjects.

CelebA. CelebA is a large-scale face attributes database [93] consisting in more
than 200K images of more than 10K celebrities partitioned into training, validation
and testing splits with approximatively 162K, 20K and 20K images in the respective
splits. Each facial image is annotated with 40 binary attributes (see Table 5.7).
Database images present high variations in pose, expression, race, background, imaging
conditions.

LFWA. LFWA is an unconstrained database for face attributes estimation [93]. It
has 13233 images of 5749 identities annotated with the same 40 attributes as in the
CelebA database. The database is partitioned in 6263 training images and 6970 testing
images.

5.4.2.2 Deep multi-task learning for attributes estimation

The aim of the proposed approach is to simultaneously estimate a large number of
facial attributes using a single model.

Multi-task learning by CNN models demonstrates to be very effective for many
face-related tasks [50, 89, 150]. Following this success, a multi-task learning approach
based on convolutional neural network (MTL-CNN) to jointly estimate multiple facial
attributes from a single face image is proposed. This model takes into account the
attribute inter-correlations to obtain informative and robust feature representation.
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Table 5.7 List of 40 face attributes provided with the CelebA database.

Attr. Idx. Attr. Def. Attr. Idx. Attr. Def.
1 5oClockShadow 21 Male
2 ArchedEyebrows 22 MouthSlightlyOpen
3 BushyEyebrows 23 Mustache
4 Attractive 24 NarrowEyes
5 BagsUnderEyes 25 NoBeard
6 Bald 26 OvalFace
7 Bangs 27 PaleSkin
8 BlackHair 28 PointyNose
9 BlondHair 29 RecedingHairline
10 BrownHair 30 RosyCheeks
11 GrayHair 31 Sideburns
12 BigLips 32 Smiling
13 BigNose 33 StraightHair
14 Blurry 34 WavyHair
15 Chubby 35 WearingEarrings
16 DoubleChin 36 WearingHat
17 Eyeglasses 37 WearingLipstick
18 Goatee 38 WearingNecklace
19 HeavyMakeup 39 WearingNecktie
20 HighCheekbones 40 Young

Arched Eyebrows, Big
Lips, Blond Hair, Heavy
Makeup, No Beard,
Rosy Cheeks, Wavy
Hair, Wearing Lipstick,
Wearing Necklace,
Young.

Male, Eyeglasses, Wavy
Hair, Sideburns, Bushy
Eyebrows, Pointy Nose,
Mouth Slightly Open,
Bags Under Eyes, Wear-
ing Necklace, Young.

Female, 4-6.

(a) (b) (c)

Fig. 5.15 Examples from evaluated databases. (a) Face image from the CelebA dataset
and occurring attributes belonging to the set of 40 attributes. (b) Face image from the
LFWA with corresponding face attributes coming from the same 40 attributes as in
the CelebA. (c) Face image from the Adience benchmark labeled in terms of gender
and age group.
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This property is desirable for problems, like facial attributes estimation, where classes
are correlated with each other. As shown in Figure 5.16, several attributes of the
CelebA have strong pair-wise correlations (elements with red color). For example,
“Male”, “Attractive”, and “NoBeard” are highly correlated, this means that gender and
presence/absence of beard affect face’s attractiveness.

For an input face image, the resulting model is able to jointly predict all the
learned facial attributes. Given that many of the public-domain databases provide
ground-truth only for a subset of desired facial attributes (e.g. only facial expressions,
or soft biometrics), the training set is composed by aggregating data from multiple
databases labeled with a single attribute. The MTL-CNN consists of shared parameters
for all the attributes, followed by attribute-specific parameters. Shared parameters
adapt to the complete set of domains, while attribute-specific parameters deal with the
estimation of each attribute. The aforementioned CNN is trained by combining two
different losses: the first is used for attributes that are defined as mutually exclusive
(e.g. age group and gender), instead the second is used for attributes that are defined as
co-occurent. Additionally, a gating mechanism is introduced in order to pass/suppress
information. Finally, to better reflect the correlation between facial attributes a label
post-processing layer is applied.

Mutually exclusive vs. co-occurent attributes
Many of the considered attributes are mutually exclusive, that is only one class is
the correct one. For example, for age-group problem it is not possible that the same
subject is simultaneously classified in ranges “15-20” and “25-32”. For these attributes,
softmax cross-entropy loss (see Section 2.2.5, eq. 2.5), the most popular loss function
for single-label image classification in CNNs, is used. On the other hand, co-occurent
attributes are present such as “Smiling”, and “Mustache”. These are attributes that can
simultaneously occur and practically this means that their probabilities are independent.
The binary cross entropy loss (see Section 2.2.5, eq. 2.6) is used beacuse, unlike the
softmax that give a probability distribution around classes, it allows to deal with
multi-label problems. Although CelebA and LFWA databases contain facial attributes
mutually exclusive such as “BrownHair”, “BlackHair” and “BlondeHair” and the use
of softmax cross-entropy would enhance the learning algorithm in order to maximize
only one attribute among them, given that ground-truth says only presence/absence
of the attribute, estimation of these attributes is maintained as multi-label problem
(instead of a single-label multi-class problem). The algorithm would adapt in order to
learn such dependences.
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5.4 Facial attributes description

Center loss
Center loss was first proposed for face recognition task [156] and used for other problems
because of its effectiveness for making discriminative embedding features [151]. The
purpose of center loss is to minimize intra-class variations while maximizing inter-class
variations. The original center loss was designed for the single label classification
problem and it is hard to be exploited for multi-label classification. Therefore, the
criterion is modified in order to address the multi-label classification problem as follows
[107]:

LCenter
i = ∥e− cyi

∥2
2, (5.1)

where e is the embedding feature vector from penultimate network layer for the i-th
sample, cyi

is the class center feature vector for the corresponding ground-truth label.

Label-processing layer
Label-processing layer is designed to reflect relationships among facial attributes. For
example, in the CelebA database [93] {“WearingLipstick”, “RoseCheeks”, “Heavy-
Makeup”} and {“Male”, “Goatee”} are strongly correlated. In order to exploit this
information, the co-occurrence matrix Mc (see Figure 5.16) is computed by counting
the number of pair-wise co-occurrences for the 40 facial attributes. The co-occurrent
value Mc[i, j] between the i-th and the j-th attribute is calculated higher as i-th and
j-th appear together in more images. Label-processing (LP) layer is then formalized
as follows:

oLP = ReLU(WMcopred) · opred. (5.2)

Here, ReLU is the element-wise ReLU non-linearity (see Section 2.4), Mc is the co-
occurrence matrix, W is a weights matrix, opred is the prediction, and (·) indicates the
element-wise multiplication. Whether the predicted probability oMale is around five,
while probabilities oHeavyMakeup and oW earingLipstick are high, given that the pair-wise
correlation between these attributes is high, the resulting probability for the attribute
Male due to the Label-processing layer will be penalized.

Gating mechanism
Gate units are employed to select contextual attribute features. The idea is based by
the mechanism of gate unit in Long Short-Term Memory (LSTM) [57], which is used
to learn to remember or forget the history information from long sequence of input
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Fig. 5.16 Co-occurrence matrix of the 40 attributes provided with the CelebA database
(only training set labels are considered).

data. Differently from LSTM, introduced gate units do not depend on temporal data,
but are designed to “remember” or “forget” features across different attributes. The
used gate equation is:

y = σ(Wx + b) · x, (5.3)

where σ is the element-wise sigmoid non-linearity, W and b are learnable parameters,
x is a features vector, and (·) indicates the element-wise multiplication. The gate
function is used at feature-level and prediction-level. Feature-level gate is introduced
immediately before the classification layer for disentangling the representation of
the different attributes. Prediction-level gate controls the co-occurrence between
predicted attributes. Differently from the previously described Label-processing layer,
which exploits the co-occurrence matrix to find out attributes with strong correlation,
prediction-level gate function learns these relationships in a self-supervised manner.

ResNet-50 [55] (see Section 2.8) is used as CNN architecture. It has 50 layers
with parameters: the first is a 7× 7 convolutional layer followed by four blocks each
containing 3, 4, 6, 3 residual units, respectively. The network ends with a global average
pooling layer and two fully-connected layers. The first fully connected layer maps the
2048 features into other 2048 features while the second is a 48-way (40 attributes + 8
age groups) fully-connected layer for classification.
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The network is trained end-to-end by using random batches of images: half of the
samples taken from the Adience benchmark and the remaining half taken from the
CelebA database. The face images are pre-processed by firstly aligning them using the
ground-truth landmark points to estimate an affine transformation in order to minimize
difference between samples from the different databases. Then, contrast-normalization
by subtracting the mean and by dividing by the standard deviation for each color
channel is applied. Finally, images are sub-sampled in order to fit required network
size to 224× 224 pixels. MTL-CNN is trained using SGD with Nesterov momentum
(see Section 2.4.1), the batch size of 32, the learning rate is kept fixed to a value of
0.0001. Momentum is set to 0.9, and the weight-decay parameter is 5e-4. The model is
trained for 80 epochs and the best model is selected using the early stopping strategy
(i.e. best performances achieved in all tasks on validation sets). The total loss used
to train the model is given by Ltotal = LCE + LBCE + 0.95Lcenter, where LCE is the
softmax cross-entropy loss, LBCE is the binary cross-entropy, and Lcenter indicates the
center loss.

5.4.2.3 Related works

Eidinger et al. [38] conducted extensive tests on the collected Adience benchmark.
Levi et al. [84] trained two different convolutional neural networks for addressing again
the gender and age group on the Adience database. Van de Wolfshaar et al. [147]
fine-tuned a pre-trained convolutional neural network and then used the deep features
for gender classification using a support vector machine.

Other methods allow to predict multiple face attributes at the same time. Kumar
et al. [77] proposed the first work on the automatic classification of facial attributes.
The approach involves the use of independent classifiers for each attribute trained
using features (image intensities in RGB and HSV color spaces, edge magnitudes,
gradient directions) extracted from hand-picked facial regions. More recent approaches
leverage deep learning techniques. Zhang et al. [172] presented PANDA, a part-based
method involving the use of pose-normalized CNN to infer human attributes from
images. More in detail, CNN features extracted from localized regions are used to train
SVM classifiers for attribute prediction. Liu et al. [93] introduced two large-scale face
attribute databases, namely CelebA and LFWA, and utilized a combination of two
localization networks (LNETs) and an attribute recognition network (ANET). LNets
are trained in a weakly supervised manner, instead ANet is pre-trained by classifying
massive face identities and then fine-tuned by attributes to extract features that are
fed into independent linear support vector machines (SVMs) for the final attribute
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classification. Rozsa et al. [120] and Rudd et al. [121] trained CNNs directly over facial
attribute data of CelebA obtaining competitive performance. Uricár et al. [145] used
an ensemble of multi-class SO-SVM predictors on top of deep features learned using
a convolutional neural network for apparent age, gender, and smile prediction. The
VGG-16 architecture pre-trained on ImageNet has been fine-tuned on IMDB-WIKI
and ChaLearn 2015 LAP datasets. Recently, Kalayeh et al. [67] showed that semantic
segmentation further improves 40 attributes classification accuracy on both the CelebA
and LFWA databases.

Deep learning approaches have been proved to be well suited for multi-task learning
(MTL). Several MTL approaches have been proposed for attribute estimation. A
multi-task restricted Boltzmann machine (MT-RBM) has been used by Ehrlich et al.
[37] for facial attribute classification. They showed performance improvement over the
state-of-the-art on three datasets. Han et al. [50] presented a multi-task convolutional
neural network able to model both attribute correlation and attribute heterogeneity.

5.4.2.4 Evaluation procedure

Experiments are conducted by simultaneously training the model on Adience bench-
mark and CelebA database. To supplement the analysis on CelebA dataset and to
demonstrate the generality of the proposed method experimental results are reported
on LFWA too. Results are reported in terms of accuracy for age and gender classifica-
tion on the Adience benchmark. For age classification, both the accuracy when the
algorithm gives the exact age-group classification and when the algorithm is off by
one adjacent age-group (i.e., the subject belongs to the group immediately older or
immediately younger than the predicted group) is measured. While performances for
CelebA and LFWA databases are expressed in terms of classification error.

Testing for both age and gender classification on Adience benchmark is performed
using a standard five-fold, subject-exclusive cross-validation protocol defined in [84],
while for both CelebA and LFWA databases results are computed on the testing set.
Specifically, the average accuracy over the five-folds of cross-validation is reported
for both age and gender classification; instead, average error computed over the
classification errors on testing set produced by each one of the five models trained due
to cross-validation is reported for facial attributes estimation on CelebA and LFWA
databases.
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5.4.2.5 Experimental results

In this section, experiments conducted for multiple facial attributes estimation are
described. The performances obtained by the different configurations of the proposed
method are shown in Table 5.8. In all the experiments, the Center loss is considered
with both Softmax cross-entropy and BCE losses. The first experiment consists in the
use of the architecture described in Section 5.4.2.2, that is the standard ResNet-50 with
the addition of a fully-connected layer immediately before the classification layer that
has 48 neurons. For this experiment the classification accuracy for gender is 87.52%,
the obtained classification accuracy for exact estimation of age group corresponds to
60.19%. Finally, classification errors for the 40 binary attributes estimation problem
are 10.75% and 13.16% for CelebA and LFWA respectively.

The second experiment includes the proposed gate functions. Specifically, both
feature-level and prediction-level layers are introduced into the architecture immediately
before and after the classification layer respectively. Experimental results show an
improvement on all the considered tasks. More in detail, gender accuracy is 92.14%,
age group accuracy increased of 3% for exact prediction and 5% respect to previous
experiment. The average error on the 40 attributes decreased for both datasets.

The third experiment combines the feature-level gate layer and the Label-processing
layer. Specifically, the prediction-layer used for the previous experiment is replaced by
the Label-processing as post-processing approach of predicted scores. Gender accuracy
is equal to 89.67%, age group classification accuracy is respectively 60.03% for exact
prediction and 88.48% for 1-off.

As shown in Table 5.8, the introduction of Label-processing layer improves the gender
classification accuracy, but the best result is achieved by using prediction-gate layer
instead of Label-processing layer. For age group classification the best performance is
still achieved by the solution with gating layers, while in this case the worst performance
is achieved by the solution including the Label-processing layer. Finally for binary
attributes classification, the lowest error for both the CelebA and the LFWA databases
is achieved by the solution including gating functions, while the highest error is the
one obtained by the solution without both gating and Label-processing layers.

Table 5.9 reports the comparison in terms of accuracy for the gender classification
problem on the Adience benchmark. All the proposed solutions outperform the state-
of-the-art methods. More in detail the proposed solution involving the use of gating
functions obtained an accuracy 5% higher than the best method proposed in [147].

Table 5.10 reports the comparison in terms of classification accuracy for age-group
estimation on the Adience benchmark. The accurcacy both when the algorithm gives
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Table 5.8 Performance results for each experiment on all the task considered: Age-group
and gender classification (accuracy in %) for the Adience benchmark, and 40 binary
attributes estimation (classification error in %) on the CelebA and LFWA databases.

Method Gender acc. (%) Age group acc. (%) Attributes err. (%)
Exact 1-off CelebA LFWA

ResNet-50 87.52 60.19 87.79 10.75 13.16
Gates 92.14 63.81 92.24 10.11 12.97
Gate+Labelproc 89.67 60.03 88.48 10.52 13.02

Table 5.9 Gender estimation results on the Adience benchmark in terms of mean
accuracy.

Method Accuracy
Eidinger et al. [38] 77.8
Hassner et al. [53] 79.3
Levi et al. [84] 86.8
van de Wolfshaar et al. [147] 87.2
Proposed (ResNet-50) 87.5
Proposed (Gates) 92.1
Proposed (Gate+Labelproc) 89.7

the exact age-group and when the algorithm is off by one adjacent age-group is reported.
The best proposed method achieves a performance (63.8%) close to the best in the
state-of-the-art (Rothe et al. [119]).

Table 5.11 reports the comparison in terms of classification error for the 40 binary
attributes estimation on the CelebA and LFWA databases. Experimental results
indicate that the proposed method obtains a classification error higher than the best
in the state-of-the-art: for the CelebA the error is 3% higher than the best method
proposed in [50]; instead, for the LFWA database the error is only 0.1% higher than
the best method presented in [67].

In addition, we also evalute the generalization ability of the proposed approach in
a cross-database testing scenario. In this testing, the attribute estimation method is
trained on one face database, and tested on a different one. Specifically, experiments for
each one of the proposed solutions are executed in this scenario. The results reported
in Table 5.12. As it is possible to see, the proposed method involving the use of gating
functions obtained the best performances on both the databases.
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Table 5.10 Age-group estimation results on the Adience benchmark in terms of mean
accuracy. The accuracy both when the algorithm gives the exact age-group and when
the algorithm is off by one adjacent age-group is reported.

Method Exact 1-off
Eidinger et al. [38] 45.1 79.5
Levi et al. [84] 50.7 84.7
Rothe et al. [119] 64.0 96.6
Proposed (ResNet-50) 60.2 87.8
Proposed (Gates) 63.8 92.2
Proposed (Gate+Labelproc) 60.0 88.5

Table 5.11 Attribute estimation performance evaluated by classification error and
average precision on the LFWA and CelebA databases.

Method CelebA LFWA
FaceTracer [77] 18.9 26.0
PANDA [172] 15.0 19.0
LNets+ANet [93] 12.7 16.1
MCNN-AUX [51] 11.5 13.7
MOON [121] 9.1 -
SSP+SSG [67] 8.2 12.9
HDMTL [50] 7.0 14.0
Proposed (ResNet-50) 10.7 13.2
Proposed (Gates) 10.1 13.0
Proposed (Labelproc) 10.5 13.0

Table 5.12 Cross-database results for facial attributes estimation.

Method Database Avg. error (%)Training Testing
ResNet-50 CelebA LFWA 27.3
ResNet-50 LFWA CelebA 14.0
Gates CelebA LFWA 26.2
Gates LFWA CelebA 13.7
LabelProc CelebA LFWA 26.8
LabelProc LFWA CelebA 13.7

87



Portrait images aesthetic assessment

- Perceived Quality
- General aesthetics
- Facial attributes

SVR Aesthetic score

Input image Cropped headshot Feature extraction Regression

Fig. 5.17 Proposed pipeline for portrait images aesthetic assessment. The face is
first detected and cropped, then features for perceived quality (see Section 3), general
aesthetics (see Section 4.1), and facial attributes are extracted. Finally, a linear Support
Vector Regressor (SVR) is used for aesthetic score prediction.

5.5 Portrait images aesthetics score estimation

Portraits or headshots are defined as frontal or near frontal face images cropped in order
to contain the whole face and shoulders. In this section, a method for aesthetic quality
estimation of portraits is described. As with the aesthetics assessment of images with
generic content, the portrait aesthetics assessment is treated as a regression problem,
thus, given a headshot the model estimates a score describing its aesthetic quality.

The proposed approach is depicted in Figure 5.17. Given an image, the faces are
first detected using a multi-view face detector inspired by Farfade et al. [41]. The
detected bounding boxes sizes are increased of 20% in order to include also a portion of
the shoulders, then the contained region is cropped and used as the headshot. Multiple
features are extracted in order to describe both the visual attributes (quality and
aesthetics) and facial attributes of the whole face. CNN features off-the-shelf are used
because of the limited amount of available data. Specifically, the DeepBIQ model
described in Chapter 3, the DeepIA model presented in Chapter 4 and the FaceA
model proposed in Section 5.4.2 are used for extracting features. More in detail, for
each model the portrait image is first resized to fit the required size of the input of
the considered model, then it is fed into the CNN model in order to extract features
from the fully-connected layer just before the classification layer. Two 4,096-dim
feature vectors, one describing image aesthetics, the other describing image quality are
obtained. A 2,048-dim feature vector is obtained for facial attributes description. A
linear Support Vector Regressor (SVR) is used to map the features into an aesthetic
score.
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Table 5.13 Correlation performances for the three considered databases obtained by
using DeepIA method (see Section 4.1) for predicting image aesthetic scores.

Database LCC SROCC
HFS 0.27 0.27
FAVA* 0.52 0.51
Flickr 0.39 0.37
*Some images have been used for the DeepIA model training.

5.6 Performance evaluation

For the experiments on the portrait aesthetics estimation, the same evaluation procedure
adopted in [90] is followed. More in detail, for each experiment 10-fold cross validation
is performed by randomly selecting the training and testing images. This procedure is
repeated 10 times to avoid sampling bias. For each repetition the Pearson’s Linear
Correlation Coefficient (LCC) (see Section 3.3, eq. 3.8) and the Spearman’s Rank
Ordered Correlation Coefficient (SROCC) (see Section 3.3, eq. 3.9) between the
predicted and the ground-truth aesthetic scores are computed, reporting the mean of
these correlation coefficients across the 10 rounds. In all the experiments the PyTorch2

framework is used for feature extraction, and the LIBLINEAR library [40] is employed
for SVR training.

5.7 Experimental results

In this section the experimental results are reported. First of all, in order to verify
whether the general content images aesthetics can approximate portrait images aes-
thetics, the proposed DeepIA method (see Section 4.1) is used for predicting image
aesthetic scores. Predicted scores are scaled from the original range [1, 10] to the target
range for each dataset considered. The obtained results in Table 5.13 show that LCC
and SROCC are very low for both HFS and Flickr databases, while correlation values
are higher for the FAVA database. This is mainly motivated by the fact that some
of the headshots of the FAVA database are cropped from images of the training set
previously used for training the DeepAI model. Thus, results confirmed that general
content aesthetics is not well suited to address the problem of portrait image aesthetics.

Table 5.14 reports results for all the experiments. The first set of experiments
consists in the evaluation of a single feature at time to be fed into the SVR. Aesthetics

2www.pytotch.org
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Table 5.14 Correlation performances of the proposed solutions for each dataset.

Methods HFS FAVA* Flickr
LCC SROCC LCC SROCC LCC SROCC

Lienhard et al. [90] 0.73 - 0.51 - 0.49 -
FaceA-feat 0.50 0.47 0.31 0.32 0.35 0.34
DeepIA-feat 0.66 0.65 0.52 0.49 0.49 0.47
DeepIQA-feat 0.57 0.61 0.37 0.36 0.35 0.34
FaceA-feat+DeepIA-feat 0.71 0.69 0.54 0.54 0.50 0.49
FaceA-feat+DeepBIQ-feat 0.67 0.66 0.45 0.47 0.43 0.43
DeepIA-feat+DeepBIQ-feat 0.70 0.70 0.52 0.49 0.47 0.45
DeepIA-feat+DeepBIQ-feat+FaceA-feat 0.73 0.71 0.55 0.55 0.50 0.49
*Some images have been used for the DeepIA model training.

features achieved the best performances on all the datasets respect to quality and
facial attributes features, while facial attributes features obtained low correlation
performances. Furthermore on FAVA and Flickr databases, this proposed setting
obtained comparable results with the state-of-the-art. In the second set of experiments,
features are combined by simply concatenating them. Results show that the combination
of features improve correlation for all the datasets. The combinations of facial attributes
and aesthetic features, and aesthetic and quality features obtained more or less the
same results further improving correlation on all the considered datasets. Finally, the
best results are obtained thanks to the combination of all the considered features. This
last configuration achieves slightly better results than the state-of-the-art methods.

As expected, the general content images aesthetics model used is not effective
for portrait images aesthetic estimation. Instead features learned for aesthetics char-
acterization seem to generalize well and are effective for portrait image aesthetics
assessment. Additionally, facial attributes features do not seem to consistently provide
useful information.
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Chapter 6

Conclusions

This thesis shows how deep learning and convolutional neural networks are well suited
for describing visual attributes such as quality and aesthetics.

The problem of automatic perceived image quality assessment is investigated. The
distortion-generic image quality assessment has been considered. The best proposal,
named DeepBIQ, consists of a CNN, originally trained to discriminate 1,183 visual
categories, that is fine-tuned for category-based image quality assessment by using
multiple random crops from the original images. This CNN is then used to exctract
features that are then fed to a SVR to predict the crop-level quality score. Finally,
quality scores predicted for each crop are combined using the average pooling fusion
scheme in order to obtain the quality score for the whole image. Experimental results
both on four benchmark databases of synthetically distorted images and on a database
containing images affected by authentic distortions have shown that DeepBIQ is
able to outperform all the methods in the state-of-the-art also on all these datasets.
Furthermore, in many cases, the quality score predictions of DeepBIQ are closer to the
average observer than those of a generic human observer.

The image aesthetic assessment has been addressed at first on general content
images and then on the specific case of portrait images. For the general content
image aesthetic assessment, the proposed approach consists in fine-tuning a canonical
CNN architecture, originally trained to classify both objects and scenes, by casting
the image aesthetic prediction as a regression problem. Experimental results have
shown the robustness of the solution proposed, which outperforms the best methods
in the state-of-the-art. Furthermore, results indicate that image aesthetics is a global
attribute, and that the use of a saliency map to filter out not salient regions in the
prediction stage does not help to achieve more accurate aesthetic score predictions.
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Conclusions

Portrait image aesthetic assessment is investigated to deal with images containing
faces. The proposed algorithm involves the use of middle-level features obtained by
combining previous visual attributes (i.e. quality and aesthetics) and facial attributes.
These features are then fed to a SVR to predict the aesthetic score. Facial attributes
estimation algorithms used for feature extraction have been proposed in this thesis.
A first proposal consists in a robust smile detector algorithm able to outperform the
state-of-the-art methods also for distorted images. Additionally, for dealing with a
huge number of attributes a multiple-task model is designed in order to simultaneously
estimate soft biometrics and attributes such as hair colors and styles, types of beards.
Results collected for the first algorithm have shown better performances respect to the
state-of-the-art methods (also respect to highly distorted images). Experimental results
obtained by the proposed multi-task model demonstrated comparable performances
with state-of-the-art approaches. The proposed method for portrait image aesthetic
assessment has achieved comparable results respect to state-of-the-art methods on
three databases.

Most of the approaches proposed in this thesis have focused on a single problem
at time. The future works are mostly related to consider different visual attributes
in a unique framework. In the case of an integrated approach for both quality and
aesthetics estimation, it could be possible to simultaneously predict metrics for both
the visual attributes and to evaluate the tradeoff between the two aspects. Given the
close connection between image aesthetics assessment and image sentiment analysis,
the future works relies on the development of algorithms to address this last problem.
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