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Abstract

This thesis focuses mainly on understanding the origin of the Bekenstein-Hawking entropy
for a class of four- and five-dimensional BPS black holes in string/M-theory. To this aim,
important ingredients are holography and supersymmetric localization.

For supersymmetric field theories with at least four real supercharges the Euclidean path
integrals on Σg×T n (n = 1,2) can be calculated exactly using the method of supersymmetric
localization. The path integral reduces to a matrix integral that depends on background
magnetic fluxes and chemical potentials for the global symmetries of the theory. This defines
the topologically twisted index which, upon extremization with respect to the chemical
potentials, is conjectured to reproduce the entropy of magnetically charged static BPS
AdS4/5 black holes/strings.

We solve a number of such matrix models both in three and four dimensions and provide
general formulae in the large N limit by which one can construct the large N matrix model
associated with a particular quiver. This is found by rewriting the matrix integral of quiver
theories, such that the poles in the Cartan contour integral are described by the so-called
Bethe ansatz equations and then by an effective twisted superpotential. One of the main
results of this thesis is a universal formula – named the index theorem – for extracting
the index from the twisted superpotential, leading to the conjecture that the field theory
extremization principle equals the attractor mechanism in 4D N = 2 gauged supergravity.

We then use these results to provide the microscopic realization of the entropy of a
class of BPS black holes in N = 2 gauged supergravity. In particular, for the near-horizon
geometries constructed in the four-dimensional dyonic N = 2 gauged supergravity, that
arises as a consistent truncation of massive type IIA supergravity on S6, we derive the
Bekenstein-Hawking area law. Finally, inspired by our previous results, we put forward an
extremization principle for reproducing the Bekenstein-Hawking entropy of a class of BPS
electrically charged rotating black holes in AdS5×S5.
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Chapter 1

Introduction and summary

Black holes have more lessons in store for us. We can assign a macroscopic entropy to a
black hole equal to one quarter of the horizon area measured in Planck units [1–5]. More
specifically, we find that

SBH =
Area
4GN

, (1.1)

where GN is the Newton’s gravitational constant. The number of black hole microstates
dmicro should then be given by

dmicro = eSBH . (1.2)

But where are the microstates accounting for the black hole entropy? A consistent theory
of quantum gravity seems to be required in order to answer this question. String theory, the
prime candidate for such a theory, provides a precise statistical mechanical interpretation
of the Bekenstein-Hawking entropy (1.1) by representing the black holes as bound states of
D-branes [6–8] and strings, which allow us to construct and study supersymmetric gauge
theories. In the seminal paper [9] the statistical entropy of asymptotically flat BPS black holes
(Reissner-Nordström black holes) in type IIB string theory compactified to five dimensions on
S1×K3 has been successfully identified with the logarithm of the bound states degeneracy.

The situation for asymptotically anti de Sitter (AdS) black holes in D ≥ 4 is rather
different since we do not know the D-branes description of this class of black holes. The
question is then, what is the microscopic origin of the Bekenstein-Hawking entropy for AdS
black holes? The gauge/gravity duality (holography) provides a nonperturbative definition
of quantum gravity. More concretely, one can formulate questions regarding quantum
gravity in bulk spacetimes as problems in lower-dimensional gauge theories living on their
boundaries. The gauge/gravity duality therefore renders a natural way of understanding the
thermodynamic black hole entropy (1.1) in asymptotically AdS spacetimes in terms of states
in a dual conformal field theory (CFT).



2 Introduction and summary

The counting of microscopic BPS states has been recently achieved [10, 11] for a class
of AdS black holes in four dimensions coming from compactification of M-theory on S7,
thanks to the supersymmetric localization [12]. See [13] for a generalization of this setup
to AdS4 black holes with hyperbolic horizon. Recent attempts to compute the logarithmic
corrections to the entropy of this class of black holes can be found in [14, 15].

The localization principle allows one to reduce the path integral of the theory into a finite-
dimensional integral, i.e. matrix integral, and compute some exact results for supersymmetric
observables in strongly coupled quantum field theories (QFTs). It thus gives a very precise
predictions for the gauge/gravity duality. In this thesis we report on the progresses in this
direction. Of particular importance is the topologically twisted index of three-dimensional
N = 2 and four-dimensional N = 1 gauge theories — with an R-symmetry and (g−1)RI ∈
Z (RI being the R-charges of the matter fields) — on Σg×T n with a partial topological
A-twist [16, 17], along the genus g Riemann surface Σg [18]. Here T n is a torus with n = 1,2.

Before we move on, let us review some of the basic building blocks of this dissertation.

1.1 Topological twist

If one attempts to put a supersymmetric theory on a curved spacetime without touching its
Lagrangian, supersymmetry will usually be broken by the curvature terms. Thus, one has to
be careful about how to define the theory on a curved spacetime. In this section we give a
brief overview of placing a QFT on a compact curved manifold M while preserving some
supersymmetry. We refer the reader to [19] for a detailed analysis of rigid supersymmetric
field theories on curved manifolds.

A uniform approach to this problem is to couple the flat space theory to off-shell super-
gravity.1 Next, we require that the fluctuations in the gravitational field being decoupled, such
that it remains a classical background. This can be done by taking the rigid limit: sending the
Newton’s constant to zero while keeping fixed the background for the metric and the bosonic
auxiliary fields. In this limit, we do not solve the equations of motion and we only impose

1The same supergravity theory can have different off-shell formulations, and depending on which supercur-
rent multiplets exist in the matter theory, one can couple the theory to different off-shell formulations. This can
lead to different classes of supersymmetric backgrounds for the same theory. For instance in four dimensions,
the Ferrara-Zumino multiplet [20] can be coupled to “old minimal supergravity” [21–23] while the R-multiplet
(which contains the conserved R-current) to the “new minimal supergravity” [24, 25].
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the supersymmetry condition (the vanishing of the gravitino variation):2

Dµε =

(
∂µ +

1
4

ω
ab
µ γab + iVµ

)
ε = 0 , (1.3)

where Vµ is a background gauge field for the R-symmetry. We call this the generalized
Killing spinor (GKS) equation, and it should be solved for the spinors ε . The number of
solutions for ε is the number of preserved supercharges.

If the theory at hand has a continuous non-anomalous R-symmetry one may perform a
topological A-twist [16, 17] to solve the GKS equation. The topological twist amounts to an
identification of the spin connection with the R-symmetry

Vµε =
i
4

ω
ab
µ γabε . (1.4)

This corresponds to a flux 1
2π

∫
C2

W for the R-symmetry curvature W = dV , where C2 is any
compact two-cycle in M . Due to the R-symmetry background magnetic flux we will restrict
to theories with integer R-charges. Hence, a simple solution to (1.3) is a constant spinor ε . In
this background the spinors behave as scalars since the R-symmetry background has twisted
their spin. Let us stress that, the topological twist works only if the spacetime holonomy
group can be embedded into the R-symmetry group of the QFT in flat space.

The topological twist is precisely the way that branes, wrapping on nontrivial cycles in
string/M-theory compactifications, preserve supersymmetry [26].

1.2 Magnetic black holes/strings in gauged supergravity

In this section we discuss the main features of the black holes/strings we consider. We look for
four-dimensional BPS black hole solutions, preserving at least two real supercharges, which
interpolate between an AdS2×Σg near-horizon region and an asymptotic AdS4 vacuum. They
are the near-horizon geometry of N D2k/M2-branes wrapping Σg [27]. The first examples of
such analytic solutions, with g> 1 and constant scalar fields, found in [28] and later studied
further in [29]. The numeric evidence for black holes whose event horizons are Riemann
surfaces of arbitrary genus (g ̸= 1) and have nontrivial scalar fields appeared first in [30] but
their analytic construction was discovered in [31] (see also [32–36]). They are solutions of
N = 2 supergravity with a gauged U(1) R-symmetry group. The aforementioned topological
twist consists of the cancellation of the spin connection on Σg by the R-symmetry gauge

2Here, for simplicity, we only include the metric and the background gauge field Vµ that couples to the
R-symmetry.
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vector field, and requires that the black hole solutions carry nontrivial Abelian magnetic
charges nΛ . In general, the black holes can also support electric charges qΛ . In the case of the
maximally supersymmetric SO(8) gauged supergravity (arising from Kaluza-Klein reduction
of eleven-dimensional supergravity on S7) this allows one to consider only an Abelian U(1)4

truncation (Λ = 1,2,3,4), often called “STU model”, as was the case in [10, 11].
The dual boundary theory is a relevant deformation of some 3D supersymmetric Chern-

Simons-matter theories, semi-topologically twisted by the presence of the magnetic charges.
Reducing down to S1, the theory gives rise to a supersymmetric quantum mechanics and the
partition function on Σg×S1 computes the Witten index of the N = 2 quantum mechanical
sigma model [37–39]. This naturally leads to a renormalization group (RG) flow across
dimensions, connecting the CFT3 dual to asymptotic AdS4 vacuum in the ultraviolet (UV)
and the CFT1 dual to the near-horizon AdS2×Σg geometry in the infrared (IR). Along the
RG flow, the UV superconformal R-symmetry of the three-dimensional theory generically
mixes with the flavor symmetries and, at the one-dimensional fixed point, it becomes a linear
combination of the reference R-symmetry and a subgroup of the flavor symmetries. The
R-symmetry that sits in the su(1,1|1) superconformal algebra in the IR is determined by
extremizing the topologically twisted index, whose value at the extremum is the regularized
number of ground states.3 This is the so-called I -extremization principle proposed in
[10, 11] (see section 1.7).

We will also consider magnetically charged BPS black strings in five-dimensional N = 2
Abelian gauged supergravity. Black string solutions corresponding to D3-branes at a Calabi-
Yau singularity have been recently studied in details in [40, 41] (see also [42–45]). They can
be viewed as domain-walls interpolating between maximally supersymmetric AdS5 vacuum
at infinity and the near-horizon AdS3×Σg geometry. This can be interpreted as an RG flow
from an UV four-dimensional N = 1 superconformal field theory (SCFT) and an IR two-
dimensional N = (0,2) one. The two-dimensional CFT is obtained by compactifying the
four-dimensional theory on Σg with a topological twist parameterized by a set of background
magnetic charges. The right-moving central charge of the two-dimensional CFT has been
computed in [40–43], and successfully compared with the supergravity result for a variety of
models.

3We are evaluating an equivariant holomorphic index that provides a regularization for the continuum of the
ground states of the corresponding IR quantum mechanics.
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1.3 Supersymmetric localization

The partition function of a local QFT is given by the Euclidean Feynman path integral

Z =
∫

Dφ e−S[φ ] , (1.5)

where φ denotes the set of fields in the theory and S is the action functional. In order to
evaluate the partition function of a theory one needs to integrate over all possible classical
field configurations. Thus, besides Gaussian free theories, the partition function is too hard
to compute. Most of the time one has to work with the so called saddle-point approximation:
expanding the action around free fields and using perturbation theory. However, if a theory is
supersymmetric one may use the technique of supersymmetric localization and compute the
partition function exactly (in the sense of reducing them to a matrix model).

The argument for localization proceeds as follows. Consider path integrals of supersym-
metric gauge theories on compact manifolds M :

ZM =
∫

Dφ e−S[φ ] , (1.6)

and let δ be a Grassmann-odd symmetry of these theories (δS = 0). We assume that δ is not
anomalous and thus the measure of the path integral is invariant under δ . Consider now a
deformation of the theories by a δ -exact term

ZM (t) =
∫

Dφ e−S[φ ]−tδV , (1.7)

with t ∈ R>0. It is easy to see that the value of the partition function is independent of t:

∂

∂ t
ZM (t) =−

∫
Dφ e−S[φ ]−tδV

δV =−
∫

Dφδ

(
e−S[φ ]−tδVV

)
= 0 , (1.8)

and hence one can evaluate it as t→∞. Here we assumed that the integral decays sufficiently
fast in field space so there are no boundary terms at infinity. In this limit, if δV has a positive
definite bosonic part (δV )B, the integral localizes to a submanifold of field space where

(δV )B(φ0) = 0 . (1.9)

Obviously, the above argument still holds true if we insert δ -exact operators (observables),
i.e. O = δX . One may insert both local operators (located at a point in spacetime) and
nonlocal operators (located along a submanifold) in the path integral. They can be defined in
different ways: order operators such as Wilson lines; disorder operators such as monopole



6 Introduction and summary

and ’t Hooft line operators in three and four dimensions, respectively; defect operators with
their own actions and coupled to the bulk, e.g.SD =

∫
γ

dtψ̄ (∂t− iAt)ψ . These operators have
vanishing vacuum expectation values since

⟨O⟩M =
∫

Dφ e−S[φ ]
δX =

∫
Dφδ

(
e−S[φ ]X

)
= 0 . (1.10)

Let us parameterize the fields around the localizing locus (1.9):

φ = φ0 + t−1/2
φ̂ , (1.11)

where the factor t−1/2 is chosen because when the deformation term dominates at large t,
the kinetic term should be canonically normalized with no powers of t. For large t, we can
Taylor expand the action around φ0 as

S+ tδV = S[φ0]+ (δV )(2)[φ̂ ]+O(t−1/2) . (1.12)

Only the value of the classical action on the saddle-point configuration S[φ0] and the quadratic
expansion of δV around the fixed points matters. We thus obtain the localization formula:

ZM =
∫

δVB(φ0)=0
Dφ0 e−S[φo]Z1-loop[φ0] , (1.13)

by Gaussian integration. Z1-loop is the one-loop determinant (the ratio of fermionic and
bosonic determinants) of the deformation term δV .

1.4 Supersymmetric Chern-Simons-matter theories in three
dimensions

In this section we review the construction of 3D supersymmetric Chern-Simons-matter
theories on S2×S1 [18].4 In order to preserve supersymmetry on this background one must
perform a topological twist on S2. Thus, one of the important assumptions is that the theory
should have a continuous U(1)R symmetry.

After summarizing our conventions for spinors we describe the S2× S1 background
of interest and the background fields that we need to turn on in order to preserve some
supersymmetry. Then we concentrate on the supersymmetry variations corresponding to the

4The result of localization for 4D N = 1 field theories on S2×T 2 is simply the elliptic generalization of
the result in three dimensions [46, 18]. We do not consider the detailed construction of this class of theories
here; rather, we present the final formula for the matrix model.
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topologically twisted theory. We introduce the anticommuting supercharges by trading the
anticommuting Killing spinors in δε and δε̄ for their commuting counterparts. Finally, we
write the supersymmetric Lagrangians for gauge and matter fields. Lagrangians invariant
under the supersymmetry transformations were studied in [47, 48]. We refer the reader to
[49, 50] for a more systematic analysis of supersymmetry on three-manifolds. In this section
we will closely follow the presentation of appendix B of [51].

1.4.1 Spinor conventions

We will work with Euclidean space. In Euclidean signature all fields get complexified
and we will consider ¯-ed fields as independent fields. The Dirac spinors are in the 2 of
SU(2) with the index structure: ψα , ψ̄α . We use the standard Pauli’s matrices for the
Dirac matrices in vielbein space: γa =

(
0 1
1 0

)
,
(

0 −i
i 0

)
,
(

1 0
0 −1

)
, and also γab = 1

2(γ
aγb− γbγa).

We take the charge conjugation matrix C = −iεαβ = γ2 (where ε12 = ε12 = 1) so that
C =C−1 =C† =−CT =−C∗. The charge conjugate spinors are εc =Cε∗ and εc† = εTC.
Note that εcc =−ε . Writing the spinor indices explicitly, the bilinear products are constructed
as

ε̄λ ≡ ε̄
αCαβ λ

β , ε̄γ
µ

λ ≡ ε̄
α (Cγ

µ)
αβ

λ
β , etc. . (1.14)

Noticing that the charge conjugation matrix C is antisymmetric and Cγµ are symmetric, it is
easy to check that

ε̄λ = λ ε̄ , ε̄γ
µ

λ =−λγ
µ

ε̄ . (1.15)

Cγµν are also symmetric since γµν = iεµνργρ/
√

g (where εµνρ = 1). We also have the
following Fierz identity for anticommuting 3D Dirac fermions

(
λ̄1λ2

)
λ3 =−

1
2
(
λ̄1λ3

)
λ2−

1
2
(
λ̄1γ

ρ
λ3
)

γρλ2 . (1.16)

1.4.2 Background geometry

We will consider three-dimensional N = 2 field theories on S2×S1 with the round metric

ds2 = R2(dθ
2 + sin2

θ dϕ
2)+β

2dt2 . (1.17)

In order to preserve supersymmetry we perform a partial topological A-twist on S2. The
vielbein one-forms are e1 = Rdθ , e2 = Rsinθ dϕ on S2 and e3 = β dt with t ∼ t +1 on S1.
As we already discussed in the previous section, to perform the topological twist we turn on
a background gauge field that couples to the U(1)R symmetry such that it cancels the spin
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connection for half of the supercharges:

V =
1
2

cosθ dϕ =−1
2

ω
12 . (1.18)

This corresponds to a magnetic flux 1
2π

∫
S2 W =−1 for the R-symmetry curvature W = dV .

Here ωab
µ is the spin connection. In our notation the supersymmetry spinor ε =

(
ε+
ε−

)
has

R-charge −1 so that the GKS equations is solved by

ε =
( ε+

0

)
with ε+ = const. . (1.19)

Due to the R-symmetry background flux, we will limit to theories with integer R-charges.

ΩΩΩ -background on S2×S1S2× S1S2×S1. If the metric on S2 has a rotational symmetry around an axis,
we may introduce a one-parameter family of deformations called the Ω -background in [52],

ds2 = R2(dθ
2 + sin2

θ(dϕ− ς dt)2)+β
2dt2 . (1.20)

We refer to the parameter ς as an angular momentum parameter and note that ς = 0 is the
round S2×S1. Here we take vielbein

ea
µ =


R 0 0

0 Rsinθ −Rς sinθ

0 0 β

 , (1.21)

and the coordinates have the same periodicity as before, i.e. t ∼ t +1, ϕ ∼ ϕ +2π . We can
still perform the topological twist by turning on the background connection V = −1

2ω12

coupled to the R-symmetry current, and the covariantly constant spinor (1.19). We call this
the “refined” case.

Σg×S1Σg× S1Σg×S1 background. We can preserve supersymmetry on Σg×S1 where Σg is a Riemann
surface of arbitrary genus g, with the same choice of V =−1

2ω12 and the same covariantly
constant spinor (1.19). In general the R-symmetry field strength is given by

W12 =
1
2

ε
µνWµν =−1

4
Rs and

1
2π

∫
Σg

W = g−1 , (1.22)

where Rs is the scalar curvature on Σg.
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1.4.3 Supersymmetry transformations

Let us define the gauge field strength Fµν = ∂µAν − ∂νAµ − i
[
Aµ ,Aν

]
and the gauge and

metric covariant derivative Dµ = ∇µ− iAµ , where ∇µ = ∂µ +
1
4ωab

µ γab is the metric covariant
derivative. We will also turn on a background connection coupled to the U(1)R symmetry
current and thus Dµ = ∇µ − iAµ − iVµ .

The basic multiplets of three-dimensional N = 2 supersymmetry are the gauge (vector)
multiplet, the chiral multiplet and the anti-chiral multiplet, arising by dimensional reduction
to three dimensions of the four-dimensional N = 1 supersymmetry multiplets. The R-charge
and the scaling weight of the various fields are:

ε ε̄ Aµ σ λ λ̄ D φ φ̄ ψ ψ̄ F F̄

R −1 1 0 0 −1 1 0 r −r r−1 1− r r−2 2− r

∆ 1/2 1/2 1 1 3/2 3/2 2 r r r+1/2 r+1/2 r+1 r+1

The gauge multiplet V , in Lorentzian signature, includes a vector Aµ , one real scalar σ , a
Dirac spinor λ and a real auxiliary scalar D, all in the adjoint representation of the gauge
group G. They transform under supersymmetry as

δAµ =− i
2
(ε̄γµλ − λ̄ γµε) , δσ =

1
2
(ε̄λ − λ̄ ε) ,

δλ =
1
2

γ
µν

εFµν −Dε + iγµ
εDµσ +

2i
3

σγ
µDµε ,

δ λ̄ =
1
2

γ
µν

ε̄Fµν +Dε̄− iγµ
ε̄Dµσ − 2i

3
σγ

µDµ ε̄ ,

δD =− i
2

ε̄γ
µDµλ − i

2
Dµ λ̄ γ

µ
ε +

i
2
[ε̄λ ,σ ]+

i
2
[λ̄ ε,σ ]− i

6
(Dµ ε̄γ

µ
λ + λ̄ γ

µDµε) ,

(1.23)
The chiral multiplet Φ consists of a complex scalar φ , a Dirac spinor ψ and a complex
auxiliary scalar F , all in a representation R of the gauge group. The anti-chiral multiplets Φ =

(φ̄ , ψ̄, F̄) has the same components as a chiral multiplet, all in the conjugate representation
R. The supersymmetry transformations of a chiral multiplet are given by

δφ = ε̄ψ , δψ = iγµ
ε Dµφ + iεσφ +

2ir
3

γ
µDµε φ + ε̄F ,

δ φ̄ = ψ̄ε , δψ̄ = iγµ
ε̄ Dµ φ̄ + iε̄ φ̄σ +

2ir
3

γ
µDµ ε̄ φ̄ + εF̄ ,

δF = ε
(
iγµDµψ− iσψ− iλφ

)
+

i(2r−1)
3

Dµε γ
µ

ψ ,

δ F̄ = ε̄
(
iγµDµ ψ̄− iψ̄σ + iφ̄ λ̄

)
+

i(2r−1)
3

Dµ ε̄ γ
µ

ψ̄ .

(1.24)
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Here ε and ε̄ are independent spinors fulfilling the Killing spinor equations

Dµε = γµ ε̂ , Dµ ε̄ = γµ
ˆ̄ε , (1.25)

for some other spinors ε̂, ˆ̄ε . Splitting δ = δε +δε̄ , these transformations realize the su(1|1)
superalgebra off-shell. In order for the algebra to close, the Killing spinors need to satisfy
the additional constraints

γ
µ

γ
νDµDνε =−3

8
(
Rs−2iWµνγ

µν
)

ε , γ
µ

γ
νDµDν ε̄ =−3

8
(
Rs +2iWµνγ

µν
)

ε̄ ,

(1.26)
with the same functions Rs and Wµν [47, 48]. Consistency requires that Rs is the scalar
curvature of the three-manifold and Wµν = ∂µVν − ∂νVµ is the background gauge field
strength. Then, the resulting algebra reads

[δε ,δε̄ ] = L A
ξ
+ iΛ +ρ∆ + iαR , [δε ,δε ] = 0, [δε̄ ,δε̄ ] = 0 , (1.27)

where the parameters are defined as

ξ
µ = iε̄γ

µ
ε , ρ =

i
3
(Dµ ε̄γ

µ
ε + ε̄γ

µDµε) =
1
3

Dµξ
µ ,

Λ = ε̄εσ , α =−1
3
(Dµ ε̄γ

µ
ε− ε̄γ

µDµε)−ξ
µVµ .

(1.28)

The algebra (1.27) implies that the commutator [δε ,δε̄ ] is a sum of translation by ξµ , a gauge
transformation by Λ , a dilation by ρ and a vector-like R-rotation by α. The Lie derivative Lξ

along the Killing vector field ξ is a metric independent derivation. On a p-form it is defined as
Lξ = {d, ιξ} in terms of the contraction ιX ; using the normalization α = 1

p!αµ1···µpdxµ1···µp ,
in components we have

[Lξ α]µ1···µp = ξ
µ

∂µαµ1···µp + p(∂[µ1ξ
µ)αµ|µ2···µp] . (1.29)

The Lie derivative of spinors [53] reads (see [54] for a more thorough discussion.)

Lξ ψ = ξ
µ

∇µψ +
1
4

∇µξν γ
µν

ψ . (1.30)

We denoted by L A
ξ

the “gauge covariant” version of the Lie derivative along ξ . It acts on
sections of some gauge bundle. On tensors it is obtained by replacing ∂µ → ∂ A

µ = ∂µ − iAµ ,
while on spinors it is obtained by replacing ∇µ → ∇A

µ in the first term. The gauge covariant
Lie derivative of the connection, which does not transform as a section of the adjoint bundle,
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is defined as

L A
ξ

A = Lξ A−dA(ιξ A) , (L A
ξ

A)µ = ξ
ρFρµ = ξ

ρ
(
2∂[ρAµ]− i[Aρ ,Aµ ]

)
. (1.31)

1.4.4 Localizing supercharges

We now proceed with the construction of two complex supercharges Q, Q̃ in terms of
commuting covariantly constant spinors ε and ε̃ =−Cε̄∗.5 They are built as follows

δ = δε +δε̄ = ε
αQα + ε̄

αQ̃α , Q = ε
αQα , Q̃ = ε̃

cαQ̃α =−(ε̃†C)αQ̃α .

(1.32)
For convenience, we also rewrite ¯-ed spinors as λ̄ = C(λ †)T. We obtain for the vector
multiplet:

QAµ =
i
2

λ
†
γµε , Qλ =

1
2

γ
µν

εFµν −Dε + iγµ
ε Dµσ +

2i
3

σγ
µDµε ,

Q̃Aµ =
i
2

ε̃
†
γµλ , Q̃λ

† =−1
2

ε̃
†
γ

µνFµν + ε̃
†D+ iε̃†

γ
µDµσ +

2i
3

Dµ ε̃
†
γ

µ
σ ,

QD =− i
2

Dµλ
†
γ

µ
ε +

i
2
[λ †

ε,σ ]− i
6

λ
†
γ

µDµε , Qλ
† = 0 , Qσ =−1

2
λ

†
ε ,

Q̃D =
i
2

ε̃
†
γ

µDµλ +
i
2
[σ , ε̃†

λ ]+
i
6

Dµ ε̃
†
γ

µ
λ , Q̃λ = 0 , Q̃σ =−1

2
ε̃

†
λ .

(1.33)
and for the chiral multiplet:

Qφ = 0 , Q̃φ =−ε̃
†
ψ ,

Qφ
† = ψ

†
ε , Q̃φ

† = 0 ,

Qψ =
(
iγµDµφ + iσφ)ε +

2ir
3

φ γ
µDµε , Q̃ψ = ε̃

†F ,

Q̃ψ
† = ε̃

†(− iγµDµφ
† + iφ †

σ
)
− 2ir

3
Dµ ε̃

†
γ

µ
φ

† , Qψ
† =−ε

c†F† ,

QF = ε
c†(iγµDµψ− iσψ− iλφ

)
+

i(2r−1)
3

Dµε
c†

γ
µ

ψ , Q̃F = 0 ,

Q̃F† =
(
− iDµψ

†
γ

µ − iψ†
σ + iφ †

λ
†)

ε̃
c− i(2r−1)

3
ψ

†
γ

µDµ ε̃
† , QF† = 0 .

(1.34)
In the localization computation we will use the supercharge Q ≡ Q+ Q̃.

5Dµ ε = 0, γ3ε = ε and similarly for ε̃ , with the same R-charge −1.
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1.4.5 Supersymmetric Lagrangians

One can easily construct supersymmetric actions on S2×S1,

S =
∫

d3x
√

gL , (1.35)

with QL = Q̃L = 0 up to a total derivative. In the following, we will consider the Yang-
Mills Lagrangian, the various Chern-Simons terms, the matter kinetic Lagrangian and
superpotential interactions. When the theory has some continuous flavor symmetry J f , we
may turn on supersymmetric backgrounds for the bosonic fields in the corresponding flavor
vector multiplet V f = (A f

µ ,σ
f ,λ f ,λ f †,D f ). This accounts for turning on magnetic flavor

fluxes on S2, flat flavor connections on S1, and real masses. We remark that whenever the
gauge group has an Abelian factor, the flavor group includes a “topological” U(1) subgroup.

We work in Euclidean signature and this requires to double the number of degrees of
freedom in a given multiplet. This can be realized formally by considering each field and its
Hermitian conjugate as transforming independently under supersymmetry. When performing
the path integral over the fields of a multiplet, we will have to choose a middle-dimensional
contour reducing the number of real independent fields to its canonical value. We pick the
“natural” one, in which “real” fields are real while † is identified with the adjoint operation.
We call such a contour the real contour. In our conventions all Lagrangian terms have a
positive definite real bosonic part, which guarantee the convergence of the path integral.

The supersymmetric Yang-Mills (YM) Lagrangian is

LYM = Tr
[

1
4

FµνFµν +
1
2

DµσDµ
σ +

1
2

D2− i
2

λ
†
γ

µDµλ − i
2

λ
†[σ ,λ ]

]
. (1.36)

The Lagrangian LYM can be written as a Q-exact term, up to total derivatives:

QQ̃Tr
(

1
2λ

†
λ +2Dσ

)
∼= ε̃

†
ε LYM . (1.37)

When performing localization, the path integral is only sensitive to the cohomology of Q

meaning that Q-exact operators do not affect the integral. Thus, this Lagrangian can be used
in the localization procedure as the deformation term (see section 1.3).

The supersymmetric completion of a bosonic Chern-Simons (CS) action, for each simple
or Abelian factor, reads

LCS =− ik
4π

Tr
[

ε
µνρ

(
Aµ∂νAρ −

2i
3

AµAνAρ

)
+λ

†
λ +2Dσ

]
. (1.38)
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In general one can have a different CS level k ∈ Z for each simple or Abelian factor in the
gauge group; however, we will be schematic with our notation and use the simple expression
above. The CS action is not Q-exact. If there are various Abelian factors in the gauge group,
we can consider adding to the action mixed CS terms between them:

LmCS =− ik12

2π

[
ε

µνρA(1)
µ ∂νA(2)

ρ +
1
2

λ
(1)†

λ
(2)+

1
2

λ
(2)†

λ
(1)+D(1)

σ
(2)+D(2)

σ
(1)
]
.

(1.39)
The mixed CS terms play a crucial rôle in turning on background fluxes or holonomies for
the topological symmetries. Remember that in three dimensions, any U(1) gauge symmetry
yields a global symmetry associated to the current Jµ

T = (⋆F)µ = 1
2εµνρFνρ , being auto-

matically conserved by the Bianchi identity: d ⋆ JT = dF = 0. The corresponding global
symmetry U(1)T is called topological symmetry. We may turn on a background gauge field
A(T ) for the U(1)T symmetry by coupling it through∫

A(T )∧∗JT =
∫

d3x
√

gε
µνρA(T )

µ ∂νAρ , (1.40)

where A(T ) belongs to an external vector multiplet V (T ) = (A(T )
µ ,σ (T ),λ (T ),λ (T )†,D(T )). On

the supersymmetric background we have to set to zero the variation of the fermions in the
external multiplet. From (1.33) we get the conditions D(T ) = iF(T )

12 and σ (T ) = const.. The
full Lagrangian is the supersymmetric completion of (1.40), being obtained from (1.39) by
setting k12 = 1 and thinking of (1) as the background topological symmetry and (2) as the
gauge symmetry:

LT =−i
A(T )

3
2π

TrF12− i
F(T )

12
2π

Tr(A3 + iσ)− i
σ (T )

2π
TrD . (1.41)

Notice that the three terms are separately supersymmetric and σ (T ), a real mass for the
topological symmetry, is indeed a Fayet-Iliopoulos (FI) term.

We can also add a mixed CS term between the R-symmetry and an Abelian flavor (or
gauge) symmetry:

LRCS =− ikR

2π

(
ε

µνρAµ∂νVρ + iσW12

)
. (1.42)

The standard kinetic matter Lagrangian for the chiral and antichiral multiplets Φ , Φ†

coupled to V is given by:

Lmat = Dµφ
†Dµ

φ +φ
†(

σ
2+ iD− rW12

)
φ +F†F + iψ†(γµDµ−σ)ψ− iψ†

λφ + iφ †
λ

†
ψ ,

(1.43)
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where r is the R-charge of φ . The covariant derivative Dµ in (1.43) comprise the gauge fields,
the background field V for the R-symmetry and background fields for the flavor symmetries
of the theory. A background flavor vector multiplet consists of the bosonic components F f

12,
A f

3 , σ f and D f which need to fulfill D f = iF f
12 in order to preserve supersymmetry. We see

that F f
12 represents a Cartan-valued background magnetic flux for the flavor symmetry,

1
2π

∫
S2

F f = n , (1.44)

A f
3 is a flat connection (or Wilson line) along S1, and σ f is a real mass associated with the

flavor symmetry. The flavor magnetic flux n will join the magnetic flux for the R-symmetry,
providing a family of topological twists.

The Lagrangian Lmat is Q-exact, up to total derivatives:

QQ̃
(
ψ

†
ψ +2iφ †

σφ
) ∼= ε̃

†
ε Lmat , (1.45)

and will be used in the localization procedure.
Given a gauge-invariant, holomorphic function W (Φ), and of R-charge r = 2, one can

write the superpotential Lagrangians:6

LW = iFW , LW = iF†
W , (1.46)

where

FW =
∂W
∂Φi

Fi−
1
2

∂ 2W
∂Φi∂Φ j

ψ
c†
j ψi , F†

W =
∂W

∂Φ
†
i

F†
i −

1
2

∂ 2W

∂Φ
†
i ∂Φ

†
j

ψ
†
j ψ

c
i , (1.47)

are the F-terms of the chiral multiplet W (Φ) and its antichiral sister. The two Lagrangians are
Q-exact, up to total derivatives, due to Q

(
iεc†ψW

)∼= ε̃†ε LW and Q
(
−iψ†

W ε̃c)∼= ε̃†ε LW .
Since we are working with the Wick rotation of real Lorentzian Lagrangians, we take the
two functions W and W complex conjugate.

Finally, we can include the following supersymmetric Wilson loop in a representation R:

W = TrR Pexp
∮

dτ
(
iAµ ẋµ −σ |ẋ|

)
, (1.48)

as in [55]. Here P denotes the usual path-ordering operator, xµ(τ) is the closed world-
line of the Wilson loop, τ is a parameter on it, ẋµ ≡ dx/dτ and |ẋ| is the length of ẋµ . Its

6The two Lagrangians are seperately supersymmetric.
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supersymmetry variation reads

QW ∝ −1
2

λ
†
γµε ẋµ +

1
2

λ
†
ε |ẋ| . (1.49)

For QW = 0 (and Q̃W = 0) we need ẋ1 = ẋ2 = 0, i.e. the loop should be along the vector
field e3. In the unrefined case e3 = β−1∂t so that we can place the loop at an arbitrary point
on S2 and along t. In the refined case e3 = β−1(∂t + ς∂ϕ) and xµ(τ) = (θ0,ςτ,τ). Thus, for
irrational values of ς the loop does not close leaving us with two choices: tune ς to rational
values or place the loop at one of the two poles of S2.

1.5 ABJM theory

The ABJM theory [56] describes the low-energy dynamics of N M2-branes on C4/Zk. It is a
three-dimensional supersymmetric Chern-Simons-matter theory with gauge group U(N)k×
U(N)−k, four matter supermultiplets (Ai,B j), i, j = 1,2, in bi-fundamental representations
and a manifest N = 6 superconformal symmetry. For k = 1,2, the ABJM theory has
monopole operators being conformal primaries of dimension 2 and transforming as vectors
under Lorenz transformations. Such operators must be conserved currents, which enables one
to show that the superconformal symmetry is enhanced to N = 8 [56–58]. Using standard
N = 2 notation, this theory can be described by the quiver diagram

Nk N−k

Ai

B j

(1.50)

with two nodes representing the Chern–Simons theories, and four arrows between the nodes
representing the bi-fundamental chiral multiplets. In addition, there is a quartic superpotential

W = Tr(A1B1A2B2−A1B2A2B1) . (1.51)

The ABJM theory has a manifest SU(2)×SU(2)×U(1)T ×U(1)R global symmetry: under
the first SU(2) factor the Ai transform as a doublet, and under the second SU(2) factor the
B j transform as a doublet; U(1)T is the topological symmetry associated to the topological
current JT = ⋆Tr(F− F̃) where F , F̃ are the two field strengths; U(1)R is the R-symmetry
under which Ai and B j get multiplied by the same phase.
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1.6 The topologically twisted index

The topologically twisted index is the partition function for three- and four-dimensional
gauge theories with at least four supercharges on Σg×T n (n = 1,2). When it is refined with
chemical potentials and background magnetic charges for the flavor symmetries, it becomes
an efficient tool for studying the nonperturbative properties of supersymmetric gauge theories
[46, 18, 59–62]. The large N limit of the index contains interesting information about theories
with a holographic dual. In particular, the large N limit of the index for the three-dimensional
ABJM theory was successfully used in [10, 11] to provide the first microscopic counting of
the microstates of an AdS4 black hole. In this dissertation we extend the analyses of [10, 11]
to a wider class of field theories.

The index can be evaluated using supersymmetric localization and it reduces to a matrix
model. It can be written as the contour integral

Z(n,y) =
1
|W| ∑

m∈Γh

∮
C

Zint(m,x;n,y) , (1.52)

of a meromorphic differential form in variables x parameterizing the Cartan subgroup and
subalgebra of the gauge group G, summed over the lattice of magnetic charges m of the
gauge group. The index depends on complex fugacities yI = ei∆I and magnetic charges nI

for the flavor symmetries. Here, |W| is the order of the Weyl group of G. Supersymmetric
localization chooses a particular contour of integration C and the final result can be recast
in terms of the Jeffrey-Kirwan (JK) residue. We refer the reader to [18, 61] for a thorough
analysis of the contour of integration. As a difference with other well known matrix models
arising from supersymmetric localization, like the partition function on S3 [55, 63, 47] or
the superconformal index [64], in the large N limit all the gauge magnetic fluxes contribute
to the integral making difficult its evaluation. Here we use the strategy employed in [10] to
explicitly resum the integrand and consider the contour integral of the sum7

Zresummed(x;n,y) =
1
|W| ∑

m∈Γ JK
h

Zint(m,x;n,y) , (1.53)

which is a complicated rational (in three dimensions) or elliptic (in four dimensions) function
of x. One can write a set of algebraic equations for the position of the poles, which we call
Bethe ansatz equations (BAEs) (they actually are the BAEs of the dimensionally reduced
theory on Σg in the formalism of [65]), and an effective twisted superpotential W̃ (or Yang-

7Here the sum is over a wedge Γ JK
h inside the magnetic lattice, for which Zint(m,x;n,y) has poles inside the

JK contour.
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Yang functional [66]) whose derivatives reproduce the BAEs. The topologically twisted
index is then given by the sum of the residues of Zresummed at the solutions to the BAEs.

Let us note that in a three-dimensional N = 2 (four-dimensional N = 1) theory, the
R-symmetry can mix with the global symmetries and we can also write

nI = rI +pI , (1.54)

where rI is a reference R-symmetry and pI magnetic charges under the flavor symmetries
of the theory. Both yI and nI are thus parameterized by the global symmetries of the theory.
The invariance of each monomial term Wa in the superpotential under the symmetries of the
theory imposes the following constraints

∏
I∈Wa

yI = 1 , ∑
I∈Wa

nI = 2(1−g) , (1.55)

where the latter comes from supersymmetry, and, as a consequence,

∑
I∈Wa

∆I ∈ 2πZ . (1.56)

Here, the product and the sum are restricted to the fields entering in the monomial Wa.
Finally, the number of supersymmetric ground states dmicro(nI,qI) in the microcanonical

ensemble is given by the Fourier transform of (1.52) with respect to the ∆I’s:

dmicro(nI,qI) =
∫ 2π

0

∫ 2π

0
· · ·
∫ 2π

0

(
∏

I

d∆I

2π

)
∏

a
δ

(
ei∑I∈Wa ∆I −1

)
Z(nI,∆I)e−i∑I ∆IqI .

(1.57)
For simplicity, we restrict our discussion to the case of Σg = S2 in the rest of the disser-

tation since the generalization to an arbitrary Riemann surface is straightforward. Indeed,
in the large N limit, the higher genus partition function receives a simple modification, as
discussed in [61], as follows,

logZg ̸=1(nI) = (1−g) logZg=0(nI/(1−g)) . (1.58)

1.6.1 N = 2N = 2N = 2 Chern-Simons-matter theories on S2×S1S2× S1S2×S1

The topologically twisted index of a three-dimensional N = 2 supersymmetric Chern-
Simons theory with gauge group G of rank r and a set of chiral multiplets transforming in



18 Introduction and summary

representations RI of G is given by [18]:8

Z(n,y)=
1
|W| ∑

m∈Γh

∮
C

∏
Cartan

(
dx

2πix
xkm
)

∏
α∈G

(1−xα) ∏
I

∏
ρI∈RI

(
xρI/2 yρ

f
I /2

1− xρI yρ
f

I

)ρI(m)−ρ
f

I (n)+1

,

(1.59)
where the index I runs over all matter fields in the theory. Given a weight ρI of the repre-
sentation RI , we use the notation xρI = eiρI(u). α are the roots of G and ρ

f
I is the weight

of the chiral multiplet under the flavor symmetry group. In this formula,9 x = ei(At+iβσ)

parameterizes the gauge zero modes, where At is a Wilson line on S1 and runs over the
maximal torus of G while σ is the real scalar in the vector multiplet and runs over the
corresponding Cartan subalgebra. m are gauge magnetic fluxes living in the co-root lattice Γh

of G (up to gauge transformations). k denotes the Chern-Simons coupling for the group G,
and there can be a different one for each Abelian and simple factor in G.

As already discussed, each Abelian gauge group in three dimensions is associated with
a topological U(1) symmetry. The contribution of a topological symmetry with fugacity
ξ = ei∆m and magnetic flux t to the index is given by

Ztop = xt ξm , (1.60)

where x is the gauge variable of the corresponding U(1) gauge field.
Th index can be interpreted as a trace over a Hilbert space of states H on S2,

Z(n,v) = TrH (−1)Fe−βHei∑I ∆IJI , (1.61)

where JI are the generators of the flavor symmetries. The Hamiltonian H on Σg explicitly
depends on the flavor magnetic fluxes nI and the real masses σI . Due to the supersymmetry
algebra Q2 = H−σIJI only states with H = σIJI contribute. The index is a holomorphic
function of vI with vI = ∆I + iβσI . We also identify ∆I with flavor flat connections.

The partition function for theories in the Ω -background (see section 1.4.2) is

Z(n,y,ζ ) =
1
|W| ∑

m∈Γh

∮
C

∏
Cartan

(
dx

2πix
xkm
)

ζ
−∑α>0 |α(m)|

∏
α∈G

(
1− xα

ζ
|α(m)|)

×∏
I

∏
ρI∈RI

(
xρI yρ

f
I
)B/2

(
xρI yρ

f
I ζ 1+B;ζ 2)

∞(
xρI yρ

f
I ζ 1−B;ζ 2

)
∞

, B = ρI(m)−ρ
f

I (n)+1 ,

(1.62)
8For further developments see [61, 67, 62, 68].
9β is the radius of S1.
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where ζ = eiς/2 is the fugacity for the angular momentum Lϕ of rotations along ϕ , and the
q-Pochhammer symbol is defined as

(x;q)∞ =
∞

∏
n=0

(1− xqn) , for 0≤ q < 1 . (1.63)

The contribution of a U(1) topological symmetry is the same as before.
Reducing down to S1, the Ω -deformed partition function computes the quantum mechan-

ical index
logZ(n,v,ς) = TrH (−1)Fe−βHei∑I JI∆I eiςLϕ . (1.64)

In this dissertation we shall evaluate the unrefined index at large N for real vI , setting all
real masses σI to zero. One can easily extend it to the complex plane employing holomorphy.

1.6.2 N = 1N = 1N = 1 gauge theories on S2×T 2S2×T 2S2×T 2

The topologically twisted index of an N = 1 gauge theory with vector and chiral multiplets
and a non-anomalous U(1)R symmetry in four dimensions is given by [18]10

Z(n,y,q) =
1
|W| ∑

m∈Γh

∮
C

∏
Cartan

(
dx

2πix
η(q)2

)
(−1)∑α>0 α(m)

∏
α∈G

[
θ1(xα ;q)

iη(q)

]

×∏
I

∏
ρI∈RI

[
iη(q)

θ1(xρI yρ
f

I ;q)

]ρI(m)−ρ
f

I (n)+1

,

(1.65)

where q = e2πiτ and τ is the complex modulus of the torus. Here, the zero mode gauge
variables x = eiu parameterize the Wilson lines on the two directions of the torus

u = 2π

∮
A-cycle

A−2πτ

∮
B-cycle

A , (1.66)

and are defined modulo

ui ∼ ui +2πn+2πmτ , n ,m ∈ Z . (1.67)

In this formula, θ1(x;q) is a Jacobi theta function and η(q) is the Dedekind eta function (see
appendix A.2). Let us remark that, there exist particular choices of background magnetic
fluxes n for which the ∑m truncates to a single set of gauge fluxes m [70]. However, for

10One can pull out a gauge independent factor — the supersymmetric Casimir energy — from (1.65) [69].
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generic background fluxes this does not happen and we need to sum an infinite number of
contributions.

In order for the integrand in (1.65) be a well-defined meromorphic function on the torus
the one-loop contributions must be invariant under the transformation xρ → qρ(γ) xρ , where
γ ∈ Γh. Applying xρ → qρ(γ) xρ and using (A.10) we find

Zgauge, off
1−loop → Zgauge, off

1−loop ∏
α∈G

(−1)−α(γ) e−iπτα(γ)2
e−iα(u)α(γ) ,

Zchiral
1−loop→ Zchiral

1−loop ∏
ρI∈RI

(−1)ρI(γ)B eiπτρI(γ)
2B eiρI(u)ρI(γ)B eiρI(γ)ρ

f
I (∆)B .

(1.68)

Putting everything together, the total prefactor in the integrand vanishes if we demand the
following anomaly cancellation conditions:

∑
α∈G

α(γ)2 +∑
I

∑
ρI∈RI

(nI−1)ρI(γ)
2 = 0 , U(1)R-gauge-gauge anomaly ,

∑
α∈G

α(γ)α(u)+∑
I

∑
ρI∈RI

(nI−1)ρI(γ)ρ(u) = 0 , U(1)R-gauge-gauge anomaly ,

∑
I

∑
ρI∈RI

ρI(γ)
2

ρI(m) = 0 , gauge3 anomaly ,

∑
I

∑
ρI∈RI

ρI(γ)ρ(u)ρI(m) = 0 , gauge3 anomaly ,

∑
I

∑
ρI∈RI

ρI(γ)ρI(m)ρ
f

I (∆) = 0 , gauge-gauge-flavor anomaly ,

∑
I

∑
ρI∈RI

(nI−1)ρI(γ)ρ
f

I (∆) = 0 , U(1)R-gauge-flavor anomaly .

(1.69)

The signs cancel out automatically for all D3-brane quivers since the number of arrows
entering a node equals the number of arrows leaving it.

Notice that the index can be interpreted as a trace over a Hilbert space of states on S2×S1

Z(n,y,q) = TrH (−1)FqHL ∏
I

yJI
I , (1.70)

where the Hamiltonian HL on S2×S1 explicitly depends on the magnetic fluxes nI .
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1.7 The III -extremization principle

The Bekenstein-Hawking entropy of a dyonic BPS black hole in AdS4 with a charge vector
(nI,qI) can be obtained by extremizing I (∆I)≡ logZSCFT (∆I,nI)− i∑I ∆IqI , at large N,

∂I (∆I)

∂∆1,...

∣∣∣∣
∑I∈Wa ∆I∈2πZ

(∆̄I) = 0 , (1.71)

and evaluating it at its extremum ∆̄I:

I
∣∣
crit(nI,qI) = SBH(nI,qI) . (1.72)

In the purely magnetic case (qI = 0) the extremization (1.72) leads to real values for the
critical points ∆̄I and the index I (∆̄I). However, in the dyonic case the saddle-point is
complex and one has to impose a constraint on the charges that the index I (∆̄I) is a real
positive quantity [see the discussion around (4.2)]. This procedure, dubbed I -extremization
in [10, 11], comprised two conjectures:

1. Extremizing the index unambiguously determines the exact R-symmetry in the unitary
N = 2 superconformal quantum mechanics in the infrared (IR).

2. The value of the index at its extremum is the regularized number of ground states.

1.8 Attractor mechanism

In this section we give a short introduction to an important feature of static BPS black holes
in four-dimensional N = 2 gauged supergravity. More details can be found in the main text.

The four-dimensional supergravity theory has nV Abelian vector multiplets, parameteriz-
ing a special Kähler manifold M with metric gi j̄, in addition to the gravity multiplet (thus a
total of nV +1 gauge fields and nV complex scalars). The presence of hypermultiplets just
add algebraic constraints [34, 71]. So we only concern ourselves with vector multiplets. The
scalar manifold is defined by the prepotential F

(
XΛ
)
, which is a homogeneous holomorphic

function of sections XΛ .
Let us define the central charge of the black hole Z and the superpotential L ,

Z = eK /2
(

qΛ XΛ −nΛ FΛ

)
, L = eK /2

(
gΛ XΛ −gΛ FΛ

)
. (1.73)



22 Introduction and summary

where (gΛ ,gΛ ) are the magnetic and electric gaugings of the theory, K is the Kähler potential
and

FΛ ≡
∂F (XΛ )

∂XΛ
. (1.74)

Here Λ = 0, . . . ,nv. Then, the Bekenstein-Hawking entropy of the black hole with magnetic
and electric charges (nΛ ,qΛ ) can be obtained by extremizing the functional [32]

Isugra(XΛ ) = i
Z

L
, (1.75)

with respect to XΛ . This is the so-called attractor mechanism [72]: the area of the black hole
horizon is given in terms of conserved charges and is independent of the asymptotic moduli.

In the rest of the thesis we work in the gauge

gΛ XΛ = 1 . (1.76)

In consistent models we can always apply an electric-magnetic duality transformation so that
the corresponding gauging becomes purely electric, i.e., gΛ = 0.

1.9 Main results

In the course of our analysis, we find a number of interesting general results which we shall
review in this section.

1.9.1 N = 2N = 2N = 2 field theories on S2×S1S2× S1S2×S1

In the large N limit, we find a simple universal formula for computing the index from the
twisted superpotential, W̃ (∆I), as a function of the chemical potentials,

logZ(∆I,nI) =−
2
π

W̃ (∆I) −∑
I

[(
nI−

∆I

π

)
∂ W̃ (∆I)

∂∆I

]
. (1.77)

We call this the index theorem. It allows to avoid the many technicalities involved in taking the
residues and including exponentially small corrections to the index. By comparing the index
theorem with the attractor formula for the entropy of asymptotically AdS4 black holes, we are
also led to conjecture a relation between the twisted superpotential and the prepotential of the
dimensionally truncated gauged supergravity describing the compactification on AdS4×Y7,
with Y7 a Sasaki-Einstein manifold. This relation is discussed in section 2.7.
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Furthermore, we find an explicit relation between the twisted superpotential and the S3

free energy of the same N ≥ 2 gauge theory. Although the two matrix models are quite
different at finite N, the BAEs and the functional form of the twisted superpotential in the
large N limit are identical to the matrix model equations of motion and free energy functional
for the path integral on S3 found in [73]. This result implies that the index can be extracted
from the free energy on S3 and its derivatives in the large N limit. It also implies a relation
with the volume functional of (Sasakian deformations of) the internal manifold Y7. These
relations deserve a better understanding.

1.9.2 N = 1N = 1N = 1 field theories on S2×T 2S2×T 2S2×T 2

The explicit evaluation of the topologically twisted index in four dimensions is a strenuous
task, even in the large N limit. However, the index greatly simplifies if we identify the
modulus τ = iβ/2π of the torus T 2 with a fictitious inverse temperature β ,11 and take the
high-temperature limit (β → 0). In this limit, we can use the modular properties of the
elliptic functions under the SL(2,Z) action to simplify the result.

In the high-temperature limit, we find a number of intriguing results, valid to leading
order in 1/β .

First, we obtain an explicit relation between the twisted superpotential and the R-
symmetry ’t Hooft anomalies of the ultraviolet (UV) four-dimensional N = 1 theory

W̃ (∆I) =
π3

6β

[
TrR3(∆I)−TrR(∆I)

]
=

16π3

27β
[3c(∆I)−2a(∆I)] , (1.78)

where R is a choice of U(1)R symmetry and the trace is over all fermions in the theory. Here,
we use the chemical potentials ∆I/π to parameterize a trial R-symmetry of the N = 1 theory.
Details about this identification are given in the main text. In writing the second equality
in (1.78) we used the relation between conformal and R-symmetry ’t Hooft anomalies in
N = 1 SCFTs [74],

a =
9

32
TrR3− 3

32
TrR , c =

9
32

TrR3− 5
32

TrR . (1.79)

Secondly, the value of the index as a function of the chemical potentials ∆I and the
set of magnetic fluxes nI , parameterizing the twist, can be expressed in terms of the trial

11The torus partition function at a given τ would correspond to a thermal ensemble while the elliptic genus is
only counting extremal states. Thus, the temperature represented by Imτ is fictitious.



24 Introduction and summary

left-moving central charge of the two-dimensional N = (0,2) SCFT as

logZ(∆I,nI) =−
π2

6β
cl (∆I,nI) . (1.80)

This is related to the trial right-moving central charge cr by the gravitational anomaly k
[40, 41],

cr− cl = k , k = Trγ3 . (1.81)

Here, γ3 is the chirality operator in two dimensions. We should emphasize that (1.80)
does not receive logarithmic or polynomial corrections in powers of cl/β , it is exact up to
exponentially suppressed contributions. The density of states dmicro is then given by (1.57)
and it reads

dmicro(nI,q0) ∝ N (nI)
(
SCardy

)−(R+1)/2 I(R+1)/2(SCardy) , (1.82)

where Iν is the standard modified Bessel function of the first kind (5.48). Here R denotes
the rank of the global symmetry group (including the R-symmetry), q0 is the electric charge
conjugate to β 12 (see section 1.9.3) and

SCardy = 2π

√
−cl(nI)q0

6
. (1.83)

Finally, there is a simple universal formula at leading order in N for computing the index
from the twisted superpotential as a function of the chemical potentials ∆I ,

logZ(∆I,nI) =−
3
π

W̃ (∆I)−∑
I

[(
nI−

∆I

π

)
∂ W̃ (∆I)

∂∆I

]
=−π2

6β
cr(∆I,nI) , (1.84)

where the index I runs over the bi-fundamental and adjoint fields in the quiver. In the large N
limit the twisted superpotential can be written as

W̃ (∆I) =
16π3

27β
a(∆I) . (1.85)

These formulae are valid for theories of D3-branes, where TrR = O(1) and c = a at large N
[75]. These topologically twisted theories have holographic duals in terms of black strings in
AdS5×Y5, where Y5 are five-dimensional Sasaki-Einstein spaces [40, 41].

12In a superconformal theory, the operator HL in (1.70) equals the zero mode generator L0 of the supercon-
formal algebra. The electric charge q0 is the eigenvalue of L0.
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There is a striking similarity with the results obtained for the large N limit of the
topologically twisted index of three-dimensional N = 2 field theories on S2× S1 (see
subsection 1.9.1), if we replace

central charge a(∆I) ←→ free energy on S3

central charge cr (∆I,nI) ←→ black hole entropy

c-extremization ←→ I -extremization .

Indeed, in three dimensions, the very same formula (1.84) holds with the twisted super-
potential given by the S3 partition function FS3 of the gauge theory. Notice that FS3 is the
natural replacement for a, both being monotonic along RG flows [76, 73]. Furthermore,
both of them can be computed, as a function of ∆I , in terms of the volume of a family of
Sasakian manifolds [77–80, 73]. In addition, in three dimensions, the dual AdS5 black string
is replaced by a dual AdS4 black hole and logZ computes the entropy of the black hole. As
discussed in section 1.7, the Bekenstein-Hawking entropy is obtained by extremizing logZ
with respect to ∆I (I -extremization). Similarly, as it was shown in [40, 41], the exact central
charge of the two-dimensional SCFT is obtained by extremizing the trial right-moving central
charge with respect to ∆I . Given the relation (1.84) we see that c-extremization corresponds
to I -extremization.

Notice also that our results (1.84) and (1.85) are compatible with a very simple relation
between the field theoretical quantities TrR3(∆I) and cr (∆I,nI) that is worthwhile to state
separately,

cr (∆I,nI) = 3TrR3(∆I)+π ∑
I

[(
nI−

∆I

π

)
∂ TrR3(∆I)

∂∆I

]
. (1.86)

1.9.3 III -extremization versus attractor mechanism

We can ignore the linear relation among the chemical potentials and use a set of ∆I such
that W̃ (∆I) is a homogeneous function of degree two (in three dimensions) or three (in four
dimensions) of the ∆I alone. In this case, the index theorem simplifies to

logZ(∆I,nI) =−∑
I
nI

∂ W̃ (∆I)

∂∆I
. (1.87)

This is due to the form of the differential operator in (1.77) [or (1.84)] and ∑I∈Wa nI = 2.
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The I -extremization is then telling us that upon extremizing

I (∆I,nI) = ∑
I

(
−nI

∂ W̃ (∆I)

∂∆I
− i∆IqI

)
, (1.88)

with respect to the chemical potentials ∆I (under the constraint that ∑I∈Wa ∆I = 2π), its value
at the extremum ∆̄I precisely reproduces the black hole entropy. Comparison of (1.88) with
the attractor equation (1.75) suggests the following relations

∆I ∝ XΛ , W̃ (∆I) ∝ iF (XΛ ) , (1.89)

also valid before extremization.13 Thus, in both three and four dimensions, the I -extremization
principle corresponds to the attractor mechanism [32, 82, 83, 45, 44] on the supergravity
side.

ABJM on S2×S1S2× S1S2×S1 . This relation certainly holds for the N = 6 ABJM theory which is
holographically dual to M-theory on AdS4× S7/Zk. The twisted superpotential for this
theory reads (see section 2.2.2.1)

W̃ (∆a) =
2
√

2
3

k1/2N3/2
√

∆1∆2∆3∆4 . (1.90)

which can be clearly mapped to the holomorphic prepotential

F (XΛ ) =−2i
√

X0X1X2X3 , (1.91)

of the so-called STU model (consisting of three vector multiplets in addition to the gravity
multiplet) in four-dimensional N = 2 gauged supergravity.

D2kkk on S2×S1S2× S1S2×S1 . In chapter 4, we demonstrate another example of the relation (1.89). The
instance of AdS4/CFT3 correspondence we shall study was finalized in [84] and states that
the massive type IIA string theory on asymptotically AdS4×S6 backgrounds admits a dual
description in terms of an N = 2 Chern-Simons deformation (at level k) of the maximal
N = 8 super Yang-Mills theory on the worldvolume of N D2-branes [85, 84]. We will call

13A relation between the free energy FS3 and the prepotential of the compactified theory was already suggested
in [81].
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this model the D2k theory. Its twisted superpotential is given by (see section 4.3)

W̃ (∆ j) =
313/6

5×28/3

(
1− i√

3

)
k1/3N5/3 (∆1∆2∆3)

2/3 . (1.92)

As we will show in chapter 4, the effective prepotential describing the near-horizon geometries
constructed in the four-dimensional dyonic N = 2 gauged supergravity, that arises as a
consistent truncation of massive type IIA supergravity on S6, reads

F
(
X I)=−i

33/2

4

(
1− i√

3

)
c1/3 (X1X2X3)2/3

, (1.93)

where c is the dyonic gauge parameter. Quite remarkably, the above correspondence (1.89)
holds true including the imaginary part of the twisted superpotential (1.92) and the prepoten-
tial (1.93).

Furthermore, we show that for a generic D2k theory with

|G|

∑
a=1

ka = |G|k , (1.94)

the logarithm of the topologically twisted index can be written as14

logZ (nI,∆I) =−
37/6π

5×210/3

(
1− i√

3

)
(nN)1/3 cr (nI,∆I)

a(∆I)
1/3 , (1.95)

where n≡ |G|k. Here a(∆I) is the trial conformal ’t Hooft anomaly of a four-dimensional
“parent” N = 1 SCFT on S2×T 2 and cr(nI,∆I) is the trial right-moving central charge of
the N = (0,2) theory obtained by a twisted compactification on S2 [40, 41, 87]. Let us
stress that, the rôle of the imaginary part of the partition function (1.95) is to fix the electric
charges (conjugate to ∆I) such that its value at the extremum is a real positive quantity. We
will explain this better in section 4.1.

Given the interesting connection between the four-dimensional D3-brane theories and
the three-dimensional D2k theories (1.95), it would be intriguing to find the analogous
relation on the supergravity side. In particular, one can expect a close connection between
the supergravity backgrounds discussed in chapter 4 and the black string solutions in five-
dimensional STU gauged supergravity found in [41].

14A similar relation between the three-sphere free energy − logZS3(∆I) and the anomaly coefficient a(∆I)
was found in [86].
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N = 4N = 4N = 4 SYM on S2×T 2S2×T 2S2×T 2 . The AdS dual to topologically twisted N = 4 SYM is given
by magnetically charged BPS black strings in type IIB string theory on AdS5×S5. In the
high-temperature limit, to leading order in 1/β , we find that (see section 5.2.1)

W̃ (∆a) = (N2−1)
∆1∆2∆3

2β
. (1.96)

Once we take the high-temperature limit (β → 0), we are shrinking a circle inside the torus
and effectively dealing with a three-dimensional field theory living on the twisted S2×S1

background. Upon compactification geometric symmetries remain as global symmetries of
the lower-dimensional theory. Therefore, the theory in three dimensions has an extra global
U(1) symmetry whose chemical potential can be identified with β .

On the supergravity side the same story goes through. The near-horizon geometry of
the BPS black string is locally AdS3×S2×S5. The longitudinal direction along this black
string lies within the AdS3. One could periodically identify the black string15 and perform
a dimensional reduction (as it was already done in [83]) to obtain a 4D black hole. It
interpolates between an AdS2×S2 near-horizon region and an asymptotic curved domain-
wall. The only electric charge of the 4D black hole descends from the momentum on the
circle. The prepotential of this theory is given by

F (XΛ ) =−X1X2X3

X0 . (1.97)

Comparing (1.96) with (1.97), we see that (1.89) holds true if we identify β with X0.

1.9.4 Black hole microstates in AdS555

The derivation of the entropy of BPS electrically charged rotating black holes in AdS5×S5

[88–92] in terms of states of the dual N = 4 SU(N) SYM theory is still an open problem.
Various attempts have been made in this direction [93–95] but none was really successful.
One could consider the superconformal index [96, 93] since it counts states preserving the
same supersymmetries of the black holes and it depends on a number of fugacities equal to
the number of conserved charges of the black holes.16 However, due to a large cancellation
between bosonic and fermionic states, the index is a quantity of order one for generic values
of the fugacities while the entropy scales like N2 [93]. We also know that the supersymmetric

15The near-horizon geometry is then a BTZ black hole.
16One can introduce five independent fugacities in the superconformal index with a constraint ∑

3
I=1 ∆I +

∑
2
i=1 ωi ∈ Z. On the gravity side, the BPS black holes have five conserved charges which satisfy a nonlinear

constraint.
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partition function on S3×S1 is equal to the superconformal index only up to a multiplicative
factor e−Esusy , where Esusy is the supersymmetric Casimir energy [97–103]. For N = 4 SYM
it reads (see for example [100])

Esusy =−iπ(N2−1)
∆1∆2∆3

ω1ω2
, (1.98)

where ∆I and ωi are the chemical potentials for the Cartan generators of the R-symmetry and
rotation, respectively. They are subject to the constraint

3

∑
I=1

∆I +
2

∑
i=1

ωi = 0 . (1.99)

As can be seen from (1.98), the supersymmetric Casimir Energy is of order N2 in the
large N limit; however, it is not clear what the average energy of the vacuum should have to
do with the entropy, which is the degeneracy of ground states. In chapter 6, we show that the
entropy of rotating BPS black holes in AdS5 can be obtained by extremizing the Legendre
transform of a quantity which formally equals −Esusy under the constraint

3

∑
I=1

∆I +
2

∑
i=1

ωi = 1 . (1.100)

We will give some preliminary discussion about the interpretation of this result in section 6.6.





Chapter 2

Large NNN matrix models for
three-dimensional N = 2N = 2N = 2 theories

2.1 Introduction

In this chapter we study the large N behavior of the topologically twisted index introduced
in chapter 1 for three-dimensional N ≥ 2 gauge theories. Here we extend the analysis of
[10, 11] to a larger class of N ≥ 2 theories with an M-theory or massive type IIA dual,
containing bi-fundamental, adjoint and (anti-)fundamental chiral matter. Most of the theories
proposed in the literature are obtained by adding Chen-Simons terms [56, 104–110] or by
flavoring [111–113] four-dimensional quivers describing D3-branes probing Calabi-Yau
three-fold (CY3) singularities. We refer to these theories as having a four-dimensional parent.
They all have an M-theory phase where the index is expected to scale as N3/2. The main
motivation for studying the large N limit of the index for these theories comes indeed form
the attempt to extend the result of [10, 11] to a larger class of black holes. However, the
matrix model computing the index reveals an interesting structure at large N which deserves
attention by itself. In particular, we will point out analogies and relations with other matrix
models appeared in the literature on three-dimensional N ≥ 2 gauge theories.

The method for solving the BAEs is similar to that used in [114, 73] for the large N
limit of the partition function on S3 in the M-theory limit and the one used for the partition
function on S5 of five-dimensional theories [115–117]. We take an ansatz for the eigenvalues
where the imaginary parts grow in the large N limit as some power of N. The solution to the
BAEs in the large N limit is then used to evaluate index using the residue theorem. In this
last step we need to take into account (exponentially small) corrections to the large N limit
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of the BAEs which contribute to the index due to the singular logarithmic behavior of its
integrand.

We focus on the limit where N is much greater than the Chern-Simons couplings ka. For
the class of quivers we are considering, this limit corresponds to an M-theory description
when ∑a ka = 0 and a massive type IIA one when ∑a ka ̸= 0. We recover the known scalings
N3/2 and N5/3 for the M-theory and massive type IIA phase, respectively. Similarly to
[73], we find that, in order to have a consistent N3/2 scaling of the index in the M-theory
phase, we have to impose some constraints on the quiver. In particular, quivers with a chiral
four-dimensional parent are not allowed, as in [73]. They are instead allowed in the massive
type IIA phase.

In this chapter we give the general rules for constructing the twisted superpotential and
the index for a generic Yang-Mills-Chen-Simons theory with bi-fundamental, adjoint and
fundamental fields and the example of ABJM theory. Many other examples can be found in
the next chapter, including models for well-known homogeneous Sasaki-Einstein manifolds,
suspended pinch point singularity (SPP), N0,1,0, Q1,1,1, V 5,2, and various nontrivial checks
of dualities.

The chapter is organized as follows. In section 2.2 we give the general rules for construct-
ing the twisted superpotential and the index for a generic Yang-Mills-Chen-Simons theory
with bi-fundamentals, adjoint and fundamental fields with N3/2 scaling, and in section 2.3
we derive them. In section 2.4 we prove the identity of the twisted superpotential and the S3

free energy at large N. In section 2.5 we derive the index theorem that allows to express the
index at large N in terms of the twisted superpotential and its derivatives. In section 2.6 we
discuss the rules for a N5/3 scaling. In section 2.7 we give a discussion of some open issues.

2.2 The large NNN limit of the index

In this chapter we are interested in the large N limit of the topologically twisted index
for theories with unitary gauge groups and matter transforming in the fundamentals, bi-
fundamentals and adjoint representation. As in [10], we evaluate the matrix model in two
steps. We first perform the summation over magnetic fluxes introducing a large cut-off M.1

1According to the rules in [18], the residues to take in (1.59) depend on the sign of the Chern-Simons
couplings. We can choose a set of co-vectors in the Jeffrey-Kirwan prescription such that the contribution
comes from residues with ma ≤ 0 for ka > 0, residues with ma ≥ 0 for ka < 0 and residues in the origin. We
can then take a large positive integer M and perform the summations in Eq. (1.59), with ma ≤M−1(ka > 0)
and ma ≥ 1−M (ka < 0).
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The result of this summation produces terms in the integrand of the form

N

∏
i=1

(
eiB(a)

i

)M

eiB(a)
i −1

, (2.1)

where we defined

eisign(ka)B
(a)
i = ξ

(a)(x(a)i )ka ∏
bi-fundamentals
(a,b) and (b,a)

N

∏
j=1

√
x(a)i

x(b)j

y(a,b)

1− x(a)i

x(b)j

y(a,b)

1− x(b)j

x(a)i

y(b,a)√
x(b)j

x(a)i

y(b,a)

× ∏
fundamentals

a

√
x(a)i ya

1− x(a)i ya
∏

anti-fundamentals
a

1− 1
x(a)i

ỹa√
1

x(a)i

ỹa

,

(2.2)

and adjoints are identified with bi-fundamentals connecting the same gauge group (a = b).
In this way the contributions from the residues at the origin have been moved to the solutions
of the BAEs

eisign(ka)B
(a)
i = 1 . (2.3)

It is convenient to use the variables u(a)i and ∆I , defined modulo 2π ,2

x(a)i = eiu(a)i , yI = ei∆I , ξ
(a) = ei∆ (a)

m , (2.4)

and take the logarithm of the BAEs

0 = log [RHS of (2.2)]−2πin(a)i , (2.5)

where n(a)i are integers that parameterize the angular ambiguities. The BAEs (2.5) can be
obtained as critical points of an effective twisted superpotential W̃ (u(a)i ).

We then need to solve these auxiliary equations in the large N limit. Once the distribution
of poles in the integrand in the large N limit has been found, we can finally evaluate the index
by computing the residue of the resummed integrand of (1.59) at the solutions of (2.5). In
the final expression, the dependence on M disappears.

2Notice that the index is a holomorphic function of yI and ξ . There is no loss of generality in restricting to
the case of purely real chemical potentials ∆I and ∆m in (2.4).
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We are interested in the properties of the topologically twisted index in the large N limit
of theories with an M-theory dual. We focus on quiver Chern-Simons-Yang-Mills gauge
theories with gauge group

G =
|G|

∏
a=1

U(N)a , (2.6)

and bi-fundamental, adjoint and fundamental chiral multiplets. Most of the conjectured
theories living on M2-branes probing CY4 singularities are of this form. Moreover, many
of them are obtained by adding Chern-Simons terms and fundamental flavors to quivers
appeared in the four-dimensional literature as describing D3-branes probing CY3 singularities.
We refer to these theories as quivers with a 4D parent. In order to have a CY4 moduli space,
the Chern-Simons couplings must satisfy

|G|

∑
a=1

ka = 0 . (2.7)

The M-theory phase of these theories is obtained for N≫ ka and this is the limit we consider
here. We expect the index to scale as N3/2.

As in [10], we consider the following ansatz for the large N saddle-point eigenvalue
distribution:

u(a)i = iN1/2ti + v(a)i . (2.8)

Notice that the imaginary parts of all the u(a)i are equal. In the large N limit, we define
the continuous functions ti = t(i/N) and v(a)i = v(a)(i/N) and we introduce the density of
eigenvalues

ρ(t) =
1
N

di
dt

, (2.9)

normalized as
∫

dt ρ(t) = 1.
The large N limit of the twisted superpotential is performed in details in section 2.3.1,

generalizing the analyses in [10]. Here, we report the final result and some of the crucial
subtleties. We need to require the cancellations of long-range forces in the BAEs, as originally
observed in a similar context in [73], and this imposes some constraints on the quiver. Once
these are satisfied, the twisted superpotential W̃ becomes a local functional of ρ(t) and
v(a)i (t) and it scales as N3/2. The same constraints guarantee that the index itself scales as
N3/2.
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2.2.1 Cancellation of long-range forces

As in [73], when bi-fundamentals are present, we need to cancel long-range forces in the
BAEs. These are detected by considering the force exerted by the eigenvalue u(b)j on the

eigenvalue u(a)i in (2.5). They can grow with large powers of N and need to be canceled by
imposing constraint on the quiver and matter content if necessary. Since u(b)j −u(a)i ∼

√
N

for i ̸= j, when the long-range forces vanish, the BAEs and the twisted superpotential get
only contributions from i∼ j and they become local functionals of ρ(t) and v(a)i (t).

Let us consider the effects of such long-range forces in the twisted superpotential W̃ . A
single bi-fundamental field connecting gauge groups a and b contributes terms of the form

∑
i< j

(
u(a)i −u(b)j

)2

4
−∑

i< j

(
u(a)j −u(b)i

)2

4
, (2.10)

to the twisted superpotential [see Eq. (2.73)]. In the large N limit, they are of order N5/2. In
order to cancel these terms, we are then forced, as in [73], to consider quivers where for each
bi-fundamental connecting a and b there is also a bi-fundamental connecting b and a. The
contribution of the two bi-fundamentals then cancel out [see Eq. (2.65) and Eq. (2.67)].

From a pair of bi-fundamentals, we get another contribution to the twisted superpotential
of the form [see Eq. (2.70)]

− 1
2
[(

∆(a,b)−π
)
+
(
∆(b,a)−π

)] N

∑
j ̸=i

(
u(a)i −u(b)j

)
sign(i− j) . (2.11)

This term can be canceled by the contribution of the angular ambiguities in (2.5) to the
twisted superpotential W̃

2π

N

∑
i=1

n(a)i u(a)i , (2.12)

provided that,3

∑
I∈a

(π−∆I) ∈ 2πZ , (2.13)

where the sum is taken over all bi-fundamental fields with one leg in the node a.4 Since
for any reasonable quiver the number of arrows entering a node is the same as the number
of arrow leaving it, this equation is obviously equivalent to ∑I∈a ∆I ∈ 2πZ and can be also

3This is actually true only when N is odd. For even N we are left with a common factor π ∑
N
i=1 u(a)i which

can be reabsorbed in the definition of ξ (a).
4Adjoint fields are supposed to be counted twice.
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written as

∏
I∈a

yI = 1 . (2.14)

This condition implies that the sum of the charges under all global symmetries of the bi-
fundamental fields at each node must vanish. For quivers with a 4D parent, this is equivalent
to the absence of anomalies for the global symmetries of the 4D theory. Taking the product
over all the nodes in a quiver, we also get

TrJ = 0 , (2.15)

for any global symmetry of the theory, where the trace is taken over all the bi-fundamental
fermions.

There are also contributions to the twisted superpotential of O(N2). The Chern-Simons
terms give indeed

∑
a

ka

N

∑
i=1

(
u(a)i

)2

2
. (2.16)

However, the O(N2) term cancels out when the condition (2.7) is satisfied. Finally, there is
an O(N2) contributions of the fundamental fields given by (2.79). This vanishes if the total
number of fundamental and anti-fundamental fields in the quiver is the same.

We turn next to the large N limit of the index. The vector multiplet contributes a term of
O(N5/2) [see Eq. (2.81)]

i
N

∑
i< j

(
u(a)i −u(a)j +π

)
. (2.17)

The contribution of O(N5/2) of a chiral multiplet is [see Eq. (2.86)]:

i ∑
I∈a

(nI−1)
2

N

∑
i< j

(
u(a)i −u(a)j +π

)
. (2.18)

To have a cancellation between terms of O(N5/2) and O(N2) for each node a we must have

2+∑
I∈a

(nI−1) = 0 . (2.19)
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For a quiver with a 4D parent, this condition is equivalent to the absence of anomalies for the
R-symmetry. If we sum over all the nodes we also obtain the following constraint

|G|+∑
I
(nI−1) = 0 . (2.20)

The above equation is equivalent to TrR = 0 for any trial R-symmetry, where the trace is
taken over all the bi-fundamental fermions and gauginos.

Summarizing, we can have a N3/2 scaling for the index if for each bi-fundamental
connecting a and b there is also a bi-fundamental connecting b and a, the total number of
fundamental and anti-fundamental fields in the quiver is equal, Eq. (2.14) and Eq. (2.19) are
fulfilled. All these conditions are automatically satisfied for quivers with a toric vector-like
4D parent and also for other interesting models like [118]. However, they rule out many
interesting chiral quivers appeared in the literature on M2-branes. We note a striking analogy
with the conditions imposed in [73].

2.2.2 Twisted superpotential at large NNN

In this section we give the general rules for constructing the twisted superpotential for any
N ≥ 2 quiver gauge theory which respects the constraints (2.14) and (2.19):

1. Each group a with CS level ka and chemical potential for the topological symmetry
∆
(a)
m contributes the term

− ikaN3/2
∫

dt ρ(t) t va(t)− i∆ (a)
m N3/2

∫
dt ρ(t) t . (2.21)

2. A pair of bi-fundamental fields, one with chemical potential ∆(a,b) and transforming
in the (N,N) of U(N)a×U(N)b and the other with chemical potential ∆(b,a) and
transforming in the (N,N) of U(N)a×U(N)b, contributes

iN3/2
∫

dt ρ(t)2 [g+ (δv(t)+∆(b,a)
)
−g−

(
δv(t)−∆(a,b)

)]
, (2.22)

where δv(t)≡ vb(t)− va(t). Here, we introduced the polynomial functions

g±(u) =
u3

6
∓ π

2
u2 +

π2

3
u , g′±(u) =

u2

2
∓πu+

π2

3
, (2.23)
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and we assumed them to be in the range

0 < δv+∆(b,a) < 2π , −2π < δv−∆(a,b) < 0 , (2.24)

which can be adjusted by choosing a specific determination for the ∆ that are defined
modulo 2π . We will also assume, and this is certainly true if δv assumes the value
zero, that

0 < ∆I < 2π . (2.25)

3. An adjoint field with chemical potential ∆(a,a), contributes

ig+(∆(a,a))N
3/2
∫

dt ρ(t)2 . (2.26)

4. A field Xa with chemical potential ∆a transforming in the fundamental of U(N)a,
contributes

− i
2

N3/2
∫

dt ρ(t) |t|
[
va(t)+

(
∆a−π

)]
, (2.27)

while an anti-fundamental field with chemical potential ∆̃a contributes5

i
2

N3/2
∫

dt ρ(t) |t|
[
va(t)−

(
∆̃a−π

)]
. (2.28)

Adding all the previous contributions for all gauge groups and matter fields, we get a
local functional W̃ (ρ(t),va(t),∆I) that we need to extremize with respect to the continuous
functions ρ(t) and va(t) with the constraint

∫
dtρ(t) = 1. Equivalently we can introduce a

Lagrange multiplier µ and extremize

W̃ (ρ(t),va(t),∆I)−µ

(∫
dtρ(t)−1

)
. (2.29)

This gives the large N limit distribution of poles in the index matrix model.
The solutions of the BAEs have a typical piece-wise structure. Eq. (2.29) is the right

functional to extremize when the conditions (2.24) are satisfied. This gives a central region
where ρ(t) and va(t) vary with continuity as functions of t. When one of the δv(t) associated
with a pair of bi-fundamental hits the boundaries of the inequalities (2.24), it remains frozen
to a constant value δv =−∆(b,a) (mod 2π) or δv = ∆(b,a) (mod 2π) for larger (or smaller)
values of t. This creates “tail” regions where one or more δv are frozen and the functional
(2.29) is extremized with respect to the remaining variables. In the tails, the derivative of

5We also assume 0 < va(t)+∆a < 2π and 0 <−va(t)+ ∆̃a < 2π .
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(2.29) with respect to the frozen variable is not zero and it is compensated by subleading
terms that we omitted. To be precise, the equations of motion [see Eq. (2.59)] includes
subleading terms

∂ W̃

∂ (δv)
+ iNρ

[
Li1
(

ei(δv+∆(b,a))
)
−Li1

(
ei(δv−∆(a,b))

)]
= 0 , (2.30)

which are negligible except on the tails, where δv has exponentially small correction to the
large N constant value

δv =−∆(b,a)+ e−N1/2Y(b,a) , δv = ∆(a,b)− e−N1/2Y(a,b) , mod 2π . (2.31)

The quantities Y are determined by equation (2.30) and contribute to the large N limit of the
index.

2.2.2.1 The ABJM example

As an example, we briefly review here the solution to the BAEs for the ABJM model found in
[10]. The reader can find many other examples in chapter 3. ABJM is a Chern-Simons-matter
theory with gauge group U(N)k×U(N)−k, with two pairs of bi-fundamental fields Ai and B j

transforming in the representation (N,N) and (N,N) of the gauge group, respectively, and
superpotential

W = Tr(A1B1A2B2−A1B2A2B1) . (2.32)

We assign chemical potentials ∆1,2 ∈ [0,2π] to Ai and ∆3,4 ∈ [0,2π] to B j. Invariance of
the superpotential under the global symmetries requires that ∑I ∆I ∈ 2πZ (or equivalently

∏I yI = 1). Conditions (2.14) and (2.19) are then automatically satisfied. The twisted
superpotential, for k = 1,6 reads

W̃ = iN3/2
∫

dt

{
t ρ(t)δv(t)+ρ(t)2

[
∑

a=3,4
g+ (δv(t)+∆a)− ∑

a=1,2
g− (δv(t)−∆a)

]}
.

(2.33)

6There is a similar solution for k > 1 with W̃ → W̃
√

k. However, we also need to take into account that, for
k > 1, there are further identifications among the ∆I due to discrete Zk symmetries of the quiver.
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The solution for ∑I ∆I = 2π and ∆1 ≤ ∆2, ∆3 ≤ ∆4 is as follows [10]. We have a central
region where

ρ =
2πµ + t(∆3∆4−∆1∆2)

(∆1 +∆3)(∆2 +∆3)(∆1 +∆4)(∆2 +∆4)
,

δv =
µ(∆1∆2−∆3∆4)+ t ∑a<b<c ∆a∆b∆c

2πµ + t(∆3∆4−∆1∆2)
,

− µ

∆4
< t <

µ

∆2
. (2.34)

When δv hits −∆3 on the left the solution becomes

ρ =
µ + t∆3

(∆1 +∆3)(∆2 +∆3)(∆4−∆3)
, δv =−∆3 , − µ

∆3
< t <− µ

∆4
, (2.35)

with the exponentially small correction Y3 = (−t∆4−µ)/(∆4−∆3), while when δv hits ∆1

on the right the solution becomes

ρ =
µ− t∆1

(∆1 +∆3)(∆1 +∆4)(∆2−∆1)
, δv = ∆1 ,

µ

∆2
< t <

µ

∆1
, (2.36)

with Y1 = (t∆2−µ)/(∆2−∆1). Finally, the on-shell twisted superpotential is

W̃ (ρ(t),δv(t),∆I)
∣∣
BAEs =

2i
3

µN3/2 =
2iN3/2

3

√
2∆1∆2∆3∆4 . (2.37)

There is also a solution for ∑I ∆I = 6π which, however, is obtained by the previous one by a
discrete symmetry ∆I → 2π−∆I

(
yI → y−1

I
)
.

2.2.3 The index at large NNN

We now turn to the large N limit of the index for an N ≥ 2 quiver gauge theory without
long-range forces. Here, we give the rules for constructing the index once we know the large
N solution ρ(t),va(t) of the BAE, which is obtained by extremizing (2.29). The final result
scales as N3/2.

1. For each group a, the contribution of the Vandermonde determinant is

− π2

3
N3/2

∫
dt ρ(t)2 . (2.38)

2. A U(1)a topological symmetry with flux ta contributes

− taN3/2
∫

dt ρ(t) t . (2.39)
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3. A pair of bi-fundamental fields, one with magnetic flux n(a,b) and chemical potential
∆(a,b) transforming in the (N,N) of U(N)a×U(N)b and the other with magnetic flux
n(b,a) and chemical potential ∆(b,a) transforming in the (N,N) of U(N)a×U(N)b,
contributes

−N3/2
∫

dt ρ(t)2 [(n(b,a)−1)g′+
(
δv(t)+∆(b,a)

)
+(n(a,b)−1)g′−

(
δv(t)−∆(a,b)

)]
.

(2.40)

4. An adjoint field with magnetic flux n(a,a) and chemical potential ∆(a,a), contributes

− (n(a,a)−1)g′+
(
∆(a,a)

)
N3/2

∫
dt ρ(t)2 . (2.41)

5. A field Xa with magnetic flux na transforming in the fundamental of U(N)a, contributes

1
2
(na−1)N3/2

∫
dt ρ(t)|t| , (2.42)

while an anti-fundamental field with magnetic flux ña contributes

1
2
(ña−1)N3/2

∫
dt ρ(t)|t| . (2.43)

6. The tails, where δv has a constant value, as in (2.30), contribute

−n(b,a)N
3/2
∫

δv≈−∆(b,a)(mod 2π)
dt ρ(t)Y(b,a)−n(a,b)N

3/2
∫

δv≈∆(a,b)(mod 2π)
dt ρ(t)Y(a,b) ,

(2.44)
where the integrals are taken on the tails regions.

As an example, for ABJM, using the above solution of the BAEs, one obtains the simple
expression [10]

Re logZ(nI,∆I) =−
N3/2

3

√
2∆1∆2∆3∆4

4

∑
I=1

nI

∆I
. (2.45)

2.3 Derivation of matrix model rules

In this section we give a detail derivation of the rules presented in subsections 2.2.2 and 2.2.3
for finding the twisted superpotential and the index at large N. This section is rather technical
and can be skipped on a first reading.
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We consider the following large N saddle-point eigenvalue distribution ansatz

u(a)i = iNαti + v(a)i . (2.46)

Note that the imaginary parts of the u(a)i are equal. We also define

δvi = v(b)i − v(a)i . (2.47)

At large N, we define the continuous functions ti = t(i/N) and v(a)i = v(a)(i/N) and we
introduce the density of eigenvalues

ρ(t) =
1
N

di
dt

, (2.48)

normalized as
∫

dt ρ(t) = 1. Furthermore, we impose the additional constraint

|G|

∑
a=1

ka = 0 , (2.49)

corresponding to quivers dual to M-theory on AdS4×Y7 and N3/2 scaling.

2.3.1 Twisted superpotential at large NNN

We may write the BAEs as

0 = log [RHS of (2.2)]−2πin(a)i , (2.50)

where n(a)i are integers that parameterize the angular ambiguities. We define the “twisted
superpotential” as the function whose critical points give the BAEs (2.50). In the large N
limit the twisted superpotential W̃ will be the sum of various contributions,

W̃ = W̃ CS + W̃ bi-fund + W̃ adjoint + W̃ (anti-)fund . (2.51)

α will be determined to be 1/2 by the competition between Chern-Simons terms and matter
contribution.
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2.3.1.1 Chern-Simons contribution

Each group a with CS level ka and topological chemical potential ∆
(a)
m , contributes to the

finite N twisted superpotential as

W̃ CS =
N

∑
i=1

[
−ka

2

(
u(a)i

)2
−∆

(a)
m u(a)i

]
. (2.52)

Given the large N saddle-point eigenvalue distribution (2.46), we find

W̃ CS =
ka

2
N2α

N

∑
i=1

t2
i − iNα

N

∑
i=1

(
kativ

(a)
i +∆

(a)
m ti

)
. (2.53)

Summing over nodes the first term vanishes (since ∑
|G|
a=1 ka = 0). Taking the continuum limit,

we obtain
W̃ CS =−ikaN1+α

∫
dt ρ(t) t va(t)− iN1+α

∆
(a)
m

∫
dt ρ(t) t . (2.54)

2.3.1.2 Bi-fundamental contribution

For a pair of bi-fundamental fields, one with chemical potential ∆(a,b) transforming in the
(N,N) of U(N)a×U(N)b and one with chemical potential ∆(b,a) transforming in the (N,N)

of U(N)a×U(N)b, the finite N contribution to the twisted superpotential is given by

W̃ bi-fund = ∑
bi-fundamentals
(b,a) and (a,b)

N

∑
i, j=1

[
Li2

(
ei
(

u(b)j −u(a)i +∆(b,a)

))
−Li2

(
ei
(

u(b)j −u(a)i −∆(a,b)

))]

− ∑
bi-fundamentals
(b,a) and (a,b)

N

∑
i, j=1

[(
∆(b,a)−π

)
+
(
∆(a,b)−π

)
2

(
u(b)j −u(a)i

)]
,

(2.55)

up to constants that do not depend on u(b)j , u(a)i .
We would like to remind the reader that all angular variables are defined modulo 2π . Part

of the ambiguity in ∆I can be fixed by requiring that

0 < δv+∆(b,a) < 2π , −2π < δv−∆(a,b) < 0 . (2.56)

The remaining ambiguity of simultaneous shifts δv→ δv+2π , ∆(a,b)→∆(a,b)+2π , ∆(b,a)→
∆(b,a)−2π can also be fixed by requiring that δv(t) takes the value 0 somewhere, if it vanishes
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at all, which we assume. We then have

0 < ∆I < 2π . (2.57)

To compute W̃ bi-fund, we break

N

∑
i, j=1

Li2

(
ei
(

u(b)j −u(a)i +∆(b,a)

))
= ∑

i> j
Li2

(
ei
(

u(b)j −u(a)i +∆(b,a)

))
+∑

i< j
Li2

(
ei
(

u(b)j −u(a)i +∆(b,a)

))

+
N

∑
i=1

Li2

(
ei
(

u(b)i −u(a)i +∆(b,a)

))
.

(2.58)
The crucial point here is that the last term is naively of O(N) and thus subleading; however,
we should keep it since its derivative is not subleading on part of the solution when δv hits
∆(a,b) or −∆(b,a). Therefore, we keep

N
∫

dt ρ(t)
[
Li2
(

ei(δv(t)+∆(b,a))
)
−Li2

(
ei(δv(t)−∆(a,b))

)]
. (2.59)

This will be important in the tail contribution to the twisted superpotential. The second term
in (2.58) is

∑
i< j

Li2

(
ei
(

u(b)j −u(a)i +∆(b,a)

))
= N2

∫
dt ρ(t)

∫
t
dt ′ρ(t ′) Li2

(
ei(ub(t ′)−ua(t)+∆(b,a))

)
. (2.60)

We first write the dilogarithm function as a power series

Li2(eiu) =
∞

∑
k=1

eiku

k2 . (2.61)

Then, we consider the integral

Ik =
∫

t
dt ′ρ(t ′)eik(ub(t ′)−ua(t)+∆(b,a))

=
∫

t
dt ′ e−kNα (t ′−t)

∞

∑
j=0

(t ′− t) j

j!
∂

j
x

[
ρ(x)eik(vb(x)−va(t)+∆(b,a))

]
x=t

,
(2.62)

where in the second equality we have Taylor-expanded the integrand around the lower bound.
Doing the integration over t ′ we see that the leading contribution is for j = 0, thus

Ik =
ρ(t)eik(vb(t)−va(t)+∆(b,a))

kNα
+O(N−2α) . (2.63)
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Substituting we find

∑
i< j

Li2

(
ei
(

u(b)j −u(a)i +∆(b,a)

))
= N2−α

∫
dt Li3

(
ei(δv(t)+∆(b,a))

)
ρ(t)2 +O(N2−2α) . (2.64)

Next, we need to compute the first term in (2.58). In order for the integral to be localized at
the boundary, we need to invert the integrand. Since 0 < Re

(
u(b)j −u(a)i +∆(b,a)

)
< 2π:

Li2

(
ei
(

u(b)j −u(a)i +∆(b,a)

))
=−Li2

(
ei
(

u(a)i −u(b)j −∆(b,a)

))
+

(
u(b)j −u(a)i +∆(b,a)

)2

2

−π

(
u(b)j −u(a)i +∆(b,a)

)
+

π2

3
.

(2.65)

The summation ∑i> j of the first term in the latter expression is similar to (2.64) but with

−Li3
(

e−i(δv(t)+∆(b,a))
)

instead of Li3. The two contributions may then be combined, using
(A.5),

N2−α

∫
dt
[
Li3
(

ei(δv(t)+∆(b,a))
)
−Li3

(
e−i(δv(t)+∆(b,a))

)]
ρ(t)2

= iN2−α

∫
dt g+

(
δv(t)+∆(b,a)

)
ρ(t)2 ,

(2.66)

where we have introduced the polynomial function g+(u) defined in Eq. (2.23).
The second term in the first line of (2.55) can be treated similarly. We now have

−2π < Re(u(b)j −u(a)i −∆(a,b))< 0 and

−Li2

(
ei
(

u(b)j −u(a)i −∆(a,b)

))
= Li2

(
ei
(

u(a)i −u(b)j +∆(a,b)

))
−

(
u(b)j −u(a)i −∆(a,b)

)2

2

−π

(
u(b)j −u(a)i −∆(a,b)

)
− π2

3
.

(2.67)

As before, the result of the summation ∑i> j together with that of ∑i< j yields a cubic
polynomial expression

− iN2−α

∫
dt g−

(
δv(t)−∆(a,b)

)
ρ(t)2 , (2.68)

where g−(u) is defined in Eq. (2.23).
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The left over terms from (2.65) and (2.67), throwing away the constants which do not
affect the critical points, are[(

∆(a,b)−π
)
+
(
∆(b,a)−π

)]
∑
i> j

(
u(b)j −u(a)i

)
, (2.69)

which, combined with the second line in (2.55), gives

1
2
[(

∆(a,b)−π
)
+
(
∆(b,a)−π

)]
∑
i̸= j

(
u(b)j −u(a)i

)
sign(i− j) . (2.70)

This term can be precisely canceled by

−2π

N

∑
i=1

(
n(b)i u(b)i −n(a)i u(a)i

)
, (2.71)

provided that ∑I∈a ∆I ∈ 2πZ.7

Notice that a single bi-fundamental chiral multiplet, with chemical potential ∆(b,a),
transforming in the representation (N,N) of U(N)a ×U(N)b contributes to the twisted
superpotential as

N

∑
i, j=1

Li2

(
ei
(

u(b)j −u(a)i +∆(b,a)

))
−

(
u(b)j −u(a)i +∆(b,a)

)2

4

 . (2.72)

Using Eq. (2.65) we find the following long-range terms

∑
i< j

(
u(a)i −u(b)j

)2

4
−∑

i< j

(
u(a)j −u(b)i

)2

4
. (2.73)

In the large N limit, they are of order N5/2 and cannot be canceled for chiral quivers.
To find a nontrivial saddle-point the leading terms of order N1+α and N2−α have to

be of the same order, so we need α = 1/2. Putting everything together we arrive at the
final expression for the large N contribution of the bi-fundamental fields to the twisted

7When N ∈ 2Z≥0 +1. For even N one can include an extra (−1)m in the twisted partition function, which
can be reabsorbed in the definition of the topological fugacity ξ , to compensate the overall factor of π .
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superpotential

W̃ bi-fund = iN3/2
∑

bi-fundamentals
(b,a) and (a,b)

∫
dt ρ(t)2 [g+ (δv(t)+∆(b,a)

)
−g−

(
δv(t)−∆(a,b)

)]
.

(2.74)
In the sum over pairs of bi-fundamental fields (b,a) and (a,b), adjoint fields should be

counted once and should come with an explicit factor of 1/2. Keeping this in mind and
setting vb = va , ∆(b,a) = ∆(a,b) = ∆(a,a) , we find the contribution of fields transforming in
the adjoint of the ath gauge group with chemical potential ∆(a,a) to the large N twisted
superpotential,

W̃ adjoint = iN3/2
∑

adjoint
(a,a)

g+
(
∆(a,a)

)∫
dt ρ(t)2 . (2.75)

2.3.1.3 Fundamental and anti-fundamental contribution

The fundamental and anti-fundamental fields contribute to the large N twisted superpotential
as8

W̃ (anti-)fund =
N

∑
i=1

 ∑
anti-fundamental

a

Li2

(
ei
(
−u(a)i +∆̃a

))
− ∑

fundamental
a

Li2

(
ei
(
−u(a)i −∆a

))
+

1
2

N

∑
i=1

 ∑
anti-fundamental

a

(
∆̃a−π

)
u(a)i + ∑

fundamental
a

(
∆a−π

)
u(a)i


− 1

4

N

∑
i=1

 ∑
anti-fundamental

a

(
u(a)i

)2
− ∑

fundamental
a

(
u(a)i

)2

 .

(2.76)
Let us denote the total number of (anti-)fundamental fields by (ña)na. Substituting in
W̃ (anti-)fund the ansatz (2.46) and taking the continuum limit, the first line contributes

− (ña−na)

2
N2
∫

t>0
dt ρ(t) t2

+ iN3/2
∫

t>0
dt ρ(t) t

 ∑
anti-fundamental

a

[
va(t)−

(
∆̃a−π

)]
− ∑

fundamental
a

[
va(t)+

(
∆a−π

)] ,

(2.77)
8Up to a factor −π(ña−na)ui/2 that cancels at this order for total number of fundamentals equal to total

number of anti-fundamentals, which we will need to assume for consistency.
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while the second and the third lines give

(ña−na)

4
N2
∫

dt ρ(t) t2

− i
2

N3/2
∫

dt ρ(t) t

 ∑
anti-fundamental

a

[
va(t)−

(
∆̃a−π

)]
− ∑

fundamental
a

[
va(t)+

(
∆a−π

)] .

(2.78)
Combining Eq. (2.77) and Eq. (2.78), we obtain

W̃ (anti-)fund =−(ña−na)

4
N2
∫

dt ρ(t) t |t|

+
i
2

N3/2
∑

anti-fundamental
a

∫
dt ρ(t) |t|

[
va(t)−

(
∆̃a−π

)]
− i

2
N3/2

∑
fundamental

a

∫
dt ρ(t) |t|

[
va(t)+

(
∆a−π

)]
.

(2.79)

Summing over nodes the first term vanishes, demanding that

|G|

∑
a=1

(ña−na) = 0 . (2.80)

We see that we need to consider quivers where the total number of fundamentals equal the
total number of anti-fundamentals. For each single node this number can be different.

2.3.2 The index at large NNN

We are interested in the large N limit of the logarithm of the twisted partition function.

2.3.2.1 Gauge contribution

Given the expression for the matrix model in section 1.6.1, the Vandermonde determinant
contributes to the logarithm of the index as

log∏
i̸= j

1−
x(a)i

x(a)j

= log∏
i< j

1−
x(a)j

x(a)i

2−x(a)i

x(a)j


= i

N

∑
i< j

(
u(a)i −u(a)j +π

)
−2

N

∑
i< j

Li1

(
ei
(

u(a)j −u(a)i

))
.

(2.81)
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The first term is of O(N2) and, therefore, a source of the long-range forces and will be
canceled by the contribution coming from the chiral multiplets. The second term is treated as
in section 2.3.1.2, and gives

Re logZgauge =−π2

3
N3/2

∫
dt ρ(t)2 +O(N) . (2.82)

2.3.2.2 Topological symmetry contribution

A U(1)a topological symmetry with flux ta contributes as i∑
N
i=1 u(a)i ta . In the continuum

limit, we get

Re logZtop =−taN3/2
∫

dt ρ(t) t +O(N) . (2.83)

2.3.2.3 Bi-fundamental contribution

We can rewrite the contribution to the twisted index of a bi-fundamental chiral multiplet trans-
forming in the (N,N) of U(N)a×U(N)b, with magnetic flux n(b,a) and chemical potential
∆(b,a) as:9

N

∏
i=1

(
x(b)i

x(a)i

) 1
2(n(b,a)−1)(

1− y(b,a)
x(b)i

x(a)i

)n(b,a)−1

×

N

∏
i< j

(−1)n(a,b)−1

x(a)i x(b)i

x(a)j x(b)j

 1
2(n(b,a)−1)1− y(b,a)

x(b)j

x(a)i

n(b,a)−11− y−1
(b,a)

x(a)j

x(b)i

n(b,a)−1

.

(2.84)
The first term in ∏i is subleading and the second term only contributes in the tail where
δv≈−∆(b,a),

N
(
n(b,a)−1

)∫
dt ρ(t) log

(
1− ei(δv+∆(b,a))

)
=−N3/2 (n(b,a)−1

)∫
δv≈−∆(b,a)

dt ρ(t)Y(b,a)(t)+O(N)
(2.85)

The first two terms in ∏i< j give a long-range force contribution to the index

i
2
(
n(b,a)−1

)
∑
i< j

[(
u(a)i −u(a)j +π

)
+
(

u(b)i −u(b)j +π

)]
, (2.86)

9The phases can be neglected, as we will be interested in log |Z|.
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while the last two terms result in

−N3/2 (n(b,a)−1
)∫

dt ρ(t)2
[
Li2
(

ei(δv+∆(b,a))
)
+Li2

(
e−i(δv+∆(b,a))

)]
+O(N)

=−N3/2 (n(b,a)−1
)∫

dt ρ(t)2g′+
(
δv(t)+∆(b,a)

)
+O(N) .

(2.87)

A bi-fundamental field transforming in the (N,N) of U(N)a×U(N)b, with magnetic flux
n(a,b) and chemical potential ∆(a,b) gives the same contribution with the replacement a↔ b
and δv→−δv.

The long-range force contribution of bi-fundamental fields at node a cancels with the
gauge contribution in (2.81), provided that

2+∑
I∈a

(nI−1) = 0 , (2.88)

where the sum is taken over all chiral bi-fundamentals I with an endpoint in a.
In picking the residues, we need to insert a Jacobian in the twisted index and evaluate

everything else at the pole. The matrix B appearing in the Jacobian is 2N×2N with block
form

B=
∂
(
eiB(a)

j ,eiB(b)
j
)

∂ (logx(a)l , logx(b)l )
=


x(a)l

∂eiB(a)
j

∂x(a)l

x(b)l
∂eiB(a)

j

∂x(b)l

x(a)l
∂eiB(b)

j

∂x(a)l

x(b)l
∂eiB(b)

j

∂x(b)l


2N×2N

, (2.89)

and only contributes in the tails regions,10

− logdetB=−N3/2
∑

bi-fundamentals
(b,a) and (a,b)

∫
δv≈−∆(b,a)

dt ρ(t)Y(b,a)(t)

+
∫

δv≈∆(a,b)

dt ρ(t)Y(a,b)(t)+O(N logN) .

(2.90)

Summarizing, pairs of bi-fundamental fields contribute to the logarithm of the index as

Re logZbi-fund
bulk =−N3/2

∑
bi-fundamentals
(b,a) and (a,b)

∫
dt ρ(t)2[(n(b,a)−1)g′+

(
δv(t)+∆(b,a)

)
+(n(a,b)−1)g′−

(
δv(t)−∆(a,b)

)]
.

(2.91)

10We refer the reader to [10] for a detailed analysis of the Jacobian at large N.
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The tails contribution is also given by

Re logZbi-fund
talis =−N3/2

∑
bi-fundamentals
(b,a) and (a,b)

n(b,a)

∫
δv≈−∆(b,a)

dt ρ(t)Y(b,a)(t)

+n(a,b)

∫
δv≈∆(a,b)

dt ρ(t)Y(a,b)(t) .

(2.92)

A field transforming in the adjoint of the ath gauge group with magnetic flux n(a,a) and
chemical potential ∆(a,a) only contributes to the bulk index. To find its contribution we need
to include an explicit factor of 1/2 in the expression (2.91) and take

vb = va , ∆(b,a) = ∆(a,b) = ∆(a,a) , n(b,a) = n(a,b) = n(a,a) . (2.93)

2.3.2.4 Fundamental and anti-fundamental contribution

The fundamental and anti-fundamental fields contribute to the logarithm of the index as

log
N

∏
i=1

∏
anti-fundamental

a

(
x(a)i

) 1
2 (ña−1)

[
1− ỹa

(
x(a)i

)−1
]ña−1

×

∏
fundamental

a

(
x(a)i

) 1
2 (na−1)

[
1− y−1

a

(
x(a)i

)−1
]na−1

. (2.94)

Using the scaling ansatz (2.46), in the continuum limit we get

log
N

∏
i=1

∏
anti-fundamental

a

(
x(a)i

) 1
2 (ña−1)

∏
fundamental

a

(
x(a)i

) 1
2 (na−1)

=−1
2

N3/2

 ∑
anti-fundamental

a

(ña−1)+ ∑
fundamental

a

(na−1)

∫ dt ρ(t) t +O(N) , (2.95)

and

log
N

∏
i=1

∏
anti-fundamental

a

[
1− ỹa

(
x(a)i

)−1
]ña−1

∏
fundamental

a

[
1− y−1

a

(
x(a)i

)−1
]na−1

= N3/2

 ∑
anti-fundamental

a

(ña−1)+ ∑
fundamental

a

(na−1)

∫
t>0

dt ρ(t) t +O(N) . (2.96)



52 Large N matrix models for three-dimensional N = 2 theories

Putting the above equations together we find:

Re logZ(anti-)fund =
1
2

N3/2

 ∑
anti-fundamental

a

(ña−1)+ ∑
fundamental

a

(na−1)

∫ dt ρ(t) |t| .

(2.97)

2.4 Twisted superpotential versus free energy on S3S3S3

We would like to emphasize a remarkable connection of the large N limit of the twisted
superpotential, which for us is an auxiliary quantity, with the large N limit of the free energy
FS3 on S3 of the same N ≥ 2 theory.

Recall that the three-sphere free energy FS3 of an N = 2 theory is a function of trial
R-charges ∆I for the chiral fields [63, 47]. They parameterize the curvature coupling of the
supersymmetric Lagrangian on S3. The S3 free energy can be computed using localization
and reduced to a matrix model [55]. The large N limit of the free energy, for N≫ ka, has
been computed in [114, 73, 119–121] and scales as N3/2. For example, the free energy for
ABJM with k = 1 reads [73]

FS3 =
4πN3/2

3

√
2∆1∆2∆3∆4 . (2.98)

We notice a striking similarity with (2.37). This is not a coincidence and generalizes to other
theories. Indeed, remarkably, although the finite N matrix models are quite different, for any
N = 2 theory, the large N limit of the twisted superpotential becomes exactly equal to the
large N limit of the free energy on S3. We can indeed compare the rules for constructing the
twisted superpotential with the rules for constructing the large N limit of FS3 , which have
been derived in [73]. By comparing the rules in section 2.2.2 with the rules given in section
2.2 of [73], we observe that they are indeed the same up to a normalization. For reader’s
convenience the map is explicitly given in Table. 2.1. The conditions for cancellation of
long-range forces (and therefore the allowed models) are also remarkably similar.

It might be surprising that our chemical potentials for global symmetries are mapped to
R-charges in the free energy. However, remember that our ∆I are angular variables. The
invariance of the superpotential under the global symmetries implies that

∏
I∈matter fields

yI = 1 , (2.99)
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twisted superpotential S3 free energy

ka −ka

µ
µ

2

va(t)
va(t)

2
ρ(t) 4ρ(t)
∆I π∆I

∆m −π∆m

W̃ 4πiFS3

W̃
∣∣
BAEs

iπ
2 FS3

∣∣
On-shell

Table 2.1 The large N twisted superpotential versus the S3 free energy of [73].

in each term of the superpotential, which is equivalent to

∑
I∈matter fields

∆I = 2πℓ ℓ ∈ Z , (2.100)

where now ∆I are the index chemical potentials. Under the assumption 0 < ∆I < 2π , few
values of ℓ are actually allowed. In the ABJM model reviewed above, only ℓ= 1 and ℓ= 3
give sensible results, with ℓ= 3 related to ℓ= 1 by a discrete symmetry of the model. We
found a similar result in all the examples we have checked, and we do believe indeed that a
solution to the BAEs only exists when

∑
I∈matter fields

∆I = 2π , (2.101)

for each term of the superpotential, up to solutions related by discrete symmetries. ∆I/π then
behaves at all effects like a trial R-symmetry of the theory and we can compare the index
chemical potentials in W̃ with the R-charges in FS3 .

2.5 An index theorem for the twisted matrix model

Under mild assumptions, the index at large N can be actually extracted from the twisted
superpotential with a simple formula.
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Theorem 1. The index of any N ≥ 2 quiver gauge theory which respects the constraints
(2.14) and (2.19), and satisfies in addition (2.101), can be written as

Re logZ =− 2
π

W̃ (∆I) −∑
I

[(
nI−

∆I

π

)
∂ W̃ (∆I)

∂∆I

]
, (2.102)

where W̃ (∆I) is the extremal value of the functional (2.29)

W̃ (∆I)≡−iW̃ (ρ(t),va(t),∆I)
∣∣
BAEs =

2
3

µN3/2 , (2.103)

and µ is the Lagrange multiplier appearing in (2.29).11

Proof. We first replace the explicit factors of π , appearing in Eqs. (2.22)-(2.28), with a
formal variable πππ . Note that the “on-shell” twisted superpotential W̃ (∆I) is a homogeneous
function of ∆I and πππ and therefore it satisfies

W̃ (λ∆I,λπππ) = λ
2 W̃ (∆I,πππ) ⇒ ∂ W̃ (∆I,πππ)

∂πππ
=

1
πππ

[
2W̃ (∆I)−∑

I
∆I

∂ W̃ (∆I)

∂∆I

]
.

(2.104)
Now, we consider a pair of bi-fundamental fields which contribute to the twisted superpoten-
tial according to (2.22). The derivative of W̃ (∆I,πππ) with respect to ∆(b,a) and ∆(a,b) is given
by

∑
I=(b,a),(a,b)

nI
∂ W̃ (∆I,πππ)

∂∆I
= iN3/2

∫
dt ρ(t)2 [n(b,a)g′+ (δv(t)+∆(b,a)

)
+n(a,b)g

′
−
(
δv(t)−∆(a,b)

)]
+ ∑

I=(b,a),(a,b)
nI

∂ W̃

∂ρ

∂ρ

∂∆I︸ ︷︷ ︸
vanishing on-shell

+ ∑
I=(b,a),(a,b)

nI
∂ W̃

∂ (δv)
∂ (δv)
∂∆I︸ ︷︷ ︸

tails contribution

.

(2.105)

The expression in the first line is precisely part of the contribution of a pair of bi-fundamentals
(2.40) to the index. In the tails, using (2.30), we find

∂ (δv)
∂∆(b,a)

=−1 ,
∂ (δv)
∂∆(a,b)

= 1 ,
∂ W̃

∂ (δv)
=−iY(b,a)ρ ,

∂ W̃

∂ (δv)
= iY(a,b)ρ . (2.106)

11The second identity in (2.103) is a consequence of a virial theorem for matrix models (see appendix B of
[121]).
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Therefore, the last term in Eq. (2.105) can be simplified to

iN3/2n(b,a)

∫
δv≈−∆(b,a)

dt ρ(t)Y(b,a)+ iN3/2n(a,b)

∫
δv≈∆(a,b)

dt ρ(t)Y(a,b) . (2.107)

This precisely gives the tail contribution (2.44) to the index. Next, we take the derivative of
the twisted superpotential with respect to πππ . It can be written as

∂ W̃

∂πππ
=−iN3/2

∫
dt ρ(t)2 [g′+ (δv(t)+∆(b,a)

)
+g′−

(
δv(t)−∆(a,b)

)]
+ iN3/2

∫
dt ρ(t)2

[
2πππ2

3
− πππ

3
(
∆(b,a)+∆(a,b)

)]
. (2.108)

The expression in the first line completes the contribution of a pair of bi-fundamentals (2.40)
to the index. The expression in the second line, after summing over all the bi-fundamental
pairs, can be written as

∑
pairs

[
2πππ2

3
− πππ

3
(
∆(b,a)+∆(a,b)

)]
=

πππ

3 ∑
I
(πππ−∆I) =

πππ2

3
|G| , (2.109)

which is precisely the contribution of the gauge fields (2.38) to the index. Here, we used the
condition

πππ|G|+∑
I
(∆I−πππ) = 0 . (2.110)

This condition follows from the fact that, assuming (2.101) for each superpotential term,
∆I/π behaves as a trial R-symmetry, so that (2.19) yields

2+∑
I∈a

(
∆I

π
−1
)
= 0 , (2.111)

which, summed over all the nodes, since each bi-fundamental field belongs precisely to two
nodes, gives (2.110). Condition (2.110) is indeed equivalent to TrR = 0, where the trace is
taken over the bi-fundamental fermions and gauginos in the quiver and R is an R-symmetry.
Combining everything as in the right hand side of Eq. (2.102) we obtain the contribution of
gauge and bi-fundamental fields to the index. The proof for all the other matter fields and the
topological symmetry is straightforward.

If we ignore the linear relation among the chemical potentials, we can always use a set of
∆I such that W̃ (∆I) is a homogeneous function of degree two of the ∆I alone.12 In this case,

12This is what happens in (2.37) for ABJM. Recall that ∑i ∆i = 2π so that the four ∆i are not linearly
independent.
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the index theorem simplifies to

Re logZ =−∑
I
nI

∂ W̃ (∆I)

∂∆I
. (2.112)

2.6 Theories with N5/3N5/3N5/3 scaling of the index

Chern-Simons quivers of the form (2.6) have a rich parameter space. If condition (2.7) is
satisfied and N ≫ ka, they have an M-theory weakly coupled dual. In the t’Hooft limit,
N,ka≫ 1 with N/ka = λa fixed and large, they have a type IIA weakly coupled dual. When
instead

|G|

∑
a=1

ka ̸= 0 , (2.113)

they probe massive type IIA [122]. There is an interesting limit, given (2.113), where again
N ≫ ka. The limit is no more an M-theory phase [123], but rather an extreme phase of
massive type IIA. Supergravity duals of this type of phases have been found in [124, 125,
123, 126, 84, 86, 127, 128]. The free energy scales as N5/3 [123]. We now show that also
the topologically twisted index scales in the same way. As it happens for the S3 matrix model
[73, 86], we find a consistent large N limit whenever the constraints (2.15) and (2.20) are
satisfied.

The ansatz for the eigenvalues distribution is now, as in [73, 86],

u(a)(t) = Nα(it + v(t)) , (2.114)

for some 0 < α < 1. The scaling is again dictated by the competition between the Chern-
Simons terms, now with (2.113), and the gauge and bi-fundamental contributions.

2.6.1 Long-range forces

Since the eigenvalue distribution is the same for all gauge groups, the long-range forces
(2.10) cancel automatically. We see that, differently from before, we can have a consistent
large N limit also in the case of chiral quivers. We also need to cancel the long-range forces
(2.11). They compensate each other if condition (2.14) is satisfied. Since the eigenvalues are
the same for all groups, it is actually enough to sum over nodes and we obtain the milder
constraint (2.15) on the flavor charges:

TrJ = 0 , (2.115)
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where the trace is taken over bi-fundamental fermions in the quiver.
We obtain similar conditions by looking at the scaling of the twisted index. As in section

2.2, vector multiplets and chiral bi-fundamental multiplets contribute terms (2.17) and (2.18)
which are of order O(N7/3). They compensate each other if condition (2.19) is satisfied.
Since the eigenvalues are the same for all groups, it is again enough to sum over nodes and
we obtain the constraint (2.20) on the flavor magnetic fluxes:

TrR = |G|+∑
I
(nI−1) = 0 , (2.116)

where the trace is taken over bi-fundamental fermions and gauginos in the quiver.
Conditions TrR = TrJ = 0 are certainly satisfied for all quivers with a four-dimensional

parent, even the chiral ones.

2.6.2 Twisted superpotential at large NNN

Here, we discuss the N5/3 contributions to the twisted superpotential. Given the large
N behavior of the eigenvalues (2.114), the classical contribution to the large N twisted
superpotential is

ka

2
N2α+1

∫
dt ρ(t)

[
t2− v(t)2−2it v(t)

]
. (2.117)

A bi-fundamental field between U(N)a and U(N)b, with chemical potential ∆(b,a), con-
tributes to the twisted superpotential via (2.72). In order to find the large N behavior we only
need to evaluate (2.60) using the ansatz (2.114). Let us focus on the following integral:

Ik =
∫

t
dt ′ρ(t ′)eik(ub(t ′)−ua(t)+∆(b,a))

=
∫

t
dt ′ e−kNα (t ′−t)

∞

∑
j=0

(t ′− t) j

j!
∂

j
x

[
ρ(x)eik[Nα (v(x)−v(t))+∆(b,a)]

]
x=t

=
∞

∑
j=0

(kNα)− j−1
∂

j
x

[
ρ(x)eik[Nα (v(x)−v(t))+∆(b,a)]

]
x=t

.

(2.118)

Extracting the leading large N contribution of

∂
j

x

[
ρ(x)eik[Nα (v(x)−v(t))+∆(b,a)]

]
x=t
∼ (ikNα) j

[
v′(x) j

ρ(x)eik[Nα (v(x)−v(t))+∆(b,a)]
]

x=t

= (ikNα) j v′(t) j
ρ(t)eik∆(b,a) ,

(2.119)
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we obtain

Ik =
eik∆I

k
ρ(t)N−α

∞

∑
j=0

[
iv′(t)

] j
=

eik∆I

k
N−α ρ(t)

1− iv′(t)
. (2.120)

Plugging this expression back into (2.60), we get

N

∑
i< j

Li2

(
ei
(

u(b)j −u(a)i +∆(b,a)

))
= N2−α

∫
dt Li3

(
ei∆(b,a)

)
ρ(t)2

1− iv′(t)
. (2.121)

Having (2.121) in our disposal the rest of the computation is exactly the same as in section
2.3.1.2. Following the same steps, we find

W̃ bi-fund = ig+
(
∆(b,a)

)
N2−α

∫
dt

ρ(t)2

1− iv′(t)
. (2.122)

The contribution of an adjoint field, with chemical potential ∆(a,a), is derived in exactly
the same fashion:

W̃ adjoint = ig+
(
∆(a,a)

)
N2−α

∫
dt

ρ(t)2

1− iv′(t)
. (2.123)

To have a nontrivial saddle-point, we need α = 1/3 which ensures that the Chern-Simons
terms and the matter contributions scale with the same power of N.

The contribution of (anti-)fundamental fields to the twisted superpotential is given by
(see section 2.3.1.3),

W̃ (anti-)fund =
(ña−na)

4
N5/3

∫
dt ρ(t) sign(t) [it + v(t)]2 . (2.124)

Notice that, when the total number of fundamental and anti-fundamental fields in the quiver
are equal, this contribution vanishes.

2.6.3 The index at large NNN

In this section we discuss the N5/3 contributions to the logarithm of the partition function.
Using the same methods given in subsections 2.3.2 and 2.6.2, we arrive at the following large
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N expressions for the gauge and matter contributions:

logZgauge =−π2

3
N5/3

∫
dt

ρ(t)2

1− iv′(t)
,

logZbi-fund
bulk =−(n(b,a)−1)g′+

(
∆(b,a)

)
N5/3

∫
dt

ρ(t)2

1− iv′(t)
,

logZadjoint
bulk =−(n(a,a)−1)g′+

(
∆(a,a)

)
N5/3

∫
dt

ρ(t)2

1− iv′(t)
.

(2.125)

The contribution of (anti-)fundamental fields to the index, at large N, is subleading and they
just contribute through the twisted superpotential.

Notice that the relation with the S3 free energy discussed in section 2.4 and the index
theorem of section 2.5 also hold for this class of quiver gauge theories.13

2.7 Discussion and conclusions

In this chapter we have studied the large N behavior of the topologically twisted index for
N = 2 gauge theories in three dimensions. We have focused on theories with a conjectured
M-theory or massive type IIA dual and examined the corresponding field theory phases,
where holography predicts a N3/2 or N5/3 scaling for the path integral, respectively. We
correctly reproduced this scaling for a class of N = 2 theories and we also uncovered some
surprising relations with apparently different physical quantities.

The first surprise comes from the identification of the effective twisted superpotential W̃

with the S3 free energy FS3 of the same N = 2 gauge theory. Recall that, in our approach,
the BAEs and the twisted superpotential are auxiliary quantities determining the position of
the poles in the matrix model in the large N limit. W̃ depends on the chemical potentials
for the flavor symmetries, satisfying (2.100), while FS3 depends on trial R-charges, which
parameterize the curvature couplings of the theory on S3. Both quantities, W̃ and FS3 are
determined in terms of a matrix model (auxiliary in the case of W̃ ). The two matrix models,
and the corresponding equations of motion are different for finite N but quite remarkably
become indistinguishable in the large N limit. Also the conditions to be imposed on the
quiver for the existence of a N3/2 or N5/3 scaling are the same. Although the structure of
the long-range forces and the mechanism for their cancellation are different, they rule out
quivers with chiral bi-fundamentals in the M-theory phase and impose the same conditions
on flavor symmetries.

13The coefficient 2/3 in front of µ in Eq. (2.103) must be replaced by 3/5.
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This identification leads to a relation of the twisted superpotential W̃ (∆I) with the volume
functional of Sasaki-Einstein manifolds. The exact R-symmetry of a superconformal N = 2
gauge theory can be found by extremizing FS3(∆I) with respect to the trial R-charges ∆I

[73] but FS3(∆I) makes sense for arbitrary ∆I . The functional FS3(∆I) has a well-defined
geometrical meaning for theories with an AdS4×Y7 dual, where Y7 is a Sasaki-Einstein
manifold. The value of FS3 upon extremization is related to the (square root of the) volume
of Y7. More generally, at least for a class of quivers corresponding to N = 3 and toric cones
C(Y7), the value of FS3(∆I), as a function of the trial R-symmetry parameterized by ∆I , has
been matched with the (square root of the) volume of a family of Sasakian deformation of
Y7, as a function of the Reeb vector. For toric theories, the volume can be parameterized in
terms of a set of charges ∆I , that encode how the R-symmetry varies with the Reeb vector,
and it has been conjectured in [129, 130, 81] to be a homogeneous quartic function of the ∆I ,
in agreement with the homogeneity properties of W̃ and FS3 .

A second intriguing relation comes from the index theorem (2.102). The original reason
for studying the large N limit of the topologically twisted index comes from the counting of
AdS4 black holes microstates. The entropy of dyonic black holes asymptotic to AdS4×S7

was successfully compared with the large N limit of the index in [10, 11], when extremized
with respect to the chemical potential ∆I . We expect that a similar relation holds for dyonic
BPS black holes asymptotic to AdS4×Y7, for a generic Sasaki-Einstein manifold. Given the
very small number of black holes known, this statement is difficult to check.

The main motivation of our analysis comes certainly from the attempt to extend the result
of [10, 11] to a larger class of black holes. The difficulty of doing so is mainly the exiguous
number of existing black holes solutions with an M-theory lift. Few numerical examples are
known in Sasaki-Einstein compactifications [34], mostly having Betti multiplets as massless
vectors. Some interesting examples involves chiral quivers and are therefore outside the
range of our technical abilities at the moment. It is curious that apparently well-defined chiral
quivers, which passed quite nontrivial checks [131], have an ill-defined large N limit both for
the S3 free energy and the topologically twisted index in the M-theory phase. It would be
quite interesting to know whether this is just a technical problem and another saddle-point
with N3/2 scaling exists, or the models are really ruled out.



Chapter 3

Necklace quivers, dualities, and
Sasaki-Einstein spaces

3.1 Introduction

The large N limit of the topologically twisted index ZS2×S1 for three-dimensional N ≥ 2
Chern-Simons-matter theories has been considered in the previous chapter. Here, we compute
the topological free energy

F= log |ZS2×S1| , (3.1)

for various examples in order to demonstrate the use of our formulae.
We begin by studying quiver gauge theories that can be realized on M2-branes probing

two asymptotically locally Euclidean (ALE) singularities [132]. These include the ADHM
[133] and the Kronheimer-Nakajima [134] quivers, as well as some of the necklace quiver
theories considered in [135]. We show that the topological free energy of such theories
can be written as that of the ABJM theory times a numerical factor, depending on the
orders of the ALE singularities and the Chern-Simons level of ABJM. In particular, we
match the topological free energy between theories being related to each other by dualities,
including mirror symmetry [136] and SL(2,Z) duality [137–139]. We then move to discuss
theories which are holographically dual to the M-theory backgrounds AdS4×Y7, where Y7 is
a homogeneous Sasaki-Einstein manifold. In particular, we calculate the topological free
energy for N0,1,0 [111, 140, 141] with N = 3 and suspended pinch point (SPP) singularity
[105], V 5,2 [118, 112], and Q1,1,1 [113, 142] with N = 2 supersymmetry.
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3.2 Quivers with N = 4N = 4N = 4 supersymmetry

In this section, we consider two quiver gauge theories with N = 4 supersymmetry. As
pointed out in [132], each of these theories can be realized in the worldvolume of M2-branes
probing C2/Zn1 ×C2/Zn2 , for some positive integers n1 and n2. We show below that the
topological free energy of such theories can be written as

√
n1n2/k times that of the ABJM

theory with Chern-Simons levels (+k,−k). We also match the index of a pair of theories
which are mirror dual [136] to each other. This serves as a check of the validity of our results.

3.2.1 The ADHM quiver

We consider U(N) gauge theory with one adjoint and r fundamental hypermultiplets, whose
N = 4 quiver is given by

N r (3.2)

where the circular node denotes the U(N) gauge group; the square node denotes the SU(r)
flavor symmetry; the loop around the circular node denotes the adjoint hypermultiplet; and
the line between N and r denotes the fundamental hypermultiplet. The vacuum equations
of the Higgs branch of the theory were used in the construction of the instanton solutions
by Atiyah, Drinfeld, Hitchin and Manin [133]. This quiver gauge theory hence acquires the
name “ADHM quiver”.

In N = 2 notation, this theory contains three adjoint chiral fields: φ1, φ2, φ3, where φ1,2

come from the N = 4 adjoint hypermultiplet and φ3 comes from the N = 4 vector multiplet,
and fundamental chiral fields Qi

a, Q̃a
i with a = 1, . . . ,N and i = 1, . . . ,r. The superpotential is

W = Q̃i
a(φ3)

a
bQb

i +(φ3)
a
b[φ1,φ2]

b
a . (3.3)

The N = 2 quiver diagram is depicted below.

N r

Q

Q̃

φ1,2,3 (3.4)

The Higgs branch of this gauge theory describes the moduli space of N SU(r) instantons
on C2 [133] and the Coulomb branch is isomorphic to the space SymN(C2/Zr) [143]. This
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theory can be realized on the worldvolume of N M2-branes probing C2×C2/Zr singularity
[132].

3.2.1.1 A solution to the system of BAEs

Let us denote, respectively, by ∆ , ∆̃ , ∆φ1,2,3 the chemical potentials associated to the flavor
symmetries of Q, Q̃, φ1,2,3, and by n, ñ, nφ1,2,3 the corresponding fluxes associated with
their flavor symmetries. We denote also by ∆m the chemical potential associated with the
topological charge of the gauge group U(N).

Given the rules of section 2.2.2, the twisted superpotential W̃ for this model can be
written as

W̃

iN3/2 =

(
3

∑
i=1

g+(∆φi)

)∫
dt ρ(t)2− r

2
[
(∆ −π)+(∆̃ −π)

]∫
dt |t|ρ(t)

+∆m

∫
dt t ρ(t)−µ

(∫
dt ρ(t)−1

)
.

(3.5)

Taking the variational derivative of W̃ with respect to ρ(t), we obtain the BAE

0 = 2ρ(t)
3

∑
i=1

g+(∆φi)−
r
2
|t|
[
(∆ −π)+(∆̃ −π)

]
+∆mt−µ . (3.6)

We first look for a solution satisfying

∑
I∈W

∆I = 2π , (3.7)

where the sum is taken over all the fields in each monomial term W in the superpotential. We
call this the marginality condition on the superpotential. This yields

∆ + ∆̃ +∆φ3 = 2π , ∆φ1 +∆φ2 +∆φ3 = 2π , (3.8)

while the magnetic fluxes should satisfy

n+ ñ+nφ3 = 2 , nφ1 +nφ2 +nφ3 = 2 . (3.9)

For later convenience, let us normalize the chemical potential associated with the topo-
logical charge as follows:

χ =
2
r

∆m . (3.10)
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Solving (3.6), we get

ρ(t) =
2µ− r∆φ3 |t|− rχt

2∏
3
i=1 ∆φi

. (3.11)

The solution is supported on the interval [t−, t+] with t−< 0< t+, where t± can be determined
from ρ(t±) = 0:

t± =± 2µ

(∆φ3±χ)r
. (3.12)

The normalization
∫ t+

t− dt ρ(t) = 1 fixes

µ =

√
r
2

∆φ1∆φ2(∆φ3 +χ)(∆φ3−χ) . (3.13)

The solution in the other ranges. Let us consider

∆ + ∆̃ +∆φ3 = 2πℓ , ∆φ1 +∆φ2 +∆φ3 = 2πℓ , where ℓ ∈ Z≥0 . (3.14)

For ℓ = 0 and ℓ = 3, we have ∆ = ∆̃ = ∆φ1,2,3 = 0 or ∆ = ∆̃ = ∆φ1,2,3 = 2π , respectively.
These are singular solutions. For ℓ= 2, the solution can be mapped to the previous one (i.e.
ℓ= 1) by a discrete symmetry

∆I → 2π−∆I , µ →−µ , ∆m→−∆m , (3.15)

where the index I labels matter fields in the theory. From now on, we shall consider only the
solution satisfying the marginality condition (3.7).

3.2.1.2 The index at large NNN

The topological free energy of the ADHM quiver can be derived from section (2.2.3) as

FADHM

N3/2 =−

[
π2

3
+

3

∑
i=1

(nφi−1)g′+(∆φi)

]∫
dt ρ(t)2− r

2
t

∫
dt t ρ(t)

+
r
2
[(n−1)+(ñ−1)]

∫
dt |t|ρ(t) ,

(3.16)

where t is the magnetic flux conjugate to the variable χ defined in (3.10). Plugging the above
solution back into (3.16), we find that

FADHM =

√
r
k
FABJMk , (3.17)
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where, cf. (2.45),

FABJMk =−
k1/2N3/2

3

√
2∆A1∆A2∆B1∆B2

(
nA1

∆A1

+
nA2

∆A2

+
nB1

∆B1

+
nB2

∆B2

)
. (3.18)

The map of the parameters is as follows:

∆A1 =
1
2
(∆φ3−χ) , ∆A2 =

1
2
(∆φ3 +χ) , ∆B1 = ∆φ1 , ∆B2 = ∆φ2 ,

nA1 =
1
2
(nφ3− t) , nA2 =

1
2
(nφ3 + t) , nB1 = nφ1 , nB2 = nφ2 .

The factor
√

r/k in (3.17) is the ratio between the orbifold order of SymN(C2×C2/Zr)

and that of SymN(C2/Zk); the former is the geometric branch of the ADHM theory and the
latter is that of the ABJM theory with Chern-Simons levels (+k,−k).

3.2.2 The An−1An−1An−1 Kronheimer-Nakajima quiver

We consider a necklace quiver with U(N)n gauge group with a bi-fundamental hypermultiplet
between the adjacent gauge groups and with r flavors of fundamental hypermultiplets under
the n-th gauge group. The N = 4 quiver is depicted below.

N

N

NN

N

N

r

(n circular nodes)

(3.19)

As proposed by Kronheimer and Nakajima [134], the vacuum equations for the Higgs branch
of this theory describes the hyperKähler quotient of the moduli space of SU(r) instantons on
C2/Zn with SU(r) left unbroken by the monodromy at infinity. We shall henceforth refer to
this quiver as the “Kronheimer-Nakajima quiver”.
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The corresponding N = 2 quiver diagram is

NN

N

N N

N r

(n circular nodes)

(3.20)

Let Qα (with α = 1, . . . ,n) be the bi-fundamental field that goes from node α to node
α + 1; Q̃α be the bi-fundamental field that goes from node α + 1 to node α; and φα be
the adjoint field under node α . Let us also denote by qi

a and q̃a
i the fundamental and anti-

fundamental chiral multiplets under the n-th gauge group (with a = 1, . . . ,N and i = 1, . . . ,r).
The superpotential is

W =
n

∑
α=1

Tr
(
Qαφα+1Q̃α − Q̃αφαQα

)
+ q̃a

i (φn)
b
a qi

b , (3.21)

where we identify φn+1 = φ1. From now on, the index α labeling the nodes is taken modulo
n for any necklace quiver with n nodes.

The Higgs branch of this gauge theory describes the moduli space of N SU(r) instantons
on C2/Zn such that the monodromy at infinity preserves SU(r) symmetry [134], and the
Coulomb branch describes the moduli space of N SU(n) instantons on C2/Zr such that the
monodromy at infinity preserves SU(n) symmetry [143, 132, 144, 145]. It can be indeed
realized on the worldvolume of N M2-branes probing C2/Zn×C2/Zr singularity [132].
Note also that 3D mirror symmetry exchanges the Kronheimer-Nakajima quiver (3.19) with
r = 1 and n = 2 and the ADHM quiver (3.2) with r = 2.

3.2.2.1 A solution to the system of BAEs

Let us denote respectively by ∆Qα
, ∆Q̃α

, ∆φα
, ∆q, ∆q̃ the chemical potentials associated to the

flavor symmetries of Qα , Q̃α , φα , q and q̃, and by nQα
, nQ̃α

, nφα
, nq, nq̃ the corresponding

fluxes associated with their flavor symmetries. We also denote by ∆
(α)
m the chemical potential

associated with the topological charge for gauge group α and by t(α) the associated magnetic
flux.
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Given the rules of section 2.2.2, the twisted superpotential W̃ for this model is given by

W̃

iN3/2 =
∫

dt ρ(t)2
n

∑
α=1

[
g+(δvα(t)+∆Q̃α

)−g−(δvα(t)−∆Qα
)+g+(∆φα

)
]

− r
2
[(

∆q−π
)
+
(
∆q̃−π

)]∫
dt |t|ρ(t)+

(
n

∑
α=1

∆
(α)
m

)∫
dt t ρ(t)

−µ

(∫
dt ρ(t)−1

)
.

(3.22)

where δvα = vα+1− vα and we identify δvn+1 = δv1. Taking the variational derivatives of
W̃ with respect to ρ(t) and δvα(t), we obtain the BAEs

0 = 2ρ(t)
n

∑
α=1

[
g+(δvα(t)+∆Q̃α

)−g−(δvα(t)−∆Qα
)+g+(∆φα

)
]

− r
2
|t|
[
(∆q−π)+(∆q̃−π)

]
+

(
n

∑
α=1

∆
(α)
m

)
t−µ ,

0 = ρ(t)
[
g′+(δvα(t)+∆Q̃α

)−g′−(δvα(t)−∆Qα)

+g′−(δvα−1(t)−∆Qα−1)−g′+(δvα−1(t)+∆Q̃α−1
)
]
, α = 1, . . . ,n .

(3.23)

The superpotential imposes the following constraints on the chemical potentials of the
various fields:

∆q +∆q̃ +∆φn = 2π , ∆Qα
+∆φα+1 +∆Q̃α

= 2π , ∆Q̃α
+∆φα

+∆Qα
= 2π . (3.24)

For notational convenience, we define

F1 = ∑
α

∆Q̃α
, F3 = ∆φn , ∆m =

2
r ∑

α

∆
(α)
m , (3.25)

and
F2 = 2π−F1−F3 . (3.26)

Solving the system of BAEs (3.23), we find that

ρ(t) =
2µ− rF3 |t|− r∆mt

2∏
3
i=1 Fi

, δvα =
1
n

F1−∆Q̃α
. (3.27)
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The support [t−, t+] of ρ(t) is determined by ρ(t±) = 0. We get

t± =± 2µ

(F3±∆m)r
. (3.28)

The normalization
∫ t+

t− dt ρ(t) = 1 fixes

µ =

√
3r
2

F1F2(F3 +∆m)(F3−∆m) . (3.29)

3.2.2.2 The index at large NNN

From the rules given in section 2.2.3, the topological free energy of this quiver is given by

FKN

N3/2 =−nπ2

3

∫
dt ρ(t)2−

(
n

∑
α=1

t(α)

)∫
dt t ρ(t)+

r
2
[
(nq−1)+(nq̃−1)

]∫
dt |t|ρ(t)

−
∫

dt ρ(t)2
n

∑
α=1

[
(nQ̃α

−1)g′+(δvα(t)+∆Q̃α
)+(nQα

−1)g′−(δvα(t)−∆Qα
)

]
−

n

∑
α=1

(nφα
−1)g′+(∆φα

)
∫

dt ρ(t)2 .

(3.30)
Plugging the above solution back into (3.30), we find that the topological free energy depends
only on the parameters F1, F2, F3 given by (3.25) and their corresponding conjugate charges

n1 = ∑
α

nQ̃α
, n3 = nφn , t=

2
r ∑

α

t(α) . (3.31)

Explicitly, we obtain

FKN =

√
nr
k
FABJMk , (3.32)

with the following map of the parameters

∆A1 =
1
2
(F3−∆m) , ∆A2 =

1
2
(F3 +∆m) , ∆B1 = F1 , ∆B2 = F2 ,

nA1 =
1
2
(n3− t) , nA2 =

1
2
(n3 + t) , nB1 = n1 , nB2 = n2 .

(3.33)

Notice that, this is completely analogous to that of the ADHM quiver presented in (3.19).
The factor

√
nr/k in (3.17) is the ratio between the product of the orbifold orders

in SymN(C2/Zn×C2/Zr) and that of SymN(C2/Zk), where the former is the geometric
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branch of the Kronheimer-Nakajima theory and the latter is that of the ABJM theory with
Chern-Simons levels (+k,−k).

Mirror symmetry. The Kronheimer-Nakajima quiver (3.19) with r = 1 and n = 2 is mirror
dual [136] to the ADHM quiver (3.2) with r = 2. From (3.17) and (3.32), the topological
free energy of the two theories are indeed equal:

FKN

∣∣∣
r=1,n=2

= FADHM

∣∣∣
r=2

. (3.34)

3.3 Quivers with N = 3N = 3N = 3 supersymmetry

A crucial difference between the theories considered in this section and those with N = 4
supersymmetry is that the solution to the BAEs of the former are divided into several regions
and the final result of the topological free energy comes from the sum of the contributions
of each region. Such a feature of the solution was already present in the ABJM theory and
was discussed extensively in [10]. In subsection 3.3.1.1, we deal with the necklace quiver
with alternating Chern-Simons levels and present the twisted superpotential, the BAEs and
the procedure to solve them in detail. The solutions for the other models in the following
subsections can be derived in a similar fashion.

In subsections 3.3.1 and 3.3.2, we focus on theories whose geometric branch is a sym-
metric power of a product of two ALE singularities [135, 146]. Similarly to the preceding
section, the topological free energy of such theories can be written as a numerical factor
times the topological free energy of the ABJM theory, where the numerical factor equals to
the square root of the ratio between the product of the orders of such singularities and the
level of the ABJM theory. Moreover, in a certain special case where the quiver is SL(2,Z)
dual to a quiver with N = 4 supersymmetry [138, 147, 139, 146], we match the topological
free energy of two theories.

3.3.1 The affine A2m−1A2m−1A2m−1 quiver with alternating CS levels

We are interested in the necklace quiver with n = 2m nodes, each with U(N) gauge group,
and alternating Chern-Simons levels:

kα =

+k if α is odd

−k if α is even
(3.35)
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The N = 2 quiver diagram is depicted below.

N+k N−k

N+k

N+kN−k

N−k

(3.36)

Let Qα be the bi-fundamental field that goes from node α to node α + 1; Q̃α be the bi-
fundamental field that goes from node α +1 to node α; and φα be the adjoint field under
node α . The superpotential can be written as

W =
n

∑
α=1

Tr
(
Qαφα+1Q̃α − Q̃αφαQα

)
+

k
2

m

∑
α=1

Tr
(
φ

2
2α−1−φ

2
2α

)
. (3.37)

After integrating out the massive adjoint fields, we have the superpotential

W =
1
k

n

∑
α=1

(−1)α Tr
(

QαQα+1Q̃α+1Q̃α

)
, (3.38)

where we identify
Qn+1 = Qn , Q̃n+1 = Q̃n . (3.39)

3.3.1.1 A solution to the system of BAEs

Let us denote respectively by ∆α , ∆̃α the chemical potentials associated to the flavor symme-
tries of Qα and Q̃α , and by nα , ñα the fluxes associated with the flavor symmetries of Qα

and Q̃α .
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From the rules given in section 2.2.2, the twisted superpotential W̃ can be written as

W̃

iN3/2 = k
∫

dt t ρ(t)
m

∑
α=1

δv2α−1(t)+
∫

dt ρ(t)2
n

∑
α=1

[
g+
(
δvα(t)+ ∆̃α

)
−g−

(
δvα(t)−∆α

)]
− i

N1/2

∫
dt ρ(t)

m

∑
α=1

[
Li2

(
ei
(

δv2α−1(t)+∆̃2α−1

))
−Li2

(
ei
(

δv2α−1(t)−∆2α−1

))
+Li2

(
ei
(

δv2α (t)+∆̃2α

))
−Li2

(
ei
(

δv2α (t)−∆2α

))]
−µ

(∫
dt ρ(t)−1

)
,

(3.40)
where δvα(t) = vα+1(t)− vα(t) and hence,

n

∑
α=1

δvα(t) = 0 . (3.41)

Without loss of generality, we set the chemical potentials associated with topological symme-
tries to zero. The subleading terms in (3.40) can be obtained by considering the node 2α−1
(with α = 1, . . . ,m), where the fields with chemical potentials ∆̃2α−1, ∆2α−2 are incoming to
that node and those with chemical potentials ∆2α−1, ∆̃2α−2 are outgoing of that node. This
explains the signs of such terms in (3.40). These terms can be neglected when we compute
the value of the twisted superpotential, since Li2 does not have divergences; however, they
play an important role when we deal with the derivatives of W̃ because Li1(eiu) diverges as
u→ 0.

Taking the variational derivatives of W̃ with respect to ρ(t) and setting it to zero, we
obtain

0 = kt
m

∑
α=1

δv2α−1(t)+2ρ(t)
n

∑
α=1

[
g+
(
δvα(t)+ ∆̃α

)
−g−

(
δvα(t)−∆α

)]
−µ . (3.42)

When δvα ̸≈ −∆̃α and δvα ̸≈ ∆α for all α , setting the variational derivatives of W̃ with
respect to δvα(t) to zero yields

0 = (−1)α+1kt +ρ(t)
[
g′+
(
δvα(t)+ ∆̃α

)
−g′−

(
δvα(t)−∆α

)
+g′−

(
δvα−1(t)−∆α−1

)
−g′+

(
δvα−1(t)+ ∆̃α−1

)]
, α = 1, . . . ,n .

(3.43)

However, in the following, we also need to consider the cases in which δv2α−1(t)≈−∆̃2α−1

and that in which δv2α−1(t)≈ ∆2α−1, for all α = 1, . . . ,m.
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• In the former case, taking δv2α−1(t) = −∆̃2α−1 + exp(−N1/2Ỹ2α−1) and setting to
zero the variational derivatives of W̃ with respect to δv2α−1(t) and δv2α(t) yields

0 = Ỹ2α−1(t)+ kt +ρ(t)
[
g′+(0)−g′−

(
− ∆̃2α−1−∆2α−1

)
+g′−

(
δv2α−2(t)−∆2α−2

)
−g′+

(
δv2α−2(t)+ ∆̃2α−2

)]
,

0 =−Ỹ2α−1(t)− kt +ρ(t)
[
g′+
(
δv2α(t)+ ∆̃2α

)
−g′−

(
δv2α(t)−∆2α

)
+g′−

(
− ∆̃2α−1−∆2α−1

)
−g′+(0)

]
.

(3.44)

• In the latter case, taking δv2α−1(t) = ∆2α−1− exp(−N1/2Y2α−1) and setting to zero
the variational derivatives of W̃ with respect to δv2α−1(t) and δv2α(t) yields

0 =−Y2α−1(t)+ kt +ρ(t)
[
g′+
(
∆2α−1 + ∆̃2α−1

)
−g′−(0)

+g′−
(
δv2α−2(t)−∆2α−2

)
−g′+

(
δv2α−2(t)+ ∆̃2α−2

)]
,

0 = Y2α−1(t)− kt +ρ(t)
[
g′+
(
δv2α(t)+ ∆̃2α

)
−g′−

(
δv2α(t)−∆2α

)
+g′−(0)−g′+

(
∆2α−1 + ∆̃2α−1

)]
.

(3.45)

We also impose the condition that the sum of the chemical potential for each term in the
superpotential (3.38) is 2π ,

∆α +∆α+1 + ∆̃α + ∆̃α+1 = 2π . (3.46)

For later convenience, we define the following notations

F1 = m
m

∑
α=1

∆2α , F2 = m
m

∑
α=1

∆2α−1 , F3 = ∆1 + ∆̃1 . (3.47)

Let us now proceed to solve the BAEs. First, we solve (3.42) and (3.43) and obtain

ρ =
mkt [F1F3−F2(2π−F3)]+2πµ

mF3(2π−F3)(2π−F1−F2)(F1 +F2)
,

δv2α−1 = ∆2α−1−
(F1 +F2)F3 [µ−mkt(2π−F3−F1)]

mkt [F1F3−F2(2π−F3)]+2πµ
,

δv2α = ∆2α −
(F1 +F2)(2π−F3) [µ +mkt(F3−F2)]

mkt [F1F3−F2(2π−F3)]+2πµ
,

t< < t < t> . (3.48)
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This solution is valid in the interval [t<, t>] where the end-points are determined from

δv2α−1(t<) =−∆̃2α−1 , δv2α−1(t>) = ∆2α−1 ∀α = 1, . . . ,m . (3.49)

Explicitly, they are

t< =− µ

kmF1
, t> =

µ

km(2π−F1−F3)
. (3.50)

Next, we focus on the regions [t≪, t<] and [t>, t≫], where δv2α−1(t)=−∆̃2α−1 for t ∈ [t≪, t<]
and δv2α−1(t) = ∆2α−1 for t ∈ [t>, t≫].

For the interval [t≪, t<], we solve (3.42) and (3.44) and obtain

ρ =
µ +m(F3−F3)kt

mF3 (F1 +F2−F3)(2π−F1−F2)
,

δv2α−1 =−∆̃2α−1 , δv2α = F3−F1−F2 +∆2α ,

Ỹ2α−1 =−
µ +mktF1

m(F3−F1−F2)
,

t≪ < t < t< , (3.51)

where we determine the end-point t≪ by the condition ρ(t≪) = 0:

t≪ =− µ

km(F3−F2)
. (3.52)

For the interval [t>, t≫], we solve (3.42) and (3.45) and obtain

ρ =
µ−mktF2

mF3 (F1 +F2−F3)(2π−F1−F2)
,

δv2α−1 = ∆2α−1 , δv2α =−F1−F2 +∆2α ,

Y2α−1 =
µ−mkt(2π−F1−F3)

m(2π−F1−F2−F3)
,

t> < t < t≫ , (3.53)

where we determine the end-point t≫ by the condition ρ(t≫) = 0:

t≫ =
µ

kmF2
. (3.54)

To summarize, the above solution is divided into three regions, namely the left tail
[t≪, t<], the inner interval [t<, t>] and the right tail [t>, t≫]. These are depicted in the
following diagram:
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t≪
ρ = 0

t<

δv2α−1 =−∆̃2α−1∀α

t>

δv2α−1 = ∆2α−1∀α

t≫
ρ = 0

Finally, the normalization
∫ t≫

t≪ dt ρ(t) = 1 fixes

µ = m
√

2kF1F2 (F3−F2)(2π−F3−F1) . (3.55)

3.3.1.2 The index at large NNN

Give the rules in section 2.2.3, the topological free energy of this theory is given by

F

N3/2 =−
∫

dt ρ(t)2

{
nπ2

3
+

n

∑
α=1

[
(ñα −1)g′+(δvα + ∆̃α)+(nα −1)g′−(δvα −∆α)

]}

−
m

∑
α=1

ñα

∫
δv2α−1≈−∆̃2α−1

dt ρ(t)Ỹ2α−1(t)−
m

∑
α=1

nα

∫
δv2α−1≈∆2α−1

dt ρ(t)Y2α−1(t) .

(3.56)
The result depends only on the parameters F1, F2, F3 and their corresponding flavor magnetic
fluxes

n1 = m
m

∑
α=1

n2α , n2 = m
m

∑
α=1

n2α−1 , n3 = n1 + ñ1 , (3.57)

and can be written as
F= mFABJMk . (3.58)

The map of the parameters is as follows:

∆A1 = F1 , ∆A2 = F2 , ∆B1 = F3−F2 , ∆B2 = 2π−F1−F3 ,

nA1 = n1 , nA2 = n2 , nB1 = n3−n2 , nB2 = 2−n1−n3 .
(3.59)

Recall that the geometric branch of the moduli space of this theory is SymN(C2/Zm×
C2/Zm)/Zk, whereas that of the ABJM theory is SymN(C4/Zk). The square root of the
relative orbifold orders of these two spaces explains the prefactor m in (3.58).
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3.3.2 The affine An−1An−1An−1 quiver with two adjacent CS levels of opposite
signs

We are interested in the necklace quiver with n nodes, each with U(N) gauge group, and the
Chern-Simons levels:

kα =


+k if α = 1

−k if α = 2

0 otherwise

(3.60)

The N = 2 quiver diagram of this theory is

N+k N−k

N

NN

N

(3.61)

In the notation of the preceding subsection, the superpotential can be written as

W =
n

∑
α=1

Tr
(
Qαφα+1Q̃α − Q̃αφαQα

)
+

k
2

Tr
(
φ

2
1 −φ

2
2
)
. (3.62)

After integrating out the massive adjoint fields φ1 and φ2, we have the superpotential

W =−1
k

Tr
(

Q1Q2Q̃2Q̃1−Q1Q̃1Q̃nQn

)
+

1
2k

Tr
[(

Q2Q̃2
)2−

(
QnQ̃n

)2
]

+
n−1

∑
α=2

Tr
(
Qαφα+1Q̃α − Q̃α+1φα+1Qα+1

)
,

(3.63)

3.3.2.1 A solution to the system of BAEs

Let us denote respectively by ∆α , ∆̃α , ∆φα
the chemical potentials associated to the flavor

symmetries of Qα , Q̃α , φα , and by nα , ñα , nφα
the corresponding fluxes associated with

their flavor symmetries. We also denote by ∆
(α)
m the chemical potential associated with the

topological charge corresponding to node α and t(α) the corresponding magnetic flux.
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The superpotential (3.63) implies the following constraints

∆̃α = π−∆α ∀α = 1, . . . ,n ,

∆φ3 = . . .= ∆φn = π .
(3.64)

The twisted superpotential for this particular model can be derived from the rules in
section 2.2.2. The procedure of solving the BAEs is similar to that presented in section
3.3.1.1. The solution can be separated into three regions, namely the left tail [t≪, t<], the
inner interval [t<, t>] and the right tail [t>, t≫], where

t< s.t. δv1(t<) =−∆̃1 , t> s.t. δv1(t>) = ∆1 . (3.65)

The end-points t≪ and t≫ are the values where ρ = 0 on the left and the right tails, respectively.
Schematically:

t≪
ρ = 0

t<

δv1 =−∆̃1

t>

δv1 = ∆1

t≫
ρ = 0

It turns out that the solution depends on the following parameters:

F1 = ∆1 +
1
k

n

∑
α=1

∆
(α)
m , F2 =

1
n−1

[(
n

∑
α=2

∆α

)
− 1

k

n

∑
α=1

∆
(α)
m

]
. (3.66)

The solution is as follows. In the left tail [t≪, t<], we have

ρ =
(n−1) [µ +(π−F1)kt]

π [nπ−F1− (n−1)F2] [π−F1− (n−1)F2]
,

δv1 =−∆̃1 ,

δvα = ∆α +[π−F1− (n−1)F2] , ∀2≤ α ≤ n ,

Ỹ1 =
(n−1)F2kt +µ

π−F1− (n−1)F2
.

(3.67)
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In the inner interval [t<, t>], we have

ρ =
[(n−1)(F1−F2)]kt−nµ

π [F1 +(n−1)F2] [F1 +(n−1)F2−nπ]
,

δv1 =
µnΞ − (n−1)

[
F1[µ +(π +Ξ)kt]−F2[µ−{(n−1)π−Ξ}kt]

]
+(n−1)[F2

1 +(n−1)F2
2 ]kt

(n−1)(F1−F2)kt−nµ
,

δvα =
[F1 +(n−1)F2] [µ +(π−F1)kt]
[(n−1)F1− (n−1)F2]kt−nµ

+∆α , ∀2≤ α ≤ n ,

(3.68)
where Ξ = 1

k ∑α ∆
(α)
m . In the right tail [t>, t≫] we have

ρ =
(n−1)(F1kt−µ)

π [F1 +(n−1)F2] [F1 +(n−1)F2− (n−1)π]
,

δv1 = ∆1 ,

δvα = ∆α +
1

n−1
[π−F1− (n−1)F2] ,

Y1 =
µ− (n−1)(π−F2)kt

F1 +(n−1)F2− (n−1)π
.

(3.69)

The transition points are at

t≪ =− µ

k(π−F1)
, t< =− µ

kF2
, t> =

µ

k(n−1)(π−F2)
, t≫ =

µ

kF1
. (3.70)

Finally, the normalization
∫ t≫

t≪ dt ρ(t) = 1 fixes

µ =
√

2(n−1)kF1F2(π−F1)(π−F2) . (3.71)

3.3.2.2 The index at large NNN

The topological free energy of this theory can be derived from the rules give in section (2.2.3).
We find that the topological free energy of this quiver theory depends only on the parameters
F1, F2 given by (3.66) and their corresponding conjugate magnetic charges

n1 = n1 +
1
k

n

∑
α=1

tα , n2 =
1

n−1

[(
n

∑
α=2

nα

)
− 1

k

n

∑
α=1

tα

]
. (3.72)
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The topological free energy can be written as,

F=
√

n−1FABJM . (3.73)

The map of the parameters is as follows,

∆A1 = F1 , ∆A2 = F2 , ∆B1 = π−F1 , ∆B2 = π−F2 ,

nA1 = n1 , nA2 = n2 , nB1 = 1−n1 , nB2 = 1−n2 .
(3.74)

Indeed, for n = 2, this theory becomes the ABJM theory and (3.73) reduces to FABJM, as
expected. Recall that the geometric branch of the moduli space of this theory is SymN(C2×
C2/Zn−1)/Zk, whereas that of the ABJM theory is SymN(C4/Zk). The square root of the
relative orbifold orders of these two spaces explains the prefactor

√
n−1 in (3.73).

Let us also comment on the number of the parameters which appears in the topological
free energy of this model. It can be seen from (3.73) that the topological free energy depends
only on two parameters, F1 and F2 (or n1 and n2), instead of three, despite the fact that the
geometric branch is associated with Calabi-Yau four-fold C2×C2/Zn−1. Indeed, in the
N = 3 description of the quiver, only U(1)2 (one mesonic and one topological symmetry)
is manifest (see appendix C of [146]). An extra mesonic symmetry that exchanges the
holomorphic variables on C2 and those on C2/Z2 is not present in the quiver description of
this theory.

SL(2,Z)SL(2,Z)SL(2,Z) duality. The affine An−1 quiver (3.61) with n gauge nodes and k = 1 is SL(2,Z)
dual to the An−2 Kronheimer-Nakajima quiver (3.19) with n− 1 gauge nodes and r = 1.
This duality can be seen from the type IIB brane configuration as follows [148, 137–139].
The configuration of the Kronheimer-Nakajima quiver involves N D3-branes wrapping
R1,2

0,1,2×S1
6 (where the subscripts indicate the direction in R1,9); n−1 NS5-branes wrapping

R1,2
0,1,2×R3

7,8,9 located at different positions along the circular x6 direction; and r = 1 D5-

branes wrapping R1,2
0,1,2×R3

3,4,5 located along the circular x6 direction within one of the
NS5-brane intervals. Applying an SL(2,Z) action on such a configuration, we can obtain a
similar configuration except that the D5-brane becomes a (1,1)5-brane. This is in fact the
configuration for quiver (3.61) with n gauge nodes and k = 1. Indeed, in this case we can
match the topological free energies (3.73) and (3.32), as expected from the duality.
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3.3.3 The N0,1,0/ZkN0,1,0/ZkN0,1,0/Zk theory

In this section we focus on the holographic dual of M-theory on AdS4×N0,1,0/Zk [149–151].
N0,1,0 is a homogeneous Sasakian of dimension seven and defined as the coset SU(3)/U(1).
The manifold has the isometry SU(3)×SU(2). The latter SU(2) is identified with the R-
symmetry. The description of the dual field theory was discussed in [111, 140, 141]. This
theory has N = 3 supersymmetry and contains G = U(N)+k×U(N)−k gauge group with
two bi-fundamental hypermultiplets and r flavors of fundamental hypermultiplets under one
of the gauge groups. The N = 3 quiver is depicted as follows:

N+k N−kr (3.75)

Note that for k = 0, this theory becomes the Kronheimer-Nakajima quiver (3.19) with n = 2.
In N = 2 notation, the quiver diagram for this theory is

N+k N−k

r

B2

A1

B1

A2
φ1 φ2

q̃q

(3.76)

where the bi-fundamental chiral fields (A1,B2) come from one of the N = 3 hypermultiplet
indicated in blue, and the bi-fundamental chiral fields (A2,B1) come from the other N = 3
hypermultiplet indicated in red. The superpotential is given by

W = Tr
(

A1φ2B2−B2φ1A1−A2φ2B1 +B1φ1A2 +
k
2

φ
2
1 −

k
2

φ
2
2 + q̃φ1q

)
. (3.77)

Note that the bi-fundamental fields A1,A2,B1,B2 can be mapped to those in the Kronheimer-
Nakajima quiver (3.20) with n = 2 as follows

A1 ↔ Q1 , A2 ↔ Q̃2 , B1 ↔ Q2 , B2 ↔ Q̃1 . (3.78)
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Integrating out the massive adjoint fields φ1,2 in (3.77), we obtain the superpotential

W = Tr
[(

ε
i jBiA j−qq̃

)2−
(
ε

i jAiB j
)2
]
. (3.79)

3.3.3.1 A solution to the system of BAEs

The twisted superpotential for this model can be derived from the rules in section 2.2.2. The
procedure of solving the BAEs is similar to that presented in sections 3.2.2.1 and 3.3.1.1. In
the following we present an explicit solution to the corresponding BAEs.

For brevity, let us write

∆1 = ∆A1 , ∆2 = ∆A2 , ∆3 = ∆B1 , ∆4 = ∆B2 ,

n1 = nA1 , n2 = nA2 , n3 = nB1 , n4 = nB2 .
(3.80)

We look for a solution to the BAEs such that

∆q +∆q̃ = π , ∆1 +∆4 = π , ∆2 +∆3 = π , (3.81)

and

nq +nq̃ = 1 , n1 +n4 = 1 , n2 +n3 = 1 . (3.82)

The solution can be separated into three regions, namely the left tail [t≪, t<], the inner
interval [t<, t>] and the right tail [t>, t≫], where

t< s.t. δv(t<) =−∆3 , t> s.t. δv(t>) = ∆1 . (3.83)

Then we define t≪ and t≫ as the values where ρ = 0 and those bound the left and right tails.
Schematically:

t≪
ρ = 0

t<
δv =−∆3

Y3 = 0

t>
δv = ∆1

Y1 = 0

t≫
ρ = 0

The solution is as follows. In the left tail we have

ρ =
µ + kt∆3− π

2 r|t|
π(∆1 +∆3)(∆4−∆3)

,

δv =−∆3 , Y3 =
−kt∆4−µ + π

2 r|t|
∆4−∆3

,

t≪ < t < t< . (3.84)
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In the inner interval we have

ρ =
2µ + kt(∆3−∆1)−πr|t|

π(∆1 +∆3)(∆2 +∆4)
,

δv =

(
µ− π

2 r|t|
)
(∆1−∆3)+ kt (∆1∆4 +∆2∆3)

2µ + kt(∆3−∆1)−πr|t|
,

t< < t < t> , (3.85)

and δv′ > 0. In the right tail we have

ρ =
µ− kt∆1− π

2 r|t|
π(∆1 +∆3)(∆2−∆1)

,

δv = ∆1 , Y1 =
kt∆2−µ + π

2 r|t|
∆2−∆1

,

t> < t < t≫ . (3.86)

The transition points are at

t≪ =− 2µ

πr+2k∆3
, t< =− 2µ

πr+2k∆4
, t> =

2µ

πr+2k∆2
, t≫ =

2µ

πr+2k∆1
.

(3.87)
Finally, the normalization fixes

µ =
1√
2

√
δ1δ2δ3δ4(∆1 +∆3)(∆2 +∆4)

k(δ1 +δ3)(δ2 +δ4)+ r(δ1δ4 +δ2δ3)
, (3.88)

where δa = πr+2k∆a , ∀a = 1,2,3,4. For k = 0, this expression indeed reduces to (3.29)
with

F1 = 2πc , F2 =−c(∆2 +∆4) , F3 = 2π− c(∆1 +∆3) ,

∆m = 2π + c(∆1 +∆3) ,
(3.89)

and c = 1/(2×121/3). Note that F1 +F2 +F3 = 2π , as required.

3.3.3.2 The index at large NNN

The topological free energy of this theory can be computed from the rules in section 2.2.3.
The expression for the topological free energy is fairly long, so we will just give the formulæ
for k = 1, r = 1 and

∆3 = ∆4 = ∆ , n3 = n4 = n . (3.90)
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In this case, the topological free energy reads

F=−2N3/2

3
π(π−2∆)

[
4(π−∆)∆ +19π2]n+ (8∆ 4−20π∆ 3−6π2∆ 2 +37π3∆ +33π4)

[4(π−∆)∆ +11π2]
3/2 .

(3.91)

3.4 Quivers with N = 2N = 2N = 2 supersymmetry

Let us now consider quiver gauge theories with N = 2 supersymmetry. We first discuss the
SPP model. Then we move to study non-toric theories associated with the Sasaki-Einstein
seven manifold V 5,2. There are two known models in this cases, one proposed by [118] and
the other by [112]. We show that the topological free energy of these models can be matched
with each other. We then move on to discuss flavored toric theories [113]. The procedure in
solving the BAEs for these theories is similar to that for N = 3 theories discussed in the
preceding section.

3.4.1 The SPP theory

We now consider the quiver gauge theory which describes the dynamics of N M2-branes at
the SPP singularity. The quiver diagram is shown below.

Nk1

Nk3 Nk2

A1
A2

B1

B2

C1

C2

X

(3.92)

The Chern-Simons levels are (k1,k2,k3) = (2k,−k,−k) and the superpotential coupling is
given by

W = Tr [X (A1A2−C1C2)−A2A1B1B2 +C2C1B2B1] . (3.93)

The marginality condition on the superpotential (3.7) impose constraints on the chemical
potential of the various fields

∆A +∆B = π , ∆B +∆C = π , 2∆A +∆X = 2π , (3.94)
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where we have used the symmetry of the quiver to set ∆A1 = ∆A2 = ∆A, and so on. Hence,

∆B = ∆ , ∆X = 2∆ , ∆A = ∆C = π−∆ , (3.95)

and

nB = n , nX = 2n , nA = nC = 1−n , (3.96)

where nI denotes the flavor magnetic flux of the field I. We assume 0 ≤ ∆ ≤ 2π and we
enforced condition (2.101). One can check that all other solutions are related to the one we
are presenting by a discrete symmetry of the quiver.1

3.4.1.1 A solution to the system of BAEs

The theory under consideration is invariant under

A↔C , U(N)(2)↔ U(N)(3) . (3.99)

Let us assume that the saddle-point solution is also invariant under this Z2 symmetry. Thus,
we can choose

v(1)i = vi , v(2)i = v(3)i = wi . (3.100)

Given the rules of section 2.2.2, the twisted superpotential reads

W̃

iN3/2 = 2k
∫

dt t ρ(t)δv(t)+
∫

dt ρ(t)2
∆
[
(π−∆)(2π−∆)−2δv2]

−µ

(∫
dt ρ(t)−1

)
− 2i

N1/2

∫
dt ρ(t)

[
±Li2

(
ei[δv(t)±(π−∆)]

)]
,

(3.101)

where we defined
δv(t) = w(t)− v(t) , (3.102)

and we included the subleading terms giving rise to the equation of motion (2.30). The
eigenvalue density distribution ρ(t), which maximizes the twisted superpotential, is a piece-

1There is a solution for

∆A +∆B = 3π , ∆B +∆C = 3π , 2∆A +∆X = 4π . (3.97)

which is obtained, using the invariance of Z under yI → 1/yI , from (3.104)-(3.108) by performing the substitu-
tions

µ →−µ , k→−k , ∆ → π−∆ , Y±→−Y± . (3.98)
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wise function supported on [t≪, t≫]. We define the inner interval as

t< s.t. δv(t<) =−(π−∆) , t> s.t. δv(t>) = π−∆ . (3.103)

Schematically, we have:

t≪
ρ = 0

t<
δv =−(π−∆)

Y− = 0

t>
δv = π−∆

Y+ = 0

t≫
ρ = 0

The transition points are at

t≪ =− µ

2k(π−∆)
, t< =− µ

k(2π−∆)
, t> =

µ

k(2π−∆)
, t≫ =

µ

2k(π−∆)
.

(3.104)
In the left tail we have

ρ =
1

2∆ 2

(
µ

π−∆
+2kt

)
, δv =−(π−∆) ,

Y− =−µ + k(2π−∆)t
∆

,

t≪ < t < t< . (3.105)

In the inner interval we have

ρ =
µ

2(π−∆)(2π−∆)∆
, δv =

k(π−∆)(2π−∆)t
µ

, t< < t < t> ,

(3.106)
and δv′ > 0. In the right tail we have

ρ =
1

2∆ 2

(
µ

π−∆
−2kt

)
, δv = π−∆ ,

Y+ =−µ− k(2π−∆)t
∆

,

t> < t < t≫ . (3.107)

Finally, the normalization fixes

µ = 2k1/2(π−∆)(2π−∆)

√
∆

4π−3∆
. (3.108)

µ > 0 implies the following inequality

0 < ∆ < π . (3.109)
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For k > 1 there can be discrete Zk identifications among the chemical potential which can
affect the final result. We have not been too careful about them here.

3.4.1.2 The index at large NNN

The rules of the large N twisted index imply that the free energy functional is

F=−N3/2
∫

dt ρ(t)2 [
∆(4π−3∆)+n

(
3∆

2−6π∆ +2π
2−2δv2)]

−N3/22(1−n)
∫

δv≈−(π−∆)
dt ρ(t)Y−(t)−N3/22(1−n)

∫
δv≈(π−∆)

dt ρ(t)Y+(t) . (3.110)

We should take the solution to the BAEs, plug it back into the functional (3.110) and compute
the integral. Doing so, we obtain the following expression for the topological free energy:

F=−4
3

k1/2N3/2 [∆ (7∆ 2−18π∆ +12π2)+n
(
−6∆ 3 +19π∆ 2−18π2∆ +4π3)]

(4π−3∆)3/2
√

∆
.

(3.111)

3.4.2 The V 5,2/ZkV 5,2/ZkV 5,2/Zk theory

In this subsection, we focus on field theories dual to AdS4×V 5,2/Zk, where V 5,2 is a
homogeneous Sasaki-Einstein seven-manifold known as a Stiefel manifold. The latter can
be described as the coset V 5,2 = SO(5)/SO(3), whose supergravity solution [149] possesses
an SO(5)×U(1)R isometry. There are two known descriptions of such field theories; one
proposed by Martelli and Sparks [118] and the other proposed by Jafferis [112]. In the
following, we refer to these theories as Model I and Model II, respectively. Below we analyse
the solutions to the BAEs in detail and show the equality between the topological free energy
of two theories.

3.4.2.1 Model I

The description for Model I was first presented in [118]. The quiver diagram is depicted
below.

N+k N−kB2

A1

B1

A2
φ1 φ2

(3.112)
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with the superpotential

W = Tr
[
φ

3
1 +φ

3
2 +φ1(A1B2 +A2B1)+φ2(B2A1 +B1A2)

]
. (3.113)

A solution to the BAEs. Let us use the shorthand notation as in (3.80). We look for a
solution to BAEs, such that

∆φi +∆1 +∆4 = 2π , ∆φi +∆2 +∆3 = 2π , ∆φi =
2π

3
, (3.114)

and

nφi +n1 +n4 = 2 , nφi +n2 +n3 = 2 , nφi =
2
3
. (3.115)

Observe that nφi does not satisfy the quantization conditions nφi ∈ Z. However, this
problem can be cured easily by considering the twisted partition function on a Riemann
surface Σg of genus g times S1 [61]. In this case, the flux constraints become

nφi +n1 +n4 = 2(1−g) , nφi +n2 +n3 = 2(1−g) , nφi =
2
3
(1−g) . (3.116)

By choosing (1−g) to be an integer multiple of 3, there always exists an integer solution
to the above constraints. As was pointed out in [61], the BAEs for the partition function on
Σg×S1 (with g> 1) is the same as that for g= 0. We can therefore solve the BAEs in the
usual way.

The inner interval [t<, t>] is given by

t< s.t. δv(t<) =−∆3 , t> s.t. δv(t>) = ∆1 . (3.117)

Outside the inner interval, we find that δv(t) = ṽ(t)− v(t) is frozen to the constant boundary
value −∆3 (∆1) and it defines the left (right) tail. Schematically:

t≪
ρ = 0

t<
δv =−∆3

Y3 = 0

t>
δv = ∆1

Y1 = 0

t≫
ρ = 0

The solution is as follows. The transition points are at

t≪ =− µ

k∆3
, t< =− µ

k∆4
, t> =

µ

k
(4π

3 −∆3
) , t≫ =

µ

k
(4π

3 −∆4
) .

(3.118)
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In the left tail we have

ρ =
µ + k∆3t

2π

3

(
∆3−∆4 +

4π

3

)
(∆4−∆3)

,

δv =−∆3 , Y3 =
−kt∆4−µ

∆4−∆3
,

t≪ < t < t< . (3.119)

In the inner interval we have

ρ =
2µ + k

(
∆3 +∆4− 4π

3

)
t

2π

3

[(4π

3

)2− (∆4−∆3)
2
] ,

δv =−
(
∆3 +∆4− 4π

3

)
µ− 4π

3 k (∆3 +∆4) t +
(
∆ 2

3 +∆ 2
4
)

t

2µ + k
(
∆3 +∆4− 4π

3

)
t

,

t< < t < t> (3.120)

and δv′ > 0. In the right tail we have

ρ =
µ− k∆1t

2π

3

(
∆3−∆4 +

4π

3

)
(∆4−∆3)

,

δv = ∆1 , Y1 =
−kt

(
∆3− 4π

3

)
−µ

∆4−∆3
,

t> < t < t≫ . (3.121)

Finally, the normalization fixes

µ =

√
k
(

4π

3
−∆3

)
∆3

(
4π

3
−∆4

)
∆4 , (3.122)

with
0 < ∆3,4 <

4π

3
. (3.123)

The solution satisfies ∫
dt ρ(t)δv(t) = 0 . (3.124)

We should take the solution to the BAEs and plug it back into the index. The higher genus
index in the large N limit receives a simple modification, as discussed in [61], as follows,

Fg̸=1(nI) = (1−g)Fg=0(nI/(1−g)) . (3.125)



88 Necklace quivers, dualities, and Sasaki-Einstein spaces

We thus obtain the following expression for the topological free energy

Fg̸=1 =−
2
3
(1−g)

k1/2N3/2√(4π

3 −∆3
)

∆3
(4π

3 −∆4
)

∆4

{(
4π

3
−∆3

)
∆3

(
2π

3
−∆4

)
n4

1−g

+∆4

[(
2π

3
−∆3

)(
4π

3
−∆4

)
n3

1−g
− 2∆3

3

(
∆3 +∆4−

8π

3

)]}
.

(3.126)
We check that the topological free energy indeed satisfies the index theorem for this model
on Σg×S1:

Fg̸=1 = (1−g)

{
− 2

π
W̃ (∆I) −∑

I

[(
nI

1−g
− ∆I

π

)
∂ W̃ (∆I)

∂∆I

]}
, (3.127)

with
W̃ (∆I) =

2
3

µN3/2 . (3.128)

3.4.2.2 Model II

The description for Model II was first presented in [112]. The quiver diagram is depicted
below.

N k

Q

Q̃

ϕ1,2,3 (3.129)

We start from the superpotential

W = Tr

{
ϕ3 [ϕ1,ϕ2]+

k

∑
j=1

q j
(
ϕ

2
1 +ϕ

2
2 +ϕ

2
3
)

q̃ j

}
. (3.130)

The SO(5) symmetry of V 5,2 can be made manifest by using the following variables [146]:2

X1 =
1√
2
(ϕ1 + iϕ2) , X2 =

1√
2
(ϕ1− iϕ2) , X3 = iϕ3 . (3.131)

2Explicitly, the generators of the chiral ring in the vector representation of SO(5) are X1,2,3 and V±, where
V± are the monopole operators of magnetic charge ±1.
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In terms of these new variables, the superpotential can be rewritten as

W = Tr

{
X3[X1,X2]+

k

∑
j=1

q j(X1X2 +X2X1−X2
3 )q̃

j

}
. (3.132)

A solution to the system of BAEs. The superpotential enforces

∆X1 +∆X2 =
4π

3
, ∆q j + ∆̃q j =

2π

3
, ∆X3 =

2π

3
, (3.133)

and
nX1 +nX2 =

4
3
, nq j + ñq j =

2
3
, nX3 =

2
3
. (3.134)

As in the previous subsection, the quantization conditions nI ∈ Z can be satisfied by
considering the twisted partition function on Σg×S1. The flux constraints are modified to be

nX1 +nX2 =
4
3
(1−g) , nq j + ñq j =

2
3
(1−g) , nX3 =

2
3
(1−g) . (3.135)

Here we choose (1−g) to be an integer multiple of 3. The solution to the BAEs are given
below.

Setting to zero the variations with respect to ρ(t), we find that the density is given by

ρ(t) =
µ− 2πk

3 |t|+ t∆m
2π

3

(4π

3 −∆X1

)
∆X1

. (3.136)

The support [t−, t+] of ρ(t) is determined by ρ(t±) = 0. We obtain

t± =± µ

2πk
3 ±∆m

. (3.137)

Requiring that
∫ t+

t− dt ρ(t) = 1, we have

µ =

√√√√1
k

(
4π

3
−∆X1

)
∆X1

[(
2πk

3

)2

−∆ 2
m

]
. (3.138)
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The topological free energy may then be found using (3.125). We obtain

Fg ̸=1 =
2
3
(1−g)

N3/2√
k
(4π

3 −∆X1

)
∆X1

[(2πk
3

)2−∆ 2
m

]×
{

∆X1

[
− t

1−g
∆m

(
4π

3
−∆X1

)
+

(
2πk

3

)2(
∆X1

π
−2
)
+

2∆ 2
m

3

]

−
(

2π

3
−∆X1

)
nX1

1−g

[(
2πk

3

)2

−∆
2
m

]}
.

(3.139)

It can also be checked that this topological free energy satisfies (3.127).

Matching with Model I. By taking

∆X1 = ∆3 , ∆m = k
(

2π

3
−∆4

)
, nX1 = n3 , t= k

[
2
3
(1−g)−n4

]
, (3.140)

we see that Eq. (3.139) reduces to Eq. (3.126).

3.4.3 The flavored ABJM theory

Let us consider the flavored ABJM models studied in [113, 142]

N+k N−k

na1

na2

nb1

nb2

B2

A1

B1

A2

Q̃(1)Q(1)

Q̃(2)
Q(2)

q(1)q̃(1)
q(2)q̃(2)

(3.141)

with the superpotential

W = Tr(A1B1A2B2−A1B2A2B1)+

Tr

[
na1

∑
j=1

q(1)j A1q̃(1)j +
na2

∑
j=1

q(2)j A2q̃(2)j +
nb1

∑
j=1

Q(1)
j B1Q̃(1)

j +
nb2

∑
j=1

Q(2)
j B2Q̃(2)

j

]
.

(3.142)
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We adopt the notation as in (3.80) and denote by

∆ai = ∆q(i) , ∆̃ai = ∆q̃(i) , ∆bi = ∆Q(i) , ∆̃bi = ∆Q̃(i) , (3.143)

and similarly for nai and nbi. The marginality of the superpotential implies that

∆1 +∆a1 + ∆̃a1 = 2π , ∆2 +∆a2 + ∆̃a2 = 2π ,

∆3 +∆b1 + ∆̃b1 = 2π , ∆4 +∆b2 + ∆̃b2 = 2π , (3.144)

and

n1 +na1 + ña1 = 2 , n2 +na2 + ña2 = 2 ,

n2 +nb1 + ñb1 = 2 , n4 +nb2 + ñb2 = 2 . (3.145)

3.4.3.1 A solution to the system of BAEs

The large N expression for the twisted superpotential, using the rules given in section 2.2.2,
can be written as

W̃

iN3/2 =
∫

dt ρ(t)2
∑
∗
a [±g± (δv(t)±∆a)]+

∫
dt t ρ(t)

(
∆
(2)
m −∆

(1)
m

)
− 1

2

∫
dt |t|ρ(t)

[
∑
∗
f (±n f )δv(t)−

2

∑
i=1

(nai∆i +nbi∆i+2)

]

− i
N1/2

∫
dt ρ(t) ∑

∗
a

[
±Li2

(
ei(δv(t)±∆a)

)]
−µ

(∫
dt ρ(t)−1

)
, (3.146)

where we introduced the notations

∑
∗
f = ∑

f=a1,a2:+
f=b1,b2:−

, ∑
∗
a = ∑

a=3,4:+
a=1,2:−

. (3.147)

The solution for k = 0k = 0k = 0 and na1 = na2 = n , nb1 = nb2 = 0na1 = na2 = n , nb1 = nb2 = 0na1 = na2 = n , nb1 = nb2 = 0. As pointed out in [113], this
theory is dual to AdS4×Q1,1,1/Zn. The manifold Q1,1,1 is defined by the coset

SU(2)×SU(2)×SU(2)
U(1)×U(1)

, (3.148)

and has the isometry
SU(2)×SU(2)×SU(2)×U(1) . (3.149)
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Using the symmetries of the quiver, we set for simplicity

∆1 = ∆2 = π−∆3 = π−∆4 = ∆ . (3.150)

Let ∆m be the following linear combination of the topological chemical potentials of the
two gauge groups:

∆m = ∆
(1)
m −∆

(2)
m . (3.151)

Solving the BAEs, we obtain the following general solution

ρ(t) =−nπ |t|+2∆m t−2µ

π3 ,

δv(t) = ∆ +
π (µ−∆m t)

nπ |t|+2∆m t−2µ
,

(3.152)

on the support [t−, t+]. We determine t± from δv(t±) =−(π−∆):

t− =− µ

nπ−∆m
, t+ =

µ

nπ +∆m
. (3.153)

The normalization
∫ t+

t− dt ρ(t) = 1 fixes

µ =
π√
n

∣∣n2π2−∆ 2
m
∣∣√

3n2π2−∆ 2
m
. (3.154)

The solution satisfies, ∫
dt ρ(t)δv(t) = ∆ − 2n2π3

3n2π2−∆ 2
m
. (3.155)

3.4.3.2 The index at large NNN

Given the rules in section 2.2.3, the topological free energy functional for this model reads

F

N3/2 =−
∫

dt ρ(t)2
[

2π2

3
+∑

∗
a(na−1)g′±

(
δv(t)±∆a

)]
− 1

2

2

∑
i=1

(naini +nbini+2)
∫

dt |t|ρ(t)− (t+ t̃)
∫

dt t ρ(t)

−
4

∑
a=1

na

∫
δv≈εa∆a

dt ρ(t)Ya(t) ,

(3.156)
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where we have used the behavior

δv(t) = εa

(
∆a− e−N1/2Ya(t)

)
, εa = (1,1,−1,−1) , (3.157)

in the tails. For the theory dual to AdS4×Q1,1,1/Zn we find

F=−2
3

N3/2

√
n(3π2n2−∆ 2

m)
3/2

[
π (t+ t̃)

(
∆

3
m−5π

2
∆mn2)+∆

4
m−3π

2n2 (
∆

2
m−2π

2n2)] .
(3.158)

3.4.4 U(N)U(N)U(N) gauge theory with adjoints and fundamentals

In this section, we consider the following flavored toric quiver gauge theory [113]

N n1

n2

n3

q(1)

q̃(1)

q(2) q̃(2)

q(3) q̃(3)

φ1,2,3 (3.159)

with the superpotential

W = Tr

{
φ1 [φ2,φ3]+

n1

∑
j=1

q(1)j φ1q̃(1)j +
n2

∑
j=1

q(2)j φ2q̃(2)j +
n3

∑
j=1

q(3)j φ3q̃(3)j

}
. (3.160)

The marginality condition on the superpotential (3.160) implies that

3

∑
i=1

∆φi = 2π , ∆
q(i)j

+ ∆̃
q(i)j

+∆φi = 2π , (3.161)

and
3

∑
i=1

nφi = 2 , n
q(i)j

+ ñ
q(i)j

+nφi = 2 . (3.162)

Let ∆m and t be the chemical potential and the background flux for the topological symmetry
associated with the U(N) gauge group.
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The index at large NNN. On the support of ρ(t), the solution is

ρ(t) =
2(µ + t ∆m)−|t| ∆̄

2∆̂
, (3.163)

where we defined

∆̂ =
3

∏
f=1

∆φ f , ∆̄ =
3

∑
f=1

n f ∆φ f . (3.164)

Let us denote by [t−, t+] the support of ρ(t). We determine t± from the condition ρ(t±) = 0
and obtain

t± =± 2µ

∆̄ ∓2∆m
. (3.165)

The normalization
∫ t+

t− dt ρ(t) = 1 fixes the Lagrange multiplier µ ,

µ =

√
∆̂

2∆̄

(
∆̄ −2∆m

)(
∆̄ +2∆m

)
. (3.166)

Using the same methods presented earlier, we obtain the following expression for the
topological free energy,

F=−N3/2

3

√
∆̂

2∆̄

(
∆̄ −2∆m

)(
∆̄ +2∆m

)[
n̂+

n̄
(
∆̄ 2 +4∆ 2

m
)

∆̄
(
∆̄ 2−4∆ 2

m
) − 8∆m

∆̄ 2−4∆ 2
m

]
, (3.167)

where

n̂=
3

∑
i=1

nφi

∆φi

, n̄=
3

∑
i=1

ninφi . (3.168)

When n1 = n2 = 0, and n3 = r, the moduli space reduces to C2×C2/Zr and Eq. (3.167)
becomes the topological free energy of the ADHM quiver [see Eq. (3.17)]. This is consistent
with the fact that this theory is dual to AdS4×S7/Zr.



Chapter 4

Counting microstates of AdS444 black
holes in massive type IIA supergravity

4.1 Introduction

Extending the results of [10, 11], the large N limit of general three-dimensional Chern-
Simons-matter-gauge theories with an M-theory or a massive type IIA dual was studied
in chapters 2 and 3. For the special class of N = 2 quiver gauge theories where the
Chern-Simons levels do not sum to zero the index has been shown to scale as N5/3 in
the large N limit, in agreement with a dual massive type IIA supergravity construction
[123–126, 84, 86, 127, 128, 152–154] (see also [155, 156]).

Motivated by the above results, we look at four-dimensional N = 8 supergravity with a
dyonically gauged ISO(7) = SO(7)⋉R7 gauge group that arises as a consistent truncation
of massive type IIA supergravity [157] on a six-sphere [158, 159] and its further truncation to
an N = 2 theory with an Abelian gauge group R×U(1)3. The electric and magnetic gauge
couplings (g,m) are identified with the S6 inverse radius and the ten-dimensional Romans
mass F̂(0), respectively. In particular, we analyze the supersymmetry conditions for black
holes in AdS4× S6, with deformed metrics on the S6, in the presence of nontrivial scalar
fields. We mainly focus on the near-horizon geometries which were also recently analyzed in
[154]. For our holographic purposes here we rederive these solutions in a different way and
express the scalars and geometric data in terms of the conserved electromagnetic charges. For
the sake of clarity we focus primarily on the case of three magnetic charges n j ( j = 1,2,3)
(with one constraint relating them) and equal electric charges q j = q ,∀ j = 1,2,3 with the
possibility for different horizon geometries of the form AdS2×Σg.



96 Counting microstates of AdS4 black holes in massive type IIA supergravity

The particular model we analyze corresponds to the N = 2 truncation of the N = 8
theory [158] coupled to three vector multiplets (nV = 3) and the universal hypermultiplet
(nH = 1) [154]. We will call this model the dyonic STU model. The route that we take to
constructing the near-horizon geometries is based on a supersymmetry preserving version of
the Higgs mechanism worked out in [160] for the case of N = 2 gauged supergravity. This
allows us to truncate away in a BPS preserving way a full massive vector multiplet (made from
the merging of the massless hypermultiplet and one of the three massless vector multiplets)
that forms after the spontaneous breaking of one of the gauge symmetries (corresponding to
the R in R×U(1)3). The remaining massless N = 2 gauged supergravity contains only two
vector multiplets and is described by the prepotential

F
(
X I)=−i

33/2

4

(
1− i√

3

)
c1/3 (X1X2X3)2/3

, (4.1)

where the dyonic gauge parameter is the ratio c≡ m/g.
The goal of the current work is to verify (1.2) by a direct counting in the dual boundary

description in terms of a topologically twisted Chern-Simons-matter gauge theory with level
k given by the quantized Romans mass, m = F̂(0) = k/(2πℓs).1

The SCFT dual to the background AdS4×S6 arises as an N = 2 Chern-Simons defor-
mation (at level k) of the maximal N = 8 SYM theory on the worldvolume of N D2-branes
[85, 84]. We will call this model the D2k theory. It has an adjoint vector multiplet (containing
a real scalar and a complex fermion) with gauge group U(N) or SU(N) and three chiral
multiplets φ j ( j = 1,2,3) (containing a complex scalar and fermion). To verify (1.2) we
evaluate the topologically twisted index for D2k.

Let us state the main result of this chapter. Upon extremizing I (∆ j), at large N, with
respect to the chemical potentials ∆ j we show that its value at the extremum ∆̄ j precisely
reproduces the black hole entropy:

I (∆̄ j)≡ logZ(∆̄ j)− i
3

∑
j=1

∆̄ jq j = SBH(n j,q j) . (4.2)

In the above equation appears three chemical potentials ∆ j and three electric charges q j:
two for the global symmetries and one for the R-symmetry. The extremization equations
are invariant under a common shift of q j’s, that corresponds to an electric charge for the
R-symmetry, while I is not. We can fix the values of q j’s by requiring that I is real positive
[11]. On the gravity side, there exists a BPS constraint that fixes one of the electric charges

1ℓs is the string length.
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in order to have a smooth black hole. This argument thus gives an unambiguous prediction
for the Bekenstein-Hawking entropy of the black hole.

Moreover, we demonstrate another example of the conjecture originally posed in [161]:

− logZS3
(
∆ j
)

∝ F
(
X j) ,

I -extremization = attractor mechanism ,
(4.3)

where ZS3
(
∆ j
)

denotes the S3 partition function for D2k, depending on trial R-charges ∆ j

[86]:

logZS3 =−
313/6π

5×25/3

(
1− i√

3

)
k1/3N5/3 (∆1∆2∆3)

2/3 . (4.4)

The remainder of this chapter is arranged as follows. In section 4.2, we focus on the
large N limit of a class of three-dimensional supersymmetric Chern-Simons-matter gauge
theories arising from D2-branes probing generic Calabi-Yau three-fold (CY3) singularities
in the presence of non-zero quantized Romans mass. After deriving the formula (1.95), we
move to evaluate the twisted index for the N = 2 D2k theory. In section 4.4 we switch gears
and review the four-dimensional N = 2 dyonic STU model, as constructed in [154]. In
section 4.5 we discuss our supergravity solutions dual to a topologically twisted deformation
of the D2k theory. This section contains the supersymmetric conditions for the existence of
black hole solutions. We then proceed to analyze in more detail the exact UV and IR limits
of the general equations, recovering the asymptotic AdS4 and the near-horizon AdS2×Σg

geometries. We finish this section by commenting on the general existence of full BPS flows
between the UV and IR solutions that we have. In section 4.6 we compare the field theory
and the supergravity results, and we show that the I -extremization correctly reproduces the
black hole entropy.

Let us note that, the counting of microstates for black holes with constant scalar fields
— equal fluxes along the exact R-symmetry of three-dimensional SCFTs — and horizon
topology AdS2×Σg, (g> 1) has been recently considered in [162]. While we were complet-
ing this work, we became aware of [163] which we understand has overlap with the results
presented here.

4.2 The large NNN limit of the index for a generic theory

We focus on Chern-Simons quiver gauge theories with bi-fundamental and adjoint chiral
multiplets transforming in representations RI of G and a number |G| of U(N) gauge groups
with equal Chern-Simons couplings ka = k (a = 1, . . . , |G|). We are interested in the large
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N limit, N ≫ ka with ∑
|G|
a=1 ka ̸= 0, of the index for Chern-Simons-matter gauge theories

with massive type IIA supergravity duals AdS4×SY5 [123–126, 84, 86, 127, 128, 152–
154]. Here SY5 denotes the suspension of a generic Sasaki-Einstein five-manifold Y5:
ds2

SY5
= dα2 + sin2

α ds2
Y5

and α ∈ [0,π] with α = 0,π being isolated conical singularities.2

These theories describe the dynamics of N D2-branes probing a generic Calabi-Yau three-fold
(CY3) singularity in the presence of a non-vanishing quantized Romans mass m [122].

The twisted superpotential W̃ for this class of theories reads (see section 2.6.2)

W̃ (ρ(t),v(t),∆I)

N5/3 = n
∫

dt ρ(t)
{
−it v(t)+

1
2
[
t2− v(t)2]}

+ i∑
I

g+(∆I)
∫

dt
ρ(t)2

1− iv′(t)
− iµ

(∫
dt ρ(t)−1

)
,

(4.5)

where

n≡
|G|

∑
a=1

ka = |G|k . (4.6)

We need to extremize the local functional W̃ (ρ(t),v(t),∆I) with respect to the continuous
functions ρ(t) and v(t). The solution for ∑I∈a ∆I = 2π , for each term Wa in the superpotential,
is as follows:3

v(t) =− 1√
3

t ,

ρ(t) =
31/6

2

[
n

∑I g+(∆I)

]1/3

− 2
33/2

[
n

∑I g+(∆I)

]
t2 ,

t± =±35/6

2

[
∑I g+(∆I)

n

]1/3

,

µ =

√
3

4

(
1− i√

3

)
n1/3

[
3∑

I
g+(∆I)

]2/3

.

(4.7)

One can explicitly check that

W̃ (∆I)≡−iW̃ (ρ(t),va(t),∆I)
∣∣
BAEs =

3
5

µN5/3 . (4.8)

This is indeed equal to − logZS3 , cf. Eq. (3.26) in [86], up to a normalization. Here ZS3 is the
partition function of the same N = 2 theory on the three-sphere [55, 63, 47].

2The line element ds2
SY5

is called the sine cone over Y5, and is an Einstein metric admitting a Killing spinor.
3The support [t−, t+] of ρ(t) can be determined from the relations ρ(t±) = 0.
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For this class of Chern-Simons-matter quiver gauge theories the topologically twisted
index, at large N, is given by (2.125):

logZ =−

[
|G|π

2

3
+∑

I
(nI−1)g′+(∆I)

]
N5/3

∫
dt

ρ(t)2

1− iv′(t)
. (4.9)

Plugging the solution (4.7) into the index (4.9), we obtain the following simple expression
for the logarithm of the index

logZ (nI,∆I) =−
37/6

10

(
1− i√

3

)
n1/3N5/3

∑I

[
3
π

g+(∆I)+
(
nI− ∆I

π

)
g′+(∆I)

]
[∑I g+(∆I)]

1/3 . (4.10)

Remarkably, it can be rewritten as

logZ (nI,∆I) =−
37/6π

5×210/3

(
1− i√

3

)
(nN)1/3 cr (nI,∆I)

a(∆I)
1/3 . (4.11)

Here a(∆I) is the trial a central charge of the “parent” four-dimensional N = 1 SCFT on S2×
T 2, with a partial topological A-twist on S2, and cr (nI,∆I) is the trial right-moving central
charge of the two-dimensional N = (0,2) theory on T 2 obtained from the compactification
on S2 (see subsection 1.9.2).4 Notice that (4.11) is consistent with (1.77).

4.3 The index of D2kkk at large NNN

So far the discussion was completely general. Let us now focus on the N = 2 Chern-Simons
deformation of the maximal SYM theory in three dimensions [85, 84]. In N = 2 notation,
the three-dimensional maximal SYM has an adjoint vector multiplet (containing a real scalar
and a complex fermion) with gauge group U(N) or SU(N) as well as three chiral multiplets
φ j ( j = 1,2,3) (containing a complex scalar and fermion). This theory has U(1)R×SU(3)
symmetry, with SU(3) rotating the three complex scalar fields in the chiral multiplets. The
quiver diagram for this theory is depicted below.

Nφ1,2,3

k

4We refer the reader to [40, 41, 87, 164, 44, 45, 165, 166] for a detailed analysis of superconformal theories
obtained by twisted compactifications of four-dimensional N = 1 theories and their holographic realization.
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It has a cubic superpotential,
W = Tr(φ3 [φ1,φ2]) . (4.12)

We assign chemical potentials ∆ j ∈ [0,2π] to the fields φ j. The invariance of each monomial
term in the superpotential under the global symmetries of the theory imposes the following
constraints on the chemical potentials ∆ j and the flavor magnetic fluxes n j associated with
the fields φ j,

3

∑
j=1

∆ j ∈ 2πZ ,
3

∑
j=1

n j = 2 , (4.13)

where the latter comes from supersymmetry. Since 0≤ ∆ j ≤ 2π we can only have ∑
3
j=1 ∆ j =

2πs ,∀s = 0,1,2,3. The cases s = 0,3 are singular while those for s = 2 and s = 1 are related
by a discrete symmetry ∆ j = 2π −∆ j. Thus, without loss of generality, we will assume

∑
3
j=1 ∆ j = 2π . We find that

3

∑
j=1

g+
(
∆ j
)
=

1
2

∆1∆2∆3 ,

3

∑
j=1

g′+
(
∆ j
)
=

1
4
[(

∆
2
1 +∆

2
2 +∆

2
3
)
−2(∆1∆2 +∆2∆3 +∆1∆3)

]
.

(4.14)

Finally, the “on-shell” value of the twisted superpotential (4.8) and the index (4.10), at large
N, can be written as

W̃ (∆ j) =
313/6

5×28/3

(
1− i√

3

)
k1/3N5/3 (∆1∆2∆3)

2/3 ,

logZ(n j,∆ j) =−
37/6

5×25/3

(
1− i√

3

)
k1/3N5/3(∆1∆2∆3)

2/3
3

∑
j=1

n j

∆ j
,

(4.15)

which is valid for ∑
3
j=1 ∆ j = 2π and 0≤ ∆ j ≤ 2π . Note also that

logZ(n j,∆ j) =−
3

∑
j=1

n j
∂ W̃ (∆ j)

∂∆ j
, (4.16)

as expected from the index theorem (1.87).
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4.4 Dyonic STU model

We look at the N = 2 truncation of the dyonic ISO(7) gauged supergravity constructed
recently in [154], as the analogue of the STU model. We call this the “dyonic STU model”
(see Fig. 4.1). It corresponds to picking the maximal Abelian subgroup of the original ISO(7)
gauge group and arranging the resulting four Abelian vectors in an N = 2 gravity multiplet
and three vector multiplets. Due to the characteristics of the supergravity theory under
consideration, there is the requirement that the four vectors couple to a hypermultiplet, so
that they effectively gauge some of the isometries of the scalar manifold.

10D massive IIA

4D N = 8 ISO(7) N = 2 dyonic STU

S6 truncation [84, 158]

Cartan truncation [154]

Figure 4.1 Sequence of consistent truncations from massive type IIA supergravity in ten
dimensions, to the dyonic STU model in four dimensions.

We start with the bosonic part of the Lagrangian for the dyonic STU model, following
the notation and conventions of the standard reference [167],

1√
−g

Ldyonic STU =
R
2
−Vg,m−gi j̄∂µzi

∂
µ z̄ j̄−huv∇µqu

∇
µqv +

1
4

IΛΣ HΛ µνHΣ
µν

+
1
4

RΛΣ HΛ µν ∗HΣ
µν −m

εµνρσ

4
√
−g

B0
µν∂ρA0σ −gm

εµνρσ

32
√
−g

B0
µνB0

ρσ .

(4.17)

This is supplemented by a fermionic counterpart which we do not present here. It is however
instructive to look at the covariant derivative of the gravitino,

∇µψνA = (∂µ −
1
4

ω
ab
µ γab +

i
2

Aµ)ψνA +(∂µqu
ωuA

B− ig
2
⟨Px,Aµ⟩σ x

A
B)ψνB . (4.18)

Many of the above quantities require explanation, and in what follows we will discuss
independently several of the sectors of the theory.
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4.4.1 Gravity multiplet

The gravity multiplet consists of the graviton gµν , a doublet of gravitini ψµA, which transform
into each other under the R-symmetry group U(1)R×SU(2)R, and a gauge field called the
graviphoton with field strength Tµν . Due to the presence of three additional vector multiplets
in the theory the total number of gauge fields is four, denoted by AΛ

µ , Λ ∈ {0,1,2,3}. The
graviphoton field strength is a scalar dependent linear combination of the four field strengths
FΛ

µν . The theory we consider is gauged, meaning that some of the original global symmetries
of the theory have been made local.

4.4.2 Universal hypermultiplet

An N = 2 hypermultiplet consists of four real scalars qu and two chiral fermions ζα called
hyperini. The scalar moduli space is a quaternionic Kähler manifold with metric huv(q) and
three almost complex structures which further define three quaternionic two-forms that are
covariantly constant with respect to an SU(2) connection ωx, x ∈ {1,2,3}. The particular
model that comes from the truncation of N = 8 ISO(7) gauged supergravity has a single
hypermutiplet, which universally appears in various string compactifications, hence called
the universal hypermultiplet. The moduli space is the coset space SU(2,1)/U(2). The metric,
written in terms of real coordinates {φ , σ , ζ , ζ̃}, is

h =


1 0 0 0

0 1
4e4φ −1

8e4φ ζ̃
1
8e4φ ζ

0 −1
8e4φ ζ̃

1
4e2φ (1+ 1

4e2φ ζ̃ 2) − 1
16e4φ ζ ζ̃

0 1
8e4φ ζ − 1

16e4φ ζ ζ̃
1
4e2φ (1+ 1

4e2φ ζ 2)

 . (4.19)

The isometry group SU(2,1) has eight generators; two of these are used for gauging in
the model under consideration, generating the group R×U(1). The corresponding Killing
vectors are

kR = ∂σ , kU(1) =−ζ̃ ∂ζ +ζ ∂
ζ̃
. (4.20)

One defines Killing vectors with index Λ corresponding to each of the four gauge fields, such
that the hypermultiplet scalar covariant derivative that appears in (4.17) reads

∇µqu ≡ ∂µqu−g⟨K u,Aµ⟩= ∂µqu−gku
Λ AΛ

µ +gku,Σ AΣ ,µ , (4.21)
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where g is the gauge coupling constant and the operation ⟨., .⟩ is the symplectic inner product
which will be discussed further when we move to the vector multiplet sector. What is
important to notice here is that we allow for the hypermultiplet isometries to be gauged not
only by the “ordinary” electric fields AΛ

µ but also by their dual magnetic fields AΛ ,µ . In the
particular model here, the non-vanishing Killing vectors are

k0 = kR , k0 = ckR , k1,2,3 = kU(1) , c≡ m
g
, (4.22)

which means that the magnetic gauge field A0,µ explicitly appears in the covariant derivative
of the scalar σ with an effective coupling constant m related to the Romans mass of the
massive type IIA supergravity.

Note that although all four Abelian vectors participate in the gauging of the above
isometries, only two different isometries are actually being gauged: one corresponding to the
non-compact group R, gauged by a linear combination of the electric and magnetic gauge
fields A0 and A0, and a U(1) isometry gauged by the linear combination A1 +A2 +A3. These
gaugings, via supersymmetry, generate a nontrivial scalar potential, which has a critical point
corresponding to an AdS4 vacuum.

One can also define moment maps (or momentum maps) associated with each isometry
on the quaternionic Kähler manifold. Using the metric and SU(2) connection on the universal
hypermultiplet scalar manifold (see e.g. appendix D of [168]) we find

P0 =
(

0, 0, −1
2e2φ

)
, P0 =

(
0, 0, −1

2ce2φ

)
,

P1,2,3 =
(

ζ̃ eφ , −ζ eφ , 1− 1
4(ζ

2 + ζ̃ 2)e2φ

)
, P1,2,3 =

(
0, 0, 0

)
. (4.23)

These are the moment maps that appear in the gravitino covariant derivative (4.18) as a
symplectic vector Px = (Px,Λ ,Px

Λ
). Even in the absence of hypermultiplets the moment

maps can be non-zero, signifying that the R-symmetry rotating the gravitini is gauged.

4.4.3 STU vector multiplets

Each N = 2 vector multiplet consists of one gauge field, a doublet of chiral fermions λ A

called gaugini, and a complex scalar field z. We already mentioned that the STU model has
three vector multiplets and hence three complex scalars zi, labeled by s, t, and u: z1≡ s, z2≡ t,
z3 ≡ u. The complex scalars in the vector multiplets parameterize the special Kähler scalar
(SK) manifold MSK = [SU(1,1)/U(1)]3 whose metric can be derived from a prepotential
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F , which for the STU model is,

F =−2
√

X0X1X2X3 . (4.24)

XΛ = XΛ (zi) define the holomorphic sections X ≡ (XΛ ,FΛ ) where

FΛ ≡
∂F

∂XΛ
. (4.25)

X transforms as a vector under electromagnetic duality or symplectic rotations which
leave the solutions of the theory invariant. Other symplectic vectors are the Killing vectors
K u = (ku,Λ ,ku

Λ
), the moment maps Px = (Px,Λ ,Px

Λ
), the gauge fields Aµ = (AΛ

µ ,AΛ ,µ),
and finally the vector of magnetic pΛ and electric eΛ charges, Q = (pΛ ,eΛ ), giving the name
to the duality.

Returning to the holomorphic sections, we pick the standard parameterization

(X0, X1, X2, X3, F0, F1, F2, F3) = (−stu,−s,−t,−u, 1, tu, su, st) . (4.26)

The metric on the moduli space follows from the Kähler potential,

K =− log(i⟨X ,X̄ ⟩) =− log(iX̄Λ FΛ − iXΛ F̄Λ ) =− log(i(s− s̄)(t− t̄)(u− ū)) , (4.27)

as gi j̄ ≡ ∂i∂ j̄K with ∂i = ∂/∂ zi. We therefore find that gi j̄ is diagonal

gss̄ =
1

4(Im(s))2 , gtt̄ =
1

4(Im(t))2 , guū =
1

4(Im(u))2 . (4.28)

Using the Kähler potential we introduce the rescaled sections

V = eK /2X = (eK /2XΛ ,eK /2FΛ )≡ (LΛ ,MΛ ) (4.29)

and covariant derivatives

DiV = ( f Λ
i ,hi,Λ )≡ eK /2

(
(∂iXΛ +XΛ

∂iK ),(∂iFΛ +FΛ ∂iK )
)
. (4.30)

Moving on to the kinetic terms for the vector fields, the magnetic gauging of the R isom-
etry in (4.22), leads to the appearance of the magnetic field A0,µ in the covariant derivative
of the scalar field σ . Consistency with supersymmetry then requires the introduction of an
auxiliary tensor field B0

µν as derived in [169, 170]. The Lagrangian (4.17) therefore contains
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the modified field strengths

H0
µν ≡ F0

µν +
1
2

mB0
µν , H i=1,2,3

µν ≡ F i
µν , (4.31)

where FΛ
µν are the field strengths of the electric potentials AΛ

µ . The kinetic and theta term for
the field strengths H involve the scalar-dependent matrices, IΛΣ ≡ Im(N )ΛΣ and RΛΣ ≡
Re(N )ΛΣ . The matrix N can be computed from the prepotential via

NΛΣ = F̄ΛΣ +2i

(
NΛΓ XΓ

)(
NΣ∆ X∆

)
XΩ NΩΨ XΨ

, (4.32)

where FΛΣ ≡ ∂Λ ∂Σ F and NΛΣ ≡ Im(F)ΛΣ .

4.4.4 Scalar potential

The last part of the Lagrangian (4.17) left to discuss is the scalar potential Vg,m which depends
on the electric and magnetic gauge coupling constants g and m and is given by the general
formula

Vg,m = g2
(

4huv⟨K u,V ⟩⟨K u, V̄ ⟩+gi j̄⟨Px,DiV ⟩⟨Px, D̄ j̄V̄ ⟩−3⟨Px,V ⟩⟨Px, V̄ ⟩
)
.

(4.33)

Vg,m can be further evaluated explicitly for the dyonic STU model but we will not need its
expression.

The theory is now fully specified by the data of the hypermultiplet moduli space, the
vector multiplet moduli space, derived from the prepotential F in (4.24), and the Killing
vectors (4.22) specifying the gauging.

4.4.5 Tensor fields

Due to the presence of the auxiliary tensor field B0 (the other auxiliary fields can be immedi-
ately decoupled from the theory), there is an additional constraint arising as an equation of
motion for B0,

GΛ ,µν = FΛ ,µν +
1
2

mB0
µν , (4.34)
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where GΛ ,µν is the dual field strength defined by GΛ = (2/
√
−g)∗δL /δFΛ . This leads to

GΛ ,µν =
1
2

IΛΣ HΣ
µν +

1
4
√
−g

εµνρσ RΛΣ HΣ ,ρσ . (4.35)

The appearance of the magnetic gauge field A0 in the Lagrangian leads to the following
equation of motion constraining the auxiliary tensor field

1
4

ε
µνρσ

∂µB0
νρ =−2

√
−ghuvku,0

∇
σ qv , (4.36)

while the rest of the equations of motion are the standard Einstein–Maxwell equations (with
sources) and the scalar equations, stemming from (4.17). We discuss these in great details in
appendix B. Note that the BPS conditions together with the Maxwell equations imply the
rest of the equations of motion.

4.5 AdS444 black holes in N = 2N = 2N = 2 dyonic STU gauged super-
gravity

We now turn to the gravity duals of the field theories we have discussed so far. Our aim
is to find supersymmetric AdS4 black hole solutions in the N = 2 dyonic STU gauged
supergravity. We will do so in several steps, leaving all detailed calculations to appendix B;
for each step we find useful to dedicate a subsection. First, we describe the black hole ansatz
and supersymmetry equations derived by [34, 71]. We then concentrate separately on the
conditions for the asymptotic AdS4 vacuum and the near-horizon AdS2×Σg geometry. We
manage to rewrite the near-horizon data in a particularly simple form in order to facilitate the
match with the field theory. We finish the supergravity analysis by presenting arguments for
the existence of a full BPS flow between the UV and IR geometry. Ultimately, the existence
of the complete geometries is best justified by the successful entropy match with field theory.

4.5.1 Black hole ansatz and BPS conditions

Static BPS AdS4 black holes in general models with dyonic hypermultiplet gauging, were
considered in [71] generalizing earlier work of [31–36]. The reader can find all the details
about the bosonic ansatz and BPS equations in appendix B. Here, for the sake of clarity, we
repeat the form of the metric,

ds2 =−e2U(r)dt2 + e−2U(r)dr2 + e2(ψ(r)−U(r))dΩ
2
κ , (4.37)
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where the radial functions U(r), ψ(r) and the choice of scalar curvature κ for the horizon
manifold, uniquely specify the spacetime. Electric and magnetic charges, eΛ (r) and pΛ (r),
are present for each gauge field, and can have a radial dependence due to the fact that some
of the hypermultiplet scalars source the Maxwell equations. The spacetime symmetries
also impose a purely radial dependence for the SK complex scalars s(r), t(r), u(r) and the
QK real scalars φ(r), σ(r), ζ (r), ζ̃ (r), as well as the phase α(r) of the Killing spinors that
parameterize the fermionic symmetries of the black hole.

We systematically write down the conditions for supersymmetry and equations of motion
in appendix B, while here we only discuss the most important points about the solution. In
particular we find that we can already fix three of the four hypermultiplet scalars

ζ = ζ̃ = 0 , σ = const. , (4.38)

where the particular value of σ is not physical as it is a gauge dependent quantity that drops
out of all BPS equations. The remaining hypermultiplet scalar however has in general a
nontrivial radial profile governed by the equation

φ
′ =−gκλeK /2−U Im

(
e−iα(X0− cF0)

)
, (4.39)

where the Kähler potential eK and λ =±1 are discussed in the appendix B. The scalar φ

precisely sources the Maxwell equations, which read

p′0 = ce′0 =−ce2ψ−3U e4φ Re
(
e−iα(X0− cF0)

)
, (4.40)

while all other charges p1,2,3 and e1,2,3 are truly conserved quantities. These two equations
highlight an important physical feature of the black holes in massive IIA supergravity: due
to the presence of charged hypermultiplet scalars there are massive vector fields that do not
have conserved charges. The charges of the massive vectors are not felt by the field theory,
which explains why there were only three different charges considered in the previous section.
These are the magnetic charges p1,2,3 as here we will further simplify our ansatz and put
e1,2,3 = e to be fixed by the magnetic charges. However, one still needs to solve consistently
the BPS equations for the massive vector fields, which presents a particularly hard obstacle
computationally, and has prevented people from writing down exact analytic solutions for
black holes with massive vector fields before [34].
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4.5.2 Constant scalars, analytic UV and IR geometries

Let us now concentrate on the two important end-points of the full black hole flow: the
asymptotic UV space AdS4 and the IR fixed point, AdS2×Σg. Due to the symmetries of
these spaces the scalars and charges are constant there, which means (4.39)-(4.40) can be
further constrained by setting their left-hand sides to zero. This immediately implies

X0− cF0 = 0⇒ X0 = (−c)2/3(X1X2X3)1/3 , stu =−c , (4.41)

which presents a strong constraint of the vector multiplet moduli space. In fact the remaining
scalars (e.g. freezing s in favor of t and u) are consistent with the simplified prepotential5

F ⋆ =−3
2
(−c)1/3(X1X2X3)2/3 . (4.42)

Notice that in this constant scalar case, the BPS equations automatically lead us to an
effective truncation of the theory to a subsector, by “freezing” some of the fields. In particular,
we see that the massive vector field has “eaten up” the Goldstone boson σ , and together
with the massive scalars ζ , ζ̃ , φ and the complex combination of stu can be integrated
out of the model. This corresponds to a supersymmetry preserving version of the Higgs
mechanism discussed in [160] and a truncation6 to an N = 2 theory with two massless
vector multiplets and no hypermultiplets. The remainders of the gauged hypermultiplet are
constant parameters gauging the R-symmetry, known as Fayet-Iliopoulos terms, ξI = Px=3

I ,
I ∈ {1,2,3}. Therefore the effective, or truncated, prepotential F ⋆ is indeed the prepotential
defining the Higgsed theory. This mechanism is in fact the reason why we are able to write
down exact analytic solutions in the UV and IR limits where the constant scalar assumptions
holds. Note that one could have in principle performed this truncation of the full theory
looking for full black hole solutions there. However, this turns out to be a too strong
constraint; in particular we will see that in the UV we have

⟨e2φ ⟩UV = 2c−2/3 , (4.43)

5Note that directly substituting X0 in the original prepotential (4.24) leads to a different normalization. Such
a different prefactor does not lead to a change in physical quantities, but we prefer to comply with the correct
normalization of the kinetic terms as imposed by the choice of parameterization in (4.26).

6Note that strictly speaking we have not proven that this is a consistent truncation as the proof in [160] only
considered electrically gauged hypermultiplets. For the analogous proof in the general dyonic case one needs to
use the full superconformal formalism of [171] where the general theory is properly defined. However, here we
never need to go to such lengths since we use the Higgs mechanism to clarify the physical picture, not as a
guiding principle in deriving the BPS equations.
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while in the IR in general

⟨e2φ ⟩IR =
2c−2/3

3(H1H2H3)1/3 , (4.44)

with HI particular functions of the charges. Imposing the constraint that φ is constant
throughout the flow φUV = φIR leads to a black hole solution with only a subset of all
possible charges. This is the so called universal twist solution (defined only for hyperbolic
Riemann surfaces) dating back to [28, 29]. This class of black holes studied for massive IIA
supergravity on S6 in [153] and recently described holographically in [162] (see also [172]).

4.5.2.1 Asymptotic AdS4 vacuum

The black hole is asymptotically locally AdS4 (it is often called magnetic AdS4 in the
literature [173]). The dual boundary theory is a relevant deformation of the D2k theory,
partially twisted by the presence of the magnetic charges. In this section we analyze the exact
AdS4 vacuum, which constrains the scalar fields to obey the maximally supersymmetric
conditions derived in [160]. These conditions, as shown in more details in appendix B, not
only constrain the scalars to be constant with ζ = ζ̃ = 0 and stu =−c but further impose the
particular vacuum expectation values

⟨s⟩AdS4 = ⟨t⟩AdS4 = ⟨u⟩AdS4 = (−c)1/3,

⟨e2φ ⟩AdS4 = 2c−2/3 ,
(4.45)

which can be checked to explicitly solve all the equations (B.6) at r → ∞. The metric
functions in this limit become

lim
r→∞

(re−ψ) = lim
r→∞

e−U =
LAdS4

r
, LAdS4 =

c1/6

31/4g
, (4.46)

as already found in [153].

4.5.2.2 Near-horizon geometry and attractor mechanism

The attractor mechanism for static supersymmetric asymptotically AdS4 black holes was
studied in detail in [71], generalizing the results of [32] to cases with general hypermultiplet
gaugings. The near-horizon geometry is of the direct product type AdS2×Σg and preserves
four real supercharges, double the amount preserved by the full black hole geometry. We
solve carefully all equations in appendix B, while here we present an alternative derivation
which, although incomplete as we explain in due course, is more suitable for the comparison
with field theory.
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The near-horizon metric functions are given by

U = log(r/LAdS2) , ψ = log(LΣg · r/LAdS2) , (4.47)

where LAdS2 is the radius of AdS2 and LΣg that of the surface Σg.
We start with the BPS condition coming from the topological twist for the magnetic

charges (valid not only on the horizon but everywhere in spacetime)

g
3

∑
I=1

pI =−κ , (4.48)

with κ the unit curvature of the internal manifold on the horizon (κ =+1 for S2 and κ =−1
for Σg>1). The general attractor equations imply in particular that the horizon radius is given
by

L2
Σg

= iκ
Z

L
=−i

∑I(eIX I− pIFI)

g(X1 +X2 +X3)
. (4.49)

where in the last equality we already used the model specific information that X0− cF0 = 0
which implies X0 = (−c)2/3(X1X2X3)1/3. Notice that the same equation is found by directly
using the truncated prepotential, F ⋆, since by construction

FI(X0 = (−c)2/3(X1X2X3)1/3) = F⋆
I , ∀I ∈ {1,2,3} ,

⇒ L2
Σg

= iκ
Z ⋆

L ⋆
.

(4.50)

This shows that we can equally well use the truncated prepotential for this attractor equation.
To solve it, we define the weighted sections X̂ I ≡ X I/∑J XJ such that ∑I X̂ I = 1, and find

3

∑
I=1

(
pIF̂⋆

I − eIX̂ I)= gL2
Σg

, (4.51)

where we used the shorthand notation F⋆
I (X̂

I) ≡ F̂⋆
I . This expression is extremized at the

horizon

∂X̂J

[
∑I(pIF̂⋆

I − eIX̂ I)
]∣∣

X̂horizon
= 0 , (4.52)

fixing the weighted sections, X̂ I
horizon ≡ HI in terms of the electric and magnetic charges.

Let us now concentrate on what we call “purely magnetic” solution, i.e. let us work under
the assumption that we only have independent magnetic charges and all electric charges are
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equal eI = e. The equations simplify to

∂X̂J

(
∑I pIF̂⋆

I
)∣∣

HI = 0 , (4.53)

given ∑I X̂ I = 1. We find the following solutions:

3HI = 1±∑
J,K

∣∣εIJK
(

pJ− pK)∣∣
2
√(√

Θ ± pI
)2− pJ pK

, (4.54)

where the ± signs are not correlated so we have four solutions. Here εIJK is the Levi–Civita
symbol and

Θ(p)≡
(

p1)2
+
(

p2)2
+
(

p3)2−
(

p1 p2 + p1 p3 + p2 p3) . (4.55)

The sign ambiguities are to be resolved in the full geometry as proper normalization of
the scalar kinetic terms require that Im(s, t,u)> 0 everywhere in spacetime, including the
horizon values. It is now straightforward to derive the physical scalars from the weighted
sections HI ,

s =
eiπ/3c1/3H1

(H1H2H3)1/3 , t =
eiπ/3c1/3H2

(H1H2H3)1/3 , u =
eiπ/3c1/3H3

(H1H2H3)1/3 . (4.56)

At first it might seem that there is an ambiguity in the attractor equation, since at the moment
we have allowed for an arbitrary parameter e which sets the value of the three equal electric
charges. This is however misleading, because we have in fact not yet solved the original
equation (4.49). The electric charges there play the crucial rôle of making sure the radius of
the horizon is indeed a positive real quantity,

Z

L
=−κ

g

(
(−1)4/3c1/3(H1H2H3)2/3

∑I(pI/HI)−∑IeIHI
)

=−κ

g

(
e−2iπ/3c1/3(H1H2H3)2/3

∑I(pI/HI)− e
)

=−iκL2
Σg

.

(4.57)

The imaginary part of the last equation fixes the radius of the Riemann surface,

L2
Σg

=−
√

3
2g

c1/3(H1H2H3)2/3
3

∑
I=1

pI

HI (4.58)
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while the real part fixes the value of the electric charges,

e =
1
2

c1/3(H1H2H3)2/3
3

∑
I=1

pI

HI =−
g√
3

L2
Σg

. (4.59)

However, (4.49) can only get us this far, and one needs to solve the other near-horizon
equations in order to write down the full solutions, as we have done in appendix B. This way
one can fix the massive vector charges p0, e0, as well as the hypermultiplet scalar φ :

p0 = ce0 =
gc1/3

3
√

3(H1H2H3)1/3
L2

Σg
, e2φ =

2c−2/3

3(H1H2H3)1/3 . (4.60)

The AdS2 radius is also fixed from the remaining near-horizon BPS equations analyzed in
appendix B, and it can also be expressed in terms of the functions HI as

LAdS2 =
33/4c1/6(H1H2H3)1/3

2g
. (4.61)

Finally, for completeness, we write the Bekenstein-Hawking entropy for black holes with
spherical horiozn (κ =+1):7

SBH =
Area
4GN

=
πL2

S2

GN
=− π

√
3

2gGN
c1/3(H1H2H3)2/3

3

∑
I=1

pI

HI . (4.62)

4.5.3 Existence of full black hole flows

The main challenge in constructing the full black hole spacetime interpolating between the
UV and IR geometries we presented above, is the nontrivial massive vector field we need
to consider. We have seen that in the constant scalar case we can effectively decouple the
massive vector multiplet but this is not the case for the full flow, if we wish to have the most
general spacetime. For the BPS equations, it is useful to define the function

γ(r)≡ cF0−X0 = c+ s(r)t(r)u(r) , (4.63)

which vanishes both in the UV and the IR. The function γ(r) is in principle fixed by the
BPS equations determining the scalars s, t, and u, and in turn governs the flow of the
hypermultiplet scalar field φ as well as the massive vector charge p0 via (4.39) and (4.40),
respectively. The remaining first order BPS equations involve also the metric functions U

7A precise counting of microstates for g = 0 case implies matching of the index and the entropy for all
values of g (see section 6 of [61]).
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and ψ , as well as the Killing spinor phase α while the conserved charges e1,2,3 and p1,2,3

remain constant and have been fixed already at the horizon. Therefore we have a total of
eight coupled differential equations for eight independent variables8 {s, t, u, φ , p0, U , ψ ,
α}. All these fields have been uniquely fixed in the UV and IR as shown above and more
carefully in appendix B. A similar set of equations with running hypermultiplet scalars has
been considered in [34] with the result that one can always connect the UV and IR solutions
with a full numerical flow, whenever the number of free parameters matches the number of
first order differential equations, as is also the case here. It is of course interesting to find
such solutions explicitly but we leave this for a future investigation as the main scope here is
the field theory match of our results, to which we turn now.

4.6 Comparison of index and entropy

Now we are in a position to confront the topologically twisted index of D2k, to leading order
in N, (4.15) with the Bekenstein-Hawking entropy (4.62). Let us first note that the relations
between SCFT parameters (N,k) and their supergravity duals in massive type IIA, to leading
order in the large N limit, read9

m1/3g−7/3

4GN
=

32/3

22/35
k1/3N5/3 ,

m
g
=

(
3

16π3

)1/5

kN1/5 . (4.64)

From here on we set q j = q ,∀ j = 1,2,3. The topologically twisted index of D2k (4.15)
as a function of ∆2,3 is extremized for

3∆̄2

2π
= 1∓ |n3−n1|√(√

Θ ±n2
)2−n1n3

,
3∆̄3

2π
= 1∓ |n1−n2|√(√

Θ ±n3
)2−n1n2

, (4.65)

where we defined the quantity

Θ ≡ n2
1 +n2

2 +n2
3− (n1n2 +n1n3 +n2n3) , (4.66)

8Note that in the “purely magnetic” ansatz the phase of the complex scalars has been fixed, therefore we
count s, t, u as each is carrying a single degree of freedom.

9See for example [86, 84].
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which is symmetric under permutations of n j. Upon identifying

∆̄ j

2π
= H j ,

n j = 2gp j , q j =−
e j

2gGN
, for j = 1,2,3 ,

(4.67)

(4.65) are precisely the values of the weighted holomorphic sections X̂ j at the horizon (4.54).
The constraint ∑ j ∆ j ∈ 2πZ is consistent with ∑ j X̂ j = 1 valid in the bulk. Plugging the
values for the critical points (4.65) back into the Legendre transform of the partition function
(4.15), and employing (4.64) we finally arrive at the conclusion that (4.2) holds true. We
thus found a precise statistical mechanical interpretation of the black hole entropy (4.62).
Obviously, the above analyses goes through for the most general case with three unequal
electric charges and different horizon topologies [11].

It is worth stressing that the imaginary part of the partition function (4.15) uniquely fixes
the value of the electric charges q j = q ,∀ j = 1,2,3 such that its value at the critical point is a
real positive quantity in agreement with the supergravity attractor mechanism and the general
expectations in [11]. This precise holographic match therefore presents a new and successful
check on the I -extremization principle (see section 1.7) in the presence of a nontrivial phase
which is new with respect to previous examples such as the index of ABJM.



Chapter 5

The Cardy limit of the topologically
twisted index and black strings in AdS555

5.1 Introduction

The large N limit of general three-dimensional quivers with an AdS dual was studied in the
previous chapters. In this chapter we study the asymptotic behavior of the index, at finite N,
for four-dimensional N = 1 gauge theories. With an eye on holography we also evaluate
the index in the large N limit. We focus, in particular, on the class of N = 1 theories arising
from D3-branes probing Calabi-Yau singularities, which have a well-known holographic
dual in terms of compactifications on Sasaki-Einstein manifolds (see section 1.2).

The explicit evaluation of the topologically twisted index is a hard task, even in the
large N limit. However, the index greatly simplifies if we identify the modulus τ = iβ/2π

of the torus T 2 with a fictitious inverse temperature β , and take the limit β → 0. We
will call this the high-temperature limit. Our finding implies a Cardy-like behavior of
the topologically twisted index, which is related to the modular properties of the elliptic
genus [174, 175]. Analogous behaviors for other partition functions have been found in
[176–178, 98–100, 102, 179, 103, 180, 181, 69].

The rest of the chapter is organized as follows. In section 5.2 we analyze the high-
temperature limit of the index for N = 4 super Yang-Mills while in section 5.3 we discuss
the example of the conifold. Then in section 5.4 we derive the formulae (1.78), (1.80), (1.84)
and (1.85).
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5.2 N = 4N = 4N = 4 super Yang-Mills

We first consider the twisted compactification of four-dimensional N = 4 super Yang-Mills
(SYM) with gauge group SU(N) on S2. At low energies, it results in a family of two-
dimensional theories with N = (0,2) supersymmetry depending on the twisting parameters
n [40, 41]. The theory describes the dynamics of N D3-branes wrapped on S2 and can be
pictured as the quiver gauge theory given in (5.1).

Nφ1,2,3 (5.1)

The superpotential
W = Tr(φ3 [φ1,φ2]) (5.2)

imposes the following constraints on the chemical potentials ∆a and the flavor magnetic
fluxes na associated with the fields φa,

3

∑
a=1

∆a ∈ 2πZ ,
3

∑
a=1

na = 2 . (5.3)

The topologically twisted index for the SU(N) SYM theory is given by1

Z =
A

N! ∑
m∈ZN ,
∑imi=0

∫
C

N−1

∏
i=1

dxi

2πixi

N

∏
j ̸=i

θ1

(
xi
x j

;q
)

iη(q)

3

∏
a=1

 iη(q)

θ1

(
xi
x j

ya;q
)
mi−m j−na+1

, (5.4)

where we defined the quantity

A = η(q)2(N−1)
3

∏
a=1

[
iη(q)

θ1 (ya;q)

](N−1)(1−na)

. (5.5)

Here, we already imposed the SU(N) constraint ∏
N
i=1 xi = 1. Instead of performing a

constrained sum over gauge magnetic fluxes we introduce the Lagrange multiplier w and

1We do not isolate the vacuum contribution — the so called supersymmetric Casimir energy — from the
index (see section 3.3 of [69]).
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consider an unconstrained sum. Thus, the index reads

Z =
A

N! ∑
m∈ZN

∫
B

dw
2πiw

w∑
N
i=1mi

∫
C

N−1

∏
i=1

dxi

2πixi

N

∏
j ̸=i

θ1

(
xi
x j

;q
)

iη(q)

3

∏
a=1

 iη(q)

θ1

(
xi
x j

ya;q
)
mi−m j−na+1

.

(5.6)
In order to evaluate (5.6), we employ the strategy introduced in section 1.6. The Jeffrey-
Kirwan residue picks a middle-dimensional contour in (C∗)N . We can then take a large
positive integer M and resum the contributions m≤M−1. Performing the summations we
get

Z =
A

N!

∫
B

dw
2πiw

∫
C

N−1

∏
i=1

dxi

2πixi

N

∏
i=1

(
eiBi
)M

eiBi−1

N

∏
j ̸=i

θ1

(
xi
x j

;q
)

iη(q)

3

∏
a=1

 iη(q)

θ1

(
xi
x j

ya;q
)
1−na

, (5.7)

where we defined

eiBi = w
N

∏
j=1

3

∏
a=1

θ1

(
x j
xi

ya;q
)

θ1

(
xi
x j

ya;q
) . (5.8)

In picking the residues, we need to insert a Jacobian in the partition function and evaluate
everything else at the poles, which are located at the solutions to the BAEs,

eiBi = 1 , (5.9)

such that the off-diagonal vector multiplet contribution does not vanish. We consider (5.9) as a
system of N independent equations with respect to N independent variables {x1, . . . ,xN−1,w}.
In the final expression, the dependence on the cut-off M disappears and we find

Z = A ∑
I∈BAEs

1
detB

N

∏
j ̸=i

θ1

(
xi
x j

;q
)

iη(q)

3

∏
a=1

 iη(q)

θ1

(
xi
x j

ya;q
)
1−na

, (5.10)

where the summation is over all solutions I to the BAEs (5.9). The matrix B appearing in the
Jacobian has the following form

B=
∂
(
eiB1, . . . ,eiBN

)
∂ (logx1, . . . , logxN−1, logw)

. (5.11)
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5.2.1 Twisted superpotential at high temperature

In this section we study the high-temperature limit (q→ 1) of the twisted superpotential.
Let us start by considering the BAEs (5.9) at high temperature. Taking the logarithm of the
BAEs (5.9), we obtain

0 =−2πini + logw−
N

∑
j=1

3

∑
a=1

{
log
[

θ1

(
xi

x j
ya;q

)]
− log

[
θ1

(
x j

xi
ya;q

)]}
, (5.12)

where ni is an integer that parameterizes the angular ambiguity. It is convenient to use the
variables ui, ∆a, v, defined modulo 2π:

xi = eiui , ya = ei∆a , w = eiv . (5.13)

Then, using the asymptotic formulæ (A.11) and (A.14) we obtain the high-temperature limit
of the BAEs (5.12), up to exponentially suppressed corrections,

0 =−2πini + iv+
1
β

N

∑
j=1

3

∑
a=1

[
F ′
(
ui−u j +∆a

)
−F ′

(
u j−ui +∆a

)]
, (5.14)

where i/(2πτ) = 1/β is the formal “temperature” variable. Here, we have introduced the
polynomial functions

F(u) =
u3

6
− 1

2
πu2sign[Re(u)]+

π2

3
u , F ′(u) =

u2

2
−πusign[Re(u)]+

π2

3
. (5.15)

The high-temperature limit of the twisted superpotential can be found directly by inte-
grating the BAEs (5.14) with respect to ui and summing over i. It reads

W̃ ({ui}) =
N

∑
i=1

(2πni− v)ui +
i(N−1)

β

3

∑
a=1

F (∆a)

+
i

2β

N

∑
i̸= j

3

∑
a=1

[
F
(
ui−u j +∆a

)
+F

(
u j−ui +∆a

)]
.

(5.16)

It is easy to check that the BAEs (5.14) can be obtained as critical points of the above twisted
superpotential. We introduced a ∆a-dependent integration constant in order to have precisely
one contribution F

(
ui−u j +∆a

)
for each component of the adjoint multiplet.

It is natural to restrict the ∆a to the fundamental domain. In the high-temperature limit,
we can assume that ∆a are real and 0 < ∆a < 2π . Moreover, since (5.3) must hold, ∑

3
a=1 ∆a

can only be 0,2π,4π or 6π . We have checked that ∑
3
a=1 ∆a = 0,6π lead to a singular
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index, and those for 2π and 4π are related by a discrete symmetry of the index i.e. ya→
1/ya (∆a→ 2π−∆a). Thus, without loss of generality, we will assume ∑

3
a=1 ∆a = 2π in the

following.

The solution for ∑a ∆a = 2π∑a ∆a = 2π∑a ∆a = 2π . We seek for solutions to the BAEs (5.14) assuming that

0 < Re
(
u j−ui

)
+∆a < 2π , ∀ i, j,a . (5.17)

Thus, the high-temperature limit of the BAEs (5.14) takes the simple form

2
β

3

∑
a=1

(∆a−π)
N

∑
k=1

(
u j−uk

)
= i
(
2πn j− v

)
, for j = 1,2, . . . ,N . (5.18)

Imposing the constraints ∑
3
a=1 ∆a = 2π for the chemical potentials as well as SU(N) con-

straint ∑
N
i=1 ui = 0 we obtain the following set of equations

iN
β

u j = n j−
v

2π
, for j = 1, . . . ,N−1 ,

− iN
β

N−1

∑
j=1

u j = nN−
v

2π
.

(5.19)

Summing up all equations we obtain the solution for v, which is given by

v =
2π

N

N

∑
i=1

ni . (5.20)

The solution for eigenvalues ui reads

ui =−
iβ
N

(
ni−

1
N

N

∑
i=1

ni

)
. (5.21)

Notice that, the tracelessness condition is automatically satisfied in this case.
To proceed further, we need to provide an estimate on the value of the constants ni.

Whenever any two integers are equal ni = n j, we find that the off-diagonal vector multiplet
contribution to the index, which is an elliptic generalization of the Vandermonde determinant,
vanishes. Moreover, the high-temperature expansion (A.14) breaks down as subleading terms
start blowing up. Hence, we should make another ansatz for the phases ni such that

ni−n j ̸= 0 mod N . (5.22)
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To understand how much freedom we have, let us first note that eigenvalues ui are variables
defined on the torus T 2 and thus they should be periodic in β . Due to (5.21), this means that
integers ni are defined modulo N and hence, without loss of generality, we can consider only
integers lying in the domain [1,N] with the condition (5.22) modified to ni ̸= n j ,∀ i, j. This
leaves us with the only choice ni = i and its permutations.

Substituting (5.21) and (5.20) into the twisted superpotential (5.16), we obtain

W̃ (∆a)≡−iW̃ ({ui},∆a)
∣∣
BAEs =

(
N2−1

)
β

3

∑
a=1

F (∆a) =

(
N2−1

)
2β

∆1∆2∆3 , (5.23)

up to terms O(β ).
There is an interesting relation between the “on-shell” twisted superpotential (5.23)

and the central charge of the UV four-dimensional theory. Note that, given the constraint

∑
3
a=1 ∆a = 2π , the quantities ∆a can be used to parameterize the most general R-symmetry

of the theory

R(∆a) =
3

∑
a=1

∆a
Ra

2π
, (5.24)

where Ra gives charge 2 to φa and zero to φb with b ̸= a. Observe also that the cubic
R-symmetry ’t Hooft anomaly is given by

TrR3 (∆a) =
(
N2−1

)[
1+

3

∑
a=1

(
∆a

π
−1
)3
]
=

3
(
N2−1

)
π3 ∆1∆2∆3 , (5.25)

where the trace is taken over the fermions of the theory. Therefore, the “on-shell” value of
the twisted superpotential (5.23) can be rewritten as

W̃ (∆a) =
π3

6β
TrR3 (∆a) =

16π3

27β
a(∆a) , (5.26)

where in the second equality we used the relation (1.79). Notice that the linear R-symmetry
’t Hooft anomaly is zero for N = 4 SYM.

5.2.2 The topologically twisted index at high temperature

We are interested in the high-temperature limit of the logarithm of the partition function
(5.10). We shall use the asymptotic expansions (A.11) and (A.14) in order to calculate the
vector and hypermultiplet contributions to the twisted index in the β → 0 limit.
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The contribution of the off-diagonal vector multiplets can be computed as

log
N

∏
i ̸= j

θ1

(
xi
x j

;q
)

iη(q)

=− 1
β

N

∑
i ̸= j

F ′
(
ui−u j

)
− iN(N−1)π

2
, (5.27)

in the asymptotic limit q→ 1 (β → 0). The contribution of the matter fields is instead

log
N

∏
i̸= j

3

∏
a=1

 iη(q)

θ1

(
xi
x j

ya;q
)
1−na

=− 1
β

N

∑
i̸= j

3

∑
a=1

[
(na−1)F ′

(
ui−u j +∆a

)]
+

iN(N−1)π
2

3

∑
a=1

(1−na) , as β → 0 .

(5.28)

The prefactor A in the partition function (5.5) at high temperature contributes

log

{
η(q)2(N−1)

3

∏
a=1

[
iη(q)

θ1 (ya;q)

](N−1)(1−na)
}

=−N−1
β

[
π2

3
+

3

∑
a=1

(na−1)F ′(∆a)

]

− (N−1)

[
log
(

β

2π

)
− iπ

2

3

∑
a=1

(1−na)

]
.

(5.29)
The last term to work out is − logdetB. The matrix B, imposing eiBi = 1, reads

B=
∂ (B1, . . . ,BN)

∂ (u1, . . . ,uN−1,v)
, as β → 0 , (5.30)

and has the following entries

∂Bk

∂u j
=

2πi
β

Nδk j , for k, j = 1,2, . . . ,N−1 ,

∂BN

∂uk
=−2πi

β
N ,

∂Bk

∂v
= 1 , for k = 1,2, . . . ,N−1 ,

∂BN

∂v
= 1 .

(5.31)

Here, we have already imposed the constraint ∑
3
a=1 ∆a = 2π . Therefore, we obtain

− logdetB= (N−1)
[

log
(

β

2π

)
− iπ

2

]
−N logN . (5.32)
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Putting everything together we can write the high-temperature limit of the twisted index, at
finite N,

logZ =− 1
β

N

∑
i ̸= j

[
F ′
(
ui−u j

)
+

3

∑
a=1

(na−1)F ′
(
ui−u j +∆a

)]

− N−1
β

[
π2

3
+

3

∑
a=1

(na−1)F ′ (∆a)

]
−N logN ,

(5.33)

up to exponentially suppressed corrections. We may then evaluate the index by substituting
the pole configurations (5.21) back into the functional (5.33) to get,

logZ =−N2−1
β

[
π2

3
+

3

∑
a=1

(na−1)F ′ (∆a)

]
−N logN

=−N2−1
2β

∑
a<b
(̸=c)

∆a∆bnc−N logN ,
(5.34)

which, to leading order in 1/β , can be rewritten in a more intriguing form:

logZ =−
3

∑
a=1

na
∂ W̃ (∆a)

∂∆a
. (5.35)

We can relate the index to the trial left-moving central charge of the two-dimensional
N = (0,2) theory on T 2. The latter reads [40, 41]

cl = cr− k , (5.36)

where k is the gravitational anomaly

k = Trγ3 =
(
N2−1

)[
1+

3

∑
a=1

(na−1)

]
= 0 , (5.37)

and cr is the trial right-moving central charge

cr (∆a,na) = 3Trγ3R2 (∆a) = 3
(
N2−1

)[
1+

3

∑
a=1

(na−1)
(

∆a

π
−1
)2
]

=
3
(
N2−1

)
π2 ∑

a<b
(̸=c)

∆a∆bnc .
(5.38)
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Here, the trace is taken over the fermions and γ3 is the chirality operator in two dimensions.
In the twisted compactification, each of the chiral fields φa give rise to two-dimensional
fermions. The difference between the number of fermions of opposite chiralities is na−1,
thus explaining the above formulae. We used ∆a/π to parameterize the trial R-symmetry.
We find that the index is given by

logZ =−π2

6β
cr (∆a,na) =−

16π3

27β

3

∑
a=1

na
∂a(∆a)

∂∆a
. (5.39)

As shown in [40, 41], the exact central charge of the two-dimensional CFT is obtained by
extremizing cr(∆a,na) with respect to the ∆a. Given the above relation (5.39), we see that
this is equivalent to extremizing the logZ at high temperature. As a function of ∆1,2 the trial
central charge cr(∆a,na) is extremized for

∆a

2π
=

2na(na−1)
Θ

, a = 1,2 , (5.40)

where we defined the quantity

Θ = n2
1 +n2

2 +n2
3−2(n1n2 +n1n3 +n2n3) . (5.41)

At the critical point the function takes the value

cr(na) =−12(N2−1)
n1n2n3

Θ
. (5.42)

5.2.3 Towards quantum black hole entropy

As we discussed in chapter 1, a four-dimensional black hole asymptotic to a curved domain
wall can be regarded as a Kaluza-Klein compactification of a black string in AdS5. The
AdS3 near-horizon region is dual to the Ramond sector of the (0,2) SCFT which lives on the
dimensionally reduced D3 worldvolume. The equivariant elliptic genus of the 4D black hole
ZBH = ZCFT as a Ramond sector trace reads2

ZBH(ya,q) = TrR(−1)FqL0 ∏
a

yJa
a . (5.43)

2We give the fermions periodic boundary conditions.
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The microcanonical density of states (up to exponentially suppressed contributions) is then
given by (1.57):3

dmicro(na,q0) =
i

NN

∫ dβ

2π

∫ d3∆a

(2π)3 δ

(
2π−∑

a
∆a

)
e−

π2
6β

cr(∆a,na)+βq0 . (5.44)

Without loss of generality we assume that n2 < 0 and q0 < 0. We first perform the integral
over ∆3. The integral over ∆2 diverges for real values. This can be avoided by rotating the
integration contour to 0+ iR. The integral (5.44) is now Gaussian on ∆1,2, leading to

dmicro(na,q0) =−
i

2π2NN(N2−1)
√

Θ

∫
dβ e−

π2
6β

cr(na)+βq0
β . (5.45)

The integral over β is of Bessel type and it gives

dmicro(na,q0) =
π

NN(N2−1)
√

Θ

(
π

3
cr(na)

SCardy

)2

I2
(
SCardy

)
, (5.46)

where

SCardy = 2π

√
−cr(na)q0

6
. (5.47)

Eq. (5.46) captures all power-law and logarithmic corrections to the leading Bekenstein-
Hawking entropy exactly to all orders. Iν(z) is the standard modified Bessel function of the
first kind and has the following integral representation:

Iν(z) =
1

2πi

( z
2

)ν
∫

ε+i∞

ε−i∞
dt et+ z2

4t t−ν−1 , for Re(ν)> 0 ,ε > 0 . (5.48)

Furthermore, the asymptotics of Iν(z) for large Re(ν) is given by

Iν(z)∼
ez
√

2πz

[
1− (µ−1)

8z
+

(µ−1)(µ−32)

2!(8z)2 − (µ−1)(µ−32)(µ−52)

3!(8z)3 + . . .

]
, (5.49)

where µ = 4ν2. The exponential term gives the Cardy formula and SCardy can be identified
with the Bekenstein-Hawking entropy of the 4D black hole.

Let us note that we find strong similarities between the result of this section and those
for asymptotically flat black holes in ungauged supergravity. In particular, the quantum
entropy [182, 183] of BPS black holes in N = 2 supergravity coupled to vector multiplets

3The precise choice of β contour is not important if we only concern ourselves with the asymptotic expansion
of the β integral for cr(na)|q0| →+∞.
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and hypermultiplets is schematically of the form [184]

E (n)(SCardy)
−ν Iν

(
SCardy

)
. (5.50)

The prefactor E (n) only depends on the magnetic charges n and not on the electric charges
q. This is indeed the first term in the Rademacher expansion, which is an exact formula
for the Fourier coefficients dmicro of modular forms. The higher terms in the expansion are
exponentially suppressed with respect to the terms in (5.50) and thus are nonperturbative.
It would be interesting to find the Rademacher expansion of the twisted index (5.10) and
compare it with (5.46).

5.3 The Klebanov-Witten theory

In this section we study the Klebanov-Witten theory [185] describing the low energy
dynamics of N D3-branes at the conifold singularity. This is the Calabi-Yau cone over
the homogeneous Sasaki-Einstein five-manifold T 1,1 which can be described as the coset
SU(2)× SU(2)/U(1). This theory has N = 1 supersymmetry and has SU(N)× SU(N)

gauge group with bi-fundamental chiral multiplets Ai and B j, i, j = 1,2, transforming in the(
N,N

)
and

(
N,N

)
representations of the two gauge groups. This can be pictured as

N N

Ai

B j

(5.51)

It has a quartic superpotential,

W = Tr(A1B1A2B2−A1B2A2B1) . (5.52)

We assign chemical potentials ∆1,2 ∈ (0,2π) to Ai and ∆3,4 ∈ (0,2π) to Bi. Invariance of the
superpotential under the global symmetries requires

4

∑
I=1

∆I ∈ 2πZ ,
4

∑
I=1

nI = 2 . (5.53)

For the Klebanov-Witten theory, the topologically twisted index can be written as

Z =
1

(N!)2 ∑
m,m̃∈ZN

∫
B

dw
2πiw

dw̃
2πiw̃

w∑
N
i=1mi w̃∑

N
i=1 m̃i×



126 The Cardy limit of the topologically twisted index and black strings in AdS5

×
∫
C

N−1

∏
i=1

dxi

2πixi

dx̃i

2πix̃i
η(q)4(N−1)

N

∏
i ̸= j

θ1

(
xi
x j

;q
)

iη(q)

θ1

(
x̃i
x̃ j

;q
)

iη(q)

×
×

N

∏
i, j=1

∏
a=1,2

 iη(q)

θ1

(
xi
x̃ j

ya;q
)
mi−m̃ j−na+1

∏
b=3,4

 iη(q)

θ1

(
x̃ j
xi

yb;q
)
m̃ j−mi−nb+1

. (5.54)

Here, we assumed that eigenvalues xi and x̃i satisfy the SU(N) constraint ∏
N
i=1 xi = ∏

N
i=1 x̃i =

1. Hence, the integration is performed over (N−1) variables instead of N. In order to impose
the SU(N) constraints for the magnetic fluxes, i.e.

N

∑
i=1

mi =
N

∑
i=1

m̃i = 0 , (5.55)

we have introduced two Lagrange multipliers w = eiv and w̃ = eiṽ. Now, we can resum over
gauge magnetic fluxes mi ≤M−1 and m̃ j ≥ 1−M for some large positive integer cut-off M.
We obtain

Z =
1

(N!)2

∫
B

dw
2πiw

dw̃
2πiw̃

∫
C

N−1

∏
i=1

dxi

2πixi

dx̃i

2πix̃i

N

∏
i ̸= j

θ1

(
xi
x j

;q
)

iη(q)

θ1

(
x̃i
x̃ j

;q
)

iη(q)

×
×P

N

∏
i=1

(eiBi)M

eiBi−1

N

∏
j=1

(eiB̃ j)M

eiB̃ j −1
,

(5.56)

where we defined the quantities

P = η(q)4(N−1)
N

∏
i, j=1

∏
a=1,2

 iη(q)

θ1

(
xi
x̃ j

ya;q
)
1−na

∏
b=3,4

 iη(q)

θ1

(
x̃ j
xi

yb;q
)
1−nb

, (5.57)

and

eiBi = w
N

∏
j=1

∏b=3,4 θ1

(
x̃ j
xi

yb;q
)

∏a=1,2 θ1

(
xi
x̃ j

ya;q
) , eiB̃ j = w̃−1

N

∏
i=1

∏b=3,4 θ1

(
x̃ j
xi

yb;q
)

∏a=1,2 θ1

(
xi
x̃ j

ya;q
) . (5.58)

Then, similarly to the case of N = 4 SYM, the following BAEs

eiBi = 1 , eiB̃ j = 1 . (5.59)
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determine the poles of the integrand. In order to calculate the index we simply insert a
Jacobian of the transformation from {logxi, log x̃i, logw, log w̃} to {eiBi,eiB̃i} variables and
evaluate everything else at the solutions to BAEs. In the final expression, the dependence on
the cut-off M disappears. We can then write the partition function as,

Z = ∑
I∈BAEs

1
detB

N

∏
i ̸= j

θ1

(
xi
x j

;q
)

iη(q)

θ1

(
x̃i
x̃ j

;q
)

iη(q)

P , (5.60)

where B is a 2N×2N matrix

B=
∂
(
eiB1, . . . ,eiBN ,eiB̃1, . . . ,eiB̃N

)
∂ (logx1, . . . , logxN−1, logw, log x̃1, . . . , log x̃N−1, log w̃)

. (5.61)

5.3.1 Twisted superpotential at high temperature

Let us now look at the twisted superpotential at high temperature, i.e. β → 0 limit. Taking
the logarithm of the BAEs (5.59) we obtain

0 =−2πini + logw−
N

∑
j=1

{
∑

a=1,2
log
[

θ1

(
xi

x̃ j
ya;q

)]
− ∑

b=3,4
log
[

θ1

(
x̃ j

xi
yb;q

)]}
,

0 =−2πiñ j− log w̃−
N

∑
i=1

{
∑

a=1,2
log
[

θ1

(
xi

x̃ j
ya;q

)]
− ∑

b=3,4
log
[

θ1

(
x̃ j

xi
yb;q

)]}
,

(5.62)

where ni , ñ j are integers that parameterize the angular ambiguities. In order to compute the
high-temperature limit of the above BAEs, we go to the variables ui , ũ j ,∆I ,v , ṽ, defined
modulo 2π , and employ the asymptotic expansions (A.11) and (A.14). We find

0 =−2πini + iv+
1
β

N

∑
j=1

[
∑

a=1,2
F ′
(
ui− ũ j +∆a

)
− ∑

b=3,4
F ′
(
ũ j−ui +∆b

)]
,

0 =−2πiñ j− iṽ+
1
β

N

∑
i=1

[
∑

a=1,2
F ′
(
ui− ũ j +∆a

)
− ∑

b=3,4
F ′
(
ũ j−ui +∆b

)]
,

(5.63)
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where the polynomial function F ′(u) is defined in (5.15). The BAEs (5.63) can be obtained
as critical points of the twisted superpotential

W̃ ({ui, ũi},∆I) = 2π

N

∑
i=1

(niui− ñiũi)−
N

∑
i=1

(vui + ṽ ũi)

+
i
β

N

∑
i, j=1

[
∑

a=1,2
F(ui− ũ j +∆a)+ ∑

b=3,4
F(ũ j−ui +∆b)

]
.

(5.64)

We next turn to find solutions to the BAEs (5.63). The constraints (5.53) imply that

∑
4
I=1 ∆I can only be 0,2π,4π,6π or 8π . For the conifold theory, it turns out that the solutions

with ∑
4
I=1 ∆I = 0,8π lead to a singular index, those for 2π and 6π are related by a discrete

symmetry of the index, i.e. yI → 1/yI (∆I → 2π−∆I), and there are no consistent solutions
for ∑

4
I=1 ∆I = 4π . Thus, without loss of generality, we assume again ∑

4
I=1 ∆I = 2π in the

following.

The solution for ∑I ∆I = 2π∑I ∆I = 2π∑I ∆I = 2π . We assume that

0 < Re
(
ũ j−ui

)
+∆3,4 < 2π , −2π < Re

(
ũ j−ui

)
−∆1,2 < 0 , ∀ i, j .

(5.65)
Hence, the BAEs (5.63) become

0 =−2πin j + i v− 1
β

N

∑
k=1

[
∆1∆2−∆3∆4−2π

(
ũk−u j

)]
,

0 =−2πiñk− i ṽ− 1
β

N

∑
j=1

[
∆1∆2−∆3∆4−2π

(
ũk−u j

)]
.

(5.66)

Here, we have already imposed the constraint ∑
4
I=1 ∆I = 2π . Imposing the SU(N) constraints

for ui , ũi we can rewrite the BAEs in the following form

iN
β

u j = n j−
v

2π
+

iN
2πβ

(∆3 ∆4−∆1 ∆2) , for j = 1, . . . ,N−1 , (5.67a)

− iN
β

N−1

∑
j=1

u j = nN−
v

2π
+

iN
2πβ

(∆3 ∆4−∆1 ∆2) , (5.67b)

iN
β

ũ j =−ñ j−
ṽ

2π
− iN

2πβ
(∆3 ∆4−∆1 ∆2) , for j = 1, . . . ,N−1 , (5.67c)

− iN
β

N−1

∑
j=1

ũ j =−ñN−
ṽ

2π
− iN

2πβ
(∆3 ∆4−∆1 ∆2) . (5.67d)
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Equations (5.67a) and (5.67c) can be considered as equations defining ui and ũi. In order to
find v and ṽ we need to sum (N−1) equations (5.67a) with (5.67b) and equations (5.67c)
with (5.67d). This leads to

v =
iN
β

(∆3 ∆4−∆1 ∆2)+
2π

N

N

∑
j=1

n j , u j =−
iβ
N

(
n j−

1
N

N

∑
i=1

ni

)
,

ṽ =− iN
β

(∆3 ∆4−∆1 ∆2)−
2π

N

N

∑
j=1

ñ j , ũ j =
iβ
N

(
ñ j−

1
N

N

∑
i=1

ñi

)
.

(5.68)

According to our prescription, all solutions which lead to zeros of the off-diagonal vector
multiplets should be avoided. Therefore, the allowed parameter space for integers ni and ñi

is determined by

n j−ni ̸= 0 mod N , ñ j− ñi ̸= 0 mod N . (5.69)

Given the solution (5.68) to the BAEs, the integers ni and ñi are defined modulo N due to the
β -periodicity of eigenvalues on T 2. Thus we are left with {ni, ñi} ∈ [1,N]. The only possible
choice is then given by ni = ñi = i and its permutations.

Finally, plugging the solution (5.68) to the BAEs back into (5.64), we obtain the “on-
shell" value of the twisted superpotential

W̃ (∆I) =
N2

2β
∑

a<b<c
∆a∆b∆c , (5.70)

up to terms O(β ). The relation between the “on-shell” twisted superpotential and the
four-dimensional conformal anomaly coefficients also holds for the conifold theory. The
R-symmetry ’t Hooft anomalies can be expressed as

TrR(∆I) = 2
(
N2−1

)
+N2

4

∑
I=1

(
∆I

π
−1
)
=−2 ,

TrR3 (∆I) = 2
(
N2−1

)
+N2

4

∑
I=1

(
∆I

π
−1
)3

=
3N2

π3 ∑
a<b<c

∆a∆b∆c−2 ,

(5.71)

where we used ∆I/π to parameterize the trial R-symmetry of the theory. Hence, Eq. (5.70)
can be rewritten as

W̃ (∆I) =
π3

6β

[
TrR3 (∆I)−TrR(∆I)

]
=

16π3

27β
[3c(∆I)−2a(∆I)] . (5.72)
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Here, we employed Eq. (1.79) to write the second equality.

5.3.2 The topologically twisted index at high temperature

The twisted index, at high temperature, can be computed by evaluating the contribution of
the saddle-point configurations to (5.60). The procedure for computing the index is very
similar to that presented in section 5.2.2. The off-diagonal vector multiplet contributes

log
N

∏
i ̸= j

θ1

(
xi
x j

;q
)

iη(q)

θ1

(
x̃i
x̃ j

;q
)

iη(q)

=− 1
β

N

∑
i̸= j

[
F ′
(
ui−u j

)
+F ′

(
ũi− ũ j

)]
− iN(N−1)π .

(5.73)

The quantity P , Eq. (5.57), contributes

logP =− 1
β

{
2π2

3
(N−1)+

N

∑
i, j=1

∑
I=1,2:+
I=3,4:−

(nI−1)F ′
[
±
(
ui− ũ j±∆I

)]}

+
iN2π

2

4

∑
I=1

(1−nI)−2(N−1) log
(

β

2π

)
.

(5.74)

The Jacobian (5.61) has the following entries

∂Bk

∂u j
=−∂ B̃k

∂ ũ j
=

2πi
β

Nδk j , for k, j = 1,2, . . . ,N−1 , (5.75a)

∂BN

∂uk
=−∂ B̃N

∂ ũk
=−2πi

β
N ,

∂Bk

∂v
=−∂ B̃k

∂ ṽ
= 1 , for k = 1,2, . . . ,N−1 , (5.75b)

∂BN

∂v
=−∂ B̃N

∂ ṽ
= 1 ,

∂Bk

∂ ũ j
=

∂ B̃k

∂u j
=

∂Bk

∂ ṽ
=

∂ B̃k

∂v
= 0 , for k, j = 1, . . . ,N . (5.75c)

Now, it is straightforward to find the determinant of the matrix B:

− logdetB= 2(N−1)
[

log
(

β

2π

)
− iπ

2

]
−2N logN +πiN . (5.76)
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The high-temperature limit of the index, at finite N, may then be written as

logZ =− 1
β

{ N

∑
i ̸= j

[
F ′
(
ui−u j

)
+F ′

(
ũi− ũ j

)]
+

2π2

3
(N−1)

+
N

∑
i, j=1

∑
I=1,2:+
I=3,4:−

(nI−1)F ′
[
±
(
ui− ũ j±∆I

)]}
−2N logN +πi(N +1) .

(5.77)

Plugging the solution (5.68) to the BAEs back into the index (5.77) we find

logZ =−N2

2β
∑
a<b
(̸=c)

∆a∆bnc +
2π2

3β
−2N logN +πi(N +1) . (5.78)

As in the case of N = 4 SYM we can also write, to leading order in 1/β ,

logZ =−π2

6β
cl (∆I,nI) =−

16π3

27β

4

∑
I=1

nI
∂a(∆I)

∂∆I
, (5.79)

where the second equality is written assuming that N is large. Here, cl is the left-moving
central charge of the two-dimensional N = (0,2) SCFT obtained by the twisted compactifi-
cation on S2. This is related to the trial right-moving central charge cr by the gravitational
anomaly, i.e. cl = cr− k. The central charge cr takes contribution from the 2D massless
fermions, the gauginos and the zero modes of the chiral fields (the difference between the
number of modes of opposite chirality being nI−1) [40, 41, 43],

cr (∆I,nI) = 3Trγ3R2 (∆I) = 3

[
2
(
N2−1

)
+N2

4

∑
I=1

(nI−1)
(

∆I

π
−1
)2
]
, (5.80)

while the gravitational anomaly k reads

k = Trγ3 = 2
(
N2−1

)
+N2

4

∑
I=1

(nI−1) =−2 . (5.81)

The extremization of cr (∆I,nI) with respect to the ∆I reproduces the exact central
charge of the two-dimensional CFT [40, 41]. Notice that all the non-anomalous symmetries,
including the baryonic one, enter in the formula (5.80), which depends on three independent
fluxes and three independent fugacities. As pointed out in [43], the inclusion of baryonic
charges is crucial when performing c-extremization.
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For later convenience we introduce the following combinations of parameters

ϒ = 2
4

∑
I=1

[
n2

I (nI−1)− n1n2n3n4

nI

]
, Π = ∑

a<b
(̸=c)

nanbn
2
c . (5.82)

The trial central charge cr as a function of ∆1,2,3 is extremized at

∆I

2π
=

1
ϒ

[
2
(
n3

I −
n1n2n3n4

nI

)
−nI

4

∑
J=1

n2
J

]
, I = 1,2,3 . (5.83)

At the critical point the function takes the value

cr(nI) =−12
(

N2Π

ϒ
+

1
2

)
. (5.84)

Let us note that in the saddle-point approximation we can write the density of states dmicro as

dmicro(nI,q0) =
π

N2N+3
√

2ϒ

(
π

3
cl(nI)

SCardy

)5/2

I5/2(SCardy) , (5.85)

where

SCardy = 2π

√
−cl(nI)q0

6
. (5.86)

5.4 High-temperature limit of a generic theory

We can easily generalize the previous discussion to the case of general four-dimensional
N = 1 SCFTs. Our goal is to compute the partition function of N = 1 gauge theories on
S2×T 2 with a partial topological A-twist along S2. We identify, as before, the modulus of the
torus with the fictitious inverse temperature β , and we are interested in the high-temperature
limit (β → 0) of the index. As we take β to zero, we can use the asymptotic expansions
(A.11) and (A.14) for the elliptic functions appearing in the supersymmetric path integral
(1.65). We focus on quiver gauge theories with bi-fundamental and adjoint chiral multiplets
and a number |G| of SU(N)(a) gauge groups. Eigenvalues u(a)i and gauge magnetic fluxes
m

(a)
i have to satisfy the tracelessness condition, i.e.

N

∑
i=1

u(a)i = 0 ,
N

∑
i=1

m
(a)
i = 0 . (5.87)
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The magnetic fluxes and the chemical potentials for the global symmetries of the theory
fulfill the constraints (1.55) and (1.56). We also assume that 0 < ∆I < 2π .

As in the previous examples, the solution to the BAEs is given by

u(a)i = O (β ) , ∀ i,a , (5.88)

and exists (up to discrete symmetries) only for ∑I∈W ∆I = 2π , for each monomial term W in
the superpotential, as we checked in many examples. Due to this constraint, ∆I/π behaves at
all effects like a trial R-symmetry of the theory.

5.4.1 Twisted superpotential at high temperature

The general rules for constructing the high-temperature “on-shell" twisted superpotential,
i.e. W̃ ({u(a)i },∆I)

∣∣
BAEs, of N = 1 quiver gauge theories to leading order in 1/β are:

1. A bi-fundamental field with chemical potential ∆(a,b) transforming in the (N,N) repre-
sentation of SU(N)a×SU(N)b, contributes

iN2

β
F
(
∆(a,b)

)
, (5.89)

where the function F is defined in (5.15).

2. An adjoint field with chemical potential ∆(a,a) contributes

i
(
N2−1

)
β

F
(
∆(a,a)

)
. (5.90)

5.4.2 The topologically twisted index at high temperature

Using the dominant solution (5.88) to the BAEs we can proceed to compute the topologi-
cally twisted index. Here are the rules for constructing the logarithm of the index at high
temperature to leading order in 1/β :

1. For each group a, the contribution of the off-diagonal vector multiplet is

−
(
N2−1

)
β

π2

3
. (5.91)



134 The Cardy limit of the topologically twisted index and black strings in AdS5

2. A bi-fundamental field with magnetic flux n(a,b) and chemical potential ∆(a,b) trans-
forming in the (N,N) representation of SU(N)a×SU(N)b, contributes

− N2

β

(
n(a,b)−1

)
F ′
(
∆(a,b)

)
. (5.92)

3. An adjoint field with magnetic flux n(a,a) and chemical potential ∆(a,a), contributes

− N2−1
β

(
n(a,a)−1

)
F ′
(
∆(a,a)

)
. (5.93)

5.4.3 An index theorem for the twisted matrix model

The high-temperature behavior of the index, to leading order in 1/β and N, can be captured
by a simple universal formula involving the twisted superpotential and its derivatives. Let us
recall some of the essential ingredients that we need in the following.

The R-symmetry ’t Hooft anomaly of UV four-dimensional N = 1 SCFTs is given by

TrRα(∆I) = |G| dim SU(N)+∑
I

dim RI

(
∆I

π
−1
)α

, (5.94)

where the trace is taken over all the bi-fundamental fermions and gauginos and dim RI is the
dimension of the respective matter representation with R-charge ∆I/π . On the other hand,
the trial right-moving central charge of the IR two-dimensional N = (0,2) SCFT on T 2

can be computed from the spectrum of massless fermions [40, 41, 43]. These are gauginos
with chirality γ3 = 1 for all the gauge groups and fermionic zero modes for each chiral field,
with a difference between the number of fermions of opposite chiralities equal to nI−1. The
central charge is related by the N = 2 superconformal algebra to the R-symmetry anomaly
[40, 41], and is given by

cr (∆I,nI) = 3Trγ3R2 (∆I) = 3

[
|G| dim SU(N)+∑

I
dim RI (nI−1)

(
∆I

π
−1
)2
]
.

(5.95)
By an explicit calculation we see that Eq. (5.95) can be rewritten as

cr (∆I,nI) = 3TrR3 (∆I)+π ∑
I

[(
nI−

∆I

π

)
∂ TrR3 (∆I)

∂∆I

]
, (5.96)
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where we used the relation (5.94).4 Moreover, the trial left-moving central charge of the
two-dimensional N = (0,2) theory reads

cl = cr− k , (5.97)

where k is the gravitational anomaly and is given by

k = Trγ3 = |G| dim SU(N)+∑
I

dim RI (nI−1) . (5.98)

For theories of D3-branes with an AdS dual, to leading order in N, the linear R-symmetry
’t Hooft anomaly of the four-dimensional theory vanishes, i.e. TrR = O(1) and a = c [75].
Using the parameterization of a trial R-symmetry in terms of ∆I/π , this is equivalent to

π|G|+∑
I
(∆I−π) = 0 , (5.99)

where the sum is taken over all matter fields (bi-fundamental and adjoint) in the quiver.
Similarly, we have

|G|+∑
I
(nI−1) = 0 . (5.100)

This is simply k = Trγ3 = O(1), to leading order in N.
The index theorem can be expressed as:

Theorem 2. The topologically twisted index of any N = 1 SU(N) quiver gauge theory
placed on S2×T 2 to leading order in 1/β is given by

logZ (∆I,nI) =−
π2

6β
cl (∆I,nI) , (5.101)

which is Cardy’s universal formula for the asymptotic density of states in a CFT2 [186]. We
can write the extremal value of the twisted superpotential W̃ (∆I) as

W̃ (∆I)≡−iW̃ ({u(a)i },∆I)
∣∣
BAEs =

π3

6β

[
TrR3(∆I)−TrR(∆I)

]
=

16π3

27β
[3c(∆I)−2a(∆I)] .

(5.102)
4Notice that, in evaluating the right hand side of (5.96), we can consider all the ∆I as independent variables

and impose the constraints ∑I∈W ∆I = 2π only after differentiation. This is due to the form of the differential
operator in (5.96) and the constraints ∑I∈W nI = 2.
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For theories of D3-branes at large N, the index can be recast as

logZ (∆I,nI) =−
3
π

W̃ (∆I)−∑
I

[(
nI−

∆I

π

)
∂ W̃ (∆I)

∂∆I

]
=−π2

6β
cr (∆I,nI) , (5.103)

where W̃ (∆I) reads

W̃ (∆I) =
16π3

27β
a(∆I) . (5.104)

Proof. Observe first that again we can consider all the ∆I in (5.103) as independent variables
and impose the constraints ∑I∈W ∆I = 2π only after differentiation. This is due to the form
of the differential operator in (5.103) and ∑I∈W nI = 2. To prove the first equality in (5.103),
we promote the explicit factors of π , appearing in (5.89) and (5.90), to a formal variable πππ .
Notice that the “on-shell” twisted superpotential W̃ (∆I,πππ), at large N, is a homogeneous
function of ∆I and πππ , i.e.

W̃ (λ∆I,λπππ) = λ
3 W̃ (∆I,πππ) . (5.105)

Hence,
∂ W̃ (∆I,πππ)

∂πππ
=

1
πππ

[
3W̃ (∆I)−∑

I
∆I

∂ W̃ (∆I)

∂∆I

]
. (5.106)

Now, we consider a generic quiver gauge theory with matters in bi-fundamental and adjoint
representations of the gauge group. They contribute to the twisted superpotential W̃ (∆I,πππ)

as written in (5.89) and (5.90), respectively. Let us calculate the derivative of W̃ (∆I,πππ) with
respect to ∆I:

−∑
I
nI

∂ W̃ (∆I,πππ)

∂∆I
=−N2

β
∑
I
nI F ′ (∆I) . (5.107)

Next, we take the derivative of the twisted superpotential with respect to πππ:

−∑
I

∂ W̃ (∆I,πππ)

∂πππ
=

N2

β
∑
I

F ′ (∆I)−
N2

β
∑
I

(
πππ2

3
− πππ

3
∆I

)
. (5.108)

Using (5.106) and combining (5.107) with the first term of (5.108) as in the right hand side
of (5.103), we obtain the contribution of matter fields (5.92) and (5.93) to the index. The
contribution of the second term in (5.108) to (5.103) can be written as

− N2

β

πππ

3 ∑
I
(πππ−∆I) =−

N2

β

πππ2

3
|G| , (5.109)

where we used the constraint (5.99). This is precisely the contribution of the off-diagonal
vector multiplets (5.91) to the index at large N.
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Parameterizing the trial R-symmetry in terms of ∆I/π , we can prove (5.102):

W̃ (∆I) =
1
β

∑
I

dim RI F (∆I) =
1

6β
∑
I

dim RI

[
(∆I−π)3−π

2 (∆I−π)
]

=
π3

6β

[
∑
I

dim RI

(
∆I

π
−1
)3

−∑
I

dim RI

(
∆I

π
−1
)]

=
π3

6β

[
TrR3 (∆I)−TrR(∆I)

]
,

(5.110)

which at large N, due to (5.99), is equal to (5.104).
Finally, we need to show that the high-temperature limit of the index is given by the

Cardy formula (5.101). Bi-fundamental and adjoint fields contribute to the index according
to (5.92) and (5.93), respectively. We thus have

logZ (∆I,nI) =−
1
β

[
π2

3
|G| dim SU(N)+∑

I
dim RI (nI−1)F ′ (∆I)

]

=−π2

6β

{
2|G| dim SU(N)+∑

I
dim RI (nI−1)

[
3
(

∆I

π
−1
)2

−1

]}

=−π2

6β
[cr (∆I,nI)−Trγ3] =−

π2

6β
cl (∆I,nI) ,

(5.111)
where we used (5.95) and (5.97) in the third and the fourth equality, respectively. For quiver
gauge theories fulfilling the constraint (5.100) the above formula reduces to the second
equality in (5.103) at large N. This completes the proof.

It is worth stressing that, when using formula (5.103), the linear relations among the ∆I

can be imposed after differentiation. It is always possible, ignoring some linear relations,
to parameterize W̃ (∆I) such that it becomes a homogeneous function of degree 3 in the
chemical potentials ∆I [187]. With this parameterization the index theorem becomes

logZ (∆I,nI) =−∑
I
nI

∂ W̃ (∆I)

∂∆I
. (5.112)

As we have seen, this is indeed the case for N = 4 SYM and the Klebanov-Witten theory.
We note that our result is very similar to that obtained for the large N limit of the topologically
twisted index of three-dimensional N ≥ 2 Yang-Mills-Chern-Simons-matter theories placed
on S2×S1.





Chapter 6

An extremization principle for the
entropy of BPS black holes in AdS555

6.1 Introduction

As we have shown in the previous chapters, the entropy of a class of dyonic BPS black
holes in AdS4 with magnetic and electric charges (ni,qi) can be obtained as the Legendre
transform of the topologically twisted index Z(ni,∆i), which is a function of magnetic fluxes
ni and chemical potentials ∆i for the global symmetries of the dual field theory:

SBH(ni,qi) = logZ(ni, ∆̄i)− i∑
i

qi∆̄i . (6.1)

Here ∆̄i is the extremum of I (∆i) = logZ(ni,∆i)− i∑i qi∆i. This procedure dubbed
I−extremization as we explained in details in section 1.7.

It is natural to ask what would be the analogous of this construction in five dimensions.
In this chapter, we humbly look at the gravity side of the story and try to understand
what kind of extremization can reproduce the entropy of the supersymmetric rotating black
holes. Unfortunately, the details of the attractor mechanism for rotating black holes in five-
dimensional gauged supergravity are not known but we can nevertheless find an extremization
principle for the entropy. The final result is quite surprising and intriguing.

We consider the class of supersymmetric rotating black holes found and studied in [88–
92]. They are asymptotic to AdS5×S5 and depend on three electric charges QI (I = 1,2,3),
associated with rotations in S5, and two angular momenta Jφ ,Jψ in AdS5. Supersymmetry
actually requires a constraint among the charges and only four of them are independent.
We show that the Bekenstein-Hawking entropy of the black holes can be obtained as the
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Legendre transform of the quantity1

E =−iπN2 ∆1∆2∆3

ω1ω2
, (6.2)

where ∆I are chemical potentials conjugated to the electric charges QI and ω1,2 chemical
potentials conjugated to the angular momenta Jφ ,Jψ . The constraint among charges is
reflected in the following constraint among chemical potentials,

∆1 +∆2 +∆3 +ω1 +ω2 = 1 . (6.3)

To further motivate the result (6.2) we shall consider the case of equal angular momenta
Jψ = Jφ . In this limit, the black hole has an enhanced SU(2)×U(1) isometry and it can
be reduced along the U(1) to a static dyonic black hole in four dimensions. We show that,
upon dimensional reduction, the extremization problem based on (6.2) coincides with the
attractor mechanism in four dimensions, which is well understood for static BPS black holes
[31–33, 35, 36, 71].

It is curious to observe that the expression (6.2) is formally identical to the supersymmetric
Casimir energy for N = 4 SYM, as derived, for example, in [100] and reviewed in appendix
D. It appears in the relation ZN =4 = e−EI between the partition function ZN =4 on S3×S1

and the superconformal index I. Both the partition function and the superconformal index
are functions of a set of chemical potentials ∆I (I = 1,2,3) and ωi (i = 1,2) associated
with the R-symmetry generators U(1)3 ∈ SO(6) and the two angular momenta U(1)2 ∈
SO(4), respectively. Since the symmetries that appear in the game must commute with the
preserved supercharge, the index and the partition function are actually functions of only
four independent chemical potentials, precisely as our quantity E. The constraint among
chemical potentials is usually imposed as ∑

3
I=1 ∆I +∑

2
i=1 ωi = 0. Since chemical potentials

in our notations are periodic of period 1, our constraint (6.3) reflects a different choice for
the angular ambiguities. We comment about the interpretation of this result in the discussion
section, leaving the proper understanding to future work.

The chapter is organized as follows. In section 6.2 we give a short overview of N = 2
D = 5 FI gauged supergravity. In section 6.3 we review the basic features of the BPS rotating
black holes of interest. In section 6.4, we show that the Bekenstein-Hawking entropy of the
black hole can be obtained as the Legendre transform of the quantity (6.2). In section 6.5,
we perform the dimensional reduction of the black holes with equal angular momenta down

1Notice that one can write the very same entropy as the result of a different extremization in the context of
the Sen’s entropy functional [188, 189]. The two extremizations are over different quantities and use different
charges.
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to four dimensions and we prove that the extremization of (6.2) is equivalent to the attractor
mechanism for four-dimensional static BPS black holes in gauged supergravity. We conclude
in section 6.6 with discussions.

6.2 N = 2N = 2N = 2, D = 5D = 5D = 5 gauged supergravity

The theory we shall be considering, following the conventions of [190], is the five-dimensional
N = 2 FI gauged supergravity coupled to nV vector multiplets. It is based on a homogeneous
real cubic polynomial

V
(
LI)= 1

6
CIJKLILJLK , (6.4)

where I,J,K = 1, . . . ,nV and CIJK is a fully symmetric third-rank tensor appearing in the
Chern-Simons term. Here, LI(ϕ i) are real scalars satisfying the constraint V = 1. The action
for the bosonic sector reads [191, 192]

S(5) =
∫
R4,1

[
1
2

R(5) ⋆5 1− 1
2

GIJdLI ∧⋆5dLJ− 1
2

GIJF I ∧⋆5FJ

− 1
12

CIJKF I ∧FJ ∧AK +χ
2V ⋆5 1

]
,

(6.5)

where R(5) is the Ricci scalar, F I ≡ dAI is the Maxwell field strength, and GIJ can be written
in terms of V ,

GIJ =−
1
2

∂I∂J logV
∣∣
V =1 . (6.6)

We also set 8πG(5)
N = 1. Furthermore, it is convenient to define

LI ≡
1
6

CIJKLJLK . (6.7)

Therefore, we find that

GIJ =
9
2

LILJ−
1
2

CIJKLK , LILI = 1 , (6.8)

and

LI =
2
3

GIJLJ , LI =
3
2

GIJLJ , (6.9)

where GIKGKJ = δ I
J . The inverse of GIJ is given by

GIJ = 2LILJ−6CIJKLK , (6.10)
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where CIJK ≡CIJK . We then have

LI =
9
2

CIJKLJLK . (6.11)

The metric on the scalar manifold is defined by

gi j = ∂iLI
∂ jLJGIJ

∣∣
V =1 , (6.12)

and the scalar potential reads

V (L) =VIVJ

(
6LILJ− 9

2
gi j

∂iLI
∂ jLJ

)
. (6.13)

Here, VI are FI constants which are related to the vacuum value L̄I of the scalars LI ,

L̄I = ξ
−1VI , (6.14)

where ξ 3 = 9
2CIJKVIVJVK and the AdS5 radius of curvature is given by g−1 ≡ (ξ χ)−1. A

useful relation of very special geometry is,

gi j
∂iLI

∂ jLJ = GIJ− 2
3

LILJ . (6.15)

Thus,

V (L) = 9VIVJ

(
LILJ− 1

2
GIJ
)
. (6.16)

6.3 Supersymmetric AdS555 black holes in U(1)3U(1)3U(1)3 gauged su-
pergravity

In this section we will briefly review a class of supersymmetric, asymptotically AdS, black
holes [88, 89, 91, 90, 92] of D = 5 U(1)3 gauged supergravity [191, 192]. They can be
embedded in type IIB supergravity as an asymptotically AdS5×S5 solution which is exactly
the decoupling limit of the rotating D3-brane [193]. When lifted to type IIB supergravity
they preserve only two real supercharges [194]. They are characterized by their mass, three
electric charges and two angular momenta with a constraint, and are holographically dual to
1/16 BPS states of N = 4 SU(N) SYM on S3×R at large N.

We shall primarily be interested in the so-called N = 2 gauged STU model (nV = 3).
The only nonvanishing triple intersection numbers are C123 = 1 (and cyclic permutations).
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The bosonic sector of the theory comprises three gauge fields which correspond to the Cartan
subalgebra of the SO(6) isometry of S5, the metric, and three real scalar fields subject to the
constraint

L1L2L3 = 1 . (6.17)

They take vacuum values L̄I = 1. The five-dimensional black hole metric can be written as
[92]

ds2 =−(H1H2H3)
−2/3 (dt +ωψdψ +ωφ dφ

)2
+(H1H2H3)

1/3 hmndxmdxn , (6.18)

where

HI = 1+
√

ΞaΞb
(
1+g2µI

)
−Ξa cos2 θ −Ξb sin2

θ

g2r2 , (6.19)

hmndxmdxn = r2
{

dr2

∆r
+

dθ 2

∆θ

+
cos2 θ

Ξ 2
b

[
Ξb + cos2

θ
(
ρ

2g2 +2(1+bg)(a+b)g
)]

dψ
2

+
sin2

θ

Ξ 2
a

[
Ξa + sin2

θ
(
ρ

2g2 +2(1+ag)(a+b)g
)]

dφ
2

+
2sin2

θ cos2 θ

ΞaΞb

[
ρ

2g2 +2(a+b)g+(a+b)2 g2
]

dψdφ

}
,

(6.20)
∆r = r2

[
g2r2 +(1+ag+bg)2

]
, ∆θ = Ξa cos2

θ +Ξb sin2
θ ,

Ξa = 1−a2g2 , Ξb = 1−b2g2 , ρ
2 = r2 +a2 cos2

θ +b2 sin2
θ ,

(6.21)

ωψ =−gcos2 θ

r2Ξb

[
ρ

4 +
(
2r2

m +b2)
ρ

2 +
1
2
(
β2−a2b2 +g−2 (a2−b2))] ,

ωφ =−gsin2
θ

r2Ξa

[
ρ

4 +
(
2r2

m +a2)
ρ

2 +
1
2
(
β2−a2b2−g−2 (a2−b2))] , (6.22)

and

r2
m = g−1(a+b)+ab ,

β2 = ΞaΞb (µ1µ2 +µ1µ3 +µ2µ3)−
2
√

ΞaΞb
(
1−
√

ΞaΞb
)

g2 (µ1 +µ2 +µ3)+
3
(
1−
√

ΞaΞb
)2

g4 .

(6.23)
The gauge coupling constant g is fixed in terms of the AdS5 radius of curvature, g = 1/ℓ.
The coordinates are (t,r,θ ,φ ,ψ) where r > 0 corresponds to the exterior of the black hole,
0≤ θ ≤ π/2 and 0≤ φ ,ψ ≤ 2π . The scalars read

LI =
(H1H2H3)

1/3

HI
, (6.24)
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while the gauge potentials are given by

AI = H−1
I
(
dt +ωψdψ +ωφ dφ

)
+U I

ψdψ +U I
φ dφ , (6.25)

where

U I
ψ =

gcos2 θ

Ξb

[
ρ

2 +2r2
m +b2−

√
ΞaΞbµI +g−2

(
1−
√

ΞaΞb

)]
,

U I
φ =

gsin2
θ

Ξa

[
ρ

2 +2r2
m +a2−

√
ΞaΞbµI +g−2

(
1−
√

ΞaΞb

)]
.

(6.26)

The black hole is labeled by five parameters: µ1,2,3,a,b where g−1 > a, b ≥ 0. Only four
parameters are independent due to the constraint

µ1 +µ2 +µ3 =
1√

ΞaΞb

[
2r2

m +3g−2
(

1−
√

ΞaΞb

)]
. (6.27)

Furthermore, regularity of the scalars for r ≥ 0 entails that

g2
µI >

√
Ξb

Ξa
−1≥ 0 , (6.28)

when a≥ b. If a < b then the same expression remains valid with a and b interchanged.

6.3.1 The asymptotic AdS555 vacuum

This solution is expressed in the co-rotating frame. The change of coordinates t = t, φ =

φ −gt, ψ = ψ−gt, and y2 = r2 +2r2
m/3 transforms the metric to a static frame at infinity.

In order to bring the metric into a manifestly asymptotically AdS5 spacetime (in the global
sense) as y→ ∞ we make the following change of coordinates [92]

ΞaY 2 sin2
Θ =

(
y2 +a2)sin2

θ , ΞbY 2 cos2
Θ =

(
y2 +b2)cos2

θ . (6.29)

One gets the line element

ds2 ≃−g2Y 2 dt2 +
dY 2

g2Y 2 +Y 2
(

dΘ
2 + sin2

Θ dφ
2
+ cos2

Θ dψ
2
)
. (6.30)

The black hole has the Einstein universe R×S3 as its conformal boundary. In the asymptoti-
cally static coordinates, the supersymmetric Killing vector field reads

V =
∂

∂ t
+g

∂

∂φ
+g

∂

∂ψ
, (6.31)
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which is timelike everywhere outside the black hole and is null on the conformal boundary.

6.3.2 Properties of the solution

It is convenient to define the following polynomials,

γ1 = µ1 +µ2 +µ3 , γ2 = µ1µ2 +µ1µ3 +µ2µ3 , γ3 = µ1µ2µ3 . (6.32)

The black hole carries three U(1)3 ⊂ SO(6) electric charges in S5 which are given by

QI =
π

4G(5)
N

[
µI +

g2

2

(
γ2−

2γ3

µI

)]
, for I = 1,2,3 , (6.33)

and two U(1)2 ⊂ SO(4) angular momenta in AdS5 that read

Jψ =
π

4G(5)
N

[gγ2

2
+g3

γ3 +g−3(√
Ξa/Ξb−1

)
J
]
,

Jφ =
π

4G(5)
N

[gγ2

2
+g3

γ3 +g−3(√
Ξb/Ξa−1

)
J
]
.

(6.34)

Here, G(5)
N is the five-dimensional Newton constant and we defined

J ≡
3

∏
I=1

(
1+g2

µI
)
. (6.35)

The mass of the black holes is determined by the BPS condition

M = g|Jφ |+g|Jψ |+ |Q1|+ |Q2|+ |Q3| , (6.36)

which yields

M =
π

4G(5)
N

[
γ1 +

3g2γ2

2
+2g4

γ3 +

(√
Ξa−

√
Ξb
)2

g2
√

ΞaΞb
J

]
. (6.37)

The solution has a regular event horizon at rh = 0 only for nonzero angular momenta in AdS5.
The angular velocities of the horizon, measured with respect to the azimuthal coordinates ψ

and φ of the asymptotically static frame at infinity, are

Ωψ = Ωφ = g . (6.38)
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The near-horizon geometry is a fibration of AdS2 over a non-homogeneously squashed S3

[195] with area

Area = 2π
2

√
γ3 (1+g2γ1)−

g2γ2
2

4
−
(√

Ξa−
√

Ξb
)2

g6
√

ΞaΞb
J . (6.39)

Positivity of the expression within the square root ensures the absence of closed causal curves
near r = 0. The Bekenstein-Hawking entropy of the black hole is proportional to its horizon
area and can be compactly written in terms of the physical charges as [196]

SBH =
Area

4G(5)
N

=
2π

g

√
Q1Q2 +Q2Q3 +Q1Q3−

π

4G(5)
N g

(
Jφ + Jψ

)
. (6.40)

Finally, let
XI =

(
1+g2

µI
)√

ΞaΞb−∆θ . (6.41)

The values of the scalar fields at the horizon read

LI(rh) =
(X1X2X3)

1/3

XI
. (6.42)

In the next section we will obtain the Bekenstein-Hawking entropy (6.40) of the BPS
black hole from an extremization principle.

6.4 An extremization principle for the entropy

We shall now extremize the quantity (6.2), and show that the extremum precisely reproduces
the entropy of the multi-charge BPS black hole discussed in the previous section.

Let us first introduce some notation that facilitates the comparison with supergravity:

X I ≡ ∆I , X0
± ≡ ω1±ω2 , (6.43)

where I = 1,2,3. We shall also use J± ≡ Jφ ± Jψ ,

J+ =
π

4G(5)
N

[
gγ2 +2g3

γ3 +

(√
Ξa−

√
Ξb
)2

g3
√

ΞaΞb
J

]
,

J− =
π

4G(5)
N

Ξb−Ξa

g3
√

ΞaΞb
J .

(6.44)
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Thus, we can rewrite the quantity (6.2) as

E =− 2π2i

g3G(5)
N

X1X2X3(
X0
+

)2−
(
X0
−
)2 , (6.45)

where we used the standard relation between gravitational and QFT parameters in the large
N limit,

π

2g3G(5)
N

= N2 . (6.46)

In the following we set the unit of the AdS5 curvature g = 1. The entropy of the BPS black
hole, at leading order, can be obtained by extremizing the quantity2

Isugra =−E
(
X0
±,X

I)+2πi
3

∑
I=1

QIX I−πi
(
J+X0

++ J−X0
−
)
, (6.47)

with respect to X I , X0
± and subject to the constraint (6.3),

X0
++

3

∑
I=1

X I = 1 . (6.48)

At this stage, we find it more convenient to work in the basis zα (α = 0,1,2,3) which is
related to

(
X0
±,X

I) by

X0
− =

z0

1+ z1 + z2 + z3 , X0
+ =

1
1+ z1 + z2 + z3 , X1,2,3 =

z1,2,3

1+ z1 + z2 + z3 .
(6.49)

Hence, in terms of the variables zα the extremization equations can be written as

[
(z0)2−1

]{[
(z0)2−1

]
ci +

z1z2z3

zi

}
−2z1z2z3 = 0 , for i = 1,2,3 ,

c0 [(z0)2−1
]2−2z0z1z2z3 = 0 ,

(6.50)

where we defined the constants

c0 =
J (Ξb−Ξa)

8
√

ΞaΞb
, ci =

J

4

(
1

1+µi
− Ξb +Ξa

2
√

ΞaΞb

)
. (6.51)

2This is not the only possible choice of signs. There are various sign ambiguities in the superconformal
index literature as well as in the black hole one that should be fixed in a proper comparison between gravity and
field theory.
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With an explicit computation one can check that the value of Isugra (zα) at the critical point
precisely reproduces the entropy of the black hole,

Isugra
∣∣
crit

(
J±,QI

)
= SBH

(
J±,QI

)
. (6.52)

It is remarkable that the solution to the extremization equations (6.50) is complex; however,
at the saddle-point it becomes a real function of the black hole charges. We conclude that
the extremization of the quantity (6.2) yields exactly the Bekenstein-Hawking entropy of the
1/16 BPS black holes in AdS5×S5.

So far the discussion was completely general. In the next section, we will analyze the
case Jφ = Jψ , for which the solution to the extremization equations takes a remarkably simple
form.

6.5 Dimensional reduction in the limiting case: Jφ = JψJφ = JψJφ = Jψ

We gain some important insight by considering the dimensional reduction of the five-
dimensional BPS black holes when the two angular momenta are equal. The black hole
metric on the squashed sphere then has an enhanced isometry SU(2)×U(1)⊂ SO(4). If we
choose the appropriate Hopf coordinates we can dimensionally reduce the solution along the
U(1) down to four-dimensional gauged supergravity. As discussed in [83], it turns out that
such a dimensional reduction makes sense not only for asymptotically flat solutions where
first discovered in [197–200] but also for the asymptotically AdS solutions in the gauged
supergravity considered here. A crucial difference is that the lower-dimensional vacuum will
no longer be maximally symmetric but will instead be of the hyperscaling-violating Lifshitz
(hvLif) type [83].

The reason for looking at the limit Jφ = Jψ is simple: due to the SU(2) symmetry the
lower-dimensional solution is guaranteed to be static and the horizon metric is a direct product
AdS2× S2 geometry, as will be shown in due course. Since the attractor mechanism for
static BPS black holes in four-dimensional N = 2 gauged supergravity has been completely
understood [31, 33, 32] we can fit the reduced solution in this framework.

6.5.1 The near-horizon geometry

We begin by taking the near-horizon limit, r→ 0, of the BPS black hole solution presented
in section 6.3. We set a = b, corresponding to the equal angular momenta (Jφ = Jψ), and
adopt the notation Ξa = Ξb ≡ Ξ .
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Let us first introduce the following coordinates,

ψ ≡ 1
2
(χ +ϕ) , φ ≡ 1

2
(χ−ϕ) , θ ≡ 1

2
ϑ , (6.53)

where ϑ ,ϕ,χ are the Euler angles of S3 with 0 ≤ ϑ ≤ π , 0 ≤ ϕ < 2π , 0 ≤ χ < 4π . The
near-horizon geometry then reads

ds2 = R2
AdS2

ds2
AdS2

+ γ
1/3
3 ds2

M3
,

LI =
γ

1/3
3
µI

, AI =
γ

1/3
3
µI

RAdS2 r̃ dt̃ +g
(

γ1−µI−
γ2

2µI

)
dγ ,

(6.54)

where we defined

ds2
AdS2

=−r̃2dt̃2 +
dr̃2

r̃2 , R2
AdS2

=
γ

1/3
3

4(1+g2γ1)
,

r̃ =
r2

4R2
AdS2

, t̃ =
2

Ξ

√
γ

1/3
3 (1+g2γ1)

t ,
(6.55)

ds2
M3

= ds2
S3−

[
Γ

2
γ

1/3
3 − ag(4+5ag)

Ξ

]
dγ

2 +2RAdS2 Γ r̃ dt̃ dγ ,

Γ =
g
(
3a4 +4a2r2

m +β2
)

2Ξ 2γ
2/3
3

,

(6.56)

and

ds2
S3 =

1
4
(
dϑ

2 +dϕ
2 +dχ

2 +2cosϑ dϕ dχ
)
=

1
4

3

∑
i=1

σi , dγ =
σ3

2
. (6.57)

Here, σi (i = 1,2,3) are the right-invariant SU(2) one-forms,

σ1 =−sin χ dϑ + cos χ sinϑ dϕ ,

σ2 = cos χ dϑ + sin χ sinϑ dϕ ,

σ3 = dχ + cosϑ dϕ .

(6.58)

Notice that ds2
S2 = σ2

1 +σ2
2 = dϑ 2+ sin2

ϑ dϕ2. Due to the constraint (6.27) we can simplify

a(4+5ag)
Ξ

= gγ1 , Γ =
gγ2

2γ
2/3
3

. (6.59)
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Upon a further rescaling of the time coordinate

t̃ =−1
2

√
4−

g2γ2
2

γ3(1+g2γ1)
τ , (6.60)

the near-horizon metric with squashed AdS2×w S3 geometry and the gauge fields can be
brought to the form:

ds2
(5) = R2

AdS2
ds2

AdS2
+

R2
S2

4

[
ds2

S2 +υ (σ3−α r̃dτ)2
]
,

LI =
γ

1/3
3
µI

, AI
(5) = eI r̃ dτ− f I

σ3 .

(6.61)

Here, we defined the constants

α =
gγ2

2(1+g2γ1)
√

γ3υ
, R2

S2 = γ
1/3
3 ,

eI =−
√

γ3υ

2µI(1+g2γ1)
, f I =

g
4
(µI− γ1)+

gγ3

4µ2
I
,

(6.62)

and

υ = 1+g2
γ1−

g2γ2
2

4γ3
. (6.63)

Note that we added the subscript (5) in order to emphasize that these are five-dimensional
quantities which will next be related to a solution in four dimensions via dimensional
reduction along the χ direction.

6.5.2 Dimensional reduction on the Hopf fibres of squashed S3S3S3

In five-dimensional supergravity theories, including nV Abelian gauge fields AI
(5) and real

scalar fields LI (I = 1, . . . ,nV) coupled to gravity, the rules for reducing the bosonic fields
are the following [201, 199, 202, 203, 190]:

ds2
(5) = e2φ ds2

(4)+ e−4φ

(
dx5−A0

(4)

)2
, dx5 = dχ ,

AI
(5) = AI

(4)+RezI
(

dx5−A0
(4)

)
,

LI = e2φ ImzI , e−6φ =
1
6

CIJK ImzI ImzJ ImzK ,

(6.64)
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where ds2
(4) denotes the four-dimensional line element, the AΛ

(4) (Λ = 0, I) are the four-
dimensional Abelian gauge fields and zI = X I/X0 are the complex scalar fields in four
dimensions. The four-dimensional theory has nV Abelian vector multiplets, parameterizing a
special Kähler manifold M with metric gi j̄, in addition to the gravity multiplet (thus a total
of nV +1 gauge fields and nV complex scalars). The action of the bosonic part of the 4D
N = 2 FI gauged supergravity reads [167, 204]3

S(4) =
∫
R3,1

[
1
2

R(4) ⋆4 1+
1
4
ImNΛΣ FΛ ∧⋆4FΣ +

1
4
ReNΛΣ FΛ ∧FΣ

−gi j̄Dzi∧⋆4Dz̄ j̄−V (z, z̄)⋆4 1
]
,

(6.65)

where i, j̄ = 1, I and we already set 8πG(4)
N = 1. Here V is the scalar potential of the theory,

V (z, z̄) = 2g2
(

UΛΣ −3eK X̄Λ XΣ

)
ξΛ ξΣ , (6.66)

where ξΛ are the constant quaternionic moment maps (known as FI parameters) and

UΛΣ =−1
2
(ImN )−1|ΛΣ − eK X̄Λ XΣ . (6.67)

The matrix NΛΣ of the gauge kinetic term is given by (4.32). The special geometry prepo-
tential F

(
XΛ
)

reads

F (XΛ ) =−1
6

CIJKX IXJXK

X0 =−X1X2X3

X0 , (6.68)

where in the second equality we employed the five-dimensional supergravity data for the
STU model from section 6.3. The Kähler potential is given by

e−K (z,z̄) = i(X̄Λ FΛ −XΛ F̄Λ ) =
4i
3

CIJK ImzI ImzJ ImzK = 8e−6φ , (6.69)

where due to the symmetries of the theory we can set X0 = 1. In the last equality we used
(6.64). The Kähler metric can be written as

gIJ = ∂I∂JK (z, z̄) =− 1
4e−6φ

(
CIJ−

CICJ

4e−6φ

)
, (6.70)

3We follow the conventions of [190], which is different from [167] by factors of two in the gauge kinetic
terms and the scalar potential V (z, z̄). One can swap between the conventions by rescaling the four-dimensional
metric gµν → 1

2 gµν and then multiplying the action by 2. This will modify the definition of the symplectic-dual
gauge field strength GΛ by a factor of 2, see (C.3).
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where we introduced the following notation

CIJ =CIJK ImzK , CI =CIJK ImzJ ImzK . (6.71)

In N = 2 gauged supergravity in four dimensions the U(1)R symmetry, rotating the
gravitini, is gauged by a linear combination of the (now four) Abelian gauge fields. Three of
the FI parameters gΛ can be directly read off the five-dimensional theory: g1 = g2 = g3 = 1.4

The last coefficient, g0, measuring how the Kaluza-Klein gauge potential A0
(4) enters the

R-symmetry, can be left arbitrary for the moment. This can be achieved by a Scherk-Schwarz
reduction when allowing a particular reduction ansatz for the gravitino as explained in
[201, 205, 206, 190, 207]. The prepotential (6.68) and the FI parameters uniquely specify
the four-dimensional N = 2 gauged supergravity Lagrangian and BPS variations.

Now, we can proceed with the explicit reduction of the line element (6.61) on the Hopf
fibres of S3 viewed as a U(1) bundle over S2 ∼= CP1. We thus identify x5 with χ . The
four-dimensional solution takes the form5

ds2
(4) =−e2U dτ̃

2 + e−2U dr2 + e2(V−U)
(
dϑ

2 + sin2
ϑ dϕ

2) ,
A0
(4) = q̃0

(4)(r)dτ̃− cosϑ dϕ , AI
(4) = q̃I

(4)(r)dτ̃ ,
(6.72)

where

eU =

√
2

RAdS2R1/2
S2 υ1/4

r , eV =
RS2

2RAdS2

r ,

q̃0
(4)(r) =−

2α

R2
AdS2

RS2υ1/2 r , q̃I
(4)(r) =−

2
(
eI− f Iα

)
R2

AdS2
RS2υ1/2 r .

(6.73)

The complex scalars are given by

zI =− f I +
i
2

RS2υ
1/2LI =− f I +

i
2

υ1/2γ
1/2
3

µI
. (6.74)

Employing (C.8) we can compute the conserved electric charges. After some work they read

q0 =
g
8
(
γ2 +2g2

γ3
)
=

G(5)
N
π

Jφ ,

qI =−
1
4

[
µI +

g2

2

(
γ2−

2γ3

µI

)]
=−

G(5)
N
π

QI .

(6.75)

4In consistent models one can always apply an electric-magnetic duality transformation so that the corre-
sponding gauging becomes purely electric, i.e., gΛ = 0.

5We have rescaled the time coordinate, τ̃ ≡−RS2RAdS2

√
υ τ/2, in order to put the AdS2 part of the metric

in the canonical coordinates.
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This is in agreement with [208]. The magnetic charges of the four-dimensional solution can
be directly read off the spherical components of the gauge fields AΛ

(4) (6.72),

p0 = 1 , pI = 0 . (6.76)

The entropy of the four-dimensional black hole precisely equals the entropy of the rotating
black hole in five dimensions,

S(4)BH =
Area(4)

4G(4)
N

=
πe2(V−U)

G(4)
N

=
π2R3

S2υ1/2

2G(5)
N

= S(5)BH , (6.77)

upon using the standard relation
1

G(4)
N

=
4π

G(5)
N

. (6.78)

6.5.3 Attractor mechanism in four dimensions

The BPS equations for the near-horizon solution (C.1) with constant scalar fields zi imply
that [32]:6

Z +2ie2(V−U)L = 0 , D j

(
Z +2ie2(V−U)L

)
= 0 , (6.79)

where Z and L , are respectively the central charge and the superpotential of the black hole
defined in (1.73), and D j = ∂ j +

1
2∂ jK . They can be rewritten as

∂ j
Z

L
= 0 , i

Z

L
= 2e2(V−U) . (6.80)

This is the attractor mechanism discussed in section 1.8.
We can extremize the quantity iZ

L under the following gauge fixing constraint, which
precisely corresponds to (6.3),

g0X0 +
3

∑
I=1

X I = 1 , (6.81)

where we plugged in the explicit values for the FI parameters, i.e., g1 = g2 = g3 = 1. The
real sections XΛ are constrained in the range 0 < XΛ < 1. We find that

∂I

[
3

∑
I=1

X I
(

qI−
q0

g0

)
+

q0

g0
−

g2
0X1X2X3

(1−X1−X2−X3)
2

]
= 0 , for I = 1,2,3 , (6.82)

6From comparing (6.79) with equations (3.5) and (3.8) in [32], we see that they differ by a factor of 2. This
is due to our different convention for the action (see footnote 3).
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where ∂I ≡ ∂/∂X I . The sections at the horizon are obtained from

X0 =
1

g0 (1+ z1 + z2 + z3)
, X1,2,3 =

z1,2,3

1+ z1 + z2 + z3 . (6.83)

We are now in a position to determine the value of the FI parameter g0. Partial topological
A-twist along S2 ensures that N = 2 supersymmetry is preserved in four dimensions [17].
This leads to the following Dirac-like quantization condition [31–33]:

gΛ pΛ = 1 = g0 p0 , (6.84)

which fixes the value of g0 = 1. It is straightforward to check that, substituting the values for
the physical scalars at the horizon (6.74), the charges (6.75), and setting g0 = 1, Eq. (6.82) is
fulfilled. The scalars z̄i(rh) at the horizon are determined in terms of the black hole charges
qI by virtue of the attractor equations:

qI−q0 =

(
2+

1
z̄I

)
z̄1z̄2z̄3 , for I = 1,2,3 . (6.85)

The value of iZ
L at the critical point yields,

i
Z

L

∣∣∣∣
crit

(qΛ ) = 2e2(V−U) =
2G(4)

N
π

S(4)BH (qΛ ) . (6.86)

The holding of the four-dimensional BPS attractor mechanism for the dimensionally reduced
near-horizon geometry (6.72) proves that the dimensional reduction preserves the full amount
of supersymmetries originally present in five dimensions.

Due to the very suggestive form of the attractor equations (6.82) it is now not hard to
compare them with the five-dimensional extremization.

6.5.4 Comparison with five-dimensional extremization

Consider the quantity E in (6.45) rewritten in terms of the chemical potentials for J± and
Q1,2,3. Recall that we are focusing on the case with equal angular momenta, i.e., Jψ = Jφ (so
J− = 0). Extremizing (6.47) with respect to X0

− fixes the value of X0
− = 0. Thus, the black

hole entropy is obtained by extremizing the quantity

Isugra
∣∣
J−=0 =

2π2i

G(5)
N

X1X2X3(
X0
+

)2 +2πi
3

∑
I=1

QIX I−πiJ+X0
+ , (6.87)
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subject to the constraint (6.48). Identifying X0 in (6.82) with X0
+ in (6.87), and using

g0 = 1 together with (6.75), we find that the extremization of Isugra corresponds to the
four-dimensional attractor mechanism on the gravity side and they lead to the same entropy.

6.6 Discussion

We have shown that the entropy of a supersymmetric rotating black hole in AdS5 with
electric charges QI (I = 1,2,3) and angular momenta Jφ ≡ J1, Jψ ≡ J2 can be obtained as
the Legendre transform of the quantity −E in (6.2):

SBH(QI,Ji) =−E(∆I,ωi)+2πi
( 3

∑
I=1

QI∆I−
2

∑
i=1

Jiωi

)∣∣∣∣
∆̄I ,ω̄i

, (6.88)

where ∆̄I and ω̄i are the extrema of the functional on the right hand side.
The result is quite intriguing and deserves a better explanation and understanding. We

leave a more careful analysis for the future. For the moment, let us just make few preliminary
observations.

The quantity E can be interpreted as a combination of ’t Hooft anomaly polynomials that
arise studying the partition function ZN =4(∆I,ωi) on S3×S1 or the superconformal index
I(∆I,ωi) for N = 4 SYM [100, 103]. Some explicit expressions are given in appendix D. In
particular, E is formally equal to the supersymmetric Casimir energy of N = 4 SYM as a
function of the chemical potentials (see for example equation (4.50) in [100] and appendix D).
However, this analogy is only formal since we are imposing the constraint (6.3). Chemical
potentials are only defined modulo 1, so the constraint to be imposed on them also suffers
from angular ambiguities. Consistency of the index and partition function just requires

∑
3
I=1 ∆I +∑

2
i=1 ωi ∈ Z. To recover the known expressions for the supersymmetric Casimir

energy and for consistency with gauge anomaly cancellations [99, 100], one needs to impose

∑
3
I=1 ∆I +∑

2
i=1 ωi = 0, and this contrasts with (6.3).

It would be tempting to interpret the Legendre transform (6.88) as a result of the saddle-
point approximation of a Laplace integral of ZN =4 in the limit of large charges (large N).7

Ignoring angular ambiguities, E is the leading contribution at order N2 of the logarithm of the
partition function ZN =4 on S3×S1. Indeed, logZN =4 =−E + log I [97–103] and the index
is a quantity independent of N for generic values for the chemical potentials [93]. In these
terms, the result would be completely analogous to the connection between asymptotically

7We are ignoring here potential sign ambiguities in the definition of charges.
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AdS4×S7 (or AdS4×S6) back hole entropy and the topologically twisted index of ABJM
(or D2k) [10, 11, 209, 163] .

The appearance of the supersymmetric Casimir energy can be surprising since the entropy
counts the degeneracy of ground states of the system. However, the dimensional reduction to
four dimensions performed in section 6.5 offers a different perspective on this point. The
dimensionally reduced black hole is static but not asymptotically AdS. Let us assume that
we can still use holography. In the dimensional reduction, a magnetic flux p0 is turned on
for the graviphoton. This means that supersymmetry is preserved with a topological twist.
The same should be true for the boundary theory. It is then tempting to speculate that, upon
dimensional reduction, the partition function ZN =4 becomes the topologically twisted index
of the boundary three-dimensional theory [18]. The supersymmetric Casimir energy, which
is the leading contribution of logZN =4 at large N then becomes the leading contribution of
the three-dimensional topologically twisted index and the latter is known to correctly account
for the microstates of four-dimensional black holes.

The above discussion ignores completely the angular ambiguities and the role of the con-
straint (6.3), which should be further investigated. For sure, the result of the extremization of
E is complex and lies in the region where the chemical potentials satisfy (6.3). Unfortunately,
we are not aware of a general discussion of the possible regularizations of ZN =4 that takes
into account the angular ambiguities. Moreover, there is some recent claim [210, 211] of the
presence of an anomaly in the supersymmetry transformations leading to a modification of
the BPS condition in gravity that would be interesting to investigate further in this context.

Both the constraint (6.3) and the analogous of the more traditional one ∑
3
I=1 ∆I +

∑
2
i=1 ωi = 0 have been used in the literature to explore different features of ZN =4 or the

index. The traditional constraint has been used in the analysis of the high-temperature limit
of the index [177, 178] (see also [212, 179]) and in the study of factorization properties [213].
On the other hand, the importance of (6.3) has been stressed in [103] where the constraint has
been used to extract the supersymmetric Casimir energy directly from the superconformal
index.8 See appendix D for more details. In the low temperature limit, which can be obtained
by rescaling ∆I→ β∆I,ωi→ βωi and taking large β , the angular ambiguity in the constraint
disappears.

Finally, it is worth mentioning that angular ambiguities also played a prominent rôle in
the evaluation of the saddle-point for the topologically twisted index of ABJM and D2k, and
the comparison with the entropy of AdS4 black holes.

8Interestingly, the same constraint is also used in relating the universal part of supersymmetric Rényi entropy
to an equivariant integral of the anomaly polynomial [214].



Chapter 7

Discussion and future directions

The main goal of this dissertation was to give an explanation for the microscopic origin of
the Bekenstein-Hawking entropy for a class of static BPS black holes (strings) in AdS4,5.
The specific theories we focused on are consistent truncations of string or M-theory. To this
aim, we studied the topologically twisted index for a variety of 3D N = 2 and 4D N = 1
gauge theories in the large N limit. The index is a function of background magnetic fluxes
and chemical potentials for the global symmetries of the theory, and can be reduced to a
matrix model using the technique of supersymmetric localization [18]. Using the method
introduced in [10], we solved a number of such matrix models. These computations reveal the
characteristic N3/2/N5/3/N2 scaling of the number of degrees of freedom on N coincident
M2/D2k/D3-branes.

An obvious follow-up is to find new examples of AdS4 M-theory and massive type IIA
black holes directly in eleven or ten dimensions (see, for example, [215]) or in some other
consistent truncations of eleven-dimensional or ten-dimensional supergravity where to test
our results. In particular, in chapter 2 we evaluated the index for field theories dual to a variety
of N ≥ 2 M-theory backgrounds, including such well-known solutions as AdS4×N0,1,0/Zk,
AdS4×V 5,2/Zk, and AdS4×Q1,1,1/Zk. One feature of these quivers compared to ABJM
is the presence of many baryonic symmetries that couple to the vector multiplets arising
from nontrivial two-cycles (and thus by Poincaré duality five-cycles) in the Sasaki-Einstein
7-manifold. As is evident from our analyses, such background fluxes for baryonic symmetries
do not show up in the large N limit of the index, while they affect the details of the black
hole entropy. Solving this apparent puzzle provides rather intricate tests of the proposed
AdS4/CFT3 dualities.

We studied the 3D matrix models in the limit where N ≫ ka and the Chern-Simons
levels ka are kept fixed. It would be most interesting to develop a new method to study
the topologically twisted index beyond the leading large N contribution. Recent attempts
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in doing so can be found in [14], where the logN coefficient of the index was extracted
using numerical techniques. There are two main subtleties in going beyond the numerical
methods employed therein: first, the tail contributions seem to prevent one from a systematic
large N expansion of the index; secondly, the imaginary part of the index needs a better
understanding. As we saw in the D2k theory, the latter was very important in order to make
the black hole entropy a real quantity.

We briefly discussed, in section 1.4.2, the refinement of the index by the angular momen-
tum on S2. In the path integral formulation this corresponds to turning on an Ω -background
on S2. The holographic dual description of this setup is given by a dyonic, rotating supersym-
metric black hole in AdS4, preserving (at least) two real supercharges. Another interesting
generalization of our results is to solve such matrix models (1.62).



Appendix A

Special functions

In this appendix we review the special functions and their properties which we used in this
dissertation.

A.1 Polylogarithms

The polylogarithm function Lin(z) is defined by a power series

Lin(z) =
∞

∑
k=1

zk

kn , (A.1)

in the complex plane over the open unit disk, and by analytic continuation outside the disk.
For z = 1 the polylogarithm reduces to the Riemann zeta function

Lin(1) = ζ (n) , for Ren > 1 . (A.2)

The polylogarithm for n = 0 and n = 1 is

Li0(z) =
z

1− z
, Li1(z) =− log(1− z) . (A.3)

Notice that Li0(z) and Li1(z) diverge at z = 1. For n≥ 1, the functions have a branch point
at z = 1 and we shall take the principal determination with a cut [1,+∞) along the real axis.
The polylogarithms fulfill the following relations

∂u Lin(eiu) = i Lin−1(eiu) , Lin(eiu) = i
∫ u

+i∞
Lin−1(eiu′)du′ . (A.4)
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The functions Lin(eiu) are periodic under u→ u+2π and have branch cut discontinuities
along the vertical line [0,−i∞) and its images. For 0 < Reu < 2π , polylogarithms satisfy
the following inversion formulæ1

Li0(eiu)+Li0(e−iu) =−1

Li1(eiu)−Li1(e−iu) =−iu+ iπ

Li2(eiu)+Li2(e−iu) =
u2

2
−πu+

π2

3

Li3(eiu)−Li3(e−iu) =
i
6

u3− iπ
2

u2 +
iπ2

3
u .

(A.5)

One can find the formulæ in the other regions by periodicity.

A.2 Eta and theta functions

The Dedekind eta function is defined by

η(q) = η(τ) = q
1
24

∞

∏
n=1

(1−qn) , Imτ > 0 , (A.6)

where q = e2πiτ . It has the following modular properties

η(τ +1) = e
iπ
12 η(τ) , η

(
−1

τ

)
=
√
−iτ η(τ) . (A.7)

The Jacobi theta function reads

θ1(x;q) = θ1(u;τ) =−iq
1
8 x

1
2

∞

∏
k=1

(
1−qk

)(
1− xqk

)(
1− x−1qk−1

)
=−i ∑

n∈Z
(−1)neiu(n+ 1

2)eπiτ(n+ 1
2)

2

,

(A.8)

where x = eiu and q is as before. The function θ1(u;τ) has simple zeros in u at u = 2πZ+

2πτZ and no poles. Its modular properties are,

θ1 (u;τ +1) = e
iπ
4 θ1 (u;τ) , θ1

(
u
τ

;−1
τ

)
=−i

√
−iτ e

iu2
4πτ θ1 (u;τ) . (A.9)

1The inversion formulæ in the domain −2π < Reu < 0 are obtaind by sending u→−u.
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We also note the following useful formula,

θ1 (qmx;q) = (−1)−m x−mq−
m2
2 θ1(x;q) , m ∈ Z . (A.10)

The asymptotic behavior of the η(q) and θ1(x;q) as q→ 1 can be derived by using
their modular properties. To this purpose, we first need to perform an S-transformation,
i.e. τ →−1/τ , and then expand the resulting functions in series of q, which is now a small
parameter in the τ → i0 limit.

Let us start with the Dedekind η-function. The action of modular transformation is
written in (A.7). We will identify the “inverse temperature” β with the modular parameter τ

of the torus: τ = iβ/2π . Then, expanding the S-transformed η-function we get

log [η(τ)] =−1
2

log(−iτ)+ log
[

η

(
−1

τ

)]
=−1

2
log
(

β

2π

)
− π2

6β
+O

(
e−1/β

)
. (A.11)

Similarly, we can consider the asymptotic expansion of the Jacobi θ -function:

log [θ1(u;τ)] =
iπ
2
− 1

2
log(−iτ)− iu2

4πτ
+ log

[
θ1

(
u
τ

;−1
τ

)]
=−π2

2β
− u2

2β
− 1

2
log
(

β

2π

)
+ log

[
2sinh

(
πu
β

)]
+O

(
e−1/β

)
,

(A.12)

Writing 2sinh
(

πu
β

)
= eπu/β

(
1− e−2πu/β

)
, we have the following expansion

log
[

2sinh
(

πu
β

)]
=

π

β
usign [Re(u)]−

∞

∑
k=1

1
k

e−
2kπ

β
usign[Re(u)]

. (A.13)

Putting all pieces together, we find

log [θ1(u;τ)] =−π2

2β
− u2

2β
− 1

2
log
(

β

2π

)
+

π

β
usign [Re(u)]+O

(
e−1/β

)
. (A.14)





Appendix B

BPS black holes in N = 2N = 2N = 2 dyonic STU
gauged supergravity

In this appendix we write down a black hole ansatz and derive the corresponding BPS equa-
tions. The black hole can be embedded in massive type IIA supergravity and is asymptotic to
the N = 2 supersymmetric AdS4×S6 background of [84].

B.1 Black hole ansatz

We are interested in supersymmetric asymptotically AdS4 black holes, which in [71] were
considered for general models with hypermultiplets and dyonic gaugings, extending earlier
works [31–36]. Reviewing these results, we write down the bosonic field ansatz and the final
form of the supersymmetry conditions to be solved, which also imply all equations of motion.
The metric is given by

ds2 =−e2U(r)dt2 + e−2U(r)dr2 + e2(ψ(r)−U(r))dΩ
2
κ , (B.1)

where dΩ 2
κ = dθ 2+ f 2

κ (θ)dϕ2 defines the metric on a surface Σg of constant scalar curvature
2κ , with κ ∈ {+1,−1}, and

fκ(θ) =
1√
κ

sin(
√

κθ) =

 sinθ κ =+1 ,

sinhθ κ =−1 .
(B.2)
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The scalar fields depend only on the radial coordinate r, while the electric and magnetic
gauge fields (AΛ , AΛ ) and the tensor fields (BΛ , BΛ ) are given by

AΛ = AΛ
t dt−κ pΛ f ′κ(θ)dφ , AΛ = AΛ tdt−κeΛ f ′κ(θ)dφ , (B.3)

BΛ = 2κ p′Λ f ′κ(θ)dr∧dφ , BΛ =−2κe′Λ f ′κ(θ)dr∧dφ . (B.4)

In the theory we consider the only relevant tensor field is B0, as the rest can be consistently
decoupled. The magnetic and electric charges (pΛ ,eΛ ) are defined as

pΛ ≡ 1
vol(Σg)

∫
Σg

FΛ , eΛ ≡
1

vol(Σg)

∫
Σg

GΛ , vol(Σg) =
∫

fκ(θ)dθ ∧dφ . (B.5)

Note that the charges can depend on the radial coordinate in general, since the Maxwell
equations are sourced by the hypermultiplet scalars due to the gauging.

B.2 BPS and Maxwell equations

The above ansatz is subject to a set of conditions required for supersymmetry, which after
a number of manipulations can be recast into a set of algebraic and first order differential
equations, given by (3.74) in [71] in a manifestly symplectic covariant way,

E = 0 ,

ψ
′ =−2κe−U Im(e−iαL ) ,

α
′+Ar = 2κe−U Re(e−iαL ) ,

q′u = κe−U huv Im(e−iα
∂vL ) ,

Q′ =−4e2ψ−3UH Ω Re(e−iαV ) ,

(B.6)

where

E ≡ 2e2ψ
(
e−U Im(e−iαV )

)′−κe2(ψ−U)
ΩMQxPx +4e2ψ−U(α ′+Ar)Re(e−iαV )+Q .

(B.7)

As earlier introduced, Q = (pΛ ,eΛ ), Px = (Px,Λ ,Px
Λ
) and K u = (ku,Λ ,ku

Λ
). Aµ is the U(1)

Kähler connection, and α an a priori arbitrary phase of the Killing spinor, which depends only
on the radial coordinate (derivatives with respect to which are given by primes). Furthermore,

Qx ≡ g⟨Px,Q⟩= gPx
Λ pΛ −gPx,Λ eΛ , W x ≡ g⟨Px,V ⟩= gPx

Λ LΛ −gPx,Λ MΛ ,
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Z ≡ ⟨Q,V ⟩= eΛ LΛ − pΛ MΛ , L ≡ ∑xQ
xW x , (B.8)

and

H ≡ g2(K u)T huvK
v , M =

 I+RI−1R −RI−1

−I−1R I−1

 , Ω =

 0 −1

1 0

 . (B.9)

The above equations are further supplemented by the constraints

H ΩQ = 0 , K uhuvq′v = 0 , QxQx = 1 . (B.10)

As already noted, in addition to the BPS equations, the Maxwell equations need to be
imposed. The rest of the equations of motion then follow. The Maxwell equations sourced
by the hypermultiplet scalars evaluated on the specified bosonic ansatz lead to [71] a pair of
coupled first order differential equations

A ′
t =−e2(U−ψ)

ΩMQ , Q′ =−2e2(ψ−2U)H ΩAt . (B.11)

They are immediately satisfied given the fifth row of (B.6) together with the extra constraint

2eUH Ω Re(e−iαV ) = H ΩAt . (B.12)

B.2.1 Solution to the constraints

Without making any further assumptions, we can already solve for some of the scalar fields
using the constraints (B.10) that need to hold everywhere in spacetime. The first equation in
(B.10) gives

gp0−me0 = 0 , (ζ 2 + ζ̃
2)

3

∑
I=1

pI = 0 , (B.13)

while the last one further fixes

g
3

∑
I=1

pI =±1 . (B.14)

Hence,
ζ = ζ̃ = 0 . (B.15)

The second equation in (B.10) then yields

σ = const. . (B.16)
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Following the above results,

Qx = g∑I pI
δ

x,3 =±1δ
x,3 ≡ λδ

x,3 ,

W x = geK /2
[
∑IX

I− 1
2e2φ (X0− cF0)

]
δ

x,3 ,

Z = eK /2
∑I(eIX I− pIFI)+ eK /2e0(X0− cF0) ,

L = λgeK /2
[
∑IX

I− 1
2e2φ (X0− cF0)

]
,

(B.17)

and the only components of the matrix H that remain non-vanishing are

H00 =
1
4

e4φ , H 00 =
1
4

c2e4φ , H0
0 = H 0

0 =
1
4

ce4φ . (B.18)

We have already solved for three of the four hypermultiplet scalars, so it is worth writing
explicitly the differential equation that determines the remaining scalar φ , coming from the
fourth equation of (B.6):

φ
′ =−gκλeK /2−U Im

(
e−iα(X0− cF0)

)
. (B.19)

The scalar φ is exactly the source that does not allow the charges p0 = ce0 to be conserved
as it appears in the matrix H on the right-hand side of the Maxwell equations,

p′0 = ce′0 =−ce2ψ−3U e4φ Re
(
e−iα(X0− cF0)

)
. (B.20)

Therefore, the charges p0, e0 cannot actually “be felt” by the field theory at the asymptotic
AdS4 boundary.

The equations have been simplified, and are given by the scalar equation (B.19), the
Maxwell equation (B.20), and the first three equations in (B.6). Note that in the absence
of the hypermultiplet equations, (B.19) and (B.20) are solved trivially, and the remaining
equations in (B.6) can be solved analytically using standard special geometry identities. Here,
we are unable to present an analytic solution for the full black hole geometry, exactly due to
the complication of solving (B.19) and (B.20). We are however able to present an analytic
solution for the two end-points of the black hole geometry, due to the extra condition of the
scalars and charges being constant.

Before moving to the “constant scalars and charges” case, let us give the relevant compo-
nents of the matrix M which allow us to write down the first equation in (B.6):

M 00 =−8eK |s|2|t|2|u|2, M 0
0 =−8eK Re(s) Re(t) Re(u) ,
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M 01 =−8eK Re(t) Re(u)|s|2 ,
M 02 =−8eK Re(s) Re(u)|t|2 ,
M 03 =−8eK Re(s) Re(t)|u|2 ,
M 10 = M 01, M 1

0 =−8eK Re(s) ,

M 11 =−8eK |s|2 , M 12 =−8eK Re(s)Re(t) , M 13 =−8eK Re(s)Re(u) ,

M 20 = M 02, M 2
0 =−8eK Re(t) ,

M 21 = M 12 , M 22 =−8eK |t|2 , M 23 =−8eK Re(t)Re(u) ,

M 30 = M 03, M 3
0 =−8eK Re(u) ,

M 31 = M 13 , M 32 = M 23 , M 33 =−8eK |u|2 ,
M00 =−8eK , M0

0 = M1
1 = M2

2 = M3
3 =−8eK Re(s) Re(t) Re(u) ,

M0
1 = M 1

0 , M0
2 = M 2

0 , M0
3 = M 2

0 ,

M1
0 =−8eK Re(s)|t|2|u|2 , M2

0 =−8eK Re(t)|s|2|u|2 , M3
0 =−8eK Re(u)|s|2|t|2 ,

M1
2 =−8eK |t|2Re(u) , M1

3 =−8eK |u|2Re(t) ,

M2
1 =−8eK |s|2Re(u) , M2

3 =−8eK |u|2Re(s) ,

M3
1 =−8eK |s|2Re(t) , M3

2 =−8eK |t|2Re(s) . (B.21)

B.3 Constant scalars and charges

The condition that all scalars and charges are constant,

s′ = t ′ = u′ = 0 , q′u = 0 , Q′ = 0 , (B.22)

(based on the symmetries of AdS4 and AdS2×Σg), upon imposed on (B.19)-(B.20) yields

X0− cF0 = 0 . (B.23)

This is a strong constraint on the special Kähler manifold, leading to

stu =−c , (B.24)

and therefore (X1,X2,X3,F1,F2,F3) = (c/(tu),−t,−u, tu,−c/t,−c/u), which are consistent
with the prepotential

F ⋆ =−3
2
(−c)1/3(X1X2X3)2/3 . (B.25)
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B.3.1 Asymptotic AdS444

The constant scalars and charges assumption holds for the AdS4 vacuum, which satisfies the
BPS equations asymptotically with

U = log(r/LAdS4), ψ = log(r2/LAdS4), (B.26)

and
s = t = u = eiπ/3c1/3, e2φ = 2c−2/3 . (B.27)

If substitute the above field configuration in (B.6), as r→ ∞, we find

α =−π

6
, LAdS4 =

1
g

c1/6

31/4 , (B.28)

which can be easily seen to solve the second and third equations in (B.6). The remaining one,
E = 0, is also asymptotically solved as can be verified by

2
LAdS4

Im(e−iαV ) =−κΩMQxPx

= 3gceK (c1/3,−2c−1/3,−2c−1/3,−2c−1/3,c−2/3,1,1,1) .
(B.29)

Note that there is no way of fixing the asymptotic values of the massive vector charges
p0 = ce0, but in the process we have fixed uniquely λ to be aligned with κ so that

κλ =−1 or λ =−κ , (B.30)

for a choice of positive electric coupling constant g > 0.

B.3.2 Near-horizon geometry

The near-horizon equations are more involved than the asymptotic ones but we are again in
the constant scalar case which guarantees that stu =−c solving the fourth and fifth equation
in (B.6). The general near-horizon solution was analyzed in [154] but here we make an
inspired ansatz for the scalars in a way that enforces stu =−c:

s =
eiπ/3c1/3H1

(H1H2H3)1/3 , t =
eiπ/3c1/3H2

(H1H2H3)1/3 , u =
eiπ/3c1/3H3

(H1H2H3)1/3 , (B.31)

under the condition that H1 +H2 +H3 = 1. With this ansatz we have imposed equal phases
of the three scalars meaning we are killing some of the degrees of freedom, and practically
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restricting the solution to what we call “purely magnetic” solution (see the discussion in the
main body of chapter 4). The metric function ansatz is naturally given by

U = log(r/LAdS2), ψ = log(LΣg · r/LAdS2), (B.32)

where LAdS2 is the radius of AdS2 and LΣg that of the surface Σg. With this ansatz we solve
the second and third equation in (B.6) by setting

α =−π

6
, LAdS2 =

e−K /2(H1H2H3)1/3

2gc1/3 . (B.33)

The remaining symplectic vector of equations E = 0 can be solved in several steps. The
condition that p0 = ce0 imposes the constraint that E 0 = cE0 which leads to

e2φ =
2c−2/3

3(H1H2H3)1/3 , p0 = ce0 =
gc1/3

3
√

3(H1H2H3)1/3
L2

Σg
, (B.34)

while the electric charges are fixed by the components E1,2,3 to be

e1 = e2 = e3 = e =− g√
3

L2
Σg

. (B.35)

Note that the electric charges are equal and eventually fixed in terms of the magnetic charges,
so they are not independent degrees of freedom. However, from the explicit expression it is
clear that the value of e is strictly not allowed to vanish, in accordance with the results in
[153, 154]. Finally, equations E 1,2,3 = 0 become

2gL2
Σg

3
√

3c1/3(H1H2H3)2/3
=

p1

H1(3H1−2)
=

p2

H2(3H2−2)
=

p3

H3(3H3−2)
, (B.36)

which are solved by

L2
Σg

=−
√

3
2g

c1/3(H1H2H3)2/3
3

∑
I=1

pI

HI , (B.37)

together with

3HI = 1±∑
J,K

∣∣εIJK
(

pJ− pK)∣∣
2
√(√

Θ ± pI
)2− pJ pK

, (B.38)

where εIJK is the Levi–Civita symbol and Θ is defined in (4.55).





Appendix C

Maxwell charges in N = 2N = 2N = 2, D = 4D = 4D = 4
gauged supergravity

In this appendix we compute the Maxwell charges of a family of BPS black holes in D = 4,
N = 2 gauged supergravity with prepotential (6.68). The ansatz for the metric and gauge
fields is

ds2 =−e2U dτ
2 + e−2U dr2 + e2(V−U)

(
dϑ

2 + sin2
ϑ dϕ

2) ,
AΛ = q̃Λ (r)dτ− pΛ (r)cosϑ dϕ .

(C.1)

The black hole magnetic and electric charges are then given by [32]

pΛ ≡ 1
4π

∫
S2

FΛ ,

qΛ ≡
1

4π

∫
S2

GΛ = e2(V−U) ImNΛΣ q̃′Σ +ReNΛΣ pΣ ,

(C.2)

where we defined the symplectic-dual gauge field strength,

GΛ ≡ 2
δL

δFΛ
= ImNΛΣ ⋆4 FΣ +ReNΛΣ FΣ , (C.3)

such that
(
FΛ ,GΛ

)
transforms as a (2,nV +2) symplectic vector under electric-magnetic

duality transformations. Using (4.32) and (6.68) we find that

ImNIJ = GIJ , ReNIJ =−CIJK RezK ,

ImNI0 =−GIJ RezJ , ReNI0 =+
1
2

CIJK RezJ RezK ,

ImN00 =−
(

e−6φ −GIJ RezI RezJ
)
, ReN00 =−

1
3

CIJK RezI RezJ RezK ,

(C.4)
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where we defined

GIJ ≡CIJ−
CICJ

4e−6φ
. (C.5)

Therefore, the electric charges read

q0 =−e2(V−U)q̃′0
[

e−6φ +GIJ RezJ
(

q̃′I

q̃′0
−RezI

)]
+

p0

2
CIJK RezJ RezK

(
pI

p0 −
2
3
RezI

)
,

qI = e2(V−U)q̃′0GIJ

(
q̃′J

q̃′0
−RezJ

)
− p0CIJK RezK

(
pJ

p0 −
1
2
RezJ

)
.

(C.6)
In the gauged STU model (nV = 3) the only nonvanishing intersection numbers are

C123 = 1 (and cyclic permutations). Hence,

GIJ =

−
Imz1 Imz2 Imz3

(ImzI)2 if I = J

0 otherwise
, (C.7)

and

q0 =−e2(V−U)q̃′0 Imz123

[
1−

3

∑
I=1

RezI

(ImzI)2

(
q̃′I

q̃′0
−RezI

)]
−2p0Rez123 + ∑

I<J
(̸=K)

RezI RezJ pK ,

qI =−e2(V−U)q̃′0
Imz123

(ImzI)2

(
q̃′I

q̃′0
−RezI

)
+

Rez123

RezI

(
p0− ∑

J(̸=I)

pJ

RezJ

)
,

(C.8)
where we employed the following notation

Imz123 ≡ Imz1 Imz2 Imz3 , Rez123 ≡ Rez1Rez2Rez3 . (C.9)



Appendix D

Supersymmetric Casimir energy

The partition function of an N = 1 supersymmetric gauge theory with a non-anomalous
U(1)R symmetry on a Hopf surface Hp,q ≃ S3×S1, with a complex structure characterized
by two parameters p, q, can be written as

Z
[
Hp,q

]
= e−EsusyI(p,q) . (D.1)

Here, I(p,q) is the superconformal index [93, 96]

I(p,q) = Tr(−1)F ph1+r/2qh2+r/2 , (D.2)

where h1 and h2 are the generators of rotation in orthogonal planes and r is the superconformal
R-symmetry. Esusy is the supersymmetric Casimir energy [97–99],

Esusy(b1,b2) =
4π

27
(|b1|+ |b2|)3

|b1||b2|
(3c−2a)− 4π

3
(|b1|+ |b2|)(c−a) , (D.3)

where p = e−2π|b1|, q = e−2π|b2|, and a, c are the central charges of the four-dimensional
N = 1 theory. We can extrapolate this result to include flavor symmetries by considering a
and c as trial central charges, depending on a set of chemical potentials ∆̂I ,

a(∆̂I) =
9
32

TrR(∆̂I)
3− 3

32
TrR(∆̂I) , c(∆̂I) =

9
32

TrR(∆̂I)
3− 5

32
TrR(∆̂I) , (D.4)

where R is a choice of U(1)R symmetry and the trace is over all fermions in the theory.
The supersymmetric Casimir energy can be also interpreted as the vacuum expectation
value ⟨Hsusy⟩ of the Hamiltonian which generates time translations [99]. It can also be
obtained by integrating the anomaly polynomials in six dimensions [100]. In particular, the
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supersymmetric Casimir energy for N = 4 SYM with SU(N) gauge group, where a = c,
reads1

Esusy =
π

8
(
N2−1

) (|b1|+ |b2|)3

|b1||b2|
∆̂1∆̂2∆̂3 , (D.5)

where ∆̂1,2,3 are the chemical potentials for the Cartan generators of the R-symmetry, fulfilling
the constraint

∆̂1 + ∆̂2 + ∆̂3 = 2 . (D.6)

We can rewrite Eq. (D.5) in the notation used in the main text as

Esusy =−iπ(N2−1)
∆1∆2∆3

ω1ω2
, (D.7)

where we defined ∆I = i(|b1|+ |b2|) ∆̂I/2 and ωi =−i|bi|. They satisfy the constraint

∆1 +∆2 +∆3 +ω1 +ω2 = 0 . (D.8)

When extended to the complex plane ∆I and ωi are defined modulo 1.
The constraints (D.8) and (6.3) are closely related to the absence of pure and mixed gauge

anomalies. Let us briefly see why. Consider again a generic N = 1 supersymmetric gauge
theory. The constraint (D.8) is modified to

∑
I∈Wa

∆I +
2

∑
i=1

ωi = 0 , (D.9)

where ∆I is the chemical potential for the Ith field and the sum is restricted to the fields
entering the superpotential term Wa. There is one constraint for each monomial Wa in the
superpotential of the theory. The path integral on S3×S1 localizes to a matrix model where
one-loop determinants must be regularized. Esusy arises from the following regularization
factors [99, 100]

Ψ(u) = iπ
(∑2

i=1 ωi)
3

24ω1ω2

[
(û−1)3− ∑

2
i=1 ω2

i

(∑2
i=1 ωi)2

(û−1)
]
, (D.10)

where û = −2u/∑
2
i=1 ωi and u is a chemical potential for gauge or flavor symmetries.

More precisely, denoting with z the gauge variables, Esusy gets an additive contribution
Ψ(z+∆I) from each chiral multiplet and −Ψ(z) for each vector multiplet. One can pull

1The R-symmetry ’t Hooft anomalies for N = 4 SYM are given by TrR(∆̂I)= (N2−1)[∑3
I=1(∆̂I−1)+1] =

0 and TrR(∆̂I)
3 = (N2−1)[∑3

I=1(∆̂I−1)3 +1] = 3(N2−1)∆̂1∆̂2∆̂3. The ∆̂I are the R-symmetries of the three
adjoint chiral multiplets of N = 4 SYM and satisfy (D.6).
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out regularization factors from the matrix model only if they are independent of the gauge
variables. The constraint (D.9) implies that ∑I∈Wa ∆̂I = 2, where again ∆̂I =−2∆I/∑

2
i=1 ωi.

Hence ∆̂I parameterizes a trial R-symmetry of the theory. One can see that, if all (pure and
mixed) gauge anomalies cancel, Esusy is indeed independent of z if the chemical potential
satisfy (D.9) [100]. The final result for Esusy is then easily computed to be,

Esusy = iπ
(∑2

i=1 ωi)
3

24ω1ω2

[
TrR(∆̂I)

3− ∑
2
i=1 ω2

i

(∑2
i=1 ωi)2

TrR(∆̂I)

]
. (D.11)

Using (D.4) and ωi =−i|bi| we recover (D.3).
A similar quantity constructed from

Ψ̃(u) = iπ
(∑3

i=1 ωi)
3

24ω1ω2ω3

[
(û−1)3− ∑

3
i=1 ω2

i

(∑3
i=1 ωi)2

(û−1)
]
, (D.12)

appears in the modular transformation of the integrand of the matrix model [103].2 Here
the angular momentum fugacities are written as p = e−2πiω1/ω3,q = e−2πiω2/ω3 , the gauge
fugacity as e2πu/ω3 , and û =−2u/∑

3
i=1 ωi. In a theory with no gauge anomalies, the sum of

Ψ̃(z+∆I) from each chiral multiplet and −Ψ̃(z) for each vector multiplet is independent of
the gauge variables z and can be pulled out of the integral if the constraint

∑
I∈Wa

∆I +
3

∑
i=1

ωi = 0 , (D.13)

is fulfilled [216, 103]. The sum then becomes

ϕ = iπ
(∑3

i=1 ωi)
3

24ω1ω2ω3

[
TrR(∆̂I)

3− ∑
3
i=1 ω2

i

(∑3
i=1 ωi)2

TrR(∆̂I)

]
. (D.14)

This observation has been used in [103] to write the index as

I(p,q,∆I) = eϕ Imod(ωi,∆I) , (D.15)

where Imod is a modified matrix model depending on modified elliptic gamma functions.
As noticed in [103], the supersymmetric Casimir energy can be extracted from ϕ in the
low-temperature limit. Indeed, in the limit ω3 = 1/β → 0, ϕ becomes exactly βEsusy. It is
interesting to notice that, for N = 4 SYM, by setting one of the ωi equal to −1, ϕ reduces
to our quantity (6.2) and (D.13) to the constraint (6.3). This is an observation to explore

2This can be expressed in terms of Bernoulli polynomials as Ψ̃(u) = πi
3 B3,3(u;ωi) [103].
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further. In particular, it would be interesting to understand the physical meaning of Imod and
the decomposition (D.15).
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