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Abstract Using continuum extrapolated lattice data we
trace a family of running couplings in three-flavour QCD over
a large range of scales from about 4 to 128 GeV. The scale is
set by the finite space time volume so that recursive finite size
techniques can be applied, and Schrödinger functional (SF)
boundary conditions enable direct simulations in the chiral
limit. Compared to earlier studies we have improved on both
statistical and systematic errors. Using the SF coupling to
implicitly define a reference scale 1/L0 ≈ 4 GeV through
ḡ2(L0) = 2.012, we quote L0�

Nf=3
MS

= 0.0791(21). This
error is dominated by statistics; in particular, the remnant per-
turbative uncertainty is negligible and very well controlled,
by connecting to infinite renormalization scale from differ-
ent scales 2n/L0 for n = 0, 1, . . . , 5. An intermediate step in
this connection may involve any member of a one-parameter
family of SF couplings. This provides an excellent oppor-
tunity for tests of perturbation theory some of which have
been published in a letter (ALPHA collaboration, M. Dalla
Brida et al. in Phys Rev Lett 117(18):182001, 2016). The
results indicate that for our target precision of 3 per cent in
L0�

Nf=3
MS

, a reliable estimate of the truncation error requires
non-perturbative data for a sufficiently large range of values
of αs = ḡ2/(4π). In the present work we reach this precision
by studying scales that vary by a factor 25 = 32, reaching
down to αs ≈ 0.1. We here provide the details of our analysis
and an extended discussion.
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1 Introduction

The Standard Model seems to describe all high energy
physics experiments carried out to date, in some cases with
extraordinary accuracy (cf. [2] for the most recent PDG
review). For processes involving the strong interactions the
precision is usually less impressive, due to our limited abil-
ity to extract quantitative information from QCD. One of
the main tools is perturbation theory (PT) in the strong cou-
pling, αs , and there has been significant progress in high
order perturbative QCD calculations, with renormalization
group functions now available up to 5-loop order in the
MS-scheme [3–7]. However, before a perturbative result can
be confronted with experimental observables, the transition
from quarks and gluons to hadronic degrees of freedom needs
to be modelled in some way. Such models come in various
shapes and forms, from “hadronisation Monte Carlo” in jet
physics to “quark hadron duality” in QCD sum rules. A com-
mon problem then consists in assigning systematic errors to
the model assumptions. A further issue is the reliability of
PT itself, given that the series is only asymptotic. To some
extent, the reliability can be assessed within PT itself, by
comparing different orders of the expansion, or by increas-
ing the energy scale, μ, such that αs(μ) becomes small, due
to asymptotic freedom. Unfortunately, the rapidly increasing
complexity of higher order calculations means that typically
only a few terms in the perturbative series are available. In
addition, the energy scale is often defined by the kinematics
of the physical process under consideration. The variation of
the scale is then rather limited and to assign an error to the
perturbative result is difficult.1

In this work we carry out a systematic investigation into
the reliability of PT. We do this by directly comparing non-
perturbative QCD observables to their perturbative expan-
sions, over a wide range of scales. Lattice QCD, together
with a careful treatment of the continuum limit, is currently
the only way to obtain such non-perturbative results, subject
only to standard assumptions such as locality and univer-
sality. The main reason why this is rarely done is the usual
limitation of any numerical approach: on a finite system it
is very expensive to simultaneously resolve very different
length scales. Most lattice QCD projects aim at hadronic low
energy physics, and the space-time volume, L4, must then
measure several femto metres across in order not to distort
the hadronic states of interest. At least for massive single par-
ticle states, the finite volume effects are exponentially sup-
pressed [9] and one may then pretend to be in infinite space
time volume, up to a systematic error which is often below
the percent level. On the other hand, with current lattice res-
olutions of, say, L/a < 100 this means that the cutoff scale
set by the inverse lattice spacing, 1/a, reaches a few GeV at

1 For a recent discussion in the context of αs -determinations cf. Ref. [8].

most, and the deep perturbative high energy regime seems
out of reach. It is important to realize that this limitation is
only due to the requirement that the lattice covers a physically
large space-time volume. If this constraint is lifted, there is
nothing that prevents simulations at very high energies, albeit
in physically tiny space-time volumes. The observables2 we
consider in this situation are all normalized as effective cou-
plings, which run with L , the scale set by the finite space-time
volume. In order to achieve this we set all quark masses to
zero and scale all other dimensionful parameters proportion-
ally to L , thereby obtaining a mass-independent scheme. In
the high-energy regime, PT can be used to relate to more
commonly used schemes such as the MS scheme of dimen-
sional regularization. Moreover, by combining the idea of a
finite volume scheme for the coupling with recursive step-
scaling techniques [10,11], one may both determine the scale
L in units of some hadronic scale, and reach the perturbative
high energy regime without ever requiring enormous lattice
resolutions, L/a. Obviously, the finite space-time volume
constitutes an integral part in the definition of these observ-
ables. PT must then be adapted to this situation. While the
Euclidean space-time signature used in lattice QCD is advan-
tageous in PT, all the sophisticated tools of standard PT in
(infinitely extended) momentum space are of limited use.

As part of the project to determine αs(mZ ) from low
energy hadronic input in 3-flavour QCD [1,12,13], our col-
laboration has applied these techniques to a 1-parameter fam-
ily of finite volume couplings in Schrödinger functional (SF)
schemes, for which the 3-loop β-function is known [14–17].
We have measured these couplings in numerical simulations
and for a range of lattice sizes with unprecedented precision.
Extrapolation to the continuum limit of this data allows us to
carry out stringent tests of renormalized perturbation theory
for energy scales ranging from about 4 to 128 GeV. A first
account of our results has appeared in a letter [1] and we here
provide the details of this work and a more extended analysis.

The technique, used earlier for between Nf = 0 and Nf =
4 quark flavours [18–21], allows one to non-perturbatively
verify the close-to perturbative running of the coupling and
observe the small effects of dynamical quarks, as illustrated
in Fig. 1. A preview of our final result is included in the
figure, demonstrating our advanced precision.

The paper is organized as follows: Sect. 2 uses a con-
tinuum language to explain how our QCD observables are
defined and collects the relevant perturbative results from the
literature. We also comment on “non-perturbative effects”
which are associated with secondary minima of the action.
Section 3 then presents the lattice set-up, the numerical sim-
ulations and statistics produced, and discusses the perturba-

2 Here by observable we mean some finite quantity defined by the
Euclidean path integral, that can be estimated in a Monte Carlo simu-
lation of lattice QCD.
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Fig. 1 The step scaling function σ(u), a discrete version of the β-
function, defined in Eq. (2.29). The combination shown here yields
directly the lowest order coefficient, b0 of the β-function as (σ (u) −
u)/u2 = 2b0 ln 2+O(u). The dashed lines show the perturbative 2-loop
behavior. The purple 1-sigma band shows our result (fit C in Table 5).
Data points for Nf = 0, 2, 3, 4 are taken from the literature [18–21]

tive improvement of the data. The impatient reader might
skip this section and directly pass to Sect. 4. There, after the
discussion of the continuum extrapolated results and associ-
ated systematic errors, the comparison to renormalized per-
turbation theory is performed before we conclude in Sect. 5.
Finally, a technical appendix presents the models we used
for the sensitivity of the data to a variation of the two O(a)
boundary counterterm coefficients ct and c̃t .

2 SF couplings

In order to apply the recursive step-scaling techniques to
lattice QCD, it is desirable to define renormalized QCD cou-
plings in a finite space-time volume, L4, and in the chiral
limit. Such finite volume renormalization schemes are quark
mass independent by construction [22], and the renormal-
ization scale is set by μ = 1/L . It is then possible to apply
recursive finite size scaling methods and trace the scale evo-
lution over a wide range without the need for very large lat-
tice sizes, L/a [10]. Still, these requirements leave many
options, such as the boundary conditions for the fields and
the exact choice of observable. We here choose Schrödinger
functional boundary conditions [23,24]: these introduce a
gap in the spectrum of the Dirac operator, so that numerical
simulations can be performed directly at zero quark masses,
without the need for any chiral extrapolation. Moreover, per-
turbation theory remains tractable in this framework, as the
absolute minimum of the action is unique up to gauge equiv-
alence. For the observable we choose the traditional SF cou-
pling [25,26] and a 1-parameter family of close relatives [27].
The most important reason for this choice is the existence of a

2-loop calculation in this case [14,15], which, in combination
with [16,17] allows to infer the 3-loop β-function for these
schemes. Furthermore, the values of the 3-loop β-function
coefficients are reasonable and enable us to make contact
with the asymptotic perturbative regime at energy scales in
the range O(10–100) GeV.

In the future one might also consider the more recent cou-
pling definitions based on the gradient flow [28,29]. The
QCD 3-loop β-function is currently known in the case of infi-
nite space-time volume [30], and there is progress for the case
of a finite volume with SF boundary conditions [29] using
numerical stochastic perturbation theory [31–33]. These
results seem to point to a 3-loop β-function coefficient which
is significantly larger than in the MS- and SF-schemes. This
indicates that gradient flow couplings may not be ideal for
matching with the asymptotic perturbative regime. Further-
more, cutoff effects are typically larger with the GF couplings
than with the traditional SF coupling [13], so that larger lat-
tice sizes are required. This partially offsets other compu-
tational advantages. Obviously, further studies are required
and one should re-assess the situation once more perturbative
information becomes available.

2.1 SFν schemes

In the continuum the Schrödinger functional is defined as the
Euclidean path integral,

Z[C,C ′] =
∫

D[�]
∫

D[A, ψ,ψ]e−S[A,ψ,ψ], (2.1)

with the Euclidean continuum action S = Sg + S f ,

Sg = − 1

2g2
0

∫ L

0
dx0

∫ L

0
d3x tr {Fμν(x)Fμν(x)}, (2.2)

S f =
∫ L

0
dx0

∫ L

0
d3xψ(x)(γμDμ + m)ψ(x). (2.3)

Here, g0 denotes the bare coupling constant, Fμν is the field
tensor associated with the gauge field Aμ,

Fμν = ∂μAν − ∂ν Aμ + [Aμ, Aν], (2.4)

and Dμ = ∂μ+Aμ+iθμ/L is the covariant derivative acting
on the quark fields. It includes a constant U(1) background
field which we set to θμ = (1 − δμ0)θ , with the choice
θ = π/5. In the spatial directions L-periodic boundary con-
ditions are imposed on all fields. At the time boundaries the
fermionic fields satisfy [24]

P+ψ |x0=0 = 0 = P−ψ |x0=L ,

ψP−|x0=0 = 0 = ψP+|x0=L , (2.5)
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with the projectors P± = 1
2 (1 ± γ0). For the gauge field one

has

Ak |x0=0 = C�
k , Ak |x0=L = C ′

k, k = 1, 2, 3, (2.6)

with the boundary valuesCk andC ′
k . The boundary condition

at x0 = 0 refers to the gauge transformed field,

C�
k (x) = �(x)Ck(x)�(x)† + �(x)∂k�(x)†. (2.7)

The integration over the SU(3)-valued and spatially periodic
gauge functions �(x) in Eq. (2.1) ensures gauge invariance
of the Schrödinger functional. The spatially periodic �(x)
fall into different topological sectors labelled by an integer
n,

n = 1

24π2

∫ L

0
d3x εi jk tr

{
(�∂i�

−1)(�∂ j�
−1)(�∂k�

−1)
}

,

(2.8)

which is related to the topological charge of the gauge field,

Q[A] = −εμνρσ

32π2

∫
d4x tr{Fμν(x)Fρσ (x)}, (2.9)

through n = −Q[A], provided the Chern–Simons action of
the boundary gauge fields Ck , C ′

k vanishes (which is the case
for the choice below). The value of the gauge action in each
sector n is then subject to the usual instanton bound [23]

g2
0Sg[A] ≥ 8π2|Q[A]|. (2.10)

Using the gauge invariance of the Schrödinger functional
under the transformations,

Aμ(x) → �(x)Aμ�(x)† + �(x)∂μ�(x)†, (2.11)

�(x) → �(0, x)�(x), (2.12)

ψ(x) → �(x)ψ(x), (2.13)

ψ(x) → ψ(x)�(x)†, (2.14)

one may convert the integral over gauge functions � to a sum
over n, with � in Eq. (2.6) replaced by fixed representatives
�n for each topological sector. In particular one often sets
�0 = 1.

We now focus on Abelian and spatially constant boundary
gauge fields,

Ck(x) = i

L
φ, C ′

k(x) = i

L
φ′, k = 1, 2, 3, (2.15)

with traceless and diagonal 3 × 3-matrices φ and φ′. Their
diagonal elements

φ1 = η − π

3
, φ′

1 = −η − π,

φ2 = η

(
ν − 1

2

)
, φ′

2 = η

(
ν + 1

2

)
+ π

3
,

φ3 = −η

(
ν + 1

2

)
+ π

3
,

φ′
3 = −η

(
ν − 1

2

)
+ 2π

3
, (2.16)

still depend on 2 real parameters, η and ν. In the temporal
gauge and the topological charge zero sector the field equa-
tions with these boundary conditions are solved by,

B0 = 0, Bk = Ck + x0

L

(
C ′
k − Ck

)
, k = 1, 2, 3, (2.17)

which corresponds to a constant chromo-electric field,

G0k = ∂0Bk = C ′
k − Ck

L
= i(φ′ − φ)

L2 , k = 1, 2, 3.

(2.18)

Inserting the field tensor into the gauge action, Sg , one obtains

Sg[B] = 3

g2
0

3∑
α=1

(φ′
α − φα)2 = 18

g2
0

(
η + π

3

)2
, (2.19)

which, for given η (and independently of ν) constitutes the
absolute minimum of the action [23]. One may thus define
the effective action as a function of this background field,

�[B] = − lnZ[C ′,C], (2.20)

and its perturbative expansion,

�[B] g0→0∼ 1

g2
0

�0[B] + �1[B] + O(g2
0), (2.21)

with �0[B] = g2
0Sg[B]. The SF couplings ḡ2

ν (L) can be
defined through

∂�[B]
∂η

∣∣∣∣
η=0

= k

ḡ2
ν (L)

, k = ∂�0[B]
∂η

∣∣∣∣
η=0

= 12π. (2.22)

In fact the ν-dependence is explicit,

1

ḡ2
ν (L)

= 1

ḡ2(L)
− νv̄(L), (2.23)
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since both 1/ḡ2(L) and v̄(L) are ν-independent. In terms of
the effective action, v̄(L) reads

v̄(L) = −1

k

∂2�[B]
∂ν∂η

∣∣∣∣
η=ν=0

. (2.24)

Note that the ν-independence of �0[B], implies that v̄(L)

has a perturbative expansion starting at O(1). This ensures
the correct normalization of the whole 1-parameter family
of couplings, namely ḡ2

ν = g2
0 to lowest order. Finally we

remark that the entire 1-parameter family is determined by
the expectation values,

k

ḡ2 =
〈

∂S

∂η

∣∣∣∣
η=ν=0

〉
, v̄ = −1

k

〈
∂2S

∂ν∂η

∣∣∣∣
η=ν=0

〉
, (2.25)

defined in terms of the functional integral, Eq. (2.1), at ν = 0.
Once the lattice regularization is in place both quantities will
thus become observables in numerical simulations.

2.2 β-functions and perturbative relations to the
MS-coupling

The SF couplings are defined independently of perturbation
theory and thus the same is true for their β-functions,

β(ḡν) = −L
∂ ḡν

∂L

ḡν→0∼ −ḡ3
ν

∞∑
k=0

bk ḡ
2k
ν , (2.26)

where the asymptotic expansion on the r.h.s. starts out with
the standard universal coefficients b0,1 for Nf = 3 QCD,

(4π)b0 = 9/(4π), (4π)2b1 = 4/π2, (2.27)

and the 3-loop coefficient is given by

(4π)3b2 = − (0.064(27) + ν × 1.259(10)) . (2.28)

The 3-loop coefficient has been obtained by matching the
coupling at the 2-loop level to the MS-scheme, where the β-
function is now even known to 5-loop order (b3 and b4 in our
notation) [3–7]. For later use we collect the numerical values
for Nf = 3 QCD in Table 1, together with the SFν scheme
results for the 3 choices of the parameter, ν = −0.5, 0, 0.3,
which we selected for more detailed analysis in Sect. 4.

Comparing the MS to the SFν scheme we note that the
respective 3-loop β-functions coincide for ν ≈ −0.3. In
general, ν-values of O(1) are reasonable from a perturbative
point of view.

Closely related to the β-functions are the step-scaling
functions which connect couplings at scales which differ by
a factor 2. Defining

σ(u) = ḡ2(2L)|u=ḡ2(L),m(L)=0, (2.29)

Table 1 Coefficients in the asymptotic expansion of the β-function in
different schemes. Note that the universal coefficients for Nf = 3 are
(4π)b0 ≈ 0.716197, (4π)2b1 ≈ 0.405285

Scheme (4π)3b2 (4π)4b3 (4π)5b4

SF (ν = −0.5) 0.5655 – –

SF (ν = 0) −0.064 – –

SF (ν = 0.3) −0.4417 – –

MS 0.324447 0.484842 0.416059

the precise relationship is,

∫ √
σ(u)

√
u

dg

β(g)
= − ln 2, (2.30)

and the perturbative expansion of σ(u),

σ(u) = u + s0u
2 + s1u

3 + s2u
4 + · · · , (2.31)

is thus determined in terms of the coefficients of the β-
function, with the first 3 given by

s0 = 2b0 ln 2, s1 = s2
0 + 2b1 ln 2,

s2 = s3
0 + 10b0b1(ln 2)2 + 2b2 ln 2. (2.32)

Finally, we quote the relation between the SF and the MS
couplings, in terms of α = ḡ2/(4π) at the scales μ = 1/L
and sμ, respectively, with s > 0. One finds

αMS(sμ) = α(μ) + c1(s)α
2(μ) + c2(s)α

3(μ) + · · · (2.33)

with (for Nf = 3) [14–17,23,26]

c1(s) = −8πb0 ln(s) + 1.3752097(26), (2.34)

c2(s) − (c1(s))
2 = −32π2b1 ln(s) + 1.320(30). (2.35)

In order to connect to the SFν couplings for ν �= 0 we need
the expansion of v̄ in the coupling ḡ. Defining

ω(u) = v̄(L)|u=ḡ2(L),m(L)=0, (2.36)

the expansion is known to second order,

ω(u) = v1 + v2 u + O(u2), (2.37)

where the coefficients for Nf = 3 evaluate to

4πv1 = 1.797887(5), (4π)2v2 = −0.741(14). (2.38)

Starting from

ḡ2
ν (L) = ḡ2(L)

[
1 − ν ḡ2(L)ω

(
ḡ2(L)

)]−1
, (2.39)

123
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we obtain the 2-loop relation,

αν(μ) = α(μ) + (4πv1ν)α2(μ)

+ (4π)2
(
v2ν + v2

1ν2
)

α3(μ) + · · · .
(2.40)

Inverting perturbatively and combining with the previous
equations we have

αMS(sμ) = αν(μ)+cν
1(s)α2

ν (μ)+cν
2(s)α3

ν (μ)+· · · , (2.41)

where

cν
1(s) = c1(s) − 4πv1ν, (2.42)

cν
2(s) − (

cν
1(s)

)2 = c2(s) − (c1(s))
2 − (4π)2v2ν. (2.43)

In the perturbative matching of couplings one occasion-
ally applies the principle of “fastest apparent convergence”,
which implies that s = s� is chosen such as to make the
one-loop coefficient, cν

1(s�), vanish. This is the case for

ln(s�) = cν
1(1)

8πb0
= 2π

9
cν

1(1), (2.44)

and with this choice one obtains the relation,

αMS(s�μ) = αν(μ) + cν
2(s�)α3

ν (μ) + O
(
α4

ν

)
. (2.45)

2.3 Perturbation theory and the �-parameter

There are various ways to define a target precision for αs .
Instead of referring to the coupling in some scheme at some
scale it is attractive to instead refer to the �-parameter. Given
the coupling ḡx(L) in a scheme x, the �-parameter in this
scheme is a special solution of the Callan–Symanzik equation
of the form

�x = L−1ϕx(ḡx(L)), (2.46)

with

ϕx(ḡ) = (b0 ḡ
2)−b1/(2b2

0)e−1/(2b0 ḡ2)

× exp

⎧⎪⎨
⎪⎩−

ḡ∫

0

dg

[
1

βx(g)
+ 1

b0g3 − b1

b2
0g

]⎫⎪⎬
⎪⎭ .

(2.47)

Note that this definition is independent of perturbation the-
ory provided the coupling and its β-function are defined
non-perturbatively. In practice, however, one would like to
evaluate the �-parameter at a large energy scale μ = 1/L
such that the integral in the exponent can be safely evalu-
ated in perturbation theory. The exact scheme-dependence
of the �-parameter is obtained by the one-loop matching of
the respective couplings. Labelling the schemes by x and y,

ḡ2
x(L) = ḡ2

y(L) + cxy ḡ
4
y(L) + · · · , (2.48)

one obtains the exact relationship

�x/�y = ecxy/2b0 . (2.49)

Note that this allows one to indirectly define �MS non-
perturbatively, thereby justifying its use as a reference defini-
tion. With the perturbative matching coefficients of the pre-
vious subsection we obtain the relationships (for Nf = 3),

�/�MS = 0.38286(2) �ν/� = exp (ν × 1.255162(4)) ,

(2.50)

where � and �ν are the parameters for the SF and SFν

scheme, respectively. In particular, the ratio s� of scales
used in Eq. (2.44) is given by the ratio of the respective �-
parameters.

2.4 On exponentially suppressed corrections to
perturbation theory

The perturbative expansion of the path integral generates
an asymptotic series, with zero radius of convergence. In
applications one then hopes that, for the accessible range
of couplings, the perturbative series provides a good quan-
titative description of the observable. The observables we
consider here, the couplings in the SFν schemes, are defined
non-perturbatively in Euclidean space-time, with an infrared
cutoff provided by the finite space-time volume. These prop-
erties are advantageous for perturbation theory, in particular,
there should be no renormalon problem [34]. Lattice QCD
provides very good non-perturbative control of these observ-
ables, for couplings α in the range 0.1–0.2 (cf. Sect. 3).
Before testing perturbation theory, we would like to iden-
tify exponentially suppressed terms in the coupling which
might preclude a good quantitative description of the non-
perturbative data. Such terms are associated with local min-
ima of the action, e.g. those corresponding to the classical
solutions of the field equations. Given the instanton bound,
Eq. (2.10), and the absolute minimum Sg[B] = 2π2/g2

0 of
the action [Eq. (2.19), with η = 0], contributions from the
|Q| = 1 instanton sector to our observables are accompanied
by a suppression factor exp(−6π2/g2

0) = exp(−3π/(2α))

and are therefore numerically irrelevant for our range of cou-
plings. We may then ask the question whether there are fur-
ther secondary minima of the action which are less strongly
suppressed. Hence we are looking for a secondary minimum
B∗

μ of the gauge action in the Q = 0 sector, which satisfies

�S = Sg[B∗] − Sg[B] < 6π2/g2
0 . (2.51)
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In fact there are “large” gauge transformations at x0 = 0
corresponding to gauge functions ω(x) which are topologi-
cally trivial but are not subject to the gauge fixing procedure
around Bμ [23]. In order to find potential secondary min-
ima we have resorted to a numerical experiment in the lattice
discretized theory. More precisely, we have first performed
numerical simulations of the pure SU(3) Yang-Mills theory
on a lattice with linear extent L/a = 8, (at β ≡ 6/g2

0 = 5.7),
and generated a long Monte Carlo history of about 64.000
configurations, corresponding to 128.000 MDU, using the
same simulation code as for our Nf = 3 QCD simulations
(cf. Sect. 3). Every 5th gauge configuration has been taken as
initial condition for the gradient flow equation [28], which we
then integrated up to very large flow times t , corresponding to
c = √

8t/L = 10; the gradient flow is a smoothing operation
and drives the gauge field towards a local minimum of the
action. At large flow times we selected the gauge field con-
figurations in the Q = 0 sector.3 Apart from the background
field, Eq. (2.17), we have indeed found a single further local
minimum. In order to check for its stability and to obtain
its continuum limit, we have performed similar simulations
on finer lattices with L/a = 12, 16, 24, and bare couplings
such as to keep ḡ2(L/2) = 2.77 approximately fixed. After
extrapolation to the continuum and in the temporal gauge we
find that this secondary minimum corresponds to the spatially
constant Abelian field,

B∗
1 (x) = iπ

L

{
diag

(
−1

3
,

1

3
, 0

)

+ x0

L
diag

(
−2

3
, 0,

2

3

)}
, (2.52)

B∗
2 (x) = B1(x), (2.53)

B∗
3 (x) = iπ

L

{
diag

(
−7

3
,

1

3
, 2

)

+ x0

L
diag

(
−4

3
, 0,

4

3

)}
. (2.54)

The boundary conditions at x0 = 0 thus are given as

B∗
1 (0, x) = B∗

2 (0, x) = Cω
1 = Cω

2 = iπ

L
diag

(
−1

3
,

1

3
, 0

)
,

(2.55)

and

B∗
3 (0, x) = Cω

3 = iπ

L
diag

(
−7

3
,

1

3
, 2

)
. (2.56)

The gauge function ω(x) is thus non-constant in the x3-
direction, which induces the shift by ±2π in 2 of the angles

3 In practice we defined this to mean gauge configurations for which
|Q| < 0.5, with Q defined as in Ref. [28].

of Cω
3 , in addition to the permutation of the colour 2- and 3-

components of φ, Eq. (2.16). Obviously the spatial directions
can be permuted, so this minimum has a 3-fold degeneracy.
Hence, the classical field B∗

μ is Abelian and spatially con-
stant, but with boundary values, transformed by the gauge
function

ω(x) =
⎛
⎝exp

(
i 2π
L x3

)
0 0

0 0 −1
0 exp

(−i 2π
L x3

)
0

⎞
⎠ . (2.57)

To find the gap in the gauge action we insert the non-zero
components of the field tensor

G∗
0k = ∂0B

∗
k = iπ

L2 ×
{

diag
(− 2

3 , 0, 2
3

)
, if k = 1, 2,

diag
(− 4

3 , 0, 4
3

)
, if k = 3,

(2.58)

into the gauge action Eq. (2.2), with the result

g2
0S[B∗] = −L4

3∑
k=1

tr
{
G∗

0kG
∗
0k

} = 16π2

3
. (2.59)

Hence the gap, �S, is found to be 10/3 in units of π2/g2
0

which is 2/3 below the Q = 1 instanton threshold.
This leads to a suppression factor exp(−g2

0�S/(4πα)) =
exp(−5π/(6α)). For the range of couplings in our study, this
factor varies from a few times 10−6 to below 10−10, which
renders such a non-perturbative contribution completely neg-
ligible.

3 Lattice set-up and simulations

In this section we briefly describe the main elements of the
lattice set-up chosen for this study and discuss some details
pertaining to the error treatment.

3.1 Lattice action

We choose the standard Wilson plaquette action for the gauge
fields and three flavours of non-perturbatively O(a) improved
Wilson fermions. The lattice action is then given by S =
Sg + S f , with

Sg[U ] = 1

g2
0

∑
p

w(p) tr {1 −U (p)}, (3.1)

S f [U, ψ̄, ψ] = a4
∑
x

ψ̄(x)(D + δDb + m0)ψ(x). (3.2)

The gauge field action Sg is a sum over all oriented plaque-
ttes p on the lattice, with the weights w(p), and the parallel

123



 372 Page 8 of 25 Eur. Phys. J. C   (2018) 78:372 

transporters U (p) around p. With the gauge field boundary
conditions given in terms of the Abelian fields, Eq. (2.15),

Uk(0, x) = exp(aCk), Uk(L , x) = exp(aC ′
k), (3.3)

the gauge part of the action is completely specified by setting
w(p) = 1 except for timelike plaquettes touching one of the
boundaries for which w(p) = ct . The Dirichlet boundary
conditions for the quark fields look exactly the same as in
the continuum, cf. Sect. 2. Like in the continuum we take the
fermionic fields to be spatially periodic and implement the
phase θ = π/5 via a constant U(1) background field λμ =
exp(iaθμ/L), with θμ = (1 − δμ,0)θ . With the covariant
derivatives,

∇μψ(x) = 1

a

[
λμU (x, μ)ψ(x + aμ̂) − ψ(x)

]
, (3.4)

∇∗
μψ(x) = 1

a

[
ψ(x) − λ∗

μU (x − aμ̂, μ)†ψ(x − aμ̂)
]
,

(3.5)

the Wilson-Dirac operator in the fermionic action (3.2) takes
the form,

D = 1

2

3∑
μ=0

{
γμ(∇∗

μ + ∇μ) − a∇∗
μ∇μ

}

+ csw
ia

4

3∑
μ,ν=0

σμνFμν, (3.6)

which includes the Sheikholeslami–Wohlert term [35]. For
the clover leaf definition of the field strength tensor, Fμν ,
we refer to [36] and the improvement coefficient csw(g0) is
set non-perturbatively using the result from [37]. Finally, the
fermionic O(a) boundary counterterm action is specified by
[36]

δDbψ(x) = (c̃t − 1)
(
δx0,a + δx0,L−a

)
ψ(x). (3.7)

The 2 boundary counterterm coefficients, ct(g0) and c̃t(g0)

are set to their perturbative two- and one-loop expressions,
respectively [15,25],

ct(g0) = 1 + c(1)
t g2

0 + c(2)
t g4

0 + O(g6
0), (3.8)

c̃t(g0) = 1 + c̃(1)
t g2

0 + O(g4
0), (3.9)

with the known perturbative coefficients for N = 3 colours
given by

c(1)
t = −0.0890 + 0.019141 × Nf

Nf=3= − 0.0315, (3.10)

c(2)
t = −0.0294 + 0.002 × Nf

+0.000(1) × N 2
f

Nf=3= − 0.0234, (3.11)

c̃(1)
t = −0.01795. (3.12)

We notice a significant cancellation in the one-loop term c(1)
t

between the gluon and fermion contributions. We interpret
the resulting relative size of one- and two-loop terms for
Nf = 3 as an accident and not a sign for a poor behaviour of
the series in general.

3.2 Lattice observables

Like in the continuum, the basic observables 1/ḡ2 and v̄ are
given as expectation values, Eq. (2.25), of gauge invariant
fields, which are now obtained as η- and ν-derivatives of the
lattice action4 (3.1, 3.2). The lattice version of the Abelian
background field takes the form,

Vμ(x) = exp
(
aBμ(x)

)
, (3.13)

with Bμ(x) the continuum expression, Eq. (2.17). Cutoff
effects with such Abelian gauge fields are known to be
small [23]. Indeed, the η-derivative of Sg[V ] yields the lattice
normalization constant

k = 12(L/a)2[sin(γ )+sin(2γ )], γ = 1

3
π(a/L)2, (3.14)

which converges to 12π with O(a4) corrections. We will use
this lattice definition of k in order to ensure ḡ2 = g2

0 exactly at
lowest order. Note that this also holds for ḡ2

ν , since v̄ vanishes
identically at tree level.

On the lattice with Wilson quarks, the chiral limit is not
sharply defined, and one also needs to specify the exact defi-
nition used. For given bare coupling g0, we require the PCAC
quark mass,

m(L) =
1
2 (∂0 + ∂∗

0 ) fA(x0) + cA(g0)a∂∗
0 ∂0 fP(x0)

2 fP(x0)

∣∣∣∣∣
x0=L/2

,

(3.15)

to vanish on an (L/a)4 lattice with the Abelian boundary con-
ditions, Eq. (3.3). Here fA(x0) and fP(x0) are Schrödinger
functional correlation functions defined e.g. in Eqs. (2.1)
and (2.2) of [38], and ∂0, ∂∗

0 are the forward and backward lat-
tice time derivatives, respectively. Finally, the improvement
coefficient, cA, is set to its perturbative 1-loop value [39,40],
since a non-perturbative estimate is not available for Nf = 3
and our choice of gauge action. Given that we do not attempt
to reach the low energy, hadronic regime, we expect one-loop
perturbation theory to work reasonably well for cA. The chi-
ral limit is now defined by m(L) = 0, and, for given bare
coupling g2

0 ≡ 6/β, the bare massm0 for which this equation

4 The fermionic action depends on η through the Sheikholeslami–
Wohlert term in Eq. (3.6) and thus also contributes to the observable,
cf. Appendix A of Ref. [19] for details.
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holds, defines the critical mass parameter or, equivalently, the
critical κ ,

am0 = amcr(g0) = 1/ (2κcr(g0)) − 4. (3.16)

With these conventions we may now define the lattice observ-
ables. Specifying the value u of the coupling ḡ2(L) at vanish-
ing quark mass defines our approach to the continuum limit,
and other lattice observables are then well-defined functions
of u. In particular v̄ gives rise to 2 lattice observables

�(u, a/L) = v̄(L)|u=ḡ2(L),m(L)=0 , (3.17)

�̃(u, a/L) = v̄(L)|u=ḡ2(L),m(L/2)=0 , (3.18)

which differ by the chiral limit definition. The appearance of
2 lattice versions for ω(u) is a consequence of the definition
of the lattice step-scaling functions through

�(u, a/L) = ḡ2(2L)

∣∣∣
ḡ2(L)=u,m(L)=0

, (3.19)

which requires simulations on lattices with resolutions L/a
and 2L/a, at the same bare parameters. In particular, the
simulations on the 2L/a-lattices are performed at the bare
mass parameters for which the PCAC mass vanishes on the
L/a lattice. Finally, we also consider the lattice step-scaling
functions for ḡ2

ν ,

�ν(u, a/L) = ḡ2
ν (2L)

∣∣∣
ḡ2
ν (L)=u,m(L)=0

, (3.20)

at non-zero values of ν.

3.3 Perturbatively improved lattice observables

In order to accelerate the approach to the continuum limit
one may use perturbation theory to subtract the lattice arte-
facts order by order in the coupling from the non-perturbative
data [41]. The 2-loop calculation in [15] has been carried out
in the very same lattice regularized theory, and the two-loop
lattice artefacts in the ν = 0 step-scaling functions,

δ(u, a/L) = �(u, a/L) − σ(u)

σ (u)

= δ1(a/L)u + δ2(a/L)u2 + O(u3), (3.21)

are indeed available to this order. With the coefficients for
Nf = 3 from Table 2, one may thus define the improved
step-scaling functions,

�(i)(u, L/a) = �(u, L/a)

1 +∑i
k=1 δk(L/a)uk

, (3.22)

up to loop order i = 2. By construction, the leading cutoff
effects for i = 0, 1, 2 are then given by5

�(i)(u, a/L) = σ(u)+ a

L
×O(u4)+ a2

L2 ×O(u2+i ), (3.23)

and are thus suppressed by additional powers of the coupling.
The term linear in a/L is due to the incomplete cancellation
of the O(a) boundary effects and could be eliminated by a
non-perturbative determination of ct and c̃t . We will come
back to the question of remnant O(a) effects in Sect. 3.7.

For the observables � and �̃ one parametrizes the cutoff
effects by 2 functions, ε and ε̃. For � we have

�(u, a/L) = ω(u) [1 + ε(u, a/L)] , (3.24)

with perturbative expansion

ε(u, a/L) = ε1(a/L) + ε2(a/L)u + O(u2), (3.25)

and analogous equations hold for �̃ and ε̃. Unfortunately, the
published results of the 2-loop calculation do not allow for
the extraction of the cutoff effects for this case, so that the
perturbatively improved observables,

�(i)(u, a/L) = �(u, a/L)

1 +∑i
k=1 εk(a/L)uk−1

, (3.26)

�̃(i)(u, a/L) = �̃(u, a/L)

1 +∑i
k=1 ε̃k(a/L)uk−1

, (3.27)

are only available to 1-loop order, i = 1, with the coefficients
ε1 and ε̃1 given in Table 2.

The same remark applies to the step-scaling function �ν

for ν �= 0. Using the notation,

δν(u, a/L) = δν
1 (a/L)u + O(u2), (3.28)

the one-loop coefficient is given by

δν
1 (L/a) = δ1(L/a) + νv1

[
ε̃1(a/2L) − ε1(a/L)

]
, (3.29)

where v1 is the expansion coefficient of the continuum func-
tion ω(u), Eq. (2.38). Values for δν

1 can be inferred from
Table 2, for Nf = 3 and the lattice sizes relevant for this
study.

3.4 Simulation parameters and statistics

Using the openQCD code [42,43] we have simulated lat-
tice sizes L/a = 4, 6, 8, 10, 12 around 9 values of the
coupling ḡ2(L) = u in the range 1.1–2.0, cf. Table 3. At
the same bare coupling g2

0 = 6/β and bare quark mass

5 Here and in the following the i = 0 label refers to unimproved data,
for instance �(0)(u, a/L) = �(u, a/L), etc.
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Table 2 Values of the coefficients for Nf = 3 and the relevant lattice sizes, as required for perturbative cancellation of lattice artefacts up to 2-loop
order in �, and to one-loop order in �ν , � and �̃, cf. text

L/a δ1 × 102 δ2 × 102 (δν
1 − δ1)/ν × 102 ε1 × 102 ε̃1(a/2L) × 102

4 −1.02700 0.28560 −3.94211 33.26842 5.71494

6 −0.43600 0.02510 −1.44433 12.20048 2.10529

8 −0.22700 −0.01380 −0.61453 5.42725 1.13201

10 −0.13800 −0.01260 −0.32597 2.99507 0.71670

12 −0.09400 −0.00960 −0.20334 1.91825 0.49698

am0 = 1/(2κ) − 4 we then doubled the lattice sizes and
simulated for 2L/a = 8, 12, 16 and, in 3 cases also for
2L/a = 24, cf. Table 4. Starting from the L/a = 12 lat-
tices we have tried to approximately match the values of the
coupling for ν = 0 at L/a = 4, 6, 8, so as to be able to
do continuum extrapolations of the step-scaling function at
individual values of the coupling, without the necessity for
large interpolations of the data.

As a target precision we chose the criterion,

�

(
1

ḡ2

)
= �ḡ2

ḡ4 ≈ 0.001, (3.30)

which is reached for most of our data except for some
L/a = 10 lattices. These lattices were however not used
for the step scaling procedure as we did not generate corre-
sponding configurations on 2L/a = 20 lattices. Except for
some checks we also refrained from using lattices as small
as L/a = 4 and thus do not list the results here. However,
the L/a = 10 data and the 2L/a = 8 data are used for the
continuum extrapolation of � and �̃, respectively, and are
therefore included in the tables.

Note that the choice of the reference value ν0 = 0.3 is
rather arbitrary. In fact, the data in the table for ḡ2, ḡ2

ν0=0.3
and v̄, with their statistical errors enables the reconstruc-
tion of the coupling at any value of ν, using Eq. (2.39) and
straightforward error propagation,

�ḡ2
ν

ḡ4
ν

=
⎧⎨
⎩

ν

ν0

(
�ḡ2

ν0

ḡ4
ν0

)2

+
(

�ḡ2

ḡ4

)2 (
1 − ν

ν0

)

+ν2 (�v̄)2
(

1 − ν0

ν

)⎫⎬
⎭

1/2

. (3.31)

We have checked that this reconstruction does indeed repro-
duce the result of a direct data analysis at a given ν-value,
provided that the treatment of autocorrelations is done con-
sistently for the couplings at all ν-values and v̄. We find that
the precision for the ν = 0 coupling, Eq. (3.30), translates
to higher values for other choices of ν, for instance we find
an increase of 20 percent for ν = 0.3 (from Tables 3, 4), and
ca. 50 percent for ν = −0.5 from Eq. (3.31).

All statistical errors were determined using the �-method
[44]. For our observables, one even has to be careful that one
sums up the autocorrelation function sufficiently far. Still
the final autocorrelation times range from values somewhat
below 2 MDU for weak coupling and small L/a, to about 8
MDU at larger coupling and L/a = 24. Further details on
the performance of our algorithms will be reported in [45].

3.5 Treatment of statistical errors

When forming the step scaling function �(u, a/L) there
are statistical uncertainties both for ḡ2(L), Table 3, and
for ḡ2(2L), Table 4. These are propagated to the error of
�(u, a/L) with u the central value of the estimate of ḡ2(L),
via

(��(u, a/L))2 = (�ḡ2(2L))2+
(

∂�(u, a/L)

∂u
�ḡ2(L)

)2

.

(3.32)

To estimate the required derivative ∂�/∂u we differenti-
ate the 3-loop truncation of the continuum function, σ(u),
Eq. (2.31), corrected for the known lattice artefacts at one-
and two-loop order for ν �= 0 and ν = 0, respectively,
cf. Sect. 3.3. For ν = 0 this leads to

∂�

∂u
≈ 1+2(s0 +δ1)u+3(s1 +δ2 +s0δ1)u

2 +4s2u
3, (3.33)

and similarly for ν �= 0 with δν
1 from Eq. (3.29), the unknown

δν
2 set to zero and with the scheme dependence of s2 [via b2,

Eq. (2.32)], taken into account. As a cross check, we also
estimated the derivative directly from the data and found the
differences to be negligible.

For the study of the observables � and �̃ we proceed sim-
ilarly: to obtain the derivative with respect to u we first per-
form a rough continuum extrapolation neglecting the errors
on u. The resulting polynomial fit function

ω(u) ≈ 0.14307 − 0.004693 × u + 0.0077906 × u2

−0.0105266 × u3 + 0.0023996 × u4, (3.34)
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Table 3 Simulation parameters and results on the L-lattices. The hopping parameter κ was tuned such that the PCAC mass m(L), Eq. (3.15),
vanishes

L/a β κ ḡ2 �ḡ2 ḡ2
ν=0.3 �ḡ2

ν=0.3 v̄ �v̄

6 6.2650 0.13558688 2.0194 0.0032 2.1991 0.0042 0.1349 0.0016

6 6.5964 0.13499767 1.7983 0.0025 1.9448 0.0033 0.1396 0.0017

6 6.9283 0.13444591 1.6247 0.0021 1.7462 0.0029 0.1427 0.0018

6 7.2604 0.13393574 1.4799 0.0015 1.5831 0.0020 0.1467 0.0016

6 7.5769 0.13348828 1.3680 0.0011 1.4568 0.0015 0.1485 0.0014

6 7.8935 0.13307660 1.2703 0.0009 1.3487 0.0013 0.1526 0.0014

6 8.2103 0.13269801 1.1864 0.0009 1.2552 0.0012 0.1540 0.0015

6 8.5271 0.13234995 1.1125 0.0008 1.1723 0.0011 0.1528 0.0016

8 6.4575 0.13525498 2.0201 0.0034 2.1875 0.0046 0.1262 0.0017

8 6.7900 0.13467912 1.7943 0.0031 1.9341 0.0043 0.1343 0.0022

8 7.1225 0.13414622 1.6173 0.0025 1.7291 0.0034 0.1332 0.0021

8 7.4550 0.13365676 1.4783 0.0019 1.5728 0.0026 0.1354 0.0020

8 7.7721 0.13322862 1.3629 0.0016 1.4440 0.0021 0.1374 0.0020

8 8.0891 0.13283568 1.2657 0.0009 1.3374 0.0013 0.1412 0.0014

8 8.4062 0.13247474 1.1845 0.0008 1.2473 0.0011 0.1417 0.0014

8 8.7232 0.13214306 1.1122 0.0013 1.1674 0.0017 0.1419 0.0024

10 6.6046 0.13498493 2.0259 0.0124 2.1879 0.0167 0.1218 0.0059

10 6.6073 0.13498022 2.0129 0.0035 2.1803 0.0049 0.1271 0.0017

10 7.6010 0.13344250 1.4898 0.0069 1.5799 0.0090 0.1276 0.0067

10 7.6063 0.13343533 1.4794 0.0019 1.5719 0.0025 0.1326 0.0018

10 8.8675 0.13198989 1.1118 0.0030 1.1638 0.0040 0.1341 0.0056

10 8.8755 0.13198218 1.1093 0.0010 1.1633 0.0013 0.1395 0.0019

12 6.7300 0.13475901 2.0123 0.0037 2.1725 0.0048 0.1221 0.0018

12 7.7300 0.13326291 1.4805 0.0020 1.5752 0.0026 0.1355 0.0019

12 9.0000 0.13185703 1.1089 0.0014 1.1614 0.0018 0.1358 0.0024

is then differentiated to provide an estimate for ∂�/∂u and
∂�̃/∂u, neglecting any L/a-dependence of the derivative.

3.6 Quality of tuning to the chiral limit

An important aspect of Wilson fermions is the need to tune
the bare quark mass parameter (parameterized by κ) to a
critical value, such that chiral symmetry is restored up to
cutoff effects. For our choice of condition m(L) = 0, with
the PCAC mass of Eq. (3.15), we have performed extensive
tuning runs which enable a precision such that,

|z| < 0.001, z = am(L) × (L/a) = m(L)L , (3.35)

at all stages of the calculation [45]. The corresponding values
forκ are given in Table 3. What is the tolerance of a slight mis-
tuning of the mass? Using 1-loop perturbative results from
Ref. [26] for the mass dependence of ḡ2 and v̄ we obtain, in
the continuum limit,

∂ ḡ2
ν

∂z

∣∣∣∣
z=0

= Nf × [0.0095683(1) − 0.01418(5) × ν] ḡ4
ν

+ O(ḡ6
ν ). (3.36)

This should be compared with the target statistical precision,
which is, for ν = 0, given in Eq. (3.30). We follow Ref. [19]
and allow for an uncertainty of about 1/3 of the statistical
error. Neglecting small cutoff effects in the mass derivative
and for Nf = 3 this yields the bounds,

|z| <
(1/3) × �ḡ2

ν(
∂ ḡ2

ν/∂z
)
z=0

≈

⎧⎪⎨
⎪⎩

0.010, ν = −0.5,

0.012, ν = 0,

0.025, ν = 0.3,

(3.37)

for the ν-values that we chose for more detailed analysis
in Sect. 4. We note that the achieved precision of the mass
tuning, Eq. (3.35), stays well within these bounds, by at least
a factor 10. Even if these perturbative estimates turned out to
be significantly off the mark, e.g. by a factor 2, the systematic
error associated with imperfect quark mass tuning would still
be negligibly small and can thus be safely ignored.
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Table 4 Simulation parameters and results on the doubled lattices. The hopping parameter κ was tuned such that the PCAC mass m(L/2) vanishes,
cf. Eq. (3.15)

L/a β κ ḡ2 �ḡ2 ḡ2
ν=0.3 �ḡ2

ν=0.3 v̄ �v̄

8 6.0522 0.13546638 2.4124 0.0044 2.6281 0.0057 0.1134 0.0014

8 6.3757 0.13492039 2.0955 0.0039 2.2648 0.0052 0.1189 0.0018

8 6.7145 0.13437600 1.8586 0.0035 1.9989 0.0047 0.1259 0.0021

8 7.0275 0.13390509 1.6756 0.0020 1.7919 0.0026 0.1291 0.0015

8 7.3496 0.13345482 1.5286 0.0018 1.6277 0.0024 0.1328 0.0017

8 7.6782 0.13303090 1.3997 0.0013 1.4855 0.0018 0.1376 0.0015

8 7.9822 0.13266902 1.3014 0.0011 1.3743 0.0015 0.1359 0.0015

8 8.3130 0.13230601 1.2128 0.0010 1.2784 0.0013 0.1410 0.0016

12 6.2650 0.13558688 2.4568 0.0060 2.6788 0.0081 0.1124 0.0018

12 6.5964 0.13499767 2.1287 0.0042 2.2995 0.0054 0.1163 0.0018

12 6.9283 0.13444591 1.8780 0.0029 2.0175 0.0039 0.1227 0.0017

12 7.2604 0.13393574 1.6839 0.0024 1.8045 0.0033 0.1323 0.0019

12 7.5769 0.13348828 1.5378 0.0019 1.6370 0.0026 0.1314 0.0018

12 7.8935 0.13307660 1.4148 0.0016 1.5010 0.0021 0.1353 0.0018

12 8.2103 0.13269801 1.3114 0.0017 1.3860 0.0022 0.1369 0.0022

12 8.5271 0.13234995 1.2210 0.0014 1.2880 0.0019 0.1420 0.0022

16 6.4575 0.13525498 2.4540 0.0056 2.6708 0.0072 0.1103 0.0016

16 6.7900 0.13467912 2.1251 0.0043 2.2970 0.0057 0.1174 0.0018

16 7.1225 0.13414622 1.8810 0.0039 2.0230 0.0051 0.1244 0.0021

16 7.4550 0.13365676 1.6863 0.0029 1.8017 0.0039 0.1265 0.0021

16 7.7721 0.13322862 1.5375 0.0022 1.6370 0.0029 0.1317 0.0019

16 8.0891 0.13283568 1.4164 0.0018 1.5011 0.0024 0.1328 0.0020

16 8.4062 0.13247474 1.3090 0.0017 1.3825 0.0022 0.1353 0.0021

16 8.7232 0.13214306 1.2204 0.0014 1.2842 0.0019 0.1358 0.0021

24 6.7300 0.13475901 2.4517 0.0067 2.6732 0.0087 0.1126 0.0019

24 7.7300 0.13326291 1.6847 0.0033 1.7980 0.0042 0.1246 0.0023

24 9.0000 0.13185703 1.2232 0.0022 1.2892 0.0029 0.1394 0.0032

3.7 Lattice artefacts linear in a/L

Despite the use of a non-perturbatively O(a) improved bulk
action the very presence of the time boundaries in the
Schrödinger functional creates lattice artefacts linear in a.
In principle these could be cancelled by an appropriate non-
perturbative tuning of the improvement coefficients ct and
c̃t , Eqs. (3.1, 3.7). In practice, however, we are currently
limited to the use of perturbative estimates, Eqs. (3.8, 3.9).
Hence some remnant linear a-effects in our data cannot be
excluded. Instead of including a corresponding term in the
fit ansatz for the continuum extrapolations we try to estimate
the size of these uncertainties and include them as an addi-
tional systematic error. Using a combination of simulations
and perturbation theory we have produced a model for the
sensitivity of our data to a variation of ct and c̃t . The details
are deferred to Appendix A, where we obtain linearized shifts
of the data, for instance,

�(u, a/L)|c′
t=ct+�ct

= �(u, a/L)|ct +�ct ×δct�(u, a/L),

(3.38)

and analogously for a shift c̃′
t = c̃t + �c̃t . Hence, the model

yields an estimate of the data that would have been obtained
if the simulations had been performed at slightly different
values c′

t and c̃′
t . To complete the model we thus need an edu-

cated guess for �ct(g0) and �c̃t(g0) such that the difference
between a fully non-perturbative definition of ct and c̃t and
the perturbative estimates (3.8, 3.9) is likely to be covered.
We here choose

�ct(g0) = ceff
t g6

0, �c̃t(g0) = c̃eff
t g4

0, (3.39)

i.e. a term of the neglected order with an effective coefficient.
In the case of ct which is known to 2-loop order, cf. Sect. 3.1,
we use a geometric progression and define
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ceff
t =

(
c(2)

t /c(1)
t

)
× c(2)

t = 0.74104 × c(2)
t = −0.01734.

(3.40)

For c̃t we simply use

c̃eff
t = c̃(1)

t = −0.01795. (3.41)

We note that particularly the choice for �ct is likely an over-
estimate, due to the accidental cancellation of the gluonic
and fermionic terms observed in Sect. 3.1.

There are several options for the inclusion of this system-
atic error. We chose to proceed as follows: we first perform
continuum extrapolations ignoring potential O(a) errors in
both the original and the shifted data. We then take the spread
of a given observable as an additional systematic error and
add it in quadrature. Obviously this assumes that this sys-
tematic error is subdominant. We have therefore dismissed
all continuum extrapolations where this turned out not to be
the case. We will discuss the impact of these variations on
the continuum extrapolations in the next section.

4 Continuum results

4.1 Continuum extrapolation of the step-scaling function

We now proceed with the continuum extrapolation of the data
for the step-scaling function, for our default scheme with
ν = 0. The 19 available data points for lattice resolutions
L/a = 6, 8, 12 are shown in Fig. 2. Simulation parameters
have been chosen such as to have approximately matched u-
values between different L/a, and this is seen in the vertical
line-up of the data. The fact that the data are so close together
at givenu-value illustrates that cutoff effects in the SF scheme
with the chosen lattice regularization are generally small,
even without perturbative improvement.

While our data enables a more traditional continuum
extrapolation, u-value by u-value, we have done this only
as a cross-check. Our preferred strategy is to simultaneously
fit all data to a global ansatz of the form

�(i)(u, a/L) = σ(u) + ρ(i)(u) (a/L)2. (4.1)

Here i = 1, 2 denotes the order of perturbative improvement
of � and i = 0 refers to unimproved data. In general, such
global fits have the advantage that an interpolation of the data
to common u-values is not required. More importantly, how-
ever, the expected smooth u-dependence of the step-scaling
function both on the lattice and in the continuum limit, is
automatically built into this ansatz. As anticipated in the last
section, we assume leading cutoff effects to start at O(a2),
with the linear a-effects being treated as systematic errors.
Our fit ansätze for the cutoff effects thus are of the form,

0.06
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0.1
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0.14

0.16
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0.22

0.24

1 1.2 1.4 1.6 1.8 2 2.2

[σ
(u

)
−

u
]/

u

u

Final result
one-loop
two-loop

three-loop
L/a = 6
L/a = 8
L/a = 12

Fig. 2 The step-scaling function for the ν = 0 SF-coupling. The band
shows our result (fit C, cf. Table 5). The data points are the approxi-
mations at finite L/a = 6, 8, 12 taken from Table 4 with errors from
Eq. (3.32)

ρ(i)(u) =
nρ∑
k=1

ρ
(i)
k ui+1+k, (4.2)

and the assumption of no lattice artefacts, ρ(i) = 0, is referred
to by nρ = 0. For the continuum step scaling function we
consider polynomial fits with nc = 2 parameters,

σ(u) = u + s0u
2 + s1u

3 + c1u
4 + c2u

5, (4.3)

or 1-parameter fits (nc = 1),

σ(u) = u + s0u
2 + s1u

3 + s2u
4 + c1u

5, (4.4)

where s0,1,2 are fixed to their perturbative values Eq. (2.32).
As the lattice artefacts are generally small at most nρ = 2
parameters are required to obtain excellent fits to the data. A
selection of our fits is given in Table 5. As an example we
consider a 4-parameter fit (fit D) with nc = nρ = 2 to the
2-loop improved data at ν = 0,

�(2)(u, a/L) = u + s0u
2 + s1u

3 + c1u
4 + c2u

5

+(ρ1u
4 + ρ2u

5)(a/L)2. (4.5)

Including all lattices with L/a ≥ 6 there are thus 19 available
data points and 4 fit parameters in the 5th order polynomial
in u. The fit has an excellent χ2/d.o.f = 14.5/15 with the
continuum parameters and their covariance given by

c1 = 0.0014(3), c2 = 0.0005(2),

Cov(c1, c2) = −0.38 × 10−5. (4.6)

Note that the fit coefficient c1 is not far from the perturbative
value s2 = 0.001151; it is therefore reasonable to fix this
parameter to the perturbative one and only fit a next order
coefficient. Hence the majority of fits in Table 5 only have
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nc = 1 continuum parameters, either c1 in Eq. (4.4), or a
4-loop coefficient in the β-function, bfit

3 (cf. Sect. 4.3 below).
Given the smallness of the cutoff effects, even fit G with

nρ = 0 parameters seems reasonable, if one restricts to data
with L/a ≥ 8. For the 2 continuum fit parameters of fit G
the results are,

c1 = 0.0006(12), c2 = 0.0011(7),

Cov(c1, c2) = −0.86 × 10−6. (4.7)

While the χ2/d.o.f = 13/9 = 1.44 does not look too good,
a comparison with fits B′ and F (with nρ = 1) indicates
that this may be an accident. In fact the χ2-values are not a
sharp criterion in our case, as these strictly refer only to the
statistical errors of the data and the given fit functions used,
and thus do not account for the systematic uncertainties from
cutoff effects linear in a.

In order to quantify these systematic uncertainties we
repeat the fits with the data shifted by varying either ct or
c̃t , as explained in Sect. 3.7. For fits with a single continuum
parameter, nc = 1, we then take the spread in central values
for this parameter as a systematic uncertainties due to either
ct or c̃t variations and combine them in quadrature with the
statistical error to obtain a total error of the fit parameter.
Thus, in Table 5, the fits with nc = 1 show 2 errors, the first
being the statistical and the second the total error. In all fits
we find that the ct-uncertainty dominates the effect of the
c̃t-uncertainty; for instance, for fit B we obtain

c1 = [49(25)stat.(15)�ct (6)�c̃t ] × 10−5

= 5(3)stat.(3)total × 10−4, (4.8)

where the r.h.s. takes the form given in Table 5. For fits with
nc = 2 continuum parameters we proceed in the same way.
However, rather than quoting a total error on the continuum fit
parameters, we propagate these uncertainties to the observ-
ables in Table 6, where the results from the nc = 2 fits D and
G are given with both a statistical and total error.

While the total errors for most fits are dominated by the
statistical error, this is not the case of fit G, where the total
errors are predominantly systematic, cf. Table 6. This indi-
cates that fits with nρ = 0 are too rigid to account for the
O(a) variation of the data. While nρ = 1 fits B′ and F are
acceptable, we settled for fit ansätze with nρ = 2 and nc = 1
to data with L/a ≥ 6 as our preferred choice (fits A, B, C, E,
H). Then, using the 2-loop improved data leaves us with fits
C and E, which are essentially equivalent, and Fig. 2 shows
σ(u) from fit C with its error band.

4.2 The SF coupling for ν = 0 at scales Ln = L0/2n

We now use the continuum fit functions for the step-scaling
function at ν = 0 to evaluate the coupling at different scales
Ln = L0/2n , separated by factors of 2. Our starting point is

the reference scale L0, defined implicitly by

ḡ2(L0) = 2.012. (4.9)

The value 2.012 corresponds to the largest value of the cou-
pling u for which the step-scaling function is known. In phys-
ical units the scale L0 has been determined to be around
1/(4 GeV) [12]. We note that σ(2.012) defines the coupling
ḡ2(2L0), so that the lowest energy scale reached with the SF
coupling is around 2 GeV.

Recursive application of the continuum step scaling func-
tion, σ(u), allows us to obtain, in the continuum limit, the
couplings at Ln = L0/2n , where n = −1, 0, 1, 2, . . ., via6

un = σ(un+1), un = ḡ2(Ln). (4.10)

This defines the couplings un as a set of observables, with
our data enabling the recursion up to n = 5, thereby cover-
ing a total scale factor of L−1/L5 = 26 = 64. The results
for un are collected in Table 6, for the various fit functions
representing σ(u).

4.3 Effective and fitted β-function

Given σ(u) in terms of 1 or 2 continuum parameters ck ,
one may translate this result into an effective 3-loop coeffi-
cient of the continuumβ-function. For convenience we define
b(g2) = −gβ(g) so that

b(u) = b3loop(u) + beff
3 u5,

b3loop(u) = b0u
2 + b1u

3 + b2u
4. (4.11)

Then Eq. (2.30) becomes,

∫ σ(u)

u

dv

b(v)
= 2 ln 2. (4.12)

Differentiation w.r.t. u yields

σ ′(u)

b(σ (u))
− 1

b(u)
= 0, (4.13)

which can be solved for beff
3 , with the result,

beff
3 = b3loop(u)σ ′(u) − b3loop(σ (u))

σ 5(u) − u5σ ′(u)
. (4.14)

Note that beff
3 will depend on the value u where it is measured.

Extracting this coefficient at different values of u should yield

6 The recursion towards larger n requires a numerical inversion of the
step-scaling function. This is not a problem given that the step-scaling
function is, in practice, found to be a monotonously increasing function
for the range of couplings considered here.
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Table 5 Overview of the continuum fit functions and results. The nam-
ing convention is the same as in Ref. [1]. The two errors in the fit param-
eters are the statistical and the total error respectively, where the total

error includes the systematic uncertainty from a variation of ct and c̃t ,
added in quadrature

ν Fit i
[ L
a

]
min nρ nc c1 × 104 bfit

3,ν ×(4π)4 χ2 dof

0 A 0 6 2 1 6(2)(3) 14.7 16

0 B 1 6 2 1 5(3)(3) 14.2 16

0 B′ 1 6 1 1 8(2)(2) 18.4 17

0 C 2 6 2 1 6(3)(3) 14.5 16

0 D 2 6 2 2 cf. Eq. (4.6) 14.5 15

0 E 2 6 2 1 4(2)(2) 14.6 16

0 F 2 8 1 1 4(3)(3) 12.7 9

0 G 2 8 0 2 cf. Eq. (4.7) 13.0 9

0 H 1 6 2 1 3(2)(3) 14.1 16

0.3 A 0 6 2 1 3(2)(3) 21.2 16

0.3 B 1 6 2 1 1(2)(3) 20.0 16

0.3 B′ 1 6 1 1 3(2)(2) 20.8 17

0.3 H 1 6 2 1 0(2)(2) 20.0 16

−0.5 A 0 6 2 1 12(5)(5) 11.6 16

−0.5 B 1 6 2 1 15(5)(5) 10.4 16

−0.5 B′ 1 6 1 1 24(4)(4) 18.4 17

−0.5 H 1 6 2 1 11(5)(5) 10.4 16

Table 6 Results for the couplings un = ḡ2
ν (Ln), the �-parameter evaluated at un , cf. Eq. (4.15), in units of the reference scale, L0 (4.9), and the

effective β-function coefficient, beff
3 (4.14), for most fits of Table 5. Results for L0� obtained with fits E, F and H are given in Table 7

n ν = 0

fit A fit B fit B′ fit C fit D fit G

un :

0 2.012 2.012 2.012 2.012 2.012 2.012

1 1.712(3) 1.714(3) 1.710(3) 1.712(3) 1.712(3)(3) 1.711(1)(5)

2 1.493(4) 1.495(4) 1.490(3) 1.493(4) 1.493(4)(5) 1.492(2)(7)

3 1.326(4) 1.327(4) 1.322(3) 1.325(4) 1.325(5)(6) 1.324(2)(8)

4 1.193(4) 1.194(4) 1.190(3) 1.193(4) 1.192(5)(6) 1.191(2)(8)

5 1.085(3) 1.086(4) 1.082(3) 1.085(4) 1.084(5)(6) 1.084(3)(8)

−1 2.450(10) 2.447(10) 2.458(8) 2.451(10) 2.451(10)(11) 2.457(5)(12)

L0� × 102:

0 3.14 3.14 3.14 3.14 3.14 3.14

1 3.10(3) 3.11(3) 3.08(2) 3.10(3) 3.10(2)(3) 3.09(1)(4)

2 3.07(4) 3.09(5) 3.04(4) 3.07(5) 3.07(5)(6) 3.05(2)(8)

3 3.05(6) 3.08(6) 3.01(5) 3.05(6) 3.05(7)(8) 3.03(3)(11)

4 3.04(7) 3.06(7) 2.98(5) 3.03(7) 3.03(9)(11) 3.02(4)(14)

5 3.03(7) 3.06(8) 2.97(6) 3.02(8) 3.01(12)(14) 3.00(5)(17)

beff
3 × (4π)4:

0 3(2) 2(2) 4(1) 3(2) 2(5)(5) 5(2)(2)

1 3(2) 2(2) 5(2) 3(2) 3(5)(5) 5(2)(2)

2 4(3) 3(3) 6(2) 4(3) 4(4)(4) 6(2)(3)

3 4(3) 3(3) 7(2) 4(3) 4(3)(4) 6(2)(3)

4 5(3) 3(3) 7(3) 5(3) 5(3)(3) 7(1)(4)

5 5(3) 4(3) 8(3) 5(3) 5(3)(4) 7(1)(5)
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Table 6 continued

n ν = 0.3 ν = −0.5

fit A fit B fit B′ fit A fit B fit B′
un : un :

0 2.169 2.169 2.169 1.795 1.795 1.795

1 1.828(4) 1.832(4) 1.829(3) 1.550(3) 1.548(4) 1.542(3)

2 1.582(5) 1.587(5) 1.584(4) 1.366(5) 1.363(5) 1.356(4)

3 1.396(5) 1.401(5) 1.398(4) 1.223(5) 1.220(5) 1.212(4)

4 1.250(4) 1.255(4) 1.252(3) 1.108(5) 1.106(5) 1.098(4)

5 1.133(4) 1.136(4) 1.134(3) 1.014(4) 1.012(4) 1.004(3)

−1 2.677(12) 2.665(13) 2.672(10) 2.145(10) 2.151(10) 2.168(8)

L0� × 102: L0� × 102:

0 3.05 3.05 3.05 3.34 3.34 3.34

1 3.02(3) 3.05(3) 3.03(2) 3.28(4) 3.25(4) 3.19(3)

2 3.00(4) 3.05(5) 3.02(4) 3.23(7) 3.19(7) 3.09(5)

3 2.99(6) 3.04(6) 3.01(5) 3.20(8) 3.15(8) 3.01(6)

4 2.98(7) 3.04(7) 3.00(5) 3.17(10) 3.12(10) 2.96(7)

5 2.97(7) 3.04(8) 3.00(6) 3.15(11) 3.09(11) 2.91(8)

beff
3 × (4π)4: beff

3 × (4π)4:

0 2(2) 0(2) 1(1) 5(4) 7(4) 13(3)

1 2(2) 0(2) 1(2) 7(4) 9(4) 17(3)

2 2(2) 0(2) 1(2) 8(5) 11(5) 19(4)

3 3(2) 0(3) 2(2) 9(5) 12(6) 21(4)

4 3(3) 0(3) 2(2) 9(6) 13(6) 23(5)

5 3(3) 0(3) 2(2) 10(6) 13(6) 24(5)

consistent results in the perturbative regime, and this is indeed
the case for the ν = 0 data, cf. Table 6.

This motivates a different parameterization of our fits with
a single continuum parameter, namely via a 4-loop coefficient
bfit

3 in the β-function as a fit parameter.7 This is the purpose
of fits E, F and H, cf. Table 5, where we have taken σ(u)

to be defined by Eq. (4.12) with b(u) = b3loop(u) + bfit
3 u5

and inserted σ(u) into Eq. (4.1). The resulting values for the
fit parameter bfit

3 are given in Table 5. This representation of
our continuum results is very practical. While the fit function
in Eq. (4.4) allows us to find the couplings at scales which
are separated by a factor 2, the β-function readily yields the
scale ratio separating two given couplings.

4.4 Determination of the �-parameter

Once the couplingun = ḡ2(Ln) is small enough, it is justified
to use three-loop perturbation theory for the β-function in the
expression

7 In Ref. [1] this fit parameter was denoted beff
3 .

L0� = 2n
(
b0 ḡ

2(Ln)
)−b1/(2b2

0)

e−1/(2b0 ḡ2(Ln))

× exp

⎧⎪⎨
⎪⎩−

ḡ(Ln)∫

0

dx

[
1

β(x)
+ 1

b0x3 − b1

b2
0x

]⎫⎪⎬
⎪⎭ ,

(4.15)

and determine the �-parameter in units of Ln and thus in
units of L0 = 2nLn . Note that the expansion of the integral
in the exponent

ḡ∫

0

dx

[
1

β(x)
+ 1

b0x3 − b1

b2
0x

]
= b0b2 − b2

1

2b3
0

ḡ2

+ b2
0b3 − 2b0b1b2 + b3

1

4b4
0

ḡ4

+ O(ḡ6), (4.16)

is unknown at order ḡ4 as this term requires the knowl-
edge of the 4-loop coefficient b3 which is not available in
the SF scheme. Provided such higher order terms are small,
the result for L0� should be independent of n and the way
the integral is evaluated. For completeness we note that our
default evaluation consists in the direct numerical integration,
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Table 7 L0� obtained with the fits to the coefficient bfit
3 in the β-

function, cf. Table 5 and Sect. 4.4

ν L0� × 102

Fit E Fit F Fit H

0 3.00(8) 3.01(10) 3.04(9)

−0.5 3.03(14)

0.3 3.04(8)

using the truncated 3-loop β-function without expansion of
the integrand or the exponential function. The results for �

in units of L0 are given in Table 6, where Eq. (4.15) is eval-
uated for the coupling at scales Ln , for n = 0, . . . , 5 and for
the various fit functions.

An alternative evaluation of the �-parameter is obtained
with the fits E, F and H in terms of a fitted β-function. One
simply inserts the β-function into Eq. (4.15) and evaluates the
integral numerically between ḡ2(L0) = 2.012 and ḡ2(0) =
0. The resulting �-parameters are given in Table 7 and show
a remarkable consistency. We will discuss the results further
in Sect. 4.6.

4.5 Continuum extrapolation of � and �̃

The continuum extrapolation for �(u, a/L) and �̃(u, a/L)

proceeds along the same line as for the step-scaling function.
A difference is that both data sets can be constrained to the
same continuum limit but require separate fit coefficients for
the cutoff effects. Moreover, the lattice resolutions L/a cover
the range 6–24, i.e. a factor of 4 in scale and thus allow for
an excellent control of the continuum limit.

The global fit ansätze used here are

�(i)(u, a/L) = ω(u) + ρ(i)(u, a/L), (4.17)

and analogously for �̃(i) with ρ̃(i). Here, i = 1, 0 refers to 1-
loop improved data (cf. Sect. 3.3) or unimproved data, respec-
tively. In the models for the cutoff effects we just include 2
quadratic terms in a/L for either data set, with coefficients
ρ1,2 and ρ̃1,2, e.g.

ρ(i)(u, a/L) =
(
ρ1u

i + ρ2u
i+1
) a2

L2 , (4.18)

and the powers of u are chosen according to the expectation
from perturbation theory. As in the case of the step-scaling
function, linear terms in a/L will be treated as systematic
errors.

The continuum function ω(u) is parameterized by a fourth
order polynomial in u,

ω(u) =
{

v1 + v2u +∑3
k=1 dku

k+1, fits type A,

v1 +∑4
k=1 dku

k, fits type B,
(4.19)

with fit parameters dk , k = 1, . . . , 4 and v1 and v2 set to the
known perturbative coefficients, Eq. (2.38). We have also
experimented with separate fits to �(i) and �̃(i) and find
good overall consistency. Here, we restrict the discussion
to combined fits of the �(i) and �̃(i) data, with a common
continuum fit function, ω(u). We distinguish fits of type A
and B with 3 and 4 continuum fit parameters, respectively.
Hence, fits of type A have 3 + 2 × 2 = 7 parameters, while
type B fits have 8 parameters.

With these fit ansätze one obtains decent χ2/d.o.f. values
for the one-loop improved data, even when including all 52
data points with L/a ≥ 6 (cf. Tables 3, 4). Given this much
data we may afford to exclude the L/a = 6 lattices, thereby
reducing the number of data points to 44 . An example for
the continuum function ω(u) thus obtained is

ω(u)|fit A,i=1,L/a≥8 = 0.14307 − 0.004693u + 0.01284u2

−0.01480u3 + 0.003349u4. (4.20)

The fit has a χ2/d.o.f. = 33.5/37 and the covariance matrix
for the fit parameters is given by

Cov(di , d j ) =
⎛
⎝ 1.286 −1.244 0.2922

−1.244 1.231 −0.2945
0.2922 −0.2945 7.153

⎞
⎠× 10−5.

(4.21)

Note that the error encoded in the covariance matrix is only
the statistical error. To account for the systematic effect esti-
mated from the variation of the O(a) counterterm coefficients
ct and c̃t (cf. Sect. 3.7), we here proceed in complete analogy
with the analysis of the step-scaling function. In Table 8 we
quote 2 errors, the first statistical, the second including the
effect of a ct and c̃t-variation. This only marginally increases
the errors, as is evident from Table 8.

The fits to the unimproved data have higher χ2/d.o.f.
values, emphasized in bold face in Table 8, unless the L/a =
6 data are dropped. As mentioned above, χ2 is not the full
story, given that our fits assume the absence of a/L effects
and this effect is taken into account afterwards by our ct, c̃t-
variation. However, we do see that (1) these variations have a
tiny effect on the continuum values and (2) still, for example,
ω(1.11) of the large χ2 fits is off significantly. These fits have
to be discarded. The other ones, which cover a remarkable
range of lattice spacings, are entirely consistent.

These observations allow us to conclude that perturba-
tive improvement works very well in our coupling range, our
treatment of ct, c̃t-variations is safe (maybe overly conserva-
tive), and most importantly, resolutions a/L ≤ 1/6 are suf-
ficient to apply our continuum extrapolations which assume
that O((a/L)3) effects have a negligible effect. All this makes
us very confident also in the continuum extrapolations of �,
where the very small lattice spacings are not available, but
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Table 8 Results of the combined fits A and B for �(i)(u, a/L) and �̃(i)(u, a/L) with (i = 1) and without (i = 0) improvement. The 2 errors given
are the statistical and the total error, respectively, where the latter includes an estimate of the remnant uncertainty due to linear a-effects

fit {�(i), �̃(i)} χ2/dof ω(1.11) ω(1.5) ω(2.012) ω(2.45)

A i = 1, L/a ≥ 6 47.8/45 0.1368(8)(9) 0.1307(7)(8) 0.1201(8)(9) 0.1123(13)(13)

A i = 1, L/a ≥ 8 33.5/37 0.1385(10)(10) 0.1319(8)(9) 0.1199(9)(10) 0.1117(13)(13)

A i = 0, L/a ≥ 6 61.3/45 0.1350(9)(9) 0.1290(7)(8) 0.1193(9)(10) 0.1118(12)(12)

A i = 0, L/a ≥ 8 33.5/37 0.1379(11)(11) 0.1311(8)(9) 0.1193(10)(10) 0.1115(12)(13)

B i = 1, L/a ≥ 6 47.8/44 0.1368(10)(11) 0.1307(7)(8) 0.1201(9)(9) 0.1123(13)(13)

B i = 1, L/a ≥ 8 33.5/36 0.1385(12)(13) 0.1319(9)(9) 0.1199(10)(10) 0.1117(13)(13)

B i = 0, L/a ≥ 6 60.6/44 0.1344(12)(12) 0.1291(7)(8) 0.1192(9)(10) 0.1120(12)(13)

B i = 0, L/a ≥ 8 33.5/36 0.1381(15)(15) 0.1311(8)(9) 0.1194(10)(10) 0.1115(13)(13)

0.1

0.11

0.12

0.13

0.14

0.15

0 0.5 1 1.5 2 2.5
u

ω(u) (fit A, L/a ≥ 8)
ω(u) (fit B, L/a ≥ 8)

one-loop
two-loop

Ω(1)(u, a/L) − ρ(1)(u, a/L)
Ω̃(1)(u, a/L) − ρ̃(1)(u, a/L)

Fig. 3 The bands show the continuum fit functions for fits of type A
and B to one-loop improved data for L/a ≥ 8 and the data points
are one-loop improved data with the cutoff effects subtracted using the
models ρ(1)(u, a/L) and ρ̃(1)(u, a/L) from the type A fit

where we have 2-loop perturbative improvement at our dis-
posal.

We return to the specific discussion of ω. As our best value
at the reference coupling u = 2.012 = ḡ2(L0) we choose
the result of fit A to 1-loop improved data with L/a ≥ 8.

ω(2.012) = 0.1199(10), (4.22)

which is required to define the starting point for the step-
scaling procedure for SFν schemes with non-zero values
of ν (s. below). Another interesting value is ω(u) at the
largest available coupling, u = 2.45, which correspond to
α = 0.195,

ω(2.45) = 0.1117(13), (4.23)

using the same fit function. As discussed further in [1], and
as is evident from the large difference between 2-loop PT
and the non-perturbative result in Fig. 3, an unnaturally large
next order perturbative coefficient would be required to per-

turbatively describe the function ω(u) at such values of the
coupling.

Finally, we comment on the different behaviour of the
fits A and B, which is seen in Fig. 3 for small couplings,
outside the range of the data. This illustrates the danger of
using fit functions outside their range of validity. While fit A
is constrained to produce the 2-loop perturbative result for
ω(u), Eq. (2.37), fit B leaves the 2-loop coefficient v2 as a fit
parameter, d1 (4.19). The result,

(4π)2d1 = −0.9(2.9), (4.24)

should be compared with Eq. (2.38). While the central value
is not too far off, the large error illustrates the difficulty to
estimate such asymptotic coefficients, even if precise data is
available over a wide range of couplings.

4.6 The step-scaling function for ν �= 0 and tests of
perturbation theory

The step-scaling functions for ν �= 0 can be treated in the
same way as for ν = 0. The fit ansätze we have considered
for �ν(u, a/L) and �

(1)
ν (u, a/L) are analagous to the ν = 0

case, cf. Table 5. Choosing the values ν = −0.5, 0.3 for illus-
tration and fits of type A, B, B′ we quote again the couplings
at Ln , as well as the results for L0�, cf. Table 6. Here, the
�-parameter is again the one of the ν = 0 scheme, i.e. we
use the known ratio of �-parameters (2.50) and evaluate, at
un = ḡ2

ν (Ln), the expression

L0� = 2n
�

�ν

ϕν

(
ḡ2
ν (Ln)

)
, n = 0, . . . , 5. (4.25)

The step-scaling procedure for ν �= 0 requires ḡ2
ν (L0) as

starting point, which is given by

1

ḡ2
ν (L0)

= 1

ḡ2(L0)
−νω

(
ḡ2(L0)

)
= 1

2.012
−ν×0.1199(10).

(4.26)
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Fig. 4 Determination of the �-parameter in units of L0 at different
values of α. We compare the extraction in different schemes (ν =
−0.5, 0, 0.3), and show a comparison with our final result Eq. (4.27).
As the reader can see when the extraction is performed at high enough
energies (α ∼ 0.1), all schemes nicely agree. See the text for a full
discussion

Note that this start value now has a small uncertainty, due to
the fact that L0 is still defined by Eq. (4.9) and the connec-
tion requires the result for ω(2.012) from Eq. (4.22). For our
choices of ν-values this uncertainty is a factor 2–3 below the
statistical uncertainty, and will be neglected in the following.
The propagation of errors to the couplings at scales L0/2n

and to L0� then proceeds in the same way as for ν = 0.
Results are given in Table 6, and in Fig. 4. We observe a
roughly linear behaviour in α2, which suggests to directly
fit to an effective 4-loop coefficient bfit

3 in the β-function.
This is done in fits E, F and H , cf. Table 5. Not surprisingly,
the resulting fit coefficients roughly agree with the effective
4-loop coefficients, Eq. (4.14), given in Table 6. We also
note that schemes at different ν-values behave quite differ-
ently; the 2 chosen non-zero values of ν illustrate this: while
ν = 0.3 data shows no significant remnant α-dependence
even up to α ≈ 0.2, the slope in α2 is very pronounced for
ν = −0.5. Therefore, it is a strong consistency check for
our analysis that all values for L0� are compatible around
α = 0.1, despite considerable deviations at larger couplings.
This means we can confidently extract L0� in this regime.
Our final value is obtained from fit C, taking the n = 4 esti-
mate at ν = 0, viz

L0� = 0.0303(7) ⇒ L0�
Nf=3
MS

= 0.0791(19), (4.27)

which is slightly more precise than the result quoted in
[1], due to a refined model for the O(a) boundary effects,
cf. Sect. 3.7. For an even more conservative error estimate
one could take fit D, again at n = 4 and ν = 0, which yields
L0� = 0.0303(11).

Using the fits E, F and H, in terms of the fitted β-function,
the values in Table 7 are obtained. The fact that these are all
compatible, with very similar central values further boosts the
confidence that our final result is very robust. Finally, coming
back to the question raised in Sect. 2 about exponentially

suppressed contributions, we emphasize that the consistency
of our analysis with fits taking the same functional form as
higher order perturbative terms provides indirect evidence for
the absence of such non-standard terms within our numerical
precision.

4.7 Alternative tests

So far, our strategy has been to first determine � in the SF
scheme and then convert it to �MS. However, one might
also match the SF to the MS-coupling at 2-loop order using
Eq. (2.41) and then extract the �-parameter within the MS-
scheme. While the perturbative precision is parametrically
the same as before, we present this alternative view here, as
it is closer to the strategy often used in phenomenological
applications.

Within the MS-scheme we have, with μ = s/L , and Ln =
L0/2n ,

�MSL0 = s
L0

Ln
ϕMS

(
ḡMS(Ln/s)

)

= s 2nϕMS

(√
ḡ2
ν (Ln)+pν

1 (s)ḡ4
ν (Ln)+pν

2 (s)ḡ6
ν (Ln)+O

[
ḡ8
ν (Ln)

])
,

(4.28)

where s is an additional scale parameter and pν
i (s) =

cν
i (s)/(4π)i , cf. Eq. (2.41). The unknown 3-loop and higher

order terms in the argument of ϕMS will be neglected in
the following. The function ϕMS, Eq. (2.47) can be evalu-
ated using up to 5-loop order for the β-function. For our
range of α-values, the numerical difference between 4- or 5-
loop order evaluation is found to be negligible. The dominant
uncertainty is due to the 2-loop truncation of the perturbative
conversion to the MS coupling,

�g2
MS

= O
[
ḡ8
ν (Ln)

]
= O

[
ḡ8

MS
(Ln/s)

]
, (4.29)

which multiplies the sensitivity to a change in the coupling,

d

dg2 ϕMS (g) ∝ 1

gβMS(g)
= O(g−4), (4.30)

and thus induces an O(g4) or O(α2) uncertainty in the esti-
mate of the �-parameter. As mentioned before, this is para-
metrically the same as previously, cf. Eq. (4.16).

We now use the non-perturbative results for the SFν-
couplings from Table 6 as input in Eq. (4.28) and study the
dependence of the �-parameter estimates on the choice of
scale Ln , the scale factor s and the parameter ν. Figure 5
shows some typical results; at fixed ν and s we observe again
an approximate linearity in α2, with the asymptotic values
being compatible with our best estimate, Eq. (4.27). How-
ever, we note that the slope varies significantly as a function
of s and ν.
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Fig. 5 Determination of L0�MS at different physical scales (parametrized by the value of α in the x-axes), and using different renormalization
scales (value of s) to match with the MS scheme. The left (right) panel uses the SFν -scheme with ν = 0 (ν = −0.5), cf. text
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Fig. 6 Coefficients cν
1(s) and cν

2(s) for two different SFν schemes. Left ν = 0, right ν = −0.5. The values s� defined by the condition c1(s�) = 0
are approximately s� ≈ 3 (left) and s� ≈ 5 (right)

We find that the choice of s = s�, Eq. (2.44), which
eliminates the one-loop term in the matching, Eq. (2.45),
is often (but not always) a good one. For the cases ν = 0
and ν = −0.5, Fig. 6 shows the 1- and 2-loop matching
coefficients to the MS-coupling, Eq. (2.41), as functions of
the scale factor s. The values for s� are roughly around 3,
5 and 2 for ν = 0, −0.5 and 0.3, respectively. While for
ν = 0 (similarly for ν = 0.3) the two-loop coefficient is near
minimal around s� and stays positive (Fig. 6, left panel), a
more complicated pattern is seen for ν = −0.5 (Fig. 6, right
panel).

A common method to assign a systematic error to a per-
turbative uncertainty consists in a renormalization scale vari-
ation by a factor 2 in both directions, around some “optimal
scale” (cf. the review of QCD in [2]). Taking the values s� as
our optimal values for the scale factor we can now assess how
this method fares in our context. In Fig. 7 this systematic error
is shown, together with the total errors, for the estimates of
the �-parameter. As one might expect, this systematic error
dominates the error at low energies, reduces proportional to
α2 and becomes negligible at higher energies. This is indeed
the case for ν = 0 and ν = 0.3, where the systematic errors
are seen to bracket the shaded area representing our reference
result (4.27). However, this is not the case for ν = −0.5,
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ν = −0.5
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Fig. 7 Statistical (interior error band) and total (exterior error band)
uncertainties in the determination of L0�MS. The total uncertainty is
computed by adding in quadratures the statistical and systematic uncer-
tainties. The latter are computed varying the renormalization scale by
a factor 2 above and below the value s�. See text for more details

where a significant underestimation of the systematic error
is observed, cf. Fig. 7.

However, in all cases we note that for α ∼ 0.1, the sys-
tematic uncertainty of the matching with perturbation theory,
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obtained by varying s is well below the statistical uncertain-
ties. Moreover the latter are in line with the errors obtained
with our previous strategy. This further reinforces our pre-
vious conclusions: thanks to the high energies reached with
the step scaling method, our uncertainties are fully dominated
by statistical errors, systematic uncertainties being negligi-
ble. The spread of results obtained by the variation of the
perturbative matching scale provides a way to assess the sys-
tematic uncertainties which works well with the SF schemes
at ν = 0, 0.3, even at α ≈ 0.2 (although the systematic
uncertainty there is large). But the failure of this method for
the SF scheme with ν = −0.5 indicates that this method
may not always be reliable, particularly if the coupling is not
small and cannot be varied. This illustrates that perturbative
truncation errors are very difficult to estimate within pertur-
bation theory, and that reaching high energies is crucial for a
robust determination of the strong coupling. Indeed we see
that for values α ≈ 0.1 there is nice agreement between all
schemes and reasonable choices of the scale factor s within
errors, which clearly allow us to meet the target accuracy of
3 per cent for the �-parameter.

5 Conclusions and outlook

Using numerical simulations and finite volume step-scaling
techniques, we have studied a family of SF couplings, param-
eterized by ν, over a range of scales corresponding to ener-
gies of 4–128 GeV, thus differing by a scale factor 32. This,
together with an unprecedented control of statistical and sys-
tematic errors represents a luxury which we have exploited
to test the accuracy of perturbation theory. Choosing the �-
parameter for ν = 0 in units of L0 ≈ 1/(4 GeV) as a ref-
erence, its evaluation requires the knowledge of a coupling
and its β-function between a finite and the infinite energy
scale, where the coupling vanishes by asymptotic freedom.
Perturbation theory to 3-loop order is available for the asymp-
totic scale dependence beyond an energy scale 1/L , which
can be chosen anywhere in the range covered by our non-
perturbative data, provided the ratio L/L0 is known. By
looking at the spread of values for L0� one therefore tests
the accuracy of perturbation theory at the scale 1/L . More-
over, the exact relation between �-parameters of different
schemes requires a one-loop matching of couplings which
is known in all cases considered. It is therefore also possi-
ble to test the robustness of the �-parameter determination
by using SF-schemes at various values of ν as an intermedi-
ate step. The result is neatly illustrated in Fig. 4, where all
data points should coincide up to a parametric uncertainty
of order α2. We conclude that a target precision of better
than 3% for L0� (which approximately corresponds to a
0.5% precision for αs(mZ )) requires non-perturbative data
for a large enough range of couplings so that the perturba-

tive truncation errors can be safely estimated. Our range of
scales 4–128 GeV reaching down to α ≈ 0.1 allows us to
reach such a precision. While some schemes may give com-
patible results even at α ≈ 0.2, it seems all but impossible
to anticipate the quality of a given scheme if the coupling
cannot be varied significantly.

With the hindsight of our 2.3% precision result for L0�,
Eq. (4.27), we have also looked at an alternative test, which is
close to procedures widely used in phenomenology. Namely,
we have converted our non-perturbative observable, an SFν-
coupling with some choice for ν and L , to the MS-coupling
where we allowed for a relative scale factor s in this pertur-
bative conversion. Given the coupling in the MS-scheme the
full machinery with up to 5-loops for the β-function [3–7]
is available to extract the �-parameter. However, as in phe-
nomenological applications, the limiting factor is the pertur-
bative order in the conversion to the MS-scheme. We can per-
form this step at 2-loop order; for comparison we note that the
5-loop, O(α4) result for the R-ratio [46] translates to 3-loop
order when formulated as a conversion between couplings.
Looking at the dependence of the scale factor, a common
method consists in identifying an “optimal scale factor”, s�,
and then vary this factor between s�/2 and 2s� to obtain a sys-
tematic error estimate (c.f. the review of QCD in [2]). It is a
bit of an art to determine the “optimal scale factor”, and some
appeal to the kinematics or the physics of a given observable
is often made in this context [2]. We here applied such a
procedure, choosing s� close to the ratio of �-parameters,
which means the one-loop coefficient in the conversion to
the MS scheme is made very small. As illustrated in Fig. 7,
this procedure gives an error that shrinks proportionally to α2

and often brackets the correct result. However, we have also
found cases (e.g. ν = −0.5) where this procedure does not
work and underestimates the systematic effect substantially,
even at couplings around α = 0.15. We interpret this result
as a warning: estimating errors within perturbation theory is
notoriously difficult, and one may chance one’s luck by being
too aggressive in this step.

The work presented in this paper constitutes a major step
in the αs-determination by the ALPHA-collaboration [12].
Despite considerable improvements in the precision, this
step currently still contributes the largest single error in this
project. One may therefore hope for further progress, perhaps
by combining the SFν schemes with alternative schemes.
Gradient flow couplings are obvious candidates, provided
the problems with large cutoff effects can be solved [13,47],
and the perturbative information is pushed at least to the
same level as for the SF coupling. The latter step is possi-
ble based on numerical stochastic perturbation theory [31–
33]. Finally we note that, given the coupling results, similar
non-perturbative tests of perturbation theory might also be
performed using the quark mass parameters [48].
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Appendix A: Modelling the sensitivity to ct and c̃t

In order to estimate the systematic error due to remnant O(a)
effects stemming from an imperfect tuning of the counterterm
coefficients ct and c̃t (cf. Sect. 3.7), we model how the data for
the step-scaling functions �(u, a/L) and �ν(uν, a/L) were
to change had the simulations been carried out at slightly
shifted values of these coefficients. The basic observables in
the simulations are the coupling at u = ḡ2(L) and v̄ from
which the couplings at ν �= 0 and the step-scaling functions
are constructed. We therefore first obtain a model for the ct-
and c̃t-dependence of u and v̄. In a second step we translate
this information to uν and finally to the step-scaling func-
tions.

Linear a-effects in ḡ2 and v̄

We have carried out simulations at fixed u = 2.02, lattice
sizes L/a = 4, 6, 8 and with ct- and c̃t-values varied around
their perturbative default values. For instance, Fig. 8 shows
the data for the ct-dependence of u = ḡ2(L).

These results are then used for numerical estimates of the
respective derivatives which are collected in Table 9. Defin-
ing the functions

δb(u) = L

2a

1

u

du

dct
, εb(u) = L

a

dv̄

dct

∣∣∣∣
ḡ2(L)=u

, (A.1)

and analogous functions δ̃b(u) and ε̃b(u), with the derivative
taken with respect to c̃t instead of ct . From the simulations
results one then infers their values at u = 2.02,

δb(2.02) = −2.15(6), εb(2.02) = 0.22(11), (A.2)

and, for the c̃t-dependence,

δ̃b(2.02) = 0.785(4), ε̃b(2.02) = −0.59(6). (A.3)

In order to obtain these functions for a range of u-values we
interpolate these non-perturbative results with perturbation
theory up to 2-loop order [15] and arrive at

δb(u) = −
(

1 + 0.40u + 0.085(14)u2
)

, (A.4)

εb(u) = 0.11(6)u, (A.5)

δ̃b(u) = 0.25u + 0.0686(7)u2, (A.6)

ε̃b(u) = −1.35 + 0.38(3)u. (A.7)

We remark that the separation of the a/L- and the u-
dependence is only approximate; in perturbation theory this
neglects any logarithmic dependence on L/a in the coeffi-
cients. Furthermore, while we have indicated the error in the
fit coefficients, the functions will be used with the central
values throughout and these errors will not be propagated.
We observe that the dominant effect for the coupling is the
ct-dependence. In perturbation theory this is reflected by the
fact that the fermionic c̃t-counterterm only contributes via
loop effects and is thus suppressed by a relative factor u.
For v̄ the hierarchy is reversed, due to the fact that the ct-
counterterm is ν-independent and does not contribute to v1,
in contrast to the c̃t-counterterm.

With these definitions, we may now generalize the func-
tion δb(u) to the SFν coupling based on the relation uν =
u/(1 − νuv̄),

δb,ν(uν) = uν

(
δb(u)

u
+ 1

2
νεb(u)

)
, (A.8)

and the function δ̃b,ν is defined analogously. Here, explicit
values for δb,ν(uν) require both u and uν , which could be
obtained from the data via β and L/a. However, we prefer to
define explicit functions of uν which is obtained by inverting
numerically the function

uν(u) = u

1 − νuω(u)
, ⇒ u = u(uν), (A.9)

with ω(u) from Eq. (3.34), and by then substituting for u in
Eq. (A.8). Obviously, this model for the ct- and c̃t-derivatives
neglects some cutoff effects in the derivatives which are of
higher than linear order in a/L .

Step-scaling functions

Given the models for the couplings ḡ2(L) we now translate
this information to the step-scaling function, which is defined
as the coupling u′ = ḡ2(2L), taken as a function of u =
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Fig. 8 The left panel shows the dependence on ct of the coupling u = ḡ2(L). The improvement coefficient is varied around its 2-loop value and
the value of the coupling is u ≈ 2. The right panel shows the slopes vs. a/L

Table 9 Non-perturbative estimates for the derivatives with respect to
ct and c̃t at u = 2.02. The derivatives were obtained by numerical
variation of the improvement coefficients around their perturbative 2-
loop and 1-loop values, respectively

L/a du/dct du/dc̃t dv̄/dct dv̄/dc̃t

4 −2.323(37) 0.5523(20) 0.036(19) −0.147(11)

6 −1.430(48) 0.4771(22) 0.045(24) −0.089(11)

8 −1.111(46) 0.5368(31) 0.017(23) −0.096(15)

ḡ2(L). Neglecting higher order cutoff effects we then find

d�(u, a/L)

dct

∣∣∣∣
u=ḡ2(L)

≈ a

L
(σ (u)δb(σ (u))

−2uσ ′(u)δb(u)
)
, (A.10)

and analogous equations hold for ν �= 0 and the derivatives
with respect to c̃t , with the obvious substitutions. We fur-
thermore specify that we insert the continuum step-scaling
functions to their known perturbative order,

σ(u) = u + s0u
2 + s1u

3 + s2u
4 (A.11)

with s0,1,2 as given in Eq. (2.32). With this convention we
then define the sensitivity in Eq. (3.38) as

δct�ν(uν, a/L) = a

L

(
σν(uν)δb,ν(σν(uν))

−2uνσ
′
ν(uν)δb,ν(uν)

)
, (A.12)

and analogously for δc̃t�ν , with the replacements δb → δ̃b.
The case ν = 0 is included by omitting the index ν. Further-
more, we define

δct�(u, a/L) = δct �̃(u, a/L) = a

L
εb(u), (A.13)

and analogously for δc̃t� = δc̃t �̃ with the replacement εb →
ε̃b. The functions εb and ε̃b are given in Eqs. (A.5, A.7). The
data �̃(u, a/L), obtained from the 2L-lattices, are treated
exactly like �(u, a/L), as both the ct- and c̃t-variations were
found to be rather insensitive to the precise definition of the
critical mass (at least in perturbation theory).

We finally note that a slight extrapolation of our func-
tions δb, δ̃b and εb, ε̃b beyond u ≈ 2 is implicit due to the
largest argument being σ(2) ≈ 2.45. However, we expect
that the model is not too far off, and are here not overly
concerned about errors at the 10% level, which would add a
corresponding uncertainty on our systematic error estimates.
If future precision studies require a more refined model for
these systematic effects, one might revisit the separation of
the variables L/a andu in our models, and also check the non-
perturbative derivatives at the largest relevant arguments.
Finally we remark that this whole exercise would become
redundant if the counterterm coefficients ct and c̃t could be
determined non-perturbatively as functions of g0.
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